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ARTICLE

Characterizing pre-transplant and post-transplant
kidney rejection risk by B cell immune repertoire
sequencing
Silvia Pineda 1,2, Tara K. Sigdel2, Juliane M. Liberto2, Flavio Vincenti2, Marina Sirota1,3,4 & Minnie M. Sarwal2,4

Studying immune repertoire in the context of organ transplant provides important informa-

tion on how adaptive immunity may contribute and modulate graft rejection. Here we

characterize the peripheral blood immune repertoire of individuals before and after kidney

transplant using B cell receptor sequencing in a longitudinal clinical study. Individuals who

develop rejection after transplantation have a more diverse immune repertoire before

transplant, suggesting a predisposition for post-transplant rejection risk. Additionally, over

2 years of follow-up, patients who develop rejection demonstrate a specific set of expanded

clones that persist after the rejection. While there is an overall reduction of peripheral B cell

diversity, likely due to increased general immunosuppression exposure in this cohort, the

detection of specific IGHV gene usage across all rejecting patients supports that a common

pool of immunogenic antigens may drive post-transplant rejection. Our findings may have

clinical implications for the prediction and clinical management of kidney transplant rejection.
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Kidney transplantation is the preferred treatment of end-
stage renal disease (ESRD) and chronic kidney disease.
Even though there have been significant improvements in

technologies and tissue matching based on histocompatibility
testing for donor/recipient human leukocyte antigens (HLA)1,
predicting graft outcome is still an unsolved problem. Unmea-
sured tissue mismatching at other minor, non-HLA loci2,3 can
also drive alloimmune injury with acute and chronic rejection,
resulting in poor long term graft outcomes4. Moreover, around
50% of kidney allografts, with no major HLA mismatches, are still
lost within 10 years of transplantation5. We have previously
hypothesized that non-HLA loci, may influence the immune
response of the recipient against his kidney donor graft6. It is
clear that more research needs to be done to better understand
and predict the recipients’ risk of rejection to substantially
improve long term patient and graft outcomes. Nevertheless, the
diversity of the immune response to various immunogenic epi-
topes is as yet, poorly understood. The role of T cells in organ
transplant rejection has been demonstrated7, but there is
increasing appreciation of the additional role of B cells and
antibodies in triggering this process8. In this regard, B-cell
receptor sequencing (BCRSeq) is a promising high-throughput
technique9 that allows the sequencing of millions of Immu-
noglobulin (Ig) regions in parallel to study the immune response.
The key feature of B cells is their enormous diversity. Each
individual is capable of producing >1013 different antibodies10,
which enables them to recognize a vast array of foreign antigens.
Human BCRs or Ig consist of two identical heavy chains (IgH)
formed by five isotypes: IgM, IgD, IgA, IgE, and IgG and two light
chains. The intact antibody contains a variable and a constant
domain. Antigen binding occurs in the variable domain, which is
generated by recombination of a set of variable (V), diversity (D)
and joining (J) gene segments forming the B-cell immune
repertoire, and its diversity is mainly concentrated in the com-
plementary determining region 3 (CDR3). During the process of
affinity maturation, somatic hypermutation (SHM) occurs in the
variable region. A potent adaptive immune response is reliant
upon the expansion of B-cell clones and a process termed affinity
maturation, during which somatic mutations are introduced into
the Ig gene rearrangements and B cells with higher affinity for a
given antigen are selected.

The study of the immune repertoire in organ transplant is
crucial to understand what triggers and sustains the rejection
process and how it may eventually accelerate the path toward
graft failure. With the advances of next generation sequencing
and robust computational approaches, we can study the VDJ
region in fine detail11,12. To date, T-cell immune repertoire
analysis in kidney transplant has been carried out in very limited
numbers of patients13–15, and even though BCRSeq has been
applied to other diseases and human immune responses, such
as multiple sclerosis16, influenza vaccine17 or immunodeficiency
disorders18, there is a lack of studies in transplant rejection. In
kidney transplant, BCRSeq has been only carried out in the
context of tolerance19, HLA sensitized kidney transplant candi-
dates undergoing desensitization therapy20 and B-cell infiltration
comparing clonal expansion in blood and graft21. Another
application on BCRSeq in transplant was previously published in
a small cohort of 12 heart transplant recipients22.

Recognizing the importance of the humoral arm of immune
response in late transplant rejection and chronic allograft failure,
we characterize the peripheral blood immune repertoire using
BCRSeq in a prospective, longitudinal study. We find that the
immune repertoire diversity before transplantation is higher in
those individuals who reject the kidney showing also expansion
of certain clones and IGHV genes along the 24 months of follow-
up. These results may help predict the rejection risk before

engraftment, and may have clinical implications in the detection
of particular antigens driving rejection.

Results
Study subjects. We performed BCRSeq in 83 peripheral blood
samples from 27 unique patients and executed the analytical
pipeline shown in Fig.1. Three clinical phenotype groups, defined
by blinded central pathology reads of serial allograft biopsies
scored by Banff criteria23,24 and the chronic allograft damage
index (CADI) score were considered in this study: Non-
progressors (NP; n= 10) had low non-incremental CADI score
without acute rejection, progressors with no rejection (PNR;
n= 10) had incremental CADI score over 2 years without
rejection, and progressors with rejection (PR; n= 7) had incre-
mental high CADI scores over 2 years with rejection episodes.
Demographics, causes of kidney failure and immunosuppression
usage is provided in Table 1. It is important to highlight some
characteristics about these patients. The parent study that these
patients were enrolled from had an overall low rate (17%) of
biopsy confirmed acute rejection (mean{min,max}= 12 {6,24}
months rejection time). These patients were all at low immuno-
logic risk for rejection (peak panel reactive antibody sensitization
status < 20%), and also had low rates of generation of donor-
specific antibody (DSA) and in fact only two of the rejection
phenotype patients included in the analysis had DSA. The
generation of DSA to HLA, and MICA were measured in all
serial sera over the course of the study25. National experience
with similar immunosuppressive protocols in similar patient
cohorts have confirmed similar good clinical outcomes and low
rejection rates26–28.

