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EPIGRAPH

To learn is not to know;

there are the learners and the learned.

Memory makes one,

philosophy the other.

—Alexandre Dumas
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• JT Yurkovich, A Bordbar, ÓE Sigurjónsson, and BO Palsson. 2018. “Systems biology

as an emerging paradigm in transfusion medicine.” BMC Systems Biology, 12:31. The

xii



dissertation author was the primary author.

Chapter 2 in part is a reprint of material published in: JT Yurkovich, DC Zielinski, L Yang,

G Paglia, O Rolfsson, E Sigurjnsson, JT Broddrick, A Bordbar, K Wichuk, S Brynjolfsson,

S Palsson, S Gudmundsson, and BO Palsson. 2017. “Quantitative time-course metabolomics

in human red blood cells reveal the temperature dependence of human metabolic networks.”

Journal of Biological Chemistry, 292(48):19556-19564. The dissertation author was the primary

author. Chapter 3 in part is a reprint of material published in:

• JT Yurkovich*, L Yang*, and BO Palsson. 2017. “Biomarkers are Used to Predict

Quantitative Metabolite Concentration Profiles in Human Red Blood Cells.” PLOS Com-

putational Biology, 13(3):e1005424. The dissertation author was one of the two primary

authors.

• JT Yurkovich, L Yang, and BO Palsson. 2017. “Utilizing biomarkers to forecast quanti-

tative metabolite concentration profiles in human red blood cells.” Proceedings of the IEEE

Conference on Control Technology and Applications (CCTA), Kohala Coast, HI (August

27-30, 2017). The dissertation author was the primary author.

Chapter 4 in part is a reprint of material published in:

• JT Yurkovich*, MA Alcantar*, ZB Haiman, and BO Palsson. “Network-level allosteric

effects are elucidated by detailing how ligand-binding alters the catalytic potential.” Sub-

mitted January 2018 (Under review, PLOS Computational Biology). The dissertation au-

thor was one of the two primary authors.

• A Bordbar*, JT Yurkovich*, G Paglia, O Rolfsson, ÓE Sigurjónsson, and BO Palsson.
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ABSTRACT OF THE DISSERTATION

The Systems Biology of Red Cell Metabolism:
Physiology under Storage Conditions

by

James T. Yurkovich

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2018

Professor Bernhard Ø. Palsson, Chair
Professor Jeff Hasty, Co-Chair

The human red blood cell (RBC) is a logical starting point for the development and

application of systems biology methods because of its simplicity, intrinsic experimental acces-

sibility, and importance in human health. New “-omics” technologies have been used to study

the biochemical and morphological changes that occur in red blood cells during cold storage,

collectively referred to as the “storage lesion.” Here, we extend these previous efforts by using

systems biology to examine the metabolic physiology of RBCs under storage conditions. We

first characterized the temperature dependence of the storage process using previously identified

xvii



storage-age biomarkers as a representation of systems-level trends, showing that the metabolic

state of the RBC is conserved but accelerated with increasing temperature. We then questioned

whether these biomarkers—which had been shown to be excellent qualitative markers of systemic

behavior—held any potential to provide quantitative information about the system. Using sim-

ple linear statistical models, we showed that a subset of the biomarkers could be used to predict

the quantitative concentration profiles of other metabolites in the RBC network. We expanded

these efforts by integrating network structural information into these statistical models to fore-

cast future values of these concentration profiles after measurements made during only the first

eight days of storage. Next, we used multiple first principles modeling approaches to understand

the underlying mechanisms and temporal dynamics of the observed behaviors and developed a

method for the integration of metabolomics data into cell-scale mathematical models. Finally,

we developed a method for the integration of quantitative proteomics data into cell-scale models

using Escherichia coli as a test case. Collectively, these results provide empirical proof that the

RBC metabolome can be represented in a low-dimensional space and offer the starting point for

a whole-cell model of the RBC. More broadly, we detail the development and use of systems

biology methods on the human RBC, providing a starting point from which we can expand these

efforts to other, more complicated cellular systems.
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Chapter 1

A Systems View of Biology

Life is a program written in DNA. Starting in 1995, genome sequences detailing this

program have ushered in a new point of view in biology: a true systems-level, or “genome-

scale,” perspective. The genome sequence for an organism is analogous to having a component

list for a circuit, except that many connections between components, and even some of the

component functions themselves, are unknown. So how do we solve a puzzle when there are

pieces missing? Enter systems biology. The combination of full genome sequences with over half

a century of research in genetics, molecular biology, and biochemistry has enabled the genome-

scale reconstruction of networks underlying well-studied cellular functions, such as metabolism. A

quality-controlled reconstruction process effectively produces a circuit diagram of the metabolic

network encoded in an organisms genome that can be modeled mathematically. Thus, a first

principles “bottom-up” approach to systems biology rooted in fundamental mechanisms has

arisen, and the quest to reveal the program that DNA encodes is underway. This article will

familiarize you with some of the engineering concepts, methods, and applications in systems

biology.
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1.1 Systems biology as a paradigm

The scientist and philosopher Thomas Kuhn proposed that scientific advances occur

through periodic shifts in prevailing paradigms [1]. Prevailing paradigms are explored through

periods of “normal science,” extremely productive phases in which scientists solve puzzles that

arise within such paradigms. When shortcomings of the prevailing paradigm are identified, the

field shifts from one set of paradigms to another, restarting the process anew. There are different

drivers that lead to such paradigm shifts. The development of new technologies represents a

driver for change, as demonstrated by the “-omics” revolution which we are still witnessing in

the life sciences. Another driver of change is the application of methodologies and approaches

from different disciplines. Bottom-up systems biology is emerging as a way to integrate disparate

-omics data types based on first principles, providing detailed mechanistic descriptions as a basis

for -omics data analysis.

The bottom-up approach to systems biology aligns with engineering thinking embodied

in systems science. Systems biology aims to understand how all the molecules that make up a cell

interact to form coherent physiological functions. Metabolic networks are made up of thousands

of biochemical reactions that can now be “reconstructed” and converted into mathematical for-

mats amenable to modeling. Because these models are built from first principles, they are able

to describe the functional states of networks and therefore the systems-level behavior of the

cell. Bottom-up systems biology is helping to unravel and understand the “genotype-phenotype

relationship” on a genome-scale basis. The “genotype” of an organism (the collection of all ge-

netic elements on a genome) contains the information that determines its form and function (the

“phenotype”). Defining, understanding, and using this relationship is fundamental to systems

biology.
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The genotype-phenotype relationship is multi-scale (Fig. 1.1). At the smallest scale,

molecular biology and biochemistry give us an understanding of DNA and how information in

the form of genes and other genetic elements is encoded in it. These genetic elements have

various structural and regulatory functions and encode the proteins that catalyze and facilitate

biochemical reactions. At larger scales, these reactions form ever more complicated modules of

biochemical functions in a network setting that together manifest an overall cellular behavior, or

phenotype. Phenotypic states can thus be viewed as the result of running the “program” that is

encoded in the DNA.

Taking a few liberties, we construct a simple analogy to relate the genotype-phenotype

relationship to a familiar electrical engineering concept (Fig. 1.1). In an electrical circuit, we can

see a “genotype-phenotype” relationship emerge as we go from an atomic level to a component

level to an engineering application. At the lowest scale of system complexity, we have the atoms

that make up P-N junctions described by semiconductor physics. Using this information allows

for the construction of both active and passive circuit elements. Together, these circuit elements

can be arranged in a network from which the “phenotype” or systems function emerges: capturing

and converting a signal to music through an amplifier and a speaker. As in an organism, the

form and function of the radio is defined by the properties of its “genotype.”

A fundamental paradigm for the implementation of systems biology on the genome-scale

has arisen [2], driven by the recent ability to generate data describing the many levels of bi-

ological complexity. First, all components within a cell (proteins, biochemical reactions, etc.)

are enumerated and annotated. These components are then connected and used to reconstruct

the network map. These reconstructed networks are translated into mathematical formats that

describe the underlying biological knowledge. Finally, testable predictions are made using the
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Figure 1.1: Biology is multi-scale. The genotype-phenotype relationship in biology (left) and
an analogous view in an electrical system (right) allows for the modularization of a system over
different complexity scales.

mathematical models that describe the network. This process must be repeated for each new

organism of interest. Well-studied model organisms such as Escherichia coli (E. coli) or the

human red blood cell (RBC) can serve as a Rosetta Stone for inferring the genetic content and

function of poorly characterized organisms.
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Modeling Methods and Techniques

Once a network is reconstructed, it is translated into a mathematical format using funda-

mental physical and chemical principles. As mentioned before, these reconstructed networks are

incomplete. Finding the missing pieces and accounting for incomplete network structure requires

the use of mathematics familiar to engineers to help construct a network that still carries biologi-

cal meaning. Here, we describe some of the standard modeling tools and techniques, highlighting

some of the differences that arise between biological systems and other engineering systems.

Reconstructing a network The reconstruction process is a system identification problem

aimed at reverse engineering and inferring biochemical network structure from first principles.

Biologists and chemists study organisms on a molecular level to identify individual connections

between molecules (reactions) and characterize the inputs and outputs. This data is stored in

large repositories and is not always organism specific. Therefore, it must be manually curated

to identify which reactions occur in a given network (i.e., some reactions may not be capable

of occurring in a given organism and should not be included). This curation becomes a time-

intensive process as even relatively simple bacteria such as E. coli have thousands of reactions.

Connections between components are modular and can be linked to form the larger net-

work (Fig. 1.1). The reconstruction process has been reduced to a standard operating procedure

that can be followed to derive the network structure for new organisms [3]. The resulting net-

works are inherently incomplete because we simply do not have knowledge of all of the compounds

and connections. Standard system identification techniques are used to expand models and infer

missing content (referred to as “gap filling”).

The major limiting factor for a reconstruction is the time it takes to complete—a recon-
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struction of the human metabolic network took a team of six people over two years! Further,

the human aspect of the curation process leads to concerns regarding consistency and quality

control between reconstructions. Thus, there is a real need for tools that could automate the

reverse engineering of biochemical networks to yield reconstructions; such tools would allow for

the elucidation of the network structure of new organisms of interest without devoting hundreds

of hours to the process.

Translating into a mathematical format Once the biochemical network has been recon-

structed, it must be translated into a mathematical format that is amenable to modeling. As is

common in simplified modeling of many engineering systems, the entire network can be captured

in a matrix that represents the inputs and outputs (in this case, the stoichiometry of all reactions

in the network). This stoichiometric matrix, S, is an incidence matrix with rows representing

nodes and columns representing links (Fig. 1.2). Because a given compound only participates in

a handful of reactions, S is sparse. Further, almost all of the nonzero entries are either +1 or −1

(outputs are positive and inputs are negative by convention). The simple mathematical structure

of S allows for manageable computation and compression of large networks. The formulation of

a biochemical network as a connectivity matrix represents a huge leap forward because it enables

the use of familiar systems engineering tools like loop analysis (Fig. 1.2).

Dynamic description of biochemical reactions An important feature of S is the bilinearity

of the reactions it represents. Two chemical components can react to produce a third, leading to

more than two nonzero entries in the corresponding column of S. The content of all the nodes

in a system like metabolism (i.e., the concentrations of the corresponding compounds) can be

represented by a system of ordinary differential equations (ODEs). These systems of ODEs can
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Figure 1.2: Loop and network analysis. Loop and network analysis in systems biology (left)
and electrical circuits (right). Some of the most powerful tools for analyzing systems-level models
follow directly from Kirchhoff’s laws.

be numerically solved to provide an idea of the systems state at a given time [4]. Having a

model that is able to predict the concentrations of metabolic nodes is powerful because the nodes

in metabolism represent some of the primary targets for therapeutic drugs [5]. In a biological

network, it is possible for individual nodes to accumulate or lose mass; that is, the flow of mass

into the node may not match that of the outflow. The rates of intracellular node accumulation

can impact steady-state models because of the timescales on which some reactions occur. This

characteristic is often neglected in simplified modeling techniques, such as loop analysis.

Modeling at the genome-scale In systems biology, it is generally impractical—if not

impossible—to build true genome-scale ODE models. This impracticality is due in part to the

lack of parameterization for individual reactions (initial conditions and rate constants are not

known for every reaction). However, like in many engineering applications, modeling the system

at steady-state is often a good proxy for the most interesting biological state. Thus, other meth-

ods for genome-scale network analysis have been developed, benefiting from the application of

well-developed systems tools such as hidden Markov processes [6] and convex optimization [7].

Some of these other modeling approaches do not require the extensive parameterization of ODE
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models and are therefore more amenable to modeling large, incompletely characterized systems.

One of the more successful methods for modeling genome-scale metabolic networks is to

use constraint-based modeling to represent the flow of mass (the “flux”) through every reaction

in the network. Termed “flux balance analysis,” this modeling strategy comes directly from the

network structure and therefore bypasses the need for extensive parameterization [8]. With the

network described in the form of a matrix, a simple matrix equation is used to model the system

at steady-state:

S · v = 0 (1.1)

where S is the stoichiometric matrix and v is a vector that represents the flux of each reaction

in the network. Solving this simple matrix equation results in a solution space where each point

in the space is a possible flux state of the steady-state system. Thus, a family of candidate

solutions—rather than a single solution—is obtained. Constraints representing the properties of

the biological machinery involved in each reaction are then imposed, resulting in a constrained so-

lution space (Fig. 1.2). The balanced network obeys Kirchhoffs laws: the flux around a metabolic

loop must add to zero and the sum of the flux into a node must equal the sum of the fluxes leaving

that node.

Computing the Genotype-Phenotype Relationship

Constraint-based models make use of COnstraint-Based Reconstruction and Analysis

(COBRA) methods [9] to simulate, analyze, and predict phenotypes. The variety of biologi-

cal constraints applied to biochemical network reconstructions has grown from simply placing

bounds on individual reaction fluxes to now include compartmentalization of molecules, mass

conservation, and thermodynamic directionality of reactions. These additions have vastly in-

8



creased the scope of biological questions that can be addressed using COBRA methods [10].

Applications often focus on perturbing individual components through gene deletion or addition

and understanding how the effects propagate throughout the system. Such studies lead to novel

predictions about the genotype-phenotype relationship that now can be tested experimentally on

a large scale given the advances in genome editing [11].

The solution space of these constraint-based models is typically convex and can be char-

acterized in several ways. One of the key capabilities of constraint-based models is the ability to

construct an optimization problem to find the minimum or maximum flux for a reaction of in-

terest (Fig. 1.2). Systematically optimizing each reaction in the model to find the minimum and

maximum feasible fluxes can therefore be used to characterize the solution space. This capability,

for instance, allows for direct molecular engineering applications, such as coupling the production

of valuable biomolecules with vital growth pathways of the organism. The suite of COBRA meth-

ods has led to a number of applications [5], the development of computational toolboxes [9, 12],

and a series of scientific meetings focused on method development and applications.

The first-generation constraint-based models of metabolism incorporate what knowledge

we have of how specialized proteins (“enzymes”) facilitate and catalyze biochemical reactions.

When constraints are placed on the flux through reactions in the network, these models provide

useful and accurate phenotypic predictions [10]. The ability to optimize a model for a specific

phenotype is useful for representing organisms possessing a clear biological objective; in many

bacterial species, that objective is to maximize growth (the faster an organism can grow, the

more successful it will be). To compute the growth rate, an objective function is defined and

added to the model in the form of a reaction; that reaction can then be maximized as a function

of important system inputs (Fig. 1.3). These predictions can then be experimentally tested and
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Figure 1.3: Computing phenotypic states. Genome-scale mathematical models allow for ex-
plicit computational modeling of the genotype-phenotype relationship. Optimizing ME-Models
for an objective such as maximum growth rate provides mechanistic knowledge behind optimal
functional states of both metabolic fluxes and expression levels as a function of important inputs
such as glucose or oxygen [14].

have been successfully used in the design process of industrial production organisms [13].

While it is powerful to have the ability to find optimal states for industrial engineering

applications (e.g., production of valuable biomolecules), defining an accurate objective function is

very challenging. Life does not necessarily operate at an optimal growth state; instead, we often

see that organisms operate at near optimal growth states because they are trying to optimize for

other functions (such as readiness for unforeseen environmental stresses). Thus, other engineering

tools have been integrated into the suite of COBRA methods to expand the analytical capabilities

so that additional states can be calculated. One such tool uses a Markov chain Monte Carlo

method to sample the solution space, computing possible flux states of the network. There is

currently a lot of interest in computing these non-optimal growth states, either through the

development of new COBRA methods or by adding additional constraints.

Recently, constraint-based models have been extended to account for the mechanistic de-

tail of gene expression and protein synthesis (the processes of “transcription” and “translation,”

respectively). In other words, models can now account for more than just the network structure

itself—they can compute both the cost of synthesizing all the machinery required for a partic-
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ular state (the protein and enzyme demand) and the cost of running that particular state (how

much flux is required for each reaction in the network). These next-generation “ME-Models”

(Metabolism and Expression) allow genome-scale reconciliation of molecular biology and bio-

chemistry by explicitly accounting for the biological machinery responsible for gene expression

and protein synthesis. The increasingly comprehensive ME-Models are able to provide better

predictions for biological objectives, such as growth (Fig. 1.3). As data for new organisms is

generated and analyzed, ME-Models can be constructed for new organisms and systems, like

human metabolism. Much exciting work lies ahead to automate the generation of ME-Models,

to include new data types and biological knowledge, and to use the models to solve fundamental

and applied problems in the life sciences.

1.2 RBC storage for transfusion medicine

RBCs account for over 84% of the native cells in the human body by number, making

them the most numerous cell type by a large margin [15]. The transfusion of RBCs has long

been an integral part of modern healthcare [16, 17] over 112 million RBC units collected for

blood transfusions worldwide annually [18]. The storage of RBCs in non-physiological conditions

(i.e., packed in plastic blood bags in a static environment at 4◦) leads to many changes in the

biochemical and physiological properties of RBCs. Over the past several decades, the transfusion

medicine has made great progress in defining a central paradigm that outlines the biochemical

and morphological changes—the so-called RBC “storage lesion” (RSL)—that red cells undergo

during cold storage [19–22]. Such changes include a decrease in 2,3-diphosphoglycerate (2,3-

DPG) levels, a decrease in nitric oxide (NO) metabolism, an increase in endothelial adherence,

and morphological modifications to the shape and structure of the cells. Some of these changes are
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reversible upon transfusion (e.g., 2,3-DPG levels), while morphological changes and alterations

in NO metabolism can be irreversible.

Transfusion medicine is now in the early stages of a paradigm shift that embraces the

benefits derived from the application of systems biology approaches [23]. In recent years, the use

of -omics technologies has been deployed to gain a better understanding of RSL [24]. In partic-

ular, metabolomics data have become a central part of the effort to better understand RSL [25].

Profiling the metabolic state of the cell is an important approach that allows a functional in-

terpretation of cellular biochemistry [26]. With the availability of such data, systems biology

methods can be applied to study and understand RSL in considerable detail. While correla-

tions are important for the practice of medicine, an actionable and mechanistic understanding

of relevant physiological phenomena is desired [27,28]. Systems approaches have already proven

valuable through the evaluation of drug therapies [29, 30], identification of biomarkers for can-

cer [31], and the prediction of oncogenes in cancer conditions [32]. Here, we discuss how the

study of RSL is being added to this list.

Three key ingredients for systems biology

The systems biology approach is an inherently iterative process of refinement that unites

three key ingredients: data collection, analysis, and computational modeling (Fig. 1.4). The

first ingredient is data collection. Working in conjunction with blood banks to ensure that

standard quality controls are met is vital for generating high-quality data. Absolutely quantified

metabolomics data—while more costly—can yield greater benefits since it can be integrated

with quantitative, mechanistic models. The data sets described here include exo-metabolomic,

endo-metabolomic, and other hematological measurements routinely performed in blood banks
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Figure 1.4: Three key ingredients for systems biology. Three key ingredients come together to
form a workflow capable of extracting knowledge from -omics data.

(e.g., pH, pO2). These measurements were made as part of time courses, resulting in these

measurements at each time point.

Time-resolved metabolomics data have yielded important insights into metabolic physiol-

ogy provided the time grid overlaps with the time scale of key metabolic changes. This time scale

is faster than a week, which is the commonly used time increment in sampling stored RBC bags.

In the experiments discussed below, data is collected every three to four days, or 14 times over

the 42 day storage period. Such data sets represent a significant departure from historical norms
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in this field. A continued exploration of various perturbations to the standard storage conditions

will help further elucidate RBC metabolic biochemistry. Such perturbation experiments might

be informed by previous experiments or by computational models [27].

The second ingredient is the application of multivariate data analysis to the large data

sets generated. Multivariate statistical analyses can reveal the overall structure of the data sets

and subtle trends within the data. In particular, methods like principal component analysis

(PCA) [33], partial least squares discriminant analysis (PLS-DA) [34], and independent compo-

nent analysis (ICA) [35] have been used effectively to analyze complex metabolomics data sets.

Care must be taken when choosing a methodstatistical methods have specific applications and

cannot be blindly applied to raw data; fortunately, there are several excellent resources that

provide guidance for this process [33, 36]. Although the data sets generated and analyzed here

are large compared to the history of the field, they do not qualify as “Big Data.” In the future,

genetic information and other parameters may enrich this data, as has been demonstrated by

the generation of personalized RBC models [37].

The third ingredient is a computational, mechanistic metabolic network model capable

of integrating disparate data types. Such models incorporate the results of statistical analyses to

generate biological insights and testable hypotheses. A metabolic network specific to the RBC

has been generated by mapping multiple proteomic data sets onto the reconstruction of the global

human metabolic network [38,39]. This mapping has resulted in a functional metabolic network

of the RBC containing 283 metabolic reactions [40]. This mapping contains contiguous known

pathways and revealed the presence of previously unidentified pathways. The specifics of this

network have been further delineated through a comprehensive manual curation of the literature

(the “bibliome”). This reconstructed metabolic network inherently includes available information
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about the genome, metabolome, proteome, and bibliome [3], truly representing multi-omic data

integration.

Several years ago, we proposed the use of systems biology in the transfusion medicine

field to extend the lifetime of stored RBC units [23]. Since then, we have used the principles

outlined above to study RBC storage from a systems perspective. Here, we review the outcome

of several of these efforts and try to contextualize the studies of other groups that have pursued

similar goals.

The three-phase metabolic decay in stored RBCs

Our first goal was to characterize and understand the baseline RBC metabolic behavior

during storage [41]. We thus collected RBC units from 20 individuals and stored them in SAGM

media. We absolutely quantified 142 metabolites and hematological variables (e.g., hematocrit,

pH) at 14 time points over 45 days of storage. Such fine resolution on the time series (mea-

surements taken every three to four days) allowed for the construction of an intensive grid of

data points that was able to capture previously unobserved behaviors. Further, the quantitative

nature of the measurements allowed for a better characterization of previously determined qual-

itative concentration shifts, such as the increase in hypoxanthine to higher-than-physiological

levels.

In order to generate an initial global characterization of the data, principal component

analysis (PCA) was performed on the raw metabolomics data. PCA is a multivariate statistical

method that is commonly employed on metabolomics data for dimensionality reduction; the

principal components identified through this analysis represent the relative contribution of each

measurement to the variability observed in the data. PCA on the metabolomics data revealed
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three distinct metabolic shifts that occur during the 42 day life of a stored RBC unit. These shifts

in metabolic state, occurring at days 10 and 17, showed that RBCs do not undergo a simple linear

decay process. Danish transfusion records were consulted to determine whether there was any

correlation between seven-day mortality and the age of the transfused RBC unit. These shifts

were shown to be potentially clinically relevant, with blood stored past day 10 representing the

most significant association. This same three-phase metabolic decay profile has been validated

by other groups and in different storage media [42,43].

We observed the previously reported high concentration of 2,3-DPG that depletes over

time, as well as the initial increase and subsequent decrease in ATP levels after the first shift at

day 10. We observed that the “metabolic inflection points” (i.e., the points in time at which the

metabolic shifts in the PCA plots occur) coincide with the depletion of extracellular adenine and

accumulation of hypoxanthine and xanthine in the storage medium. One notable observation

from the quantitative metabolomics data was the existence of a large intracellular malate pool

(greater than 1 mM).

Perturbing the storage conditions

Having characterized the baseline metabolic behavior of RBCs under cold storage, the

next step was to determine whether we can perturb the storage conditions to affect the metabolic

decay process. We identified four perturbations that posed interesting questions (Fig. 1.5): (1)

does the three-phase decay pattern manifest itself only in SAGM media, or is it present in

other storage media types used in transfusion medicine?; (2) does supplementing the bag with

additional carbon sources support ATP levels?; (3) is the depletion of adenine the cause of the

metabolic shifts?; and (4) is there a subset of measurements that is representative of the metabolic
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Figure 1.5: Perturbations to the storage conditions. Baseline characterization and perturbation
experiments on stored RBCs. Perturbation experiments examined the effect of (I) alternative
media formulations, (II) supplementation with additional sugars, and (III) addition of adenine
to the media. (IV) The final experiments yielded a set of storage-age biomarkers.

state of the RBC that could be biomarkers?

Does the storage media affect cellular metabolism?

With the baseline behavior in SAGM media now well characterized, we set out to deter-

mine whether RBCs stored in other additive solutions exhibited similar metabolic behavior [44].
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RBC units from 12 individuals were stored in SAGM [45,46], AS-1 [47], AS-3 [47,48], and PAG-

GSM [49] for 45 days; samples were collected and metabolically profiled at 14 time points during

storage. These media types were chosen because they represent the most widely-used additive

solutions in Europe (SAGM, PAGGSM) and the United States (AS-1, AS-3) [50].

Several changes in basic metabolic behavior was observed across the four additive solu-

tions. Notably, citrate uptake and metabolism was increased in AS-3 and PAGGSM compared to

that of SAGM and AS-1. Corresponding changes in intracellular malate concentrations suggest

that citrate uptake impacts malate utilization. Labeled citrate added to the bag prior to storage

in SAGM showed that citrate is taken up and converted to intracellular malate, contributing to

the large pool previously observed in the baseline characterization. This behavior has been shown

to occur in other media [51] and was computationally predicted and validated in the baseline

data [52]. Statistical analyses indicated that the difference in citrate uptake and metabolism

impacted glycolytic function. In particular, fructose-6-phosphate and glucose-6-phosphate were

identified as locations within the network on which the metabolic alterations were focused.

Do other sugars better support ATP levels?

The baseline data showed that fructose and mannose, found in the plasma collected

with the RBCs from the donor, are rapidly metabolized and depleted during the first metabolic

phase. Mannose and fructose have been shown to be metabolized through different pathways

than glucose in RBCs [53, 54], thus providing potential benefit over glucose as the primary en-

ergy source for metabolism. Further, fructose—while known to have adverse effects on human

physiology [55]—has also been shown to act as a protectant against oxidative damage [56]. Fol-

lowing in the footsteps of work by Beutler and Duron [57] and by Dawson and colleagues [53,58],
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we supplemented RBC units with mannose and fructose to better characterize alternate sugar

metabolism during storage [59]. These units were metabolically profiled at 14 time points over

25 days over storage in SAGM media.

These experiments showed that the metabolism of mannose and fructose at 4◦ is reflects

their metabolism at 37◦. The timing of the metabolic inflection points was altered slightly

with the supplemented sugars, with the observed changes primarily centered in glycolysis. The

hypothesized protective effect of fructose was not observed. The additives failed to maintain

ATP and 2,3-DPG levels under the tested experimental conditions, although this was likely due

to the presence of glucose; a better characterization of the metabolism of these sugars could

be obtained by replacing glucose with mannose and/or fructose (instead of supplementing) and

examining the resulting metabolomics measurements.

While fructose is known to be taken up through the GLUT5 transporter [60], the exact

mechanism for mannose incorporation has yet to be clearly elucidated. However, it is believed

that mannose is transported into the cell via the GLUT1 transporter [54]. GLUT1 is also used

by glucose, leading to competition for uptake of the two compounds. The 13C labeling results

from this perturbation study support the hypothesis that mannose is taken up by GLUT1. More

importantly, these results imply that mannose is preferentially taken up and oxidized over glucose.

Is the depletion of adenine the cause of the metabolic shift?

Following the identification of the three-phase metabolic decay observed in SAGM [41],

it was observed that the depletion of adenine coincided with the metabolic inflection points

observed in the PCA plots. We therefore hypothesized that these metabolic shifts were due in

part to the depletion of adenine. To test this hypothesis, we labeled adenine in both normal and
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double concentrations in SAGM media [61]. We took metabolomics measurements at 10 time

points over 31 days of storage.

We observed that the RBCs consumed approximately 1.5 mg/L adenine per day over the

first eight days of storage, almost depleting the total adenine concentration in the bag toward

the end of the first metabolic phase. During this first phase, adenine was converted into inosine

and IMP but not ATP. By day 18 (the end of the second phase), the extracellular adenine was

completely depleted.

