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CORRIGENDA

In the fourth line from the bottom on page 10, "to should be

"

t..
i
In equation (9h) on page 15, "o*(28,28)" should be"cz (28,28)."
In equation (llc) on page 16, "£*(28,28)" should be "ez(28,28)."

In equation (11d) on page 16, "g*x(t,T)" should be "at(t,T)."

"

In the third line on page 17,
respectively.

In equation (15) on page 18, "G*(t,T)" should be "GZ(t,T)" in both
integrals.

In line 9 and in equation (16) on page 20, "e*(t,to)" should be
"e:(t,to) .n

In equation (17) on page 20, "g*(t,t)" and "e*(t,r1)" should be
"gZ(t,t)" and "ez(t,T),"respectively.

In the second line on page 21, "g*(t,7)" should be "et(t,T)."

" (n) "O' (n)
C

In equation (18) on page 21, o, ( )" should be t)."

In equation (19a) on page 21, "et(t,T)" should be "et(t,to)."

In equation (19b) on page 21, "e*(t,T)" and "et(t,T)" should be
"e:(t,T)" and "ez(t,to)," respectively.

In equation (20) of page 22, "e*(t,t)," "a*étjt ), " "G(n)(t)" and
"o(t)" should be "s:(t,t)," "et(t,to)," "o (W)™ and "Gc(t),"
respectively.

In equation (21) on page 22, "o*(r,T)" and "o*(t,T)" should be
"G:(T,T)" and "Gt(t’T)’" respectively.

o*" and "g*" should be "oﬁ" and "e:,'

A}
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"G(n)(t)" and "o(t)" should be o, (t)" and

In line 7 on page 22,
"cc(t)f'respectively.

In equation (22) on page 22, and in equation (23) on page 23,
"ex(t,t)" and "e*(t,t )" should be "g*(t,t)" and "e*(t,t),"

. o c c o
respectively.

In equation (24c) on page 24, "e*(t,to)" should be "sz(t,to)."

In equation (25d) on page 25, "e*(t,t)" and "e*(t,to)" should be
"ez(t,t)" and "at(t,to)," respectively.

In equation (35b) on page 29, "ot(ao" should be "ct(t)."

In the sixth line from the bottom on page 30, "e*(t,T)" should be
ex(t,m)."

. ” * ” ” *
In equation (40c) on page 32, ¢ (to,to) should be ec(to,to).

In the eighth line from the bottom on page 32, "e*(t ,t )" should be
" " (o] (o]
ez(to,to).

In equation (41) of page 32, and in the first line on page 33, "e*(t,m"

should be "az(t,T)."
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SUMMARY

Conventional cracked, reinforced concrete beam theory is extended to
include general linear viscoelastic behavior of the matrix (concrete) material
in compression. An analytical formulation is developed which leads to a
single governing equation on the position of the neutral axis. Although it
has not been possible to obtain a general closed solution, some important
properties of the solution of this nonlinear, Volterra-type integral equation
are established. The relationship of this theory to a popular approximate
procedure, known as the effective modulus method, is discussed. The nonlinear
integral equation is resolved numerically, and results are shown for several

cases of interest.



INTRODUCTION

It has been known for many years that even under constant load there is,
as time progresses, a change in the stress distribution in reinforced beams
composed of materials which exhibit creep. The analysis of this problem is
interesting -- and of some technical importance, as reinforced concrete beams
are known to behave in this manner [1, 2].

If it is assumed that the material of the beam behaves as a linear visco-
elastic solid (with the response in tension the same as the response in
compression), and that the reinforcement behaves as a linear elastic (or even
linear viscoelastic) material, then the formulation of the problem of beam
bending is quite straightforward. A fairly complete analysis of the one-
dimensional version of this problem is given in the excellent work of
Arutiunian [3]. Some interesting properties of the solution are that, in
general, the neutral axis of strain does not coincide with the neutral axis
of stress. Further, the positions of these neutral axes, even when the beam
is subjected to constant load, change with time.

Such considerations raise no basic difficulties in the analysis of the
uncracked beam. But should the matrix material of the beam crack in tension,
then basic complexities are introduced. Here, we study the case of a cracked
beam, and present a formulation based on suitable extensions of what may be
termed "conventional” cracked, reinforced beam theory.

It appears to us that the first attempt to analyze the creep of a cracked,
reinforced beam was made in the admirable paper by Faber [1]. There, Faber

presented a very simple analysis of reinforced concrete beams based on his



introduction of an ad hoc hypothesis now called the "effective” or "reduced"
modulus method [2, 4]. The notion of viscoelasticity (or hereditary elasti-
city, as Volterra's work [5, 6] was termed by Picard [7]) was not well known
then. Neither was it known that, within the working stress range, the response
of concrete in compression could be approximated quite well by the assumption
of linear viscoelastic behavior. Thus Faber could hardly have been expected

to supply, at that time, a more sophisticated analysis based on viscoelasticity
theory. But the method that Faber introduced is interesting, and still remains
of practical importance.

