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Abstract 

Statistical learning paradigms traditionally use transitional 
probabilities as a measure of statistical distribution within a 
language. The current study suggests that alternative metrics 
may exist that can account for differences in language 
processing ability. Two primed lexical decision tasks are used 
to examine the effects of bigram frequency and diversity on 
speed and accuracy of word recognition. It is demonstrated 
that both frequency and diversity contribute to word 
recognition performance; findings and theoretical 
implications are discussed.    

Keywords: Statistical learning; lexical decision; language 

Introduction 

Humans are superlative learners capable of identifying and 

tracking patterns in their environment, both implicitly and 

explicitly. This ability has been investigated using both 

implicit and, more recently, statistical learning paradigms 

(Perruchet & Pacton, 2006) across a number of different 

domains including shapes (Kirkham, Slemmer, & Johnson, 

2002), music (Daikoku, Yatomi, & Yumoto, 2014; Koelsh 

et al., 2016; Saffran et al., 1999), tactile stimuli (Conway & 

Christianson, 2005) and, most prominently, language 

acquisition (Newport & Aslin, 2004; Saffran, Aslin, & 

Newport, 1996; Thiessen, & Erickson, 2013; Vouloumanos, 

2008) highlighting the ability of learners, ranging from 

infant (Saffran et al., 1996) to adult (Koelsh et al., 2016), to 

track the transitional probabilities (TPs) within a given set 

of stimuli. 

Over the past two decades a plethora of researchers have 

investigated this phenomenon and have found transitional 

probabilities to be a robust indicator of performance across a 

number of different tasks and languages (e.g. Liu & Kager, 

2011; Toro, Sinnett, Soto-Faraco, 2005). This has led to the 

acceptance of TPs as the standard metric of co-occurrence 

within natural (and artificial) languages. However, if we 

consider that the TP of any given stimulus stems from an 

interaction between the frequency of sequence XY and the 

number of potential candidates for Y then we are presented 

with two alternative metrics of statistical distribution. 

These, in turn, can be used to investigate the types of 

statistics which learners can attend to.  

When applied to words in natural language these metrics 

can be termed Bigram Frequency, which is equal to the total 

number occurrences for a given sequence of two words 

within a language or representative selection thereof; and 

Bigram Diversity which can be defined as the number of 

items that potentially follow word X in the sequence XY.  

It is logical to presume that both bigram frequency and 

diversity would be predictive of performance in language-

related tasks. Evidence from Freudenthal et al. (2015) 

demonstrates that a frequency-based chunking mechanism 

can successfully reduce output errors in children’s speech. 

This suggests that learners can track not only the TPs of the 

bigrams but also the frequency with which they occur. No 

evidence yet exists for a diversity-driven account of 

language proficiency. Nonetheless, it is recognised that 

predictability is an important facet of language processing 

(Bates & MacWhinney, 1987; Glenberg & Gallese, 2012; 

Goldberg, Casenhiser, & Sethuraman, 2005; Pickering & 

Garrod, 2004, 2007; Van Berkum et al., 2005); it follows 

therefore that a larger number of potential competitors for 

stimulus Y would serve to reduce predictability and thereby 

prove detrimental to response fluency. 

Historically statistical learning paradigms such as those 

developed by Jusczyk and Aslin (1995, also Saffran, Aslin 

& Newport, 1996) have exposed learners to artificial 

languages with carefully built-in TPs. This allows for 

admirable control of the input at the expense of both 

diversity and complexity. It has been argued that these 

languages are too simplistic to assess the extent to which 

learners are able to process distributional statistics within 

natural language (Frank et al, 2010; Johnson & Tyler, 

2010). To highlight this point, Saffran et al. (1996) reported 

3398



inter-syllable TPs of 1.0 in their seminal study whereas 

naturally occurring TPs are often considerably lower (the 

bigram little baby has a TP of less than 0.002). 

Thus, the true test of statistical learning theories is their 

application to a more naturalistic dataset, one which retains 

the complexity and diversity of natural language whilst 

allowing for the accurate tracking of distributional cues; 

natural language corpora represent such datasets. The 

British National Corpus (BNC) is a collection of 

contemporary natural language which comprises 

approximately 100-million words of written and spoken 

British English drawn from a variety of sources ranging 

from telephone calls to academic journals. By analysing the 

distributional statistics within the BNC it is possible to 

present learners with verisimilar but also quantifiable 

samples of natural language.  

