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Linguistic microfeatures to predict L2 writing proficiency: A case study in Automated Writing Evaluation
by Scott A. Crossley, Kristopher Kyle, Laura K. Allen, Liang Guo, & Danielle S. McNamara

This study investigates the potential for linguistic microfeatures related to length, complexity, cohesion, relevance, topic, and
rhetorical style to predict L2 writing proficiency. Computational indices were calculated by two automated text analysis tools (Coh-
Metrix and the Writing Assessment Tool) and used to predict human essay ratings in a corpus of 480 independent essays written for
the TOEFL. A stepwise regression analysis indicated that six linguistic microfeatures explained 60% of the variance in human scores
for essays in a test set, providing an exact accuracy of 55% and an adjacent accuracy of 96%. To examine the limitations of the
model, a post-hoc analysis was conducted to investigate differences in the scoring outcomes produced by the model and the human
raters for essays with score differences of two or greater (N = 20). Essays scored as high by the regression model and low by
human raters contained more word types and perfect tense forms compared to essays scored high by humans and low by the
regression model. Essays scored high by humans but low by the regression model had greater coherence, syntactic variety,
syntactic accuracy, word choices, idiomaticity, vocabulary range, and spelling accuracy as compared to essays scored high by the
model but low by humans. Overall, findings from this study provide important information about how linguistic microfeatures can
predict L2 essay quality for TOEFL-type exams and about the strengths and weaknesses of automatic essay scoring models.

Introduction

An important area of development for second language (L2) students is learning how to share ideas with an audience through
writing. Some researchers suggest that writing is a primary language skill that holds greater challenges for L2 learners than
speaking, listening, or reading (Bell & Burnaby, 1984; Bialystok, 1978; Brown & Yule, 1983; Nunan, 1989; White, 1981). Writing
skills are especially relevant for L2 learners involved with English for specific purposes (i.e., students primarily interested in using
language in business, science, or the law) and for L2 learners who engage in standardized writing assessments used for admittance
into, advancement within, and eventual graduation from academic programs.

Given the importance of writing to L2 learners, it is no surprise that investigating how the linguistic features in a text can explain L2
written proficiency has been an important area of research for the past 30 years. Traditionally, this research has focused on
propositional information (i.e., the lexical, syntactic, and discoursal units found within a text Crossley, 2013; Crossley & McNamara,
2012), such as lexical diversity, word repetition, text length, and word frequency (e.g., Connor, 1990; Engber, 1995; Ferris, 1994;
Frase, Faletti, Grant, & Ginther, 1999; Jarvis, 2002; Jarvis, Grant, Bikowski, & Ferris, 2003; Reid, 1986; 1990; Reppen, 1994). More
recent studies have begun to assess lexical proficiency using linguistic features found in situational models (i.e. a text’s temporality,
spatiality, and causality, Crossley & McNamara, 2012) and rhetorical features more closely related to argument structure (Attali &
Burstein, 2005; Attali, 2007). While research in this area continues to advance, a coherent understanding of the links between
linguistic features in the text and how these features influence human judgments of writing proficiency is still lacking (Jarvis et al.,
2003). There are many reasons for this dearth of understanding, chief among them being the sheer variety of topics, prompts,
genres, and tasks that are used to portray writing proficiency. Another is the incongruence among the types, numbers, and
sophistication of the methods used to investigate writing proficiency, which renders it challenging to make comparisons between
measures and studies (Crossley & McNamara, 2012).

This study focused specifically on how linguistic microfeatures produced in an independent writing task can explain L2 writing
proficiency. Our focus is on one specific domain common to L2 writing research studies: a standardized independent writing
assessment as found in the Test of English as a Foreign Language Internet-Based Test (TOEFL iBT). These independent writing
tasks require students to respond to a writing prompt and assignment without the use of secondary sources. Standardized
independent writing assessments like those found in the TOEFL are an important element of academic writing for L2 learners and
provide a reliable representation of many underlying writing abilities because they assess writing performance beyond morphological
and syntactic manipulation. These assessments ask writers to provide extended written arguments that tap into textual features,
discourse elements, style issues, topic development, and word choice and that are built exclusively from their experience and prior
knowledge (Camp, 1993; Deane, 2013; Elliot et al., 2013). Our study builds on previous research in the area, but overcomes
previous shortcomings by relying on advanced computational and machine learning techniques, which provide detailed information
about the linguistic features investigated and the models of writing proficiency developed in this study. Although general
explanations of the variables and models employed in AES systems have been described in previous publications (e.g., Enright &
Quinlan, 2010), detailed explanations of the variables and scoring algorithms are uncommon in published studies on TOEFL writing
proficiency because of the need to protect proprietary information (Attali, 2004; 2007; Attali & Burstein, 2005; 2006). In one of the
most detailed of these published studies, for example, Enright and Quinlan (2010) provided an outline of the aggregated features
included in e-rater (e.g., organization, development, mechanics, usage, etc.) and the relative weights for each of these aggregated
features. While some of the aggregated features are fairly straightforward (e.g., lexical complexity, which is comprised of the
microfeatures average word length and word frequency), others are much more opaque. For instance, the aggregated features
“organization€@€ and “development, €€ which when combined are responsible for 61% of the e-rater score, are reported to be
comprised of the “number of discourse elements€@€ and the “length of discourse elements, €€ respectively. However, little
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information is provided with regard to what qualifies as a “discourse element€€ or how these elements are computationally
identified (though see Burstein, Marcu, and Knight, 2003). Thus, our goal in the current study is to contribute to the growing body of
knowledge regarding the identification of microfeatures by providing a comprehensive, rigorous, and elaborative model of L2 writing
quality using microfeatures, which can be used as a guide in writing instruction, essay scoring, and teacher training.

In addition, we examined the limitations and weaknesses of statistical models of writing proficiency (cf. Deane, 2013; Haswell &
Ericsson, 2006; Herrington & Moran, 2001; Huot, 1996; Perelman, 2012; Weigle, 2013a). We did this by qualitatively and
quantitatively assessing mismatches between our automated scoring model and human raters. This analysis provides a critical
examination of potential weaknesses of automated models of writing proficiency that questions elements of model reliability while, at
the same time, provides suggestions to improve such models. By noting both the strengths and weaknesses of an automatic essay
scoring model, we hope to address concerns among scholars and practitioners about issues of model reliability (Attali & Burstein,
2006; Deane, Williams, Weng, & Trapani, 2013; Perelman, 2014; Shermis, in press) and construct validity (Condon, 2013; Crusan,
2010; Deane et al., 2013; Elliot et al., 2013, Haswell, 2006; Perelman, 2012).

L2 Writing

Writing in a second language (L2) is an important component of international education and business. Research into L2 writing has
investigated a wide spectrum of variables that explain writing development and proficiency, including first language background
(Connor, 1996), writing purpose, writing medium (Biesenbach-Lucas, Sigrun, & Wesenforth, 2000), cultural expectations (Matsuda,
1997), writing topic, writing audience (Jarvis et al., 2003), and the production of linguistic microfeatures (Crossley & McNamara,
2012; Ferris, 1994; Frase et al., 2000; Grant & Ginther, 2000; Jarvis, 2002; Reid, 1986, 1990, 1992; Reppen, 1994). The need to
teach and assess L2 writing quickly and efficiently at a global scale increases the importance of AES systems (Weigle, 2013b).