The next analysis concerned with the creep of a cracked, reinforced beam
appears to be that reported in the commendable work of Glanville and Thomas
[2]. Again the material of interest was reinforced concrete. Not only were
the numerical results of an analysis (based on a constant moment history)
presented, but they were compared to some experimental results. Two types of
analyses were considered: one based on the effective modulus method, and one
on a procedure (later [4]) called the "rate of creep’ method. The introduc-
tion of the rate of creep method (apparently first given by Glanville [8]) was
an attempt to bring into the theory a more realistic rate-dependent stress-
strain law (for the concrete in compression) than is implied by the effective
modulus method. The rate of creep method leads to a rather peculiar stress-
strain relationship, which is directly related to the usual hereditary stress-
strain relation of linear viscoelasticity only under special circumstances.
(This has been commented upon in [9].)

Although the authors presented the numerical results for the creep of a



cracked, reinforced beam based on the rate of creep method, they gave no
details of that analysis. Their reason for this was that the rate of creep
method required a much more complex analysis than the effective modulus
method, but the results obtained were not significantly closer to the experi-
mental results than those of the simpler method. It is a pity that the details
of this analysis were not given, for we suspect that a proper formulation for
that theory might be similar in certain fundamental aspects to the formulation
given here. However, the authors did point out that under certain conditions
the neutral axes of stress and strain need not coincide and that they shift,
with time, towards the (tensile) reinforcement. Faber [1] had previously
pointed out this second phenomenon.

In an article by Torroja and Paez [10], we find reference made to the
creep of a cracked, reinforced concrete beam. To describe the creep property
of the concrete in compression, they depict a complicated rheological model.
No details (or even hints) are given as to the procedure of analysis, but
qualitative curves illustrating the concrete compressive stress, at various
times, through the depth of a beam subjected to constant load are presented.
These curves are similar in form to those which would be obtained either by
the effective modulus method, or the method to be presented here.

To our knowledge these works constitute the only analytical treatments
of this problem available in the literature. We are aware of some related
current research by Distéfano and Guinea [11], and by Bresler and Selna [12],
but we have not yet been able to secure published reports of those investiga-

tions.



In this paper, the analysis presented is based on the usual hypotheses of
Bernoulli-Euler beam theory. We also adopt the hypothesis of conventional
reinforced concrete beam theory: the material of the beam can sustain com-
pression only, it "cracks' in tension. We further assume, as is conventional,
that the reinforcement utilized to sustain tension is linearly elastic and does
not slip relative to the immediately surrounding material of the beam. The
major difference between our theory and the conventional theory of reinforced
concrete beams is that we assume, instead of linearly elastic behavior,

linearly viscoelastic behavior of the material of the beam in compression.

This viscoelastic behavior is taken to be general - that is, the viscoelastic
material is allowed to age with time -- a phenomenon actually exhibited by
concrete.

We consider only those cases where the neutral axes monotonically pro-
gress, with time, towards the (tensile) reinforcement. Coupled with our
assumption of a zero tensile "cracking" stress, this leads to the fact that
the neutral axes of strain and of (compressive) stress coincide. This simpli-
fies the formulation of the problem, and it is only that simplified version
which we present.

The essential statement of the problem is reduced to a single nonlinear
integral equation of the Volterra type. We cannot find a general closed
solution of that equation. However, we give some general properties of the
solution. Further, we are able to write down some asymptotic results for
nonaging materials. Also, we show a relationship between the effective

modulus method and our theory.



The governing nonlinear integral equation lends itself well to a
numerical analysis. Such numerical results we present for some cases of
practical interest -- based on experimentally determined creep properties

of concrete.



FORMULATION

The pertinent geometry is shown in Figure 1. We are concerned with a
beam of rectangular cross-section having width b , and reinforcement placed
at a depth d below the top surface of the beam. The span coordinate is x
and the depth coordinate y . Up to some initial time, which is denoted as to ,
the beam is supposed to be in a completely quiescent state. At to the beam
is subjected to a transverse load which gives rise to a bending moment distri-
bution M(x,t).

We start our analysis by utilizing one of the basic hypotheses of ele-
mentary beam theory: plane sections before bending remain plane after bending.

This implies that the longitudinal strain, g(x,t), is then linear in y
e(x,t) = alx,t) + % B(x,t) (1)

Our major task is the determination of the two fundamental unknown functions
of elementary beam theory, ¢ and g . If we neglect the deflection due to
shear strain and restrict attention to "small deflection' theory - as is
commonly done in elementary theory - then we note that B represents a non-
dimensional curvature of the beam.

It is convenient to introduce a function, k(x,t), 1locating the neutral

axis of strain. Clearly, from equation (1), if the neutral axis of strain

]

(where ¢g(x,t) 0) is located at a depth k(x,t)d, then k is given by

k(x,t)

i

- alx,t)/p(x,t) (2)

For our analysis, it turns out that the neutral axis of strain has the



property that it separates the zone of compressive stress from the "tensile"
zone (i.e., the zone of zero stress) in the matrix material of the beam. This
property follows if: (1) attention is restricted to cases where Kk(x,t) is
a monotonically increasing function of t ; (2) it is assumed that the matrix
material of the beam cannot sustain any tensile stress (i.e., it "cracks”
under tension of any magnitude); (3) conditions are completely quiescent prior
to the loading of the beam. Under these restrictions the neutral axis of
strain penetrates into a region where the matrix material of the beam has been
previously subjected only to zero stress, and therefore the neutral axis of
strain and of stress coincide. Such need not be the case if any of thé above
restrictions are relaxed. (Here we define the neutral axis of stress as that
axis in the cross-section of the beam, parallel to the =z axis, which sep-
arates the zone of compressive stress from the zone of zero stress in the
matrix material of the beam.)