Having characterized this behavior more completely, we doubled the initial concentration

of adenine. Surprisingly, we observed the identical consumption rate of adenine until day 18, at

which point adenine was no longer taken up by the RBCs. In other words, it appears that the

perfect amount of adenine is added in SAGM media; adding any more would result in adenine

sitting in the extracellular media without being taken up by the cells. One possible explanation

for this intriguing result is that this behavior was previously characterized during the develop-

ment of SAGM but never published (and has now been re-discovered years later). One notable

observation was that the higher levels of adenine resulted in a buildup of 5-methylthioadenosine.

The conclusion of this study was that adenine is not responsible for the observed metabolic shifts,

but there is another internal process that leads to termination of adenine uptake.

Is there a subset of measurements that can be used to define RBC metabolic health?

One obstacle to the routine use of metabolomics data is the cost of generating it. With the

increasing amount of metabolomics data already available for RBCs under storage conditions [25]

and relative invariance of the metabolome composition during decay, it is logical to ask if we can

identify biomarkers that describe the decay process through simple measurements. Have we
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reached a point where there is a critical mass of data available for true systems analysis leading

to the identification of robust biomarkers?

Thus, we set out to identify a set of metabolites that could define the trends that had been

observed in the studies discussed above. We were searching for a small number of extracellular

metabolites because of the ease, cost, and reliability of such measurements. Through detailed

statistical analysis of existing data sets, we identified eight extracellular metabolites (adenine,

hypoxanthine, glucose, lactate, malate, nicotinamide, 5-oxoproline, and xanthine) that can dif-

ferentiate between the three metabolic states elucidated through PCA [62]. These “storage-age”

biomarkers robustly represent the RBC metabolome throughout the storage process. Initially

identified in SAGM media, these storage-age biomarkers were validated in AS-3 and indepen-

dently verified in a separate laboratory with a different analytical setup and different sample

sets [62].

Glucose, lactate, 5-oxoproline, and adenine represent the primary metabolic inputs and

outputs can effectively serve as “clocks” for storage time. Further, the large malate pool is related

to a major component in the buffers used during processing: citrate. The potentially more

interesting biomarkers are nicotinamide, hypoxanthine, and xanthine that are directly indicative

of the metabolic state. Nicotinamide is one of the components of major cofactors (NAD+/NADH

and NADP+/NADPH) and is released from RBCs after approximately ten days of storage. The

toxic effects of hypoxanthine and xanthine are well known [63].

1.3 Outline of the dissertation

With so much data available on the various storage media perturbations described above

and a set of robust storage-age biomarkers identified, we set out to find a perturbation that
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could provide meaningful information regarding the RBC metabolic network itself. As mentioned

previously, the artificial storage environment is one of the primary reasons we see the effects of

RSL. In particular, it is a shock for cells to be kept 33◦C below the in vivo temperature. Thus,

we decided to investigate how temperature affects the metabolic network by using metabolomics

measurements to study RBCs stored at four different temperatures.

Having observed several of these behaviors, we asked whether we could predict these

behaviors. We applied linear statistical modeling approaches to metabolomics data. These

efforts focused on extending the utility of the storage-age biomarkers by showing their capacity

to act as quantitative biomarkers of systemic behaviors. To make these models more directly

applicable to blood banking, we reformulated these models to forecast future values of other

metabolites in the system using only measurements taken up until day eight of storage.

The next objective was to attempt to understand some of these behaviors using mechanis-

tic models. We used ordinary differential equations to model the kinetics and temporal dynamics

of glycolytic kinases. Enzymatic rate laws have historically been used to simulate the dynamics

of complex metabolic networks. Regulated reactions are typically by allosteric rate laws. Here,

we use detailed elementary reaction descriptions of regulatory enzymes allowing for the explicit

computation of the fraction of the enzyme molecules that are in a catalytically active state. The

fraction of the enzyme that is in the active state represents the time dependent utilization of its

catalytic potential, and thus reflects the fundamental result of enzyme regulation.

Having described explicit mechanistic phenomena on the scale of a single pathway, we

wanted to scale these efforts up to include the entire metabolic network. Thus, we used constraint-

based modeling to describe the full RBC metabolic network. In order to better describe the

dynamics that are observed during storage, we devised a novel computational method that al-
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lows for the integration of exo- and endo-metabolomics data into constraint-based models. The

resulting models are able to more accurately describe metabolic physiology.

To this point, our modeling efforts have accounted for the structure of the metabolic

network using genomics, specific information on individual aspects of the network using the

bibliome, and snapshots of the metabolic state using metabolomics. The final part of this thesis

integrates information regarding the proteome through the integration of quantitative proteomics

data into constraint-based models. Due to the availability of high-quality data and a genome-

scale model, we developed a method for the integration of quantitative proteomics data into an

existing model of Escherichia coli. This method provides the starting point for the development

of a whole-cell model of the RBC that will include information regarding the metabolome and

the proteome.
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Chapter 2

A Systems Analysis of Perturbed

RBC Storage Conditions

The temperature dependence of biological processes has been studied at the levels of

individual biochemical reactions and organism physiology (e.g., basal metabolic rates) but has

not been examined at the metabolic network level. Here, we used a systems biology approach to

characterize the temperature dependency of the human RBC metabolic network between 4◦C and

37◦C through absolutely quantified exo- and endo-metabolomics data. We used an Arrhenius-

type model (Q10) to describe how the rate of a biochemical process changes with every 10◦C

change in temperature. Multivariate statistical analysis of the metabolomics data revealed that

the same metabolic network-level trends previously reported for RBCs at 4◦C were conserved but

accelerated with increasing temperature. We calculated a median Q10 coefficient of 2.89±1.03 for

48 individual metabolite concentrations, within the expected range of 2-3 for biological processes.

We then integrated these metabolomics measurements into a cell-scale metabolic model to study
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pathway usage, calculating a median Q10 coefficient of 2.73 ± 0.75 for 35 reaction fluxes. The

relative fluxes through glycolysis and nucleotide metabolism pathways were consistent across the

studied temperature range despite the non-uniform distributions of Q10 coefficients of individual

metabolites and reaction fluxes. Together, these results indicate that the rate of change of

network-level responses to temperature differences in RBC metabolism is consistent between

4◦C and 37◦C. More broadly, we provide a baseline characterization of a biochemical network

given no transcriptional or translational regulation that can be used to explore the temperature

dependence of metabolism.

2.1 The temperature dependence of RBC metabolism

The rate of biological processes increases with increasing temperature. The dependence of

biochemical rates on temperature has been studied since the late 19th century using an Arrhenius-

type approach [64–69]. The metric used for evaluating such temperature dependence is the Q10

value. If Q10 = 2 for a given process, then the rate of that process increases by a factor of 2

for every 10◦C increase in temperature. The Q10 can be calculated from the slope of a rate

vs. temperature plot, which is approximately linear over the biologically-relevant temperature

range of 0◦C to 40◦C [70]. Individual enzymes have different Q10 coefficients that are generally

expected to be in the 2 to 3 range [66,67,69].

Temperature dependency at the physiological level is determined using phenomenological

measurements (such as growth rate) to study overall physiological changes [68, 70–73]. Changes

at the physiological level depend on more than changes in the underlying individual biochemical

reaction rates [74, 75]. For instance, various regulatory mechanisms (e.g., transcriptional, post-

translational, allosteric) determine how cells respond to temperature shock [76]. The existence
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of extra layers of regulation complicates the effects of temperature change on the biochemical

network. Biology is inherently multi-scale, and the gap between observing the temperature

dependence at the scale of an individual reaction and at the physiological level can be addressed

through methods of systems biology [77].

RBCs represent an ideal cell type to study the temperature dependence of network-level

metabolic biochemistry due to the absence of a nucleus and genetic material. This absence results

in a lack of complicated transcriptional or translational regulation on metabolic enzyme activity.

Allosteric and other regulation of enzymatic reaction rates is still present in RBCs, representing

enzyme kinetic mechanisms and thus direct biochemical functions.

In this study, we investigated the temperature dependence of metabolism in the RBC at

the network-level by examining the rate of change of metabolite concentrations and metabolic

reactions rates. We measured exo- and endo-metabolomics profiles in human RBCs stored at four

different temperatures that span the range between the ex vivo (storage) and in vivo (body) tem-

peratures: 4◦C, 13◦C, 22◦C, and 37◦C. We regressed the concentration profile of each metabolite

across the measured temperature range to calculate its Q10 value. We integrated these mea-

surements with a cell-scale network reconstruction of RBC metabolism [40] that contains 216

metabolites (43% of which are measurable by quantitative metabolomic profiling) to calculate

Q10 coefficients for reaction fluxes and to observe pathway usage. By examining metabolite pro-

files in the context of a cell-scale metabolic model, we were able to assess temperature dependence

on a network level, thus bridging the gap between studies at the reaction and physiological levels.
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2.1.1 Results

Measurement of the temperature dependence of RBC metabolism ex vivo

RBCs were collected using standard collection procedures and stored in SAGM media [46]

at 4◦C, 13◦C, 22◦C, and 37◦C. Starting one day after RBC collection (taken as time zero in

figures), metabolomic measurements were made in biological triplicate over time at each tem-

perature (Fig. 2.3A). The data set was composed of 97 metabolites. In addition, standard blood

bank quality control and assurance (QC/QA) measurements (e.g., hemolysis, pH) were made at

multiple time points over 21 days (4◦, 13◦, and 22◦) and 7 days (37◦); all measured profiles are

presented in Fig.s S6-S16.

As part of the baseline characterization, we observed the same metabolic changes that

have previously been reported in the literature for RBC storage at 4◦C. We observed the same

previously-documented accumulation of lactate, 5-oxoproline, and hypoxanthine [18,41,42], and

the depletion of AMP and the phosphoglycerate pool [41,42]. We measured the same high levels

of intracellular malate previously reported in SAGM at 4◦C [41].

The measured hemolysis was almost identical at 4◦C and 13◦C within the accepted range

(<0.8% cells), while the threshold was exceeded at 22◦C and 37◦C as the storage time progressed.

The activity of lactate dehydrogenase and the concentration of free hemoglobin closely matched

this trend. The pH fell from approximately 7 at all temperatures to around 6.4 before rising.

The average mass of hemoglobin per cell was calculated and, although noisy, was approximately

the same across all temperatures.

In glycolysis and the pentose phosphate pathway (PPP), glucose (both intracellular and

extracellular), intracellular oxidized glutathione, 6-phosphogluconate, glucose 6-phosphate, fruc-

tose 1,6-bisphosphate (FBP), the phosphoglycerate pool, and phosphoenolpyruvate were all ob-
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served to deplete, while lactate (both intracellular and extracellular) accumulated at a rate that

increased consistently with temperature. The temperature vs. rate plots for glucose and glu-

tathione displayed similar qualitative behavior with slightly nonlinear shapes, while fructose

1,6-bisphosphate, lactate, glucose 6-phosphate, and phosphoenolpyruvate all displayed highly

linear behavior.

Several key metabolites from the nucleotide synthesis and salvage pathways were mea-

sured. There was an accumulation of intracellular xanthine which drastically increased with

temperature, leading to one of the highest Q10 values found (4.84). There was also an accumu-

lation of hypoxanthine (both intracellular and extracellular), extracellular xanthine, and uridine

(both intracellular and extracellular). Intracellular GMP and IMP both depleted, with the latter

showing an initial spike that increased in magnitude with increasing temperature. The behavior

displayed by extracellular uridine at 37◦C was the most noticeable here as there is no corre-

sponding jump at 22◦C. Three of these measurements—GMP, intracellular hypoxanthine, and

extracellular hypoxanthine—had Q10 values of approximately 1.5, while the other measurements

(with the exception of xanthine) had values that were all approximately 3.

The partial pressure of carbon dioxide rose initially but fell drastically at 13◦C, 22◦C,

and 37◦C, leading to a nonlinear shape and reduced R2 value in the temperature vs. rate plot.

6-phosphogluconate, the phosphoglycerate pool, phosphoenolpyruvate, and glucose 6-phosphate

all had Q10 values around 3, while the majority of the other measurements had values closer to

2. Some metabolites in adjacent reactions, like the phosphoglycerate pool and phosphoenolpyru-

vate, had very similar Q10 values, while others (e.g., intracellular vs. extracellular lactate) had

different Q10 values. 2,3-Disphosphoglycerate (2,3-DPG) has previously been implicated in RBC

storage lesion [78]. While we did not measure 2,3-DPG, the similar trends observed in intracel-
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lular S-Adenosylmethioninamine (SAM), hypoxanthine, and intracellular oxidized glutathione to

previous measurements [24] indicate that the 2,3-DPG trend is also consistent.

In the glutathione synthesis pathway, there was an accumulation of 5-oxoproline (both

intracellular and extracellular), extracellular glutamate, and extracellular serine (Fig. 2.1). We

observed a depletion of both intracellular and extracellular reduced glutathione depleted, except

for the extracellular at 37◦C increased after an initial depletion; no later increase in concentra-

tion was reported at 4◦C for extracellular reduced glutathione through 42 days of storage [41].

Intracellular oxidized glutathione depleted with increased temperature, while the extracellular

measurement displayed a large spike at 22◦C and 37◦C that was not observed at low tempera-

tures; this spike was not observed through 42 days of storage at 4◦C [41]. Extracellular glutamine

showed large initial spikes in concentration at 22◦C and 37◦C that were not observed at low tem-

peratures through 21 days.

We measured 15 amino acids. Many of these measurements were considered too noisy

to be included in the Q10 calculations, although general qualitative trends were still visible. We

observed increasing concentrations of extracellular L-glutamate, intracellular and extracellular

L-lysine, intracellular and extracellular L-phenylalanine, extracellular L-serine, and intracellular

L-tryptophan.

At high temperatures, both intracellular and extracellular L-histidine increased while

concentrations remained fairly steady at low temperatures. The same behavior was observed

for the intracellular and extracellular L-isoleucine/L-leucine pools. Several concentrations re-

mained rather steady, including intracellular L-arginine, intracellular L-asparagine, intracellular

L-aspartate, and intracellular L-threonine. Intracellular L-glutamate decreased steadily at 4◦C

and 13◦C but later increased at high temperatures. Intracellular and extracellular L-glutamine
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Figure 2.1: Metabolic map of glutathione synthesis. The y-axis for metabolites is concentration
(mM); the x-axis for metabolites is time (days). Day 0 here is taken to be 1 day after the beginning
of the storage period. The y-axis for inset plots is log2(rate) where rate in units of concentration
per time; the x-axis for inset plots is temperature (◦C).

both showed an initial spike followed by a depletion. The depletion was more pronounced at

high temperatures. The measurements for intracellular L-serine, L-arginine, L-asparagine, the

L-isoleucine/L-leucine pool, L-histidine, L-phenylalanine, L-threonine, L-tryptophan, L-tyrosine,

and L-valine as well as the extracellular L-isoleucine/L-leucine pool were too noisy to determine

meaningful trends.

One of the more interesting results was the behavior of the measured ions: extracellular

chloride, potassium, and sodium (Fig. 2.2). The trends observed in potassium and sodium at
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4◦C and 13◦C were similar, with small quantitative differences. At 22◦C and 37◦C, the same

changes were observed to be more pronounced. It can be expected that the magnitude of change

in potassium concentration is greater than that of sodium [79], a behavior which was observed

here across all temperatures. Sodium was among the slowest-scaled measurements (Q10 = 1.63),

while chloride and potassium were closer to the center of the distribution (Q10 = 2.44 and Q10

= 2.14, respectively).

At low temperatures, the membrane ATPase in RBCs undergoes a reversible inhibition

which shuts down active Na/K transport and instead allows for a steady leak of cations across the

membrane [79, 80]. Consequently, extracellular potassium is expected to rise and extracellular

sodium is expected to fall at low temperatures since the Na/K pump is not actively pumping

ions back across the membrane. At high temperatures when the pump is functioning properly,

we can expect to observe steady cation concentrations. However, our results here do not coincide

with these expectations, as we see the same fall of sodium levels and rise of potassium levels at all

temperatures (Fig. 2.2). One contributing factor to these results is the depletion of intracellular

ATP [41], which is required for the Na/K pump to function. As ATP depletes, the Na/K pump

will function slower, resulting in a rise in extracellular potassium and fall of extracellular sodium

as observed here. Another possible explanation for the unexpected cation behavior involves the

role of magnesium in membrane ATPase activity. It has been previously suggested that the

citrate additive meant as an anticoagulant could bind free magnesium ions, further inhibiting

ATPase activity [79]. We observed increasing amounts of intracellular citrate at 22◦C and 37◦C

but steady, low concentrations at 4◦C and 13◦C. Thus, if the large amounts of intracellular citrate

are bound to magnesium at high temperatures, the irregular behavior of citrate and the cations

could be related. Ultimately, the implications of the cation behavior seen here are uncertain and
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require further investigation.

A few measurements exhibited qualitatively different concentration profiles across the four

temperatures. The most drastic difference was observed in extracellular oxidized glutathione

(Fig. 2.2). Using the initial slope to fit this nonlinear profile allowed us to account for the

magnitude of the spike observed at higher temperatures; this resulted in a calculated Q10 value

of 6.75, the highest among all measurements. Intracellular citrate showed a similar concentration

spike at high temperatures that was not observed at low temperatures (Fig. 2.2). Previous studies

reported a decreasing concentration of citrate at 4◦C over 42 days of storage in SAGM, with a

slight spike just before day 40 [41], which matches the trend observed here at 4◦C. Intracellular

inosine exhibited no clear trend across temperature, with a substantial spike at 37◦C that is not

present at the other three temperatures (Fig. 2.2). Even at 37◦C, however, the concentration of

inosine was very low most likely due to its toxicity [81].

In order to determine temperature dependence, we first needed to determine how relative

storage time scaled across temperature (FDA regulations set the maximum storage time for RBCs

at 42 days). To determine a network-level Q10, we used multivariate statistical analysis on the

metabolomics data to assess the impact of temperature changes on systemic metabolism. The

network-level Q10 was used to determine the time points that represented the same metabolic

phase at each temperature. Once these time periods were defined, we calculated Q10 coefficients

for each measured metabolite using linear regression. The metabolomics data was then inte-

grated into a mechanistic cell-scale model to calculate the rate of each reaction (i.e., the flux)

in the network at each temperature; these calculated reaction rates were used to determine Q10

coefficients for reactions and to assess pathway usage across temperature.
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Figure 2.2: Measurements with no clear dynamic trend. Measurements with qualitative time
course differences at higher temperatures and measured ions. Day 0 here is taken to be 1 day
after the beginning of the storage period.

Network-level temperature dependence

Following published reports for RBC storage at 4◦C [41,42,62], principal component anal-

ysis (PCA) was performed in order to obtain a global characterization of the dataset. PCA is a

multivariate statistical method that reduces the dimensionality of a complex data set by calculat-

ing the relative contribution of each measurement to the overall variability observed in the data.

For each temperature, we performed PCA (Fig. 2.3B) on the time-series concentration profiles

of eight recently identified extracellular metabolites (adenine, glucose, hypoxanthine, lactate,

malate, nicotinamide, 5-oxoproline, and xanthine) that robustly represent the RBC metabolome

under storage conditions [62]. These metabolites serve as qualitative biomarkers for the age

of stored RBCs and have been shown to also be good quantitative predictors for other systemic

metabolite concentrations [82,83]. In order to make an accurate comparison across temperatures,
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Figure 2.3: Data generation and analysis workflow. (A) Human red blood cells were collected,
stored in SAGM media at 4◦C, 13◦C, 22◦C, and 37◦C, and metabolically profiled across multiple
time points. (B) Principal component analysis (PCA) of the eight extracellular biomarkers (same
loading coefficients applied to data at each temperature). Overlaying these plots on the same
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increasing temperature, as evidenced by the location of the Day 7 time point. The numbers
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and numerals label the three metabolic shifts that occur over the storage period. (C) The first
principal component was plotted against the time vector at each temperature to determine the
relative storage time at each temperature. Linear regression was used to estimate the rate of
change, showing strong correlation between PC1 and time at each temperature. (D) These rates
of change were then used to estimate the change in metabolic rate for every 10◦ (Q10) from an
Arrhenius-type log2(rate) vs. temperature plot.

the same loading coefficients were applied to the data at each temperature (see Experimental

Procedures for full details).

PCA revealed the same metabolic “shifts” that have been previously observed at 4◦C [41,

42]. These shifts separate three distinct metabolic states that can be reliably determined from
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Figure 2.4: PCA for biomarkers. Principal component analysis of the eight extracellular
biomarkers. PCA of the 4◦C data yielded loading coefficients that were then applied to the
data at the other temperatures.

the profiles of the biomarkers [62]. During storage at 4◦C, the two shifts in the PCA plot

occur approximately at Days 10 and 17. Here, these same metabolic states were observed to be

conserved but notably accelerated with temperature as evidenced by the location of the Day 7

time point at each temperature (Fig. 2.3B and Fig. 2.4). We identified the duration of the first

metabolic state at each temperature. We then used these time points to determine the starting

and ending points for the linear regression that would be used to calculate individual metabolite

and reaction Q10 coefficients.

The first principal component at each temperature was highly correlated with time
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(Fig. 2.3C), which yielded a “network-level” Q10 of 1.46 (R2 = 0.97) that describes how the

system proceeds in storage time. The third metabolic state at 4◦C is primarily characterized

by a general loss of function as the RBC undergoes severe morphological changes [20, 24], often

leading to complications for transfusion patients [84,85]. Thus, we only used measurements from

the first two metabolic states to calculate the network-level Q10. These results show an overall

three-state metabolic decay that is observed to accelerate with increased temperature.

Metabolite-level temperature dependence

In order to determine the temperature dependence of individual metabolites, we used

the data from the first metabolic state at each temperature (identified from the PCA results

in Fig. 2.3B). We made this choice since the data is believed to be the most accurate as the

cells are still intact and metabolism is functioning the closest to its normal physiological state.

We linearly regressed the concentration profile of each metabolite at each temperature and used

these rates to calculate a Q10 value (Fig. 2.3C and 2.3D). Not all metabolite profiles could be

accurately fit with a linear curve during the first state; to account for this, we did not include

metabolites with an R2 < 0.50. Q10 coefficients for the 48 metabolites whose profiles could be

estimated well with a linear fit are reported in Table 2.1. The calculated Q10 coefficients span

1.28 (extracellular 5-oxoproline) to 5.89 (intracellular hypoxanthine).

The calculated metabolite Q10 coefficients generally fall in the expected range of 2 to 3

for biochemical reactions [66,67,69], with a median of 2.89 (Fig. 2.5). The standard deviation of

the metabolite Q10 coefficients was 1.03, indicating that although the distribution was centered

in the expected range for biological measurements, the temperature scaling was not uniform

across the network. Interestingly, the biomarker pools that have been shown to robustly define

37



Table 2.1: Q10 coefficients for extracellular and intracellular metabolites. Q10 coefficients
for extracellular (exo) and intracellular (endo) metabolites. ∗ denotes previously reported
biomarker [62].

Metabolite Q10 R2

∗5-Oxoproline (exo) 1.28 0.69
L-Glycerate (endo) 1.84 0.52
S-Adenosylmethioninamine (endo) 1.94 0.83
L-Glutamate (endo) 2.01 0.94
cis-Aconitate (endo) 2.06 0.91
L-Glutamate (exo) 2.15 0.99
L-Aspartate (endo) 2.18 0.73
∗Nicotinamide (exo) 2.19 0.91
Mannitol (exo) 2.22 0.86
Uridine (exo) 2.27 0.94
Citrate (exo) 2.32 0.99
L-Glutamine (endo) 2.34 0.90
Reduced Glutathione (exo) 2.39 0.99
Choline (endo) 2.41 0.85
GMP (endo) 2.42 0.97
5-Oxoproline (endo) 2.56 0.98
Lactate (endo) 2.61 0.98
L-Acetylcarnitine (endo) 2.62 0.72
Xanthine (endo) 2.65 0.84
cis-Aconitate (exo) 2.75 0.91
Phosphorylcholine (endo) 2.75 0.89
∗Lactate (exo) 2.78 0.99
Uridine (endo) 2.79 0.96
∗Glucose (exo) 2.81 0.98
AMP (endo) 2.96 0.79
∗Adenine (exo) 2.98 0.93
L-Serine (exo) 2.99 0.99
S-Adenosylhomocysteine (endo) 3.01 0.83
Malate (endo) 3.02 0.97
Oxidized Glutathione (endo) 3.03 0.95
L-Carnitine (exo) 3.04 0.97
5-MTA (endo) 3.07 0.73
Adenine (endo) 3.17 0.95
Glucose 6-Phosphate (endo) 3.19 0.97
L-Glutamine (exo) 3.23 0.99
L-Phenylalanine (exo) 3.33 0.75
IMP (endo) 3.45 1.00
L-Lysine (exo) 3.46 0.96
Chloride Ion (exo) 3.94 0.99
ATP (endo) 3.95 0.92
L-Histidine (exo) 4.07 0.89
ADP (endo) 4.48 0.84
6-Phosphogluconate (endo) 4.84 0.79
Oxidized Glutathione (exo) 4.99 0.95
∗Malate (exo) 5.05 0.99
L-Lysine (endo) 5.18 0.97
Reduced Glutathione (endo) 5.61 0.96
Hypoxanthine (endo) 5.89 0.95

the metabolic decay process [62] represented almost the full range of calculated Q10 coefficients,

from 1.28 (5-Oxoproline) to 5.05 (malate); extracellular xanthine and hypoxanthine did not have

calculated Q10 coefficients due to the R2 cutoff. Several metabolite Q10 coefficients fell below

2.00 or above 3.00, including extracellular 5-oxoporline (1.28), ATP (3.95), ADP (4.48), and
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Figure 2.5: Distribution of Q10 coefficients for metabolites and reactions. Q10 coefficients for
metabolites were calculated based on the observed change in metabolite concentration across
temperature. The vertical dashed lines at Q10 = 2 and Q10 = 3 represent the typical estimated
range of Q10 coefficients for biological processes.

extracellular malate (5.05).

Reaction-level temperature dependence

Next, we investigated the temperature dependence of biochemical reactions in the

metabolic network. Previous studies have investigated the temperature dependence of indi-

vidual reactions [64–69], but our goal was to use systems biology approaches to determine the

temperature dependence of all reactions in the network together. To this end, we used a mech-

anistic cell-scale model of the RBC [40] to calculate the flux state of the network (i.e., the flux

through each reaction in the system). The flux through a reaction (a rate with units mmol/hr)

was calculated at each temperature; these values were then used to calculate a Q10 for each

reaction using the same procedure shown in Fig. 2.3D. We tailored the model to the physiology

at each temperature by integrating the metabolomics measurements for the first metabolic state

into the model according to [52]. See Experimental Procedures for full details on flux modeling

and metabolomics integration; the full method is presented in Chapter 4.
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Table 2.2: Q10 coefficients for reaction fluxes. Reaction and metabolite abbreviations are BiGG
identifiers.

Reaction Q10 R2 Formula
GGCT 1.98 0.93 glucys → 5oxpro + cys-L
GLUCYS 2.06 0.93 atp + cys-L + glu-L → adp + glucys + h + pi
GTHS 2.21 0.93 atp + glucys + gly → adp + gthrd + h + pi
GLNS 2.23 0.91 atp + glu-L + nh4 → adp + gln-L + h + pi
ADK1 2.29 0.91 amp + atp ↔ 2 adp
PPA 2.40 0.94 h2o + ppi → h + 2 pi
PGK 2.53 0.95 3pg + atp ↔ 13dpg + adp
ENO 2.57 0.95 2pg ↔ h2o + pep
PGM 2.57 0.95 2pg ↔ 3pg
ADA 2.58 0.99 adn + h2o + h → ins + nh4
PYK 2.59 0.95 adp + h + pep → atp + pyr
HEX1 2.60 0.95 atp + glc-D → adp + g6p + h
AMPDA 2.62 0.99 amp + h2o + h → imp + nh4
GAPD 2.63 0.95 g3p + nad + pi ↔ 13dpg + h + nadh
PFK 2.65 0.96 atp + f6p → adp + fdp + h
FBA 2.65 0.96 fdp ↔ dhap + g3p
TPI 2.65 0.96 dhap ↔ g3p
PGI 2.72 0.96 g6p ↔ f6p
PEPCK 3.04 0.93 gtp + oaa → co2 + gdp + pep
NDPK1 3.04 0.93 atp + gdp ↔ adp + gtp
NTD11 3.60 0.91 h2o + imp → ins + pi
NTD7 3.70 0.91 amp + h2o → adn + pi
PRPPS 3.78 0.93 atp + r5p ↔ amp + h + prpp
PDE1 3.79 0.91 camp + h2o → amp + h
ADNCYC 3.79 0.91 atp → camp + ppi
DPGase 3.79 0.91 23dpg + h2o → 3pg + pi
GLUN 3.79 0.91 gln-L + h2o → glu-L + nh4
GUAPRT 3.81 0.91 gua + prpp → gmp + ppi
NTD9 3.81 0.91 gmp + h2o → gsn + pi
PUNP3 3.81 0.91 gsn + pi ↔ gua + r1p
PPM 4.04 0.95 r1p ↔ r5p
PUNP5 4.16 0.96 ins + pi ↔ hxan + r1p
OPAHir 4.26 0.92 5oxpro + atp + 2 h2o → adp + glu-L + h + pi
PC 4.34 0.94 atp + hco3 + pyr → adp + h + oaa + pi
HXPRT 4.54 0.96 hxan + prpp → imp + ppi

Model simulations yielded flux states for each temperature. We excluded transporters

and reactions that carried flux at fewer than three temperatures to ensure the accuracy of the

Q10 calculations. The calculated Q10 coefficients for 35 reactions are shown in Table 2.2 (only fits

with R2 ≥ 0.50 were included in analysis). The distribution of reaction Q10 coefficients (Fig. 2.5)

was tighter than that of the metabolite Q10 coefficients (STD of 0.75 for reactions vs. 1.03 for

metabolites) but was still centered in the expected 2-3 range (median of 2.73). Several reactions

in nucleotide metabolism and glutathione metabolism had Q10 coefficients above 3.5.
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Pathway usage across temperature

We then examined pathway usage across the 33◦C temperature range studied. Each re-

action in the RBC reconstruction has previously been assigned to one of 18 different metabolic

subsystems [40]. We first investigated whether the reactions in any of these pathways shared

a similar dependence on temperature (i.e., pathways in which reactions had similar Q10 coeffi-

cients). We performed a pairwise comparison of the Euclidean distance between Q10 coefficients

of reactions from a given subsystem (n reactions) versus 100,000 random permutations of n re-

actions from all calculated Q10 coefficients. The reactions in glycolysis (n = 12) and nucleotide

metabolism (n = 7) both showed statistically significantly smaller distances between Q10 coef-

ficients than would be expected due to random chance (p < 7e-5 and p < 0.047, respectively).

