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Mechanisms for the progression of ductal carcinoma in situ (DCIS) to invasive breast

carcinoma remain unclear. Previously we showed that the transition to invasiveness

in the mammary intraepithelial neoplastic outgrowth (MINO) model of DCIS does not

correlate with its serial acquisition of genetic mutations. We hypothesized instead that

progression to invasiveness depends on a change in the microenvironment and that

precancer cells might create a more tumor-permissive microenvironment secondary to

changes in glucose uptake and metabolism. Immunostaining for glucose transporter

1 (GLUT1) and the hypoxia marker carbonic anhydrase 9 (CAIX) in tumor, normal

mammary gland and MINO (precancer) tissue showed differences in expression. The

uptake of the fluorescent glucose analog dye, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)

amino]-2-deoxy-D-glucose (2-NBDG), reflected differences in the cellular distributions of

glucose uptake in normal mammary epithelial cells (nMEC), MINO, andMet1 cancer cells,

with a broad distribution in the MINO population. The intracellular pH (pHi) measured

using the fluorescent ratio dye 2′,7′-bis(2-carboxyethyl)-5(6)-155 carboxyfluorescein

(BCECF) revealed expected differences between normal and cancer cells (low and

high, respectively), and a mixed distribution in the MINO cells, with a subset of cells

in the MINO having an increased rate of acidification when proton efflux was inhibited.

Invasive tumor cells had a more alkaline baseline pHi with high rates of proton production

coupled with higher rates of proton export, compared with nMEC. MINO cells displayed

considerable variation in baseline pHi that separated into two distinct populations:

MINO high and MINO low. MINO high had a noticeably higher mean acidification rate

compared with nMEC, but relatively high baseline pHi similar to tumor cells. MINO low

cells also had an increased acidification rate compared with nMEC, but with a more

acidic pHi similar to nMEC. These findings demonstrate that MINO is heterogeneous with

respect to intracellular pH regulation which may be associated with an acidified regional
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microenvironment. A change in the pH of the microenvironment might contribute to a

tumor-permissive or tumor-promoting progression. We are not aware of any previous

work showing that a sub-population of cells in in situ precancer exhibits a higher than

normal proton production and export rate.

Keywords: ductal carcinoma in situ, mouse mammary carcinoma model, tumor heterogeneity, glucose uptake,

intracellular pH, proton export, tumor microenvironment

INTRODUCTION

Ductal carcinoma in situ (DCIS) accounts for 27% of all breast
cancers diagnosed in women over 50 (DeSantis et al., 2014), and
since the 1970’s it has been accepted as the non-obligate precursor
of invasive ductal carcinoma (Cowell et al., 2013). Consequently,
the majority of patients diagnosed with DCIS are subjected
to lumpectomy and radiation or mastectomy. Determining the
relationship between DCIS and Invasive Breast Cancer (IBC) and
developing biomarkers for distinguishing low and high risk DCIS
could prevent unnecessary treatment, financial and emotional
burdens for low-risk DCIS patients (Esserman et al., 2009).

We have developed a mouse model of DCIS, called the
mammary intraepithelial neoplastic outgrowth or MINO model,
to study aspects of the progression of precancer to invasion in
multiple contexts. TheMINOmodel is derived from the Polyoma
virus middle-T (PyVmT) transgene mouse model and consists
of the transplantation of MINO from transgenic mice, FVB/N-
Tg(MMTV-PyVmT) on an FVB background, to syngeneic
immune-intact FVB mice (Maglione et al., 2001, 2004). Both
DCIS and MINO are heterogeneous in cell type and function
compared with corresponding invasive carcinomas (Damonte
et al., 2008; Cowell et al., 2013). We previously showed that the
heterogeneity that arises in lesions in theMINOmodel originates
from precancer “stem” cells that are capable of self-renewal and
multi-lineage differentiation with a programmed progression to
invasive cancer (Damonte et al., 2008). MINO-derived precancer
and cancer showed no significant differences in the genomic
or telomere stability, suggesting that mechanisms other than
genetic alterations may be responsible for the progression to
invasion in the MINO model (Damonte et al., 2008). Epigenetic
changes within neoplastic cells could account for the lack of
significant changes in the genetic code between MINO and
tumor. However, promoter DNAmethylation has not been found
to be significantly different between DCIS and IBC tumors
suggesting that methylation changes may be early events in
carcinogenesis rather than essential events in the transition to
invasive disease (Moelans et al., 2011; Verschuur-Maes et al.,
2012). Another possibility is that the invasive capabilities of a
tumor cell are influenced by the surrounding microenvironment.
There is considerable evidence that intracellular and extracellular
pH can alter malignant cell survival and invasion (Gatenby et al.,
2006; Rofstad et al., 2006; Webb et al., 2011).