We next consider the stress-strain relationships governing the reinforce-
ment and the matrix material. As in the conventional elementary theory for
cracked, reinforced concrete beams, it is assumed that the reinforcement

behaves as a linearly elastic material. Therefore

Q
l

ES es = ES (o + B) (3)

where the subscript s refers to the reinforcement, ¢ represents the
normal stress in the x direction and Es is Young's modulus of the rein-
forcement. In writing equation (3)2 we have used equation (1) and have

tacitly assumed that the strain variation over the reinforcement cross-section



is negligible, and that the reinforcement does not slip relative to the matrix
material.

At this point we depart from the conventional theory of cracked, rein-
forced concrete beams by assuming that the compressive behavior of the matrix
material of our beam is governed by a general (or aging) linear viscoelastic
stress-strain relationship.ﬁ If we use the subscript c¢ to refer to the
matrix material, then for t>ti , the stress-strain relation for a typical

fiber of this material may be written in any of the four forms

t
*
ec(X,t) =I '2: GC(X,T) ec(t,'r)d'r (4a)
t,
1
t *
d
€e(x,t) = - J Gc(x,T)g; ec(t’T) T (4b)
t.
1
t
*
cc(x,t) =J‘ ‘g:ec(x,'r) crc(t,'r)d'r (5a)
t,
1
t
*
5,0 = - [ e, 2ot mar (5b)
t,
1

Where gc and ¢ are the compressive strain and stress, respectively, in
c

the matrix material, and ti is the time at which the compressive strain or

* On many occasions, such an assumption has been shown to be a decent
approximation of the behavior of concrete within working-stress levels.
(See reference [9] for a review of the pertinent literature on this point.)
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stress is initiated in the fiber, quiescent compressive conditions having

been implicitly assumed for t<ti. In the above e:(t,T) is the specific creep
function and c:(t,w) the specific relaxation function of the matrix material.
Physically, €Z(t,¢) represents the strain at time t in our matrix material,
occurring in a standard creep test, due to the application of a unit load
applied at time + . (7 is sometimes referred to as the age of the material
at the time of loading.) A similar interpretation holds for cz in a unit
relaxation test. Clearly both e:(t,x) and Ozt,T) are identically zero for
t<r.

For convenience of representation, the stress-strain relationship appro-
priate to each fiber making up the matrix material of the beam may be thought
of as being the law governing the mechanical model depicted in Figure 2. The
knife edges, A , come apart in tension, and the general (i.e., aging) linear
viscoelastic model, B, which is effective in compression, is governed by
equation (4) or (5).

It is to be understood in (4) and (5) that

are, in general, distributions. Then, in (4a) and (5a) the integration is
interpreted to start at a value slightly less than to’ whereas in (4b) and
(5b) it is interpreted to end at a value slightly greater than t . In this
way it is seen that these equations contain the "instantaneous elastic"

response of the material, without our having to bother to always explicitly
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write it out. Equations (4a) and (5a) represent the usual step-function
formulation of the superposition integral, whereas equations (4b) and (5b)
represent the usual impulse (or delta-function) form.

The creep and relaxation functions are, of course, related. If either
of these functions is known, then the other may be obtained by solving any

of the four integral equations (for tzto)

t
a x X _ _
j' Lol (rt de (b, Ddr = HCt-t) (62)
t
(o]
t
ES a % _ _ _
[ oty Zelce,mar = He-x) (60)
t
0]
t
J" a E 3 *
§ec("r,t0)crc(t,1')d~r = H(t-to) (6¢)
t
[e]
t
J‘ *( & ) a_ ES _ -
6 (Tt & o (t,Ddr = -H(t-t) (6d)
t
(o]

where H is the unit step function. Therefore, we see from equations (6)
that ez and o, are, essentially, reciprocal kernels.

Up to this point we have incorporated into our theory the standard
assumptions of elementary beam theory, the cracking of the matrix material
in tension, and the linear viscoelastic behavior of this material in com-

pression. We must now consider the equilibrium conditions; these are stated
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in the usual form for beam theory by the equations

IJ o(x,y,td)dA = O (7a)
A
M o(x,y,t)y dA = M(x,t) (7b)
A

where A signifies the region of integration, i.e., the beam cross-section.
At a typical cross-section there is a moment M(x,t) acting, but there is no
resultant axial load. Our procedure now is the ordinary one -- in equations
(6) we substitute for the stress its expression in terms of the strain by
utilizing suitable stress-strain laws [either equation (3) or (5)]. Then,
using equation (1), we substitute for the strain its expression in terms of
o and B . In this way we will arrive at the two simultaneous equations
governing the fundamental unknowns of our problem.

The substitution of the strain for the stress requires a breaking up
of the integration over the cross-sectional area of the beam, since different
stress-strain relations hold in different regions of the beam cross-section.
This is considered graphically in Figure 3. At the instant to when the
load is first applied, there is an immediate strain response, as indicated
by the line to . Above y0 the matrix is in compression, below yO the
matrix has "cracked" and carries no stress; the reinforcement carries the
tensile load. As time progresses the compressive stresses in the matrix
relax and the neutral axis penetrates into the initially cracked zone, so that
the crack partially closes. This brings into compression fibers in the

initially cracked zone which had previously been ineffective. These fibers
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in the initially cracked zone contribute to the compressive stress only from
the time they first become compressed until the current time. The time tl
at which a fiber located at depth y1 first goes into compression is given

by k_l(yl/d) , wWhere k-1 is the function inverse to the neutral axis

function k .