Notably, these two metabolic subsystems contain reactions that interact with several of the

storage age biomarkers (glucose, lactate, hypoxanthine, and xanthine). In particular, the tem-

perature dependence of the glycolytic reactions is dictated by glucose, the major input to that

linear pathway (Fig. 2.6).

While the enrichment of a given pathway for similar Q10 coefficients depends on the

reaction fluxes, this analysis does not directly measure whether the flux states between two

temperatures was similar. In order to investigate the conservation of pathway usage across

temperature, we normalized the data at each temperature to glucose uptake and calculated the

percent distance between the flux states (i.e., the flux through each reaction) at 13◦C, 22◦C, and

37◦C and the flux state at 4◦C. Reactions that were unused at every temperature were excluded

(n = 61). Of the remaining 166 reactions, 33 (19.9%) had less than 50% difference at each of

the three higher temperatures. All of the glycolytic reactions for which Q10 coefficients were

calculated (Fig. 2.6) were present in this subset of reactions.

41



GLC

GLC

ATP

ADP
H

G6P F6P

HEX1

PGI

Extracellular

Intracellular

FDP

DHAP

G3P

LAC

LAC

NAD

H

NADH

ATP ADP H

PFK FBA

TPI

1,3-DPG

2,3-DPG

3PG 2PG

NAD Pi ADP H

H
H2O

PiGAPD

ADP H ATP

PYK

LDH

ADP ATP

PGK PGM
DPGM

DPGase

PEP

ENO

PYR

H2O

(      = 2.60)

(      = 2.72) (      = 2.65) (      = 2.65)

(      = 2.65)

(      = 2.63)

(      = 3.79)

(      = 2.53) (      = 2.57) (      = 2.57) (      = 2.59)

0 4 8 12 16 20
Time (days)

0

0.4

0.8

1.2

1.6

C
on

ce
nt

ra
tio

n 
(m

M
)

Glucose (GLC)

0 4 8 12 16 20
Time (days)

0

5

10

15

20

25

30

C
on

ce
nt

ra
tio

n 
(m

M
)

Glucose (GLC)
(      = 2.82)

Glucose 6-Phosphate (G6P)

0 4 8 12 16 20
Time (days)

0

0.2

0.4

0.6

C
on

ce
nt

ra
tio

n 
(m

M
)

(      = 3.19)

0 4 8 12 16 20
Time (days)

0

10

20

30

C
on

ce
nt

ra
tio

n 
(m

M
)

Lactate (LAC)
(      = 2.61)

0 4 8 12 16 20
Time (days)

0

10

20

30

40

50

60

C
on

ce
nt

ra
tio

n 
(m

M
)

Lactate (LAC)
(      = 2.78)

0 4 8 12 16 20
Time (days)

0

0.04

0.08

0.12

0.16

0.20
Fructose 1,6-Bisphosphate (FDP)

C
on

ce
nt

ra
tio

n 
(m

M
)

0 4 8 12 16 20
Time (days)

0

0.1

0.2

0.3

0.4

C
on

ce
nt

ra
tio

n 
(m

M
)

Phosphoglycerate Pool (3PG + 2PG)

0 4 8 12 16 20
Time (days)

0

0.1

0.2

0.3

C
on

ce
nt

ra
tio

n 
(m

M
)

Phosphoenolpyruvate (PEP)

Figure 2.6: Metabolic map of glycolysis. Day 0 here is taken to be 1 day after the beginning of
the storage period. Q10 coefficients are provided for those metabolites and reactions which could
be calculated.

Organizational structure of the network

To this point, we have investigated how the metabolomics measurements could be used

to determine the temperature dependence of individual metabolites and reactions and of the

network. When we integrated the metabolomics measurements into the cell-scale model, the

network structure at each temperature changed due to the accumulation and/or depletion of

metabolites. These results, however, do not provide any explanation as to why we observe certain

Q10 coefficients for certain reactions. To answer this question, we studied the organizational

structure of the network in terms of the coupling of certain reaction fluxes. Two reaction fluxes

42



are said to be “flux coupled” if the ratio of one to the other is constant [86]; the flux coupling of

a network is a property inherent to its topology. A set of coupled reactions is simply the linking

of coupled reactions into a single pathway.

To determine whether the coupling of the network changed with temperature, we defined

the coupling characteristic of a network to be the mean of the coupled reaction sets. We com-

pared the base network structure of the RBC metabolic network to that of each temperature,

revealing that the coupling characteristic of the network decreased approximately 5-10% at each

temperature. This result prompted us to ask whether this decoupling was more or less than

would be expected due to random chance. We ran a permutation test, determining that the

decoupling of the networks observed with a change in temperature was significantly less than

would be expected due to random chance (p < 6e-3; see Experimental Procedures for details

on the generation of random networks and the permutation test). Thus, the RBC metabolic

network is robust against changes in temperature over the measured 33◦C range.

2.1.2 Discussion

The temperature dependence of biological processes is of fundamental interest. Tempera-

ture coefficients (Q10 coefficients) have been used to characterize the temperature dependency of

individual biochemical reactions and of organism-level behavior. While these studies have yielded

valuable insights, there is a gap between studying temperature dependency at the biochemical

and physiological levels [64–73]. Systems biology principles can be used to move past the individ-

ual reaction level and assess temperature dependence on the network level, effectively bridging

the gap between the previous work on temperature dependency at the reaction and physiological

levels. In this study, we used deep-coverage metabolomics of human red blood cells in storage
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to investigate the temperature dependence of network-level biochemistry. We chose a range of

temperatures that ranges from the storage temperature of RBCs (4◦) to the body temperature

(37◦). By studying temperatures in this range, we provide baseline data with no transcriptional

or translational regulation that can be used to begin to understand the temperature dependence

of metabolism in broader contexts. Specifically, this data addresses the “passive” control that

temperature has over network fluxes and metabolites in a system that has most of central carbon

metabolism but is not growing. The results obtained here have several primary implications.

First, we determined that while the rate of change for each metabolite and reaction

increased with increasing temperature, the network-level response was dampened (i.e., lowerQ10).

This behavior is to be expected because of the difference in response times between individual

reactions and a pathway. Notably, the scaling of metabolite and reaction temperature dependence

was not observed to be uniform across the network, with high variability in Q10 coefficients. The

fact that these network-level behaviors are conserved is a surprising result because certain enzyme

inactivations might be expected to be qualitatively disruptive of network behavior at various

temperatures. The observed behavior indicates that individual metabolite and reaction Q10

coefficients vary dramatically in order to preserve global network characteristics. This variability

was particularly notable for the storage age biomarkers [62], an interesting result due to their

ability to define the qualitative trend of the entire network. Overall, such variability can be

expected due to the thermodynamics and kinetics associated with biochemical and enzymatic

reactions. Approximately half of the calculated temperature coefficients fell in the 2 to 3 range

(Fig. 2.5), which is generally accepted as the typical estimate for biological systems [66, 67,

69]. Several of the metabolites (e.g., malate, hypoxanthine, glutathione) and reactions (several

glutathione synthesis and nucleotide metabolism reactions) which we calculated to have high
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Q10 coefficients are relatively disconnected from the rest of the network and thus may not be as

affected.

Second, the pathway analyses indicate that even without transcriptional or translational

regulation, RBCs maintain consistent flux through glycolysis and nucleotide metabolism across

temperature. The storage age biomarkers in glycolysis (glucose and lactate) represent the pri-

mary exchanges for the RBC metabolic network. The preservation of these exchanges indicates

that sustaining these reactions is inherent to the network topology and necessary to maintain

physiological functions. The change in pathway usage across the rest of the network is dependent

upon kinetics and thermodynamics, properties that are subject to change over a 33◦C tempera-

ture range.

Third, it is important to be aware that the temperature dependencies calculated here are

based on ex vivo measurements—not single-enzyme in vitro assays. Such an assay would inher-

ently be absent from any regulatory or network influences. Our results, while also generated in

the absence of transcriptional or translational regulatory effects, suggest that the organizational

structure of the network influences the temperature dependence of individual enzymes. Thus,

we would not expect the systemic Q10 coefficients calculated here to correlate with previously

reported in vitro values. For example, previous studies have reported Q10 coefficients pyruvate

kinase (PYK) in the range of 3.3-4.2 for fish [68], 1.4-1.9 for bats [87], and 1.66-1.69 for tur-

tles [88]; we calculated a systemic Q10 coefficient of 2.59 for PYK. The use of a cell-scale model

to calculate the flux coupling of various reactions in the metabolic network provides an unam-

biguous explanation for why sets of reactions in the network have similar Q10 coefficients despite

variation of individual Q10 coefficients. Additionally, the flux coupling results suggest that the

ex vivo Q10 coefficients calculated here would be different from in vitro Q10 coefficients and from
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each other because the network structure intrinsically constrains the temperature dependence of

certain reactions. The networks at the measured temperatures displayed no significant loss of

flux coupling compared with the base model, suggesting that the structural characteristics of the

RBC network are robust despite the accumulation or depletion of intermediate metabolites.

We have described the temperature dependence of a human metabolic network over a

temperature range of 33◦C, from 4◦C (the FDA-defined RBC storage temperature for transfu-

sion) to 37◦C (the in vivo temperature). While the RBC represents a simple cellular system, the

lack of complex regulatory motifs allows for a direct interrogation of the systems biochemistry

underlying metabolism. The use of systems biology methods empowered us to assess the tem-

perature dependence of an ex vivo metabolic system at the network-level, helping to understand

the relationship between the structure and function of the RBC metabolic network.

2.1.3 Experimental Procedures

Experimental methods

RBC unit preparation, data measurements, and metabolomics analyses were performed

as previously reported [41, 89]. Metabolomics measurements were made over 21 days (4◦, 13◦,

and 22◦) and 7 days (37◦).

Whole blood was collected from three healthy blood donors into 63 mL of CPD anticoag-

ulant solution (Fenwall, Lake Zurich, IL, USA) and was held on butanediol plates for minimum

of 2 hours at 4◦C. After separation of plasma and buffy coat by centrifugation (800g, 11 minutes,

20◦C), RBCs were suspended in 100 mL of SAGM additive solution (Fenwal) and leukodepleted

using a SEPACELL Pure RC white cell reduction filter (Asahi Corporation, Tokyo, Japan). Each

unit was split into 4 standard Pediatric storage containers (Fenwall) and samples were collected
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via sterile connected clave valve collected into a syringe with a Luer-Lock connector on differ-

ent time points. The National Bioethics Committee of Iceland and Icelandic Data Protection

Authority approved the study.

RBC samples were first processed to separate supernatant and cells by centrifugation of

0.5 mL of RBC (1600g, 15 min, 4◦C) and then prepared separately. Immediately after centrifu-

gation, cell-free supernatant was removed and collected in separate tubes. RBC supernatant

(80 µL) was processed by adding internal standard mixture (30 µL) and methanol (0.5 mL).

The internal standard mixture contained the following standards: phenylalanine d2 (72 mg/L),

succinate d4 (50 mg/L), glucose 13C6 (2100 mg/L), carnitine d9 (20 mg/L), glutamic acid d5

(30 mg/L), lysine d4 (90 mg/L). Alanine d4 (300 mg/L), AMP 13C1015N5 (50 mg/L) and 1 mL

of -20◦C methanol-water (7:3) were added to the cell pellets. Cells were lysed by two freeze and

thaw steps. Samples were centrifuged (15000g, 20 min, 4◦C) and supernatant was transferred

into a new tube. 1 mL of 20◦C methanol-water (7:3) (1 mL) was added to pellets and samples

were vortexed for 1 min, centrifuged (15000g, 20 min, 4◦C) and supernatant was added to the

precedent. Samples were dried using a vacuum concentrator, reconstituted in 300 µL H2O:ACN

(50:50), and filtered to remove residual hemoglobin by centrifugation (Amicon Ultra 0.5 mLfilter,

15000g, 4◦C, 60 min). The first sample was taken one day after storage had begun; this time

point is taken as t = 0 in all figures.

At each time point, we monitored typical QC/QA hematological parameters of RBC

physiology. A blood gas analyzer (ABL90FLEX, Radiometer, Copenhagen Denmark) was used

to determine pH (37◦C), pO2, and pCO2, total hemoglobin, K+, Na+, Cl- in the media. RBC

concentration, mean RBC volume, hematocrit, RBC distribution width, and white blood cell

count were assayed using an hematoanlyzer (CELLDYN Ruby, Abbot Diagnostics, Lake For-
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est, IL, USA). Hemolysis was calculated using the following formula: % hemolysis = (super-

natant Hb (g/L)/total Hb (g/L)) × (100-Hct (%)), where total Hemoglobin (Hb) and hemat-

ocrit was analyzed using a hematoanalyzer and supernatant Hb was measured with a HemoCue

Plasma/Low Hb system (HemoCue, Angelshol, Sweden). Adenosine triphosphate (ATP) and

2,3-diphosphoglycerate (2,3-DPG) concentrations, employing the CellTiter-Glo kit (Promega)

and the 2,3-DPG kit (Roche Diagnostics), respectively. Lactate dehydrogenase (LDH) activity

was assessed by an LDH assay kit (ab102526, Abcam, Cambridge, UK).

The metabolomics analysis was performed using ultra performance liquid chromatography

(UPLC), (Acquity, Waters, Manchester, UK) coupled with a quadrupole/time of flight mass

spectrometer (MS) (Synapt G2, Waters). Chromatographic separation was achieved by working

in hydrophilic interaction liquid chromatography (HILIC) mode using an Acquity amide column,

1.7 µm (2.1 × 150 mm) (Waters).

All RBC samples were analyzed three times: once in positive ionization mode using

acidic chromatographic condition and twice in negative ionization mode using both acidic and

basic chromatographic conditions. During acidic conditions, mobile phase A was 100% ACN and

B was 100% H2O, both containing 0.1% formic acid. The following elution gradient was used dur-

ing acidic condition: 0 min 99% A; 7 min 30% A; 7.1 min 99% A; 10 min 99% A. Basic conditions

employed ACN:sodium bicarbonate 10 mM (95:5) as mobile phase A and ACN:sodium bicarbon-

ate 10 mM (5:95) as mobile phase B. During basic condition the following elution gradient was

used: 0 min 99% A; 6 min 30% A; 6.5 min 99% A; 10 min 99% A.

In all conditions, the flow rate was set at 0.4 mL/min, column temperature was set at

45◦C, and injection volume at 3.5 µL. The MS operated using a 1.5 kV capillary voltage, 30

V sampling cone and 5 V extraction cone. The cone and the desolvation gas flow were 50 L/h
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and 800 L/h, respectively. The source and desolvation gas temperatures were 120◦ and 500◦C,

respectively. MS spectra were acquired in centroid mode from m/z 50 to 1000 using scan time

of 0.3 s. Leucine enkephalin (2 ng/µL) was used as lock mass (m/z 556.2771 and 554.2615 in

positive and negative experiments, respectively).

Identification of unexpected metabolites was achieved by integration, alignment, and

conversion of MS data points into exact mass retention time pairs (MarkerLynx, v4.1, Waters).

The identity of the unexpected metabolites was established by verifying peak retention time,

accurate mass measurements, and tandem mass spectrometry against our in-house database

and online databases, including HMDB [90] and METLIN [91]. TargetLynx (v4.1, Waters) was

used to integrate chromatograms of targeted metabolites. Extracted ion chromatograms were

extracted using a 0.02 mDa window centered on the expected m/z for each targeted compound.

Quantitation was performed by external calibration with reference standards. Details regarding

the quantitative analysis (including the linear range and LOD) are reported in Tables S1 and S2.

Bacterial testing was performed at the end of the study. 10 mL from each unit was

injected into a BacT/Alert FA Plus flasks for aerobic bacteria and BacT/Alert FN Plus flasks

for anaerobic bacteria. The flasks were cultured for 5 days on a BacT/ALERT 3D microbial

detection system (BioMrieux, Marcy l’Etoile, France) and analyzed by a specialist in medical

microbiology.

Multivariate statistical analysis

Principal component analysis (PCA) has previously shown three distinct metabolic shifts

occurring over the 42-day storage period for RBCs at 4◦C: days 1-10, days 10-17, and days 17-

42 [41,42,62]. In the data presented in this study, RBCs were stored at 4◦C for 21 days; in order
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to ensure that all three shifts were captured in full, we used the metabolomics data from Bordbar

et al. [41] to calculate the weightings for the principal components. PCA was performed on the Z-

scores of the eight extracellular biomarkers [62]: adenine, glucose, hypoxanthine, lactate, malate,

nicotinamide, 5-oxoproline, and xanthine. These weights were then used to transform the data

presented here so that a more representative comparison could be made across all temperatures.

The components were rotated in the transformed space such that the Day 0 measurement appears

in the lower left corner of the plot.

Calculation of temperature coefficients

Each measurement was plotted against time in order to find the rate of change. The rate

of change was calculated through simple linear regression according to

ŷ = β0 + β1x+ ε (2.1)

where ŷ is the calculated response, β0 is the y-intercept, β1 is the regression coefficient (i.e., the

slope), and ε is the error (Fig. 2.3C). In order to determine the goodness of fit, the coefficient of

determination (R2) was calculated by

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

(2.2)

where ŷ is the calculated value of y and ȳ is the mean of y. Once a rate was obtained for each

measurement, the temperature coefficient (Q10) was calculated from the slope of the log2(rate)

vs. temperature plot (Fig. 2.3D). This procedure is outlined in the following text.

The definition of the temperature coefficient (Q10) is on the Arrhenius equation [92],

which states that the rate of a process (k) is exponentially related to the temperature of that

process:

k = Ae−Ea/RT (2.3)
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where k represents the rate of the process, A is a constant factor that represents the frequency of

molecular collision, Ea is the activation energy, R is the gas constant, and T is the temperature

of the process [93]. The temperature coefficient is empirically defined as the ratio of the rates of

two processes [69,74,92,94–96]:

Q10 = (
k2

k1
)10/(T2−T1) (2.4)

where k1 and k2 represent the rates of two processes, and T1 and T2 represent the temperature

at which these processes occur. This relationship is the slope of a plot of log2(rate) vs. temper-

ature (Fig. 2.3D). Using linear regression, the slope of the log2(rate) vs. temperature plots was

calculated for each measurement and used to calculate the Q10 value from

Q10 = 210·m (2.5)

where m is defined as

m =
log2 k2 − log2 k1

T2 − T1
. (2.6)

Metabolites whose R2 were less than 0.50 were excluded in the analysis. This cutoff was deter-

mined based on the distribution of R2 values (Fig. 2.7); our goal was to maximize the amount

of data captured while simultaneously minimizing the inclusion of noisy or poorly fit data. We

used the same procedure for calculating the reaction Q10 coefficients. We only included reactions

that carried flux in at least three of the temperatures; transport reactions and reactions whose

R2 was less than 0.50 were excluded in the analysis. This cutoff was determined based on the

distribution of R2 values (Fig. 2.7); our goal was to maximize the amount of data captured while

simultaneously minimizing the inclusion of noisy or poorly fit data. For reactions, extended this

cutoff to be based on the p value of the F statistic for the linear regression fit of the log2(rate)

vs. temperature plot; only those reactions whose p value was less than 0.05 were included. The
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Figure 2.7: Metabolite R2 distribution. Histogram of the the R2 value for metabolites. The
cutoff (at R2 = 0.50) was used to exclude data that was poorly fit using linear regression.

R2 for the reactions whose p values were less than 0.05 was greater than 0.80 for all reactions

(i.e., no reactions were excluded based on the R2 value from its linearly regressed fit).

Flux modeling

We used a modified version of the erythrocyte metabolic reconstruction iAB-RBC-

283 [40], which was previously used for building personalized kinetic models [37]. We integrated

the metabolite concentrations into this model in order to predict the flux state of the network at

each temperature using unsteady-state flux balance analysis [52]. 2,3-DPG has previously been

determined to be one of the more important metabolites in RBC physiology but was not mea-

sured here. In order to obtain the most accurate model of the entire network, we used existing

metabolomics data [41] to predict the concentration profile of 2,3-DPG using the profiles of the
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eight biomarkers as input according to the workflow described in Yurkovich et al. [82].

Flux coupling

We used F2C2 [97] to calculate the flux coupling of the metabolic networks. When

the metabolomics data is integrated into the metabolic model, the structure of the network is

altered through the addition of source and sink reactions [52]. In order to construct random

networks, we needed to ensure that the models were feasible and mimicked the models created

using the measured data. Therefore, we randomly chose nodes in the base RBC model that were

“measured” as either accumulation (source) or depletion (sink); we used the measured data to

determine (1) the number of randomly “measured” nodes, (2) the distribution of intracellular vs.

extracellular nodes, (3) the distribution of sources vs. sinks, and (4) the bounds for the added

sources and sinks.

The permutation test compared the difference in the flux coupling characteristic between

the base network and the networks at the measured temperatures with the flux coupling char-

acteristic between the base model and 1,000 randomly-generated networks. The p value was

determined to be the fraction of random networks whose difference in the flux coupling charac-

teristic was less than or equal to that of the measured temperature networks.

2.2 Conclusions

These results open the door for another interesting possibility: can the temperature de-

pendences calculated here be used to run high throughput screens of additional perturbation

experiments at higher temperatures? Our results suggest that an RBC unit stored at a tem-

perature of only 13◦C would only need to be stored for approximately 14 days to observe the
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equivalent 42 day storage behaviors observed at 4◦C. Since the global network-level changes

were consistent at higher temperatures, any screens in which the three-phase decay pattern was

disrupted could then be investigated in detail under the proper conditions. It is important to

note, however, that there is still further evaluation required; the temperature-driven effects on

ion homeostasis—which activates ion-dependent cascades (e.g., calcium-induced eryptosis, a phe-

nomenon known to occur during prolonged storage [98, 99])—would not be taken into account

by such measurements. If these considerations were properly addressed, a shorter experimental

time would not only allow for high throughput screens, but it also yields the very practical con-

sequence of reducing experimental costs. Experiments could be further accelerated if we could

find biomarkers that characterize the three-phase decay without the need for full and expensive

metabolomic data generation.
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Chapter 3

Statistical Modeling of the RBC

Metabolome

Deep-coverage metabolomic profiling has revealed a well-defined development of

metabolic decay in human RBCs under cold storage conditions. A set of extracellular biomarkers

has been recently identified that reliably defines the qualitative state of the metabolic network

throughout this metabolic decay process. Here, we extend the utility of these biomarkers by

using them to quantitatively predict the concentrations of other metabolites in the red blood

cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured

metabolites (p < 0.05) in RBC metabolism using only measurements of these five biomarkers.

The median of prediction errors (symmetric mean absolute percent error) across all metabo-

lites was 13%. The ability to predict numerous metabolite concentrations from a simple set of

biomarkers offers the potential for the development of a powerful workflow that could be used to

evaluate the metabolic state of a biological system using a minimal set of measurements.
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3.1 Using biomarkers to predict systemic concentrations

While deep-coverage -omics data sets are allowing for more complete characterization

of biological systems, there has been a concerted effort to identify a subset of measurements

that are representative of qualitative network-level behavior. For some systems—like the human

RBC—such biomarkers have already been identified. Using the concentration profiles of these

biomarkers as input to a statistical model, we predict quantitative concentration profiles of

other metabolites in the RBC network. These results demonstrate that if good biomarkers are

available for a biological system, it is possible to use these measurements to gain insight into the

quantitative state of the rest of the network.

The data generated from deep coverage -omics tools are becoming broadly available and

thus their use is becoming more common [24, 100]. With this data, researchers have begun to

identify metabolomics biomarkers that can be used to describe systemic behavior with only a

few inexpensive and reliable measurements [62,101–104]. In transfusion medicine, deep coverage

metabolomics data sets for human RBCs in cold storage are rapidly accumulating [25] and have

been used to characterize the state of the RBC metabolic network during storage [18, 41, 42, 61,

105].

Big data analysis of RBC metabolomics data has yielded a well-defined three-phase pat-

tern of metabolic storage lesion that has fundamental consequences for blood storage [41, 42].

Recently, eight extracellular metabolic biomarkers have been identified that reliably define this

three-phase decay process observed in RBCs [62]. These biomarkers (adenine, glucose, hypox-

anthine, lactate, malate, nicotinamide, 5-oxoproline, and xanthine) recapitulate the qualitative

trend of the entire metabolome. However, it has yet to be determined whether these biomarkers

can be used to predict quantitative network behavior.
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In this study, we determine that five of the eight biomarkers (glucose, hypoxanthine,

lactate, malate, and xanthine) are not only excellent qualitative predictors, but also accurate

quantitative predictors of metabolic concentrations in the rest of the metabolic network. Using

a simple computational formulation [106] prevalent in a variety of fields [107–110], we extend the

utility of these biomarkers by using them to quantitatively predict the concentration profiles of

91 other metabolites in the network. This added use of validated biomarkers offers the potential

for a powerful workflow that utilizes five biomarkers to evaluate the state of RBC metabolism.

3.1.1 Results

For this study, we used the metabolomics data set from Bordbar et al. [41] that measured

96 intracellular and extracellular metabolites in human red blood cells under storage conditions.

The data set measured 14 time points over a 45 day time period for 20 biological replicates.

For the purposes of modeling, we randomly divided these 20 replicates into equal sized training

and testing sets of 10 samples. We observed a high amount of variability in the extracellular

glucose measurement at Day 31, a behavior which was not observed in the intracellular glucose

measurement but was seen in other extracellular measurements at Day 31. In order to avoid bias

arising from the inclusion of potentially erroneous data, we excluded the measurements from Day

31, resulting in 13 total time points spanning 45 days of storage.

We trained multiple polynomial models of varying complexity on the concentration pro-

files of the biomarkers and the concentration profile of the target metabolite (Fig. 3.1). The

best performing model was a simple, linear Output-Error model [106]. Variation between blood

bags is a known challenge, as both donor and technical factors contribute to sample heterogene-

ity [24]. Due to this variation, we noted that simply because these eight biomarkers are good
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Figure 3.1: Prediction workflow. (a) The model is trained on the measured concentration
profiles of the five biomarkers (glucose, hypoxanthine, lactate, malate, and xanthine) and the
target metabolite. (b) The resulting ensemble of models (one for each replicate) can then be used
to predict the concentration profile of the target metabolite given only the measured concentration
profiles of the five biomarkers.

qualitative predictors of systemic behavior does not imply that they are also good quantitative

predictors. We therefore performed a feature selection and cross validation within the eight

biomarkers, determining that adenine, nicotinamide, and 5-oxoproline were not able to quan-

titatively predict systemic behavior as well as the other five biomarkers (see Methods). Thus,

glucose, hypoxanthine, lactate, malate, and xanthine were used for the remaining analysis.

In order to generate a prediction for each metabolite, we trained the model using the

five biomarkers and a measured profile for the target metabolite as input (Fig. 3.1). We used an

ensemble modeling approach [111] to reduce bias arising from using either individual replicates

or averaging replicates to train a single model. With 10 training replicates, this approach allowed
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us to generate an ensemble of trained models that inherently includes the biological variation

of the training data. We then used this trained ensemble computational model to predict a

consensus concentration profile of a target metabolite, this time only using the biomarkers as

input (Fig. 3.1).

We tested the model’s capabilities by comparing the predicted profiles of the remaining

91 measured metabolites to their measured profiles (Fig. 3.2). We calculated the symmetric mean

absolute percentage error (SMAPE) for each predicted concentration profile, resulting in a median

error of 0.1340 ± 0.1505. To further validate our model, we compared against 10,000 profiles

generated using a naive random walk for each metabolite. The naive random walk model assumes

that metabolite concentration changes over time are independent of each other and are normally

distributed. The random walk is a widely used benchmark for dynamic forecasting models [112].

