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Towards Real-Time Monte Carlo
for Biomedicine

Shuang Zhao, Rong Kong and Jerome Spanier

Abstract Monte Carlo methods provide the “gold standard” computational tech-
nique for solving biomedical problems but their use is hindered by the slow conver-
gence of the sample means. An exponential increase in the convergence rate can be
obtained by adaptively modifying the sampling and weighting strategy employed.
However, if the radiance is represented globally by a truncated expansion of basis
functions, or locally by a region-wise constant or low degree polynomial, a bias is
introduced by the truncation and/or the number of subregions. The sheer number of
expansion coefficients or geometric subdivisions created by the biased representation
then partly or entirely offsets the geometric acceleration of the convergence rate. As
well, the (unknown amount of) bias is unacceptable for a gold standard numerical
method. We introduce a new unbiased estimator of the solution of radiative transfer
equation (RTE) that constrains the radiance to obey the transport equation. We pro-
vide numerical evidence of the superiority of this Transport-Constrained Unbiased
Radiance Estimator (T-CURE) in various transport problems and indicate its promise
for general heterogeneous problems.
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1 Introduction

Monte Carlo simulation has provided the “gold standard” numerical method for
solving biomedical problems for the past thirty years [22]. Nevertheless, its slow
convergence (at the rate N−1/2 where N equals sample size) inhibits use of Monte
Carlo on a routine basis. Instead, diffusion-based numerical methods are often used
because of their superior speed of execution, even though they may provide very
poor descriptions of the radiant light field in many situations. Consequently, there
has been a lot of interest in accelerating the convergence ofMonte Carlo simulations,
especially within the biomedical community, where accuracy is a primary focus.

Conventional density function estimation methods [6, 16, 17] are widely used
with success where photorealism—not image perfection—is the goal. Such methods
have revolutionized the rendering of scenes for electronic games and movies [7].
Density estimation methods avoid the need to represent the radiance in a functional
expansion, but they introduce the need for “smoothing parameters”which also causes
a bias in the density estimator. This precludes convergence to the exact solution and
is unacceptable as a gold standard method for biomedicine or biology. The question
we then asked was: Can any of these ideas be used in such a way that the radiance
it produces actually satisfies the governing radiative transport equation? If so, might
that produce a candidate to serve as a gold standard for biomedical simulations? That
investigation has led to the publication [12] and to this paper.

2 Radiative Transport Fundamentals

Before proceeding with this line of thinking we want to establish our notation and
clarify our goals.

The rigorous transport of light in tissue usually begins with the integro-differential
form of the equation which is then transformed to the integral form [18] of the RTE:

L(P) =
∫

Γ

K (P ′ → P) L(P ′) dω′dρ + S(P), (1)

where P := (r,ω), P ′ := (r ′,ω′), r ′ := r − ρω and

K (P ′ → P) := μs(r ′)
μt (r ′)

f (r ′; ω′ → ω) T (r ′ → r; ω), (2)

T (r ′ → r; ω) := μt (r ′) e− ∫ ‖r−r′‖
0 μt (r−τω)dτ , (3)

with source function
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S(P) := e− ∫ R
0 μt (r−τω)dτ Q0(r − Rω,ω) +

∫ R

0
e− ∫ ρ

0 μt (r−τω)dτ Q(r − ρω,ω) dρ.

(4)
Appendix 7 provides details on how Eq. (1) arises from the integro-differential equa-
tion (24) in the time-independent case.

To complete the mathematical description,

• Γ := V × S
2 (V ⊆ R

3) denotes the phase space of vectors (r,ω);
• μs and μa are respectively the scattering and absorption coefficients;
• μt := μs + μa is the total attenuation coefficient;
• f is the single-scattering phase function (that scatters photons from direction ω′
to ω at location r ′);

• L denotes photon radiance.

2.1 Role of Eqs. (1)–(4) in Generating Samples

We now indicate how the Eqs. (1)–(4) play a role in generating photon biographies;
i.e., samples drawn from our sample space B.