B-cell immune repertoire sequencing. BCRSeq was done on
genomic DNA (gDNA) samples extracted from blood clots on
81 samples from 27 kidney transplant recipients at three time
points (0, 6, 24 months). Sequencing obtained a total number
of 327,703 reads (mean 4045/sample) after quality control
(see methods section). For validation of the results and further
evaluation of each isotype, we additionally extracted RNA from
matched PBMC that were available for 55 samples, collected at
the same time as the blood clot, and performed complementary
DNA (cDNA) sequencing at greater depth obtaining 1,773,330
reads for IgD (mean 31,667/sample), 1,708,227 reads for IgM
(mean 30,504/sample), 973,444 reads for IgA (mean 17,383/
sample), 139,7345 reads for IgG (mean 24,953/sample), and
29,000 reads for IgE (mean 5178/sample) (Supplementary Fig. 1).
Libraries for each isotype were amplified separately and then
pooled for sequencing; therefore, comparative cross isotype
analysis is not feasible.

As shown in Fig. 1b, we defined a clone as a group of cells
descended from a common ancestor molecule that have the
same IGHV and IGHJ segment, same CDR3 length, and 90%
nucleotide identity between CDR3s as previously defined in
studies of adaptive B-cell responses18. This definition allows to
study diversity, shared or common clones, and clonal expansion
in the context of alloimmunity in kidney transplant. The number
of unique clones per individual at each time point is shown as
a barplot in supplementary material (Supplementary Fig. 1).
For stringency of data analysis, we discounted samples with <100
clones (69 samples from gDNA and 55 samples from cDNA were
left for further study. IgE isotype was discarded completely due
to a very small number of reads). In addition, we filtered out
patient 8 in the NP group from subsequent analysis, as we
recognized after the run, that he had developed EBV+ post
transplant lymphoproliferative disease (PTLD) at 2.2 years post
kidney transplant, characterized by proliferation of Epstein Barr
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virus (EBV) infected B cells. We observed an increased number of
clones at time 6 in this patient, with lower clonal diversity before
kidney transplant and at 24 months after kidney transplant. Since
libraries were amplified from an invariant amount of template, a

higher fraction of B cells in the blood may have resulted in a
larger number of clonotypes represented in the sequenced
products. Because of the distinct and unique pathologic process
in this patient, this sample was excluded from future analysis.
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Fig. 1 Overall study pipeline. a Schematic representation of antibody structure and the process of VDJ recombination responsible for the diversity produced
in the immune repertoire. b B-cell clone defined as cells from a common ancestor and c analytical pipeline of the study: B-cell sequencing for gDNA and
cDNA, diversity analysis considering the number of clones (richness) and the frequency of each clone (Shannon entropy), network analysis and clonal
and IGHV gene analysis

Table 1 Subjects characteristics included in the study

Total NP PNR PR P-value

Total subjects 27 10 10 7

Age donor Mean [min–max] 30 [15–47] 26 [15–47] 33 [17–44] 31 [20–42] 0.2
Age recipient Mean [min–max] 12 [1–19] 13 [8–19] 10 [3–19] 11 [1–17] 0.3
Gender donor Male/female 14/13 7/3 5/5 2/5 0.2
Gender recipient Male/female 16/11 5/5 6/4 5/2 0.7
Donor source Cadaver 13 6 4 3

Living/related 14 4 6 4 0.6
Race recipient Caucasian 12 2 6 4

AA 6 4 1 1 0.2
Asian 1 0 0 1
Other 8 4 3 1

Immunosuppression Steroid-based 13 6 4 3
Steroid-free 14 4 6 4 0.6

HLA mismatch Mean [min–max] 4 [1–6] 4 [3–6] 4 [1–6] 4 [2–6] 0.8
Cause of ESRD Non-immune structural

mediated
4 2 2 0 0.6

Other/unknown 13 5 5 3
Reflux 10 3 3 4

Rejection time (months) Mean [min–max] 12.5 [6.0, 24.0]
DSA 2 0 1 1 -

There were no significant differences for any of the donor and recipient characteristics by clinical outcome, including HLA mismatch and end-stage renal disease (ESRD) that was classified in three main
groups: Non-immune structural mediated (polycystic kidney disease and aplastic/hypoplastic/dysplastic kidneys), Reflux (obstructive uropathy, pyelonephritis/interstitial nephritis and reflux
nephropathy) and other/unknown (focal segmental glomerulosclerosis, cystinosis, hemolytic uremic syndrome, cortical necrosis, other and unknown). Class I DSA was developed in one individual in the
PNR and also was found at time 0 in another individual in the PR group
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Pre-transplant B-cell diversity is associated with rejection. As
shown in Fig. 1c, we examined the B-cell immune repertoire
diversity considering species richness (number of unique clones)
and Shannon entropy (equation (1) from methods) across time
points and clinical outcomes using a linear regression model
considering the number of clones or entropy as a dependent
variable and clinical outcome or SHM as an independent factor
variable. The repertoire before kidney transplant in PR was sig-
nificantly more diverse than in the NP (richness: P-value= 0.005,
entropy: P-value= 0.01) with the same trend persisting at
6 months after kidney transplant (richness: P-value= 0.02,
entropy: P-value= 0.02), and with no distinguishable group dif-
ferences at 2 years post transplant (Fig. 2a and Supplementary
Fig. 2). cDNA sequencing data post transplant showed the same
trend in greater repertoire diversity at 6 months after transplant,
predominantly for the IgD isotypes (richness: P-value= 0.02,
entropy: P-value= 0.03) (Fig. 2b and Supplementary Fig. 2).
There was no confounding effect on the data from various
demographic and clinical variables, such as recipient age, gender,
race, donor source, type of immunosuppression, HLA mismatch,
and cause of renal failure. Since the B-cell response of a 1-year-
old (the minimum age in the data) and 19-years-old (the max-
imum age in the data) might be very different, we performed a
sensitivity analysis excluding these two patients and the results
remained significant (NP vs. PR at time 0: richness: P-value=
0.01, entropy: P-value= 0.03). In another measure of immune
repertoire diversity, we evaluated the SHM, defined as the fre-
quency of mutations in each V gene segment, and found a trend
for higher number of SHM for PR before transplant, and trend
for higher SHM in the IgD isotype in PR at 6 months post
transplant (P-value= 0.06).