Tumor cells metabolize∼10-fold more glucose to lactate than
normal cells under non-hypoxic conditions. This increase in

Abbreviations: Mino, Mammary Intraepithelial Neoplasia Outgrowth; Nmec,

Normal Mammary Epithelial Cells.

aerobic glycolysis is known as the Warburg effect (Warburg,
1956). Upregulated glycolysis has significant consequences.
Subsequent elevated proton production can lead to a regional
acidic microenvironment (Stubbs et al., 2000; Kato et al., 2013).
Exposure of normal cells to an acidic microenvironment results
in cell death (Park et al., 1999). Tumor cells compensate for
increased proton production via increased proton export, largely
through upregulation of the activity of the sodium-hydrogen
exchanger (NHE1), to maintain an optimal, more alkaline pHi

compared with normal cells (Spugnini et al., 2015). There has
been speculation about the role of this metabolic switch in
cancer progression, specifically that acidosis leads to a tumor-
permissive microenvironment by creating a hostile environment
for normal cells, where acid resistance in tumor cells constitutes
a proliferative advantage (Gatenby and Gillies, 2004; Webb et al.,
2011; Spugnini et al., 2015).

Aerobic glycolysis is often accompanied by increased glucose
uptake (Groves et al., 2007). We have previously shown that
MINO and MINO-derived tumors can be imaged in vivo with
PET imaging using the fluorescently labeled glucose analog
[18F]2-deoxy-2-fluoro-D-glucose (FDG) (Abbey et al., 2006).
However, due to resolution limits with FDG-PET, uptake
by individual cells within the MINO or tumor cannot be
distinguished. Based on our observations that precancer “stem”
cells exist within the MINO, display no genetic differences
from the rest of the MINO, and that MINO tissue exhibits
increased FDG uptake, we hypothesized that there might be a
sub-set of cells within the MINO with increased glucose uptake
and high rates of proton production and export that condition
the extracellular environment and permit or promote cancer
progression and tumor invasiveness.

MATERIALS AND METHODS

Animals
Young female FVB/NJ (Charles River, Wilmington, MA) mice
were used to obtain both normal and MINO tissue. Tumors (no
larger than 1 cm) were from transgenic PyVmT females that had
developed mammary tumors. Mice were housed in a vivarium
under NIH guidelines and all animal experiments followed
protocols approved by the UC Davis Institutional Animal Care
and Use Committee (IACUC).

Cell Culture
The Met1 tumor cell line was developed previously in
our laboratory (Borowsky et al., 2005). Briefly, Met1 was
derived from mammary carcinomas in FVB/N-Tg (MMTV-
PyVmT) mice, transplanted into syngeneic FVB/N hosts and
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characterized. Met1 maintains a stable morphological and
biological phenotype after multiple rounds of in vitro culture
and in vivo transplantation. The Met1 line tumors exhibit
invasive growth and 100% metastasis when transplanted into
the mammary fat pads of FVB/N females. The DNA content
and gene expression levels of Met1 cells are stable over multiple
generations (Borowsky et al., 2005). For this study, Met1
cells were grown in DME (Invitrogen, Grand Island, NY)
supplemented with 10% (v/v) fetal bovine serum (Invitrogen)
and 100U/mL penicillin-streptomycin (Invitrogen). Cultures that
reached at least 70% confluence were trypsinized, washed 3 times
with phosphate-buffered saline (Invitrogen) and counted.

Mammary Gland Dissociation
The media used for mammary gland dissociation was serum-free
1:1 mixture by volume of Dulbecco’s Modified Eagle’s Medium:
Ham’s Nutrient Mixture F12 (DMEM/Ham’s F12, Invitrogen,
Carlsbad, CA, USA) buffered with HEPES (Invitrogen)
supplemented with 0.5mg/ml Penicillin/Streptomycin
(Invitrogen), 2% bovine serum albumin fraction V (Invitrogen),
5µg/mL insulin, 10 ng/mL cholera toxin (Sigma Aldrich), and 3
mg/mL collagenase (Worthington Biochemical Corp., Lakewood,
NJ, USA). Normal mammary gland tissues were obtained from
FVB/NJ female mice. MINO tissues were obtained from FVB/NJ
mice that had been previously transplanted with MIN (1mm ×