When a significant number (≥500/10,000, i.e., ≥5%) of random walks outperform a trained

model for a metabolite, we conclude that the dynamics of that metabolite are indiscernible from

noise for the data given (see Methods for details on the random walk comparison). Despite the

complexity of RBC metabolism, we found that 84/91 (92%) of RBC metabolites were predicted

more accurately than random walks using five biomarkers as input (p < 0.05).

In an effort to lend biological intuition to this surprising result, we viewed these results

in the context of the complete RBC metabolic network (Fig. 3.2). The map highlights several

points. First, the five biomarkers are largely distributed across key subsystems. Surprisingly,

two biomarkers are adjacent in the network: xanthine and hypoxanthine. From inspection of

the map, it becomes more intuitive that to unambiguously predict IMP levels (Fig. 3.2), both

biomarkers need to be quantitatively measured.
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Figure 3.2: Predicted concentration profiles. Using the five biomarkers (highlighted in red), the
concentration profiles for the remaining 91 measured metabolites were predicted (inset profile
metabolites are highlighted in yellow).

3.1.2 Discussion

RBCs in storage undergo a series of morphological changes (commonly referred to as

“storage lesion”) that become more pronounced throughout the storage process [24,78,113]. Re-

cent studies have shown that blood transfused after being stored for longer than five weeks is

associated with post-transfusion complications [84, 85], indicating the serious clinical implica-

tions of metabolic decay in transfused blood. With the recent identification of eight extracellular
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biomarkers that are able to define this decay, the field of transfusion medicine now has an oppor-

tunity to define the metabolic state of stored RBCs with just a few measurements. Thus, there

is a need for predictive modeling methods that can extend the applicability of these biomark-

ers to provide deeper understanding of the metabolic state of RBCs collected and stored under

blood banking conditions using current and future technologies (e.g., improved bags or storage

solutions, pathogen reduction technologies).

In this study, we have developed a statistical model that uses these biomarkers to predict

the time series concentration profiles of other metabolites in the RBC metabolic network. This

powerful tool was rigorously validated to avoid overfitting through model (complexity) and feature

selection, and comparing against a standard forecasting baseline model (i.e., naive random walk).

As with any data modeling approach, the performance of a model is dependent upon the quality

of the input data; this is no exception here. We see that certain metabolites (e.g., ADP, inosine)

had higher prediction errors, which can be partially attributed to noise in the training data and

to low concentrations.

The results presented here have two important implications. First, we have shown that

if good biomarkers are available for a given system (like for the human RBC), then they can

be used to make quantitative predictions about systemic behavior. Second, this provides the

potential for a cost-effective workflow to monitor the metabolic state of a biological system since

the only input under new conditions is the concentration profiles of biomarkers. Through the use

of modeling and statistical analysis, the measured and predicted concentrations would enable a

quantitative understanding of systems-level behavior.

Thus, we have demonstrated the predictive power of biomarkers through the use of a

statistical model for RBCs in storage. This data-driven statistical modeling approach performed
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remarkably well for the RBC system, even without a detailed kinetic model. These results are

encouraging and provide a complementary approach for predicting metabolite dynamics in less

characterized organisms. As our validation procedure indicates, a critical mass of high-quality

data is required to extract meaningful signals from noise. Our workflow provides a valuable

assessment on whether this critical mass has been satisfied; the results here indicate that as

few as 20 biological replicates are sufficient to provide a training set capable of achieving >90%

accuracy. Follow up studies should address the question of how many measurements need to be

made during storage in order to provide a reliable assessment of the RBC metabolome during

storage, as this question has direct clinical implications.

As biomarkers are identified for new systems, there will be a need to analyze -omics in

an attempt to efficiently characterize complex biological systems using just these few informa-

tive measurements. Our workflow addresses this need by incorporating such biomarkers with a

statistical model, offering broad utility in both the laboratory and the clinic.

3.1.3 Methods

All computations were performed in Matlab R2016b (Mathworks, Natick, MA).

System Identification

An Output Error (OE) model [106] predicts system dynamics from past values, measured

inputs, and unmeasured disturbances as follows:

y(t) =
n∑
i=1

Bi(q)

Fi(q)
ui(t− nki) + e(t) (3.1)

where y(t) is the output at time t, ui is an input (i.e., metabolite i), e is the unmeasured

disturbance (i.e., system noise), and B(q) and F (q) are polynomials expressed in the time-shift

63



operator q as follows:

B(q) = b1 + b2q
−1 + ...+ bnbq

−nb+1 (3.2)

F (q) = 1 + f1q
−1 + ...+ fnfq

−nf . (3.3)

For this system, n = 5 (i.e., the five biomarkers), nb = 1, nf = 0, and there was no input delay

(nk = 0). The B and F polynomials are estimated during the system identification step using

least squares regression to minimize the difference between the measured signal and the predicted

output.

This OE model performed better than more complex OE models having higher nb and

more complex polynomial models. It also performed better than simpler linear regression—the

OE model thus represents an optimal degree of complexity.

Model Evaluation

In order to evaluate the accuracy of the predicted concentration profiles for the various

metabolites, we calculated the symmetric mean absolute percentage error (SMAPE), given by:

SMAPE =
1

n

n∑
t=1

|yt − ŷt|
yt + ŷt

(3.4)

where n is the number of time points, y is the measured concentration profile, and ŷ is the

predicted concentration profile.

Quantitative Biomarker Selection

We trained the OE model using a recently published metabolomics data set of RBCs under

storage conditions at 4◦C with 20 biological replicates from Bordbar et al. [41]. In order to predict

the concentration of target metabolites, we used the eight extracellular biomarkers [62] as input
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since they are highly representative of the qualitative behavior of the rest of the system. In order

to determine if these biomarkers are also good quantitative predictors, we performed a 10-fold

cross validation on the set of 10 samples used for training the model to verify the generalization

performance of the trained model. We ran our cross validation on all 56 combinations of five

biomarkers (i.e., 8 choose 5); the five selected biomarkers had a mean SMAPE of 10.33%, which

was within 1% of the top performing set of five biomarkers. Thus, we used glucose, hypoxanthine,

lactate, malate, and xanthine as the final set of biomarkers input to the OE model.

Training an Ensemble of Models

We trained an ensemble of OE models using the five biomarker profiles and each of

the 91 measured metabolite profiles. Thus, we trained 91 ensemble models (one ensemble for

each metabolite). Each ensemble model consisted of 10 OE models, each trained on a biological

replicate. We used Bags 1-10 as this training set. We combined the outputs of these 10 OE models

into a single prediction for each metabolite by computing the median of the 10 predictions at

each time point. This ensemble modeling approach captures the biological variability inherent

among the samples used for training.

Predictions on Testing Data

We used Bags 11-20 as the testing data set. In order to assess the variability between

the training and testing data, we performed a two-sample t-test at each time point for each

metabolite. This showed that approximately 24% of the data rejected the null hypothesis (FDR-

adjusted p < 0.05) that the two data sets came from the same distribution and also showed

greater than a 20% difference in the mean concentrations at a given time point. For each test
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replicate, the five biomarkers were input to the trained ensemble model.

Comparison to Naive Random Walk

In addition to the prediction error, as computed by SMAPE, we also evaluated our model

by comparing its performance against a benchmark model. We chose as a benchmark the random

walk model, which assumes that metabolite concentration changes over time are independent of

each other and are normally distributed with zero mean. The random walk model is commonly

used to benchmark dynamic forecasting models [112]. To ensure that the random walk was

representative of the metabolite concentration changes, we estimated the standard deviation of

random changes from all 10 testing replicates across all time points for each metabolite. We

further ensured that the random walk was an appropriate benchmark by initializing with a

realistic concentration. To do so, we randomly chose from the pool of the 10 measured starting

points of the testing replicates for each metabolite.

We generated 10,000 of these random walk profiles for each metabolite. In order to

compare these to our model predictions, our null hypothesis was that our trained model performed

no better than the random profiles. We calculated the SMAPE for each of the random profiles

and compared to the SMAPE for the predicted profiles; the given p value is the number of random

profiles which had a lower SMAPE than the average of the predicted profiles for that metabolite.

3.2 Forecasting future concentration profiles

The primary limitation of this first study was that the models required the input of the

biomarkers at a given time point in order to predict the concentration of another metabolite in

the system. Here, we extend our previous study in two ways. First, we use the structure of
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Figure 3.3: Linear black-box formulation for ARX model.

the network to inform which biomarkers should be used as input for a given target metabolite.

Second, we reduce the amount of data needed to make a prediction by only using a subset of

the timecourse as input and forecasting future values of a target metabolite. We show that 57

of the 70 metabolites measured in the RBC metabolic network (81%) can be forecasted after 8

days of storage (5 time points) with a median global error of 18.36%. The ability to forecast

the concentration profiles of metabolites after only a few days of storage makes these methods

immediately applicable in a clinical setting.

3.2.1 Methods

All data used for this study came from the metabolomics data set from Bordbar et al. [41]

that measured intracellular and extracellular metabolites in human red blood cells under storage

conditions. The data consists of 14 time points non-uniformly measured from days 0-45 days of

storage. We excluded the day 31 measurement for all metabolites as previously reported [82]. In

order to get better resolution on the measured timeseries, we used a spline interpolation function

to calculate an even sampling of the measured data with sampling time Ts = 2 days. Thus, our

data now span days 0-45 with measurements every two days. We randomly selected 10 of the

samples (blood bags 3, 4, 7, 9, 11, 12, 13, 15, 17, 19) to use as training data and the remaining 10

samples to use as testing data for validation for all results reported in this study unless otherwise

noted.
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System Identification

An Auto-Regressive with eXogenous inputs (ARX) model [106] predicts system dynamics

from past values, measured inputs, and unmeasured disturbances (see Fig. 3.3) given by

A(q)y(t− nk) = B(q)u(t− nk) + e(t− nk) (3.5)

where y(t) is the output at time t, u(t) is the input at time t, e is the unmeasured disturbance

(i.e., system noise), and A(q) and B(q) are polynomials expressed in the time-shift operator q as

follows:

A(q) = a1 + a2q
−1 + ...+ anaq

−na (3.6)

B(q) = b1 + b2q
−1 + ...+ bnb

q−nb+1. (3.7)

The orders of the polynomials A(q) and B(q) were determined individually for each target

metabolite. To do this, we selected the model structure that minimized the Akaike informa-

tion criterion (AIC) given by

AIC = log(V ) +
2d

N
(3.8)

where V is the loss function, d is the number of model parameters, and N is the number of data

points used for the estimation. The loss function V is the estimated error between the model

output and the measured response. All combinations of model orders between 0 and 4 (output

signal) and between 0 and 3 (input signals) were tested.Higher orders were not tested to avoid

overfitting.

We included no time delay (i.e., nk = 0) on the system because the sampling time Ts

= 2 days, meaning that any time delay would have resulted in a multiple day shift which is

not physiologically accurate for metabolite concentrations. The A(q) and B(q) polynomials are
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Figure 3.4: Distribution of biomarker-metabolite distances. The distance between two nodes
in the network is defined as the number of reaction steps (i.e., edges) that separate them.

estimated during the system identification step using least squares regression to minimize the

difference between the measured signal and the forecasted output at each time point.

For each metabolite, one model was trained for each of the 10 samples. The resulting

models were merged into a single model by using the covariance matrices to determine the merged

model parameters as a statistically weighted mean of the individual model parameters.

Calculating metabolite distances

In our previous work [82], we used five of the eight biomarkers identified by Paglia et

al. [62]—extracellular glucose, hypoxanthine, lactate, malate, and xanthine—as input to train a

model for all target metabolites. While this approximation produced positive results, it assumes

that all metabolites are influenced by each of these five biomarkers regardless of whether or not a

given metabolite is close to or even actually connected to a given biomarker in the network. Here,

we hypothesized that distance within the metabolic network influences a biomarker’s ability to

inform quantitative predictions and should therefore be considered when constructing a model

for each target metabolite.

The metabolic network is defined as an incidence matrix in which the stoichiometry (i.e.,

the inputs and outputs) of each reaction is represented in a matrix [114]. In order to calculate
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the network distance, we converted the metabolic network into a directed graph that accounts

for the directionality of each biochemical reaction. Edge weights were assumed to be uniform.

We then calculated the distance (defined as the number of reaction steps separating two nodes

in the network) between each of the five biomarkers and all 70 metabolite targets in the network

(Fig. 3.4). We used the shortest paths algorithm in the Python NetworkX software [115] to

compute these distances. In order to determine what the best distance cutoff is for deciding

whether or not to use a biomarker as input to train a model for a given metabolite, we varied

the reaction distance cutoff from 3 to 12 and calculated the error of the predicted output of

each target metabolite; if a metabolite was further from all five biomarkers than the defined

cutoff, then all five biomarkers were used as input. The predicted output for this analysis was

a forecasted prediction starting at day 10 (5 time points); we used half of replicates from the

training set to train the models and the remaining five samples for evaluation. Because of the

differences in the orders of magnitude between various metabolites and the potential for zero

terms, we used the symmetric mean absolute percent error (SMAPE) for all error calculations:

SMAPE =
1

n

n∑
t=1

|yt − ŷt|
|yt|+ |ŷt|

(3.9)

where n is the number of time points, y is the measured concentration profile, and ŷ is the

predicted concentration profile at a given time point t. We computed the median of all errors for

each metabolite, yielding a “global” error. This error was then used to determine the optimal

distance cutoff. As we varied the distance cutoff, the error for various reactions were modulated

(as the inputs to the ARX model changed). we determined that a distance of ten reaction steps

produced the most accurate models (Fig. 3.5). The combination of biomarkers used and the

corresponding model orders for each metabolite are shown in Fig. 3.6.
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Figure 3.5: Sensitivity analysis for input selection. We varied the distance cutoff from three
reaction steps to 10 reaction steps. We defined the distance between two nodes in the network as
the number of reaction steps that separate them. We used the distance between each biomarker
and each metabolite to determine whether or not to use that biomarker as one of the inputs to
the model. Abbreviations are BiGG IDs.

3.2.2 Results

We constructed an ARX model for each metabolite, with the number of inputs and

the model orders tailored to each metabolite specifically. This represents a more detailed and
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ARX Model Orders
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Figure 3.6: Orders for input/output signals of ARX models. White boxes indicate that the
corresponding biomarker was not used as input for that metabolite. Intracellular metabolites are
denoted by (c) and extracellular metabolites by (e); metabolite abbreviations are BiGG IDs.

physiologically-influenced system identification approach than was previously used [82]. The

estimated models were used to forecast future values of the timeseries starting at day 10 (time

point 6). In order to perform the forecasting, past values (i.e., measurements from days 0-8) of

the target metabolite and the selected biomarkers (Fig. 3.6) were input; additionally, the median

of all training replicates for the rest of the timecourse (i.e., days 10-45) was input.

In order to evaluate the results of the model forecasts, we used two metrics: (i) calcula-
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Table 3.1: Coefficient of variation for biomarker profiles. Data for all ten training replicates.

Glucose Hypoxanthine Lactate Malate Xanthine

6.323% 194.18% 7.8027% 13.696% 28.956%

tion of the error (SMAPE) between the measured profile and the forecasted profile, and (ii) a

comparison of the model forecasted profiles to a benchmark prediction. In this case, we chose to

use the historical median (i.e., the median of all training replicates) as the benchmark [112,116].

The evaluation of the forecasts for all 70 metabolites according to these two metrics are

shown in Fig. 3.7. The global median error of the forecasted profiles was 0.1836 ± 0.0817, with a

minimum error of 0.0251 (extracellular potassium) and a maximum error of 0.6885 (intracellular

L-arginine). It is important to note the accuracy of the model predictions is limited by the

variability in the data, both in the input data (Table 3.1) and in the profiles being forecasted.

This variability can be attributed to both technical factors involved in making experimental

measurements and to donor-to-donor heterogeneity [24].

The historical average (or median, in our case) benchmark is based on the hypothesis

that the average metabolite concentration profile across historical samples adequately describes

the profile of any new test sample. To be useful, a model should consistently produce better

forecasts than this benchmark. This benchmark is commonly used in various fields and can be

surprisingly difficult to beat for certain systems [112,116].

Of the 70 metabolite profiles used, the ARX model forecasts outperformed the historical

median for 57 metabolites (81.43%). Other benchmarking methods such as a naive random walk

will be compared to the model forecasts in our future work to further evaluate the performance

of the ARX models. Note that typically the historical average is used as the benchmark for
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Figure 3.7: Forecasted model predictions. The distribution of errors for each of the ten testing
replicates is shown. The filled boxes correspond to metabolites for which the model forecasts
had a lower error (SMAPE) than the historical median for at least half of the testing replicates,
while the outlined boxes correspond to metabolites for which the historical median had a lower
error than the model forecasts. Intracellular metabolites are denoted by (c) and extracellular
metabolites by (e); metabolite abbreviations are BiGG IDs.

forecasting [112, 116]; because of the biological variability within the data and the small sample

size, we instead used the median of the historical data as the median is less influenced by outliers

and therefore a stronger benchmark.

After evaluating the global performance of the models, we can explore the profiles of

metabolites that have been previously implicated in the health of stored RBCs (Fig. 3.8), such as

2,3-disphosphoglycerate (2,3-DPG) [78], 5-oxoproline [62], ATP [78], and 5-methylthioadenosine

(5-MTA) [61]. For each of the metabolites in Fig. 3.8, we show the measured profile and corre-

sponding forecasted profile of three representative replicates (of the ten total testing replicates).
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Of the four metabolites shown, the model forecasts for 5-MTA, 5-oxoproline, and ATP outper-

formed the historical median for at least half of the ten testing replicates; the model forecasts

for 2,3-DPG did not outperform the historical median.

3.2.3 Discussion

Previously, we showed that other metabolites in the RBC network could be accurately

predicted from a subset of just five extracellular measurements [82]. Here, we extend those

results to demonstrate that future values of these metabolite profiles can also be predicted using

measurements of the biomarkers from days 0-8 of storage. This ability to forecast future profiles

after only 8 days of storage represents a significant step toward being able to identify potentially

unhealthy blood bags.

As presented here, there are still obstacles that must be overcome. Due to the autore-

gressive nature of the models used, points that were previously forecasted to be zero heavily

influence the trajectory of the forecasted profile. This is demonstrated in the forecasted profile

of 2,3-disphosphoglycerate (Fig. 3.8), where the concentration starts high then quickly drops and

is almost depleted by day 20 of storage. The models are able to correctly predict the shape of

this curve, but as soon as a value of zero is predicted, the predictions tend to never recover to

the true value.

The error rates achieved with the ARX models (0.1836 ± 0.0817) in this study are com-

parable but overall higher (0.1340 ± 0.1505) than what was previously achieved using an Output-

Error (OE) model to predict the concentration profile of a given target metabolite taking as input

the concentrations of all five biomarkers at each time point [82]. This is to be expected considering

that the previous results used the biomarker concentrations at each time point, while the results
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Figure 3.8: Sample forecasted profiles. Example forecasts for 3 representative samples are
shown. The four metabolites shown represent important cellular quantities previously implicated
in RBC storage health. Different colors represent three different testing replicates. Dashed lines
on the profiles represent the predicted standard deviation of the forecast. The vertical dashed
line denotes the time at which the forecasting begins (day 10).

here only used these values up to Day 8. One key difference between these two model designs is

that our OE models only required the historical concentration profiles of a target metabolite in

order to train the model, while the ARX models require the historical concentrations for training

but also online measurements of the target metabolite up to day 8 for forecasting. This means

that in an online forecasting scenario, experimental measurements must be obtained for more

than just the extracellular biomarkers.
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Since the primary application of the workflow presented here is a clinical setting (blood

banks), having to perform deep-coverage metabolomics profiling in order to forecast future con-

centration profiles is a considerable limitation. One way to overcome this limitation is to use

a model to predict the profile of a given target using only the biomarkers as input [82] for the

first 8 days of storage, then inputting that predicted profile into the modeling structure detailed

here to forecast future values of the profile. While this proposed framework would add an addi-

tional source for error in the forecasting results (due to using predicted instead of measured past

data for the auto-regressive calculations), it would eliminate the need to measure more than just

the five extracellular biomarkers. We are currently working to incorporate these efforts into the

workflow presented here. The results of this work will appear in an upcoming article.

3.3 Conclusions

The ability to characterize the dynamic behavior of cellular metabolism using just a

few informative measurements is a challenging problem due to the complexity of metabolic net-

works. In this study, we have applied standard system identification techniques to forecast future

metabolite concentration profiles in human red blood cells using a pre-determined set of biomark-

ers as input. We have expanded upon our previous work by using the structure of the metabolic

network to inform the estimation of metabolite-specific linear black-box models. This research

demonstrates promising results directed toward the development of a computational workflow

that can assess the state and health of metabolism of RBCs under storage conditions from just

a subset of measurements.
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Chapter 4

Mechanistic Modeling of the RBC

Metabolome

Allosteric regulation has traditionally been described by mathematically-complex al-

losteric rate laws in the form of ratios of polynomials derived from the application of simplifying

kinetic assumptions. As an alternative approach that requires no simplifying assumptions, we

explicitly describe the fraction of allosteric enzyme that is in an active form (i.e., its “catalytic

potential”) by developing a detailed reaction network containing all known ligand binding events

to the enzyme. The catalytic potential is the fundamental result of multiple ligand binding

that represents a “tug of war” between the various regulators and substrates. This formalism

allows for the assessment of interacting allosteric enzymes and development of a network-level

understand of regulation. First, we characterize the catalytic potential of three key kinases in

RBC glycolysis: hexokinase, phosphofructokinase, and pyruvate kinase. Second, we compute

their time-dependent interacting catalytic potentials in response to external disturbances and
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found that increased regulation improves the system’s ability to return to the homeostatic state.

Third, we examine nine existing personalized RBC models to study the variability in glycolytic

regulation among individuals and found that the catalytic potential allows for the identification

of subtle but important differences. In addition, we develop a graphical representation of the

dynamic interactions between the individual kinase catalytic potential that provides an easy way

to understand and visualize how a robust homeostatic state is maintained. Together, these re-

sults represent a novel approach that enables the study of the network-level effects of interacting

allosteric enzymes.

4.1 Modeling temporal dynamics with ODEs

The human RBC has historically been the target of complex kinetic model building of its

metabolism due to its relative simplicity and the vast amounts of data and information available

on its biochemistry and physiology. RBCs lack cellular compartments (e.g., nuclei, mitochon-

dria) [117] and therefore certain cellular functions, such as transcriptional and translational

regulation and the ability to use oxidative phosphorylation to produce energy [118]. As a result,

glycolysis is the primary source of ATP generation for the RBC, a pathway that undergoes al-

losteric regulation at major control points. Glycolytic ATP production is thus largely directly

in response to the rate of ATP utilization of known cellular functions, mostly the ATP-driven

sodium/potassium transmembrane pump.

Mathematical models have been used to study the dynamics of RBC metabolism since

the 1970s [119]. Constraint-based modeling methods have been used to explore the mechanisms

underlying cellular metabolism [5, 120, 121], and specialized methods have been developed that

allow for the study of system dynamics [52,122,123]. Kinetic models represent an approach that
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has the potential to truly capture the temporal dynamics at short time scales [124]. The first

whole-cell kinetic model of RBC metabolism was published in the late 1980s [125–128], with

other such models produced since then [37,129,130]. More recently, so-called “enzyme modules”

have been introduced and used to explicitly model detailed binding events of ligands involved in

allosteric regulation as an alternative to the traditional use of allosteric rate laws [131,132]. These

enzyme modules provide a fine-grained view of the activity and state of a regulated enzyme.

Further, they open up many new possibilities in understanding the metabolic regulation that

result from complex interactions of regulatory signals, as well as a way to explicitly represent

biological data types such as sequence variation and protein structures.

Historically, the primary way to visualize the output from a kinetic model is to plot

the time profiles of individual network components (e.g., metabolite concentrations, enzymatic

reaction rates). While these quantities are informative, they fail to provide insight into systemic

qualities of the network. Dynamic phase portraits have been explored as an alternative [4]. With

the formulation of enzyme modules, there is a need to study alternative ways to visualize network

dynamics to bring about a new understanding of integrated functions similar to what Bode

plots [133] or root loci [134] achieved in the early days of the development of classical control

theory. Enzyme modules allow for the explicit computation of the fraction of the regulatory

enzyme that is in an active state and generates the reaction flux. The collective action of all

the ligands binding to the enzyme—through the computation of the active enzyme fraction—

fundamentally represent its regulation.

Here, we use enzyme modules to model hexokinase (HEX), phosphofructokinase (PFK),

and pyruvate kinase (PYK), the three major regulatory points in RBC glycolytic energy genera-

tion. We compute the catalytic potential of these kinases as a measure of an enzyme’s capacity
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to influence the rest of the network, using the enzyme modules individually. We analyze the

response of each enzyme module to perturbations in ATP utilization, simulating the impact of

various physiological stresses on the RBC [135–137]. We then integrate all three enzyme mod-

ules into a single model of glycolysis and show that increasing the number of allosteric enzymes

improves the disturbance rejection capabilities RBC glycolysis to perturbations in the ATP uti-

lization rate. We further explore how RBCs maintain homeostasis by using nine personalized

RBC models to examine the sensitivity of the network to these perturbations. Finally, we eluci-

date how a graphical representation of the three kinase catalytic potentials leads to an insightful

way to visualize the state of RBC glycolysis.

4.1.1 Results

Properties of regulation by phosphofructokinase

PFK has been called the “pacemaker” of glycolysis [138], and it plays a major role in deter-

mining glycolytic flux. PFK converts fructose 6-phosphate (F6P) into fructose 1,6-bisphosphate

(FDP). Here, we use a reaction mechanism (Fig 4.1A) where PFK binds first to ATP, forming a

complex that then binds F6P and then converts the two bound substrates to FDP producing ADP

in the process. The four binding sites operate independently, i.e., they do not “cooperate.” The

catalytic activity of PFK is controlled through allosteric regulation by AMP and ATP (Fig 4.1).

AMP and ATP bind to an allosteric site, distal to the catalytic site, inducing a conformational

change that modulates the activity of PFK.

For an enzyme allosterically regulated through effector molecules, we can define a quantity

that relates the amount of enzyme in the active form to the total amount of enzyme. This
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Figure 4.1: PFK mechanism and simulation results. (A) The structure of one of two PFK homo-
mers along with the catalytic mechanism. The predicted allosteric binding sites for AMP/ATP
are highlighted. (B) Concentration and reaction rate profiles for PFK regulatory module in
glycolysis. The concentration profiles shown are for a 50 % increase in ATP utilization. (C)
Phase portrait showing the catalytic potential of PFK. Two perturbations are shown: (1) a 50
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catalytically active fraction (fA) is given by

fA =

∑n
i=0Ri +Ri,A +Ri,AS

Etotal
(4.1)

where n is the number of enzymatic binding sites, Ri is the unbound enzyme in the active state

(i.e., not bound to inhibitors), Ri,A is the enzyme bound to the cofactor, Ri,AS is the enzyme

bound to the substrate and cofactor, and Etotal is the total amount of enzyme. The subscript i
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represents the amount of activators bound to allosteric sites; for tetrameric structures like PFK

and PYK, i ranges between 0 and 4 [139,140]. We term this ratio the “catalytic potential” of an

enzyme because it provides a representation of an enzyme’s effect on the rest of the system and

its ability to maintain the homeostatic state.

In order to characterize the system response to perturbations, we modulated the ATP

utilization by adjusting the rate of reaction for ATP. We modeled two perturbations that have

been previously observed to fall within a physiologically-feasible response: a 50% increase and a

15% decrease in ATP utilization. The increase in ATP utilization is used to model a cell that

is undergoing sheer-induced ATP release [136], which is a common phenomenon experienced by

RBCs in vivo. Under hypoxic conditions, ATP utilization has been shown to increase by over five

fold [137]. Therefore, we chose to model a 50% increase in ATP utilization to observe the trends

of how the catalytic potential changes in order to maintain a homeostatic state. The decrease in

ATP utilization models the reduced release of ATP under cancerous conditions [135].

We modeled these perturbations by modulating the rate of reaction for the hydrolysis

of ATP; in order to allow the system flexibility to respond to these perturbations, phosphate

was modeled as a variable quantity (see Methods for full details). Increasing this rate decreases

the amount of available ATP and ADP, resulting in a decrease in the rate of PFK (Fig 4.1B).

Conversely, lowering this value increases the rate of the PFK reaction. For both perturbations,

the final rate value eventually returns to the same as the unperturbed system. We were interested

in characterizing the enzymatic response to these energetic perturbations. The energetic state

of a cell can be measured using the energy charge [141], which relates the amount high energy

bonds available in the adenosine phosphate pool. The energy charge is given by:

energy charge =
[ATP] + 1

2 [ADP]

[ATP] + [ADP] + [AMP]
(4.2)
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where [AMP], [ADP], and [ATP] represent the concentrations of those respective metabolites. To

evaluate how the regulatory state of an enzyme is related to the energy state of the system, we

can plot the ratio of active to total enzyme as a function of the energy charge (i.e., the catalytic

potential).