The current study operated under the simple premise that the linguistic microfeatures in a text are strongly related to human
judgments of perceived writing proficiency. The production of linguistic microfeatures in written text, especially in timed written texts
where the writer does not have access to outside sources, reflects writers’ exposure to a second language and the amount of
experience and practice they have in understanding and communicating in that second language (Crossley, 2013; Dunkelblau,
1990; Kamel, 1989; Kubota, 1998). Also, unlike L1 writing, L2 writing can strongly vary in terms of linguistic production (e.g., syntax,
morphology, and vocabulary) and is dependent on both writing ability and language ability (Weigle, 2013b). Thus, linguistic
microfeatures in a text are reliable cues from which to judge L2 writing proficiency (although not the only cues). Common cues found
in writing studies relate to propositional features, such as the lexical, syntactic, and discourse units found in the text. Researchers
have used such cues to investigate L2 writing development and L2 writing constraints using longitudinal approaches (Arnaud, 1992;
Laufer, 1994), approaches that predict essay quality (Crossley & McNamara, 2012; Ferris, 1994; Engber, 1995), approaches that
examine differences between L1 and L2 writers (Connor, 1984; Crossley & McNamara, 2009; Reid, 1992; Grant & Ginther, 2000),
approaches that examine differences in writing topics (Carlman, 1986; Hinkel, 2002; Bonzo, 2008; Hinkel, 2009), and approaches
that examine different writing tasks (Cumming et al., 2005, 2006; Guo, Crossley, & McNamara, 2013; Reid, 1990). More recently,
researchers have started to investigate situational cues (Zwaan, Magliano, & Graesser, 1995) related to a text’s temporality,
spatiality, or causality (Crossley & McNamara, 2009; 2012). Such studies provide foundational understandings about writing
proficiency, the linguistic development of L2 writers, how L2 writers differ linguistically from L1 writers, and how prompt and task
influence written production.

L2 Writing Proficiency

Our main interest in this paper is the examination of L2 writing proficiency. The most common approach to assessing writing
proficiency is to assess relationships between linguistic microfeatures in an essay and the scores attributed to that essay by an
expert human rater. In general, researchers have focused on lexical, syntactic, and cohesion microfeatures and how such features
can predict essay scores.

Studies that have examined lexical features have found that higher rated L2 essays contain more words (Carlson, Bridgeman,
Camp, & Wanderers, 1985; Ferris, 1994; Frase et al., 1999; Reid, 1986; 1990), use words with more letters or syllables (Frase et al.,
1999; Grant & Ginther, 2000; Reid, 1986, 1990; Reppen, 1994), and demonstrate greater lexical diversity (Engber, 1995, Grant &
Ginther, 2000; Jarvis, 2002; Reppen, 1994). Syntactically, L2 essays that are rated as higher quality include more subordination
(Grant & Ginther, 2000) and instances of passive voice (Ferris, 1994; Grant & Ginther, 2000). From a cohesion perspective,
researchers have investigated explicit connections and referential links within text. The findings from these studies do not
demonstrate the same level of agreement as those that investigate lexical and syntactic features of text. For instance, some past
studies have shown that more advanced L2 writers produce a greater number of connectives (Jin, 2001) and pronouns (Reid, 1992),
while more recent studies demonstrate that higher rated essays contain fewer conditional connectives (e.g., if-then), fewer positive
logical connectives, (e.g., and, also, then), less content word overlap, less given information, and less temporal cohesion (e.g.,
aspect repetition; Crossley & McNamara, 2012; Guo et al., 2013). In general, the findings from these studies indicate that linguistic
variables related to lexical sophistication, syntactic complexity, and, to some degree, cohesion can be used to distinguish high
proficiency L2 essays from low proficiency L2 essays.

Automatic Essay Scoring (AES)
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Once it is established that linguistic microfeatures in a text can be used to separate high and low quality essays, it becomes possible
to consider using such features to automatically score essays. Any computerized approach to analyzing texts falls under the field of
natural language processing (NLP). NLP investigations of writing focus on how computers can be used to understand and analyze
L2 written texts for the purpose of studying L2 writing development and proficiency. Prior to the development of NLP tools, such
research required manually coding texts for linguistic microfeatures of interest, which is prone to errors, time consuming, and cost
prohibitive (Higgins, Xi, Zechner, & Williamson, 2011). However, advances in computational linguistics have led to new techniques
that allow researchers to automatically extract linguistic information from texts (Brill & Mooney, 1997; Dikli, 2006). These extraction
techniques have led to the development of computer systems that can automatically provide assessments of the content, structure,
and quality of written prose (Shermis & Barrera, 2002; Shermis & Burstein, 2003; Shermis, Burstein, & Leacock, 2006). Such
systems are known as Automatic Essays Scoring (AES) systems.

AES systems can assist teachers in scoring essays in low-stakes classroom assessments and can also offer students greater
opportunities for writing practice and feedback (Dikli, 2006; Page, 2003). Additionally, AES systems can benefit large-scale testing
services by providing automated and reliable ratings for high-stakes writing assessments, such as the Graduate Record Exam
(GRE) or the TOEFL (Dikli, 2006). In both situations, AES systems reduce the demands and complications often associated with
human writing assessment, such as time, cost, and reliability (Bereiter, 2003; Burstein, 2003; Myers, 2003; Page, 2003). Of course,
AES systems are not without their detractors. A position statement written by the Conference on College Composition and
Communications, the largest writing conference in North America, categorically opposes the use of AES systems in writing
assessment (2004). Other researchers voice concerns that AES systems cannot assess the entire construct of writing because they
fail to address issues of argumentation, purpose, audience, and rhetorical effectiveness, which are hallmarks of quality writing
attended to by human raters (Condon, 2013; Deane, 2013; Haswell, 2006; Haswell & Ericsson, 2006; Herrington & Moran, 2001;
Huot, 1996; Perelman, 2012). More importantly, AES systems are generally only successful at scoring limited writing genres such as
the independent writing genre found in the TOEFL and less successful at assessing other genres such as authentic performance
tasks and portfolio based-writing, which are considered more credible and valid forms of writing (as compared to large-scale
commercial assessments; Condon, 2013; Elbow & Belanoff, 1986; Wardle & Roozen, 2013).

A few examples of AES systems that rely on NLP to assess writing are e-rater(R) (Burstein, 2003; Burstein, Chodorow, & Leacock,
2004), IntelliMetric (Rudner, Garcia, & Welch, 2005; 2006), Intelligent Essay Assessor (IEA; Landauer, Laham, & Foltz, 2003), and
the Writing Pal (W-Pal) system (Crossley, Roscoe, & McNamara, 2013; McNamara, Crossley, & Roscoe, 2013). All of these systems
provide scores for original essays through a comparison with a training set of annotated essays. Thus, the systems are based on
the notion that essay quality is associated with specific and measurable groups of linguistic measures found in the text. AES
methods first require human raters to code a set of essays for holistic quality as well as the presence of certain text properties, such
as topic sentences, thesis statements, and evidence statements. The essays are then analyzed by the AES system along numerous
linguistic dimensions related to lexical sophistication, syntactic complexity, grammatical accuracy, rhetorical features, and cohesion.
This step allows the engine to extract linguistic features from the essays that can serve to discriminate higher- and lower-quality
essays. In the last step, the extracted linguistic features are given weights and combined to create statistical models. These
weighted statistical models can then be used to score essays along the previously selected dimensions.