1mm) tissue. The MINO tissue was removed 4 weeks after
transplantation as described (Maglione et al., 2001). PyVmT
tumors were from transgenic PyVmT females that had developed
mammary tumors. To dissociate tissues, mice were anesthetized
using Nembutal (60mg/kg) and selected tissues were removed
from live, anesthetized animals. Following tissue removal, mice
were euthanized using an overdose of Nembutal (120mg/kg).
Tissues were mechanically minced with a McIlwain tissue
chopper (Mickle Laboratory Engineering, Guildford, UK) with
enough serum-free digestion reagent to allow for complete
mixing of the tissue. This mixture was digested in a sterile 50mL
tube with gentle agitation for 16 h at room temperature. The
resulting suspension was centrifuged at 80 × g for 4min to
separate the fatty layer including the supernatant, and the pellet
was rinsed with a 1:1 mixture of DMEM/Ham’s F12 to eliminate
digestive enzymes. To obtain a single cell suspension, the rinsed
pellet was first broken up by gently pipetting and then incubated
with 0.25% trypsin/EDTA (Invitrogen) at 37◦C for 1 to 2min.
The level of dissociation in the suspension was checked under
a microscope and then 0.1 mg/mL DNase I was added and the
sample was incubated for a further 5min at 37◦C. A volume of
DMEM/Ham’s F12 (supplemented with 10% fetal bovine serum)
equal to the volume of the single cell suspension was then added
to stop trypsin activity. Any remaining cell clumps were removed
by filtration through a 40µm cell strainer (BD Biosciences, San
Jose, CA).

Coverslip Preparation
Round coverslips (BD biosciences, San Jose, CA) were coated
with 5µg/cm2 of laminin and incubated in 6-well dishes for
30min at 37◦C. The remaining material was aspirated after

incubation, and 5000 cells were plated per coverslip, 18–24 h
prior to measuring the pHi.

Intracellular pH Measurement
The pHi was measured using the fluorescent ratio dye 2′,7′-
bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF; Molecular
Probes). Cells on coverslips were loaded with 2.5µM of BCECF-
AM in HEPES-buffered Ringer’s solution (HR) for 30min at
37◦C, under 0% CO2. Coverslips were washed three times in HR,
incubated for 30min in HR at 37◦C, under 0% CO2, and then
transferred to a polystyrene chamber that permitted continuous
superfusion of the solution. Cells were maintained at 37◦C in
the chamber and the fluorescence of BCECF was measured at an
emission wavelength of 535 nm using the optimized excitation
wavelengths of 490 and 440 nm. Wavelength switching was
controlled by a DX-1000 optical switch (Solamere Technologies,
Salt Lake City, UT). Images were captured with a Stanford
Photonics camera, and quantitative analysis was performed
using OpenLab Image analysis software (Perkin Elmer, Waltham,
MA). Five-point standard curves were generated for BCECF
using high-K+ solutions of known pH in conjunction with
10µM nigericin (Sigma). Complete calibration curves were
constructed over the pH range of 6.2–8.2. Thereafter a single
calibration point was measured at the end of each experiment
as described by Boyarsky et al. (1988a). Fixed buffer capacity
(ß in mM/pH) for normal mammary epithelial cells (nMECs),
Met1, and MINO cells were also measured on separate coverslips
as previously described Boyarsky et al. (1988a). The equations
used to calculate buffer capacity are ß = −52.95pHi + 400
for nMEC, ß = −38.55pHi + 293 for Met1, and ß =

−29.01pHi + 227 for MINO. At pHi = 7 these correspond
to buffer capacities of 29, 24, and 23.5mM/pH for nMEC,
Met1, and MINO, respectively, and they are not significantly
different.

Solutions: The standard HR was composed of the following
concentration in mM: 133 NaCl, 4.75 KCl, 20 HEPES, 1.25
MgCl2, 1.82 CaCl2, 11.1 glucose, and 8 NaOH, adjusted to pH
7.4 at 37◦C with NaOH or HCl. High-K+ calibration solutions
contained, in mM: 140 KCl, 20 HEPES, 1.25 MgCl2, 0.5 CaCl2,
and 11.1 glucose, using KOH or HCl to adjust pH. In NH3/NH

+

4 -
containing solutions, NaCl was replaced with NH4Cl at a ratio of
1:2 milliequivalents.

