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3
2−Approximation Algorithm for a Generalized,

Multiple Depot Hamiltonian Path Problem
Sivakumar Rathinam1 and Raja Sengupta2

Abstract

We consider a Generalized, Multiple Depot Hamiltonian Path Problem (GMDHPP) and show that it has an algo-
rithm with an approximation ratio of 3

2 if the costs are symmetric and satisfy the triangle inequality. This improves on
the 2-approximation algorithm already available for the same.

Keywords
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I. Introduction

Recently, we [20] presented a 5
3
−approximation algorithm1 for one variant of the multiple depot

Hamiltonian Path Problem (HPP). Apart from this result, there are no algorithms in the literature
with approximation ratios better than 2 for any variant of the multiple depot Traveling Salesman
Problem (TSP) or multiple depot HPP. This paper considers a different, generalized variant of the
multiple depot HPP and shows that it has a 3

2
-approximation algorithm. Specifically, this paper

addresses the following Generalized Multiple Depot Hamiltonian Path Problem (GMDHPP): Given a
set of k distinct depots where a salesman is present at each depot, a positive constant p and a set of
n destinations to visit, the objective of GMDHPP is to
• choose at most p salesmen,
• assign paths to the chosen salesmen such that each destination is visited exactly once by one chosen
salesman, and,
• the sum of the cost of the paths of all the chosen salesmen is minimized. The cost of a path is the
total cost of the edges present in the path.

GMDHPP is a generalization of a single depot, single salesman HPP considered by Hoogeveen [12]
and is NP-Hard. In [12], Hoogeveen presented a 3

2
−approximation algorithm for a single depot, single

salesman version of the GMDHPP. In general, there are two subproblems when dealing with any
multiple depot routing problem. The first subproblem is the partitioning problem which essentially
requires finding a subset of destinations for each salesman to visit. Given the subset of vertices for a
salesman to visit, the objective of the second subproblem, namely the sequencing problem, is to find an
optimal sequence that produces the minimum cost path or tour. With respect to these two problems,
consider the following algorithm for GMDHPP:
1. Solving the partitioning problem: Find a minimum cost forest with k trees spanning all the depots
and the destinations such that there are at most p non-trivial trees (a tree with at least one edge)
with no path joining any two depot vertices. Since there are k depot vertices and no path can join any
two depot vertices, there must be exactly one depot vertex in each tree of the minimum cost forest.
The depot vertices present in the non-trivial trees correspond to the chosen salesmen. There are al-
gorithms available in the literature ([7], [6], [21]) to find such a minimum cost forest in polynomial time.

1. Graduate Student, Department of Civil Engineering, University of California, Berkeley, CA 94720, corresponding author:
rsiva@berkeley.edu.

2. Assistant Professor, Department of Civil Engineering, University of California, Berkeley, CA 94720.
1An α−approximation algorithm for problem P is an algorithm that

• has a polynomial-time running time, and
• returns a solution whose cost is within α times the optimal cost of problem P .
.
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2. Solving the sequencing problem: Double the edges in each nontrivial tree to get an Eulerian graph
for each chosen salesman. Shortcut the edges in each Eulerian graph to obtain a path for each chosen
salesmen.

It has been shown ([21]) that the above algorithm has an approximation ratio of 2 when the costs
satisfy the triangle inequality. Also, using a similar approach, 2-approximation algorithms have been
obtained for other variants of the multiple depot TSP or HPP also ([17], [18], [19]). Except for
the 5

3
−approximation algorithm for one particular variant of the multiple depot HPP, there are no

algorithms in the literature for any multiple depot TSP or HPP that has an approximation ratio better
than 2. In the following subsection, we review this variant and its approximation algorithm.

A. Review of the 5
3
-approximation algorithm

The problem considered in [20] was a Multiple Depot, Terminal Hamiltonian Path Problem (MDTHPP)
stated as follows: Given k salesmen that start at k distinct depot vertices, k terminal vertices and
n (≥ k) destination vertices, the problem is to choose paths for each of the salesmen so that (1)
each salesman starts at his respective depot vertex, visits at least one destination vertex and reaches
any one of the terminal vertices not visited by other salesmen, (2) each destination vertex is visited
exactly once and (3) the cost of the paths is a minimum among all possible paths for the salesmen.
The criteria for the cost of paths considered is the total cost of the edges traveled by the entire col-
lection. The single depot, single terminal version with one salesman corresponding to the MDTHPP
has a 5

3
−approximation algorithm by Hoogeveen [12]. The 5

3
−approximation algorithm in [20] for

MDTHPP used the following approach:
1. Solving the partitioning problem: Formulate the MDTHPP as a minimum cost forest problem subject
to degree constraints on all the vertices. Penalize the degree constraints to obtain a corresponding
Lagrangian dual problem. Solve this Lagrangian dual problem to obtain a minimum cost forest. A
destination (or a terminal) is assigned to the depot (or the salesman located at the depot) if it is
connected to the depot in the minimum cost forest. This step solves the partitioning problem by
assigning a set of destinations and a terminal for each salesman located at the depots.
2. Solving the sequencing problem: Use Hoogeveen’s algorithm [12] available for the single depot, single
terminal HPP on each partition to obtain a path for each salesman.

