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Research and Applications
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Abstract
Objective: Although supervised machine learning is popular for information extraction from clinical notes, creating large annotated datasets 
requires extensive domain expertise and is time-consuming. Meanwhile, large language models (LLMs) have demonstrated promising transfer 
learning capability. In this study, we explored whether recent LLMs could reduce the need for large-scale data annotations.
Materials and Methods: We curated a dataset of 769 breast cancer pathology reports, manually labeled with 12 categories, to compare 
zero-shot classification capability of the following LLMs: GPT-4, GPT-3.5, Starling, and ClinicalCamel, with task-specific supervised classification 
performance of 3 models: random forests, long short-term memory networks with attention (LSTM-Att), and the UCSF-BERT model.
Results: Across all 12 tasks, the GPT-4 model performed either significantly better than or as well as the best supervised model, LSTM-Att 
(average macro F1-score of 0.86 vs 0.75), with advantage on tasks with high label imbalance. Other LLMs demonstrated poor performance. 
Frequent GPT-4 error categories included incorrect inferences from multiple samples and from history, and complex task design, and several 
LSTM-Att errors were related to poor generalization to the test set.
Discussion: On tasks where large annotated datasets cannot be easily collected, LLMs can reduce the burden of data labeling. However, if the 
use of LLMs is prohibitive, the use of simpler models with large annotated datasets can provide comparable results.
Conclusions: GPT-4 demonstrated the potential to speed up the execution of clinical NLP studies by reducing the need for large annotated 
datasets. This may increase the utilization of NLP-based variables and outcomes in clinical studies.
Key words: electronic health records; large language models; breast cancer; pathology; natural language processing. 

Introduction
Over the past decade, supervised machine learning methods 
have been the most popular technique for information extrac
tion from clinical notes.1 However, supervised learning for 
clinical text is arduous, requiring curation of large domain- 
specific datasets, interdisciplinary collaborations to design 
and execute standardized annotation schema, and significant 
time from multiple domain experts for the meticulous task of 
data annotation. Supervised modeling can often require sub
sequent iterative development driven by advanced technical 
expertise, which can be limiting for certain practitioners. The 
entire process thus takes a significant amount of time 
between problem conception and obtaining final results. 

These challenges, combined with the limited availability of 
clinical notes corpora, have contributed to an under- 
utilization of Natural Language Processing (NLP) in observa
tional studies from Electronic Health Records (EHRs).2

Recently, language models have demonstrated promising 
ability for transfer learning, ie, the ability to use knowledge 
from pre-trained models to improve performance on a related 
task. This is encouraging for information extraction from 
clinical text without extensive task-specific model training.3–5

Prompt-based querying is popular with generative language 
models, where practitioners can query the model in natural 
language to obtain the desired information, sometimes by 
presenting a few examples of the task they may be trying to 
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solve. Querying large language models (LLMs) like the GPT- 
4 model have demonstrated varying levels of proficiency in 
medical inference tasks, such as diagnosing complex clinical 
cases,6–8 answering the United States medical licensing exam 
questions,9,10 radiology report interpretation,11,12 clinical 
notes-based patient phenotyping,13–16 automated clinical 
trial matching,17,18 clinical concept extraction,19 drafting 
replies to inbox messages,20 recommending treatments,21 and 
improving patient interaction with health systems,22,23 How
ever, to understand whether LLMs may be able to perform 
well in clinical settings without curating large training data
sets, few studies have investigated whether zero-shot infer
ence with LLMs can perform as well as task-specific 
supervised learning in low-resource settings. In this study, uti
lizing a large corpus of breast cancer pathology notes, we 
investigate this hypothesis. To this end, we have a 3-fold 
contribution:

1) We developed an annotation schema and detailed guide
lines to create an expert-annotated dataset of 769 breast 
cancer pathology reports with document-level, treatment- 
relevant information. We further analyzed the curation 
process to identify frequent modes of disagreements in 
data annotation, which we additionally present here. 

2) To establish a baseline of automated breast cancer pathol
ogy classification against that of expert clinicians, using 
the newly curated dataset, we benchmarked the perform
ance of supervised machine learning models of varied lev
els of complexity, which include a random forest classifier, 
a long short-term memory network (LSTM) classifier, and 
a transformers-based BERT classifier trained on UCSF 
EHR data. 

3) We finally queried proprietary and open source LLMs to 
obtain zero-shot classification results, ie, results without 
using any task-specific labeled dataset from UCSF, which 
we compared to the supervised learning performance 
obtained earlier. We additionally analyzed the errors made 
by the best LLM and the best supervised model to under
stand their limitations. 

Materials and methods
Data
Breast cancer pathology reports between January 1, 2012 
and March 31, 2021 were retrieved from the University of 
California, San Francisco (UCSF) clinical data warehouse, 
deidentified and date-shifted with the Philter algorithm as 
previously described.24 Access to this de-identified dataset 
qualifies as non-human subjects research, and no further 
Institutional Review Board approval was necessary for this 
study. Patients with breast cancer were identified by querying 
for encounters with the ICD-9 codes 174, 175, 233.0, or 
V10.3, or the ICD-10 codes C50, D05, or Z85.3. The cohort 
was restricted to pathology reports by selecting the note type 
“Pathology and Cytology.” Notes shorter than 300 charac
ters in length, and those unrelated to breast cancer, for exam
ple, those about regular cervical cancer screening through 
pap smears, were removed through keyword match for 
“cervix,” “cervical,” and “vaginal.” A flow diagram for the 
inclusion and exclusion criteria is presented in Figure 1. 
Among the final set of notes, 769 pathology reports were ran
domly selected for manual labeling with treatment-relevant 
breast cancer pathology.