Washout Experiments
For sodium washout experiments, cells growing on laminin-
coated slides were loaded with BCECF-AM and superfused
with HR buffer for 2min and then superfused with a Na+-
free solution. The Na+-free solution was the same as standard
HR solution but with an equimolar substitution of NaCl by N-
methyl-D-glucamine-Cl. For ammonium washout experiments,
cells growing on laminin coated slides were loaded with BCECF
and superfused with HR buffer for 2min. Intracellular acid
loading was induced by superfusing cells with HR+20mM
NH4Cl solution followed by superfusion with a Na free solution.
The BCECF signal was calibrated as described above (See
Figure S1 in Supplementary Material).
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Glucose Uptake Assay
Normal mammary epithelium (for nMEC) and MINO were
dissociated and single cell suspensions were prepared and
counted prior to measurement of glucose uptake. Met1 cells
were trypsinized and single cell suspensions were also prepared.
Glucose uptake per cell was measured using the fluorescent
glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)
amino]-2-deoxy-D-glucose (2-NBDG). Cells were incubated
with 200µM 2-NBDG at 37◦C with 5% CO2 for 20min. Cells
were washed twice with Dulbecco’s phosphate buffered saline
(PBS, Invitrogen) and prepared for flow cytometry. 2-NBDG
treated suspensions of cells were stained with 4′,6-diamidino-2-
phenylindole (DAPI), CD45, TER119 and CD31 (Semerad et al.,
2005; Christopher and Link, 2008) and sorted on a FACS Aria
flow cytometer (BD Biosciences). FlowJo software (Tree Star,
Inc., Ashland, OR) was used to analyze the data.

Histology and Immunohistochemistry
Paraffin sections (4µm) were stained with Mayer’s hematoxylin
and eosin or immunostained as described previously (Maglione
et al., 2004). The following primary antibodies were used with
the Vectastain ABC Elite Kit (Vector Laboratories, Burlingame,
CA): guinea pig anti-cytokeratin 8/18 (guinea pig anti-CK8/18;
1:1000; RDI- Research Diagnostics Inc., Concord, MA), rabbit
anti-glucose transporter 1 (rabbit anti-GLUT1; 1:100; Dako,
Carpinteria, CA, USA), and rabbit anti-carbonic anhydrase
IX (rabbit anti-CAIX; 1:250; Novus Biologicals). The Dako
ARK kit (Dako) was used for immunohistochemistry with
mouse anti-smooth muscle actin (SMA; 1:100; Sigma, St. Louis,
MO) antibody. Images of slides were captured using 20× and
40× objectives on an AxioScope microscope (Carl Zeiss Inc.,
Thornwood, NY) with AxioCam camera and processed using
Adobe Photoshop 7.0 (Adobe Systems, Inc., San Jose, CA, USA)
software.

Statistical Analysis
Unless otherwise stated analysis of variance for repeated
measures was used to test for differences in the data. When
differences were found, the Student-Newman-Keuls multiple
comparison test was used post-hoc to determine which groups
were different with P < 0.05 chosen as indicative of significant
differences. Welch’s t-test was used to compare individual
pHi values from the ammonium washout experiments. Linear
regression was chosen to describe the rate of the acidification
followed by an analysis of covariance (ANCOVA) which was used
to compare the slopes of the fitted lines. Results are reported as
mean± standard error.

RESULTS

MINO Precancer Has Variable Expression
of GLUT1 and CAIX Compared with MINO
Tumor
MINO precancer and the invasive carcinomas arising from
MINO (MINO tumor) with CK8/18, a marker of luminal
epithelial cells and SMA, a marker for basal myoepithelial cells
showed organized multi-lineage differentiation in the MINO

precancer whereas invasive carcinoma cells have uniform cellular
immunoreactivity for CK8/18 with SMA only in the smooth
muscle cells associated with blood vessels (Figure 1). Next we
stained MINO and MINO tumor for the expression of GLUT1
and CAIX. Glucose uptake via the glucose transport proteins
(GLUT1-9) is a rate-limiting step in this glycolysis (Adekola et al.,
2012). GLUT1 is thought to be the main glucose transporter
in breast cancer (Adekola et al., 2012; Szablewski, 2013) and
CAIX is a marker of hypoxia linked to carcinogenesis (van
Brussel et al., 2013). With respect to GLUT1, there was no
protein expression in the normal tissue, weak expression in
some cells in the MINO tissue, and strong, localized expression
in the tumor. A few cells expressed CAIX in the normal
tissue, in contrast to the tumor, which expressed diffuse CAIX.
The presence of specific subpopulations of cells expressing
CAIX in the MINO suggests metabolic heterogeneity within the
MINO.