Reliability and accuracy of Automated Essay Scoring systems. High agreement between AES engines and human raters has
been reported in a number of studies (Attali, 2004; Landauer, Laham, & Foltz, 2003; Landauer, Laham, Rehder, & Schreiner, 1997;
McNamara et al., 2013; Vantage Learning, 2003; Warschauer & Ware, 2006). The reported correlations for most AES systems
typically range from .70 to .85 with one human rater, which is consistent with the range found between two human raters
(Warschauer & Ware, 2006). For instance, in an unpublished study (Attali, 2008) reported in Enright and Quinlan (2010) involving e-
rater, two human raters reached an agreement of r = .70 while one human rater and e-rater reached an agreement of r = .76. Weigle
(2010) reported that correlations between the scores assigned by two human raters for 772 essays written by 386 ESL students in
response to two prompts ranged from .64 (topic 1) to .67 (topic 2), while the correlations between the averaged human scores and
the e-rater scores ranged from .76 (topic 1) to .81 (topic 2). IntelliMetric reported mean correlations between automated scores and
a human score between .83 and .84, respectively (Rudner et al., 2006). Using linguistic microfeatures taken from the computational
tool Coh-Metrix, which helps power the W-Pal AWE system, McNamara et al. (2013) reported a correlation of r = .81 between their
regression model and human scores for 240 TOEFL independent essays. Unlike models reported by e-rater and IntelliMetric,
McNamara et al. provided details on the linguistic microfeatures that informed their models: the number of words in the text, the
average syllables per word, noun hypernymy scores, past participle verbs, and conditional connectives.

The true agreement between human raters and AES engines is typically reported in two ways: perfect agreement and perfect-
adjacent agreement. Perfect-agreement reports the number of identical scores between humans and an AES system while perfect-
adjacent agreement reports the number of scores that are within one point of each other. In an investigation of the e-rater system,
Attali and Burstein (2006) reported perfect agreement ranging from 46% to 58%, based on the test and grade level of examinees.
Attali (2008) reported that two human raters reached 56% exact and 97% adjacent agreement, while one human rater and e-rater
achieved 57% exact and 98% adjacent agreement. In a large study of TOEFL essays scores (152,000 independent essays),
Ramineni, Trapani, Williamson, Davey, and Bridgeman (2012) reported a 60% exact agreement and 98% adjacent agreement
between two raters, while e-rater reported 59% exact and 99% adjacent agreement with one human rater. Similarly, Rudner et al.
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(2006) investigated the accuracy of the IntelliMetric system across two studies and reported perfect agreements from 42% to 65%
and adjacent agreement from 92% to 100%.

Method

Our purpose in this study was to examine the potential for automatic indices reported by the computational tools Coh-Metrix and
WAT to predict human scores of essay quality in a corpus of independent essays written for the TOEFL.

Corpus

Our selected corpus of independent essays samples was collected from two administrations of the TOEFL-iBT. The essays were
composed by two groups of 240 test-takers who were stratified by quartiles for each task (N =480). The essays were written on two
different prompts (one prompt per form). The essays, the final scores, and the demographic information of the test-takers were
directly provided by the Educational Testing Service (ETS). The 480 test-takers included both English as a Second Language (ESL)
and English as a foreign language (EFL) learners. They were from a variety of home countries and linguistic backgrounds.

Scoring Rubric

The TOEFL independent writing rubric, which describes five levels of writing performance (scored 1 through 5), was used to score
the independent essays (2008 rubric here). In the rubric, linguistic sophistication at the lexical and syntactic levels is emphasized in
addition to the development and the coherence of the arguments along with syntactic accuracy. An independent essay with a score
of 5 is defined as being a well-organized and developed response to the given topic, displaying linguistic sophistication and
containing only minor language mistakes. In contrast, an essay with a score of 1 has serious problems in organization, idea
development, or language use.

Human Judgments

Two expert raters trained by ETS scored each essay using the standardized holistic rubrics described above. The final holistic score
of each essay was the average of the human rater scores if the two scores differed by fewer than two points. Otherwise, a third rater
scored the essay, and the final score was the average of the two closest scores. While inter-rater reliability scores are not provided
for the TOEFL-BT scores in the public use dataset, Attali (2008) reported that weighted Kappas for similarly double scored TOEFL
writing samples were .70.

Research Instrument

The primary research instruments we used in this study were Coh-Metrix (e.g., Graesser, McNamara, Louwerse, & Cai, 2004;
McNamara & Graesser, 2012; McNamara, Graesser, McCarthy, & Cai, 2014) and the Writing Assessment Tool (WAT; Crossley et
al., 2013). Both Coh-Metrix and WAT represent the state of the art in computational tools and together report on hundreds of
linguistic indices related to text structure, text difficulty, rhetorical patterns, and cohesion through the integration of pattern
classifiers, lexicons, shallow semantic interpreters, part-of-speech taggers, syntactic parsers, and other components that have been
developed in the field of computational linguistics (Jurafsky & Martin, 2008). WAT, unlike Coh-Metrix, was developed specifically to
assess writing quality. As such, it includes a number of writing-specific indices related to global cohesion, contextual cohesion, n-
gram accuracy, lexical sophistication, key word use, and rhetorical features. The majority of Coh-Metrix and WAT indices are
normed for text length (except raw counts such as token counts, type counts, and type-token ratio). Unlike other scoring engines
such as e-rater, Coh-Metrix and WAT do not calculate errors in grammar, usage, mechanics and style, which have been important
predictors of essay quality in previous studies (Enright & Quinlan, 2010). In total we selected 189 indices from Coh-Metrix and WAT
that all had theoretical links to writing quality. The various linguistic constructs measured along with their associated indices and
theoretical links are discussed briefly in Appendix A. For more detailed descriptions, we refer readers to Graesser et al., 2004,
McNamara & Graesser, 2012, and McNamara et al., 2014.

Statistical Analysis

We first divided the TOEFL essay corpus into a training and a test set following a 67/33 split (Witten, Frank, & Hall, 2011). Thus, we
had a training set of 320 essays and a test set of 160 essays. To control for prompt-based effects, we conducted a MANOVA that
examined if the selected linguistic variables demonstrated significant differences between the two prompts. All variables that showed
prompt-based effects were removed. We then conducted Pearson correlations to assess relationships between the selected
variables and the human scores using the training set only. Those variables that demonstrated significant correlations (p < .050)
with the human scores were retained as predictors in a subsequent regression analysis. Prior to inclusion, all significant variables
were checked for multicollinearity to ensure that the variables were not measuring similar constructs. Our cut-off for multicollinearity
was r=>.70. If two or more indices were highly correlated with each other, we selected the index with the highest correlation to the
human raters for inclusion in the regression and removed the other, redundant variable(s).

The selected indices were next regressed against the holistic scores for the 320 essays in the training set with the essay scores as
the dependent variable and the Coh-Metrix indices as the predictor variables using a stepwise method. The derived regression
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model was then applied to the essays in the test sets to predict the scores. The R? provided us with an estimate for the amount of
variance in human scores that the model explains. The model from this regression analysis was then applied to essays held back in
the test set to assess how well it worked on an independent set of essays (i.e., how generalizable the model was to essays it was
not trained on).

Exact and adjacent matches between the model and the human raters provided us with another means of assessing the reliability of
essay scoring rubrics and automated scoring algorithms. The premise behind such an analysis is that a score that is only off by one
point (i.e., adjacent accuracy) is more acceptable than a score that is off by 2 or more points (Attali & Burstein, 2006; Dikli, 2006;
Rudner, Garcia, & Welch, 2006; Shermis, Burstein, Higgins, & Zechner, 2010).

Analysis

Prompt-Based Analysis

To control for prompt-based writing effects, which can affect linguistic production during writing (Crossley, Weston, Sullivan, &
McNamara, 2011; Hinkel, 2002; 2003), a MANOVA was conducted using the selected Coh-Metrix and WAT indices as the
dependent variables and the two TOEFL prompts as the independent variables. Of the 189 selected indices, only 59 of the indices
did not demonstrate prompt-based effects (defined as p > .05 in the MANOVA). These 59 indices were thus candidates for inclusion
into our models of essay writing quality.