We characterized the glycolytic model first with only the PFK enzyme module. Dynamic

simulation for the model was performed and then the catalytic potential was plotted as a function

of the energy charge (Fig 4.1C). We observed an inverse relationship between the energy charge

and the active fraction of the enzyme. An increase in ATP utilization lowers the energy charge

and increases the active fraction to increase the glycolytic flux, while a decrease in ATP utilization

leads to the opposite result. The inverse relationship between the energy charge and the active

fraction—the catalytic potential—is an emergent property of the system. The interpretation of

this graphical representation is that PFK senses the energy charge and adjusts the flux through

PFK to reverse the change in the energy charge, returning the system to a homeostatic state.

Properties of regulation by hexokinase and pyruvate kinase

Having used an enzyme module to explicitly model and simulate the regulation of PFK,

our next step was to expand the representation of allosteric regulation to include two other

glycolytic kinases (HEX and PYR). We constructed enzyme modules for both enzymes using

mechanisms that allowed the substrate to bind cofactors in any order. 2,3-diphosphoglycerate is

involved in the regulation of HEX therefore requiring the inclusion of the Rapoport-Luebering

Shunt and hemoglobin in the model [4] (see Methods for full details). We validated each enzyme

module individually by performing the same ATP utilization perturbation (i.e., 50% increase

and 15% decrease). The catalytic potential observed for the HEX module was in agreement with
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previously observed experimental evidence [142]. The PYK module exhibited a direct relationship

between fA and energy charge, conflicting with the inverse relationship previously observed in

vitro [142].

Three kinase regulatory model (TKRM)

Once we had validated each kinase module individually, we built an expanded model of

glycolysis that included all three enzyme modules and hemoglobin. We will refer to this model as

the “three kinase regulatory model” (TKRM). The TKRM allows us to simulate how the three

allosteric enzymes interact in determining the systems responses.

We first calculated the concentration profiles for PFK (Fig 4.2A), observing higher FDP

levels than with just the PFK module (Fig 4.1B). This effect is likely due to the inclusion of the

PYK module, in which FDP is an allosteric activator. We also examined the reaction rate profile

of PFK (Fig 4.2B), which was inverted compared to that of the PFK model only (Fig 4.1B).

This inversion arose from the addition of the HEX module, demonstrating the interplay among

the various enzymes within a network.
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In order to better capture this interplay among enzymes, we constructed phase portraits

for the fraction of catalytically active enzyme (fA) for each pairwise combination of enzyme

modules in the TKRM (Fig 4.3A). These phase portraits show that as a greater fraction of

PFK entered a more catalytically active state, a greater fraction of HEX become catalytically

inactive; a similar behavior was observed for the PFK-PYK pair. This behavior was observed in

each of the enzyme modules individually. We observed that HEX and PYK moved in tandem,

with both enzymes moving into catalytically active or inactive states together. This behavior is

likely due to the fact that these enzymes represent the boundaries of the system and therefore

are linked in order to maintain system stability. Finally, we constructed catalytic potential plots

for each enzyme module in the TKRM (Fig 4.3B). We observed that HEX and PYK exhibited

primarily proportional relationships between energy charge and the fraction of catalytically active

enzyme, while we observed an inverse relationship between these two quantities for PFK. This

inverse relationship observed for PFK recapitulated the previously reported relationship between

catalytically active enzyme fraction and energy charge [143].

Maintaining the homeostatic state: disturbance rejection properties

The inclusion of feedback and other regulatory mechanisms are designed to improve the

disturbance rejection capabilities of a system [144]. For biological systems, regulatory mecha-

nisms are expected to enable organisms to maintain a robust homeostatic state in the face of

environmental perturbations. Having characterized our individual allosteric enzyme modules and

the TKRM, our next goal was (1) to investigate the capacity for each of these models to help

maintain the homeostatic state and (2) to examine how understanding the catalytic potentials

help elucidate this ability. We simulated a 50% increase in ATP utilization and calculated the
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Figure 4.3: Dynamic response to perturbations in ATP utilization. (A) Phase portraits dis-
playing all pairwise relationships between the catalytic potentials of two kinases. (B) Catalytic
potential plots for each of the enzyme modules as a function of the energy charge. Roman nu-
merals indicate comparisons with the steady-state: (I) more enzyme in active form and higher
energy charge; (II) more enzyme in active form and lower energy; (III) more enzyme in inactive
form and lower energy charge; and (IV) more enzyme in inactive form and higher energy charge.

total ATP flux in the network (i.e., total flux through ATP-producing reactions minus total flux

through ATP-consuming reactions) for each of the models constructed (Fig 4.4). All systems were

able to maintain a stable homeostatic state following the perturbation (Fig 4.4A). We calculated

the sum of squared error (SSE) for each model in order to quantify the disturbance rejection capa-

bilities of each model (Fig 4.4A). As expected, the models with little or no regulation performed

the worst, while increased regulation generally lowered the SSE. The base glycolytic model with

the PYK module performed the worst, while the model containing the PFK and HEX modules

with hemoglobin performed the best. The final steady-state values for the energy charge differed
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Figure 4.4: Disturbance rejection capabilities for various regulation models. (A) The net rate
of ATP usage (i.e., total flux through ATP-producing reactions minus total flux through ATP-
consuming reactions) is shown as a function of time; the inset zooms in on the 0 to 20 hour
time range. The number in parentheses represents the SSE for each model, quantifying the total
deviation of the output from the setpoint. (B) The energy charge is shown as a function of time;
the inset zooms in on the 0 to 20 hour time range.

with the inclusion of hemoglobin in the model, although the magnitude of these differences was

small (Fig 4.4B).

The baseline RBC glycolytic model used to construct the models here is based on nominal

parameter values [4]. Genetic variation in the human population leads to varying RBC metabolic

dynamics in different individuals, therefore requiring sensitivity analysis of the model parameters.

RBC and plasma metabolite levels have been reported from a series of individuals, enabling the

construction of “personalized” RBC models by calculating rate constants for kinetic descriptions

of the reaction dynamics [37]. We thus constructed personalized models using glycolytic metabo-

lite concentrations and equilibrium constants for nine individuals from a previous study [37].

Using personalized models provides a sensitivity analysis that examines physiologically-feasible

parameter values. We performed our sensitivity analysis using the model that includes an enzyme

module for PFK and hemoglobin due to simplicity for numerical simulation.

The general qualitative trend for the catalytic potential plot was similar to the one using

literature values (Fig 4.1C and Fig 4.3B), but initial fA values were significantly lower in the
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personalized models (Fig 4.5A,B). In particular, the amount of active PFK for each individual

reached a saturation point that was higher than the initial steady-state value in order to com-

pensate for the increase in ATP utilization before returning to a final steady-state value. While

we observe that there is little difference among the rate profiles (Fig 4.5C), we observe much

greater differences in the catalytic potential plots (Fig 4.5A,C) and energy charge profiles (Fig

4.5D). Notably, the model for Individual #1 exhibited a much different response than the other

eight personalized models (Fig 4.5A,B,D). Upon further examination, we determined that this

difference stemmed from the fact that the rate constants for the binding of ATP and F6P to PFK

were outliers with over 99% confidence according to the Dixon’s Q test (see Methods for full de-

tails); these were the only rate constants that were deemed to be outliers out of all enzymatic

reactions.

4.1.2 Discussion

The ability to mechanistically model cellular metabolism allows for the construction of

predictive physiological models. However, the mechanistic results obtained from time-course

plots can complicate the interpretation and analysis of systems-wide responses to relevant per-

turbations. To help provide a better method of elucidating this behavior, we built modularized

glycolytic models with enzymes serving as regulators. These models were then validated against

existing empirical data to understand the relationship between the catalytically active enzyme

fraction and energy charge—the catalytic potential of an enzyme. Visualizing the catalytic po-

tential allowed for the analysis of important systems behaviors. The results presented here have

several primary implications.

First, we have studied glycolysis from a perspective in which enzymes are regulators.
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Figure 4.5: Disturbance rejection capabilities of personalized glycolytic models. (A) Super-
imposed catalytic potential plots for all personalized models. (B) Catalytic potential plots for
each individual; the intersection of the gray lines denotes the initial steady-state value at time
zero and helps show the differences among the population. (C) The net rate of ATP usage (i.e.,
total flux through ATP-producing reactions minus total flux through ATP-consuming reactions)
is shown as a function of time; the inset zooms in on the 0 to 20 hour time range. The number
in parentheses represents the SSE for each model, quantifying the total deviation of the output
from the setpoint. (D) The energy charge is shown as a function of time; the inset zooms in on
the 0 to 20 hour time range.

Individual kinases serve as tuning dials for the system. Adjusting these dials changes the response

of the system, as demonstrated by examining individual parameterization of personalized models

(Fig 4.5). Through an examination of the catalytic potential of PFK, we were able to gain
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insight into how the regulator within a model is tuned in different individuals in order to maintain

homeostasis (Fig 4.5A,B,D), a behavior that was not discernible through more typical metrics like

rates of reaction (Fig 4.5C). Our observations of PFK and HEX were similar to those reported in

the literature, but we observed differences in the behavior of PYK. There are several factors that

could account for this discrepancy that focus on the scale and environmental factors of our model

in comparison to the literature. The networks used in previous studies were on a much smaller

scale than our network, negating the influence of other enzymes on PYK activity. Additionally,

these assays did not contain FDP, which is a known activator of PYK. In our model, increasing

the energy charge led to an initial increase in FDP concentration, which corresponded to an

increase in the amount of PYK in the catalytically active form. While the present results are

limited by the scope of the model (i.e., only glycolysis), expanding this framework to larger-scale

models of RBC metabolism could provide similarly interesting results.

Second, the disturbance rejection capabilities of the models improved with the incor-

poration of additional regulatory mechanisms (Fig 4.4A). We simulated physiologically-relevant

perturbations, observing that systems with regulation are improved over those with less reg-

ulation (i.e., fewer modules) as shown by quantifying the total deviation of the model output

from the setpoint (i.e., the SSE). It is notable that models with hemoglobin and either HEX

or PFK performed well despite not accounting for all regulatory mechanisms, indicating that

kinetic models that do not account for the regulation in these important steps in glycolysis fail

to capture important behaviors that affect the rest of the network. It is likely that the vast

improvement of those two models over the model with PYK and hemoglobin is due to the fact

that PYK is one of the last steps in glycolysis and therefore has a smaller impact on the rest

of the system. We further investigated the disturbance rejection capabilities of the PFK and
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hemoglobin model through a sensitivity analysis that used physiologically-relevant parameter-

izations instead of randomly-distributed parameter sets. This analysis helped elucidate subtle

differences among individuals that were accessible only by studying the systems-level effects of

regulation.

Finally, we have shown that the catalytic potential is a metric that can provide addi-

tional insight into how metabolic networks maintain a homeostatic state following physiologically-

relevant perturbations. Using a small-scale model that explicitly accounted for the regulatory

mechanisms of the three glycolytic kinases, we investigated the interplay between these three

enzymes. When we applied this metric to examine the response of personalized models to ATP

utilization perturbations, we observed differences that were not apparent simply from the rate

profile. Upon further investigation, we were able to hypothesize that the catalytic potential for

that individual was different than the others due to differences in the binding of ATP and F6P

to PFK. Thus, the catalytic potential helped provide insight into how subtle differences among

individuals can lead to differing systemic responses to perturbations that push the system away

from the homeostatic state.

Red blood cells are networks consisting of well-studied metabolic pathways and their

associated metabolites. However, it is often difficult to examine individual enzymes in vivo

without using small scale assays [142, 143, 145, 146]. These assays are not comprehensive and,

as a result, may not provide an accurate depiction of the interplay between multiple regulatory

enzymes in a network like glycolysis. New methods of visualizing this behavior—such as the

catalytic potential plot introduced here—can lead to new insights and discoveries. Viewing

enzymes as regulators through which we can tune the system response opens the door for us to

investigate what the optimal state might be and how that state helps maintain homeostasis.
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4.1.3 Methods

All calculations were performed in Mathematica 11.1 [147]. Simulations were conducted

using the Mass Action Stoichiometric Simulation (MASS) Toolbox kinetic modeling package

(https://github.com/opencobra/MASS-Toolbox). Details for formulating a MASS model are

found in Jamshidi et. al. [131]. All models used are available upon request.

Glycolysis and the Rapoport-Luebering shunt

The base glycolysis network included all 10 glycolytic enzymes and lactate dehydroge-

nase. Reaction rates were defined using mass action kinetics, representing enzyme catalysis as a

single step. These simplified reactions were systematically replaced with enzyme modules follow-

ing the procedure outlined by Du et al. [132]. Additionally, a phosphate exchange reaction was

incorporated into the glycolytic network utilizing parameters obtained from Prankerd et al. [148].

Similarly, the Rapoport-Luebering shunt was included in some models to account for the pres-

ence of hemoglobin, whose binding to oxygen is regulated by 2,3-diphosphoglycerate (2,3-DPG).

Incorporation of this shunt was accompanied by parameter changes as previously described [4].

Enzyme module construction

Regulation was manually incorporated into the enzyme reactions. Initial conditions from

the glycolysis and hemoglobin MASS toolbox example data were used in conjunction with equi-

librium constants which were obtained from from [149, 150]. These values were subsequently

utilized to solve for new kinetic parameters. This procedure (outlined in [4]) adheres to the

formula:

d~x

dt
= S · ~v = 0 (4.3)
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where d~x/dt is the concentration rate of change with respect to time for metabolites, S is the

stoichiometric matrix, and ~v is a vector containing reaction fluxes.

We constructed a total of ten different models with varying amounts of regulation, span-

ning from the base glycolytic model with no enzyme modules (and therefore no regulation) to

the TKRM with three enzyme modules and the Rapaport-Luebering shunt. The remaining mod-

els represented each combination of the three kinase modules. Enzyme module incorporation

was accompanied by the deletion of the original single-step reaction in order to avoid redundant

reactions. Stability for all systems was verified by simulating the network and ensuring that a

steady-state point was found for all metabolites.

Hexokinase (HEX)

HEX (EC 2.7.1.1) was modeled as a monomer to account for the fact that it contains

only one active catalytic site. The previously specified mechanism was chosen to match that used

by [132] because all kinetic parameters were obtained from this source. A hemoglobin module is

necessary to include when the HEX module is included because it affects the level of 2,3-DPG,

which serves as a regulatory molecule for HEX. The HEX module consisted of the following

chemical reactions:
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HEX + ATP 
 HEX-ATP

HEX + GLC 
 HEX-GLC

HEX + G6P 
 HEX-G6P

HEX + ADP 
 HEX-ADP

HEX-ATP + GLC 
 HEX-ATP-GLC

HEX-GLC + ATP 
 HEX-ATP-GLC

HEX-GLC + 23DPG 
 HEX-GLC-23DPG

HEX-ATP-GLC 
 HEX + ATP + GLC

where the bold text represents the enzyme and dashes show bound species.

Phosphofructokinase (PFK)

PFK (EC 2.7.1.11) was modeled as a homotetramer to account for its four catalytic and

allosteric binding sites [151]. The previously specified mechanism was chosen to match that

used by [132] because all kinetic parameters were obtained from this source. The PFK module

consisted of the following chemical reactions:

PFK + ATP 
 PFK-ATP

PFK-ATP + F6P 
 PFK-ATP-F6P

PFK-ATP-F6P→ PFK + ADP + FDP + H

where the bold text represents the enzyme and dashes show bound species. Additional reactions

were included to account for the conversion between the tight and relaxed state, as well as the

effector molecule binding.
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Pyruvate kinase (PYK)

PYK (EC 2.7.1.40) was modeled to include allosteric regulation. Additional reactions

were also included to account for the equilibration of both enzymes between the relaxed (R) and

tense (T) state [140]. Additionally, PYK was modeled as a tetramer to account for the four

catalytic and allosteric sites on each enzyme. Dissociation constants were obtained from [127]

and rate constants were solved using equation 3. The PYK module consisted of the following

chemical reactions:

PYK + PEP 
 PYK-PEP

PYK + ADP 
 PYK-ADP

PYK-ADP + PEP 
 PYK-ADP-PEP

PYK-PEP + ADP 
 PYK-ADP-PEP

PYK-ADP-PEP→ PYK + ADP + PEP + H

where the bold text represents the enzyme and dashes show bound species.

Personalized models

Personalized models were constructed by replacing all primary intracellular glycolytic

metabolite concentrations and equilibrium constants with values reported by Bordbar et al. [37].

New pseudo-elementary rate constant (PERC) values were calculated using the personalized

concentration data. The Rapoport-Luebering shunt was added to the RBC network and PFK

enzyme modules were created for all individuals using the resulting concentration values after

the addition of the Rapoport-Luebering pathway. Due to numerical issues when attempting

to simulate, we only used 9/24 of the models available in [37]. Individuals #1-9 in our study
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correspond to individuals 2, 4, 5, 6, 7, 8, 10, 16, and 18, respectively, from [37].

To identify outliers within the reaction PERCs compared with the other personalized

models, we performed a Dixon’s Q test [152]:

Q =
gap

range
(4.4)

where the gap is the absolute difference between the point in question and the nearest value,

and the range is the range of all values. For a set with nine samples, we can be 99% confident

that a point is an outlier if the Q value is greater than 0.598; the Q values for the ATP and F6P

binding steps had Q values of 0.84257 and 0.73164, respectively.

System analysis

Rate pools for enzymes were defined as the rate of at which enzyme produced product.

This was accomplished by defining a pool from the product’s ODE consisting solely of the terms

contributing to product formation. In other words:

rateenzyme =
∑

vformation (4.5)

where vformation represents the forward rate of the enzyme reaction and possesses units of

mmol/L · s. Defining the rate pools in this manner neglected effects of reversible reactions con-

tributing to the formation of product. Thus, this pool quantified the actual catalytic activity of

the enzyme of interest.

Simulating ATP utilization perturbations

In order to mimic a physiologically-relevant perturbation away from the homeostatic state,

we simulated a 50% increase in ATP utilization and a 15% decrease in ATP utilization [135–137].
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Changes in ATP utilization were applied by changing the rate (kATP) associated with ATP

hydrolysis:

ATP + H2O
kATP

 ADP + Pi (4.6)

where Pi represents inorganic phosphate. We calculated the sum of squared error (SSE) for each

model in order to quantify the total deviation of the output from its setpoint, which is zero. The

resulting quantity (i.e., the SSE) is compared between models, with a smaller value indicating

better disturbance rejection capabilities.

4.2 Scaling up to network-level dynamics

As described in Ch. 1, one of the major limitations of kinetic modeling is the difficulty

in parameterizing a cell-scale model. Thus, scaling up our efforts to study the RBC metabolome

require a different modeling approach. Metabolic reaction networks can be represented math-

ematically and interrogated using ordinary differential equations, metabolic flux analysis, or

constraint-based modeling. Constraint-based modeling formalizes biochemical, genetic, and ge-

nomic knowledge of cellular metabolism into a mechanistic model and is suited for understanding

systems level metabolic physiology without the need for extensive parameterization [5]. Over the

past decade, constraint-based modeling methods have developed to better constrain biological

systems, in part by including new types of -omics data, especially transcriptomics [10]. However,

fewer studies have integrated metabolomics data with such networks. To date, dynamic simu-

lations have primarily integrated or modeled extracellular metabolite concentrations [153, 154],

with some exceptions mentioned [155,156]. Without including intracellular concentrations, mod-

els can overlook the impact of large intracellular metabolite pools on metabolic flux [157]. Thus,

there is a need for methods that can integrate changes in intracellular metabolite data with
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mechanistic models to accurately predict metabolic physiology under dynamic conditions.

Here, we present unsteady-state flux balance analysis (uFBA), a constraint-based model-

ing method and workflow that integrates time-course metabolomics data to predict metabolic flux

states for dynamic systems. uFBA and steady-state FBA (henceforth referred to simply as FBA)

models were constructed and compared for three dynamic systems: stored human RBCs, stored

human platelets, and Saccharomyces cerevisiae during anaerobic batch fermentation and carbon

starvation. In addition, one classical example of a static system was modeled: Escherichia coli

during steady-state exponential growth. We find that for the dynamic systems, inclusion of in-

tracellular metabolomics with uFBA provides different and more accurate predictions than FBA.

In particular, uFBA predictions for RBC were experimentally validated with isotopic metabolic

flux analysis. For the platelet and yeast systems, experimental data from the literature was used

to benchmark the modeling results. Finally, the static E. coli system served as a negative control,

with uFBA and FBA displaying similar predictions.

4.2.1 Results

Unsteady-state Flux Balance Analysis (uFBA)

The uFBA workflow integrates time-course absolute quantitative metabolomics data with

a constraint-based model to predict metabolic flux states. Time-course metabolomics data is often

non-linear. The first step of the workflow discretizes non-linear metabolite time profiles into time

intervals of linearized metabolic states for piecewise simulation, resulting in a separate model for

each metabolic state (Fig. 4.6). Principal component analysis (PCA) is applied to the time-

course metabolomics data to identify the time intervals for which a model will be constructed.

For example, the data in Fig. 4.6 is discretized into two time intervals.

100



Figure 4.6: Overview of the uFBA workflow. First, extracellular (exo) and intracellular (endo)
metabolite time profiles are split into discrete time intervals of linearized metabolic states using
principal component analysis. For each metabolic state, the rate of change of each metabolite
is calculated using linear regression, along with the 95% confidence interval (b1 and b2). If
the metabolites rate of change is significant, the model is updated by changing the steady-state
constraint b = 0 to a range denoted by b1 and b2. uFBA differs from FBA in that elements of the
b vector are known and can be used as constraints, but FBA in the absence of such information
assumes that these elements are zero (i.e., at steady-state).

For each time interval, a parameterized model is constructed by (1) determining the rate

of change of measured metabolites using linear regression, (2) integrating the calculated rates

of change with the constraint-based model, (3) treating the model as a closed system, and (4)

reconciling data measurement error and incompleteness through a metabolite node relaxation

algorithm to produce a functional model.

The final two steps are different than traditional FBA. uFBA is a data driven approach

and aims to make flux predictions solely from time-course metabolomics data. uFBA only allows

changes to metabolite levels, including extracellular metabolites for exchange, if the metabolite

is measured to be significantly increasing or decreasing in the extracellular (exo) or intracellular

(endo) metabolomics data. In principle, if all metabolites are accurately measured over time,

the model should simulate. However, due to the experimental infeasibility of data completeness

(not all metabolites are measured), additional metabolites will need to accumulate or deplete

for proper simulation. To predict which unmeasured metabolites are changing, we developed

a relaxation algorithm that makes the model simulation feasible. After all exchange reactions
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are removed (i.e., a closed system), the metabolite node relaxation algorithm determines the

minimum number of metabolites that need to deviate from steady-state for a feasible model.

Once the uFBA model is constructed, most constraint-based modeling analyses can be

used, including the maximization or minimization of an objective, flux variability analysis (FVA),

and candidate flux sampling. For this study, we focused on Markov chain Monte Carlo (MCMC)

sampling [9] to calculate the probability distribution of flux through every metabolic enzyme in

the network. This allowed for the calculation of the most likely flux state of the system.

Global Differences between uFBA and FBA

To test and validate uFBA, the workflow was applied to four systems: (1) human RBCs

stored up to 45 days at 4◦C; (2) human platelets stored up to 10 days at 22◦C; (3) two strains

of Saccharomyces cerevisiae during anaerobic batch fermentation and carbon starvation, and (4)

Escherichia coli during steady-state exponential growth as a negative control. These cases were

chosen because they represent diverse systems in terms of physiological dynamics, metabolic

network complexity, cell density, data coverage, and timescales.

Comprehensive absolute quantitative metabolomics data was obtained from the liter-

ature [41, 89, 158, 159]. All four datasets were generated using LC-MS methods, augmented

with some extracellular metabolites being measured by HPLC or a blood gas analyzer. Using

PCA, the metabolite time profiles for stored RBCs were discretized into three metabolic states,

into two states for stored platelets, and into three states for S. cerevisiae during mixed glu-

cose/xylose fermentation. The negative control, E. coli steady-state growth, was treated as one

state. uFBA models were constructed and compared to steady-state FBA models for the corre-

sponding systems and states. The steady-state models were constructed by integrating only the
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exometabolomics data and allowing for extracellular exchange for unmeasured metabolites with

the environment, currently a standard practice.

We assessed the global difference between calculated flux states of the uFBA and FBA

models (Fig. 4.7). We observed considerable differences between uFBA and FBA predictions in

the dynamic situations of long-term cell storage or batch fermentation, while fewer differences

were observed for E. coli during steady-state growth. Further, the detected differences in flux

estimates were not due to a uniform increase or decrease of flux across the network as evidenced

by the significantly lower correlation of uFBA and FBA calculated fluxes as compared to controls

(Fig. 4.7b). This indicates that the ordering of reactions, from high to low flux, had fundamentally

changed in RBCs, platelets, and S. cerevisiae.

Reactions with significantly different flux estimates between uFBA and FBA were not uni-

formly distributed across the subsystems of the various models. Typically, higher metabolomics

coverage of metabolites in a particular subsystem resulted in larger reported flux differences.

Further, the number of significantly different reactions within a given subsystem was not con-

stant across metabolic states. This difference is due to the nonlinearity of time-course data,

where some metabolite concentrations change during one metabolic state but are at steady-state

during another metabolic state.

Outside of MCMC sampling flux states, we assessed whether the size of the solution space

had changed by uFBA using flux variability analysis (FVA). We applied FVA to each state of

each test case to determine the flux range for each metabolic reaction (flux range = maximum

flux − minimum flux). In the RBC and platelet cases, we found that by deviating intracellular

metabolites from steady-state, flexibility in the system increased and certain reactions had larger

flux ranges for uFBA than for FBA. Overall, however, we found that most of the reactions had
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Figure 4.7: Comparison of uFBA and FBA flux states. (a) Percentage of reactions with sig-
nificantly different fluxes between the uFBA and FBA models. (b) The Spearman correlation
between uFBA and FBA flux states indicates that differences in flux estimates were not due
to uniform increases or decreases in fluxes but a reordering of reactions from high to low flux.
The null hypothesis is that the distribution of Spearman correlations is drawn from the same
distribution when comparing candidate flux states from uFBA to uFBA or FBA to FBA. * - p
= 0.0; E. coli p = 0.995.

equal or lower flux ranges in the uFBA formulation. The lower flux ranges are most likely due to

uFBA constraining extracellular metabolite exchanges to only measured data, and not allowing

free exchange out of the system.

After a global comparison of uFBA and FBA, we focused on key differences in reaction flux

predictions that would have consequences on biological interpretation on metabolic physiology

by those investigating the metabolomics data.
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Red Blood Cells

There were considerable differences in flux predictions made by uFBA and FBA for RBC

metabolism. To hone in on major discrepancies, we focused on metabolic reactions where uFBA

and FBA predicted opposite directions of flux. We observed flux reversals in the cytosolic rem-

nants of the TCA cycle reactions. These enzymes had been previously detected in RBC proteomic

datasets [160] (Fig. 4.8a). Over storage, RBCs uptake citrate (2.32 µM/day during State 1) and

secrete malate (1.96 µM/day during State 1) and fumarate (0.300 µM/day during State 1). FBA

predicts that nearly all citrate is converted to malate and fumarate (Fig. 4.8c). This is a rea-

sonable estimation because the flux into and out of the cell is roughly balanced, and the Keq of

malate dehydrogenase (Keq = 2.1×105) heavily favors metabolite flow in that direction. However,

through intracellular metabolite profiling, we discovered that RBCs have a high concentration

of intracellular malate (>1 mM). With this additional information, uFBA predicts that the se-

cretion of malate and fumarate are due to the depletion of the large intracellular malate pool

(26.1 µM/day, State 1). Further, uFBA predicts the shuttling of the majority of the intracellular

malate and citrate into lower glycolysis through oxaloacetate, as well as production of glutamate

from citrate (Fig. 4.8b). The network in Figure 4.8a shows all TCA remnant enzymes previously

detected in RBCs in proteomic studies [160] or through literature curation [40].