Intracellular Glucose Requirements Are
Heterogeneous in MINO Cells Compared
with Normal and Cancer Cells
The heterogeneity of GLUT1 levels observed in MINO and
MINO tumor led to the hypothesis that cells within the
MINO would exhibit heterogeneous glucose uptake. The non-
radioactive fluorescent glucose analog dye, 2-NBDG, was used
to measure glucose uptake in single nMEC, MINO, and Met1
cancer cells (Borowsky et al., 2005). 2-NBDG imaging has
been validated in live cells in vitro as a sensitive probe for
monitoring glucose metabolism in malignant cells (O’Neil
et al., 2005; Yamada et al., 2007). Figure 2 shows qualitative
differences in glucose uptake in the nMEC, MINO and Met1
cells. In order to compare the distribution of glucose uptake
in nMEC, MINO and Met1 cells, histograms of fluorescence
intensity of 2-NBDG for each individual group of cells were
normalized to unit area. The vertical axis represents the
normalized number of cells with a given intensity of the 2-
NBDG signal. The histogram plots for the nMEC and MINO
represent the populations after dead cells and hematopoietic
cells were depleted. The nMEC cells displayed a roughly normal
distribution of glucose uptake with a 2-NBDG signal that
peaked below 103 units of fluorescence intensity, indicating low
glucose uptake (Figure 2). Met1 cancer cells displayed a normal
distribution of glucose uptake with the 2-NBDG signal peaking
above 103 units of fluorescence intensity indicating that the
majority of Met1 cells had an increased glucose uptake. Cells
within the MINO population displayed a wider distribution,
a wider range of 2-NBDG fluorescence intensities indicating
a wider range of glucose uptake levels. The shape and wider
distribution of the curve suggest that there is a higher level
of heterogeneity in glucose uptake in the MINO population
than in the Met1 or nMEC populations. Furthermore, the
shape of the distribution suggests that there may be two or
more overlapping populations with different (higher and lower)
average glucose uptakes. This data suggests that there is a
coexistence of metabolically different cell populations within the
MINO.
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FIGURE 1 | MINO tumor cells originate from ductal (CK8/18+), not myoepithelial (SMA+) cells and have high expression of GLUT1 and CAIX compared

with normal mammary gland or MINO tissues. Immunohistochemical staining of normal, MINO, and MINO tumor tissue for (A) the structural proteins cytokeratin

8/18 (CK 8/18) and smooth muscle actin (SMA) and for (B) glucose uptake, glucose transporter 1 (GLUT1), and hypoxia, carbonic anhydrase 9 (CAIX). The scale bars

on the lower right image in (A) and (B) are 50µm in length and are representative for each of the other images in the panels.

Cancer Cells (Met1, PyVmT) Have a Higher
Baseline NHE1 Activity and a More Alkaline
Baseline Intracellular pH Compared with
Normal Mammary Epithelial Cells
To further investigate the metabolic profiles of MINO cells

compared with tumor cells we measured intracellular pH in a

bicarbonate-free system (Boyarsky et al., 1988a,b). Dissociated,

single nMEC, MINO, and Met1 cells were loaded with BCECF
and perfused with solutions that either induced acidification of
the cytoplasm (ammonium washout experiment, see Figure S1)

or inhibited cell membrane proton transport (sodium washout
experiment).

In a bicarbonate-free system, the main transporter responsible
for extruding protons from the cell is NHE1, and NHE1 activity
has been found in the earliest steps of cancer progression
(Cardone et al., 2005). NHE1 activity is inhibited when cells
are superfused with a sodium free buffer. This inhibition,
under baseline conditions, allows for the measurement of
baseline proton production and otherwise concomitant efflux
via NHE1. We performed ammonium washout experiments
on nMEC, Met1, and PyVmT tumor-dissociated cells. Figure 3
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FIGURE 2 | Qualitative differences in glucose uptake in normal

(nMEC), precancer (MINO) and cancer (MET1).Glucose uptake per cell was

(Continued)

FIGURE 2 | Continued

measured using a fluorescent glucose analog dye (2-NBDG) and flow

cytometry. The histograms of the three samples (nMEC, MINO, and Met1 cells)

were normalized to unit area in order to compare the distribution profiles. In

this plot, the horizontal axis shows the intensity of the 2-NBDG signal (divided

into 256 bins) and the vertical axis represents the percent of cells (events) that

fall within each bin. The histogram plots for the nMEC and MINO represent the

populations after dead and hematopoietic cell depletion.