Indeed, it is the cracking of the matrix and the subsequent necessity of
keeping track of the moving boundary of the compressive zone and of the various
times at which matrix fibers first start to undergo compression, which makes
the problem nonlinear and somewhat complicated.

Recall, as previously explained, for the cases to which we here restrict

attention, the neutral axis of strain coincides with that of stress. We use

this fact in a vital way, and incorporate it, along with the notions just

discussed, into the equilibrium equations (7). This results in the equations
k(t)d t
b [ {L[a(«’rﬂ Lo | & ol(tmar} ay
o t
+ A E [a(t) + B(t)] = O (8a)
k(t)d t
b | {[ [ar+ 3 a0 ] & orce,m} vo
} T p glr 5 o.tt.T ydy
o t
+ AS ES d [Q/(t)+ B(t)] = M(t) (8b)
where
* 1

t = k. (y/d) (8¢c)
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and where here and in most of our subsequent work, for convenience, we have
suppressed explicit mention of the span coordinate x . In these equations
we see the integration over the currently compressed region of the matrix
from y =0 to y = k(t)d, and the contribution of each fiber in this
region, only from the time t* that the compression first started in the
fiber, up to the current time t . The terms outside of the integral signs
represent the contributions of the reinforcement.

Thus we see that the governing equations of our problem -- equations
(8a) and (8b) -- are two simultaneous, multiple, highly nonlinear, Volterra-
type integral equations in ¢« and B .

The iterated integrals as written in equations (8) are carried out by
first integrating along a horizontal strip in the t,y plane, as depicted
in Figure 4 and then "adding up"” all such strips to cover the region of
integration shown. We find it convenient to interchange the order of the
iterated integral in equations (8), and to first integrate along a vertical
strip, as shown in Figure 4, and then to "add up"” all such strips to cover
the integration region.

The equations resulting from this process are

t k(1)
J {J. %: [s*(t,T)] [a(T)+EB(T) ]dE } ar
t

(o]

-pn [o(t) + () ] = O o
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t k()
—g—T [s¥(t, 1] [aln+ep(r) edE } dr

&+ —
o €5

(o]
= pn [a(t) + B (£) ] = -M(t) (9b)
where
g = y/d (90)
b 3
E = g (28,28) (9d)
C C
% %
s (t,7) = cc(t,T)/Ec (9e)
p = As/bd (91)
n = E/E (9g)
S C
~ 2 %
M (t) = M (t)/bd g (28,28) (9h)

Here we have suitably non-dimensionalized equations (9). Guided by the

conventional notation used in the literature on concrete, we:have introdiced,

for convenience, such parameters as the instantaneous elastic modulus of the
. Y . * *

matrix material at age 28 days (i.e., Ec=cc(28’28)=°c(t’T) for t = 1t =

28 days), the ratio of areas of the reinforcement and the matrix (i.e., p),

and the ratio of moduli of the reinforcement and the matrix (i.e., n).

We can now carry out the integration on E to obtain from (9a) and (9b)
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t
[ 2", lamxtn + 3 8 (0 k(0] ar
oT 2
t
(0]

-pn [at) + () ] = O (10a)
t
[ 21" @m1 [ 5 e + 5 poi’] ar
t
o
- pn [a(t) + B () ] =-M] (t) (10b)

At this stage it is useful to note that equations (4b) and (5b) may be viewed

as an integral transform pair. With this in mind, we may then take the

"inverse transform'" of equations (10a) and (10b) to obtain

t
(OO + 3 (DKL) - pn J [a(m)+p(n) ] %; e (t,7) =0 (112)
t
(o]
t
3 2O + 3 8O - [ [aD+p(n] L e (£, D=-n(t) Q1D)
t
(o]
where
*
e (28,28) = 1/Ec (11¢)
*
e (t,m) =E_¢ (t,7) (11d)
t
m(t) = j () & e (t,0) dr (11e)
oT
t

(o)
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In effect, in passing from equations (10a) and (10b) to equations (lla) and
(11b), we have merely made use of the reciprocal properties of the kernels
* *
c and ¢

By suitable manipulation the two governing simultaneous, nonlinear,
integral equations (lla) and (11b) can be reduced to a single governing
nonlinear integral equation on the neutral axis function k(t) . Sub-

tracting equation (1lb) from (lla), and using equation (2) to eliminate B8 ,

we obtain

_ 6m(t)
o) = T3k ]

(12)

Substituting this result into equation (lla), and again using (2) to elimi-
nate B we finally arrive at the single nonlinear, Volterra-type integral

equation governing our problem

t
1 m(t) m(T) 1-k() 3 _
2pn [ 3-k(t) ] ¥ J [ 3-k(T) [ K2(0) 5 ¢ (6,7 dr =0 (13)
t
o

If we can resolve this equation to obtain k(t) , then equation (12) yields
a(t) , equation (2) B(t) , and the problem is essentially solved. Having
@, B and k , the stress distribution then follows directly. Equation
(3)2 yields the stress in the reinforcement, and the stress in the compressed

region of the matrix material is obtained from equations (1) and (5b) as

t
*
o (1) = -L [am + L g :\—g; 0. (t,7) dr (14)
t
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%
where ¢t is given by equation (8c). Here we assume that having k , we
%
may effect its inverse to obtain t . This we can at least accomplish
numerically.