Figure1 depicts a hypothetical photon biography that is launched from the light
source at the left, makes collisions at the locations r1, r2, r3 and r4, then exits the
tissue at the detector on the right. If we assume that there is no internal volumetric
source, (Q ≡ 0 in Eq. (4)), but there is a nonzero source of light Q0 on the boundary,
then the launch position and direction P0 = (r0,ω0) are drawn by sampling Q0,
while the first collision location r1 is drawn by sampling the exponential probability
density function with exponent

∫ ‖r0−r1‖
0 μt (r0 − τω0) dτ (see Eq. (3)). Provided that

the photon is scattered at r1 (with probabilityμs/μt ), the directionω0 is scattered into
the direction ω1 by sampling from the single-scattering phase function f (r1; ω0 →
ω1). This process of locating successive collision points and unit directions continues
until the photon biography P0 = (r0,ω0), P1 = (r1,ω1), . . . either terminates by
absorption (with probability 1 − μs/μt ) at some collision point or escapes from the
tissue, either at the detector or elsewhere on ∂V .

2.2 Equivalence Between Physical/Analytic and Stochastic
Models

The physical/analytic RTE model consists of the equations of radiative transport
in tissue, together with a linear functional Li of the solution L of the RTE for each
detector:

Li =
∫

Γ

di (r,ω)L(r,ω) dr dω, (i = 1, . . . , d).
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Scattering medium

Source Detector

Fig. 1 Illustration of a photon biography comprising four collision points at r1, r2, r3, r4. When
entering a collision r i , the direction ωi−1 of the photon changes to ωi according to the single-
scattering phase function at r i (indicated as green ellipses)

The stochastic/probabilistic RTE model used to characterize the Monte Carlo
solution of this system consists of a probability measure spaceB, a set of measurable
subsets � of B, and a probability measure M on B together with d random variables
�i : B → R for i = 1, . . . , d, each of which describes the contribution (tally) of any
photon biography b̄ to the detector Li . Here,

• B is the sample space of all possible photon biographies b̄ (that are termed as light
transport paths in computer graphics [20], as illustrated in Fig. 1);

• �i (b̄) is the tally/score associated with biography b̄ for detector i ;
• E[�i ] is the expected value of �i with respect to M;
• V is the physical domain of the phase space Γ .

If the measure M on B is induced by the analog simulation (by launching photons
according to the physical source Q, transporting them from r ′ to r along ω by
sampling T , absorbing them at r with probability 1 − μs/μt , scattering them at r
with probability μs/μt and changing their direction from ω′ to ω by sampling f ), it
is the case that for i = 1, 2, . . . , d:

E[�i ] =
∫
B

�i (b̄) dM(b̄) =
∫

Γ

di (r,ω)L(r,ω) dr dω = Li . (5)

The equality (5) establishes that the probabilistic model (the left-hand side) and the
analytic model (the right-hand side) both represent the quantities Li being estimated.

The same equality shows that each �i is a theoretically unbiased estimator of
Li for every N :

1

N

N∑
j=1

�i (b̄ j )
N→∞−−−→

∫
B

�i (b̄) dM(b̄) = Li . (6)

The symbol � is reserved here for a random variable on the space B of all possible
photon biographies b̄ (i.e., the sample space), N is the total number of photons
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released from the source, and M denotes the probability measure induced on B by
the process associated with generating b̄ ∈ B. That is, the measure M is constructed
from the choice of probability density functions used to launch, transport, scatter and
absorb each biography b̄, whether these are analog or not.

3 Our Goal and Current Status

Our previous research (see [8–11, 14]) on adaptive Monte Carlo algorithms for
radiative transport problems resulted in the development of several geometrically
convergent algorithms for global transport solutions L . By geometric convergence,
we mean

Es < λEs−1 < λs E0, (0 < λ < 1),

where s is the stage number and Es is the sth stage error; e.g.,

Es =
∥∥∥L(P) − L̃s(P)

∥∥∥∞
,

and L̃s(P) is an approximation obtained in the sth stage to L(P), the solution of
the radiative transport equation (RTE). The geometric convergence means that the
rate of convergence of the approximate solution L̃s(P) to the solution L(P) is
exponentially greater than the central limit theorem-constrained rate of non-adaptive
methods. However, taking into account both variance and time, our true goal for
adaptive methods is to exponentially increase the computational efficiency

Eff := 1

Var × T
,

when compared with non-adaptiveMonte Carlo, where Var is the estimator variance,
and T denotes total computation time.