Correlations with Human Ratings
Correlations were conducted between the 59 variables from Coh-Metrix and WAT that did not demonstrate prompt-based effects. Of
these 59 variables, 43 demonstrated significant correlations with human scores for essay quality as found in the TOEFL dataset.

Multicollinearity Analysis

We next checked for multicollinearity (defined as r> .700) between the 43 variables to ensure they were not measuring similar or
overlapping microfeatures (i.e., we selected one independent feature for each linguistic construct). Eighteen of the 43 variables
yielded strong correlations with one another. For these 18 variables, we removed the variable that demonstrated the lowest
correlation with the human scores of writing quality. For instance, Number of words correlated strongly with Number of types (r =
.836), but, because Number of types exhibited a stronger correlation with ratings of essay quality than Number of words, Number of
types was kept for the analysis and Number of words was removed. After controlling for multicollinearity, we were left with 34
variables for our regression analysis. These 34 variables are presented in Table 1 based on the strength of correlation with the
human judgments of essay quality.

Table 1: Correlations between selected indices and human ratings of essay quality

index I o [index r
Number of types |0.680‘ <.OO1‘ Incidence of determiners ‘0.182 ‘ <.001 ‘
. - . I <-
Frequency of spoken bi-grams 0.546 .001 |[Incidence of possibility modals 0.164 <.001
Incidence of 'and" 10.392.001 |Incidence of split infinitives 0.158 [<.001
Word familiarity content words -0367 .001 ||Word imageability every word -0.157 ||<.001
. - Mean of location and motion ratio
CELEX written frequency for content words <.001 -0.157 ||<.001
0.366 scores
Incidence of agentless passives 0.358 001 Total number of paragraphs in essay |0.154 001
Incidence of perfect verb forms 0.331 <0 01 Minimal edit distance (all stems mean))||0.150 <0 01
Average of word hypernymy 0.329 <00 1 Incidence of hedges 0.150 001
- < <

Word meaningfulness all words Incidence of emphatics 0.148

0.304.001 .001

5/23



. < <
Incidence of downtoners 0.267 001 Stem overlap -0.147 001
LSA body to conclusion 0.254(< Incidence of amplifiers 0.134 |<
.001 .010
Incidence of conjuncts 0.254 © InC|denc'e of positive causal -0.122 )
.001 |lconnectives .010
. - < . . -
Incidence of noun phrases 0243/ 001 Incidence of split auxiliaries 0.106 050
Number of motion verbs per verb phrases 0.224 <00 1 Incidence of adjectival phrases -0.105 <05 0
Word concreteness component score 0 216 ;O 1 Incidence of the verb 'seem’ 0.099 250
Subordinating conjunctions 0.198 <00 1 Incidence of body paragraph n-grams (0.098 <05 0
Relative clause pronoun deletion in present < . <
participles 0.195 001 Proportion of key words 0.091 050

Regression Analyses

Training set. A stepwise regression analysis using the 34 indices as the independent variables to predict the human scores yielded

a significant model, F (6, 352) = 55.176, p < .001, r=.716, R2 =.512, for the training set. Six Coh-Metrix and WAT indices were
included as significant predictors of the essay scores. The six indices were: Number of types, Word imageability every word,

Proportion of key words, Incidence of ‘and', LSA body to conclusion, and Incidence of perfect verb forms.

The model demonstrated that the six indices together explained 51% of the variance in the evaluation of the 320 independent

essays in the training set (see Table 2 for additional information). t-test information for the six indices together with the amount of

variance explained are presented in Table 3.

Table 2: Stepwise regression analysis for indices predicting the independent essay scores: Training set

Entry Index added r 2 B B S.E

Entry 1 Number of types 0.654 0.428 0.017 0.608 0.001
Entry 2 Word imageability every word 0.676 0.456 -0.017 -0.162 0.004
Entry 3 Proportion of key words 0.696 0.485 4.339 0.146 1.303
Entry 4 Incidence of 'and’ 0.703 0.495 0.036 0.116 0.013
Entry 5 LSA body to conclusion 0.710 0.504 0.173 0.114 0.064
Entry 6 Incidence of perfect verb forms 0.716 0.512 0.010 0.099 0.004

Note: B = unstandardized B; B = standardized; S.E. = standard error. Estimated constant termis 5.414.

Table 3: t-value, p-values, and variance explained for the six indices in the regression analysis: Training set
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Index t P 2

Number of types 12.325 p<.001 0.428
Word imageability every word -4.026 p<.001 0.028
Proportion of key words 3.330 p<.001 0.028
Incidence of 'and’ 2.693 p<.010 0.010
LSA body to conclusion 2.712 p<.010 0.009
Incidence of perfect verb forms 2.342 p<.050 0.008

Test set. We used the model reported for the training set to predict the human scores in the test set. To determine the predictive
power of the six variables retained in the regression model, we computed an estimated score for each integrated essay in the
independent test set using the B weights and the constant from the training set regression analysis. This computation gave us a
score estimate for the essays in the test set. A Pearson’s correlation was then conducted between the estimated score and the

actual score assigned on each of the integrated essays in the test set. This correlation with its R? was then calculated to determine
the predictive accuracy of the training set regression model on the independent data set.

The regression model, when applied to the test set, reported r = .773, R? = 598. The results from the test set model demonstrated
that the combination of the six predictors accounted for 60% of the variance in assigned scores of the 160 essays in the test set,
providing increased confidence for the generalizability of our model.

Exact and Adjacent Matches

We used the scores derived from the regression model to assess the exact and adjacent accuracy of the regression scores when
compared to the human-assigned scores. For this analysis, we rounded up the essay scores to the closest integer (i.e., a score of
4.5 was rounded up to a 5). Our baseline comparison for this model was against a default score of 3 for each essay. A default score
of 3 would provide an exact accuracy of 37% and an adjacent accuracy of 78%. The regression model produced exact matches
between the predicted essay scores and the human scores for 263 of the 480 essays (55% exact accuracy). The model produced
exact or adjacent matches for 460 of the 480 essays (96% exact/adjacent accuracy). The measure of agreement between the actual
score and the predicted score produced a weighted Cohen’s Kappa for the adjacent matches of .463, demonstrating a moderate
agreement. A confusion matrix for the results is presented in Table 4.

Table 4: Confusion matrix for the total set of essays showing actual and predicted essay scores

Actual Essay Score Predicted Essay Scores
1 2 ‘3 ’4 ’5 ’
1 1 2 0 0
2 0 15 |25 0
3 0 9 142 24 |2
4 0 66 85 |3
5 0 0 14 68 |20

Post-hoc Analysis
Our model miscalculated human scores by a factor greater than one in four percent of the data (i.e., the predicted scores were
beyond adjacent scores; n = 20). These 20 essays provide an opportunity to analyze model components that may influence
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reliability and text components that may influence human ratings that are not captured by our automated indices. The purpose of the
following analysis is to explore the extent to which the misscored essays can provide valuable information concerning model
reliability and human scoring. Our corpus consisted of those essays in which the human raters assigned a score of 5 and the model
assigned a score of 3 (n = 14) and in which the human raters assigned a score of 4 and the model assigned a score of 2 (n = 1). We
label these essays high/low. We also examined essays in which the human raters assigned a score of 3 and the model assigned a
score of 5 (n = 2) and in which the human raters assigned a score of 2 and the model assigned a score of 4 (n = 3). We label these
essays low/high.