We experimentally validated the fate of extracellular citrate by replacing the anticoag-

ulant with fully labeled 13C citrate. Measurements of isotope abundance were determined and

analyzed using metabolic flux analysis (MFA) tools [161]. As intracellular metabolite levels are

changing throughout and the labeling patterns are unstable, traditional “reverse” 13C MFA calcu-

lations where fluxes are predicted based on isotopic labeling patterns are not applicable. Instead,

we completed a “forward” MFA simulation where the isotopic labeling pattern is predicted based
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Figure 4.8: Experimental validation of in silico predictions. (a) TCA metabolites and pathways
in the RBC metabolic model are shown, including changes in metabolite levels and metabolites
found to be isotopically labeled after addition of fully labeled 13C citrate. Cofactor producing
reactions are shown, while other cofactors and reaction names are omitted. Concentrations
are shown as µmol/L of bag or mmol/L of bag. Time spans 0-45 days for insets. (b) uFBA
(blue arrow) predicts that the depletion of intracellular malate produces extracellular malate and
fumarate, while driving lactate production. Extracellular citrate is used to produce glutamate and
lactate. Fluxes shown in µM. (c) FBA (red arrow) predicts extracellular citrate is used only to
produce malate and fumarate and that MDH proceeds in the opposite direction than in uFBA. (d)
uFBA and FBA predicted fluxes were integrated with a 13C MFA “forward” tracer simulation to
simulate how labeled citrate would accumulate across the first two metabolic states. The residual
sum of squares (RSS) of both uFBA and FBA simulations compared with the measured data is
shown. Abbreviations: oaa: oxaloacetate; akg: alpha-ketoglutarate; pep: phosphoenolpyruvate;
MDH: malate dehydrogenase; PYK: pyruvate kinase; ICDH: isocitrate dehydrogenase. Vertical
lines on metabolite time profiles denote the time intervals of the three metabolic states.
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on the initial isotopic pattern and the predicted fluxes by uFBA or FBA (see Methods). We

compared how well the use of uFBA or FBA fluxes were able to match the isotopic labeling pat-

tern of intracellular metabolites that were detected to be labeled and for which we had absolute

quantitation. uFBA produced quantitatively more accurate predictions (lower residual sum of

squares (RSS)) than FBA for the isotopic labeling pattern (Fig. 4.8d). The discrepancy between

uFBA and FBA is predominantly due to the depletion of intracellular malate into oxaloacetate,

which creates a gradient pushing flux from malate into oxaloacetate.

RBC citrate metabolism can proceed in two directions. First, alpha-ketoglutarate can

be formed through aconitase and isocitrate dehydrogenase (IDH). Alpha-ketoglutarate can then

form glutamate, which was found to have increasing percentages of isotopic labeling. In this

process, NADPH is generated through IDH1, which is the only known isozyme proteomically

detected in RBCs16. In the second direction, citrate forms oxaloacetate through ATP citrate

lyase. An acetyl group is cleaved off during this process forming acetyl-CoA. We detected an

increasing labeling percentage of acetylcarnitine (m+2), which is most probably created from

acetyl-CoA. Oxaloacetate can then become aspartate, malate, and lactate, which we found all

increasingly labeled.

Platelets

For the platelet storage data, the major discrepancy between uFBA and FBA models

concerned the utilization of the electron transport chain (ETC), particularly in State 1. As this

dataset did not have information on oxygen uptake, the metabolite node relaxation algorithm

determined the necessary amount based on the rest of the metabolomics data. Based on the

measured metabolites, the algorithm was able to accurately predict that oxygen was required
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for both uFBA and FBA models, but the amount of oxygen needed was only quantitatively

predicted on the right order of magnitude for uFBA. uFBA predicted that the ETC accounted

for 90.2% and 88.8% of ATP generation for States 1 and 2, respectively. However, FBA predicted

0.23% and 64.1% in States 1 and 2, respectively, suggesting that platelets use only glycolysis for

ATP generation (and not the ETC) in State 1. Previous experimental studies [162, 163] have

shown oxygen uptake to be higher in State 1 than in State 2 and that approximately 85% of

ATP production during storage is due to the ETC. The uFBA workflow quantitatively predicted

the oxygen uptake rate and ATP production. When the FBA models were re-parameterized to

not allow free exchange out of the system, the oxygen uptake rate and ETC usage was corrected.

The discrepancy between the uFBA and FBA model predictions was determined to be caused

by the standard practice in FBA models to allow free exchange of metabolites out of the system,

In particular, the reason was free exchange of L-alanine out of the system.

Saccharomyces cerevisiae

The final dynamic case study used metabolomics data for two S. cerevisiae strains engi-

neered to assimilate xylose and fermented in a mixed glucose/xylose culture [158]. One strain

consumes xylose through an isomerase (strain XI), while the other consumes xylose through a

reductase and a dehydrogenase (strain XR). The PCA identified three metabolic intervals. The

first shift differentiated between mixed nutrient metabolism (glucose/xylose, State 1) and xylose

as the sole carbon source (States 2 and 3). Using a constraint-based model for yeast metabolism,

we found considerable differences between uFBA and FBA flux predictions (Fig. 4.7). We com-

pared the flux predictions against recently generated 13C MFA studies on XI and XR yeast

strains [164, 165]. Although the experimental conditions were not identical, the uFBA models
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predicted flux state resulted in a lower residual normalized error than did FBA when compared

with the measured data for the three tested cases: XR growth on glucose (State 1) and xylose

(State 3); XI growth on glucose (State 1). XI growth on xylose (State 3) was excluded for com-

parison as the growth rate of yeast in the 13C MFA study was considerably different than in the

study used for generating uFBA and FBA predictions.

Further, the uFBA flux predictions provide a systematic method to propose mechanisms

for the observed time-course changes in metabolites, rather than use intuition. In particular,

the authors postulated that the observed drain of 6-phosphogluconate (6PG) in the XI strain

after glucose consumption is due to a reduced flux through the non-oxidative PPP. uFBA instead

predicts 6PG decrease to be due to a significant decrease in oxidative PPP activity in State 2.

The FBA model did not make a similar prediction. Further, the large decrease in flux through

the oxidative PPP predicted by uFBA was confirmed with the 13C MFA studies on yeast XI and

XR strains noted above.

Escherichia coli

The E. coli data was used as a negative control because FBA has been traditionally

successful in analyzing microbial growth processes based on exometabolomic data alone, in part

due to E. colis balanced growth nature. As expected, uFBA flux predictions deviated less

from steady-state flux predictions than did the other test cases (Fig. 4.7). The similar results

demonstrate that the differences observed in the other case studies are not artifacts of the uFBA

workflow.

Though flux predictions are not substantially affected, the inclusion of endometabolomics

measurements does impact gene essentiality predictions in E. coli. Overall results were very
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similar for the 1,366 genes in the model, but uFBA predicted non-essentiality for 11 genes that

FBA predicted to be essential in glucose minimal media. Like other linear programing based

constraint-based methods, uFBA cannot explicitly account for metabolites as variables. uFBA

incorporates the rate of depleting intracellular metabolites without accounting for the metabolite

concentration, thus providing an infinite supply of the metabolite, increasing chances of predicting

non-essentiality. This artifact of depleting pools is similar to potential reasons for conflicts in

experimental gene essentiality results in minimal media. Experimentally, 17.8% of genes predicted

to be essential by uFBA have conflicting experimental results across three studies [166–168] in

glucose minimal media. The 11 differing predictions were enriched in conflicting experimental

results (3.06× enrichment, p = 0.0032), suggesting that the measured drains in intracellular

metabolites may play a role in conflicting experimental results. The genes were related to NAD

and AMP biosynthesis, which were rescued by the measured depletion of the cofactor pools

during growth. The observed discrepancies in gene essentiality calls may be due to differences in

plating techniques, the time point for assaying growth, or the chosen growth/no growth threshold.

Residual intracellular metabolite pools from LB media before plating may play a role in causing

conflicting results. These results suggest that E. coli retains higher than required cofactor levels

in anticipation of changing environmental conditions, a result consistent with the finding that

intracellular concentrations of ATP and NAD pools in E. coli are an order of magnitude higher

than Kms of their associated enzymes [169].

4.2.2 Discussion

Metabolomics data provides a rich detailing of cellular biochemistry. Metabolomics data

is becoming readily available, and there is still a need for tools that can integrate such data into
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mechanistic models to provide a deeper understanding of systems level metabolic physiology.

Statistical methods can pinpoint changes or associations but have difficulty elucidating mecha-

nisms. Metabolic modeling techniques can predict which metabolic pathways or enzymes caused

the observed statistical changes (i.e., whether upstream or downstream enzymes are more likely

the cause of observed behavior), although more detailed, kinetic modeling and metabolic flux

analysis are often difficult to construct and parameterize for large cellular networks. Constraint-

based models are better suited for studying metabolism at cellular scale, but the steady-state

assumption hinders studying dynamic states.

In this study, we present unsteady-state flux balance analysis, a constraint-based mod-

eling method, to study dynamic cellular states. uFBA provides additional utility to existing

constraint-based methods that integrate metabolomics data. We identified four test cases and

for each, compared uFBA flux predictions with steady-state FBA in order to quantify the ad-

vantages of integrating intracellular metabolite concentrations. For the three dynamic systems,

we found considerable differences in flux predictions. The size of the metabolic network and

data coverage (i.e., what percentage of metabolites are measured) impacts the increased utility

of uFBA over traditional FBA as evidenced by the significant differences in RBCs and less sig-

nificant differences in S. cerevisiae. For a more traditional use of FBA (steady-state bacterial

growth), we found less difference, confirming that the uFBA is not overly sensitive. Theoretically,

in a system where no intracellular metabolites change over time, uFBA and FBA would predict

identical flux distributions, indicating that the use of uFBA should be considered if metabolomics

measurements are available.

The results presented here have two major implications. First, uFBA quantifies the im-

pact of large and previously unmeasured intracellular metabolite concentration pools on network
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flux calculations. We experimentally validated a notable uFBA prediction for RBCs using iso-

topic labeling and metabolic flux analysis. The unexpected complexity of TCA metabolism

in human RBCs is biologically notable. RBCs utilize TCA intermediates to produce phos-

phoenolpyruvate (PEP), most probably through a PEP carboxylase-like mechanism mediated

by hemoglobin [170] which ultimately results to ATP generation by pyruvate kinase. Further,

RBCs produce NADH and NADPH outside of glyceraldehyde dehydrogenase and the pentose

phosphate pathway through the cytosolic forms of malate dehydrogenase and isocitrate dehy-

drogenase, respectively. This finding may be of importance in transfusion medicine as some of

the FDA approved media additives for RBC cold storage contain large amounts of citrate (20

mM), while other additives do not. The added citrate may affect the red blood cells ability

to combat oxidative stress during RBC storage [24]. This discovery was only possible through

absolute quantitative metabolomics and uFBA. The high levels of intracellular malate (>1 mM)

had not been previously observed. Without the intracellular data, the uptake and secretion of

metabolites by RBCs was still mass balanced so FBA predictions would have been inaccurate

but still feasible. This example shows the importance of combining comprehensive intracellular

metabolomics with network calculations. Further, as the labeling percentage of malate is less

than 5% at day 1 (Fig. 4.8d), the concentration of malate is not due to RBC storage in citrate

anti-coagulant.

Second, the common practice to allow free metabolic exchange of unmeasured metabolites

out of the system can lead to erroneous predictions. For the platelet data, FBA predictions were

inaccurate partly due to free exchange of L-alanine out of the system. For the yeast example,

differences in FBA and uFBA predictions were partly due to the use of exchange reactions.

uFBA aims to be fully data driven and only allows exchange of metabolites out of the system
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if they were experimentally measured or if the optimization algorithm requires the metabolite

to be secreted for model feasibility. With the increasing size of metabolic networks, it requires

both intimate knowledge of the cellular system and of constraint-based modeling to identify

the modeling inaccuracies caused from metabolic exchanges. The uFBA approach simplifies

metabolomics data integration and accurately deals with data inconsistencies through the node

relaxation algorithm.

Two other methods for systematically integrating intracellular metabolite concentrations

with constraint-based models are available. TREM-Flux [156] and MetDFBA [155] have impor-

tant methodological differences from uFBA. First, TREM-Flux estimates network flux between

each two time points, making the approach extremely susceptible to data noise and outliers.

The uFBA approach avoids this issue by defining time intervals that represent metabolic states,

effectively lowering the chances that noise and outliers affect flux predictions. Second and more

importantly, TREM-Flux accounts for data incompleteness by allowing all unmeasured metabo-

lites to deviate from steady state up to the maximum change measured in the metabolomics data.

Such an approach provides too much freedom in the optimization problem, making many fluxes

inaccurate. uFBA deals with data incompleteness by modifying the fewest number of metabolites

using the metabolite node relaxation algorithm.

MetDFBA integrates intracellular measurements with the traditional DFBA approach. In

order to deal with the huge complexity of the necessary ordinary differential equations, MetDFBA

lumps and removes the majority of metabolic reactions resulting in smaller, core networks. While

focusing on specific cellular processes is common in kinetic modeling, it eliminates the ability to

interrogate metabolism at the whole-cell level, which is possible with FBA methods. Though

uFBA is not as detailed as MetDFBA, it allows for studying metabolism at a comprehensive

113



scale.

The integration of metabolomics data using uFBA has limitations. First, the

metabolomics data used to constrain the model must be absolutely quantified using internal

standards. Absolutely quantified metabolomics data is often difficult to generate accurately

and is more expensive. Second, the increased accuracy of uFBA predictions are determined by

how large a percentage of metabolites are measured in the network. In particular, it is impor-

tant to have metabolite measurements for cofactors and high flux pathways. Third, like other

constraint-based methods, uFBA does not explicitly model metabolites as variables and thus

total concentrations are not captured. Fourth, organelle specificity of metabolite concentra-

tions is often lacking, requiring modelers to make assumptions on metabolite location. Finally,

metabolomics data is noisier than other -omics data types. To calculate significant metabolic

rates of change, uFBA may require more than three replicates.

uFBA provides a systematic and standardized method to generate hypotheses for the

causes of detected changes in metabolite levels over time. uFBA flux predictions are based on

unlabeled metabolomics but provide high quantitative accuracy in flux estimates even during

dynamic metabolic conditions. These findings are not evident from statistical analysis of the

time-course metabolomics alone nor from standard analysis of FBA models. We anticipate that

the use of uFBA and the associated workflow will aid in deeper analysis of metabolomics data

while also increasing the predictive power of constraint-based models.

4.2.3 Materials and Methods

All analyses were performed in Matlab (Mathworks, Natick, MA) using the COBRA

2.0 Toolbox [9]. The uFBA method and associated workflow are available as an extension for
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COBRA 2.0 at (https://opencobra.github.io/cobratoolbox/).

Data Preparation

Red blood cell metabolomics data from normal blood banking conditions using SAGM

media was taken from [41]. Metabolomics data for platelets retrieved by apheresis during storage

under normal blood banking conditions was taken from [89]. Metabolomics data for S. cerevisiae

during mixed culture anaerobic fermentation was taken from [158]. Metabolomics data for E. coli

during exponential growth was taken from [159]. Missing values were imputed using a k-nearest

neighbor algorithm that takes the weighted average of the five nearest neighbors; this approach

has been previously shown to be accurate for metabolomics data [171]. The intracellular and

extracellular concentrations were adjusted so that concentrations were in mmol/L of total bag

volume for RBCs and platelets, and mmol/gDW for S. cerevisiae and E. coli. For RBC and

platelet datasets, glucose and lactate were measured using a blood gas analyzer. For RBC data,

ATP and 2,3-DPG were measured using enzymatic assays. In Bergdahl et al. and McCloskey

et al., changes in key extracellular metabolites in S. cerevisiae (glucose, xylose, xylitol, ethanol,

and glycerol) and E. coli (glucose, acetate, succinate, and formate) were also measured using

HPLC. The low-throughput and HPLC measurements were prioritized over mass spectrometry

measurements for use in the model. Some metabolite pools were not resolved in the original

data and were manually split into individual concentrations based on known physiological ratios

(3-Phospho-D-glycerate/D-Glycerate 2-phosphate, pentose sugars, leucine/isoleucine). Due to

the rigorous quality control standards within blood banks for those two publications, there was

negligible RBC and platelet cell death during storage. Thus, cell death was not included during

modeling.
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Principal component analysis and linear regression

Principal component analysis (PCA) was performed on each metabolomics data set in

order to objectively determine the time intervals of the discrete, linearized metabolic states. PCA

was performed on the standardized Z-scores. Once the time intervals for each state were defined,

linear regression was performed in order to estimate the rate of change for each metabolite

during that particular state. The 95% confidence interval for each metabolites rate of change

was calculated for integration with the model. If the 95% confidence interval for a particular

metabolites rate of change crossed zero, the metabolite was deemed to be at steady-state as there

is not enough statistical evidence for the metabolite to be changing. Rates for RBC and platelet

were in mmol/L/h, while S. cerevisiae and E. coli rates were in mmol/gDW/h.

Constraint-based model integration

The endometabolomics data acquired from the literature was integrated with constraint-

based models. The RBC data was integrated with a modified version of the erythrocyte model

iAB-RBC-283 [40], which was previously used for building personalized kinetic models [37]. The

platelet data was integrated with the platelet metabolic model iAT-PLT-636 [172]. The S. cere-

visiae data was integrated with the S. cerevisiae metabolic model iMM904 [173]. The E. coli

data was integrated with the E. coli metabolic model iJO1366 [166]. The measured growth rate

was included as a constraint for S. cerevisiae and E. coli simulations. Platelet and S. cerevisiae

metabolic models contain multiple compartments. If metabolites were known to be predomi-

nantly from a specific compartment, the metabolomics data was assigned as such. Specifically,

tricarboxylic acid cycle metabolites were set to the mitochondria. If no information was available,

metabolite concentrations were assumed to be in the cytosol.
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Unsteady-state flux balance analysis (uFBA)

The significant rates of change for measured metabolites for each state (as determined by

linear regression) are input to the uFBA method. All four test cases are treated as closed systems,

and all exchange reactions were removed from the model. Subsequent steps (see next section)

determine other metabolites that can enter or leave the system. The measured metabolomics

data is integrated with the model by:

S · v ≥ b1 (4.7)

S · v ≤ b2 (4.8)

where S is the stoichiometric matrix, v is the calculated flux vector, and [b1, b2] represent the

95% confidence interval for each significantly changing metabolite. All unmeasured metabolites

are assumed to be at steady-state: b1 = b2 = 0.

Ideally, all model metabolites would be accurately measured. If so, the model would

properly simulate, as all metabolic changes would be accounted for. However, due to experimental

limitations, most metabolites cannot be measured, and often those that can be measured are done

so unreliably. Optimally, one would measure metabolites that have the highest rate of change

relative to the flux going through the associated pathways. However, knowing which metabolites

these are may not be possible as such metabolites may change from condition to condition or

the system being studied may not be well known. Thus, from any metabolomics dataset, there

exists unmeasured intracellular or extracellular metabolites that are not at steady-state that are

required to change in order to allow the model to simulate.

To deal with this data incompleteness and data quality issue, we developed an algorithm

to reconcile the metabolomics data and the network structure. In brief, the algorithm tries to
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parsimoniously allow unmeasured metabolites to deviate from steady-state in order to build a

computable mode. The approach is detailed in the next section.

Further, a standard practice in FBA is to allow all extracellular metabolites to have free

exchange out of the system. As uFBA is a metabolomics driven approach, uFBA only allows

exchange of extracellular metabolites out of the system if (1) it is measured to be increasing in

the exometabolomics data, or (2) it is required by the metabolite node relaxation algorithm for

feasibility.

The remainder of the uFBA modeling formalism follows FBA principles. In particular, a

biomass objective function is used in growing cells such as S. cerevisiae and E. coli to account for

the generation of proteins, RNA, DNA, and lipids. Further, metabolite reserves are modeled using

sinks. This is used in particular for glycogen stores for S. cerevisiae during carbon starvation.

From a mathematical standpoint, the uFBA approach changes the degrees of freedom

(DOF) of the system. First, for each “unsteady” metabolite incorporated, the system gains

a DOF. Next, all exchange reactions are removed, reducing the DOF by the number of reac-

tions removed. At this point, the metabolic model is most likely infeasible as the system is

now over-determined. Previous approaches (i.e., TREM-Flux) deal with this issue by allowing

all unmeasured metabolites to deviate from steady-state, increasing the DOF by one for each

unmeasured metabolite. The uFBA approach applies a metabolite node relaxation algorithm to

parsimoniously deviate unmeasured metabolites from steady-state to minimize the increase of

DOF. The systems increase in DOF is equivalent to the number of metabolites deviated by the

algorithm.
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Unmeasured metabolite relaxation from steady-state

Because not every metabolite in the network was measured, we developed an automated

method for parsimoniously deviating unmeasured metabolites from steady-state to build a com-

putable model. We term this estimation “metabolite node relaxation.”

For each metabolite that was not measured, two sink reactions are added that allow

each of these metabolites to both accumulate (“up” sink reaction) and deplete (“down” sink

reaction). Then, an optimization problem determines the minimal number of sinks to retain while

still having a computable model. This parsimonious method was chosen under the assumption

that cellular systems typically aim to maintain homeostatic levels, which has been previously

shown [174].

To exhaust potential methods, we implemented five different optimization approaches

for relaxing the unmeasured metabolite nodes in the system (Eqs. 4.9-4.13) that all assume

parsimony but in slightly different ways. The first technique is an MILP optimization that

minimizes the number of unmeasured metabolites relaxed from steady-state (Eq. 4.9):

min
m∑
i

1∆xi 6=0 (4.9)

where m is the number of unmeasured metabolites in the system and ∆x is the deviation from

steady-state of the unmeasured metabolites, which is defined as the flux through the sink re-

action. Essentially, Case 1 minimizes the increase of the DOF. The second technique is an LP

optimization that minimizes the sum of the magnitude of the rate of change of unmeasured

metabolites (Eq. 4.10):

min

m∑
i

|∆xi|. (4.10)

The third technique is also an LP optimization that minimizes both the sum of the magnitude of
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the rate of change of the unmeasured metabolites as well as the reactions fluxes in the network

(Eq. 4.11):

min

m∑
i

|∆xi|+
n∑
i

|vj | (4.11)

where n is the number of intracellular reactions in the system and v is the reaction flux. The

fourth technique is a QP optimization that minimizes the sum of the square of the rate of change

of the unmeasured metabolites (Eq. 4.12):

min
m∑
i

∆x2
i (4.12)

The fifth technique is also a QP optimization that minimizes the sum of the square of the rate

of change of the unmeasured metabolites and the square of the intracellular reaction fluxes (Eq.

4.13):

min
m∑
i

∆x2
i +

n∑
i

v2
j . (4.13)

As alternative optima may exist for these optimization problems, especially for Case 1, the given

optimization problem is run multiple times for a user-specified number of iterations, not allowing

for previous solutions using an integer cut method. For the larger models (platelet, S. cerevisiae,

and E. coli), the termination criterion for optimization for each iteration was set to a relative gap

tolerance of 1e−6 or a time limit of 45 seconds. These criteria were chosen based on convergence

properties of the solutions as the two parameters were varied.

The multiple solutions are tallied, and a final optimization is run, preferentially weighting

unmeasured metabolites that appeared more frequently in the multiple solutions. The sinks

associated with the relaxed nodes are retained, while the remaining sinks are removed from the

model. 100 iterations were used in this study. A comparison of the accuracy of the optimization

approaches in determining necessary relaxations is discussed in the next section. Further, we
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provide the user with the option to preferentially weight unmeasured extracellular metabolite

nodes to be relaxed first, as such an approach is similar to the common practice of modifying

extracellular exchanges in FBA models.

Once the final set of unmeasured metabolites to be relaxed from steady-state has been

determined, the magnitude of relaxation is addressed. The flux through the retained sink re-

actions is minimized while allowing the model to simulate. We tested whether increasing this

minimum amount affected flux simulations (scaling the minimum bound by 1×, 1.5×, 5×, 10×,

or 100×). Sensitivity analysis of this parameter by re-sampling the reaction fluxes showed that

the 1x scaling was too tightly constrained, yielding different results than the higher multiples.

However, the higher multiples were very similar to each other. A scaling of 1.5× was used for all

analyses in this study as it does not over constrain the network.

Accuracy of unmeasured metabolite relaxation from steady-state

We tested whether the various optimization approaches for parsimoniously relaxing un-

measured metabolites from steady-state was an accurate method for the data incompleteness

issue. All five techniques were used to build uFBA models for the RBC metabolomics data. The

relaxed nodes for each of the five approaches were compared to a qualitative dataset for the same

condition that measured many more metabolites than our absolute concentration dataset. The

larger dataset had qualitative information on the changes (or lack thereof) for 31 metabolites

that were unmeasured in the absolute concentration dataset. Based on the time points measured

in the qualitative dataset, only states 1 and 3 in the RBC could be compared. Metabolites that

increased 2× or decreased 0.5× were deemed to be changing in the qualitative dataset.

The criterion for selecting the best optimization technique was minimizing the number
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of cases where a metabolite was incorrectly relaxed from steady-state. This criterion was chosen

as it is more detrimental to over relax than to under relax, because it allows the model to have

many new feasible flux states that may be erroneous. We found the MILP formulation (Case 1)

to be the best method for this criterion. Further, the MILP formulation was also found to have

the overall best accuracy. For all analyses in the main text, the MILP formulation is used.

Construction of FBA models

The FBA models constructed for control comparison against the uFBA models followed

the same workflow as the uFBA model, except that only the exometabolomics data was inte-

grated. Further, in order to satisfy the intracellular steady-state requirements for FBA, models

are typically allowed to have free extracellular metabolite exchange out of the system. This

practice was used for the FBA models in this study. Still, the optimization algorithms for node

relaxation were required and were used in the same manner as that for uFBA.

Markov chain Monte Carlo (MCMC) sampling and gene essentiality

The FBA and uFBA models were sampled using Markov chain Monte Carlo (MCMC)

sampling methods [9]. We sampled 5,000 points for the RBC model and 10,000 points for the

platelet, S. cerevisiae, and E. coli models; all models were sampled until the mixed fraction was

below a threshold of 0.54. The sampling distributions for each reaction were deemed significantly

different between modeling formulations (uFBA vs FBA) if the two distributions overlapped by

less than 5%. The correlations which are represented as histograms in Fig. 2b of the main text

were calculated using the Spearman correlation of two sampled flux vectors. The process was

repeated 5,000 times for the RBC model and 10,000 times for the platelet, S. cerevisiae, and E. coli
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models to account for all generated sample points. For all determining significant differences and

Spearman correlations (including controls), only reactions that were in both models and were

not involved in Type III loops were compared.

Gene essentiality predictions were completed with COBRA 2.0 [9]. The threshold for

growth was set to 1% of the growth rate experimentally determined in the publication of the

metabolomics dataset [159]. All bounds and constraints that conflict with the zero vector being

a feasible solution were modified to allow for proper simulation. Metabolic exchange out of the

system for the uFBA model was also allowed. Computational predictions were compared to four

data sets of glucose minimal media in three publications [166–168].

13C labeling citrate experiment

A healthy donor was recruited and, after obtaining informed consent, red cells were

obtained using ISO 9001:2008 certified red cell isolation protocols at the Landspitali-University

Hospital Iceland Blood Bank. The study and all associated methods were approved by The

National Bioethics Committee of Iceland and the Icelandic Data Protection Authority. The

methods were carried out in accordance with the guidelines and regulations outlined by those

committees.

Isolated red cells were added to 65 ml of modified Citrate Phosphate Dextrose (CPD)

solution containing 105 mM uniformly labeled 13C citrate ( 78% m+6, 1.5% m+5, 20.5% m+0)

in place of unlabeled citrate in regular CPD SAGM media. Sodium hydroxide was use to match

ionic strength imposed by trisodium citrate in regular CPD SAGM (Fenwal, Lake Zurich, IL,

USA). As a negative control, red cells were stored in unmodified CPD SAGM. RBC units were

stored at 4◦C. 5 mL samples were removed at ten time points and aliquoted accordingly for
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subsequent quality control assessment and metabolomics analysis. The experiment was run for

31 days, as the shift in metabolic dynamics from State 2 to State 3 occurs much earlier (day 17).

Red cell blood banking quality control assessment was performed immediately by ABL90

FLEX blood gas analyzer (Radiometer, Copenhagen, Denmark) determining pH, pO2, pCO2,

total hemoglobin, [K+], [Na+], [Ca2+], [Cl−], [Glucose], and [Lactate]. A XN-1000 hematology

analyzer (Sysmex, Norderstedt, Germany) was used to record RBC count, white blood cell count,

platelet count, hemoglobin, % hematocrit, total mean cell hemoglobin, mean cell hemoglobin

concentration, and red cell distribution width. Labeled samples were found to have similar QC

properties as control units.

Metabolomic analysis was performed using a previously reported method [89,175] based

on ultra high performance liquid chromatography (UHPLC) (Acquity, Waters, Manchester, UK)

coupled with a quadrupole-time of flight mass spectrometer (Synapt G2, Waters). Chromato-

graphic separation was achieved by hydrophilic interaction liquid chromatography (HILIC) using

an Acquity amide column, 1.7 µm (2.1 × 150 mm) (Waters).

500 µL of RBC sample were used for metabolomics analysis and supernatant and cells

were separated by centrifugation (1600g, 4◦C, 15 min). Immediately after centrifugation, cell-free

supernatant was removed from centrifuged tubes and collected in separates tubes and processed

as previously described [89,175].

Data integration of targeted compounds was achieved by using TargetLynx (Waters).

Raw data was then corrected for natural abundance of 13C isotopes using IsoCor (MetaSys,

Toulouse, France) [176] that afforded the % isotopes that exceed natural abundance and the

corrected isotopic distribution.
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Metabolic Flux Analysis

Metabolic flux analysis (MFA) was completed using the INCA software suite [161] in

order to compare the measured isotopic labeling patterns to the flux predictions of the uFBA

and FBA models. An isotopic model was constructed for the MFA simulations in which all

reactions were split into irreversible reactions and metabolic reactions not directly related to

citrate metabolism or production of the labeled metabolites were omitted. For uFBA associated

MFA simulations, accumulation or depletion of metabolites was modeled using sinks. If a labeled

intracellular metabolite was decreasing, the associated sink was labeled at the percentage of the

initial labeling pattern for that particular state.