FIGURE 3 | Cancer cells (PyVmT tumor and Met1) have higher baseline

intracellular pH and recover faster from the acid load than normal

mammary epithelial cells (nMEC). Baseline pHi and rates of recovery of pHi

when cells are challenged with an intracellular acid load (ammonium washout

experiment). Markers on the plot represent the average and standard error of

each pHi measurement. Number of cells measured: nMEC = 11, Met1 = 5,

PyVmT = 10. Mean baseline pHi values were calculated between 250 and 400

sec: Met1 = 7.06 ± 0.05, PyVmT = 7.28 ± 0.02, nMEC = 6.94 ± 0.03. The

baseline pHi values of both cancer cell types (PyVmT and Met1) are

significantly (P < 0.05) more alkaline compared with nMEC cells. HR; HEPES

Ringer’s Solution.

is a representative figure of the data from these experiments.
We found that both types of cancer cells, Met1 and PyVmT,
had baseline intracellular pH values (7.06 ± 0.05 and 7.28 ±

0.02, respectively) that were significantly (P < 0.05) more
alkaline compared with nMEC (6.94 ± 0.03). Furthermore,
after intracellular acidification (by ammonium chloride loading
and washout), both types of cancer cells recovered faster than
the nMEC, suggesting an increase in NHE1 activity (Figure 3).
Linear regression followed by analysis of covariance (ANCOVA)
for the representative data of the pHi during the recovery phase
(1400–1800 s) from nMEC, Met1, and PyVmT cells showed that
the slope of the best-fit lines for both cancer cell types (Met1 and
PyVmT) were significantly different (P < 0.001) compared with
the slope of the best-fit line for nMEC (Met1 slope = 7.678 ×

10−4 pHi sec
−1, PyVmT slope= 1.008× 10−3 pHi sec

−1, nMEC
slope = 1.721 × 10−4 pHi sec

−1, Figure S2). Multiplying buffer
capacity (ß) by the rate of change in pHi gives the rate of efflux
via NHE1. For the representative data in Figure 3 the initial flux
rates during pHi recovery were 4.75 for PyVmT, 2.3 forMet1, and
1.5mM/min for nMEC (flux for Met1 and nMECwere calculated
using ß values calculated as described above. Buffer capacity for
Met1 was used to calculate the flux for PyVmT).
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MINO Tissue is Metabolically
Heterogeneous
Met1 cancer cells have a higher rate of proton production than
nMEC (Figure 4A), as measured by the rate of intracellular
acidification during the sodium washout experiments where
proton extrusion was blocked by inhibiting NHE1 in nominally
bicarb-free medium. Individual pHi values of nMEC and Met1
cells were significantly different in more than 98% percent of the
measured time points in the first 430 s (Welch’s t-test, P < 0.05).
Linear regression analysis for nMEC and Met1 individual pHi
values followed by analysis of covariance (ANCOVA) showed
significant difference (P < 0.001), between the slopes of the best-
fit lines (Met1 slope = −2.037 × 10−4 pHi sec

−1, nMEC slope
= −0.617×10−4 pHi sec

−1, Figure S3). The more negative slope
from the Met1 cell data suggests more rapid proton production
compared with nMEC. There was large variation in the mean
rate of change in pHi in MINO cells (Figure 4B). Based on
baseline pHi, individual MINO cells (Figure 4C) were separated
into two groups that we designated MINO high and MINO low
(Figure 4D). The MINO high group of cells had higher baseline

pHi and more rapid fall in pHi (1pHi = −2.74 × 10−4 sec−1)
than the Met1 (1pHi = −0.037 × 10−4 sec−1), the MINO low
group (1pHi = −1.471 × 10−4 sec−1) or the nMEC (1pHi =

−0.617 × 10−4 sec−1). The slopes of the best-fit lines from
the MINO low and MINO high pHi values were, however, not
significantly different.

Under baseline conditions (Figure 5), the mean pHi of Met1
cells (7.18 ± 0.01; n = 8 coverslips (145 cells)) was significantly
(P < 0.05) more alkaline than that of nMEC (6.9 ± 0.02; n = 9
coverslips (120 cells)). MINO high (7.21± 0.02; n = 4 coverslips
(9 cells)) resting pHi was significantly (P < 0.05) more alkaline
than MINO low (6.97 ± 0.02; n = 7 coverslips (59 cells)). The
baseline pHi for MINO high cells was also significantly different
from the baseline pHi for nMEC and the baseline pHi for MINO
low was significantly different from that of Met1 cells.