This raises another issue however, in that learners already 

have a great deal of experience interacting with natural 

languages. This makes traditional methods of testing such as 

those used by Saffran et al. (1996, also Frank et al., 2010; 

Jusczyk & Aslin, 1995) unsuitable for natural language 

stimuli. Thus, two solutions are immediately apparent; the 

use of unfamiliar or non-native languages or an alternate 

method of assessment. Non-native languages would seem to 

be the ideal solution except that the complexity of these 

languages means that learners require either long periods of 

familiarisation or simplified samples in order to obtain 

actionable data. It is therefore favourable to introduce an 

alternate measure of language proficiency whilst retaining 

the complexity of the language and avoiding a lengthy 

familiarisation process.  

The current study seeks to address this issue by assessing 

language proficiency using a primed lexical decision task 

(LDT) where the first word of a bigram acts as the prime 

and the second word the target. It is predicted that, using 

bigram frequency and diversity as statistical primes, 

response time for stimuli Y will be predicted by the strength 

of its association with prime X. Based on this prediction two 

hypotheses are proposed: 

H1: Response times on a LDT will be quicker when 

primed with high frequency bigrams compared to low 

frequency or non-bigrams, and 

H2: Response times will also be quicker when primed 

with low diversity bigrams compared to high diversity or 

non-legal bigrams 

 

Table 1: Diagnostic means and standard deviations for 

target words 

Method 

Participants 

Thirty-one participants (25 females) aged between 18 and 

41 years (M= 20.77, SD= 4.17) were recruited from 

Nottingham, UK. All participants reported English as their 

first language and were screened for language difficulties. 

Participants took part in both experiments and received 

research credits in exchange for their participation where 

applicable. An a priori power analysis showed that a sample 

of at least twenty-four participants was necessary to achieve 

statistical power of above .8. 

Experiment One 

Design 

Experiment one used a LDT to assess the extent to which 

bigram frequency affects word recognition. The aim of the 

experiment was to identify any statistical priming effect that 

may result from high frequency word pairs within natural 

language. 

Materials 

Three 30-item lists were generated using bigrams found 

within the BNC in addition to one 90-item non-word list 

which was created using entries from the ARC Non-word 

database (Rastle, Harrington, & Coltheart, 2002). The BNC 

contains only samples of British English which increases its 

validity as a natural language representation for a UK 

sample. 

Bigrams were extracted from the BNC by using a python 

script to parse the .xml version of the corpus into word pairs 

before writing them to a database and tallying the number of 

occurrences. This resulted in a list of 12,293,349 unique 

bigrams. A further script was used to remove any bigrams 

with a frequency of less than 0.1 per million since these 

were considered too infrequent to provide meaningful data.  

The remaining corpus was then filtered to exclude any 

bigrams containing acronyms, initialisations, contractions, 

hyphenations, non-standard or non-English words, names, 

numbers expressed as digits, or words with fewer than three 

letters. 

 Bigram Type Log(Frequency) Concreteness Letters Phonemes 

Experiment one High Frequency 3.20 (3.86) 3.10 (1.09) 5.01 (1.48) 4.10 (1.24) 

 Low Frequency 3.21 (3.87) 3.11 (1.41) 4.92 (1.41) 3.97 (1.18) 

 Non-Bigrams 3.20 (3.86) 3.10 (1.08) 5.00 (1.48) 4.05 (1.27) 

Experiment two High Diversity 2.08 (0.27) 2.85 (0.98) 5.43 (1.17) 4.33 (1.15) 

 Low Diversity 2.01 (0.49) 3.96 (1.00) 5.00 (0.88) 4.00 (0.96) 

 No Diversity 2.18 (0.02) 3.21 (1.03) 5.06 (1.26) 4.20 (1.19) 
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Stimuli lists were organised according to the frequency 

with which the bigrams occur within the BNC; the three 

lists contained bigrams of high (>100 occurrences) or low 

frequency (<20 occurrences), or bigrams consisting of 

words that do not appear together in the BNC. A number of 

metrics were obtained for each of the bigrams including 

word frequency (http://ucrel.lancs.ac.uk/bncfreq/flists.html), 

concreteness (Brysbaert, Warriner, & Kuperman, 2014), 

number of letters, and number of phonemes. Due to the 

nature of the sample exact matching across conditions was 

impossible without compromising the number of available 

bigrams, however word lists were balanced so as to not 

differ significantly on any of these characteristics (each p > 

0.05); list diagnostics are presented in table 1. Individual 

word frequencies were log-transformed. Examples of 

stimuli can be seen in Table 2. 