The INCA software suite allows for two basic types of simulations: a “forward” simulation

in which the labeling pattern is predicted for a given flux state, and a “reverse” simulation in

which the flux state of the network is calculated based on fitting the experimentally measured

labeling pattern. The traditional “reverse” MFA simulation cannot be used when both metabolite

levels are changing and the labeling pattern is unsteady. Instead, the “forward” simulation

was used, which takes as input: (1) measured intracellular metabolite concentrations, (2) the

labeling pattern of the metabolites, and (3) the flux state of the network. The mean flux state

of the network as calculated by MCMC sampling for each of the metabolic states for each of the

uFBA/FBA models was used as the initial flux state labeling pattern on Day 1.

The “forward” MFA simulations were completed for the first two states, where the labeling

pattern approaches steady-state. First, the initial labeling pattern (Day 1) and the estimated

uFBA fluxes were inputted and the labeling pattern was simulated for the duration of State 1.

Next, the final predicted labeling pattern and the uFBA fluxes for State 2 were simulated for the

duration of State 2. The labeling pattern reached steady-state by State 3 and is not included as
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there were little differences between uFBA and FBA. The same workflow was also applied to the

FBA fluxes for comparison.

To assess goodness of fit between the measured data and the simulated data, the residual

sum of squares (RSS) was calculated for each of the four metabolites for which we had abso-

lute concentrations and labeling data (lactate, glutamate, malate, and citrate). The RSS was

calculated by
m∑
i=1

(yi − f(xi))
2 (4.14)

where y is the experimental value, f(x) is the tracer simulation predicted value and the range

of i contains all measured time points and each replicate is treated as a separate value. We

evaluated the relative difference in RSS between the uFBA and FBA simulations to demonstrate

the difference in accuracy of predictions. All RSS calculations were done with log10 transformed

abundances.

Comparison to experimental flux states

Candidate flux states for the uFBA and FBA models were determined using MCMC

sampling. The mean sampling vector was compared to measured flux values for the XR strain

growth on glucose and xylose [164] and for the XI strain growth on glucose [165]. Though

the experimental conditions were not identical, comparisons were made when the yeast growth

rate were similar across the respective experimental conditions. Fluxes from metabolic reactions

involved in type III pathways that are known to result in erroneous flux predictions were omitted

for the comparison to measured data. In order to evaluate the error of the predicted flux states,

we calculated the normalized Euclidean distance given by:

error =
||vmeas − vpred||
||vmeas||

(4.15)
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where vmeas is the flux vector from MFA measurements and vpred is the flux vector from the

uFBA and FBA models.

4.3 Conclusions

To this point, we have investigated an additional perturbation to the storage conditions

(temperature variation) and used both statistical and mechanistic models to understand the RBC

metabolic network. We have found that the utility of these storage-age biomarkers transcends

their ability to distinguish among the three metabolic phases. We recently showed that the

concentrations of these extracellular metabolites at a particular time point can be used to quan-

titatively predict the concentration of other metabolites in the network [82]. Additional follow

up work demonstrated that certain combinations of these biomarkers (based on their location

within the metabolic network) could be used to forecast the future values of other metabolites

in the network [83]. The identification of these robust biomarkers is further important from a

practical standpoint: they reflect the fact that the metabolic decay process is fairly invariant

under the conditions examined, thus revealing the inherently low dimensionality of the dynamic

decay process.

The data provided by this baseline study has proven to be quite useful beyond a ba-

sic characterization of storage. Since the baseline metabolomics data are absolutely quantified,

they can be integrated into mechanistic, cell-scale models capable of making quantitative pre-

dictions [10, 52]. These models predicted that the large 2,3-DPG pool is utilized to generate

ATP using 2,3-DPG as a proton buffer through the reversal of bisphosphoglycerate mutase. This

hypothesis is quite important, as the catabolism of 1,3-DPG generates two ATP, while the ex-

pected dephosphorylation of 2,3-DPG to 3PG generates only one ATP. Given that the initial
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2,3-DPG pool is high, the shift in degradation route has a large influence on the overall ATP

generation during storage. The quantitative model also made predictions about the metabolic

fate of citrate, a compound added to the storage medium as an anticoagulant during blood collec-

tion. A follow-up study experimentally validated these predictions, namely the fact that citrate

is used to produce lactate and glutamate [52]. Thus, quantitative metabolomics data enables the

identification of key changes in metabolic pathway usage.

Where are we now, and where do we go from here?

The next step for the community is to continue this exceedingly productive phase of “nor-

mal science,” further characterizing different perturbation conditions using the systems biology

approach outlined here to better understand red cell physiology. Other groups have begun to

investigate the metabolism of high altitude stored blood [177–179], including how well blood from

high altitude donors stores [180]. The studies outlined here show how robust the metabolome

of the red cell is during storage; we see the same decay of the metabolome in different storage

media and additives and at different temperatures.

As more new data types are generated, there is an increasing need for accessible data

analytics that can concisely capture and extract information from the integration of disparate

data types. The incorporation of systems biology principles into standard workflows allows

us to gather meaningful knowledge from disparate data types. This knowledge can then be

used in conjunction with mechanistic cell-scale in silico models to develop hypotheses that can

subsequently be tested experimentally (Figure 1).

The transfusion community must therefore work in parallel with these experimental efforts

to build new models that integrate new data types and can explain some of the anomalous
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behaviors that current models cannot explain. In particular, we need to elucidate the governing

constraints on the system. Much of the data available suggests that 2,3-DPG and ATP levels

have the most influence on the system. D’Alessandro and colleagues combined metabolomics and

proteomics analyses to elucidate the role of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

in the third metabolic state [181]. Similar efforts have begun to explore the lipidome in great

detail, providing further insights into the multiscale complexities of RSL [182].

Orthogonal data types will be included in future model analyses. Systems biologists need

to start including information about the proteome to further inform and grow existing models,

a feat that has already been accomplished in other organisms [183–186]. Recently, Bryk and

Winiewski used quantitative proteomics to identify over 2,600 proteins in RBCs [187]. Rich,

quantitative data sets such as this one have previously been used to calibrate computational

models of bacteria [188]. Such comprehensive -omics studies will allow for the integration of this

data into mechanistic models of the RBC. In addition, protein structures and their genetic bases

will find their way into computational models [189].
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Chapter 5

Toward a Whole-Cell RBC Model

Integrating -omics data to refine or make context-specific models is an active field of

constraint-based modeling. In Chapter 4, we presented an algorithm for the integration of quan-

titative time-course metabolomics data into constraint-based models. While this method will

expand the utility of metabolomics data for mathematical models, we are still faced with the

challenging of integrating other disparate -omics data types into mechanistic models. Recently,

the most comprehensive quantitative proteomics data set for the RBC was published [187], pro-

viding the opportunity to use these data to further improve our models of the RBC. The first

step toward using proteomics data is devising a mathematical formalism for their inclusion in a

model. In this Chapter, we use E. coli as a test case because of the availability of data under

multiple conditions and the existence of multi-scale models.

Proteomics now cover over 95% of the E. coli proteome by mass. Genome-scale models

of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to

metabolism and fitness in E. coli. Together, the availability of quantitative proteomics data and

models with proteomics constraints integrated make E. coli the ideal system in which to test and
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understand the integration of absolutely quantified proteomics data.

Defining a core functional proteome supporting the living process has importance for both

developing fundamental understanding of cell functions and for synthetic biology applications.

Comparative genomics has been the primary approach to achieve such a definition. Thus, we

used genome-scale models to define a core proteome that computationally supports basic cellular

function. This core proteome for metabolism and protein expression, defined through systems

biology methods, is validated and characterized by using multiple disparate data types.

While the transcriptional regulatory network of E. coli has expanded considerably in

recent years through new chromatin immunoprecipitation (ChIP) data, an open question remains:

does the global transcriptional regulatory network, reconstructed by combining ChIP data for

individual transcriptions factors, consistently explain observed differential gene expression? We

have reconstructed a high-confidence TRN, determined its consistency with transcriptomics and

predictive capabilities across multiple conditions, extracted 10 functional regulatory modules, and

characterized this network at the sequence and structural levels. Our multi-omics algorithmic

pipeline is expected to facilitate rigorous validation and prioritization of experiments to elucidate

transcriptional regulatory networks in other bacteria.

Following these basic characterizations, we used proteomics data to formulate allocation

constraints for key proteome sectors in the ME model. The resulting calibrated model effectively

computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth

environments. Across 15 growth conditions, prediction errors for growth rate and metabolic

fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents

a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain

environments and stresses, as indicated by significant enrichment of these sectors for the general
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stress response sigma factor σS. Finally, the sector constraints represent a general formalism

for integrating -omics data from any experimental condition into constraint-based ME models.

The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related

protein groups) as demonstrated here. This flexible formalism provides an accessible approach

for narrowing the gap between the complexity captured by -omics data and governing principles

of proteome allocation described by systems-level models.

5.1 Using E. coli as a model

Genome-scale models have been used to conduct systems-level studies of cellular

metabolism for over 15 years [190]. They can elucidate structures in large datasets that are

not captured by purely statistical models [10]. In particular, the COnstraint-Based Reconstruc-

tion and Analysis (COBRA) field has a rich history of using -omics data to refine and improve

predictions [191–193]. These methods have been useful for the systems biology community. For

example, tissue-specific models could be generated for health applications [194] or computational

strain design could be improved for metabolic engineering [195]. Despite many methods for -

omics integration in COBRA, the general problem of relating gene expression to metabolic flux

and cell physiology remains challenging. One challenge has been that metabolic models only

indirectly relate expression to flux. ME (Metabolism and macromolecular Expression) mod-

els [183,184,196,197] now relate gene and protein expression directly to metabolic flux. Therefore,

in theory it is possible to integrate transcriptomics and proteomics data directly into COBRA

to refine predictions. However, the ME model is multiscale and spans multiple cellular processes

including metabolism and protein expression machinery. The latest ME model [197] models the

function of 1,678 genes described by nearly 80,000 reactions and 70,000 constraints involving bio-
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chemical species and macromolecules spanning nearly 70 cellular subsystems. Therefore, it is not

obvious how changes to one part of the system affect others. Specifically, it is not obvious how

expression changes for multiple proteins will quantitatively affect growth rate or metabolic fluxes.

As a first step, a recent study shows that growth rate predictions are indeed markedly improved

when the overall fraction of unused protein (i.e., expressed but not actively used) is constrained

using estimates from proteomics data [198]. A remaining question then is whether constraining

specific functional protein groups can also improve growth and metabolic flux predictions.

Schmidt et al. recently published a proteomics data Resource [199] covering ∼55% of

the predicted E. coli genes (> 95% by mass) under 22 experimental conditions. Using genome-

scale models, we show how such proteomics resources can be used to reveal principles underlying

proteome allocation. ME models compute growth optimal proteomes consistent with laboratory

evolved strains accurately [200], but are unable to compute processes that are not directly related

to growth (e.g., stress response, preparation for unfavorable conditions) [201]. In anticipation

of environmental change, generalist (wild-type) E. coli allocate a fraction of the proteome to

non-growth related functions. Collectively, such allocation can be viewed as “hedging” against

unknown enviromental challenges [200], reflecting the evolutionary history of the organism and its

successful survival strategy. Recent studies have estimated that 20% of the expressed proteome

confers no direct fitness benefit [201].

Elucidating trade-offs between multiple cellular objective is an active field of systems

biology research [202, 203]. Here we develop a pragmatic approach for modeling the proteome

allocation resulting from such complex cellular objectives following in the spirit of -omics inte-

gration with genome-scale models. Namely, we define sector constraints using proteomics data.

We then show that sector-constrained ME models can compute the proteome composition of
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generalist E. coli in a variety of different growth environments. We then compare the “optimal”

versus the “generalist” proteomes to reveal principles underlying proteome allocation.

5.1.1 Results

Modeling generalist E. coli proteome allocation and physiology

We first computed optimal proteome allocation that maximized growth rate. Measured

proteome allocation differed notably from these computed optimal proteomes. While the in-

teractions between thousands of individual proteins is complex, the E. coli proteome has been

shown to exhibit relatively simple relationships when proteins were grouped into meaningful “sec-

tors” (e.g., linear relations with growth rate) [204]. Similarly, we coarse-grained the proteome

into functional sectors. Here, we specifically used Clusters of Orthologous Groups (COGs) [205]

as they represent a reasonable trade-off between complexity (24 sectors) and protein function

coverage.

We then identified proteome sectors whose measured mass fractions were greater (over-

allocated) and smaller (under-allocated) compared to the optimal proteomes across growth con-

ditions (Fig. 5.1a). For our analysis we focused on the 15 minimal medium growth conditions

under batch and chemostat culture without additional pH, osmotic or temperature stresses. Six

COG sectors had high measured mass fractions (5% or more) under all 15 conditions. The min-

imum mass fraction across conditions for these COGs ranged from 5.4% to 16%, totaling 58%

(Table 5.1). Meanwhile, the optimal proteomes allocated between 13% to 54% of proteome to

the sum of these sectors (Fig. 5.1a). Additionally, the computed growth rates corresponding to

optimal proteomes were consistently higher than measured (Fig. 5.1b).

We hypothesized that by constraining the ME model to more accurately allocate proteome
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Figure 5.1: Model-based interpretation of proteomic data. (a) Predicted mass fractions are
validated by proteins grouped by COG for optimal and generalist ME models. Ellipses show 95%
confidence intervals. (b) Growth rate predictions improve due to proteome sector constraints. (c)
The model predicts global proteome reallocation due to sector constraints for Metabolic (M) and
Expression (E) systems. (d) The ME model computes global metabolic shifts due to proteome
reallocation. Abbreviations: C, Energy production and conversion; E, Amino acid transport and
metabolism; G, Carbohydrate transport and metabolism; J, Translation, ribosomal structure
and biogenesis; M, Cell wall/membrane/envelope biogenesis; O, Posttranslational modification,
protein turnover, chaperones; CPS, Cellular Processes and Signaling; ISP, Information Storage
and Processing; MET, Metabolism; MUU, Mobilome, Unknown, and Ungrouped; SSE, sum of
squared errors.

136



Table 5.1: Proteome sector constraints. Sectors and their mass fractions defined from proteomics
data and used to constrain the ME model.

Sector Mass fraction

Amino acid transport and metabolism 0.115

Carbohydrate transport and metabolism 0.089

Cell wall/membrane/envelope biogenesis 0.068

Energy production and conversion 0.096

Posttranslational modification, protein turnover, chaperones 0.054

Translation, ribosomal structure and biogenesis 0.156

to these large sectors, we could better predict growth rate and metabolism of the wild-type,

generalist E. coli. To this end, we added new “sector constraints” to the ME model (constraint 5.5

in Methods). Here we constrained the sum of protein mass fractions within each of the six sectors;

however, the formulation is general in that any individual protein or different sector definition

(coarser or finer-grained) can be used. It is important to note that while our sector constraints

involved 966 of the 1678 genes in the iJL1678 ME model, only six actual constraints were added

to the model—only the sum of mass fraction of each sector was constrained. Therefore, the

individual protein mass fractions were still computed by the ME model. Because our objective

was to develop a generalist ME model, we used these coarse-grained sector constraints to prevent

over-fitting the proteome to specific conditions.

The addition of the six sector constraints led to markedly improved agreement in growth

rate predictions across all conditions, with 69% lower sum of squared error (SSE), overall

(Fig. 5.1b). We also compared measured and computed proteome allocation for a functional

grouping of proteins that was different from the COGs used for sector constraints. The SSE was

137



49% lower for proteome allocation (Fig. 5.1a).

We thus designated this sector-constrained ME model the Generalist ME model. Because

the total proteome is limited in size, the increased allocation to certain sectors would lead to

decreased resource allocation to at least one other sector. Thus, the sector constraints reflect

costs of cellular decisions to over-allocate proteomic resources for purposes other than maximal

growth on a minimal medium. For example, the COG categories “carbohydrate transport and

metabolism,” “energy production and conversion,” and “translation, ribosomal structure and

biogenesis” were enriched for control by the stress response sigma factor σS and could reflect

preparation for unfavorable conditions [201].

Proteomic and metabolic consequences of proteome sector constraints

Next, we examined the resource allocation of each computed proteome by metabolic

(M) and macromolecular expression (E) model subsystem (Fig. 5.1c). Note that these (M) and

(E) subsystems differ from the gene categorization used to define proteome sector constraints

(i.e., COGs) in Table 5.1. Allocation to membrane transport proteins (specifically amino acid

and carbohydrate transport and metabolism) was increased according to the sector constraints,

although they had no fitness benefit for growth on acetate according to the optimal model.

These sectors included genes controlled by the stress response sigma factor σS. These sector

constraints thus resemble foraging and stress response that intensifies in lower-quality substrates

such as acetate [206]. The generalist acetate proteome was lowered in “energy production and

conversion.” This sector showed considerable decrease in enzymes catalyzing acetate consumption

(acetate kinase, phosphotransacetylase) and energy metabolism (cytochrome oxidase bo3, ATP

synthase), leading to a decreased growth rate. The optimal proteomes represent the minimal
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proteomic resources needed to grow at sub-optimal growth rates. The extent to which E. coli

allocates its proteome beyond the minimum required was surprisingly high: a growth rate of 0.12

h−1 could theoretically be supported with 95% less proteome allocated to all M and E sectors

than measured.

The sector constraints also altered metabolic flux distributions (Fig. 5.1d). Specifically,

proteome constraints induced statistically significantly smaller (P < 0.05) fluxes in 5 of 8 of

the subsystems for glucose (Lipid Metabolism;, Cell Wall/Membrane/Envelope Metabolism; Nu-

cleotide, Cofactor and Prosthetic Group Metabolism; Amino Acid and Carbohydrate Metabolism;

Other), and all 8 metabolic subsystems for acetate.

The sector constraints also affected predicted protein fraction of cell dry weight. Com-

pared to the Optimal model, the Generalist model predicted 5.5% to 24.8% higher protein fraction

(Table 5.2), which was significant (Wilcoxon rank sum test, P = 6.4 × 10−9). Interestingly, the

Generalist model showed a clear and significant negative correlation between total proteome size

and growth rate, whereas the Optimal model did not). This linear trend in the Generalist model

arises because many of the sector constraints force expression of unused protein [198] and is

consistent with previously observed growth rate-dependent decrease in constitutively expressed

proteins [207].

In addition, the Generalist model’s proteome size of 72.7% dry weight at dilution rate

of 0.12 h−1 agrees well with the measured value of 70.1% for this dilution rate [208]. However,

in unlimited growth on glucose, the Generalist model overestimates proteome size (62.4% versus

51.1% measured [208]). This result is due to the sector constraints being defined based on

multiple carbon sources, whereas E. coli is more adapted for growth on its preferred substrate,

glucose [209].
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Table 5.2: Predicted protein percent of cell dry weight.

Optimal Generalist

Condition
Growth

rate, h−1
Protein, %
dry weight

Growth
rate, h−1

Protein, %
dry weight

Acetate 0.672 60.1 0.344 70.0
Chemostat.mu.0.12 0.120 58.2 0.120 72.7
Chemostat.mu.0.20 0.200 58.0 0.200 71.0
Chemostat.mu.0.35 0.350 57.9 0.350 68.8
Chemostat.mu.0.5 0.500 58.1 0.500 66.7
Fructose 1.140 57.1 0.876 62.5
Fumarate 1.020 59.4 0.581 67.5
Galactose 1.020 57.8 0.760 62.8
Glucosamine 1.130 57.0 0.854 62.7
Glucose 1.140 57.4 0.886 62.4
Glycerol 1.140 57.2 0.821 63.4
Mannose 1.110 57.2 0.848 62.7
Pyruvate 1.010 58.7 0.950 61.9
Succinate 1.060 59.6 0.601 67.7
Xylose 1.020 57.9 0.734 63.6

Validation of intracellular fluxes

We next validated intracellular flux predictions for the Optimal and Generalist models

using metabolic flux analysis (MFA) data by Gerosa et al. [210] for 7 carbon sources: acetate,

fructose, galactose, glucose, glycerol, pyruvate, and succinate. The Generalist model was more

consistent with MFA for 5 of 7 conditions. In particular, acetate, succinate and glycerol pre-

dictions improved greatly, with 68%, 41%, and 15% lower RMSE (root mean squared error),

respectively. RMSE was higher for the Generalist model for glucose and galactose conditions

(8.0% and 30% higher RMSE, respectively). However, when we performed similar validation

using a different MFA data set [211], we observed slightly (6.5%) lower RMSE on glucose and

slightly (6.4%) higher RMSE for galactose. This discrepancy between MFA data sets partially

arises because the MFA data relied on simplified models of central carbon metabolism, whereas

the ME model considers the genome-scale metabolic network. The sector constraints most af-

fected TCA cycle fluxes, with the Generalist model fluxes decreasing between 100% to 16.8%
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across conditions. Therefore, respiratory capacity was predicted to be most strongly affected by

allocating proteome toward hedging functions.

Sensitivity of predictions to parameter uncertainty

Due to proteome constraints, ME models exhibit essentially no flux variability at the

proteome level at maximum growth rate [212]. However, optimal solutions can vary due to

uncertainty in effective rate constants. Thus, we next assessed how sensitive growth rate and

protein allocation predictions were to uncertainty in effective rate constants (keff). To this end,

we randomly perturbed effective rate constants by ±50% of their nominal values and maximized

growth rate. Due to the considerable computational burden of many ME simulations, we limited

the sensitivity analysis to glucose and acetate conditions. We ended up with 80 simulations that

were still feasible after perturbations. We found that on average, the sensitivity to keffuncertainty

was greatest at the proteome mass fraction level, decreased for metabolism, and was smallest for

the growth rate. For protein mass fractions, the coefficient of variation (CV) of proteins across

randomly perturbed simulations ranged between 0.073 to 3.9 (median of 0.31) and 0.086 to 8.9

(median of 0.62) for the Optimal and Generalist models, respectively (Fig. 5.2a). The Optimal

model was significantly less sensitive to keffperturbations (Wilcoxon rank sum test, P < 2.2 ×

10−16). Metabolic fluxes showed similar variability with CVs ranging from 0.29 to 4.8 (median

of 0.38) and 0.28 to 9.7 (median of 0.61) for the Optimal and Generalist models, respectively

(Fig. 5.2b). Again, the Optimal model was less sensitive to keffperturbations (Wilcoxon rank sum

test, P = 1.0×10−5). Finally, growth rates varied with median CVs of 0.28 and 0.31 for Optimal

and Generalist models, respectively (Fig. 5.2c), which was not significantly different between the

two models (Wilcoxon rank sum test, P = 1). Therefore, we conclude that while uncertainty in
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Figure 5.2: Sensitivity to model parameters. (a) Probability density of the coefficients of
variation of simulated protein mass fractions across random perturbations of effective rate con-
stants. (b) Variation in simulated metabolic fluxes upon perturbing effective rate constants. (c)
Variation in simulated growth rate upon perturbing effective rate constants.

keffcan lead to wide variability in the expression of individual proteins, the effects are attenuated

for metabolic fluxes and eventually growth rate.

5.1.2 Discussion

One of the primary uses of ME models in previous studies has been to model optimal

E. coli strains [213]. In particular, strains have been evolved in the laboratory while under

environmental pressures designed to select for mutations that optimize for growth rate [214].

Such strains are highly useful in metabolic engineering applications where the goal is to produce

a particular product efficiently [13]. However, the objective of all organisms is not necessarily to

maximize growth rate. Many non-evolved laboratory strains or even pathogens have objectives

that require allocation of proteomic and cellular resources to more than just growth rate [198,203].

To this end, we constrained a ME model using proteomics data collected under various conditions

in order to better predict sub-optimal proteome allocation of ”generalist” E. coli.

The ME model indicated that at growth rates as low as 0.1 h−1, up to 95% of the gen-

eralist proteome was not beneficial for growth. Much of the apparently wasted proteome was
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related to general stress response and “hedging” against environmental uncertainty. By integrat-

ing proteomics data into a ME model, we revealed the cellular cost of dedicating resources to

maintaining this generalist proteome. We showed that proteomics data can be used to identify

key proteome sector constraints and calibrate ME models. This approach can be extended in

future work using sectors other than COGs, or determining novel sectors using the ME model

itself. In particular, here we defined sector constraints capturing broad trends across many condi-

tions, rather than fitting individual conditions. Yet, nearly all of the 15 minimal media examined

showed improved predictions in terms of proteome allocation, growth rate, and metabolic fluxes.

In future work, the sector constraints may be extended to include known regulation. For exam-

ple, transcriptional regulation of carbon transport and utilization pathways has been well-studied

for phosphotransferase system (PTS) sugars [215] and non-PTS sugars [203]. Thus, it may be

possible to combine regulatory models (e.g., by cyclic AMP-CRP) with ME models to model dy-

namic sector constraints in response to environmental changes such as carbon source availability

or other environmental signals.

Further, we believe that the efforts here provide a framework moving forward for using

novel data sets to tailor models to represent cellular objectives other than maximum growth rate.

For example, with the various growth conditions in the data provided by Schmidt et al. [199], we

were able to place constraints on the proteome that allowed us to build a model for a generalist

organism prepared for unfavorable conditions, as suggested by the significant enrichment of the

constrained proteome sectors for the general stress response sigma factor σS. Thus, new data sets

that describe other experimental conditions or environmental pressures could be used to place

additional constraints on the proteome using a ME model. Such experiments might measure

the proteome across multiple nutrients under various stresses such as low or high pH [216], iron
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limitation [217], or exposure to reactive oxygen species [218]. This proteomics data could then be

used to constrain the ME model’s stress response, thereby incorporating stress response into the

objective function. Furthermore, with the increasing coverage and resolution of transcriptional

regulatory interactions from Chromatin ImmunoPrecipitation (ChIP) experiments, it may ulti-

mately be possible to integrate regulatory networks to proteome re-allocation. Combining data

from proteomics, ChIP, metabolic flux analysis, physiological (growth and exchange rates) and

potentially metabolomics (at least metabolites involved in regulation) would provide the prereq-

uisites for mechanistically modeling proteome allocation according to complex and multi-faceted

cellular objectives.

One of the biggest challenges facing systems biology is to integrate new data types into

genome-scale mathematical models to provide biologically meaningful phenotypic predictions.

ME models provide mechanistic understanding of how metabolic flux states are linked to protein

expression. Integrating data into a structured framework thus leads to an improved understand-

ing of systems-level properties of organisms, suggesting a combined experimental and modeling

approach to meet the “Big Data to Knowledge” challenge.

5.1.3 Methods

Simulating growth maximization using ME models

We used the latest published ME model of E. coli (iJL1678) [197] for simulations con-

sisting of nearly 80,000 biochemical reactions describing metabolism, transcription, and trans-

lation processes. To maximize growth rate in each growth condition, we used bisection (binary

search) as in [184] to maximize growth rate to six decimal points. Because ME-Models are

ill-conditioned [184,196,219], we used the 128-bit (quad-precision) linear and nonlinear program-
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ming solver qMINOS 5.6 [212, 220, 221]. (The soplex solver [222] is another viable option, as it

uses iterative refinement to achieve the needed numerical precision.) All qMINOS runs were per-

formed with feasibility and optimality tolerances of 10−20. These tight tolerances were necessary

because ME fluxes can vary by 15 orders of magnitude [212].

Computing generalist proteome allocation using sector constraints

The generalist ME model includes “sector constraints” in addition to the standard ME

model formulation. The complete formulation of the optimization problem associated with the

“generalist” ME model is the following:

max
v,µ,p

µ, (5.1)

s.t. Sv = 0, (5.2)

g(µ)Av +Bv = 0, (5.3)

p =
∑
j

wjvj , ∀j ∈ Translation, (5.4)

∑
j∈Sector(k)

wjvj − φk · p ≥ 0, k = 1, . . . , nsector, (5.5)

l ≤ v ≤ u, (5.6)

where g(µ) is a function of growth rate µ, p is the total simulated proteome mass, Translation is

the set of translation fluxes, nsector is the number of constrained sectors, Sector(k) is the index

set of translation reactions in sector k, wj is the molecular weight for protein (in g/mmol) j, vj

is the translation flux for protein j (in mmol/gDW/h), φk is the mass fraction of sector k, and v,

l and u are the vectors of reaction fluxes, lower and upper flux bounds, respectively. “Optimal”

ME models are formulated similarly, except without constraints 5.4 and 5.5.
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Constraint 5.5 is the “sector constraint,” which constrains the summed mass fraction of

a proteome sector to reach the specified amount. In this case, we constrained each sector by an

inequality so that allocation to the constrained sector was greater than or equal to the measured

mass fraction. The constraint is derived from the relation,

∑
j∈Sector(k)wjvj∑
j∈Translationwjvj

≥ φk (g/g) =

Steady-state synthesis rate of proteome Sector k (g/gDW/h)

Steady-state synthesis rate of total proteome (g/gDW/h)
, (5.7)

noting that the translation fluxes v are the rates of reactions that synthesize protein. The

macromolecule Expression (E) matrix in the ME model enables the explicit computation of

protein synthesis rate.