We have demonstrated geometric convergence using both correlated sampling
and importance sampling as the stage-to-stage variance reduction mechanisms. Our
algorithms, as well as others developed at Los Alamos [1–3], also achieve geometric
convergence but each faces implementation challenges and limitations. For example,
for SequentialCorrelatedSampling (SCS), the evaluation of the residual (i.e., theRTE
equation error) and its use in generating a distributed source for each new adaptive
stage creates unavoidable new sources of approximation errors. However, SCS is fast
and very robust because each adaptive stage produces a correction to the estimate
of the solution obtained from all of the previous stages. For Adaptive Importance
Sampling (AIS), there is both a cost and loss of precision involved in sampling from
the complex importance-modified expressions that result from altering the kernel K
at each adaptive stage. On the plus side, AIS is very powerful and seems to produce
the most rapid error reduction per adaptive stage of those adaptive methods we know.
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Table 1 Comparison of the convergence characteristics of GWAS and AIS when each is used to
estimate the solution of a 1D bidirectional RTE for which an exact solution is known

Method S Est. ‖R‖ σ 2 t Rel. Eff

Exact – 0.8964537768861041 – – – ∞
GWAS 60 0.8964537768857454 5.95

×10−13
4.29
×10−21

203,940 1.142
×1015

AIS 20 0.8964537768868207 5.36
×10−12

6.08
×10−19

743,100 2.212
×1012

In [19]we introduced anewadaptiveMonteCarlomethod—GeneralizedWeighted
Analog Sampling (GWAS)—for the solution of RTEs. The idea behind GWAS is to
combine the power of importance sampling with strategies that loosen the restric-
tions associated with sampling from importance-modified transport kernels. In this
way, we hoped to combine rapid error reduction with fast algorithm execution in
order to exponentially increase the computational efficiency. The price we pay for
the flexibility of GWAS is that it biased. The fact that GWAS is biased (though
asymptotically unbiased) greatly complicates the proof that it produces geometri-
cally convergent estimates of RTE solutions. However, we have recently proved a
new theorem that establishes that geometric convergence does obtain forGWAS [13].
As well, GWAS is able to provide increased computational efficiency compared with
AIS, as we showed in [13]. The complete numerical results are provided in this recent
publication, but here we repeat the table that summarizes this behavior.

We note that GWAS has amuch higher computational efficiency thanAIS because
of its speed of execution. Note, too, that even though the variance of GWAS is more
than 100 times as large as that of AIS, the efficiency of GWAS is more than 5,000
times that of AIS.

Each of these three adaptive methods:

1. generates biographies in stages, each of which consists of the same number of
biographies;

2. applies variance reduction (correlated sampling, importance sampling, and
GWAS) in each stage, linking stage s output to stage (s + 1) input in an intrinsic
way;

3. makes use of an analytic representation of the radiance.

Detailed examination of the behavior of these three adaptive algorithms reveals
that the need to represent theRTEsolutionbymeans of a formula introduces bias in its
adaptive estimates. This, in turn, prevents each algorithm from achieving unlimited
precision as the number of adaptive stages tends to infinity. Thus, even though we
don’t need unlimited precision in order to make our adaptive algorithms useful,
introducing an unknown amount of bias in our estimates falls short of our goal to
create a newgold standard simulation tool for adoption by the biomedical community.
In fact, the central obstacle to creating a real-time transport-rigorous Monte Carlo
simulator is estimator bias (Table1).
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4 The Role of Bias in Estimating Radiance

The theoretical bias of an estimator �(b̄) of a linear functional

I =
∫
V×S2

d(r,ω) L(r,ω) dr dω,

of the radiance L(r,ω) defined on the sample space B is

E[�(b̄)] − I =
∫
B

�(b̄) dM(b̄) − I.

Theoretical bias introduces a component of systematic error in the mean integrated
square error:

MISE = E

[∫
B

(�(b̄) − I )2 dM(b̄)

]

=
∫
B

(
E[�(b̄)] − I + �(b̄) − E[�(b̄)])2 dM(b̄)

=
∫
B

BIAS2[�(b̄)] dM(b̄) +
∫
B

Var[�(b̄)] dM(b̄).

(7)

Here E[] is the expected value operator and b̄ ∈ B is a photon biography (i.e., a
sample). In contrast with theoretical bias, we will say that computational bias re-
sults from the accumulation of small errors due to the computer’s limited precision.
Computational bias is unavoidable inmost cases. However, with sufficient care, com-
putational sources of error can be controlled and estimated, whereas the source of
error from theoretical bias is largely unknown and therefore much more difficult to
estimate and to control.

The first term of the right hand side of (7) is the integral of the squared bias, while
the second term is the integrated variance. Thus, for biased estimators it is necessary
to control both the bias and the variance to exhibit geometric convergence.