B-cell diversity changes across time by clinical outcome. To
find whether the immune repertoire diversity changes across time
by the clinical outcome, we modeled the longitudinal data using
linear-mixed effect models considering the interaction between
clinical outcome and time. We found that NP and PR behaved

differently across time after transplant showing an increase in
diversity in NP and a decrease in diversity in PR, while for PNR
the diversity remained invariable across time. This was observed
for gDNA (richness: P-value= 0.007, entropy: P-value= 0.001,
Fig. 3a) and all isotypes for cDNA, with the most significant
differences in entropy being for IgM and IgD isotypes (IgA: P-
value= 0.07, IgD: P-value= 0.02, IgG: P-value= 0.05, IgM: P-
value= 0.04, Fig. 3b). The plots for richness with corresponding
P-values are shown in Supplementary Fig. 3. As observed in the
plots, one individual has an extra sample at time 32 months,
which might skew the results, thus a sensitivity analysis was
performed excluding this sample from the analysis and observing
similar results except for the IgG and IgM isotypes where the
significance is lost (gDNA-entropy: P-value= 0.004. cDNA-
entropy: IgA: P-value= 0.1, IgD: P-value= 0.05, IgG: P-value=
0.08, IgM: P-value= 0.1).

Diversity measures may be affected by biological and technical
sampling. The diversity of a sample can differ markedly from the
overall diversity in a repertoire since only a fraction of billions of
cells are represented, which is known as missing species problem.
Technical sampling may exist because each sample may vary on
sequencing depth and some degree of experimental errors. To
deal with the missing species problem, we used Recon
(reconstruction of estimated clones from observed numbers)
tool29, which estimates the overall clone size distribution. Recon
outputs accurate and robust estimates of a set of diversity
measures, including richness and entropy allowing robust
comparisons of diversity between individuals. To deal with the
sequencing depth and some degree of experimental errors, we
performed a downsampling strategy; a very well used strategy in
immune repertoire analysis11,17,30. In the Recon analysis
(Supplementary Fig. S4: A–E), both richness and diversity were
replicated for the gDNA data. In the cDNA data, time 6 IgD
isotype shows the trend but did not reach significance although
the longitudinal results for IgA, IgD, and IgG isotypes were
replicated. In the downsampling analysis (Supplementary Fig. S4:
F–J), everything is replicated but the time 0 for gDNA data. This
might be a consequence of the restriction that downsampling
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Fig. 2 Violin plots showing the number of clones (richness) across the three clinical outcomes. a Number of clones at time 0, 6, and 24 from gDNA
samples. b Number of clones at time 6 for the IgD isotype from cDNA samples. The P-values are obtained from the adjustment of a linear regression model
considering the number of clones as a dependent variable and clinical outcome as an independent factor variable (n= 27 samples). Violin plots represent
the probability density of the data at each value. The dot marker represents the median value with the interquartile range. Source data is provided as
Source Data File
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strategies implied, especially on the gDNA data where the
number of sequences is much lower than for the cDNA data.
In gDNA, we restricted the analysis to individuals with at least
1000 clones in order to conserve enough sequences. Down-
sampling was done to a minimum of 1062 clones in comparison
to 62,173 clones in cDNA. Despite this limitation, we observed
the trend for time 0, conserve the significance for the longitudinal
analysis in gDNA and replicated all the associations in cDNA.
In both analyses (recon and downsampling), we replicated the
results, despite some limitations highlighted here, showing the
validity of the previously reported results.

B-cell networks show differences in clonal expansion. The B-
cell repertoire can be naturally represented as a network based on
sequence diversity31. In our data, we developed a visual network
for each sample (Fig. 4 and Supplementary Figs. 5–7) where each
vertex represented a unique BCR, and the number of identical
BCRs based on their nucleotide sequences defined the vertex size.
An edge exists between vertices when they belong to the same
clone, so clusters of B cells can be shown as groups of inter-
connected vertices forming a clone. To quantify the network, we
used the Gini index, which is an unevenness measure that was
applied to the vertex and cluster distributions. When applied to
vertex size, Gini(V), the overall clonal nature is represented. If

Gini(V) is closer to 1, vertices are unequal showing expansion of
some of them, and closer to 0 otherwise. When applied to cluster
size, Gini(C), clonal dominance is represented. If closer to 1,
clusters are unequal and therefore represent dominant clones, if
closer to 0, all clusters are of equal size.

In Fig. 4 we show an example of the marked visual and
quantitative differences between representative B-cell repertoires
from each of the three clinical outcome groups, across the three
different time points (pre-transplant, and post transplant 6 and
24 months). In the PR repertoire, there is an abundance of B-cell
sequences of forming more and larger clusters of clones in
comparison with NP while PNR is located in between. Across
time, the PR group shows a decrease in the number of BCR and
unique clones in comparison with NP. The detailed B-cell
networks of every individual in the study are provided in
Supplementary Figs. 5–7. It is interesting to observe the very
diverse pattern of the B-cell network in the individual who
developed PTLD in the NP group (Supplementary Fig. 5), with no
B-cell expansion before transplant, followed by an increase of B
cells after 6 months and a clear clonal expansion accompanied
with a decrease in diversity at 24 months post transplant.

On further evaluation of the Gini Index measure (Fig. 5), the
PR group consistently showed significantly higher measures for
both the vertex and the cluster over the NP group, suggesting that
the PR group patients had higher clonal expansion at baseline,
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and further post transplant expansion of a subset of dominant
clones (P-value [linear regression] < 0.05, Fig. 5). The PNR group
falls between NP and PR as previously shown, although this time
is significantly different over the NP group at time 24 (P-value
[linear regression] < 0.05). Although the data for Fig. 5 was
generated from the gDNA data, the IgM isotype for cDNA
showed the same differences (P-value [linear regression]= 0.05)
(Supplementary Fig. 8).