DISCUSSION

The standard of care for patients diagnosed with DCIS is
eradication treatment by surgery and/or radiation. A better

FIGURE 4 | MINO cells display metabolic heterogeneity compared with Met1 and nMEC. Cancer cells (Met1, n = 6 coverslips) have a higher rate of

intracellular acidification than normal mammary epithelial cells (nMEC, n = 3 coverslips) as measured by sodium washout experiments. Mean pHi values were

significantly different in more than 98% percent of the measured time points prior to but none after 430 s (Welch’s t-test, P < 0.05). (A) The mean rate of acidification

in MINO cells (n = 11 cells) falls nominally between the nMEC and Met1 rates of acidification, without significant difference (B). Baseline pHi for individual MINO cells

divide into two groups that we called MINO high (n = 6 cells) and MINO low (n = 5 cells) (C). MINO high cells share similar baseline pHi as Met1 cells, MINO low cells

share similar baseline pHi as nMEC cells. The separation of MINO high and low data reflects the Met1 and nMEC attributes, respectively. (D) Markers on the plot

represent the average and standard error for pHi at each time point.
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FIGURE 5 | Metabolic heterogeneity exists within the MINO, some cells

are more cancer-like in their metabolism while others retain a more

normal-like metabolism. Mean baseline pHi and standard error are shown

for Met1 [7.18 ± 0.01; n = 8 coverslips (145 cells)], nMEC [6.9 ± 0.02; n = 9

coverslips (120 cells)], MINO high [7.21 ± 0.02; n = 4 coverslips (9 cells)] and

MINO low [6.97 ± 0.02; n = 7 coverslips (59 cells)]. Means were calculated

from the first 200 s of measurement. Analysis of variance for repeated

measures demonstrated differences in baseline pHi. The

Student-Newman-Keuls multiple comparison test was used post-hoc to

determine which groups were different with P < 0.05 chosen as indicative of

significant differences. *P < 0.05.

stratification of risk for progression could dramatically reduce
overtreatment in the clinic. Using a mouse model of DCIS,
the MINO mouse model, we conducted a series of experiments
to define the relationship between DCIS and invasive cancer.
Here we investigated the hypothesis that a subset of cells
within the MINO precancer has a cancer-like “Warburgian”
(Warburg, 1956) glucose uptake and pH regulation profile.
We first asked whether MINO precancer and tumor cells
were heterogeneous in their levels of markers of glucose
transport and hypoxia. We showed the presence of a subset of
GLUT1 and CAIX positively stained MINO cells indicating that
MINO tissue might be metabolically heterogeneous (Figure 1).
CAIX is a hypoxia inducible protein that also regulates cell pH
(Airley et al., 2003). Increased expression of both GLUT1 and
CAIX in breast cancer has been found to correlate to metastasis,
invasion, and poor survival outcomes (Pinheiro et al., 2011;
Lock et al., 2012). 2-NBDG uptake in individual nMEC, MINO
precancer, and Met1 cancer cells (Figure 2) was different, and
the wide range of distribution in the MINO cells suggests that
MINO cells are not only microanatomically and functionally
heterogeneous (Maglione et al., 2004; Namba et al., 2004, 2006;
Damonte et al., 2008) but are also metabolically heterogeneous.
FDG-PET imaging studies in the MINO mouse model have
previously shown that precancerous tissue has increased uptake
of glucose compared with normal mammary epithelium, though
less than the invasive cancers (Abbey et al., 2004, 2006). FDG-
PET signal per voxel is the product of individual cell uptake and

the cell density. Cell density is increased in invasive carcinoma
compared with MINO, but individual cell glucose uptake in
MINO might also be increased. We have shown here that MINO
precancer tissue is composed of populations of individual cells
with different glucose uptake and pHi regulation. Our previous
work documents that all of the cell types in the MINO are
derived from individual precancer “stem-like” cells (Damonte
et al., 2008).