Our approach to the avoidance of biased RTE estimators was to see whether
the biased estimators often used in the graphics community could be improved or
modified sufficiently to serve as the engine of a “gold standard” RTE solver. One of
the conventional tools used for achieving realistic-looking scenes rapidly is kernel
density estimation [17].

Kernel density estimation is a non-parametric method (i.e., no assumptions are
made about the unknown underlying pdf) for recovering an unknown probability den-
sity function f (x) by drawing samples x1, x2, . . . , xn that are distributed according
to f (x). The kernel estimator with kernel k (satisfying

∫ ∞
−∞ k(x) dx = 1) produces

the estimate f̃ (x) of the pdf f (x) according to
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f̃ (x) = 1

nh

n∑
i=1

k

(
x − Xi

h

)
. (8)

where X1, . . . , Xn are samples drawn independently from f (x) and h is the window
width (or smoothing parameter) that controls the influence of the kernel k near each
sample point Xi . The kernel k can be chosen in a variety of ways: for example, as a
standard Gaussian density

kG(x) = 1√
2π

e−x2/2,

if x ranges over the entire real line, or as the Epanechnikov density

kE (x) =
{
6
(
1
4 − x2

)
x2 < 1

4 ;
0 otherwise,

or in various other ways. Kernel Density Estimation is consistent: i.e., f̃h(x) con-
verges to f (x) as the number of samples n increases without limit, provided that the
smoothing parameter h tends to 0 in such a way that the product hn tends to ∞. This
last requirement means roughly that there are sufficiently many samples within the
support sets of the kernel as the smoothing parameter is reduced.

Instead of applying conventional (unconstrained) density estimation to the RTE,
we took the approach of constraining our method; i.e., to relate the RTE solution
expansion directly to the random walks actually generated, treating these as the
“samples” of the Monte Carlo simulation. Indeed, the sample space B is defined
in this way [18], and the new Transport-Constrained Unbiased Radiance Estimator
(T-CURE)does exactly this: it describes the expected contribution to theRTEsolution
at any point of phase space from each collision point of every photon biography. This
creates an unbiased representation of the global RTE solution for all sample sizes
that requires no smoothing parameters nor any special treatment of boundaries.

In the following section we will show how the T-CURE estimator can be derived
as an extension of the conventional collision estimator [18].

4.1 T-CURE

We return to the integral equation characterized by Eq. (1), together with Eqs. (2),
(3) and (4). The scattering integrals appearing on the right hand side of Eq. (1) are
functions defined on the problem phase space Γ that are closely related to the RTE
solution itself. We establish an unbiased estimator for those functions (hence, the
RTE solutions) that extends the “conventional” collision estimators [18] to produce
estimates of the entire RTE solution.

First, however, we consider the problem of computing the inner product of L , the
solution of Eq. (1), and some S∗ : Γ → R:
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I = 〈S∗, L〉 :=
∫

Γ

S∗(r,ω)L(r,ω) dω dr. (9)

Instead of estimating Eq. (9) directly, one can equally well solve its dual problem
which leads to the same answer I :

I = 〈S, L∗〉 :=
∫

Γ

S(r,ω)L∗(r,ω) dω dr, (10)

where L∗ is the solution to the adjoint integral equation:

L∗(P) =
∫

Γ

K ∗(P → P ′) L∗(P ′) dρ dω′ + S∗(P), (11)

with K ∗ being the adjoint of K satisfying K ∗(P → P ′) = K (P ′ → P).
The conventional collision estimators for Eqs. (9) and (10) are

η(b̄) := S(P1)

p1(P1)

k∑
i=1

S∗(P i ) and η∗(b̄) := S∗(P1)

p∗
1(P1)

k∑
i=1

S(P i ), (12)

where b̄ := (P1, P2, . . . , Pk) is a biography consisting of collision points P i =
(r i ,ωi ) and k is the number of collisions made by b̄ in the interior of the physical
domain V of Γ . For the estimator η in Eq. (12), b̄ is created using the following
random walk process. The first collision P1 is drawn from a pre-defined density
p1 (which is normally selected to be proportional to S). At each collision P i , the
next state, which can either be the next collision P i+1 or the termination of the
random walk (leading to k = i), is determined using K ∗. Similarly, when η∗ is used,
the photon biography b̄ should be generated in the adjoint manner by sampling P1