Our post-hoc analysis was both qualitative and quantitative in nature. The 20 essays were scored by expert raters on linguistic
features found in the TOEFL scoring rubric. These analytic scores were used to statistically assess the elements of the text that
human raters found important and to examine differences between the high/low and low/high essays. The 20 essays were also
assessed using the computational indices taken from the regression analysis. These linguistic features were used to examine
differences between the high/low and low/high essays.

Analytic TOEFL scoring rubric. A coding scheme was developed to assess the major linguistic features found in the TOEFL
scoring rubric (see Appendix B). These features included topic, task, development, coherence, and language use (i.e., syntactic
variety, syntactic structure/accuracy, word choice, idiomaticity, vocabulary range, and spelling).

Human judgments. Two expert raters with over 5 years of teaching English to non-native speakers both abroad and in the United
States were trained on the rubric using a training set of 25 TOEFL independent essays. The raters reached agreement on each
analytical item after the first training session (r> .70)The raters then independently scored each of the essays in the post-hoc
analysis corpus. If the raters disagreed by two or more points, the raters adjudicated the scores. After adjudication, all items except
syntactic variety reported acceptable inter-rater reliability (see Table 5 for results).

Table 5: Inter-rater reliability statistics for the analytic features in the essay scoring rubric

Feature Cronbach's alpha Pearson's r Weighted Kappa
Topic 0.867 0.805 0.705
Task 0.937 0.884 0.860
Development 0.891 0.816 0.613
Coherence 0.881 0.792 0.732
Syntactic variety 0.701 0.549 0.519
Syntactic structure 0.921 0.864 0.845
Word choice 0.853 0.772 0.680
Idiomaticity 0.879 0.786 0.712
\ocabulary range 0.778 0.637 0.595
Spelling 0.895 0.835 0.810

>Correlations between analytic features and human scores. To assess links between the analytic scores and the holistic
scores, we conducted correlations between the mean scores for the two raters on each analytic feature and the holistic scores
assigned to the essays (see Table 6). The correlations demonstrated that 7 out of the 10 analytic features demonstrated significant
correlations with the holistic scores. The strongest correlations were reported for spelling, appropriate word choice, syntactic
structure/accuracy, and idiomaticity. Although Coh-Metrix and WAT measure lexical and syntactic structures, they do not measure
the accuracy of the structures produced.

Table 6: Correlations between analytic features and holistic scores
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Feature r p

Topic 0.187 > .050
Task 0.061 >.050
Development 0.430 >.050
Coherence 0.472 < .050
Syntactic variety 0.620 <.010
Syntactic structure/accuracy 0.787 <.001
Word choice 0.819 <.001
Idiomaticity 0.672 <.001
\Vocabulary range 0.595 <.010
Spelling l0.932 |< .001

MANOVA high/low and low/high essays (analytic features). A MANOVA was conducted using the analytic indices as the
dependent variables and the high/low and low/high categorizations as the independent variables. Seven out of the ten analytic
features demonstrated significant differences between the categorizations and 8 of 10 of the analytic features showed a medium or
larger effect size (Cohen, 1988; see Table 7). The seven features that demonstrated significant differences were the same that
reported significant correlations between analytic features and holistic scores. The results indicate that essays scored high/low were
rated as having greater coherence, greater syntactic variety, greater syntactic structure/accuracy, better word choices, better
idiomatic language, greater vocabulary range, and better spelling than low/high essays. As in the correlation analysis, the strongest
effect sizes were reported for spelling, word choice, and syntactic structure.

Table 7: MANOVA results for predicting high/low and low/high classifications using analytic essay features

|Analytic features IHigh/Low ILow/High F p lhp2 || Cohen’s d
Topic 5.433(0.904) [5.100(1.084)  [0.465 [>.050 0.025 |0.334
Task 4.667 (1.319)  |4.800 (1.441)  [0.037 |>.050 [0.002 |-0.096
Development 3.900 (0.870)  [3.100(0.548)  [3.661 [>.050 [0.169 |1.100
Coherence 4.133(0.694)  [3.000(1.323) [6.313 [<.050 [0.260 ||1.073
Syntactic variety 4.400 (0.507)  |3.600(0.652) [8.151 |<.050 |0.312 |1.370
Syntactic structure/accuracy 4.500 (0.627) 2.600 (0.652) 33.844 |<.001 ”0.653 2.971
Word choice 4.467 (0.550)  [2.800(0.274)  [41.36 |<.001 |0.697 [3.837
Idiomaticity 4200 (0.592)  |2.800 (0.671)  [19.746 |<.001 |0.523 [2.213
Vocabulary range 4.467 (0.667)  [3.300(0.837)  [10.171 [<.010 [0.361 |[1.542
Spelling 4.933(0.594)  |2.200(1.323)  (96.363 [<.001 [0.843 [2.724

MANOVA high/low and low/high essays (computational indices). A MANOVA was conducted using the computational indices
from the regression as the dependent variables and the high/low and low/high categorizations as the independent variables. Two
out of the six indices demonstrated significant differences between the categorizations and four of the six indices demonstrated
medium or larger effect sizes (Cohen, 1988; see Table 8). The two features that demonstrated significant differences were the
number of types and incidence of perfect verbs. The results indicate that essays scored high/low contained fewer tokens and fewer
perfect verb forms than essays scored low/high.

Table 8: MANOVA results for predicting high/low and low/high classifications using computational indices
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‘Computational indices HHigh/Low HLow/High HF ‘p th2 HCohen’sd
Number of types 131.800 (14.447)  [167.400 (32.067) [11.477 |<.010 [0.389 |-1.431
Word imageability every word 317.721(6.239)  [318.801 (10.964) [0.077 [>.050 [0.004 |-0.121
|Proportion of key words 0.104 (0.032) 0.102 (0.017) 0.028 [>.050 [0.002 [0.078
Incidence of 'and' 3.600 (2.586) 5.400 (2.191) 1.939 [>.050 [j0.097 [-0.751
LSA body to conclusion 0.952 (0.770) 1.484 (1.242) 1.320 [>.050 |j0.068 [-0.514
Incidence of perfect verb forms ~ [8.841 (6.847) 18.552(7.730)  [8.141 |<.050 [0.311 [-1.329
Discussion

Automated models of human essay scoring can provide strong evidence for how microfeatures of language found in the text can
predict essay quality. The current study demonstrates that a regression model using six linguistic microfeatures related to breadth of
lexical production, lexical sophistication, key words use, local and global cohesion, and tense can explain 60% of the variance in the
human scores for the TOEFL essays in our test set. The same microfeatures can be used to predict human essay scores 55% of
the time and provide adjacent matches 96% of the time. These six microfeatures, their calculations, and their weights in a regression
analysis provide a straightforward, comprehensive, rigorous, and elaborative model of TOEFL independent writing quality that has
applications in classroom teaching and assessment, teacher training, standardized testing situations, and industrial development.

A post-hoc analysis of our findings demonstrated that the essays scored high by the regression model and low by human raters
contained a greater number of word types and perfect tense forms compared to essays scored high by human raters and low by the
regression analysis. On the other hand, the analytic feature analysis demonstrated that essays scored high by humans but low by
the regression model had greater coherence, syntactic variety, syntactic structure/accuracy, words choice, idiomaticity, vocabulary
range, and spelling accuracy as compared to essay scored high by the model but low by human raters. These findings highlight
potential problems with automated models of writing quality, especially those based on Coh-Metrix and WAT, and provide examples
to better understand issues of model reliability (Attali & Burstein, 2006; Deane et al., 2013; Perelman, 2014; Shermis, in press) and
construct validity (Condon, 2013; Crusan, 2010; Deane et al., 2013; Elliot et al., 2013, Haswell, 2006; Perelman, 2012). Conversely,
the findings also afford us the opportunity to consider where scoring mismatches in human and automated approaches occur and,
thus, provide convenient examples to guide the development of natural language processing tools.