It may be noted that for fibers in the initially compressed region at

*

time to , t is given by to. Then for such fibers we have, from (14),
t t
3 * $ y r PR *
t) = - - t A7 = 20 (T A (g T 15
0o (® = -] atn &5, b a2 T ma (15)
t t
o o

for all tzto and for all y in the initially compressed zone. Thus it

is seen that the stress distribution in the initially compressed zone remains
for all times linearly distributed with respect to the depth. For those
fibers in the initially cracked zone, which come into compression at some
time t*>tO , the dependence of the stress on y is not only through the
linear term appearing within the integral in equation (14), but also through
the nonlinear term t* = k_l(y/d) appearing as the lower limit in this
integral. Therefore, it is to be expected that the compressive stress
distribution, at time t>»to , 1n the initially cracked zone will be a

nonlinear function of the depth y



19

PROPERTIES OF THE SOLUTION

Although we have not been able to construct a closed-form solution of
equation (13), we can list some interesting and important properties of the
solution.

It may be verified by direct substitution in equations (13), (12) and
(2) that if [al(x,t), Bl(x,t)] is the solution to a problem in which the
bending moment distribution is given by Ml(x,t) , then the solution for a
bending moment of M2(x,t) = F(x)Ml(x,t) (where F is an arbitrary function)

is [az(x,t) , Bz(x,t)] with
cvz(X,t) = F(X)ozl(x,t) , Bz(x,t) = F(X)Bl(x,t)

In this sense the beam behaves as a linear system.

However, if [q,, 51] is the solution corresponding to a moment input

1
of M1 , and [az, 62] that correspcnding to a momentsz, then the
solution [aé’ 33] corresponding to M3 = M1 + M2 is not given by
9 = td, , By = B + B, , unless Ml(x,t)/Mz(x,t) = F(x) . Therefore, in

general, the beam behaves as a nonlinear system. Here we have a case of a
physical system in which the multiplicative property common to linear

systems holds, but the additive property, in general, does not.
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THE EFFECTIVE MODULUS METHOD

There is an approximate method -- commonly called the "effective” or
"reduced" modulus method [1,2,4,8] -- popular in analysis and design of
concrete structures. We wish to show a relationship between this approxi-
mate method and the exact solution to the cracked, reinforced beam problem
as formulated here.

In the treatment of concrete structures by the effective modulus
method, it is assumed that at any time t the concrete may be considered
as an elastic material having a modulus of elasticity given by 1/g*(t,t0) ,
where t0 indicates the time at which loading of the structure was
initiated. Thus the entire analysis, based on the effective modulus method,
is simply a series of elastic ones. Of course, such an analysis is in
general considerably easier to perform than one based on a linear visco-
elastic stress-strain relationship.

The essential feature of the effective modulus method is that it
approximates the concrete stress-strain relation, say equation (4b),

by the relation

E 3
ec(t) = cc(t)g (t’to) (16)

We may gage the error involved in such an approximation if we suitably
rewrite the stress-strain relation (4b). For convenience we rewrite (4b)

explicitly extracting the instantaneous elastic response
t
* *
e (D = o we (1,0 - [ [ Z¢"e,n] otnar an
c c L oT

t
o

In the above, it is to be understood that the integration extends from t
o
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to a value slightly smaller than t . In this range of integration we assume
o) * . . - .

that S_ e (t,T) 1is a continuous, non-positive function of + . For all
T

real viscoelastic materials with which we are familiar, such is true.
Assuming that cc(T) can be expanded into a Taylor series about t

with a radius of convergence at least as large as t-to , we have

o (D = z oM (r-0)m (18)

n=o

where the superscript n indicates the nth time derivative of O,
Substituting this into equation (17), extracting the first term of the series,

and interchanging the order of integration and summation, we obtain

gc(t) = o‘c(t)eZ(t,T) [1 4+ Error] (19a)
where
<) (n) t
o (%) *
Z % J‘ [- % € (t,'r)] [r-t]" a7
n=1 t
Error = o (19b)

*
Oc(t) ec(t,T)

Clearly, if the absolute value of the term "Error' is small compared to
unity, then (19a), the viscoelastic stress-strain relation, reduces to
equation (18), the stress-strain relation used in the effective modulus
method. Thus the accuracy of the effective modulus method is gauged by the
smallness of the term Error

We obtain as a crude bound on the absolute value of "Error"
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(t-t )n

*
Error ‘ < |: 1 - ?—(—t—t—‘) ] z O‘(t) ‘ oy (20)
’“o

A cruder bound, but one in a more convenient form, may be obtained from (20).
But first it is convenient to introduce some characteristic time which can

be used to nondimensionalize our results. For this purpose we introduce an

"average relaxation time" , T , defined by
o (D)
T = 1im {TtT J‘ ac I’T dr } (21)
tco o [ 3 (t,m ]t +

™ (n)

Then, if we define SM(t) as the maximum value of ‘ (t)/o(t) l over

n (n=1,2,3,....), we obtain from (20)

t-t

| Error | < [ 1 - §;££4£l— ] [exp ( T 0> -1 ] SM (t) (22)