Annotation schema and guidelines were designed in collab
oration with oncology experts, who reviewed breast cancer 
diagnostic and treatment guidelines to determine the most 
relevant features to infer from pathology reports, along with 
the categories of these features. To align with the clinical 
decision-making process, if multiple features of the same cat
egory were present, annotators were asked to focus on the 
one portending poorest prognosis for document level annota
tions. For example, if there were 2 independent tumors 
within the report corresponding to grade 2 and grade 3, 
respectively, the annotator was asked to record grade 3. To 
analyze categories relevant for prognostic inference, catego
ries such as final tumor margins and lymphovascular invasion 
were added in addition to commonly investigated categories 
of biomarkers, histopathology, and grade. The final cohort of 
769 breast cancer pathology reports was annotated through 
12 key tasks, including 9 single-label tasks and 3 multi-label 
tasks (Figure 2). Each report mentioned metadata such as the 
report date and patient ID, along with the pathologist’s com
ments and the complete clinical diagnosis. Text spans corre
sponding to 4 labels (cancer pTNM stage, number of 
examined and involved lymph nodes, tumor size, and tumor 
type) were pre-highlighted within text with an internal con
volutional neural network (CNN)-based model that had been 
previously trained for named entity recognition in 5 active 
learning rounds. The training of this internal tool encom
passed approximately 2500 pathology notes across colon, 
lung, kidney, brain, breast, and prostate cancers based on ini
tial annotations developed earlier.25,26 The open-source soft
ware LabelStudio27 was used to further add document-level 
labels. To establish a good inter-annotator agreement, a 
group of 2 independent oncology fellows annotated the docu
ments jointly in the first phase. After achieving high inter- 
annotator agreement, the fellows further labeled the docu
ments in the training subset (570 documents) independently. 
Furthermore, the test subset (100 reports) was established 
with documents that were annotated by both oncology fel
lows, and any disagreements between discordant labels were 
manually adjudicated by a third reviewer. Similarly, the vali
dation subset (99 reports) was annotated in parallel by 3 
medical students and any disagreements were independently 
adjudicated by the same reviewer. The complete annotation 
guidelines are provided in the Supplementary Materials, 
Section S1.

Supervised modeling
Supervised machine learning classifiers were trained inde
pendently for each of the 12 breast cancer pathology classifi
cation tasks on the training subset of 570 pathology notes. 
Three models of varied complexity were included in the anal
ysis—a random forests classifier,19 a Long Short Term Mem
ory networks (LSTM) classifier with attention,20,21 and a 
fine-tuned UCSF-BERT (base) model.22,23 An analysis of 
these models accounts for different levels of resources that 
may be available at different institutions as well as different 
capabilities of the model architecture itself. While the random 
forests classifier is a bag-of-ngrams model that does not con
sider the order of phrases within a document, the LSTM 
model and the UCSF-BERT model provide a sequential archi
tecture that accounts for word order in input documents. 
However, while the UCSF-BERT model is powerful due to 
self-supervised pretraining on clinical data, it is limited in the 
length of sequences it can process (512 tokens), thereby 
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potentially limiting its performance on document-level tasks 
unlike the LSTM model.

Model hyperparameters for all supervised models were 
fine-tuned on the validation set consisting of 99 pathology 
notes, and the final classification performance was reported 
on the held-out test set of 100 pathology notes. Details of 
hyperparameter tuning and the final model settings are avail
able in the Supplementary Materials, Section S2.1. To obtain 
a reliable estimate of minority class performance, model 

performance was evaluated on a held-out test set with the 
metric of macro-averaged F1-score instead of accuracy.

Random forests classifier
The random forests model was initialized with a TF-IDF vec
tor of n-grams within pathology notes. Pathology reports 
were pre-processed to remove punctuations and symbols and 
were converted to lowercase before vectorization. For single- 
label tasks, training data samples of the minority classes were 

Figure 1. Flow diagram representing inclusion and exclusion criteria for breast cancer pathology report selection before data annotation. Number of 
patients and number of clinical notes is represented at each stage. The final annotated subset represents a random sample of the final representative 
dataset obtained in this manner.

Figure 2. Sample of an annotated pathology report, along with the corresponding document-level annotation schema. The Unknown labels refer to the 
cases where a label could not be inferred based on the information provided in the pathology report.
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up-sampled to reflect a uniform distribution and address data 
imbalance. Validation and test data were not modified and 
reflected the real-world distribution. To find the best parame
ters, a random grid search was performed, using 3-fold cross- 
validation on the training data and 15 iterations.

LSTM networks
The word embeddings in the LSTM model were initialized 
with fasttext24 embeddings of 250 dimensions, trained on a 
corpus of 110 million clinical notes at UCSF. The choice of 
attention with the LSTM model was additionally made to 
ensure that long sequences of words can be processed effec
tively by allowing the model to dynamically focus on differ
ent parts of the input. Pathology reports were pre-processed 
in the similar manner to the use of random forests classifier. 
To address the data imbalance in multi-label tasks, asymmet
ric loss25 was used, while the categorical cross-entropy loss 
was used for single-label tasks.