Regression Analysis

The regression model demonstrates that the strongest predictor of essay quality is the number of word types used by an L2 writer,
explaining about 43% of the variance in the model (see Table 2). This index is informative for a number of reasons. First, the index
relates to a writer’'s breadth of vocabulary knowledge, with more word types indicating a greater vocabulary. Second, the number of
word types also strongly correlates with the number of words in a text (r=.836) indicating that test-takers who produce more types
(and thus more words) will receive a higher essay score. The next strongest predictor is word imageability scores, which explained
about 3% of the variance in the regression model. The regression model indicates that test-takers who produce less imageable
words will receive a higher score than those who produce more imageable words. Thus, lexical sophistication is an important
predictor of L2 writing quality. The third strongest predictor is the proportion of key words in the essay, which explains about 3% of
the variance in the human scores. The regression model indicates that test-takers who use more key words specific to the prompt
(i.e., words commonly used by other test-takers for the same prompt) will receive a higher score. Those who use fewer key words
are presumably less on topic and will receive a lower score. The next two indices in the regression analysis are related to cohesion.
The first index, the incidence of ‘and,’ is related to local cohesion and explains 1% of the variance in the human scores. The index
demonstrates that test-takers who use a greater number of ‘and’s are rated as high proficiency writers, presumably because they
make greater connections between words. The second index of cohesion, LSA body to conclusion score, is related to global
cohesion. This index explains 1% of the variance and indicates that writers who have greater semantic overlap between their body
paragraphs and their conclusion paragraph will receive higher scores. The final index is the incidence of perfect forms. This index
explained 1% of the variance and demonstrates that test-takers who produce more complex verb forms will be rated as more
proficient writers.

Correlational Analysis
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Of secondary interest are the indices that demonstrated significant correlations with human ratings (see Table 1), but were not
included in the regression analysis. These correlations generally support the findings from the regression model in that better rated
essays correlated with indices of lexical sophistication (e.g., contained less frequent n-grams, less familiar words, less frequent
words, less meaningful words, and less concrete words). The correlations are less clear in terms of text cohesion. Some cohesion
indices show positive correlations with essay quality (e.g., conjuncts and subordinating conjunctions), while others show negative
correlations (e.g., stem overlap and positive causal connectives) or indicate lower cohesion through a positive correlation (minimal
edit distance). The correlations seem to indicate that conjuncts and connectives are important indicators of essay quality, but
overlap, causality, and minimal edit distance are not. The correlations also seem to demonstrate that essays that are more verbal
(i.e., contain more perfect forms and motion verbs) are rated higher than essays that are more nominal (i.e., contain a greater
incidence of noun phrases). Two other trends are evident in the correlation analysis. The first is that more syntactically complex
essays are rated higher, as evidenced by the positive correlations between essay score and indices such as incidence of agentless
passives, incidence of relative clause deletion, incidence of split infinitives, and split auxiliaries. The second trend is that essays with
more rhetorical features, such as downtoners, hedges, emphatics, amplifiers, and body paragraph n-grams are scored higher by
human raters. These correlations, along with the indices included in the regression model, provide strong indications of the types of
linguistic microfeatures that predict human ratings of essay quality.

Importantly, many of these indices relate directly to textual elements that are of concern for automated models of essay quality.
These include elements such as text cohesion and coherence, text relevance, and rhetorical purposes. While indices related to text
length, lexical sophistication, and syntactic complexity may not overlap with writing concerns voiced by both the writing studies and
educational measurement communities (e.g., domain knowledge, cultural and background knowledge, and variation in rhetorical
purposes; Condon, 2013; Deane, 2013; Haswell, 2006; Haswell & Ericsson, 2006; Herrington & Moran, 2001; Huot, 1996;
Perelman, 2012), they do indicate an ability to quickly and easily produce complex text, which should free up cognitive resources
that can be used to address rhetorical and conceptual concerns in the text, both of which are needed for writing mastery (Deane,
2013). They thus can be used to provide empirical evidence to help represent a more robust construct representation of writing
quality (Elliot & Klobucar, 2013; Kane, 2013). However, this suggestion warrants empirical investigation.

Post-hoc Analysis

Our post-hoc analysis provides an overview of the weaknesses of the tested regression model. While the adjacent accuracy
reported for our regression model is on par with previous analyses of TOEFL independent essays (Attali, 2008; Rudner et al., 2006),
4% of the essays were scored outside the adjacent range with the human ratings. The majority of these essays (n = 15) were
scored lower by the model than by human raters. The main reason for this scoring discrepancy appears to be the model’s reliance
on assigning a stronger weight to the number of word types in the essay. While essay length can be a strong indicator of an essays
organization and development (Attali & Powers, 2008), this may not be the case for all writers (Crossley, Roscoe, & McNamara,
2014). The largest effect size between the high/low and low/high essays in the post-hoc analysis was for number of word types (see
Table 8), with essays scored high by humans and low by the model averaging 132 words and essays scored high by the model and
low by the human averaging 167 words. This finding indicates that vocabulary breadth and essay length are not always
synonymous with essay quality for human raters and that the described model assigns too much importance to these microfeatures.
Similar findings, based on effect sizes, are reported for the incidence of perfect verb forms, incidence of ‘and,” and LSA body to
conclusion scores. However, since these indices only explained about 1% of the variance each in the regression model, their weight
is less predictive than that reported for word type count.

The analyses of the human ratings for analytic features provide some indications about which linguistic elements are associated
with essay quality when fewer word types are used and the text is of shorter length (see Table 7). Foremost, it appears that human
raters rely on spelling accuracy to assign scores in such cases. The problem is compounded by the notion that, according to the
Coh-Metrix calculations, the number of tokens may increase for each misspelled word. Thus, if a test-taker spells ‘the’ as both ‘the’
and ‘hte,’” that essay will be judged to have a greater number of types by the model and thus be given a higher score, because the
calculation for the incidence of tokens does not consider misspelled words. Conversely, the essay will be scored lower by human
raters because of the increased number of spelling errors.

The next two most important analytic features for humans raters in essays scored high/low and low/high are word choice and
syntactic structure/accuracy. The essays scored high by humans and low by the regression model had better word choices as
compared to those essays scored low by humans and high by the model. Thus, it is not just that words are spelled correctly, but that
words are used appropriately, something that neither the Coh-Metrix nor WAT indices assess (or for that matter, any AES system of
which we are aware). This is a major limitation of current AES systems. In addition, those essays scored high by humans and low by
the model had fewer syntactic errors as compared to those essays scored low by humans and high by the model. Again, while Coh-
Metrix calculates indices that can assess syntactic complexity, it does not report indices for syntactic accuracy (although some AES
systems do assess grammatical errors).

Implications for AES systems
Considering the correlations reported in Table 6 between the analytic features and the holistic scores for the essays, the findings
from this paper indicate that, at a minimum, a more successful AES system should include computational indices of spelling and
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syntactic accuracy (at least when L2 writing is being assessed). Automated assessments of mechanical and spelling errors are
linguistic microfeatures that computers are relatively accurate at capturing, so such an implementation should not be difficult (see e-
rater as an example). Other linguistic elements such as accurate word choice and idiomaticity are more difficult to implement and
point to areas in which AES systems need improvement, while features such as coherence and syntactic variety are already
measured by Coh-Metrix and WAT. It should be noted that the limitations discussed here are linguistic in nature and do not address
larger conceptual concerns expressed by many writing researchers regarding the inability for AES systems to assess the
effectiveness of written arguments, stated purposes, rhetorical moves, and addressing the appropriate audience.