Our formulation can also be considered a more generalized extension of work by O’Brien

et al. [198], who determined a global parameter for the “un-utilized” and “under-utilized” protein

expression using ME models. Here, we divided the proteome into functional sectors to a specified

resolution or level of granularity and imposed constraints on several key sectors at this level.

Effective catalytic rate constants (keff) were kept identical for both the Optimal and

Generalist ME models, and were the same values as the original iJL1678 ME model [197]. Recall

that effective rate constants keffand fluxes v are related as v = keffE, where E is the enzyme

concentration. Therefore, the maximum flux of a reaction is affected by proteome allocation

across conditions.

Comparing computed versus measured growth rates and proteomes

Computed growth rates µ were compared with those measured by Volkmer and Heine-

mann [223]. Computed proteome mass fractions were compared with those measured by Schmidt
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et al. [199]. Measured mass fractions were calculated using the measured protein masses (fg/cell).

ME model mass fractions fi were computed by weighting the translation flux (vi in mmol/gram-

dry-weight/h) of each protein by its molecular weight (mi): fi = mivi/
∑

j∈Translationmjvj ,

where Translation is the index set of translation reactions.

Computing proteome size

ME models compute the protein fraction of dry cell weight, P (grams protein/gram dry

weight). Because total protein synthesized was diluted by cell division, we have

Protein synthesized =
∑
j

wjvtrsl,i = Pµ = Protein diluted,

where wj is the molecular weight of protein j, vtrsl,j is the translation flux of protein j, and µ is

the growth rate (h−1). Therefore, P =
∑

j wjvtrsl,j/µ,

Analyzing sensitivity to uncertainty in effective rate constants

We analyzed the sensitivity of proteome mass fraction, metabolic flux, and growth rate

predictions to uncertainty in 1322 effective rate constants (keff). We (uniformly) randomly per-

turbed these keffby ±50% of their original values in the published iJL1678 model [197]. Each

randomly perturbed model was used to simulate growth maximization with and without sector

constraints, as described in Methods.

Enrichment analysis

Enrichment analysis was performed using hypergeometric test p-values, with P < 0.05

considered statistically significant.
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Proteome sector constraints

In this study, we used proteomics data from 15 minimal media conditions [199] to define

our sector constraints at the level of COGs [205]. The 15 conditions were the 4 chemostat

conditions (dilution rates of 0.12, 0.20, 0.35, 0.50 h−1), and 11 minimal media (acetate, fructose,

fumarate, galactose, glucosamine, glucose, glycerol, mannose, pyruvate, succinate, xylose). We

chose the six sectors having at least 5% mass fraction across all conditions. The constrained

mass fraction for each sector (φi in constraint 5.5) was the minimum mass fraction across all

conditions.

5.2 Conclusions

In this Chapter, we have developed a computational method for the integration of quan-

titative proteomics data into a genome-scale mechanistic model of E. coli. Future work will

involve applying this type of framework to the RBC. The formulation is slightly different due

to the absence of transcription and translation machinery in RBCs, thus requiring a modified

model.
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Chapter 6

A New Paradigm Emerges: Systems

Transfusion Medicine

The large-scale generation of -omic data holds the potential to increase and deepen our

understanding of biological phenomena, but the ability to synthesize information and extract

knowledge from these data sets still represents a significant challenge. Bottom-up systems biol-

ogy overcomes this hurdle through the integration of disparate -omic data types, and absolutely

quantified experimental measurements allow for direct integration into quantitative, mechanistic

models. The human red blood cell has served as a starting point for the application of systems bi-

ology approaches and has been the focus of a recent burst of generated quantitative metabolomics

and proteomics data. Thus, the red blood cell represents the perfect case study through which

to examine our ability to glean knowledge from the integration of multiple disparate data types.
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6.1 The old paradigm

Over the last two decades, the life sciences have witnessed a paradigm shift brought on

by the development of high-throughput -omic technologies. With the advent of these technolo-

gies, systems biology emerged as a way to holistically integrate the new data being generated.

Integrative thinking was not something previously absent in molecular biology, it was just that

high-throughput -omic technologies were making the scale of these integrative inquiries much

larger [224]. With the availability of full genome sequences and other data, more and more re-

searchers embraced the promise in systems biology and began to develop ways to bridge the gap

between -omic data and computational modeling efforts [225].

Some of the first cell-scale computational models were published in the late 1980s [125].

These enzyme kinetic models detailed the known metabolic network of the human red blood cell

(RBC). Why study the RBC? The reasoning was simple: if systems biology cannot be successfully

applied to the simplest human cell, then why attempt to study more complex ones? Indeed, simple

systems are the best starting point for the application of systems biology. The RBC is therefore

a logical starting point for the development and application of systems biology methods because

of its simplicity and intrinsic experimental accessibility. RBCs are also of great importance for

our understanding of human health and physiology—over 84% of all human cells by count are

RBCs [15]. Transfusion medicine represents an integral part of healthcare, with approximately

85 million RBC units transfused worldwide annually [226]. The systems biology analysis of the

health of stored RBCs is thus a productive focus from a basic and applied standpoint.

Within the last several years, -omic technologies have been exploited to study RBCs un-

der refrigerated storage for use in transfusion medicine [25, 227] in an attempt to understand

and elucidate the underlying physiological changes that occur because of the artificial environ-
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ment [20]. Concurrently, computational biologists have worked to develop new mathematical

modeling frameworks that can use these data. Because of the inherent quantitative nature of

these models, however, their utility is only fully realized with quantitative data. In this context,

quantitative data implies the use of standards to absolutely quantify the abundance of measured

species; the output is data with quantified units (e.g., g/L, mM), rather than qualitative data

that have relative units (e.g., arbitrary units, relative signal). While there have been several im-

portant studies that have used qualitative data effectively, the future of systems biology modeling

efforts will hinge upon the availability of high quality quantitative data.

6.2 A new paradigm emerges

Recent work in -omic data generation and corresponding computational methodologies

have begun to move the field forward. The use of quantitative data aids modeling efforts and

enables new questions to be asked. There are several -omic data types and new experimental

techniques that will likely prove to be valuable for the field. As these experimental technologies

are developed, a variety of computational modeling approaches that integrate these data types

and have been developed and contributed important advances.

A variety of -omic data types describe cellular physiology

A cell is a system of interconnected complex systems described by a variety of -omic

data types [228]. Metabolomics data provide a snapshot of the cellular biochemistry that details

energy production [229]. Fluxomics measurements—the use of isotopic tracers (e.g., 13C)—yield

an understanding of the flux state of a metabolic network [230]. Proteomics data allow for an

understanding of the abundance, localization, and interactions of proteins, the cellular machin-
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Figure 6.1: Workflow for integrating quantitative -omics data. Quantitative -omic data allows
for integration into quantitative mechanistic models capable of generating phenotypic predictions.

ery underlying all metabolic processes and regulatory mechanisms [231]. Lipidomics technologies

have enabled the in-depth characterization of the cellular membrane, including signaling, trans-

port, and respiration mechanisms [232]. Researchers utilize one or more of these techniques to

interrogate their system of interest, leading to rich information and important phenomenological

observations. Recently, the RBC has been the source of much -omic data, yielding advances in

analytic experimental techniques, rich data sets, and driving computational method development

(Fig. 6.1).

Metabolomics

During the storage of RBCs in blood bags at 4◦C, a variety of changes occur within

the cells that impact their ability to carry oxygen and generate energy upon transfusion into a

patient. These morphological and biochemical changes—collectively referred to as the “storage

lesion” [22]—have been thoroughly explored through the use of metabolomics data over the last

decade [25]. These studies have explored the impact of various perturbations to the storage media
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on the metabolic function of the RBCs over the course of the 42 day storage period by taking

weekly time points. A set of metabolites was identified that serves as storage-age biomarkers [62].

Several of these studies have provided very informative data sets [18, 42, 43, 61, 233–235], but

their utility for systems biology modeling is limited due to their qualitative nature; while raw

signals can provide meaningful statistical analyses [33,35], they are inherently incapable of being

integrated into quantitative models.

More recently, there has been an influx of quantitative data characterizing the RBC

storage process. Perhaps the most complete characterization to date was produced by Bordbar

et al. [41], providing a much finer resolution on the temporal dynamics observed during storage

by taking time points every 3-4 days. The RBC community is embracing the trend of quantitative

data generation, producing more absolutely quantified data sets [44, 59]. Similar data have also

been produced in other cells and organisms, such as the human platelet [89, 175], E. coli [159],

and S. cerevisiae [158].

With such rich data available, the onus has been on the modeling community to help

realize the full potential of these data. As a result, there have been several different compu-

tational approaches that utilize quantitative metabolomics data. Some studies have relied on

statistical methodologies, such as using trained models to predict the concentration of metabo-

lites in the RBC based on only the storage-age biomarkers as input—approaches presented in

Chapter 3 of this dissertation [82, 83]. Personalized kinetic models of RBC metabolism have

been produced through the incorporation of metabolomics data into a cell-scale model [37]; we

examined how explicitly modeling regulatory mechanisms affected the ability of these models to

maintain a homeostatic state in Chapter 4 of this dissertation. Kinetic models rely heavily on

parameterization, however, and are therefore limited in scope.
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Other modeling approaches, such as constraint-based modeling [120], have become widely

used for the computation of cellular flux states. In Chapter 4 of this dissertation, we described

a new constraint-based modeling method and workflow was developed that allows for the inte-

gration of both endo- and exo-metabolomics data [52]. Using the RBC as a case study because

of the availability of a cell-scale metabolic model [40] and detailed data [41], we computationally

predicted and experimentally validated the finding that citrate metabolized to produce glutamate

and lactate; these findings were validated and explored in more detail in a separate study [51].

This method will likely prove to be a valuable resource for the community as it enables modeling

cell-scale dynamics without a kinetic model; it has already been used to explore the temperature

dependence of the RBC’s metabolic network through the integration of quantitative metabolomics

data measured at different temperatures as presented in Chapter 2 of this dissertation [121]. With

recent breakthroughs in analytical methodologies, like that of D’Alessandro and colleagues for a

three-minute quantitative metabolomics and fluxomics characterization [236], we will undoubt-

edly see an avalanche of high quality quantitative data in the near future.

Fluxomics

The current state-of-the-art for experimentally validating these constraint-based flux

models is isotopic labeling (“fluxomics”) data. This specialized type of metabolomics data al-

lows for the tracing of compounds through a metabolic network [237]. In the RBC, these data

can be used to build kinetic models [238] and determine the metabolic fate of adenine [61] and

citrate [51, 52]. While fluxomics data are limited to elucidating the flux through key reactions

in cells and cannot determine the metabolic state of all reactions in the network, they can be

integrated into genome-scale models [161]. These integrated modeling platforms allow for the
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validation of model-based flux predictions [239].

Proteomics

The last several years have seen important steps forward for both the development of

proteomics data and their subsequent integration into systems biology methods. Without the

use of computational models, quantitative proteomics data have proven to be extremely infor-

mative: they have been used to identify novel proteins in already well-characterized systems like

E. coli [240], identify and characterize post-translational modifications in rat muscle tissue [241],

and provide insights into disease phenotypes [242]. In 2016, Schmidt et al. characterized the

E. coli proteome across 22 different experimental conditions, doubling the previous number of

quantified E. coli proteins [199]. These data yielded several important observations, including

how protein abundances were dependent upon growth rate.

The great potential for such quantitative data was quickly realized by the computational

community, and numerous modeling approaches have been produced that are able to integrate

quantitative proteomics data. Shortly after the Schmidt et al. data were published [199], so-

called Metabolism and Expression (ME) models were adapted to allow for the direct integration

of quantitative proteomics data. The resulting method—presented in Chapter 5 of this disserta-

tion [188]—calibrated an existing genome-scale model of E. coli to compute proteome allocation

under the various conditions explored in the data, providing improved phenotypic predictions.

Like ME-models, other modeling formalisms, such as GECKO [185], also provide a mechanistic

approach for the computation of cellular flux states. The modeling framework proposed by Hui

et al. [204] offers an alternative, statistically-based approach for the integration of quantitative

proteomics, offering the ability to predict proteome composition in new environments.
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The RBC has been the focus of in-depth proteomics analysis as well. Through the use

of quantitative proteomics, over 2,500 proteins have been identified in the RBC, almost 1,900

of which occur at more than 100 copies per cell [187]. This study represents one of the most

comprehensive characterizations of the RBC proteome to date, an advance made possible by

quantitative proteomics analysis [243]. The most complete cell-scale mechanistic model of RBC

metabolism [40] was informed by proteomics data [244–247], but this network reconstruction is in

need of an update to correspond with the updated characterization of the RBC proteome. Now

that the data is available, it is clear that the modeling community will move to not only update

our current understanding of the metabolic network but will also work to integrate quantitative

proteomics data using current modeling formalisms as blueprints.

Lipidomics

The last several years have seen a push in both the development of lipidomic technolo-

gies [248, 249] and data generation [250, 251]. In particular, the field has embraced the use of

quantitative technologies to identify and characterize new lipids [252] and reveal systems-level

phenotypic trends [253]. Because membrane lipids are involved in signaling processes, they act

as biomarkers that can be used in the prediction of diseased phenotypes [254]. The RBC has

been used as a model for detailing the structure and fluidity of the lipid bilayer [255], a critical

step in understanding pathogenesis [256, 257]. Changes in the RBC membrane can lead to the

development of sickled cells and inflammation [258] and have been implicated in the development

and progression of Alzheimer’s disease [259].

Nevertheless, there is still progress to be made in the generation of high quality quantita-

tive lipidomics data [260]. There are also challenges associated with the integration of lipidomics
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data into multi-omic models [261]. Like with other -omic technologies, the field will surely ad-

dress and overcome these challenges. To date, several metabolic models have incorporated lipid

maps [262], but it will be important for computational biologists to start integrating quantitative

lipidomics data into their models as more data is generated. The development of such models

will lead to more powerful predictions defining the role of lipids in areas such as pathogenesis.

6.3 What is on the horizon of systems biology?

There are many quantitative -omic data sets available for a variety of organisms and cell

types. Such data will undoubtedly enable a new wave of systems biology models. However, it is

not enough to simply generate quantitative data; the data itself must also be high quality. High

quality data means generating an appropriate number of replicates to capture inherent biological

variability, account for the batch effect, and provide statistical power. Any model, whether based

on mechanisms or statistics, is only as good as the data on which it was built. There are ways to

account for uncertainty in computational models [263, 264], but there is only so much that can

be done on the computational side—large errors in measurements propagate and eventually lead

to low quality models. Thus, it is important that the necessary time be taken to ensure that the

experimental data being generated is of high quality.

The continued generation of quantitative data will provide progressively informative ob-

servations. As -omic data are continually generated, it will be increasingly important to use mech-

anistic models to interpret the data and generate testable hypotheses [27]. What is required for

us to realize this important goal? It is clear that experimental technologies have opened the door

for extremely informative quantitative data sets that probe a wide range of cellular behaviors.

Researchers who generate these data need to embrace these technologies to produce quantitative
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data. In order to use these data, however, we first need accurate, quantitative models.

In the preceding sections, we detailed various types of mathematical models that have

been developed for different -omic data types (e.g., kinetic models account for metabolite con-

centrations and protein abundances). Now that computational methods for the integration of

individual data types exist, we need to start to build models that merge these modeling types

together to account for multiple data types within a single model. Quantitative -omic data are

bringing us closer to the next generation of multi-omic models, of which only a few currently

exist [265,266].

However, biological systems are highly complex and involve many kinds of interactions

(e.g., protein-protein) that are not necessarily explicitly accounted for by a particular modeling

method. Great strides have been made to characterize the biophysical interactions occurring

among various cellular components through methods like the yeast two-hybrid system [267].

Resources like the STRING database [268] catalogue this “interactome,” providing the starting

point for systems biology studies of these interaction networks [269]. As this information becomes

available for cells like RBCs, the modeling community is poised to begin to incorporate the

interactome into multi-omic models that will reveal new insights into cellular physiology [270].

To this point, modeling formulations have ignored several other important biophysical

constraints placed on the cell and particularly the metabolome. Genome-scale metabolic mod-

els have become a dominant paradigm in systems biology by allowing the prospective calcula-

tion of reaction network flux states without the need for measured metabolite concentrations

or parameterized reaction rate laws. Thermodynamic analysis has been developed to integrate

compartment-specific metabolite concentration data and identify consistency of fluxes and con-

centrations with the Second Law of Thermodynamics. However, consistency with the second law
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and compartment-specific metabolite concentration data are not the only criteria for a valid con-

centration set. Additionally, concentration sets must be osmotically balanced, charge balanced,

and consistent with isomer pool and non-compartment-specific measurements, which are much

more common than compartment-specific measurements. The next steps for systems biologists

would be to develop a framework that integrates these physico-chemical constraints with the

second law constraints to define the biophysically-constrained metabolite concentration space.

In particular, constraints that directly affect metabolites would be of interest. Metabo-

lite concentrations are fundamental variables that, together with macromolecule concentrations,

determine the functional state of the cell. Genome-scale metabolic network reconstructions have

precisely detailed the metabolite composition for a broad range of organisms [271–273]. Metabo-

lites vary several orders of magnitude in their concentration within the cell [274–276], and changes

in metabolite concentrations often serve regulatory [277] or homeostatic [278] roles in response to

environmental stimuli. In order to maintain a functioning cell, metabolites cannot have arbitrary

levels; in other words, metabolic concentrations are constrained to be at levels that allow cell

viability and accomplish cellular objectives. Defining these constraints allows for the calculation

of the feasible space of metabolite concentrations and study how this space changes as cell state

variables—such as cellular flux state or culture temperature—vary with changing environmental

conditions.

One such constraint that has been previously examined arises from the Second Law of

Thermodynamics, which states that the Gibbs energies of reactions are negative for reactions

with positive net reaction rate [279]. These Gibbs energies are determined by metabolite con-

centrations, and thus the need of the cell to meet particular metabolic objectives, such as the

production of ATP from glucose through glycolysis, places constraints upon metabolite concen-
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trations. These Second Law constraints have been defined and utilized to analyze the metabolite

concentration space under different flux conditions [280, 281]. Notably, these Second Law con-

straints alone are insufficient to explain the quantitative levels of metabolites [282], in large

part because the Second Law defines relative constraints between metabolite levels but does not

enforce absolute constraints upon their levels.

A number of other biophysical constraints on cells exist that are determined in large

part by metabolite concentrations. For example, in order for cellular volume to be maintained,

the volume of water within the cell must be maintained, which is determined by the relative

osmolality of the intracellular and extracellular spaces. This osmolality is determined primarily

by metabolite levels and thus places an additional constraint upon their levels. The next step is

therefore to describe a number of biophysical as well as experimental constraints on metabolite

concentrations (Fig. 6.2). The first challenge would be to efficiently search the constrained

metabolic concentration space for arbitrary objectives, such as finding the maximum absolute

concentration of a particular metabolite.

In Fig. 6.2, we visualize some of these constraints in E. coli. However, this framework

would be applicable to any organism because of the fundamental biophysical nature of these

constraints—they act on all living cells. Understanding these constraints and how they work

together to maintain and regulate the cellular environment will undoubtedly provide insight into

the development of primordial cells. One of the first cells to examine with these constraints will

be the RBC; an abundance of available data combined with its simplicity makes the RBC an

excellent starting point.

The RBC has been and will continue to be a leading platform in which to develop and

utilize systems biology approaches: it has a host of available data and knowledge, it is the simplest
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Figure 6.2: Definition of biophysical constraints. An outline of some of the biophysical con-
straints governing intracellular metabolite concentrations (depicted for E. coli).

cell type, and it represents several relevant medical interests. With the continued production of

quantitative -omic data, we will soon see the development of true whole-cell computational models

for the RBC and other cells (Fig. 6.3). Such a model will account for sequence variations between

individuals, allowing for personalized physiological predictions. Quantitative measurements such

as proteomics, lipidomics, metabolomics, and membrane proteomics will be used to inform these

models, allowing for the incorporation of additional molecular mechanisms. Ultimately, the

integration of such data will empower systems biologists to ask and answer new questions about

the inner workings of cells.

In Chapter 5 of this dissertation, we have taken the first steps toward this whole-cell

model, integrating kinetic and constraint-based modeling approaches with proteomic constraints

overlaid. These preliminary results will provide a springboard for future researchers to inte-
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Figure 6.3: Next generation whole-cell RBC models. The next generation model of the red cell
will integrate many different -omic data types, sequence variations, and various mechanisms to
account for the myriad constraints on its structure and function.

grate new data types and modeling formalisms to build more powerful representations of RBC

physiology.

Interpreting data

The effective dissemination of-omics data, their contextualization, and visualization to

the community represent new challenges for the field. There is a growing need for software that

interacts with and utilizes biological data, whether through computation, visualization, or data

storage. Researchers in the life sciences have been developing their own software tools to meet
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these needs, often with great success. Developing and maintaining software with many outside

users is difficult work. Extensive learning resources for computer programming and software

development make it easy to get started, but it remains challenging to develop high-quality

software that is widely used. To gain traction, academic software libraries need to be intuitive,

well-documented, compatible, and extensible.

We provide a starting point and reference guide for scientists with some background

in coding who are interested in developing and sharing their own software libraries with their

academic communities. We present this guide through a series of lessons that have been influenced

by our own experiences in developing academic software, covering topics from project scope and

design to licensing and marketing (Fig. 6.4).

Collectively, these 14 guidelines provide a practical roadmap for the entire precess of
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conceptualizing, designing, and distributing a software library. Lessons 1 and 2 cover the things

you need to think about before starting development. Lessons 3 through 11 focus on the actual

software development process, including planning, design, and implementation. Finally, Lessons

12 through 14 discuss important issues related to code distribution. These steps can be used to

build software platforms that can integrate the data types we discussed above—metabolomics,

proteomics, etc.—into visualization or modeling software [283].

Following these outlined steps, we built ErythroDB (http://erythrodb.org), an open

source multi-omic visual knowledge base for the human red blood cell to help address the chal-

lenges of data dissemination. The transfusion medicine community is on the brink of a paradigm

shift, moving into a phase in which the broad use of systems biology approaches, wide integra-

tion of disparate data types, and easy accessibility and visualization is likely to touch most of its

members over the coming years.

6.4 Conclusions

In this dissertation, we have shown that the human RBC is a useful model system for

applying and developing systems biology approaches. In Chapter 2, we examined how perturbing

the external temperature affects the RBC metabolome during storage. The primary conclusion

here was that the network-level trends observed through PCA of the metabolome are conserved.

Having studied the state of the metabolome through an observational study, we then asked

whether these metabolic trajectories could be predicted. Thus, we used linear statistical models

in Chapter 3 to predict these longitudinal trajectories given a set of five biomarkers as input.

We showed that not only were these models capable of predicting the concentration of a target

metabolite at a given point but that we could also forecast future concentration values given
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only measurements up to the first ten days of storage. These models were surprisingly accurate,

outperforming standard metrics for the majority of measured metabolite signals.

While such predictive models are quite valuable in biology, the obvious limitation is the

inability of a purely statistical model to provide any mechanistic insight into the system. Thus,

we employed bottom-up mechanistic models to explore the dynamics of glycolysis and the effect

of allosteric regulation in Chapter 4, finding that the addition of regulatory information improved

the disturbance rejection capabilities of the system. Kinetic models do not practically scale to

the full metabolic network, however, forcing us to use constraint-based models to examine the

dynamics on a network-level. In order to model the behaviors observed during storage, we devel-

oped a novel flux balance analysis method that integrates quantitative time-course metabolomics

data into a constraint-based model. This method allowed us to explore the cellular states ob-

served through PCA and provided improved in silico predictions as compared to normal flux

balance analysis.

In Chapter 5, we extended our use of mechanistic models to develop a method for the

integration of quantitative proteomics data into a cell-scale metabolic model. Here, we used

E. coli instead of the RBC due to the existence of a cell-scale model that already explicitly

accounted for the proteome. This chapter provides the blueprints for moving forward with the

creation of a similar cell-scale model of the RBC that will account for both the full metabolome

and the full proteome.

Every physical system has infinite dimensions and is nonlinear. Certain systems, how-

ever, can be represented in low-dimensions and with linear models. Taken together, the results

presented here provide empirical proof that we can effectively model the RBC metabolome using

low-dimensional, linear models. The fact that the network-level trends observed in the PCA
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were conserved across a 33◦C change in temperature suggests that the RBC metabolic network is

robust to such perturbations. Further, the statistical models utilized in Chapter 3 could not have

provided accurate predictions from just five biomarkers if the system could not be represented in

a reduced dimensionality. Integrating quantitative intracellular and extracellular metabolomics

data into a constraint-based model allowed us to explore the physiologically within one of the

reduced dimensions.

Ultimately, the implication of being able to represent the metabolome in a low-

dimensional space is that more than one measured variable represents the same driving prin-

ciple that governs the system. Dimensionality reduction allows us to take advantage of this

redundancy of information by forming single variables that are linear combinations of measured

variables in the system. These driving principles have yet to be fully elucidated, although the

results in Chapter 4 provide more evidence that the depletion of the large intracellular 2,3-DPG

and malate pools are important.

We can place the data presented in Chapter 2 (i.e., temperature variation) in the context

of several of the data sets discussed in Chapter 1 to fully realize the robustness of the RBC

metabolic network (Fig. 6.5) to perturbations. We performed analysis on the z-score of the raw

metabolomics data for each individual condition; these normalized data were then concatenated

into a single matrix on which the dimensionality reduction techniques were applied. The overlaid

lines in the global plots are cubic polynomial fitted lines calculated from the average of all

biological replicates for a given condition. The plot was rotated in the transformed space such

that time zero is in the lower left corner of the plot.

Each of these studies used to PCA to examine the metabolome under each condition, but

running PCA on all of the data together demonstrates that these trends are conserved across
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Figure 6.5: Empirically analyzing the dimensionality of the metabolome. (A) Principal com-
ponent analysis on four published data sets: the baseline data (Bordbar et al. [41]), temperature
variation (Yurkovich et al. [121], presented in Chapter 2), sugar supplementation (Rolfsson et
al. [59]), and adenine supplementation (Paglia et al. [89]). (B) The first principal component
was highly correlated with time in each data set, with an average R2 = 0.9657. (C) Over 80% of
the total variance is represented in the first 12 principal components, with approximately 60%
represented in the first three components. (D) The magnitude of the contribution of the top
metabolites to the first principal component; the storage-age biomarkers [62] are highlighted in
purple.
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all conditions. As the community continues to generate more data on various perturbations

to the storage conditions, performing analysis on all of the data collectively will become more

important. In order to elucidate the motions behind each of these modeled dimensions, we will

first need to find an experimental condition that truly disrupts the network-level trends.

Transfusion medicine is a major part of healthcare. The results and insights gained from

the application of -omics data sets and systems biology analytics to stored RBCs will continue

to grow in scope and sophistication. As this systems view expands to include additional types

of information and data, phenomena such as genetic variation in the human population is likely

to come into focus. The community has built large, collaborative efforts like the REDS-III

initiative [284] that directly address some of these issues.

The human RBC is not only the ideal target for systems analysis, but it also represents

a system of high interest for studying human physiology and is central to transfusion medicine.

The RBC is the cell type most amenable to systems analysis through the integration of multiple

-omic data types into a mechanistic model. These data sets can be gathered to reflect various

criteria such as gender, age, and ethnic diversity. Ultimately, there is great promise for the use

of systems biology approaches to design experiments informed by a mechanistic understanding

of RBC physiology [27]. Multi-scale analysis of RBC functions is needed to elucidate its role

in human physiology, a fact easily demonstrated by looking at the physiologically-relevant RBC

time scales: one second for capillary transit, one minute for average circulatory time, 45 minutes

for ATP turnover, 24 hours for circadian rhythms, and 60 days for its half-life in circulation.

Once we succeed with a refined definition of RBC systems biology, it is logical to proceed to

the next simplest cell—the human platelet. The presence of organelles (e.g., mitochondria) and

signaling pathways will provide challenges beyond those faced in RBC physiology. Nevertheless,
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the methods and modeling formalisms used in this dissertation on RBCs can be readily applied to

other cellular systems like the platelet to explore our ability to observe, predict, and understand

metabolic physiology.
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[56] Valeri F, Boess F, Wolf A, Göldlin C, Boelsterli UA (1997) Fructose and tagatose protect
against oxidative cell injury by iron chelation. Free Radic Biol Med 22: 257–268.

[57] Beutler E, Duron O (1966) Studies on blood preservation. the relative capacities of hexoses,
hexitols, and ethanol to maintain red cell ATP levels during storage. Transfusion 6: 537–
542.

[58] Dawson RB, Hershey RT, Myers CS, Zuck TF (1980) Blood preservation. XXVIII. galactose
and maltose maintain red blood cell 2,3-DPG and ATP. Transfusion 20: 110–113.
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