UCSF-BERT model
The UCSF-BERT model, which was already pretrained from 
scratch on 75 million clinical notes at UCSF, was fine-tuned 
further on pathology classification-specific tasks. Similar pre- 
processing settings as the random forests and the LSTM 
model were used for both single label and multi-label tasks. 
Cross-entropy loss was used for all single-label tasks, and 
asymmetric loss was used for all multi-label tasks to address 
class imbalance.

Zero-shot inference with LLMs
Proprietary models
Two large language models, the GPT-3.5 model and the 
GPT-4 model,28 were queried via the HIPAA-compliant 
Azure OpenAI Studio to provide the requested category of 
breast cancer pathology information from a given pathology 
report. (The AI framework to safely use OpenAI application 
programming interfaces is called Versa at UCSF.) Data were 
not permanently transferred to or stored by either OpenAI or 
Microsoft for any purposes. Model inputs were provided in 
the format fsystem role descriptiong fnote section text, 
promptg. The specific prompt, model version, and the model 
hyperparameters are provided in the Supplementary Materi
als, section S2.2. All classification labels were requested 
through a single prompt, as one call to the model for each 
pathology report. Prompt development was performed on the 
development set, and the final results were reported on a 
held-out test set. Model outputs were requested in the JSON 
format, which were post-processed into python dictionaries 
to automatically evaluate model outputs.

Open source models
We additionally compared 2 open source models, the 
Starling-7B-beta model29 and the ClinicalCamel-70B 
model,30 using the same prompts and model settings as GPT- 
4 and GPT-3.5 models. Prompts were formatted into chat 
templates specific to the individual models via the Hugging
Face transformers library.31 We also analyzed the Llama2- 
7B-chat model but did not obtain any relevant results for this 
task and chose to exclude it for further comparisons.

Significance testing
Approximate randomized testing32 was used to test for signif
icance between the performance of the best LLM and the best 

supervised model. To estimate the P-value, model outputs 
were permuted 100 000 times, counting the number of times 
that the resulting difference between their macro F1-scores is 
as or more extreme than that observed with the data. The sig
nificance level of 0.01 was chosen to assert significance.

Results
Breast cancer pathology information extraction 
dataset
769 breast cancer pathology reports were annotated with 
detailed breast cancer pathology information across 12 key 
tasks (Figure 2). Minimum, maximum, mean, and median 
document length of the dataset were 36, 4430, 723.4, and 
560 words, respectively, and the interquartile range was 508 
words. The dataset included a population diverse across dem
ographics and age, with nearly 1% of cases being male breast 
cancer, which reflects the relative incidence of this disease 
(Table 1). Median patient age was 55 years. To encourage 
reproducibility and further research, upon manuscript publi
cation, the dataset will be freely shared through the 
controlled-access repository PhysioNet. Average inter- 
annotator agreement, as quantified with Krippendorf’s 
alpha,33 was 0.85, which varied across tasks (Supplementary 
Materials, Table S3). Classification of DCIS margins and the 
multi-label category of sites examined showed the lowest 
inter-annotator concordance, while lympho-vascular inva
sion and invasive carcinoma margin status showed the high
est concordance.

Sources of disagreements between annotators in the devel
opment and the test sets were analyzed by an independent 
adjudicator. Common sources of disagreements included dif
ferences in inferring the most aggressive (“worst”) sample 
when multiple samples were analyzed, incorrectly including 
information from patient history into labels for the current 
report, linguistic or clinical ambiguity in the pathology 

Table 1. Socio-demographic distribution of patients in the annotated 
dataset.

Sample characteristic

Count (percentage)
(n¼ 769)

Gender
Male 7 (0.91%)
Female 762 (99.09%)

Age
Median [IQR] 55.0 [19.0]

Race/ethnicity
White 505 (65.67%)
Asian 101 (13.13%)
Latinx 42 (5.46%)
Black or African-American 36 (4.68%)
Native Hawaiian or Other Pacific Islander 7 (0.91%)
Other 25 (3.25%)
Multi-Race/Ethnicity 15 (1.95%)
Unknown/Declined 38 (4.94%)

Language
English 702 (91.29%)
Russian 18 (2.34%)
Unknown/Declined 17 (2.21%)
Chinese—Cantonese 9 (1.17%)
Spanish 9 (1.17%)
Vietnamese 4 (0.52%)
Other 10 (1.30%)

IQR, interquartile range.
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report, discordant interpretation of procedures involving 
excisions when differentiating between a histopathology 
report and a cytology report, inconsistencies in categorizing 
metastatic disease sites as “other tissues” and histology as 
“others,” and inconsistent execution of the annotation guide
lines for annotating molecular pathology reports and grade 
information.

The class distribution across the annotated data was highly 
skewed, resulting in a highly imbalanced dataset. Certain low 
frequency categories such as groups of histology codes or the 
low positive and positive categories of Estrogen Receptor sta
tus were combined before further automated classification, 
resulting in the final distribution presented in Figure 3. The 
Unknown class, which corresponded to the case where the 
requested information could not be inferred from the given 
note, was the majority class across 8 of 12 tasks. Among the 
remaining classes, high imbalances were observed in tasks of 
inferring the category of the number of lymph nodes 
involved, lymphovascular invasion, tumor margins, and 
HER-2 receptor status.