The 5
3
−approximation ratio could be proved because the partitioning problem was addressed by

solving a Lagrangian dual problem of the MDTHPP. The approximation algorithm presented in this
paper for GMDHPP is similar to the 5

3
−approximation algorithm presented for the MDTHPP. How-

ever, the techniques required to show the approximation ratio are different. In the following subsection,
we present the outline of the 3

2
−approximation algorithm for GMDHPP.

B. Our approach

We formulate GMDHPP as a minimum cost constrained forest problem with added degree con-
straints on the vertices (section (II)). By dualizing the degree constraints, we obtain a Lagrangian
dual for the GMDHPP (equation (14)). We first show that this Lagrangian dual problem can be solved
in polynomial time using the Ellipsoid method (Proposition II.2). By solving the Lagrangian dual for
the MDTHPP, we find a subset of destination vertices for each salesman to visit. For each i = 1, .., k,
we use Hoogeveen’s algorithm [12] to find a path for all the salesmen who have at least one destination
vertex to visit as follows:
1. Find the minimum cost spanning tree (Ti) corresponding to the vertices of the ith salesman.
2. Find the minimum cost perfect matching (Mi) on the wrong degree vertices present in Ti. A vertex
has a wrong degree if
• it is a destination vertex and its degree is odd.
• it is a depot vertex and its degree is even.
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3. Add the edges of Mi to Ti to get a new graph for the ith salesman. Shortcut the edges in the new
graph to get a path for the ith salesman.

First, the total cost of all the minimum spanning trees found in step (1) of the Hoogeveen’s algorithm
is shown to be bounded by the optimal cost of GMDHPP (Proposition IV.1). Another crucial part of
obtaining a 3

2
−approximation algorithm is due to Proposition IV.5. Proposition IV.5 upper bounds the

total cost of matching by half the optimal cost of GMDHPP if the costs satisfy the triangle inequality.
This helps us prove that the algorithm presented above for GMDHPP has a 3

2
−approximation ratio.

To show the upper bound of the total cost of matching, we also had to prove the following result:
• For a single salesman, Single Depot HPP (SDHPP), the cost of matching using the Hoogeveen’s
algorithm is at most half the optimal LP relaxation cost of the SDHPP if the costs satisfy the triangle
inequality (Proposition IV.4). A similar result has already been shown for the single TSP by Wolsey
[24], Shmoys and Williamson [23]. In this paper, we adapt the proof of Shmoys and Williamson [23]
to prove a similar result for the SDHPP.

II. Problem formulation

Let D = {1, 2, 3, · · · , k} be the set of vertices representing all the depots. There is one salesman
located at each depot. Let U = {k + 1, k + 2, k + 3, · · · , k + n} be the set of vertices denoting n
destinations. Let V := D

⋃
U . Since we are considering a multiple depot problem, let k ≥ 2. We also

assume there are at least three destination vertices (n ≥ 3) to eliminate trivial cases. Let p denote
the maximum number of salesmen that could chosen for visiting all the destinations. The edge joining
vertices i and j has a cost Cij ∈ Q+ associated with it where Q+ is the set of all positive rational
numbers. Assume that all costs are positive and symmetric, i.e., Cij > 0 and Cij = Cji for all i, j ∈ V .
Let Cmin = mini,j∈V,i<j Cij and Cmax = maxi,j∈V,i<j Cij. Cmin > 0 by assumption. To simplify the
notation in the later stages, the GMDHPP is defined for a set of vertices, S ⊆ V . Let DS and US

denote the set of all the depots and destinations present in S respectively (i.e. DS = S
⋂{1, 2, · · · , k},

US = S
⋂{k+1, k+2, · · · , n}). Decision variable xij is used to represent the choice of the edge between

vertex i and j for all i, j ∈ S. xij = 1 implies the edge joining vertex i and vertex j is chosen and
xij = 0 otherwise. Let the variables xij ∀i, j ∈ S, i < j be tersely denoted as x. For a given S ⊆ V
with |DS| ≥ 1, the GMDHPP is formulated as follows:

Copt
S = min

x

∑
i∈S,j∈S,i<j

Cijxij (1)

∑
j∈US

xij ≤ 1 for all i ∈ DS, (2)

∑
j∈S,i<j

xij +
∑

j∈S,j<i

xji ≤ 2 for all i ∈ US, (3)

∑
i∈DSj∈US ,i<j

xij ≤ p, (4)

∑
i∈S,j∈S,i<j

xij = |US|, (5)