based on S∗ and the next state at collision P i using K .
These conventional collision estimators (12) can be highly inefficient when S

or S∗ are concentrated in small subsets of Γ and vanishes everywhere else. This,
unfortunately, is usually the case in biomedicine since many applications involve
optical sources and/or detectors with small physical sizes (e.g., lasers and optical
fibers). In particular, when the support of S∗ is small, S∗(P i ) will be zero with high
probability, making the estimator η inefficient. On the other hand, when S vanishes
almost everywhere in the phase space, η will offer limited efficiency. Further, S and
S∗ can contain delta functions, making direct evaluations of S∗(P i ) in η and S(P i )

in η∗ problematic.
To ease this problem, we introduce T-CURE estimators as an extension of the

conventional collision estimators (12). For notational convenience, define operators
K and K ∗ as functionals on h : Γ → R as
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(K h)(P) :=
∫

Γ

K (P ′ → P) h(P ′) dω′ dρ, (13)

(K ∗h)(P) :=
∫

Γ

K ∗(P → P ′) h(P ′) dρ dω′, (14)

where the use of ρ is the same as in Eqs. (1)–(4). Then, Eqs. (1) and (11) respectively
simplify to

L = K L + S, (15)

L∗ = K ∗L∗ + S∗. (16)

It follows that

〈S∗, L〉 = 〈S∗, K L + S〉 = 〈S∗, H〉 + 〈S∗, S〉, (17)

〈S, L∗〉 = 〈S, K ∗L∗ + S∗〉 = 〈S, H∗〉 + 〈S, S∗〉, (18)

with H := K L and H∗ := K ∗L∗. In Eqs. (17) and (18), 〈S∗, S〉 contains only
known quantities and can be easily evaluated. Thus, we now focus on estimating the
remaining terms 〈S∗, H〉 and 〈S, H∗〉.

By respectively applyingK andK ∗ to both sides of Eqs. (15) and (16), we have

H = K H + K S, (19)

H∗ = K ∗H∗ + K ∗S∗. (20)

Notice that Eqs. (19) and (20) differ from Eqs. (15) and (16) only by the source
terms. Therefore, 〈S∗, H〉 and 〈S, H∗〉 can be estimated using Eq. (12) with updated
source terms, yielding

ηNE(b̄) := S(P1)

p1(P1)

k∑
i=1

(K ∗S∗)(P i ),

η∗
NE(b̄) := S∗(P1)

p∗
1(P1)

k∑
i=1

(K S)(P i ).

(21)

Thanks to the integrals involved in K and K ∗, as defined in Eqs. (13) and (14),
K S and K ∗S∗ generally have much greater supports than S and S∗, making our
T-CURE estimators (21) significantly more effective than the conventional ones (12)
when S and S∗ vanish almost everywhere in the phase space.

Since both K and S (as well as K ∗ and S∗) are known, we can, in principle,
evaluate these new extended next-event estimators (21) exactly. In particular, given
Eqs. (13) and (14), it holds that
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Fig. 2 Illustration of T-CURE Mechanism: Photon biography b̄ moving in direction ωi collides
at r i in the blow-up at the right. Our estimator ηNE from Eq. (21) involves evaluating K ∗S∗ at
each collision (r i ,ωi ). We estimate (K ∗S∗)(r i ,ωi ) by selecting some ω ∈ S

2 and r ∈ V based
on K ∗(r i ,ωi → r,ω) S∗(r i ,ωi ) but independent of (r i+1,ωi+1)

(K ∗S∗)(r i ,ωi ) :=
∫

Γ

K ∗(r i ,ωi → r i + ρω,ω) S∗(r,ω) dρ dω, (22)

(K S)(r i ,ωi ) :=
∫

Γ

K (r i − ρωi ,ω → r i ,ωi ) S(r,ω) dω dρ. (23)

In practice, the integrals in Eqs. (22) and (23) can be evaluated analytically or nu-
merically depending on the exact forms of S and S∗. Lastly, the evaluation of the
T-CURE tallies from every collision at (r i ,ωi ) can be accomplished either on-the-fly
or by post-processing all of the biography collision points saved from the generation
of the photon biographies. This is because the T-CURE tally at (r i ,ωi ) is indepen-
dent of the process that generates the next collision at (r i+1,ωi+1). See Fig. 2 for an
illustration of this process.