Comparison of model performance
Despite no task-specific training, the GPT-4 model either out
performed or performed as well as our task-specific super
vised models trained on task-specific breast cancer pathology 
data (Figure 4 and Table S4, Supplementary Materials). For 
both the GPT-4 model and the GPT-3.5 model, all model 
responses were automatically parsed as JSON without any 
errors. However, 2 responses of the Starling model and 24 
responses of the ClinicalCamel model could not be parsed 
automatically and were considered “Unknown” for evalua
tion. The average macro F1 score of the GPT-4 model across 
all tasks was 0.86, of the LSTM model with attention was 
0.74, of the random forests model was 0.59, of the UCSF- 
BERT model was 0.56, of the GPT-3.5-turbo model (zero- 
shot) was 0.55, of the ClinicalCamel-70B was 0.34, and that 
of the Starling model was 0.36. The GPT-4 model was signifi
cantly better than the LSTM model (the best supervised 

model) for the task of margin status (P< .01). This task 
encompassed a large training data imbalance resulting in a 
sparsity of class-specific training instances. For all other 
tasks, no significant differences were obtained between the 
zero-shot GPT-4 model and the supervised LSTM model.

The GPT-3.5-turbo model and the open source LLMs per
formed significantly worse than the GPT-4 model for all 
tasks. Similarly, the UCSF-BERT model, which is a trans
former model pre-trained on the corpus of UCSF clinical 
notes,34 did not outperform the simpler LSTM-Att model for 
several tasks, although it did match the performance of the 
GPT-3.5-turbo model. The random forests classifier per
formed well on keyword-oriented tasks, like pathology type 
classification and biomarker status classification, but under- 
performed on tasks requiring more advanced reasoning, like 
grade and margins inference. Oversampling training data for 
mitigating label imbalance in single-label classification tasks 
demonstrated mixed benefit across tasks and models (Figure 
S1a), although the choice of asymmetric loss showed consis
tent improvements compared to the use of binary cross- 
entropy loss (Figure S1b).

Error analysis
The confusion matrix of the GPT-4 model revealed that it 
had difficulties in differentiating the unknown class from the 
class that indicated no lymph node involvement and no 
lympho-vascular invasion (Supplementary Materials, Figure 
S2). Furthermore, margin status inference was challenging 
for the model, where more than 2 mm margins (negative mar
gins) were confused with less than 2 mm margins. Confusion 
between classes was more prevalent in multi-label tasks than 
single-label tasks. Further errors from the GPT-4 model were 
prevalent when the task design was ambiguous in model 
prompts, such as the grouping of sparse histology into an 
“others” category, the assignment of metastatic sites for 
breast cancer as “other tissues than breast or lymph nodes,” 
or the inference of pathology reports unrelated to breast 

Figure 3. Class distribution for all tasks in the training data for supervised classification.
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cancer. The latter set of errors correspond to common sour
ces of disagreements identified during the data annotation 
process.

Manual analysis of the GPT-4 model errors revealed sev
eral consistent sources of errors, described in Table 2. Com
mon sources of errors in biomarker reporting included the 
reporting of results from clinical history or tests conducted at 
other clinical sites that were not confirmed in the current 
report. Furthermore, the GPT-4 model incorrectly reported 
nuclear grade as the overall tumor grade when the overall 
grade was not discussed in the note. Moreover, common 
errors in reporting tumor margins were concerned with math
ematical inferences over multiple margin thicknesses (for 
example, anterior, posterior, medial, etc), where the value 
representing the thinnest margin was to be provided. Manual 
analysis additionally uncovered several error sources for 
multi-label tasks. The model performed inconsistently when 
inferring sites of benign findings; while the model frequently 
missed reporting the site of benign findings as a site examined 
for tumors, it also sometimes included sites of benign findings 
as a site of cancer. Furthermore, sentinel and axillary lymph 
nodes were frequently reported as tissues other than breast or 
lymph nodes, although they were annotated as lymph node 
sites. Some errors related to complex cases were also found, 
for example, 1% staining results for progesterone receptors 
were provided as negative by the model, whereas they were 
annotated as positive. Finally, errors related to task setup 
were reflected in histology-related errors, where the model 
could not reliably abstain from providing histology from 
reports unrelated to breast cancer and from molecular path
ology reports for ERBB2 despite being instructed as such, 
and errors due to the grouping of histologies like LCIS into 
an “others” category.

Manual error analysis of the LSTM-Att model, which was 
the best supervised classification model, revealed a few simi
larities with errors from the GPT-4 model (nuclear grade pro
vided instead of total grade, numerical inference error from 
multiple margins samples, difficulty in learning the “others” 
category for tumor histology, difficulty in answering from 
reports unrelated to breast cancer or from molecular pathol
ogy reports for ERBB2). However, additional errors due to 
poor model generalization were identified, where linguistic 
variability compared to the training set resulted in incorrect 
responses (Table 2). Several errors occurred even when cor
rect answers were directly mentioned within text, which 
could potentially indicate that the model did not use broader 
context for providing outputs, but rather overfit on specific 
keyword patterns in the training set. Finally, independent 
training of classifiers for multi-label classification posed chal
lenges in learning interaction between multiple labels 
(Table 2).