∑
i∈R,j∈R,i<j

xij ≤ |R| − 1, for all R ⊆ S, (6)

∑
i∈R,j∈R,i<j

xij ≤ |R| − 2, for all R such that R ⊆ S and |R
⋂

DS| = 2, (7)

xij ∈ {0, 1}, for all i, j ∈ S, i < j. (8)
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Copt
S denotes the optimal cost of the GMDHPP corresponding to the set of vertices S ⊆ V . Equation

(2) states that the degree of each depot vertex must be at most 1. Equation (3) requires that the
degree of each destination vertex must be at most 2. Equation (4) states that at most p salesmen
can be used for visiting all the destinations. Equation (5) states that the total number of edges in
any feasible solution to the GMDHPP must be equal to |US| (i.e there are |DS| trees). Equation (6)
eliminates the presence of a cycle in any feasible solution. Equation (7) eliminates the possibility of a
path joining any two depot vertices in DS.

Let equations (2),(3) be written as A1
Sx ≤ B1

S and (4)-(7) be written as A2
Sx ≤ B2

S. Define P (S) :=
{x : A1

Sx ≤ B1
S, A2

Sx ≤ B2
S, x ≥ 0}. y is a feasible solution to the GMDHPP if y is present in

{x : x ∈ P (S), x is an integer}. The GMDHPP can now be restated as

Copt
S = min

x
{CS(x) : x ∈ P (S), x is an integer}, (9)

where CS(x) =
∑

i∈S,j∈S,i<j Cijxij. The LP relaxation of this problem is:

C lp
S = min

x
{CS(x) : x ∈ P (S)}. (10)

In the above equation, C lp
S denotes the optimal LP relaxation cost of the GMDHPP defined for the

set of vertices S ⊆ V .
In the following discussion, we show how the GMDHPP formulated in equations (1-8) can be viewed

as a constrained forest problem with degree constraints on all the vertices. In this paper, a constrained
forest for a given set of vertices S with |DS| ≥ 1 is defined as a forest with the following constraints:
• there are exactly |DS| trees such that no two depot vertices are connected, and
• there are at most p edges joining any vertex in DS to any vertex in US.
Equations (4-8) describe all the constraints mentioned above. Since the forest has exactly |DS| trees
and no two depot vertices must be connected, each tree must contain exactly one depot vertex. The
constrained forest problem, denoted by CF, is:

Cf
S = min

x
{CS(x) : x ∈ F (S), x is an integer}, (11)

where,

F (S) = {x : A2
Sx ≤ B2

S, x ≥ 0}. (12)

In the above equations, Cf
S denotes the optimal cost of the constrained forest problem defined for

the set of vertices S ⊆ V . This constrained forest problem can be solved in polynomial time using
the algorithms in [7], [6] or [21]. The GMDHPP is actually CF with the additional degree constraints
present in A1

Sx ≤ B1
S. Before we present the approximation algorithm for GMDHPP in the next

section, we formulate a Lagrangian dual problem corresponding to GMDHPP and show its related
results that are crucial in proving the approximation ratio.

Given a constrained forest x, let di(x, S) denote the degree of vertex i in S. That is,

di(x, S) =

{ ∑
j∈US

xij for all i ∈ DS,∑
j∈S,i<j xij +

∑
j∈S,j<i xji for all i ∈ US.

(13)

By dualizing the constraints in A1
Sx ≤ B1

S, we can obtain a Lagrangian dual to the GMDHPP. This
Lagrangian dual problem for a given set S ⊆ V can be formulated as maxπ≥0 w(π, S) where
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w(π, S) = min
x∈F (S),x is an integer

[CS(x) +
∑
i∈DS

πi(di(x, S)− 1) +
∑
i∈US

πi(di(x, S)− 2)].

In the above equation, πi is the penalizing variable corresponding to the degree constraint of the ith

vertex. Also, let π indicate the penalizing variables πi for all i ∈ S. By letting

vi(x, S) =

{
di(x, S)− 1 if i ∈ DS,
di(x, S)− 2 if i ∈ US,

we restate the Lagrangian dual problem for a given S ⊆ V as

max
π≥0

w(π, S)

where,

w(π, S) = min
x∈F (S),x is an integer

[CS(x) +
∑
i∈S

πivi(x, S)]. (14)

We first state a result that relates C lp
S (the optimal LP relaxation cost), maxπ≥0 w(π, S) (the optimal

Lagrangian dual cost) and Copt
S (the optimal integer programming cost).

Proposition II.1: For any S ⊆ V with |DS| ≥ 1,

C lp
S ≤ max

π≥0
w(π, S) ≤ Copt

S . (15)

Proof: This follows from a known result for integer programs. Refer to page 13 in Fisher [5] or
page 330 in Nemhauser and Wolsey [15]. In general, for integer programs with minimization objective,
the optimal Lagrangian dual cost can at most be equal to the optimal integer programming cost. Also,
the optimal LP relaxation cost can at most be equal to the optimal Lagrangian dual cost.