) (t,to)

Although this expression may be difficult to apply quantitatively, because

it might be hard to evaluate SM(t) , it leads to useful qualitative in-
formation. This expression shows that, in general, the shorter the time
interval (to, t) over which the effective modulus method is applied, the
smaller will be the error associated with this approximation. Secondly,
noting that SM(t) is a measure -- in some sense -- of the fluctuation of
the function O, » it is seen that, in general, the smaller the fluctuation
of o, in the interval (to, t) (and hence the smaller SM(t) ) the smaller

will be the error associated with the effective modulus method. These
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restrictions on the applicability of the reduced modulus method have been
known for some time to analysts of concrete structures, and appear to have
been arrived at through a considerable amount of experience gained by
comparing predictions based on the reduced modulus method to a variety of
experiments and to solutions of problems based on viscoelasticity theory.
A simple, but crude, bound on the absolute value of "Error" - and one
which is relatively easy to deal with quantitatively - can be obtained

directly from equation (17) as

*
Error | < [ 1 - e—f#—t-)— :\B(t) (23)
t,t
e (t, 0)
where B(t) is defined to be the maximum over T of 1 - cc(T)/cc(t) l ,
with tOSTSt . (It is noted that (23) also predicts a smaller error the

smaller the time interval over which the approximation is applied, and the
smaller the fluctuation of g, over that time interval.) 1If o, is a
known function then it is simple to evaluate the bound (23).

In some problems (such as the one we have formulated here) cc is not
directly known, but is a portion of the solution. Then B(t) can not be
directly evaluated unless the solution has been obtained. However, using
only the effective modulus method, one may obtain an idea of the applica-
bility of that method to the particular problem being considered. Compute
B(t) from the values of o, obtained by use of the effective modulus
method. Use this in (23) to compute Error . If Error | < <1 ,

then the effective modulus solution should closely approximate the visco-

elastic solution.
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Of particular interest in this investigation is the calculation of the
neutral axis function Kk(t) . For our formulation, this requires a resolu-
tion of the nonlinear integral equation (13). However, an approximate
solution may be obtained by use of the effective modulus method. If we
apply this method to the determination of k(t) , then the analysis parallels
that which occurs in conventional (elastic) cracked, reinforced concrete

beam theory. The relationship determining k(t) becomes the simple algebraic

equation
K2(t) + 2pn_(©) [k(t)-1] = 0 (242)
where
n_(t) = E_/E_(t) (24b)
Ee(t) = 1/3*(t,to) (24c)

To obtain an indication of the accuracy of the effective modulus
approximation (24a), we may turn to equation (13) governing the visco-
elastic formulation, and operate on it in a manner similar to that above.

If we do so, then equation (13) may be written as
g(t)—f(t)e(t,to) [1 + Brror] =0 (25a)

where

g(t) =

1 [ m(t) (25b)

2pn 3-k(t)
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(t) 1-k(t)
£(t) = I (25¢)

[ 3-k(t) ] [ K2 (1)
Error | < [ 1 - e (t t) ] C (t) (25d)

€ (t t )

and C(t) is defined as the maximum value over T of | 1 - £(1/f(t) | ,
with tosTst . If | Error | < <1 , we can neglect this term compared to

1 , and then equation (25a) reduces to (24a). Thus we can use the bound
given by equation (25d) to gauge the applicability of the effective modulus
method to the calculation of k(t) . Similar to our preceding discussion,
this bound indicates that, in general, the less fluctuation in the applied
moment and the shorter the interval of time over which we utilize the
effective modulus method, the better will be this approximation. In
particular we see that the reduced modulus method gives the exact answer for
t = tzg (i.e., immediately after loading).

The difficulty in quantitatively applying (25d) is that we must know
the history of the neutral axis function, k , governed by the viscoelastic
formulation. However, in a manner similar to that previously described, we
may use the easily obtained effective modulus solution to give an indication
of the accuracy of that approximate method. In (25c¢) and (25d) use the
values of Kk predicted by the effective modulus method. If this yields a
bound for Error in equation (25d) which is negligibly small compared
to unity, then the effective modulus method should be a good approximation.
In a subsequent section we will apply this procedure, and compare its pre-

dictions to the results of a numerical solution of equation (13).
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FINAL VALUES FOR NONAGING MATERIALS

It is of interest to consider the special case in which the matrix is a

nonaging viscoelastic material. Then the creep and stress relaxation func-
% * %

tions, ec(t,T) and cc(t,T) , take on the special forms gc(t—T) and
GZ(t—T) , respectively. Thus for the nonaging material the creep and relaxa-
tion functions are functions of a single variable, rather than of two
variables as is the case for aging materials.

For the nonaging matrix material the stress-strain relation (4b) takes
the form

t

e (¥ = j & (t-) o (1) dr (26)

t.
i

e % )
where éc(t) is the derivative of gc(t) . The integral equation (13)

governing k(t) then becomes

t
g(t) - J &(t-1)£(T)dT = O (272)
(o]
where
e(t) = & (1)/e (o) (27)

and g(t) and f(t) are defined by equations (25b) and (25c), respectively,

with
t
m(t) = »~I ﬁ’(T)é(t—T) dT (27c)

(o]

In the above, without any loss of generality, we have conveniently set t = O .
o
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Let us restrict attention to a matrix material exhibiting bounded creep,

and to a moment input which asymptotically attains a final value, i.e.