Discussion
Task-specific supervised learning models trained on manually 
annotated data have been the standard approach in clinical 
NLP for over a decade.1 Using a manually annotated dataset 
of 769 breast cancer pathology reports focused on the most 
clinically relevant report features, our study compared the 
performance of supervised learning models, including ran
dom forests classifier, LSTM models, and the UCSF-BERT 
model, with a zero-shot classification performance of 2 pro
prietary LLMs, the GPT-4 model, and the GPT-3.5-turbo 
model, and 2 open-source LLMs, the Starling-7B-beta model, 
and the ClinicalCamel-70B model. We found that even in 
zero-shot setups, the GPT-4 model performs as well as or 

Figure 4. Classification performance, as measured by % Macro F1 score, for different models for each classification task. The LSTM model, the UCSF- 
BERT model, and the Random Forests model were trained in a supervised setup on task-specific training data. All other models (GPT-3.5, GPT-4, Starling- 
7B-beta, and ClinicalCamel-70B) were queried and evaluated in a zero-shot setup, ie, without any further task-specific training.
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Table 2. Common categories of errors for the GPT-4 model and the LSTM model along with corresponding examples.

Task Error category Example

GPT-4 model
Biomarkers: ER, 
PR

Reporting from history Clinical Diagnosis/History: 
. . . This cancer was 6 cm in greatest dimension by imaging and was ER, PR, and 
�����/neu positive. 

GPT-4 output: Positive 
Annotation: Unknown 

Complex case The cells stain strongly for the estrogen receptor (>95% at 3þ staining; on a scale of 
0–3þ) and only rare cells stained for the progesterone receptor (�1% at 3þ staining; 
on a scale of 0–3þ). 

GPT-4 output: Negative 
Annotation: Positive 

Biomarker: 
HER2

Incorrect inference due to 
redaction

This carcinoma is positive for ����� oncoprotein over-expression. The staining 
intensity of this carcinoma is 3+ on a scale of 0–3. 

GPT-4 output: Unknown 
Annotation: Positive 

Tumor grade Nuclear grade reported instead 
of final total grade

- Invasive tumor grade (modified �����-�����): 
- Nuclear grade: 2, 2 points. 
- Mitotic count: <10 mitotic figures/10 HPF, 1 point. 
- Tubule/papilla formation: >75%, 1 point. 
- Total grade/points: 1. 

GPT-4 output: 2 (Intermediate) 
Annotation: 1 (Low) 

Grade reported from history Clinical history: 
The patient underwent needle core biopsy of a left breast mass at an outside 
institution 08/27/2013, which revealed infiltrating carcinoma interpreted as  
high-grade ductal carcinoma. 

GPT-4 output: 3 (High) 
Annotation: Unknown 

Margin status Error in numerical inference 
from multiple margins

- Margins for invasive tumor: Negative. 
- Deep margin: Negative; (tumor is 0.1 cm away, on slide B15). 
- Medial margin: Negative; (tumor is >1 cm away). 
- Lateral margin: Negative; (tumor is >1 cm away). 
- Anterior/superior margin: Negative; (tumor is 0.5 cm away, on slide B11). 
- Anterior/inferior margin: Negative; (tumor is 0.8 cm away, on slide B15). 

GPT-4 output: More than or equal to 2 mm 
Annotation: Less than 2 mm 

Complex case: Margins before 
final resection reported

Resection margins for invasive tumor: The initial lumpectomy 
(�����-�����-�����) demonstrated extension of tumor to the green-inked margin. 
No residual tumor is identified in the select slides submitted for review from the left 
modified radical mastectomy (�����-�����-�����). 

GPT-4 output: Positive 
Annotation: More than or equal to 2 mm 

DCIS margin 
status

Error in numerical inference 
from multiple margins

Resection margins for DCIS: 
Posterior margin: Negative (tumor is 0.4 cm away, on slide A8-1). 
Anterior nipple/areolar base: A cauterized duct suspicious for DCIS is present at the 
inked margin, although cautery artifact precludes definitive evaluation. Evaluable 
DCIS is present immediately adjacent to this cauterized focus, <0.1 cm from the 
margin (on slide A3-1). 
Medial margin: Negative (by report, tumor is >1 cm away). 
Lateral margin: Negative (by report, tumor is >1 cm away). 
�����margin: Negative (by report, tumor is >1 cm away). 
Inferior margin: Negative (by report, tumor is >1 cm away). 

GPT-4 output: Less than 2 mm 
Annotation: Positive 

Lymph node 
involvement

Different reporting for benign 
findings from sites that did not 
include lymph nodes

FINAL CYTOLOGIC DIAGNOSIS: 
Soft tissue, right upper chest, fine needle aspiration: Benign fibroadipose tissue and 
skeletal muscle; see comment. 

GPT-4 output: 0 involved 
Annotation: Unknown 

(continued) 
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Table 2. (continued) 

Task Error category Example

Lympho-vascular 
invasion

No invasive carcinoma was 
identified but lympho-vascular 
invasion not mentioned 
explicitly

COMMENTS: 
The upper outer quadrant and the area deep to the nipple were extensive sampled. No 
invasive carcinoma or ductal carcinoma in situ was identified. 