Proposition II.2: The Lagrangian dual problem, maxπ≥0 w(π, V ), can be solved in time polynomial
in n + k and log nCmax using the Ellipsoid method.

Proof: This theorem is proven using the results in Grotschel et al. [8]. The Lagrangian dual
problem, maxπ≥0 w(π, V ), can also be written as a linear program as follows:

max
t,π≥0

t

t ≤ CV (x) +
∑
i∈V

πivi(x, V ), ∀ x where x is a constrained forest. (16)

Using Lemma V.1 proved in the appendix, adding the constraints 0 ≤ t ≤ nCmax and 0 ≤ πi ≤
nCmax ∀i ∈ V to the linear program above does not change its optimal cost. Now, define

P := {t, π : t ≤ CV (x) +
∑
i∈V

πivi(x, V ),∀ x where x is a constrained forest,

0 ≤ t ≤ nCmax,

0 ≤ πi ≤ nCmax ∀i ∈ V }.
(17)
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To show that the linear program (16) is solvable using the Ellipsoid method, we need to show the
following:
• The following separation problem is solvable in polynomial time:

Given any t∗ ∈ Q and π∗ ∈ Q|V |, decide whether t∗, π∗ ∈ P and if not find a violated constraint.

• Let B(y, ρ) for y ∈ R|V |+1, ρ ∈ R+ be a ball of radius ρ centered at y where R denotes the set of all
real numbers. There exists y1, y2 ∈ R|V |+1 and ρ1, ρ2 ∈ R+ where log ρ1, log ρ2 are polynomial functions
of the input such that B(y1, ρ1) ⊆ P⊆ B(y2, ρ2).

Since the constrained forest problem is solvable in polynomial time ([7], [6], [21]), we know that
the separation problem is solvable in polynomial time. To show that a ball is contained in P choose
to = Cmin

n+k
, πo

i = Cmin

n+k
∀i ∈ V and ρ1 = Cmin

n+k
. Cmin > 0 by assumption. Let the center of the ball be

y1 = (to, π
o
1, · · · , πo

n+k). Lemma V.2 in the appendix proves that B(y1, ρ1) ⊆ P . As in the definition
of P , all the variables, (t, π1, · · · , πn+k), are positive and upper bounded by nCmax. Therefore by
choosing ρ2 = nCmax, one can conclude that P ⊆ B(0, ρ2).

Since P is full dimensional, bounded and the separation problem is solvable in polynomial time, one
can use the results in Grotschel et al. [8] to conclude that the linear program formulated in (16) is
solvable in time polynomial in the number of vertices (i.e. n + k) and log ρ2 (i.e. log nCmax) using the
Ellipsoid method.

We now state a result regarding the decomposition of the optimal Lagrangian dual cost of the
GMDHPP. A similar result was also shown for a different multiple depot, terminal HPP in [20].

Proposition II.3: Let (π∗, x∗) solve the Lagrangian dual problem, maxπ≥0 w(π, V ), where

w(π, V ) = min
x∈F (V ),x is an integer

[CV (x) +
∑
i∈V

πivi(x, V )].

Let Pi(x
∗) be the set of all vertices present in the ith tree of the optimal solution x∗. Then,

max
π≥0

w(π, V ) =
∑

m=1,··· ,k
max
πm≥0

w(πm, Pm(x∗)),

where πm represents πi for all i ∈ Pm(x∗).

Proof: Refer to the appendix.

III. Approximation algorithm for GMDHPP

We generate a feasible solution, xapprox, for the GMDHPP using the following algorithm called
approx:
• Solve the Lagrangian dual problem,

max
π≥0

min
x∈F (V ),x is an integer

[CV (x) +
∑
i∈V

πivi(x, V )]

using the Ellipsoid method. Let (π∗, x∗) be the corresponding optimal solution. x∗ is a disjoint forest
with k trees such that a depot vertex is contained in each tree. Let Pi(x

∗) be the set of vertices present
in the ith tree. Note that Pi(x

∗)
⋂

Pj(x
∗) = ∅ for i 6= j and

⋃
i∈1,··· ,k Pi(x

∗) = V . Let the depot vertex

present in Pi(x
∗) be denoted as ri. We use Hoogeveen’s approximation algorithm [12] to construct a

path for each salesman i ∈ {1, · · · , k} as follows:
1. If |Pi(x

∗)| = 1, then Pi(x
∗) is a trivial component and contains only the depot vertex ri. Hence,

we need not proceed further for this component.
2. Find the minimum spanning tree Ti corresponding to the vertices in Pi(x

∗).
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3. Find the set of odd degree vertices Si of Ti. Note that the number of odd degree vertices |Si| is
even.
4. If the depot vertex ri present in Ti has even degree, then let Si := Si

⋃{ri} else let Si := Si\{ri}.
5. Find the minimum cost matching Mi on Si of cardinality |Si|−1

2
.