Prompt Effects

The findings also provide evidence that researchers should use caution when examining writing quality in a corpus of essays written
on a number of different prompts. Prompt-based effects occur when linguistic features found in a writing prompt influence the writing
patterns found in essays written on that prompt (Brown, Hilgers, & Marsella, 1991; Huot, 1990). Past studies have demonstrated
prompt-based differences in text cohesion (Crossley, Varner, & McNamara, 2013), syntactic complexity (Crowhurst & Piche, 1979;
Hinkel, 2002; Tedick, 1990), and in lexical sophistication (Crossley, Weston, et al., 2011; Hinkle, 2002). The present analysis
controlled for prompt-based differences, but reported that of 189 potential indices, only 59 did not show prompt-based differences
(i.e., 69% of the indices had to be removed from the analysis because they were influenced by the prompt). Thus, prompt should be
a major concern for researchers interested in AES.

Microfeatures or Component Scores?

Afinal issue relates to the specificity of the linguistic indices that were used to predict essay scores and their subsequent
representation of the constructs within the essays. The microfeatures calculated by Coh-Metrix and WAT are, by their nature,
extremely fine-grained indices, which are intended to represent certain characteristics of learners’ essays. In many ways, this is a
strength of such microfeatures because researchers can use the linguistic indices to investigate specific questions about language
use in various forms of texts. However, the use of these fine-grained microfeatures as predictors of essay quality could potentially
lead to less stable models, which do not generalize to different prompts and tasks. It is yet to be seen whether microfeatures,
aggregated features (like those used by e-rater), or a combination of both are most informative and predictive. In future studies, we
plan to address this issue by developing component scores based on these linguistic microfeatures. The development of such
component scores may improve the stability of AES algorithms and provide more representative features, as well as provide more
informative means for formative writing feedback to students.

Conclusion

Overall, this study provides important information about how linguistic microfeatures can predict L2 essay quality and about the
strengths and weaknesses of automatic essay scoring models. Unlike previous research, this study provides specific information on
the linguistic microfeatures that correlate with L2 essay quality and a regression model that can be used to automatically assign
scores to the TOEFL essays using these linguistic microfeatures. While the results are strong, future studies should consider similar
approaches using a larger corpus of data (this study was limited to the 480 essays in the TOEFL iBT public use dataset). A larger
corpus is especially needed in analyses that examine model miscalculations, because, in strong models, miscalculations are
infrequent, leading to potentially small sample sizes (e.g., in our study only 20 essays with mismatched scores existed).

Overall, the results of this study advance our knowledge of how linguistic features in an L2 essay predict human judgments of
quality. Follow-up analyses discuss some of the weaknesses of AES systems and provide suggestions for AES system development
including the incorporation of lexical and syntactic accuracy indices. These improvements to AES systems should provide greater
overlap between human and automated ratings of essay quality. Automating essay scoring should free teachers from many elements
of essay grading that are time consuming and cost prohibitive, allowing them to focus more on other aspects of essay quality that
AES systems are poor at assessing, such as argumentation, style, and idea development.
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Appendix A: Language indices used in analysis

Basic Text Properties

Coh-Metrix provides a variety of indices that describe the basic properties and structure of a text, such as the number of words, the
number of word types (i.e., the number of unique words produced), the number of sentences, the number of paragraphs, the
average length of words, and the average length of sentences.

Cohesion indices.

Causal cohesion. Coh-Metrix calculates the level of causal cohesion in a text by measuring the ratio of causal verbs to causal
particles (Graesser, et al., 2004; Dufty, McNamara, Louwerse, Cai, & Graesser, 2004). The measure of causal verbs is based on
the frequency count of main clausal verbs identified through WordNet (Fellbaum, 1998; Miller et al., 1990). The causal particles are
counted based on a defined set of main causal verbs, such as because and as a result. Causal cohesion can reduce text
comprehension difficulties as it reveals causal relationships between simple clauses, as well as between events and actions
(Pearson, 1974-1975).

Connectives. Coh-Metrix calculates the incidence score for connectives in a text as the number of occurrences per 1000 words. In
addition to calculating a measure of all connectives contained within a given text, Coh-Metrix provides indices on five categories of
connectives (Halliday & Hasan, 1976; Louwerse, 2001): causal (because, so), contrastive (although, whereas), additive (moreover,
and), logical (or, and), and temporal (first, until). Finally, Coh-Metrix contrasts positive (also, moreover) versus negative (however,
but) connectives. Coh-Metrix also calculates the incidence of conjuncts and subordinating conjunctions in a text. Connectives and
conjuncts increase text cohesion by explicitly linking ideas and clauses together (Crismore, Markkanen, & Steffensen, 1993; Longo,
1994).

Logical operators. The logical operators measured in Coh-Metrix include variants of or, and, not, and if-then combinations. The
logical operators in Coh-Metrix are directly related to the density and abstractness of a given text. Additionally, they have been
shown to correlate with higher working memory demands. (Costerman & Fayol, 1997).

Lexical overlap. Coh-Metrix considers four forms of lexical overlap between sentences: noun overlap, argument overlap, stem
overlap, and content word overlap (McNamara, Crossley, & McCarthy, 2010). Noun overlap represents how frequently a common
noun of the same form is shared between two sentences. Argument overlap measures how often two sentences share nouns with
common stems. Stem overlap refers to how often a noun in one sentence shares a common stem with the other words types in a
second sentence. Finally, content word overlap calculates the amount of shared content words between sentences. Research has
shown that lexical overlap aids in text comprehension (Douglas, 1981; Kintsch & van Dijk, 1978; Rashotte & Torgesen, 1985).

Semantic co-referentiality. Coh-Metrix uses Latent Semantic Analysis (LSA) to measure the semantic co-referentiality of a text.
LSAis a statistical representation of deeper world knowledge used to assess the level of semantic cohesion within a text. LSA
utilizes singular value decomposition to condense large corpora of texts into approximately 300-500 dimensions (Landauer &
Dumais, 1997; Landauer, Foltz, & Laham, 1998). The dimensions represent the degree of semantic similarity between words, which
is an important indicator of text cohesion (Landauer, McNamara, Dennis, & Kintsch, 2007).

Spatial cohesion. Coh-Metrix assesses spatial cohesion with two forms of information: location information and motion information
(Dufty, Graesser, Lightman, Crossley, & McNamara, 2006; Dufty, Graesser, Louwerse, & McNamara, 2006). Both motion verbs and
location nouns are identified through WordNet (Fellbaum, 1998; Miller, et al., 1990). Spatial cohesion aids in the construction of a
well-structured situational model (Kintsch & van Dijk, 1978) that helps convey the meaning of the text.

Temporal cohesion. Temporal cohesion is measured by Coh-Metrix in three ways: aspect repetition, tense repetition, and the
combination of aspect and tense repetition. Time is represented in text through two dimensions: tense (past, present, future) and
aspect (in progress versus completed). With the use of these dimensions, Coh-Metrix calculates the consistency of tense and
aspect across a passage of text. As shifts in tense and aspect occur, the Coh-Metrix repetition score decreases. Thus, a low score
indicates that the representation of time in a given text may be disjointed, which could have a negative consequence on the
construction of a mental representation.

Structural cohesion. Coh-Metrix computes the Minimal Edit Distance (MED) for a text sample by measuring differences in the
sentential positioning of content words. A high MED value indicates that content words are located in different places within
sentences across the text, suggesting lower structural cohesion.