GPT-4 output: Absent 
Annotation: Unknown 

Sites examined All sites not reported, particu
larly when no tumors are 
found

Final Diagnosis: 
A. Lymph node, right axilla sentinel #1, biopsy: No tumor in one lymph node (0/1). 
B. Right breast, total skin-sparing mastectomy: 
1. No invasive or in situ carcinoma identified; see comment. 
2. Hematoma with adjacent surgical site changes. 
3. Nonproliferative fibrocystic change (stromal fibrosis, microcysts and apocrine 
metaplasia). 
C. Right breast, nipple, biopsy: No tumor. 
D. Skin, left chest/breast, biopsy: No tumor. 

GPT-4 output: Right LN, Right Breast 
Annotation: Left Breast, Right LN, Right Breast 

Sites of disease Incorrect reporting of benign 
finding as a site of disease

DIAGNOSIS: 
Cerebrospinal Fluid  
BENIGN. 

CLINICAL DATA: 
73-year-old female with history of breast cancer, now with bone metastasis and focus 
of leptomeningeal metastasis. 

GPT-4 output: Other tissues 
Annotation: None 

Tumor histology Other histology is not reported FINAL PATHOLOGIC DIAGNOSIS 
. . .

A. Left breast (slides A1, A3, A8-10 only), modified radical mastectomy: 
1. Invasive ductal carcinoma with focal micropapillary features, multifocal by 
report, largest focus 2.2 cm, ����� grade 2, margins negative; see comment. 
2. Ductal carcinoma in situ, intermediate and low nuclear grades, cribriform and 
solid patterns with necrosis, cauterized duct at nipple base margin; see comment. 
3. Atypical ductal hyperplasia. 
4. Flat epithelial atypia. 
5. Usual ductal hyperplasia, apocrine metaplasia and dilated ducts. 
6. Detached calcifications. 
B. Left axillary lymph nodes, dissection: Metastatic carcinoma in 5 of 19 lymph 
nodes (July 03), largest focus 0.5 cm; see comment. 
C. Left axillary sentinel lymph nodes, biopsy: Metastatic carcinoma in 1 of 2 lymph 
nodes (February 15), largest focus 1.1 cm, with extranodal extension; see comment. 
D. Right breast, total skin-sparing mastectomy: Benign breast tissue with cystic 
dilatation of ducts. 
E. Right breast, new inferior margin, excision: Benign fibroadipose tissue with no 
significant pathologic abnormality. 

GPT-4 output: Invasive ductal, DCIS, Others 
Annotation: Invasive ductal, DCIS 

Tumor histology Task setup-related error: 
Molecular pathology reports

Molecular Diagnostics Report 
. . .

Formalin-fixed, paraffin-embedded tissue on glass slides. 
. . . Gastric: Adenocarcinoma. 

GPT-4 output: Other tissues 
Annotation: Unknown 

LSTM model
Biomarkers: ER, 
PR, HER2

Insufficient generalization to 
test set

These demonstrate that the cells are negative for �����/6 (on blocks . . .), diffusely 
positive for ER (on blocks . . .), and positive for synaptophysin and chromogranin. 

LSTM output: ER Positive 
Annotation: ER Unknown 

Estrogen and progesterone receptor immunoperoxidase studies are performed on 
block �����. Strong nuclear staining (3þ/3þ) for both ER and PR is present in 90% 
of invasive tumor cells. 

LSTM output: PR Positive 
Annotation: PR Negative 

(continued) 
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Table 2. (continued) 

Task Error category Example

- Estrogen receptor: Positive in most tumor cells. 
- Progesterone receptor: Positive in most tumor cells. 
- �����/neu: Borderline (immunohistochemical staining score of 2þ)  

LSTM output: HER-2 positive 
Annotation: HER-2 Equivocal 

Biomarker: 
HER-2

Results before FISH testing 
provided by the model when 
results both before and after 
FISH testing are discussed

Result of ����� test: This carcinoma is equivocal for ����� oncoprotein  
over-expression. The staining intensity of this carcinoma was 2þ on a scale of 0–3. 
By report, ����� FISH was performed and was negative for ����� ����
LSTM output: Equivocal 
Annotation: FISH Negative 

Tumor grade Nuclear grade reported instead 
of final total grade

Invasive tumor grade (modified �����-�����): 
- Nuclear grade: 2, 2 points. 
. . .

- Total grade/points: 1. 

LSTM output: 2 (Intermediate) 
Annotation: 1 (Low) 

Margin status Insufficient generalization to 
test set

Carcinoma is located 0.6 cm from the anterior margin (slide . . .) and greater than 1 
cm from all other margins. 

LSTM output: Unknown 
Annotation: More than/eq to 2 mm 

Inference error from multiple 
margins

Margins for invasive tumor: 
- Posterior margin: Negative (tumor is <0.1 cm away, on slide . . .) 
- Medial margin: Negative (tumor is >0.5 cm away). 
- Lateral margin: ����� but negative (tumor is <0.05 cm away, on slide D28). 
- Anterior/superior margin: Positive, focal (tumor is focally on ink at margin, on slide 
D22 keratin immunostain). 
- Anterior/inferior margin: ����� but negative (tumor is <0.05 cm away, on slides 
D17 and D21). 

LSTM output: More than/eq to 2 mm 
Annotation: Positive 

DCIS margin 
status

Insufficient generalization to 
test set

The immunostains support the presence of cauterized DCIS at ����� �����-inked 
inferior margin (slide 2E) and the �����-inked anterior margin (slide 2K). 