Certain clones and IGHV genes are implicated in rejection.
Although our primary focus was to characterize the B-cell
repertoire by clinical outcome groups, providing a global picture
of the immune response pre- and post transplant, our data also
enabled us to perform Ig sequence-specific analysis at the clone
and the IGHV gene level.

For clonal analysis, we assessed the association of the presence
or absence of each particular clone (118,223 total clones) with the
clinical outcome (PR, PNR, NR) at each time point. Applying
Fisher’s exact test, we found 8, 4, and 21 clones nominally
associated with clinical outcomes at each of 0, 6, and 24 months,
respectively (Supplementary Table 1). While none passed multi-
ple testing correction, mainly because of a lack of power since we
have a limited sample size in an analysis with thousands of
parameters (clones), we could observe that the few clones that

approached significance (P-value < 0.05) were shared across
patients only in PR group and enriched at 24 months post
transplant.

We also considered whether there were some clones that
persisted over sampling time, more than others, within each
clinical outcome (Supplementary Fig. 9). We account for two
different measures: (1) number of persisting clones and (2) clonal
expansion. We observed that the clones that were persistent in
the PR were significantly more expanded (P-value [linear
regression]= 0.01, PR vs. NP) and showed a trend of a higher
number of persistent clones (P-value [linear regression]= 0.09).
We further examined whether these persistent clones were also
shared across different individuals within each clinical outcome.
From the 263 persistent clones detected, 23 were shared across
individuals. Five were shared within the same PNR and six within
the PR group and no clones were shared between the NP group.
In total, there were 12 shared clones that were common across
both groups of patients with progressive chronic transplant injury
and fibrosis over time (PR and PNR). The list of clones shared
across individuals is provided in supplementary material
(Supplementary Table 2).

We next performed IGHV gene analysis, looking at IGHV gene
usage per sample, defined as the number of times each IGHV
gene has been used, normalized by the number of clones (to avoid
sampling bias of certain IGHV genes), filtering out low-expressed

NP sample 1 NP sample 1
Time 0: gini(V) = 0.205 Time 6: gini(V) = 0.228

gini(C) = 0.007

PNR sample 13
Time 0: gini(V) = 0.411

gini(C) = 0.044

PR sample 23
Time 0: gini(V) = 0.398

gini(C) = 0.057

PR sample 23
Time 6: gini(V) = 0.390

gini(C) = 0.051

PR sample 23
Time 24: gini(V) = 0.389

gini(C) = 0.047

PNR sample 13
Time 6: gini(V) = 0.372

gini(C) = 0.032

PNR sample 13
Time 24: gini(V) = 0.364

gini(C) = 0.038

gini(C) = 0.015

NP sample 1
Time 24: gini(V) = 0.295

gini(C) = 0.015

Fig. 4 B-cell repertoire networks from three individuals representing the three clinical outcomes across time points. Each vertex represents a unique BCR
being the vertex size defined by the number of identical BCRs considering the nucleotide sequences. An edge exists between vertices when they belong to
the same clone as defined before, so clusters are groups of interconnected vertices forming a clone. Each sample shows the gini index obtained for the
vertex size (Gini(V)) and cluster size (Gini(C)). BCR reflects the total B-cell receptors for that specific sample and clones reflect the total number of unique
clones. Source Data is provided as Source Data File
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genes (IGHV gene usage > 0.05 in at least 10% of the samples),
and applying a linear regression model to find those genes that
were associated with each clinical outcome, at each time point.
From the 27 IGHV genes that passed the low-expression filter,
we found significant genes between the PR and NP group
(P-value < 0.05) with three genes at time 0, 7 at time 6 and 16 at
time 24 (Fig. 6a–c). From these genes, 1 (IGHV3-11) at time 0, 5
genes (IGHV3-7, IGHV3-15, IGHV3-21, IGHV3-23, IGHV4-39)
at time 6 and 16 genes (IGHV1-8, IGHV1-18, IGHV1-46, IGHV2-
5, IGHV3-7, IGHV3-11, IGHV3-15, IGHV3-23, IGHV3-30,
IGHV3-33, IGHV3-48, IGHV3-74, IGHV4-39, IGHV4-59,
IGHV4-61, IGHV5-51) at time 24 passed False Discovery Rate
(FDR) multiple testing correction. Interestingly, we found that
IGHV3-23 was the most significant and abundant gene across all
three time points in the NP vs. PR comparison (time 0: P-value=
0.04, time 6: P-value= 0.003, time 24: P-value= 0.02) (Fig. 6d).
In addition, we evaluated whether the IGHV3-23 sequences were
over represented among the shared sequences from the previous
clonal analysis. We found, using an enrichment analysis with
Fisher’s exact test, that the IGHV3-23 sequences were significantly
over represented in both, the persistent clones shared among
individuals (Supplementary Table 2) (P-value < 2.2 × 10−16),
and the clones associated with clinical outcome at time 24
(Supplementary Table 1) (P-value < 2.2 × 10−16). We observed
that individual 9 in the NR group, who had been found to share
some persistent clones with the progressors in the previous
analyses, classified with the PR group at all time points. There was
no confounding effect on the data from various demographic and
clinical variables, such as recipient age, gender, race, donor
source, type of immunosuppression, HLA mismatch, and cause
of renal failure. In addition, this gene was also found to be

significant in both the IgM (P-value [linear regression]= 0.008)
and IgD (P-value [linear regression]= 0.05) isotypes based on
cDNA at 24 months post transplant, in concordance with the
previous results showing consistency with these two isotypes
being most enriched in the PR group. Only three other genes were
found significant in the cDNA analysis, and all were at 24 months
post transplant in IgD and IgM isotypes (IGHV3-15 and IGHV4-
61 in IgD and IGHV4-39 in IgM).