Besides offering superior computational efficiency, our new T-CURE estimators
also enjoy the following properties:

• They require the imposition of no mesh on the phase space, so they provide the
basis for plotting or otherwise displaying features of the RTE solution over any
desired mesh, or of several such, based on a single set of biographies.

• They can be implemented either with “on-the-fly” computation or, after generating
a “smallish” number N0 of biographies, by post-processing key data stored from
the N0 “baseline” set of biographies, or by a combination of these two methods.

The power of T-CURE estimation derives from replacing occasional contributions
to reflectance from biographies that are actually detected (i.e., the terminal estimate
of reflectance) by sums of analytic formulas over all the collisions of biographies,
whether or not they ultimately reach the detector. Not surprisingly, this replace-
ment often (though not always!) achieves variance reduction in estimates of reflec-
tance.
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Fig. 3 Comparison of transport-constrained density estimation with both histogram and Epanech-
nikov density estimators. The exact solution of this 1D problem is known and constitutes the black
curve, while the twomore conventional density estimators are indicated in blue and green. Estimated
standard deviations are shown as error bars

Previously, we have shown that T-CURE is unbiased for all sample sizes, in
sharp contrastwith the conventional (unconstrained) density estimators [12]. Aswell,
T-CURE is roughly an order of magnitude more accurate than the conventional ones
found in the statistical literature [6, 15, 16]. Figure3 (from our prior work [12])
illustrates these gains in a 1-D model RTE problem that plots the (scalar) intensity
of the light field against distance, x , from the light source.

5 Recent Numerical Studies: T-CURE in Multi-dimensions

The comparison of T-CUREperformancewith that of the histogram and theEpanech-
nikov density estimators was motivated by the desire to compare its computational
efficiency as a constrained “density estimator” with that of the more conventional
unconstrained density estimators that are widely used by the graphics community.
The bidirectional problem is especially simple since it involves only one spatial
dimension and two discrete scattering directions. In order to investigate how the
T-CURE estimator behaves when applied to more challenging problems, we turned
to multilayer tissue problems. For all of these numerical experiments we used input
data typical of normal cervical tissue. The tissue was represented as two layers: a
top epithelial layer and the stromal layer below. Optical data for this 5-D problem is
shown in the table:
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Layer Optical data Layer thickness
μs μa g

Epithelium ∼80/cm [5] 0.12/cm 0.95 360 µm [21]
Stroma 150/cm [4] 0.15–1.2/cma 0.88 ∞

Particular value for μa depends on whether there is Hb absorption at that wavelength

Intuitively, we do not expect the performance of T-CURE to degrade significantly
as the dimension of the underlying phase space increases. This is because the over-
head associated with T-CURE depends mainly on the number of collisions, which is
determined by the optical properties, not the dimension of the phase space.

Next we illustrate the use of T-CURE to estimate spatially resolved reflectances
in two tissue problems. Both experiments used the two-layer data for normal cervical
tissue shown in the table above but ignore possible refractive index mismatches at
the interfaces (Fig. 4).

Note especially the graininess of the terminal estimator and also how the infor-
mation degrades as the source-detector distances increase. This graininess contrasts
with the much greater smoothness of the T-CURE images, even at 10.0cm from the
source where the signal is quite low. Note also the scales along the y-axis of the
images. Even though the magnitude of the signal falls by about two orders of mag-
nitude as the source and detector radii shrink, the T-CURE 95% relative confidence
interval sizes remain below 3.5% over the entire range of source-detector distances,
while the terminal 95% confidence interval sizes grow from 15 to 100% as the s-d
distances grow from 1.0 to 10.0cm (Fig. 5).

Fig. 4 5-D Cervical Tissue Problem. This example displays another advantage of T-CURE when
compared to more traditional estimators: one can generate a “smallish” initial set of biographies,
show the output from that, and then refine the output mesh by post-processing the initial set without
generating any new biographies. For example, the plot on the right was produced by processing
biographies “on the fly” (6min), while the refined plot on the left was obtained by post-processing
stored data from these biographies (few seconds)
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Fig. 5 In this problem, there is a single source at (0, 0, 0) and six detectors spaced at distances
1.0, 1.5, 2.0, 3.0, 5.0 and 10.0cm from the source. Both the source and detector are discs with
identically small radii R = 0.0025cm.We applied both the terminal (top) and our T-CURE (bottom)
estimators to this problem by letting them run for approximately 1700s for each data point. In both
experiments, the left plot shows estimation results and the right plot shows the relative size of
95% confidence intervals (obtained using twice the standard deviation of the sample data). These
confidence intervals are also drawn in the left plots (as error bars). Lastly, the red dashed lines
indicate the solution obtained using the other estimator, demonstrating that our analog and T-CURE
estimators converge to the same answer