LSTM output: Unknown 
Annotation: Positive 

Inference error Status of resection margins for ductal carcinoma in situ: In main lumpectomy 
specimen: DCIS within much less than 0.01 cm in multiple foci; areas of cauterized 
tissue suspicious for DCIS present at margin 

LSTM output: Less than 2 mm 
Annotation: Positive 

Lymph node 
involvement

Insufficient generalization to 
test set

- Lymph node status: 
- Number of positive lymph nodes: 18. 

LSTM output: 1-3 involved 
Annotation: 10þ involved 

No tumor in 10 lymph nodes (0/10) 

LSTM output: Unknown 
Annotation: 0 involved 

Lympho-vascular 
invasion

Insufficient generalization to 
test set

Lymphovascular space invasion: No definite invasion. 

LSTM output: Unknown 
Annotation: Absent 

Sites examined Insufficient generalization to 
test set

A. Left breast, needle core biopsy . . . Invasive carcinoma consistent with breast 
primary, infiltrating fibroadipose tissue; see comment. 
B. Right adrenal gland, needle core biopsy . . . Large cell-rich B-cell lymphoma; see 
comment. 
C. Right adrenal gland, needle core biopsy . . . Lymphoid tissue consistent with large 
cell-rich B-cell 

LSTM output: Left Breast 
Annotation: Left Breast, Other tissues 

(continued) 
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significantly better than simpler, task-specific supervised 
counterparts on all classification tasks, although other LLMs 
performed significantly worse. Previous studies have demon
strated similar results, showing that in zero-shot setups, 
LLMs consistently perform the same as or outperform fine- 
tuned models on biomedical NLP datasets with small training 
data sizes (fewer than 1000 training examples).35,36 Similar 
small datasets are common in medical informatics studies 
since domain expertise is frequently required for reliably 
annotating clinical notes, making the process time-consuming 
and difficult to scale.37 This study enhances previous findings 
on a new real-world clinical dataset, reinforcing that the 
GPT-4 model is promising for use in classification tasks in 
low-resource clinical settings. Open source models need fur
ther developments before they are conducive for use in simi
lar settings.

Tasks where the training data contained high label imbal
ance were particularly conducive for using GPT-4 model over 
task-specific supervised models, including compared to pre- 
trained models like the UCSF-BERT model. Given that the 
GPT-4 model is already trained on internet-scale corpora and 
the specifics of model training are not available publicly, the 
model may already encode a fundamental understanding of 
breast cancer pathology, which may explain its surprising 
zero-shot capability on these tasks, including that on complex 
and imbalanced tasks like margins inference. However, the 
reasons behind the striking performance difference between 
the GPT-3.5 and GPT-4 models remain unclear due to the 

closed nature of these models, although similar trends have 
been observed in previous medical NLP studies.38,39,15 How
ever, if access to models like the GPT-4 model is prohibitive 
due to either privacy or computational constraints, compara
ble performance on EHR-based NLP tasks such as pathology 
classification can be obtained with simpler deep learning clas
sifiers trained on task-specific datasets, particularly if anno
tated sample sizes are sufficiently large and class imbalance 
can be controlled through targeted annotations of minority 
classes for model training.

An analysis of the GPT-4 model errors indicated several 
errors due to insufficient understanding of idiosyncratic task- 
design choices, for example differentiating between 
“Unknown” and “no lymph node involvement” categories. 
When histopathological samples were complex and could not 
be characterized entirely within one of the pre-defined histo
logic categories, the GPT-4 model still provided the imperfect 
option rather than using the “Other” category for ambiguous 
cases. This demonstrates how models may be susceptible to 
information loss due to the artificial nature of many medical 
classifications schemas that, in reality, exist on a continuum. 
It is possible that these errors can be mitigated with strategies, 
such as few-shot learning to demonstrate a better understand
ing of annotation-specific choices, or chain-of-thought- 
prompting to elucidate reasoning and avoid answering from 
incomplete or old information within text report. However, 
it has been demonstrated earlier that the GPT-4 model cannot 
process long input contexts efficiently,40 and we leave this 

Table 2. (continued) 

Task Error category Example

Ignoring context; overfitting on 
keywords

Brain, left cerebellum, resection: Metastatic adenocarcinoma; see 
comment. 

LSTM output: Left Breast 
Annotation: Other tissues 

Sites of disease Ignoring context to provide all 
sites regardless of whether 
tumor was identified, poten
tially worsened due to inde
pendent multi-label training

DIAGNOSIS: 
A. Sentinel lymph node, left axilla, excision: One lymph node 
with no tumor identified (0/1); see comment. 
B. Sentinel lymph node #2, left axilla, excision: One lymph node with no tumor 
identified (0/1); see comment. 
C. Sentinel lymph node #3, left axilla, excision: One lymph node with no tumor 
identified (0/1); see comment. 
D. Left breast, surgical scar, excision: Scar with foreign body reaction to suture 
material; no tumor identified. 
E. Left breast, partial mastectomy: Scar with foreign body reaction to suture material; 
no tumor identified. 