Discussion
Diversity is an essential characteristic of the immune system, and
in healthy humans, is critical against pathogens to deal with
diseases. In organ transplant, deliberate therapeutic manipulation
is instituted clinically to allow the foreign organ to be actively
ignored or accepted by the own patient’s immune system so as to
not mount an alloimmune response, leading to rejection. B cells
are an important component of this process and have been
shown by our group and others, to be pivotal in both antigen
presentation32,33 and alloantibody production34,35. In this work,
we have used high-throughput B-cell sequencing to better
understand the diversity and clonality of B cells in the kidney
transplant recipient’s circulation, both before engraftment and
after 24 months of follow-up, with longitudinal assessment of
the B-cell immune repertoire. Overall, our analysis shows a higher
B-cell diversity before engraftment, differences longitudinally
with a decrease in diversity accompanied by clonal expansion and
an increase in certain IGHV gene usage among those who go on
to reject the grafts.

A key unmet clinical need in organ transplant is the lack of
noninvasive, sensitive, and accurate prediction of transplant injury
and poor outcomes. This task is complicated by the fact that
there are diverse factors that influence graft survival36. In this
study, we found that stable individuals had a reduced diversity
of the B-cell immune repertoire before transplant in comparison
with those who rejected the organ. The next step should be to
demonstrate the predictive value of B-cell repertoire diversity,
providing potential better biomarkers for prediction of rejection
before engraftment, and the possibility of being implemented in
clinical care and immunosuppression choices before and after
kidney transplant. If this feature is the result of any factor con-
tributing to the decrease of diversity in stable individuals, such as
environmental or genetic factors, we could not only predict the
rejection but also prevent it. Indeed, very recent findings showed
that the variation in the immune system is driven by environ-
mental and genetic factors37,38. In our study, we could not find
any association with any demographic and other clinical patient
characteristics (age, gender, race, immunosuppression, organ
source, HLA mismatches, and ESRD). In this regard, we need new
analysis to corroborate whether specific factors affect the B-cell
repertoire diversity and transplant outcomes.

Another interesting finding in our study shows that the
immune repertoire behaves differently across time depending on
the clinical outcome group. For those who show post transplant
rejection of the organ, the B-cell diversity is initially higher and
then decreases over time, whereas the reverse diversity trend is
seen in patients who do not develop rejection or chronic graft
injury. Even though all individuals received the same immuno-
suppression load after transplant, some possible explanation for
the decreased diversity in the patients who develop rejection,
may relate to the fact that these patients receive a temporarily
greatly increased load of immunosuppression for the treatment
of rejection and then are kept on higher baseline. Though this
could explain the reduction in B-cell diversity over time, and
explain the difference at 24 months post transplant, this is unli-
kely to be the cause, as the reduced diversity in the PR group is
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Fig. 5 Vertex Gini Index plotted against Cluster Gini Index. The scatter plot
represents each sample at time 0, 6, and 24. Boxplots shows the Gini(V)
and Gini(C) differences at time 24. The P-values are obtained from the
adjustment of a linear regression model considering the Gini(V) and Gini(C)
as a dependent variable and clinical outcome as an independent factor
variable for each time point (n= 27 samples). In the boxplot only time 24 is
shown but time 0 and 6 where also significant for NP vs. PR: time 0: P (Gini
(V))= 0.1, P (Gini(C))= 0.05; time 6 P (Gini(V))= 0.02, P (Gini(C))= 0.01;
time 24: P (Gini(V))= 0.003, P (Gini(C))= 0.01. The band inside the box
represents the median value, the box define the interquartile range (IQR)
and whiskers define the first and third quartile ± 1.5 × IQR. Source data is
provided as Source Data File
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also seen at 6 months post transplant, at a time when patients
have not yet developed rejection, suggesting that other active
processes are likely to be involved. The observation of selective
clonal expansion with more dominant clones only in patients
who develop both rejection and/or progressive chronic kidney
transplant injury, suggests a biologically relevant, alloantigen
driven selection, persistence and expansion of certain clones over
time, which accounts for the overall reduction in temporal
diversity. Even though we can hypothesize that the expansion of
these clones is likely linked to alloimmnue injury to the graft,
direct evidence that the expansion of these clones is alloimmune
requires additional in vitro and animal studies.

Acute rejection remains the strongest negative factor for long
term graft survival despite the rapid improvements in immuno-
suppression therapies39,40. This study also finds an association
of some IGHV genes usage with rejection, although the causal
link should be explored in future studies. The IGHV3-23 is the
most interesting gene in the gDNA analysis as it is significantly
higher used in patients who develop rejection across all measured
time points and it is over represented in the persistent clones
shared among individuals and the clones enriched among rejected
patients at 24 months post transplant. This gene is also validated
at 24 months post transplant in both the IgD and IgM isotypes
in the cDNA analysis. IGHV3-23 has been extensively associated
with bad prognosis in chronic lymphocytic leukemia41 and it has
been shown that the vast majority of IGHV3-23 sequences
retained the capacity to mediate superantigen interactions42.
B-cell superantigens are produced by viruses and bacteria, known

