UCLA

Posters

Title

Bacteria-Inspired Motion Strategies for Robotic Sensor Networks

Permalink

https://escholarship.org/uc/item/06k6p7pz

Authors

Amit Dhariwal Gaurav Sukhatme Ari Requicha et al.

Publication Date

2003

Center for Embedded Networked Sensing

Bacteria-inspired Motion Strategies for Robotic Sensor Networks

Amit Dhariwal, Gaurav S. Sukhatme, Aristides Requicha, David Caron Robotic Embedded Systems Lab, USC - http://www-scf.usc.edu/~dhariwal/dpst

Introduction: Locating Gradient Sources in a Computationally Simple Manner

Problem Characteristics

- Assumption: The source generates a gradient which can be sensed by the robots
- **Dynamic source**: The intensity of the gradient generated by a source may vary over time
- Source Location: The gradient source location may vary over time
- Multiple Gradient Sources: There can be multiple gradient sources near the robots
- Gradient Types: Temperature, Light intensity, Salinity (conductivity), pH, Opacity, Minerals etc.

Characteristics of Bacterial Motion

- · Produced through the action of flagella
- · Move towards nutrient sources by following gradients
- Move towards attractive stimuli and away from harmful substances in a process known as *Chemotaxis*
 - It consists of a straight run of an average duration which is followed by an uncoordinated tumble which randomizes the direction of the next run
 - Negative Chemotaxis results in a random tumbling motion
 - Positive Chemotaxis results in an increase in the run duration

Problem Description: Locate and Track Dynamic Gradient Sources

Solution Criteria

- Simplicity
- Minimality in sensing/memory/communication/proc essing
- · Insensitive to errors in sensing
- Should not require localization
- Should have a small form factor and be scalable

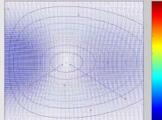


Fig 1. Gradient Source (Green); Robot Nodes (Red);

The Algorithm: A Biased Random Walk

- Model the world as a grid of dimensions 2000 * 2000 Units
- Randomly initialize source(s) of gradient(s)
- A set of robot nodes initialized at random locations in the grid
- The nodes move an average distance of 10 units (also called the Mean Free Path (MFP) of the system) followed by an uncoordinated tumble (random direction change)
- A bias factor which determines the increase in the MFP in case a positive gradient change is observed

Simulation Results

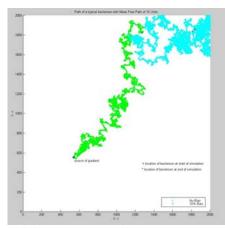


Fig 2. Random Walk vs. Biased Random Walk

Fig 3. Distance traveled by bacteria from their initial position over time

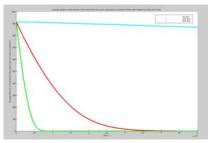


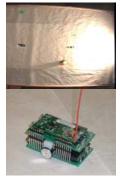
Fig 4. Progress towards the Gradient Source as a function of time under different bias conditions

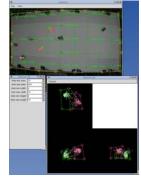
Conclusions

- · Can effectively track one or more gradient sources
- · Can adapt to dynamic and mobile gradient sources
- Modest tolerance to errors in sensor measurements (only the difference in readings is used to make a decision, not the absolute sensor readings)
- Requires minimal amount of memory/sensor

Limitations

The system takes time to converge to the gradient source. This
makes it unsuitable for applications where the source moves
rapidly.


Application Areas


 Ocean coast monitoring, Distributed plume source tracking, Detecting oil spill boundaries

Ongoing and Future Work

- •Effectiveness of Biased Random Walk in Boundary Detection
- •Surface Water Experiments for Gradient Source Detection

Experiments on the Robomote Platform