Table 2: Example stimuli for experiment one 

 

Bigram Type Example Stimuli (prime target) 

High Frequency recent times; last night; other hand 

Low Frequency craggy face; local access; time across 

Non-bigrams oval hipster; meet gone; chilli call 

 

Procedure 

Participants were presented with letter strings and were 

asked to indicate whether the string constituted a real 

English word by pressing either ‘z’ or ‘m’ on a standard 

QWERTY keyboard; key mapping was systematically 

varied so that half of all participants used ‘z’ to indicate a 

word and ‘m’ to indicate a non-word whilst half responded 

with ‘m’ for words and ‘z’ for non-words. Strings were 

presented for a maximum of 1500ms and were immediately 

preceded by a 75ms prime. All prime-target pairs mapped 

exactly onto bigrams from the stimuli lists whereby the first 

word of the bigram acted as a prime and the second word as 

the target. A fixation point was presented in the centre of the 

screen for 500ms prior to each trial. Prime-Target pairs were 

presented in two blocks each containing fifteen low-

frequency bigrams, fifteen high-frequency bigrams, fifteen 

non-bigrams, and forty-five non-word trials. The order of 

presentation for both blocks and trials was randomised for 

each participant. 

Analysis and Results 

 

All participants scored more than 80% on the LDT. Data 

was then trimmed to exclude incorrect responses as well as 

those made faster than 200ms, slower than 1500ms (Perea et 

al., 2016), or more extreme than three standard deviations 

from the participant’s mean (Madan et al., 2016), following 

this procedure 2.29% of correct trials were removed across 

participants. 

All response time data were log-transformed; data was 

then analysed categorically using a repeated-measures 

analysis of variance to identify any differences in response 

time between the high and low frequency bigrams (M = 

6.310, SD = .080), non-bigrams (M 6.507, SD = .101) and 

non-words (M = 6.548, SD = .130).  

Bigram frequency had a significant effect on response 

time, F(3,28) = 53.759, p < .001, ηp
2 = .852. Post hoc 

pairwise comparison using Bonferroni correction show that 

words in the non-bigram condition were recognised more 

slowly than those in both the high (p < .001) and low (p < 

.001) bigram frequency conditions. There was no difference 

between high and low frequency bigrams (p = .305). Non-

words were recognised more slowly than words in the high 

frequency (p < .001), low frequency (p < 0.001), and non-

bigram conditions (p < .038). Figure 1 illustrates these 

differences. 

 

 

 
 

Figure 1: Non-transformed group means for bigram 

frequency, bars depict standard error 

 

A further repeated-measures analysis of variance was also 

conducted to assess any differences in response accuracy 

between the four conditions. Response accuracy also shows 

an effect of bigram frequency, F(3,28) = 6.796, p = .001, ηp
2 

= .421. Post hoc analyses using Bonferroni correction show 

that participants responded less accurately to words from the 

non-bigram condition than those in the high (p = .005) or 

low (p = .002) frequency conditions. All other comparisons 

were non-significant (each p > .062). Figure 2 shows means 

and standard error for accuracy. 
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Figure 2: Proportion of correct responses by group, bars 

depict standard error. 

 

Experiment Two 

Design 
Experiment two used a LDT to assess the extent to which 

bigram diversity affects word recognition. The aim of the 

experiment was to identify any statistical priming effect that 

may result from the predictability of the second word in a 

bigram given the diversity of the first. 

 

Materials 
Stimuli were obtained and processed using an identical 

procedure to experiment one with the exception that the 

word lists were organised according to high (>100 potential 

followers) or low (<2 potential followers) diversity or 

bigrams consisting of primes that do not have followers 

within the BNC. Word lists were balanced in the same way 

as the first experiment, each p >0.06 with the exception that 

the low diversity list differed significantly from both the 

high and no diversity list on concreteness (high: p <0.01, no: 

p <0.01); this is due to the relative scarcity of low diversity 

bigrams within the BNC and the theoretical decision to 

prioritise controlling individual word frequency since this 

represents the largest predictor of word recognition 

performance (Brysbaert & New, 2009; Ferrand et al., 2010; 

Keuleers, Diependaele, & Brysbaert, 2010; Keuleers et al., 

2012; Yap & Balota, 2009). List diagnostics are presented 

in table 1. Individual word frequencies were log-

transformed. Example stimuli can be seen in Table 3; none 

of the bigrams were repeated across the two experiments. 

 

Table 3: Example stimuli for experiment two 

 

Bigram Type Example Stimuli 

High Diversity that place; with number; this ancient 

Low Diversity revolve around; beady eyes; gilded cage 

No-Diversity yonder month; ribbed final; orate red 

 

Procedure 

The experimental procedure was identical to that used in the 

first experiment. 

 

Analysis and Results 

 

All participants scored more than 80% on the LDT. Data 

was trimmed in the same way as the first experiment and a 

total of 2.04% of correct trials were removed. Response 

time data was log-transformed. 