Paragraph cohesion. WAT calculates the lexical and semantic overlap between paragraphs (initial to middle paragraphs, middle
paragraphs to final paragraph, and initial paragraph to final paragraph) and between the essay prompt and the essay. The semantic
similarity among the paragraphs, essay, and prompt are calculated using LSA cosine values. Lexical overlap, on the other hand, is
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calculated using measures of key word overlap. High lexical and semantic overlap between paragraph types is related to judgments
of essay coherence (Crossley & McNamara, 2011).

Verb cohesion. WAT computes verb overlap using both LSA and WordNet. Using LSA, WAT computes the average cosine
between verbs in adjacent sentences. Using WordNet, WAT computes a binary score based on whether verbs in adjacent
sentences share the same synonym set. These indices are indicative of the extent to which verbs (which have salient links to
actions, events, and states) are repeated across the text.

Prompt cohesion. WAT calculates the cohesion between the text and the prompt by computing the semantic similarity between the
prompt and the response using both LSA and key word analyses. These indices have demonstrated positive correlations with
writing proficiency (Crossley, Roscoe, & McNamara, 2011).

Prompt specific key word use. WAT reports two indices of prompt-specific key word use that can be used to measure the topic
development in text. These indices compute the key words found in essays written on a specific prompt and then calculate the
frequency of these key words in a specific essay. These indices have demonstrated positive correlations with writing proficiency
(Crossley, Roscoe, et al., 2011).

Lexical indices.

Hypernymy. Coh-Metrix uses WordNet (Fellbaum, 1998; Miller et al., 1990) to report word hypernymy values for all content words,
nouns, and verbs. A hypernymy value represents the degree of specificity of a word within a conceptual hierarchy. Thus, a low
hypernymy score reflects a more abstract text. Hypernymy scores are associated with lexical knowledge and production (Crossley,
Salsbury, & McNamara, 2009).

Polysemy. Coh-Metrix measures the word polysemy value for all content words, nouns, and verbs using WordNet (Fellbaum, 1998;
Miller et al., 1990). Polysemy refers to the number of senses associated with a word; ambiguous words have more senses. Thus,
word polysemy is indicative of the level of text ambiguity. As well, it is an indicator of lexical proficiency (Crossley, Salsbury, &
McNamara, 2010).

Lexical diversity. Traditional lexical diversity (LD) indices typically measure the ratio of types (i.e., unique words occurring in the
text) by tokens (i.e., all instances of words); higher numbers (from 0 to 1) indicate greater lexical diversity (Templin, 1957). As these
indices are highly correlated with text length, they are not reliable across texts of varying token counts (McCarthy & Jarvis, 2007).
Thus, Coh-Metrix reports on more sophisticated LD indices that control for text length, including MTLD (McCarthy, 2005; McCarthy
& Jarvis, 2010) and D (Malvern, Richards, Chipere, & Duran, 2004). Measures of lexical diversity relate to the range of vocabulary a
writer or speaker knows.

Word frequency. Word frequency indices measure how often particular words occur in the English language. The indices reported
by Coh-Metrix are taken from the CELEX database (Baayen, Piepenbrock, & Gulikers, 1993), which consists of frequencies
computed from a 17.9 million-word corpus. Word frequency is an important indicator of lexical knowledge. In addition, frequent words
can be accessed and decoded more quickly than less-frequent words (Perfetti, 1985; Rayner & Pollatsek, 1994).

Word information measures. \Word information indices are calculated in Coh-Metrix using the MRC Psycholinguistic Database.
The indices provided include measures of concreteness, familiarity, imageability, and meaningfulness (Wilson, 1988). Higher
concreteness scores typically refer to words that reference objects, materials, or persons. Word familiarity refers to words that are
more readily recognized, but not necessarily more frequent (compare eat to while). Imageability refers to the ease with which words
evoke mental images. Word meaningfulness scores represent the strength of association between words. The four measures are
highly associated with word knowledge in L2 learners (Salsbury, Crossley, & McNamara, 2011).

Academic word list. WAT provides frequency counts from the Academic Word List, which consists of 3110 words commonly found
in academic writing (Coxhead, 2000). The words contained in the AWL have been linked to writing proficiency (Douglas, 2013).

Syntactic indices.

Syntactic complexity. Coh-Metrix calculates a number of indices that measure syntactic complexity. These indices include the
mean number of words before the main verb, the mean number of high-level constituents (sentences and embedded sentence
constituents) per word, the average number of modifiers per noun phrase, the incidence of embedded clauses, the incidence of ‘that’
deletion, the incidence of passives, and the incidence of infinitives. Coh-Metrix also measures syntactic similarity by calculating the
uniformity and consistency of the syntactic constructions at the clause, phrase, and word level for a given text. Higher rated essays
contain more complex syntactic structures, such as the number of words before the main verb (McNamara et al., 2010) and the
number of embedded clauses (Guo et al., 2013).

Part of speech tags. Coh-Metrix reports incidence scores for all the part of speech tags reported by the Penn Tree Bank Tag Set.
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These include word and phrase level tags for content items such as noun types, verb types, adjective types, and adverb types and
function items such as pronouns, determiners, demonstratives, modals, and prepositions (Marcus, Santorini, & Marcinkiewicz,
1993). These tags have been used to distinguish writing proficiency in previous studies (Guo, 2011; Crossley, Roscoe, et al., 2011).

N-grams indices.

N-gram accuracy. WAT assesses the n-gram accuracy of written text by comparing the normalized frequency of n-grams (bi-grams
and tri-grams) shared in both a reference corpus taken from the British National Corpus (BNC) and the language sample of interest.
The indices report correlations that represent the similarity between the frequency of occurrences in a representative corpus and a
sample text. Higher rated essays contain n-grams that occur at similar frequencies as the representative corpus (Crossley, Cai, &
McNamara, 2012).

N-gram frequency. WAT assesses the frequency of n-grams (bi-grams and tri-grams) found in a sample text. Higher proficiency
writers use less frequent n-grams (Crossley et al., 2012).

N-gram proportion. WAT reports n-gram values (bi-grams and tri-grams) based on proportion scores. More proficient writers
produce essays that contain proportionally fewer n-grams (Crossley et al., 2012).

Rhetorical features.

Paragraph specific n-grams. WAT reports on a variety of n-gram indices that are specific to the positioning of paragraphs in
writing samples (i.e., introductory, body, and concluding paragraphs). These use of quality paragraph n-grams have demonstrated
positive correlations with writing proficiency (Crossley et al., 2012; McNamara, et al., 2013).

Lexical features. WAT reports on a variety of lexical categories related to rhetorical style. These include amplifiers, private verbs,
hedges, indirect pronouns, exemplification, copula verbs (be, appear, and seem), private and public verbs, and downtoners. Such
features are important elements of written discourse (Biber, 1988)

Appendix B
Analytical rating form

Read each essay carefully and then assign a score on each of the points below. For the following evaluations, you will need to use
a grading scale between 1 (minimum) and 6 (maximum).

We present here a description of the grade as a guide using the example of does not meet the set criterion in any way versus meets
the set criterion in every way. For example, a grade of 1 would relate to not meeting the criterion in any way, and a grade of 4 would
relate to somewhat meeting the criterion. The distance between each grade (e.g., 1-2, 3-4, 4-5) should be considered equal. Thus,
a grade of 5 (meets the criterion) is as far above a grade of 4 (somewhat meets the criterion) as a grade of 2 (does not meet the
criterion) is above a grade of 1 (does not meet the criterion in any way).

‘Score HDefinition ‘
1 ‘ Does not meet the criterion in any way ‘
2 Does not meet the criterion

‘3 ‘Almost meets the criterion but not quite

Meets the criterion but only just

Meets the criterion

‘6 ‘Meets the criterion in every way
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