to bind to immunoglobulins outside the conventional antigen
binding sites43. Encounters of B cells with a superantigen have
been shown to induce proliferation, activation, migration and
deletion44. In the transplanted kidney, there is the potential for
continuous exposure to virus and bacterial antigens, relating
either to an etiology of primary vesicoureteric reflux as the cause
of ESRD or secondary urinary reflux after reimplantation of the
transplant ureter, or reflux following urinary tract infection,
the risk of which are increased with exposure to chronic immu-
nosuppression after transplantation. We adjusted the analyses
results for cause of renal failure, among other clinical and
demographic factors; the results previously discussed remain
significant although we realized that the NP misclassified patient
in the analysis (Fig. 6) had a reflux disease. Cheng et al. have also
previously found that clones in biopsy tissue of kidney transplant
recipients infiltrated by B cells had a predominance of the
IGHV3-23 gene among others45. Grover et al.46 demonstrated
that the antibodies for this particular gene were not recognizing
donor HLA antigens but rather were specific for E. coli and
Modena et al.47 showed that the burden of the number of bacteria
in urine were much higher in patients with interstitial fibrosis
and tubular atrophy than those with grafts that were functioning
well. We extend these findings demonstrating that the use of
IGHV3-23 gene is significantly higher in multiple rejecting
patients in peripheral blood and may implicate particular com-
mon antigens in driving rejection. In the future, the expression of
IGHV3-23 could be potentially used to monitor the immune
response towards the transplanted kidney.
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Extending our study using cDNA sequencing, we could repli-
cate the majority of our results in two of the isotypes (IgM and
IgD), showing lower diversity pre-transplant in the NP, being the
two most significant in the longitudinal analysis with more
expansion and dominant clones in the network analysis and also
replicating the IGHV3-23 gene. The first antibodies to be pro-
duced in a humoral immune response are always IgM and quickly
progress to the production of all the different isotypes, IgD, IgA,
IgG, and IgE but especial interest requires the IgD isotype48. IgD
is co-expressed with IgM and secreted IgD exists and has a
function in blood, mucosal secretions and on the surface of innate
immune effector cells such as basophils49. Basophils are white
cells that fight viruses, bacteria, parasites and fungi and they have
been shown to be involved in renal diseases and transplant
rejection50. Thus, another evidence that relates the B-cell
responses to the rejection process with viruses and bacteria.
Future studies are needed to demonstrate that this activation is
due to differences in the recipient microbiome with implications
in diagnostics and therapeutics.

This study allowed us to identify the relevance of some of these
BCR clones, identify the BCR clones of clinical relevance with
allograft rejection, and show that there is a likely relevance of
these clones with heterologous immunity, given the enrichment
of these clones in patients with colonized urinary tracts before
transplant and their biological relevance to pathogen responses.
A better understanding of the immune repertoire behavior in
kidney transplant would not have been possible without the
application of BCRSeq in combination with a robust imple-
mentation of a computational and statistical pipelines. Never-
theless, there are several limitations of our approach that should
be recognized: First, our sample size is highly selected and rela-
tively small in a set of pediatric patients and even though we
reached statistical significance in our analysis and validated in
two different sources of data, further analysis will be needed to
corroborate our results. Secondly, our results are not exempted of
the influence that biological and technical sampling may have in
our analysis. Diversity measures are dependent of several issues:
the fact that only a fraction of billions of cells in a repertoire are
represented in a sample, differences in sequencing depth and
possible experimental errors. We have extensively controlled for
all these issues, first in the laboratory, running the same amount
of blood for each sample in the same batch and second, com-
putationally and statistically, applying recon tool to estimate the
overall repertoire and performing downsampling to control for
sequencing depth and experimental errors. Thirdly, we have
performed BCRSeq using two different sources, gDNA and
cDNA. Sequencing gDNA facilitates estimation of the clonality of
a given Ig sequence since the number of sequence reads will be
proportional to the number of gDNA molecules. Sequencing
cDNA provides an estimate of the relative expression level of
various Ig sequences in the repertoire. It has been shown that for
T-cell receptors, the clonotype characterization performed on
cDNA is not that good as in gDNA showing that the relative
proportion of individual clones differed greatly15 or that the
tracking of HIV-specific clones is only successful with gDNA, but
not mRNA51. Fourthly, the influence of immunosuppression may
be a confounding factor on this type of analysis. In this study all
the samples come from a clinical trial where the same immu-
nosuppression load was received by all patients after transplan-
tation. Nevertheless, we controlled by the two types of steroid-
based and steroid-free to make sure that this was not an issue,
observing no differences in the results. Finally, the cohort we
present here is that of pediatric transplants. The majority of the
transplanted clinical aspects are similar in children and adults.
The immunosuppression and regimens used are similar, creati-
nine is the major serum biomarker, acute rejection is determined

primarily by means of biopsy with the use of the Banff criteria
and the rejection mechanisms of the kidney graft are generally
similar52, therefore the majority of the research done in adults
or children may apply to both. However, other aspects such as
non-compliance/non-adherence to immunosuppression, immu-
nological aspects, the primary kidney diseases, leading to kidney
failure, often associated with urologic issues, and the immuniza-
tions that are required before transplantation may differ, there-
fore further analysis in an adult population will be necessary
to generalize these findings.

Despite these limitations, our data reveal that higher pre-
transplant diversity is observed in individuals who go on to reject
the organ, suggesting a predisposition of rejection, which may
have future implications in predicting risk of rejection before
engraftment, immunosuppression choices and clinical care
practices. After 24 months of follow-up, an overall reduction in
diversity over time accompanied by the persistence and expan-
sion of certain clones and a higher use of several IGHV genes is
observed in the rejection group, which may implicate particular
common antigens in driving rejection. Special interest is observed
for the increased use of IGHV3-23 gene among the rejection
patients since it has been previously associated with kidney
transplantation and could be a key component to drive the
rejection process. This work presents a longitudinal analysis of
the B-cell immune repertoire in organ transplant promoting more
studies to confirm these findings since they may have clinical
implications in predicting, controlling, monitoring and treating
kidney rejection.

Methods
Study design. We studied 81 samples for gDNA and 56 matched samples for
cDNA longitudinally at time 0, 6, and 24 months from a total number of 27
pediatric recipients who received a primary kidney transplant. The subjects in this
study come from a clinical trial (SNSO1 multicenter study) where subjects were
randomized (1:1) to a traditional low-dose steroid-based immunosuppression
regimen (steroids, standard daclizumab induction until the second month post
transplant, and maintenance immunosuppression with tacrolimus (Prograf,
Astellas Pharma) and MMF (CellCept, Hoffman-La Roche) or a steroid-free
immunosuppression regimen (prolonged daclizumab induction until the sixth
month post transplant, tacrolimus and MMF). All subjects were enrolled following
IRB approval and had informed consent. In this study, 14 patients received a
steroid-avoidance regimen, while 13 received a steroid-based immunosuppressive
regimen53 and none of these patients received immunosuppression before trans-
plant as this was one exclusion criteria. Treatment for rejection consisted of three
pulses of intravenous corticosteroid (10 mg/kg) and baseline immunosuppression
intensification.