* *
Lim ec(t) T foe < ® (282a)
90
lim M(t) = ¥ < o (28b)
[}
t90

Then it is easy to establish that

lim m(t) =-M ¢ =m (28c¢)
o  Coo o
t4o

In this case an exact expression for the value of k(t) as tas may be
determined by use of the Laplace transform and the associated final-value

theorem.

Taking the Laplace transform of equation (27a) we obtain !
g(p) - pe(p)E(p) = O (29)

where p is the transform parameter and a superposed bar indicates the
transform of a function. Multiply equation (29) by p and consider the limit

of this expression as pa0

lim [pg(p)] - lim [pe(p)] lim [pf(p)] = O (30)
P20 P20 P20

Using the final-value theorem, we obtain

glw) -~ e(xx)f(w) =0 (31)
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Now, recalling equations (25b), (25c), (27b) and (28), we obtain

K2 () + 2pn_ [k(=)-1] = O (322)

where

e = ES/ECw (32b)

*
E = 1/¢e (32¢)
Coo Coo

This expression, from which the exact value of k(t) (as t4x) may be
obtained, is identical to the result we would be led to by use of the
reduced modulus method for taw. Thus for the nonaging matrix material
exhibiting bounded creep, the reduced modulus method yields the exact
result immediately upon loading, and as t4o . For intermediate times,
the reduced modulus method will be in error.

Having k()

, 8all other quantities of interest for t« follow

directly. From equations (12), (28c) and (2) we obtain

6N Z
o) = - ) [3—k(oo)] (33a)
(o) = - o) /k(w) (33b)

The reinforcement stress then follows from equation (3)

Os(a9 = ES[Q(GQ + Bl ] , (34)

and the stress in the matrix follows from equation (26). Applying the final
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value theorem to equation (14) (written for the nonaging matrix material)

we obtain

*
o‘c(co) = |:a(co) + yd— B(co):\ . (35a)
where
%
o, = lim cZ(co) (35b)
t40

It is easy to establish that

* 1kt | (36)
o-Cc:o - eCCO

For the aging material, results similar to those given above cannot be

established.
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NUMERICAL ANALYSIS

Although we are not able to obtain a closed solution of the governing

nonlinear integral equation (13), numerical solutions are readily effected.

Suppose we know the values of k(t) up until some time ti—l , and we
seek its value at ti . Then we can rewrite (13) as
t.
i-1
1 My
L5 |7 ] soec0 or
i
t
o
&
i
‘. + J m(7) 1-k(r) &(t.,7) dT =0 (37a)
3-k(7) 2 i
‘ k(1)
i-1
where
e(t,m =2 e(t,n) (37b)
oT

and where the subscript i associated with a function indicates the value
of that function at time ti . Since we assume we are given the geometry
of the beam, the moment history M(t) and the material properties (i.e.,

*
the creep function ¢ (t,T) , and Es) , then m(t) (and hence mi) may be

considered a known function. We can numerically obtain it on a computer using

the definitions (lle) and (9h). Recalling the definition of f(t) , equation

(25c), and that we are assuming k(t) known in the interval (to,ti_1

)

then the first integral appearing in equation (37:)may also be directly

Ca computed.
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Let us evaluate the second integral appearing in (372)by using the

trapezoidal rule
+

£
f 1 [3T£Il)] [1-k(T)] &(t,,m dr
ti—l

kz(T)

m

[hi-l ) e(ti’ti)] [ (3-ii

1-k,
) ( k21> ] - hy % (38a)
i

where we have taken account of the singular (i.e., delta-function) behavior

of &(t,T) at t = T , and where

e(t_,ti) - e(ti,ti_l)
h. = = (38b)
i-1 2

In the above we have approximated é(ti,ti) with a backward difference and
é(ti,ti_l) with a forward difference.

Substituting (38a) into (37a), and performing some elementary mani-

pulations, we obtain

3 2

A k. +B k. +4C. k. -C. =0 (39a)

1 1 1 1 1 1 1

where
Aj=-n _f -V (39b)
My

B, =3

i Viaa #3005 0 Y o (39¢)
c. = -

i mie(ti,ti) h1—1m1 (394)

t,
i-1
v, = j £(De&(t ) ar (39¢)
t
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To obtain the proper root, ki , of the cubic equation (39a), it is con-
venient to use Newton's method of approximation [13]. In order to ensure
rapid convergence of this iterative procedure, it is important to have a
good starting approximation for ki . For this starting approximation we
simply use the value of k found at the previous time step, i.e., ki—l
To initiate the entire procedure, we set ti = tz , and then the cubic

equation (39a) reduces to the quadratic equation

2
k +2pn (k -1) =0 (40a)
o o o
where
+
k = k(t ) (40b)
o o
= E *(t t) (40¢c)
o = % € o’ o ¢

This equation is the result which would be obtained if our matrix were an
elastic material with a compressive modulus of l/g*(to,to) . The proper
root of (40a) is easily obtained to any degree of accuracy by use of the
quadratic formula. Having ko we proceed to obtain k1 = k(tl) by the
method outlined above, and so on for all ki

We present some numerical results for a variety of situations based

on a creep function for concrete proposed by Hanson [14]

* 1
e (t,m = EZ—TT+ f(T)1In(t-T+1) (41)

where t and T are in days. The creep function parameters E(T) and
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f(7) necessary to define e*(t,T) in (41) are shown plotted in Figure 5.
They are based on data given in the report by Hanson for Shasta Dam
concrete [14].