6. Now consider the graph Gi = (Pi(x
∗), Ei) where Ei is the union of all the edges present in Ti and

Mi. Gi is connected and has either 0 or 2 odd degree vertices.
– If there are 2 odd degree vertices, then one of the 2 odd degree vertices must be the depot vertex

ri.
– If there are 0 odd degree vertices, then remove an edge ei joining the depot vertex ri to any other

vertex in Pi(x
∗). Then the resulting graph Gi = (Pi(x

∗), Ei\{ei}) would have two odd degree vertices
with the depot vertex being one of them.
7. Construct an Eulerian path that traverses each edge in Gi exactly once. The Eulerian path will

have the two odd degree vertices as its end points. This construction can be done using the algorithms
given in [12],[25].
8. Shortcut this Eulerian path to produce a Hamiltonian path starting at depot vertex ri and visiting

all the vertices present in Pi(x
∗). If the costs satisfy the triangle inequality, the cost of this Hamiltonian

path will be less than or equal to the cost of the Eulerian path.
The following is the main result of this paper:
Theorem III.1: Let the costs be symmetric and satisfy the triangle inequality. Algorithm approx

provides a feasible solution, xapprox, with an approximation ratio of 3
2

for GMDHPP and is solvable in
time polynomial in n + k and log nCmax.

IV. Proof of theorem III.1

The computational complexity of algorithm approx is dominated by the Ellipsoid method which
is solvable in time polynomial in n + k and log nCmax by Proposition II.2. The rest of the section
constructs the necessary results to prove the following:

If the costs satisfy the triangle inequality, then

Copt
V ≤

∑
i,j∈V,i<j

Cijx
approx
ij ≤ 3

2
C lp

V .

The total cost of the feasible solution, xapprox, is upper bounded by
∑

i∈1,··· ,k
(C(Ti) + C(Mi)) (18)

where C(Ti) and C(Mi) represent the total cost of the edges present in Ti and Mi respectively.

Proposition IV.1: (Bound on the cost of spanning trees)
∑

i=1,··· ,k
C(Ti) ≤ Copt

V . (19)

Proof: Pi(x
∗) has one depot vertex. Therefore the path elimination constraints present in

F (Pi(x
∗)) between any two depot vertices are trivially satisfied. Remaining constraints in F (Pi(x

∗))
describe the spanning tree constraints corresponding to Pi(x

∗) with a degree constraint on the depot
vertex ri. Since Ti is the minimum spanning tree corresponding to the vertices in Pi(x

∗) with no degree
constraints,

C(Ti) ≤ min
x
{CPi(x∗)(x) : x ∈ F (Pi(x

∗)), x is an integer}. (20)

Let πi represent πj for all j ∈ Pi(x
∗). If all the penalizing variables are zero (i.e. πi = 0), then note

that w(0, Pi(x
∗)) = minx{CPi(x∗)(x) : x ∈ F (Pi(x

∗)), x is an integer} by definition. Therefore,
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C(Ti) ≤ min
x
{CPi(x∗)(x) : x ∈ F (Pi(x

∗)), x is an integer}
= w(0, Pi(x

∗))

≤ max
πi≥0

w(πi, Pi(x
∗)).

(21)

From equation (21) and Propositions II.3, II.1,

∑

i=1,··· ,k
C(Ti) ≤

∑

i=1,··· ,k
max
πi≥0

w(πi, Pi(x
∗))

= max
π≥0

w(π, V )

≤ Copt
V .

(22)

In the following subsection we show that
∑

i=1,··· ,k C(Mi)) ≤ 1
2
Copt

V .

A. Bound on the cost of matching

We first show that for a single salesman HPP the cost of matching is upper bounded by half the
optimal LP relaxation cost of the HPP. Consider a matching problem on a set of vertices denoted
by V̄ . Assuming that |V̄ | is odd, the objective of the minimum cost matching problem is to find a

matching M with |V̄ |−1
2

edges that has minimum cost. Due to Edmonds (1965), this matching problem
can be formulated as a linear program as follows:

C(M) := min
∑

i∈V̄ ,j∈V̄ ,i<j

Cijxij

∑

j∈V̄ ,i<j

xij +
∑

j∈V̄ ,j<i

xji ≤ 1 for all i ∈ V̄ ,

∑

i∈V̄ ,j∈V̄ ,i<j

xij =
|V̄ | − 1

2
,

∑
i∈R,j∈R,i<j

xij ≤ |R| − 1

2
, for all R ⊂ V̄ , |R| ≥ 3, |R| odd,

0 ≤ xij ≤ 1 for all i, j ∈ V̄ , i < j.