All the samples used in the study had an associated serial allograft biopsy,
which was read by a central pathologist, using semi-quantitative histological
scores. Clinical acute rejection was defined as an acute rejection episode,
associated with graft dysfunction, based on a greater than 10% rise in serum
creatinine from baseline values, and confirmed through central pathological
reading of the biopsies according to the updated Banff classification23,24.
Chronic allograft injury was defined using the chronic allograft damage index
(CADI) score. The patients were classified in three clinical outcomes defined
by CADI score and rejection episodes Non-progressors (NP) had low non-
incremental CADI score on three serial biopsies over 2 years, without acute
rejection, progressors with no rejection (PNR) had higher CADI score on their
serial biopsies over 2 years and incremental across the time points without
rejection, and progressors with rejection (PR) had incremental high CADI scores
on their serial biopsies over 2 years with rejection episodes. These patients were
very carefully selected from a larger cohort of 120 patients, matching for
demographic variables, and for all NP, and PNR to have no evidence inflammation
on biopsy, or subclinical injury as measured by absent donor-specific antibodies.
None had HLA or haplo- identical graft as this was an exclusion criteria for
enrollment54. All samples were collected from 12 different US pediatric transplant
programs between 2004 and 2006, under IRB approved protocols. The study was
also approved by The Human Research Protection Program (HRPP) of the
University of California, San Francisco and Stanford University to allow analysis
of biobanked samples. All patients/guardians provided informed consent to
participate in the research, in full adherence to the Declaration of Helsinki. The
clinical and research activities being reported are consistent with the Principles of
the Declaration of Istanbul as outlined in the Declaration of Istanbul on Organ
Trafficking and Transplant Tourism.
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Isolation of gDNA and RNA. Blood samples (4.5 ml) were collected into a 5 ml red
top tube and incubated at room temperature for 30 min until the clot was formed.
The sample was then centrifuged at 2000 × g for 5 min using a swinging bucket
rotor. The upper layer of serum was then transferred to another cryotube and the
clot was stored in the same tube at −80 °C until use. Genomic DNA from whole-
blood clot was extracted by using Clotspin Baskets and the Gentra PuregeneBlood
Kit (Qiagen, Valencia, CA).

For RNA extraction from kidney needle biopsy (Qiagen, Valencia, CA) and
stored at −80 °C; total RNA was extracted using a master mix of 790 µl TRIzol
and 10 µl glycogen. Tissue samples were homogenized, incubated at 15 to 25 °C
for 5 min and 160 µl chloroform was added for phase separation. The mixture
was incubated again at 25 °C for 2 min followed by centrifugation at 4 °C and
used for RNA extraction using the RNeasy Micro Kit (Qiagen Catalog no.4004).
RNA quantity and integrity were determined with the Thermo Scientific
NanoDrop ND-2000 UV–Vis Spectrophotometer and Agilent Bioanalyzer,
respectively.

B-cell sequencing. Genomic DNA templated PCR reactions were prepared
from 100 ng gDNA aliquots to generate six independent barcoded libraries per
sample. Multiplexed primers to the IgH J or FR1 or FR2 framework regions per
the BIOMED-2 design were used55. Ten-nucleotide ‘barcode sequences’ in the
primers were used to indicate the sample identity and replicate library identity
for each PCR reaction. PCR was performed with AmpliTaq Gold (Roche) poly-
merase with the following program: 94 °C for 5 min; 35 cycles of (94 °C for 30 s,
60 °C for 45 s, 72 °C for 90 s); and final extension at 72 °C for 10 min. A second
PCR reaction was carried out to ensure that libraries were not amplified to
saturation prior to gel purification and sequencing. In all, 0.4 μl of each first
PCR product templated the second PCR reaction using external primers specific
for the 454 linker sequences; the amplification was carried out with the pro-
gram: 94 °C for 15 min, 12 cycles of (94 °C for 30 s, 60 °C for 45 s, 72 °C for 90 s),
and final extension at 72 °C for 10 min. The error rate of the AmpliTaq Gold
should have a minimal effect on the identification of clonally related sequences
or estimation of somatic mutation rates in sequences as discussed somewhere
else56. cDNA was synthesized from total 300 ng of RNA with priming by random
hexamers. Templates were amplified by PCR using Biomed IGHV primers in
framework 1 (FR1) and isotype-specific primers located in the first exon of
the constant regions. These primers18,57 also encoded approximately half of the
Illumina linker sequences needed for cluster generation and sequencing on the
MiSeq instrument. Sample identity was encoded by eight-nucleotide multiplex
identifier barcodes in each primer. For Illumina cluster recognition, four rando-
mized nucleotides were encoded in the primers immediately after the Illumina
linker sequence in the constant region primers. Each antibody isotype for each
sample was amplified in a separate PCR reaction, to prevent formation of cross
isotype chimeric PCR products. PCR was carried out with AmpliTaq Gold
(Roche) following the manufacturer’s instructions, and used a program of: 94 °C
for 7 min, 35 cycles of (94 °C for 30 s, 58 °C for 45 s, 72 °C for 120 s), and final
extension at 72 °C for 10 min. A second PCR step was used to add the remaining
portion of the Illumina linkers to the amplicons and was carried out with the
Qiagen Multiplex PCR kit (Qiagen) according to the manufacturer’s instructions,
using 0.4 microliters of the first PCR product as template in a 30 microliter
reaction. The PCR program for the second PCR step was 94 °C for 15 min, 12
cycles of (94 °C for 30 s, 60 °C for 45 s, 72 °C for 90 s), and final extension at 72 °C
for 10 min. The products of each PCR reaction were pooled in estimated
equimolar amounts, electrophoresed on agarose gels, and gel extracted with
QIAquick kits (Qiagen). High-throughput sequencing of genomic DNA templated
libraries was performed on the 454 (Roche) platform using Titanium chemistry.
cDNA library sequencing was performed on an Illumina MiSeq instrument
using 600-cycle sequencing kits. A full list with the primers used with MiSeq
(M154 and M155) and 454 Titanium (T7) are included in Supplementary Data 1.