LSTM output: Other tissues, Left LN, None 
Annotation: None 

Tumor histology Multi-sample inference error 
due to independent multi-label 
training

Final Diagnosis: 
A. Sentinel lymph node, biopsy: No evidence of carcinoma in one lymph node (0/1). 
B. Breast, right, partial mastectomy: 
1. Invasive lobular carcinoma with associated lobular carcinoma in situ, 1.1 cm, 
����� grade 2, margins negative for tumor; see 
comment. 
2. Atypical lobular hyperplasia. 
3. Stromal fibrosis and apocrine metaplasia. 
C. Breast, right, anterior superior margin, excision: Atypical lobular hyperplasia. 
D. Breast, right, fascia and muscle deep margin, excision: Fibroadipose tissue and 
skeletal muscle, no evidence of carcinoma. 
E. Breast, right, new inferior lateral margin, excision: Cyst formation, stromal 
fibrosis, and apocrine metaplasia. 
F. Lymph node, biopsy: No evidence of carcinoma in one lymph node (0/1). 

LSTM output: Others, Invasive lobular, No malignancy 
Annotation: Others, Invasive lobular 
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question for future research. Finally, analysis of the LSTM 
model errors identified those stemming from training the 
model on an insufficiently diverse dataset, for example, incor
rect responses when results were discussed in free-form pat
terns rather than following the structure of a standard breast 
cancer pathology note. Although these findings are not sur
prising, they highlight the challenge of supervised model gen
eralization in low-resource settings, which may add to 
clinical deployment-related challenges.

Although we found promising performance of the GPT-4 
model compared to task-specific supervised models, several 
design choices may have impacted the findings. The dataset 
was curated from a single health system, and further valida
tion of the findings on pathology reports from other health 
systems may improve the reliability of the results. Although 
potential de-identification errors may have impacted the 
capability of LLMs, the data reflects real-world setups for ret
rospective observational studies in a privacy-preserving man
ner. Furthermore, although it may be possible to further 
improve model performance with more hyperparameter and 
prompt tuning, the findings of this study will inform future 
studies on the development of more advanced prompting and 
few-shot strategies for LLMs to obtain even better perform
ance, the development of effective annotated datasets for sim
pler supervised classification setups, the evaluation of newer 
LLMs for clinical information extraction, and the analysis of 
output sensitivity to input prompts and model settings. More
over, the studied classifiers may exhibit biases against specific 
demographics, and caution must be exercised when deploy
ing them in clinical workflows. These biases need to be inves
tigated further in the future to establish concrete guidelines 
for their use. Finally, we note that the label Unknown in the 
dataset covers 2 distinct scenarios: (1) although the informa
tion may be present within a patient’s EHR record in some 
form, it is not present or identifiable within the specific path
ology note, or (2) the feature is not relevant or cannot be 
obtained from this context. For instance, while HER-2 status 
may not be identifiable from a specific note (and thus is 
Unknown at the time of annotation), we would expect that 
this would be an identifiable piece of information in the 
patient’s EHR record at some point. This subtle difference 
should be noted in future utilization of this dataset.

Pathology reports represent a foundational source of clini
cal information, both for diagnosis and medical decision 
making and for cohort development for research. Given the 
importance of this information for clinical oncology, along 
with the challenges and time required for accurate interpreta
tion, the ability to accurately extract salient features from 
pathology reports could improve physician workflow as well 
as facilitate cohort development for large scale research anal
yses. Accurate zero-shot methods for inferring treatment- 
relevant pathology will enable swift identification and cate
gorization of complex pathology features, thus holding the 
potential to expedite the development of research cohorts, 
enabling rapid hypothesis testing for retrospective research 
and quicker clinical trial enrolments within the clinic. For 
instance, these methods can be utilized to quickly screen large 
volumes of pathology reports for identifying similar patients 
suffering from a rare cancer subtype to facilitate personalized 
treatments and tumor board discussions for new patients, 
while also freeing up specialists to focus on more nuanced 
clinical decision-making tasks. This utility depends on the 
accuracy of automatic extraction of relevant information 

from notes, as any errors in this workflow may cause further 
harm to patients in clinical settings. Based on our analyses, 
zero-shot inference with the GPT-4 model shows strong 
promise for cohort identification and labeling for clinical 
research, but may not yet be sufficiently robust for direct inte
gration into clinical workflows.

Despite widespread studies in oncology information extrac
tion from textual clinical records,41,42 annotated datasets of 
breast cancer pathology reports are not publicly available. To 
make the findings of this study replicable and promote further 
research on breast cancer pathology extraction, the dataset 
curated in this study along with corresponding source code 
will be shared publicly through a controlled-access repository 
PhysioNet, accessible via a data use agreement.

Conclusions
The study compared breast cancer pathology classification 
abilities of 7 models of varying sizes and architecture, finding 
that the GPT-4 model, even in zero-shot setups requiring no 
further model training, performed similarly to or better than 
the LSTM model with attention trained on nearly 570 pathol
ogy report examples. The GPT-4 model outperformed sim
pler baselines for classification tasks with high label 
imbalance. However, when large training datasets were avail
able, no significant differences were observed between the 
performance of simpler models like the LSTM model with 
attention compared to the GPT-4 model. The results of this 
study demonstrated that while LLMs may relieve the need for 
resource-intensive data annotations for creating large training 
datasets in medicine, if there are privacy, computational, or 
cost-related concerns regarding the use of LLMs with patient 
data, it may be possible to obtain reliable performance with 
simpler models by developing large annotated datasets, with 
particular focus on minority class labeling potentially in an 
active-learning setup.
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