(23)

Now, consider the Hamiltonian path problem of finding a minimum cost path that visits each vertex
in V̄ exactly once. In this path problem note that the start or the end vertex of the path is not
specified. A integer programming formulation of this Hamiltonian path problem is

min
∑

i∈V̄ ,j∈V̄ ,i<j

Cijxij (24)
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∑

j∈V̄ ,i<j

xij +
∑

j∈V̄ ,j<i

xji ≤ 2 for all i ∈ V̄ , (25)

∑

i∈V̄ ,j∈V̄ ,i<j

xij = |V̄ | − 1, (26)

∑
i∈R,j∈R,i<j

xij, ≤ |R| − 1, for all R ⊆ V̄ , (27)

xij ∈ {0, 1} for all i, j ∈ V̄ , i < j. (28)

(29)

Consider a LP relaxation of the above problem where the constraints xij ∈ {0, 1} ∀i, j ∈ V̄ , i < j are
replaced with xij ≥ 0 ∀i, j ∈ V̄ , i < j. Let CHPP

V̄
be the optimal cost of this LP relaxation.

Proposition IV.2: C(M) ≤ 1
2
CHPP

V̄
.

Proof: If x is a feasible solution to the LP relaxation of the Hamiltonian Path Problem (24-28),
then x

2
is also a feasible solution to the matching problem. Hence, C(M) ≤ 1

2
CHPP

V̄
.

Proposition IV.3: If the costs satisfy triangle inequality, then for any V̄ ⊆ V ′, CHPP
V̄

≤ CHPP
V ′ .

Proof: A Lagrangian dual to the HPP (24-28) is

max
π≥0

LD(π, V̄ ), (30)

where,

LD(π, V̄ ) = min
∑

i∈V̄ ,j∈V̄ ,i<j

(Cij + πi + πj)xij − 2
∑

i∈V̄

πi

∑

i∈V̄ ,j∈V̄ ,i<j

xij = |V̄ | − 1,

∑
i∈R,j∈R,i<j

xij ≤ |R| − 1, for all R ⊆ V̄ ,

xij ∈ {0, 1} for all i, j ∈ V̄ , i < j.

(31)

Also, consider the integer program of a minimum spanning tree problem with the objective formu-
lated in equation (24) and the constraints formulated in (26-28). It is well known (Lawler [14]) that
the extreme points of the LP relaxation of this integer program is in one to one correspondence with
the set of trees spanning all the vertices in V̄ . Hence, solving the LP relaxation itself produces the
optimal spanning tree. Because of this integrality property, using corollary (6.6) in Nemhauser and
Wolsey [15] or the results in Fisher [5], it follows that

max
π≥0

LD(π, V̄ ) = CHPP
V̄ . (32)

Now, consider the HPP on the set of vertices V ′ := V̄
⋃{b}. The aim is to show that CHPP

V̄
≤

CHPP
V ′ if the costs satisfy the triangle inequality. By equation (32), we essentially want to prove
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that maxπ≥0 LD(π, V̄ ) ≤ maxπ′≥0 LD(π′, V ′). Let us prove this by contradiction. Let us assume
that maxπ≥0 LD(π, V̄ ) > maxπ′≥0 LD(π′, V ′). Let π∗ solve maxπ≥0 LD(π, V̄ ). Let πb ≥ 0 be the
weight on vertex b. Let π′ be such that π′i = π∗i for i ∈ V̄ and π′b = πb. For any arbitrary πb,
maxπ≥0 LD(π, V̄ ) > LD(π′, V ′) by assumption. Given π∗, let a optimal spanning tree corresponding
to the minimization problem in LD(π′, V ′) be denoted by T (πb). Let us consider the following two cases:

• Let πb = 0. There exists no optimal spanning tree, T (0), with the degree of vertex b greater than 1:

In this case, vertex b is a leaf in the tree T (0). Let b be connected to vertex q in T (0). Remov-
ing the edge joining vertex b and q will result in a tree, T̄ = T (0)\(b, q), spanning the vertices in V̄ .
By definition,

LD(π′, V ′) =
∑

(i,j)∈T (0)

(Cij + π′i + π′j)− 2
∑

i∈V ′
π′i

= Cbq + πb + πq +
∑

(i,j)∈T̄

(Cij + π′i + π′j)− 2
∑

i∈V̄

π′i − 2πb

(33)

Since, πq ≥ 0 and πb = 0, we get,

LD(π′, V ′) ≥
∑

(i,j)∈T̄

(Cij + π′i + π′j)− 2
∑

i∈V̄

π′i

=
∑

(i,j)∈T̄

(Cij + π∗i + π∗j )− 2
∑

i∈V̄

π∗i

≥ max
π≥0

LD(π, V̄ ).