Sequencing reads were processed as follows: paired-end reads were merged
using FLASH58 where after sequences were demultiplexed and trimmed of
barcodes and IGHV primer sequences. The V, D, and J regions and V–D (N1), D–J
(N2) junctions were identified using the alignment program IgBLAST59. Sequences
were filtered to remove non-IGH artifacts, sequences with V gene insertion or
deletions, chimeric sequences and nonfunctional sequences. At sample level, we
excluded those with <100 clones (defined by same V and J segments, same
CDR3 length and 90% nucleotide identity) as a control for bad quality samples.
After quality control, for gDNA we had complete longitudinally data for
69 samples at time 0, 6 and 24 with a total number of 327,703 reads (mean
4045 per sample). For cDNA, we had complete data for 55 matched samples,
although no time 0 samples were further available. In this case, we had isotype-
specific information (1,773,330 reads for IgD (31,667 per sample), 1,708,227
reads for IgM (30,504 per sample), 973,444 reads for IgA (17,383 per sample),
139,7345 reads for IgG (24,953 per sample), and 29,000 reads for IgE (5,178 per
sample).

Diversity analysis. Diversity is measured by species richness considering the
number of clones per sample. This measure does not consider the frequency of
each species, so we also used Shannon entropy (H) to measure diversity providing

information about the size distribution of species in the population. H is defined as:

H ¼ �
XN

i¼1

pilog2pi ð1Þ

where N is the number of unique clones and pi is the frequency of clone i. H ranges
from 0 (sample with only one clone) to Hmax ¼ log2N (sample with a uniform
distribution of clones).

Then, we used general linear model to find the association between richness and
entropy with the clinical outcome at the different time points. We adjusted this
model by all the clinical variables available showed in Table 1 to be sure that any of
the characteristics of the patient was a confounding factor.

To model the longitudinal component of the data, we applied linear-mixed
effect model considering a conditional growth model as shown in Supplementary
Fig. 10. To apply this model, we used lme4 package in R considering the interaction
between clinical outcome and time to find association with richness and diversity
with time being a random effect.

To deal with the fact that diversity measures may be affected by the missing
species problem (only a fraction of billions of cells in a repertoire are represented)
and sequencing and experimental errors, we performed two strategies in
addition of the full data analysis. First, we used Recon (reconstruction of
estimated clones from observed numbers) tool29 to deal with the missing species
problem. Recon is a modified maximum likelihood method that outputs the
overall diversity of a repertoire from measurements on a sample. Recon outputs
accurate and robust estimates of a set of diversity measures, including richness
and entropy allowing robust comparisons of diversity between individuals.
Second, we performed a downsampling strategy taking a random subset of reads
for each sample equal to the smallest sequencing size, followed to the re-calculation
of the B-cell clones to adjust by sequencing depth and deal with possible
experimental errors. For gDNA, there are samples with very low reads ( < 1000),
and to avoid losing many sequences and the reality of the data, we excluded a
total of nine samples that had <1000 reads. In the case of cDNA, this was not
necessary. We generated ten random subsamples to account for possible stochastic
effects and performed the diversity analysis at each time point and the longitudinal
data analysis on the mean value of ten independently downsampled diversity
estimates.

Network analysis. The network generation algorithm is very similar to the one
defined before31. Briefly, each vertex represents a B-cell sequence where the size is
defined by all the identical sequences. Edges are calculated using the clone defi-
nition (same V and J segments, same CDR3 length and 90% nucleotide identity
between CDR3s) and clusters represents each clone in the repertoire. The analysis
was done using igraph package in R using the layout_with_graphopt option to
generate the plot.

To quantify the network, we calculated the Gini Index for vertex size and
cluster size. Gini Index is a measure of unevenness extensively used to measure
wealth distribution. It measures the inequality among values of frequency
distribution. We used the Gini function from ineq package in R to calculate the
Gini coefficient for vertex size and cluster size distribution. A Gini coefficient
of zero expresses perfect equality and a Gini coefficient of 1 expressed maximal
inequality.

Clonal analysis. To study the specific clones associated with clinical outcome,
we built a matrix with all clones that are present in more than one sample
(total number= 118,223) by all samples at each time point. We then studied the
association with clinical outcome of each particular clone defining one variable
per clone as present/no present. Finally, we applied Fisher’s exact test to account
for significance in the 2 × 3 table for each clone in each time point. We also
studied the persistence clones defined by those clones that are in more than one
time point in each individual. Then, to account for differences by clinical
outcome, we applied a linear model defining as dependent variable the number
of clones (to measure differences in persistence) and the number of counts of each
clone (to measure the clonal expansion) and clinical outcome as independent
predictor.

IGHV gene usage analysis. To study the IGHV genes, we assessed the IGHV gene
usage per sample as the number of times each gene is used normalized by the
number of clones to avoid overrepresentation of certain IGHV genes. For statistical
analysis, we filtered out those genes with very low expression (IGHV usage/clones
< 0.05) in at least 10% of the samples. In total, we analyzed 27 IGHV genes
corresponding to 63 samples. Then, we applied a linear model to find those genes
that were associated with clinical outcome in each time point and corrected these
results by multiple testing using Benjamini and Hochberg FDR < 0.05. We adjusted
this model by all the clinical variables available showed in Table 1 to be sure that
any of the characteristics of the patient was a confounding factor.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The data supporting this publication has been deposited in the ImmPort repository
under the study accession SDY1361(https://www.immport.org/shared/study/SDY1361).
All other data are available from the authors upon request. Source data for the graphs
and statistical analyses can be found in the Source Data file.
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