In the calculation of the compressive stress in the matrix by means of
equation (14), the stress relaxation function for the matrix is required.
It was obtained from the creep function by solving the linear integral
equation (6).

It is of interest to note that we also computed k(t) by means of an-
other numerical procedure. Before we discovered the manipulations which
reduced the complicated system of nonlinear equations (8) to the much
simpler single, nonlinear equation (13), we dealt directly with equations
(8). We constructed an algorithm which allowed us to solve equations (8)
for k(t) by numerical means. This algorithm (which we do not bother to
record here) is much more complicated than the one required to resolve
equation (13). But the results obtained were very good, in that they checked
with the results obtained from a numerical analysis of equation (13) to

within five significant figures.
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DISCUSSION OF RESULTS

In Figures 6 to 19 we show some results for different loading condi-
tions, based on a numerical resolution of equation (13). For all of the
figures shown, the creep function given by equation (41) was utilized, and
the beam parameters employed throughout were p = 0.0158 and
ES = 30.2 x 106 psi. Figures 6 to 17 are for cases in which the beam section
under consideration is subjected to a constant moment of nondimensional
magnitude M =0.693 x 10 ~ . This moment is applied when the concrete
has attained an age in days of either 10, 30, 60, 120 or 240. Figures 18
and 19 show results for some variable moment histories.

For different ages of loading with a constant moment, the neutral axis
history is summarized in Figure 6, the curvature history in Figure 7, the
stress history of the reinforcement in Figure 8, and the maximum compressive
stress history (at y=0) in the matrix material in Figure 9. Strain and
stress distribution histories are shown in Figures 10 to 11 and Figures
12 to 17, respectively. These results show a relaxation of the maximum
compressive and a build up of the reinforcement stress as time progresses.
This is in accord with experience and experiment [2,15]. It may be seen
that the largest changes occur soon aftér loading. For the matrix material
considered (concrete), the earlier the loading is applied, the more
dramatic are these changes.

The nonlinear distribution of the compressive stress in the initially
cracked region of the matrix material is clearly exhibited in Figure 12.

Recall that in a previous section we noted that such a behavior was to be
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expected from our formulation.

In Figure 18 we compare the neutral axis histories produced by three
different moment histories, each initiated when the concrete attains an age
of 10 days. The variable moment histories for cases A and B are depicted
directly on Figure 18. On this same figure a comparison is given between
our viscoelastic theory and the results of the effective modulus method.

It is seen that the value of k(t) determined from the effective modulus
method (and which is independent of the moment history) closely approximates
the results obtained from viscoelastic theory for a constant moment history,
but poorly approximates the results for a variable moment history.

This agreement, or lack of agreement, of the effective modulus method
with our viscoelastic theory could have been predicted on the basis of our
previous discussion concerning the applicability of the effective modulus
method. For example, if, on the basis of k(t) obtained from the effective
modulus method, we compute the term denoted as Error appearing in equations
(25), then we obtain for two cases considered in Figure 18 [in the time range
0 to 60 days after loading]: | Error < 0.015 for the case of constant
moment, and Error ‘ < 0.21 for case A. Thus for the case of a constant
moment history we obtain an error term negligibly small compared to unity,
and hence we would expect the effective modulus method to be an accurate
approximation. However for the variable moment history treated in case A,
the error term is not negligibly small compared to unity, and hence the
effective modulus method would not be expected to yield an accurate approxi-

mation.
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In Figure 19, the stress distribution history in the matrix material
for the variable moment history of case A is displayed. Once again we note
the marked nonlinearity of this distribution with depth, within the

initially cracked zone.
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CLOSURE

We have developed an elementary theory to account for the creep of a
cracked, reinforced viscoelastic beam. Our procedure has been to take the
conventional theory used for the analysis of cracked, reinforced concrete
beams, and to extend it by allowing the matrix material to behave as a
linear viscoelastic solid in compression. The moment histories which we can
admit in our theory are limited to those which give rise to a monotonic
shift of the neutral axis towards the (tensile) reinforcement.

Surprisingly, the simple hypotheses employed in our theory lead to a
relatively complex governing equation.

It is noted that it is a trivial matter to extend the analytical
formulation presented here to include compressive reinforcement, and also
the possibility of linear viscoelastic behavior of both tensile and com-
pressive reinforcement. Although we have obtained these results, we do not
bother to record them.

Extensions of our analytical formulation for the cracked beam to
include the possibility of a non-monotonic behavior of the motions of the
neutral axes, and the possibility of a noncoincidence of the neutral axes
of stress and strain, have not been given our serious consideration.

These appear to be nontrivial topics. Extensions to include shrinkage and
thermal strains, a nonzero tensile cracking stress, and slip of the
reinforcement also have not been seriously studied by us. At first view,
these too appear to be nontrivial extensions. If at the outset of the study,

instead of utilizing a strictly analytical formulation (as we have attempted
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to do), recourse is immediately made to an approximate formulation of the
finite~element type, then it would appear that many of the effects men-
tioned directly above could be included without any great increase in

complexity.
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