(34)

• Let πb = 0. The degree of vertex b in every optimal spanning tree, T (0), is at least 2:

By suitably increasing πb, there exists a πb = δ ≥ 0, such that there is at least one optimal span-
ning tree, T (δ), where the degree of vertex b is exactly equal to 2 (Refer to Lemma 3 of Shmoys and
Williamson [23]). Consider such an optimal tree and let p and q be the two vertices connected to
vertex b in the same. Let T̄ = T (δ)

⋃
(p, q)\{(b, p), (b, q)} denote the tree spanning vertices in V̄ .

By definition,

LD(π′, V ′) =
∑

(i,j)∈T (δ)

(Cij + π′i + π′j)− 2
∑

i∈V ′
π′i

= Cpb + Cqb + π∗p + π∗q + 2δ +
∑

(i,j)∈T (δ)\{(b,p),(b,q)}
(Cij + π∗i + π∗j )

−2
∑

i∈V̄

π∗i − 2δ.

(35)

Since the costs satisfy the triangle inequality, Cpb + Cqb ≥ Cpq. Therefore,
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LD(π′, V ′) ≥ Cpq + π∗p + π∗q +
∑

(i,j)∈T (δ)\{(b,p),(b,q)}
(Cij + π∗i + π∗j )− 2

∑

i∈V̄

π∗i

=
∑

(i,j)∈T̄

(Cij + π∗i + π∗j )− 2
∑

i∈V̄

π∗i

≥ max
π≥0

LD(π, V̄ ).

(36)

In the above argument we have shown that there exists a πb ≥ 0 where LD(π′, V ′) ≥ maxπ≥0 LD(π, V̄ ).
Hence the assumption must be false. Therefore maxπ≥0 LD(π, V̄ ) ≤ maxπ′≥0 LD(π′, V ′).

Proposition IV.4: Suppose V̄ ⊆ V ′ and |V̄ | is odd. Let M be the minimum cost matching on V̄

with cardinality V̄−1
2

. If the costs satisfy the triangle inequality, then C(M) ≤ 1
2
CHPP

V ′ .
Proof: Follows from Propositions IV.2 and IV.3.

Proposition IV.5: (Bound on the cost of matching) Suppose Si ⊆ Pi(x
∗) and |Si| is odd. Let Mi

be the minimum cost matching on Si with cardinality Si−1
2

. If the costs satisfy the triangle inequality,

then
∑

i=1,··· ,k C(Mi) ≤ 1
2
Copt

V .

Proof: Note that the Hamiltonian path problem considered in equations (24-28) does not require
the path to start at any depot vertex. Enforcing a constraint that that the path should start at the
depot vertex can only increase the optimal LP relaxation cost. Therefore, CHPP

Pi(x∗) ≤ C lp
Pi(x∗). Therefore,

∑

i=1,··· ,k
C(Mi) ≤ 1

2

∑

i=1,··· ,k
CHPP

Pi(x∗) (from Proposition IV.4)

≤ 1

2

∑

i=1,··· ,k
C lp

Pi(x∗)

≤ 1

2

∑

i=1,··· ,k
max
πi≥0

w(πi, Pi(x
∗)) (from Proposition II.1)

=
1

2
max
π≥0

(π, V ) (from Proposition II.3)

≤ 1

2
Copt

V . (from Proposition II.1) (37)

Combining Propositions IV.5 and IV.1 proves theorem III.1.
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V. Appendix

Lemma V.1: The optimal solution (t∗, π∗) to the linear program formulated in (16) satisfies the
following constraints:

0 ≤ t∗ ≤ nCmax and 0 ≤ π∗i ≤ nCmax ∀i ∈ V.

Proof: The optimal cost of the Lagrangian dual problem is always upper bounded by the optimal
cost of the GMDHPP. Therefore, t∗ ≤ Copt

V ≤ nCmax. Also since the cost of all the edges are positive,
t∗ ≥ 0.

Since k ≥ 2, one can always choose a constrained forest, xf , such that
• all depot vertices in xf have degree equal to 0 except one depot vertex, s, that has degree 1, and
• all destination vertices in xf have degree equal to 2 except one destination vertex, q, that has degree
1.
For such a constrained forest, vi(xf , V ) = 0, ∀ i ∈ {s}⋃{k + 1, k + 2, · · · , n}\{q} and vi(xf , V ) =
−1, ∀ i ∈ {q}⋃{1, 2, · · · , k}\{s}. Therefore we have, using equation (16),

t∗ ≤ CV (xf )−
∑

i∈{1,··· ,k}\{s}
π∗i − π∗q .

Since t∗ ≥ 0, and CV (xf ) ≤ nCmax,

∑

i∈{1,··· ,k}\{s}
π∗i + π∗q ≤ CV (xf )− t∗ ≤ nCmax. (38)
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Using the above equation, and by suitably choosing the depot vertex s and destination vertex q, we
can conclude that each π∗i can be upper bounded by nCmax.

Lemma V.2: Let to = Cmin

n+k
, πo

i = Cmin

n+k
∀i ∈ V and ρ1 = Cmin

n+k
. Let the center of the ball be

y1 = (to, π
o
1, · · · , πo

n+k). Then B(y1, ρ1) ⊆ P .