To investigate pH regulation within individual cells we
measured the pHi with the pH-sensitive dye BCECF using
ammonium washout (Figure 3) and sodium washout (Figure 4)
experiments. Using single cells from nMEC, PyVmT tumor, and
the Met1 cancer cell line we determined that baseline pHi was
more alkaline in both tumor cells as compared with normal cells.
Moreover, the rate of pHi recovery after NH4Cl washout was
faster in both types of cancer cell lines, suggesting that cancer
cells have higher NHE1 activity. NHE1 is critical in normal
mammary branching morphogenesis (Jenkins et al., 2012), helps
to maintain an alkaline pHi in cancer cells (McLean et al., 2000),
and is involved in the early events leading to the malignant
transformation and G2/M entry of NIH3T3 mouse fibroblasts
(Reshkin et al., 2000; Putney and Barber, 2003) as well as for
human cancer cell polarization and invasion (Lagana et al., 2000;
Reshkin et al., 2000; Paradiso et al., 2004).

Next we measured intracellular proton production rates by
superfusing cells with sodium ion-free buffer thereby inhibiting
NHE1 activity. The Met1 cells had a higher mean rate of fall
in pHi suggesting a higher mean rate of proton production
than the nMEC (Figure 4A) and, interestingly, the mean MINO
acidification rate fell roughly between the acidification rates of
the nMEC and Met1 cells (Figure 4B). An examination of the
individual MINO baseline pH values showed that MINO cells
could be divided into aMINO high group and aMINO low group
(Figure 4C). When we averaged and plotted the MINO high and
MINO low groups separately we found both MINO groups had a
nominally greater acidification rate than Met1 cells and MINO
high cells had a nominally greater acidification rate compared
with MINO low cells (Figure 4D). Finally, the mean baseline pHi

for Met1 andMINO high were more similar to each other than to
nMEC and MINO low and vice versa (Figure 5). Ideally it would
be advantageous to be able to identify the cell type with respect to
luminal and basal markers, however, we have not yet been able to
immunophenotype the cells in the flow chambers. Nevertheless,
these experiments demonstrate distinct populations within the
MINO of cells with cancer-like and normal-like metabolisms.
These data collectively confirmed our hypothesis that a subset of
cells with altered metabolism (higher glucose uptake and proton
extrusion rate) exists within the MINO.

Literature suggests that the transition to glycolysis and the
acidification of the microenvironment plays a significant role
in cancer progression. This, together with our finding that
precancer tissue shows heterogeneity in NHE1 activity and
glucose uptake raises the question of the role of this subset
of cells in the progression from precancer to invasive cancer.
The frequency and location of these cells in the precancer
may correlate with progression rates. Moreover, this raises
an interesting mechanistic question about the role of pH
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micro-gradients as a component of the cancer and precancer
microenvironment.
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Figure S1 | Cartoon explaining how the NH4Cl washout protocol is used to

measure pHi regulation after acidification. When NH4Cl is added to the

superfusate, the concentrations of NH3 in the intra- and extracellular fluids are

assumed to be equivalent and, according to the isohydric principle, fixed

intracellular buffers are considered to be in equilibrium with NH3+H
+

<>NH+

4 . In

step 1, NH3 enters the cell as a gas to raise pHi. In step 2 pHi falls as NH+

4 enters

the cell via cation transporters. In step 3, NH4Cl is washed out of the extracellular

space with Na-free media after which NH3 gas exits the cell leaving excess

protons behind and acidifying the cell. In step 4 normal Na is replaced in the

superfusate and Na-dependent transporters regulate pHi.

Figure S2 | Linear regression followed by analysis of covariance (ANCOVA)

for the representative data of the pHi during the recovery phase

(1400–1800 s) of the ammonium washout experiment in nMEC, Met1, and

PyVmT cells showed that the slope of the best-fit lines for both cancer

cell types (Met1 and PyVm) were significantly different (P < 0.001)

compared with the slope of the best-fit line for nMEC (Met1 slope = 7.678

× 10−4 pHi sec
−1, PyVmT slope = 1.008 × 10−3 pHi sec

−1, nMEC slope =

1.721 × 10−4 pHi sec
−1).

Figure S3 | Met1 cancer cells have a higher rate of intracellular

acidification than nMEC cells during sodium washout experiments where

proton extrusion is blocked by NHE1 inhibition. Linear regression analysis for

nMEC and Met1 individual pHi values followed by analysis of covariance

(ANCOVA) showed significant difference (P < 0.001), between the slopes of the

best-fit lines (Met1 slope = 2.037 × 10−4 pHi sec
−1, nMEC slope = 0.617 ×

10−4 pHi sec
−1). The more negative slope from the Met1 cell data suggests more

rapid proton production compared with nMEC.
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