Data was analysed categorically using a repeated-

measures analysis of variance to identify any differences in 

response time between the high (M = 6.375, SD = .054), 

low (M = 6.395, SD = .059) and no diversity (M = 6.422, 

SD = .581) bigrams as well as non-words (M = 6.548, SD = 

.130); means and standard error can be seen in Figure 3. 

 

 

 
 

Figure 3: Non-transformed group means for bigram 

diversity, bars depict standard error 
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Bigram diversity had a significant effect on response time, 

F(3,28) = 35.932, p < .001, ηp
2 = .794. Post hoc pairwise 

comparison using Bonferroni correction shows that non-

words were recognised more slowly than those in high (p < 

.001), low (p < .001) and no diversity (p < .001) conditions. 

Words in the no diversity condition were also recognised 

more slowly than those in both the high (p = .007) and low 

(p = .011) diversity conditions; there was no significant 

difference between high and low diversity bigrams (p = 

.261). 

Bigram diversity had no effect on response accuracy, 

F(3,28) = 1.486, p = .208.  

 

Comparison with Transitional Probability 

Transitional probabilities were calculated for all bigrams 

using the formula: 

P(Y|X) = P(Y, X) 

                   P(X) 

Where Y is the target stimulus and X is the initial word of a 

given bigram pair. 

An item analysis was then run using a multiple linear 

regression with data from both experiments to assess the 

relationship between response time (log-transformed) on a 

LDT and the three key variables bigram frequency, bigram 

diversity, and transitional probability, F(3, 168) = 2.937, p = 

.035. Individual coefficients (see Table 4.) indicate that 

bigram frequency represents the strongest predictor of word 

recognition performance; neither bigram diversity or TP 

were significant predictors of response time. 

 

Table 4: Coefficients and p-values 

 

Discussion 

The current study aimed to assess whether bigram frequency 

and bigram diversity would have an effect when used as 

primes in a LDT. Findings from the categorical analyses 

suggest a binary interaction between bigram frequency and 

response time where naturally occurring bigrams are 

recognised significantly more quickly than illegal bigrams 

or non-words. The same is also true for bigram diversity. 

This suggests that any amount of exposure to a language 

is beneficial regardless of the frequency or diversity of 

individual structures within the input. This is an interesting 

effect which may have been overlooked by previous studies 

that have focussed on TPs since the methodologies 

employed tend to focus on recognition of familiar versus 

unfamiliar strings. It could be argued however that the 

bigram frequencies presented in the current study, although 

highly infrequent, do not accurately represent the extremes 

of low frequency within the BNC. It is therefore suggested 

that further investigation needs to access frequencies of less 

than 0.1 per million in order to identify the absolute 

minimum amount of exposure required to elicit statistical 

priming effects. 

 Comparison of the key predictors also suggests that 

bigram frequency outperforms TPs as a predictor of 

response time in a statistically primed LDT. This can be 

attributed to the lower computational costs associated with 

tracking bigram frequency compared to the calculation of 

TPs. To the authors knowledge, the current study is the first 

to assess statistical learning using a LDT. These findings 

should therefore be interpreted with caution until they can 

be demonstrated in alternative paradigms. 

It is proposed that the findings presented are evidence for 

the use of metrics other than TP in statistical learning 

paradigms, particularly when applied to natural language 

where TPs tend to be very small. A case can also be made 

that LDTs are a viable paradigm for the investigation of 

statistical effects in natural language where traditional 

recognition tasks may not be appropriate.  

Crucially, they suggest that theories of statistical learning 

can deal with the scale-up in variety and complexity that 

comes from moving between artificial and natural 

languages. This begins to address one of the most 

fundamental criticisms of statistical learning theory. 

When interpreting the data presented herein it would be 

prudent to consider that, although the BNC constitutes a 

multifarious selection of British English it does not 

encapsulate the entirety of written and spoken language. It is 

therefore posited that any findings presented be considered 

as representative rather than absolute in their accuracy. 

Future investigation should include the analysis of alternate 

corpora in order to ensure that any results are not artefactual 

in nature. 

It is recognised that neither bigram frequency or diversity 

represent a complete account of statistic learning, nor is it 

suggested that learners utilise these metrics in place of TPs. 

Rather, it is posited that bigram frequency and, to a lesser 

extent, diversity constitute ‘another brick in the wall’ which 

may one day lead to a comprehensive understanding of how 

humans process language. 

In conclusion, the current study demonstrates that 

individuals are capable of using bigram frequency and 

diversity to respond to statistical primes in a lexical decision 

task and that these metrics may be comparable to 

transitional probabilities when applied to natural language. 
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 Beta Stand. 

 Beta 

P 

Bigram frequency -2.51e-5 -.189 < .016 

Bigram diversity -1.21e-5 -.060 .456 

Trans. Probability -.038 -.107 < .169 
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