Proof: Consider any t, π ∈ B(y1, ρ1). Then 0 ≤ t ≤ 2Cmin

n+k
and 0 ≤ πi ≤ 2Cmin

n+k
for all i ∈ V .

Also, for any constrained forest x, vi(x, V ) ≥ −1 for all i ∈ V . Now consider the right hand side of
the constraints in the definition of P (equation 17):

CV (x) +
∑
i∈V

πivi(x, V ) ≥ CV (x)−
∑
i∈V

πi

≥ nCmin − 2Cmin.

Since n ≥ 3 and k ≥ 2,

CV (x) +
∑
i∈V

πivi(x, S) ≥ Cmin

> 2Cmin/5

≥ t.

If t, π ∈ B(y1, ρ1), it is easy to see that 0 ≤ t ≤ nCmax and 0 ≤ πi ≤ nCmax ∀i ∈ V . Hence, if t, π
∈ B(y1, ρ1) then t, π ∈ P . This proves the Lemma.

Proposition II.3: Let (π∗, x∗) solve the Lagrangian dual problem, maxπ≥0 w(π, V ), where

w(π, V ) = min
x∈F (V ),x is an integer

[CV (x) +
∑
i∈V

πivi(x, V )].

Let Pi(x
∗) be the set of all vertices present in the ith tree of the optimal solution x∗. Then,

max
π≥0

w(π, V ) =
∑

m=1,··· ,k
max
πm≥0

w(πm, Pm(x∗)),

where πm represents πj for all j ∈ Pm(x∗).

Proof: For m = 1, · · · , k, let rm denote the depot vertex present in Pm(x∗). We define the
following additional constraints on x using Pm(x∗),m = 1, .., k as follows:

xij = 0, for all i ∈ Pm(x∗), for all j ∈ Pl(x
∗),

for all m, l = 1, · · · , k and m 6= l,∑
j∈UPm(x∗)

xrmj ≤ p, m = 1, · · · , k,

∑

i,j∈Pm(x∗),i<j

xij = |Pm(x∗)| − 1, m = 1, · · · , k,

∑
i,j∈B,i<j

xij ≤ |B| − 1, for all B ⊆ Pm(x∗), m = 1, · · · , k,

xij ∈ {0, 1}, for all i, j ∈ Pm(x∗), i < j, m = 1, · · · , k. (39)
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Let all the constraints in (39) be denoted by Acx ≤ Bc. Let F ∗(V ) = {x : x ∈ F (V ) and Acx ≤ Bc}.
Adding these constraints based on x∗ to the constraints present in F (V ) will not change the optimal
Lagrangian dual cost, maxπ≥0 w(π, V ). That is,

max
π≥0

w(π, V ) = max
π≥0

min
x∈F (V ),x is an integer

[CV (x) +
∑
i∈V

πivi(x, V )]

= max
π≥0

min
x∈F ∗(V ),x is an integer

[CV (x) +
∑
i∈V

πivi(x, V )].

(40)

We next decompose the objective function and the set of feasible solutions. If x ∈ F ∗(V ), then
xij = 0 for all i ∈ Pm(x∗), j ∈ Pl(x

∗),m, l ∈ {1, · · · , k}, m 6= l. Therefore, equation (40) can be written
as

max
π≥0

w(π, V ) = max
π≥0

min
x∈F ∗(V ),x is an integer

∑

m=1,··· ,k
[CPm(x∗)(x) +

∑

i∈Pm(x∗)

πivi(x, Pm(x∗))].

(41)

Let F1 × F2 denote the cartesian product of two sets F1 and F2. Then, x ∈ F ∗(V ) if and only if
(x1, x2, · · · , xk) ∈ ×k

m=1F (Pm(x∗)) where each xm represents all xij for i, j ∈ Pm(x∗), i < j. Also let

Gm(xm, πm) = CPm(x∗)(x) +
∑

i∈Pm(x∗)

πivi(x, Pm(x∗)).

Hence, equation (41) can be further simplified as follows:

max
π≥0

w(π, V ) = max
π≥0

min
(x1,··· ,xk)∈×k

m=1F (Pm(x∗)),xm is an integer

∑

m=1,··· ,k
Gm(xm, πm).

This breaks the inner minimization into k independent minimization problems implying

max
π≥0

w(π, V ) = max
π≥0

∑

m=1,··· ,k
min

xm∈F (Pm(x∗)),xm is an integer
Gm(xm, πm).

Applying the same reasoning to the maximization problem we get

max
π≥0

w(π, V ) =
∑

m=1,··· ,k
max
πm≥0

min
xm∈F (Pm(x∗)),xm is an integer

Gm(xm, πm)

=
∑

m=1,··· ,k
max
πm≥0

w(πm, Pm(x∗)).