6 Summary and Future Work

Wehave advanced our earlierwork [12] by examining the computational efficiency of
T-CURE onmultidimensional, heterogeneous (multilayer) tissue problems involving
5 independent variables: 3 for position and 2 for unit direction. We observe that the
advantages of T-CURE are maintained in the higher dimensional cases. We believe
that this new estimator has the potential to be the computational engine of an adaptive
(geometrically convergent) algorithm.
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We will turn our attention next to the fully general multilayer tissue problem,
including the possibility of refractive index mismatches at the layer interfaces. This
introduces new challenges that call for a strategy that controls the run time con-
sumption caused by photon biographies that can cross refractive-index-mismatched
layer interfaces in both directions a very large number of times. Provided that this
degradation of the computational power of the adaptive algorithm can be controlled,
the resulting T-CURE-based adaptive algorithm should serve as a new gold standard
Monte Carlo solver for biomedical problems.
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7 Appendix: Transport Equations

The time independent transport equation can be written as

(ω · ∇)L + μt (r)L(r,ω) =
∫
S2

μs(r) f (r ′; ω′ → ω) L(r,ω′) dω′ + Q(r,ω),

(24)
for all r ∈ V ⊆ R

3 and
L(r,ω) = Q0(r,ω), (25)

for all r ∈ ∂V and ω ∈ S
2 satisfying ω · n(r) < 0 as the boundary condition. In

Eqs. (24) and (25), r := (x, y, z) and n(r) denotes the outward unit normal on the
boundary ∂V at r . Note that

ω = ωx i + ωy j + ωzk = sin θ cosφ i + sin θ sin φ j + cos θ k, (26)

ω · ∇ = sin θ cosφ
∂

∂x
+ sin θ sin φ

∂

∂y
+ cos θ

∂

∂z
, (27)

we now convert Eq. (24) to an integral equation using the method of characteristics.
Consider the following characteristic system for Eq. (24):

dx

dρ
= −ωx ,

dy

dρ
= −ωy,

dz

dρ
= −ωz . (28)
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Solving Eq. (28) produces

x = x0 − ωxρ, y = y0 − ωyρ, z = z0 − ωzρ. (29)

We can then write Eq. (24) in the following form:

− dL(r ′,ω)

dρ
+ μt (r ′)L(r ′, ω) =

∫
S2

μs(r ′) f (r ′; ω′ → ω) L(r ′, ω′) dω′ + Q(r ′, ω),

(30)
where r ′ := r0 − ρω, which can in turn be rewritten as:

− d

dρ

[
e− ∫ ρ

0 μt (r0−τω) dτ L(r ′, ω)
]

= e− ∫ ρ

0 μt (r0−τω) dτ

[∫
S2

μs(r ′) f (r ′; ω′ → ω)L(r ′, ω′) dω′ + Q(r ′,ω)

]
,

(31)

We now integrate the two sides of Eq. (30) with respect to ρ from ρ = 0 to ρ = R
and replace r0 with r to produce:

L(r,ω)

=
∫ R

0
e− ∫ ρ

0 μt (r−τω) dτ

[
μs(r ′)

∫
S2

f (r ′; ω′ → ω) L(r ′,ω′)dω′ + Q(r ′,ω)

]
dρ

+ e− ∫ R
0 μt (r−τω) dτ Q0(r − Rω, ω).

(32)
or

L(P) =
∫

Γ

K (P ′ → P) L(P ′) dω′ dρ + S(P), (33)

where P := (r,ω), P ′ := (r ′,ω′),

K (P ′ → P) := μs(r ′)
μt (r ′)

f (r ′;ω′ → ω) T (r ′ → r; ω),

T (r ′ → r; ω) := μt (r ′) exp

(
−

∫ ‖r−r ′‖

0
μt (r − τω) dτ

)
,

S(P) := e− ∫ R
0 μt (r−τω) dτ Q0(r − Rω, ω)

+
∫ R

0
e− ∫ ρ

0 μt (r−τω) dτ Q(r − ρω, ω)dρ.

Eqs. (32) and (33) are the integral forms of the RTE that we seek.
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