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A formal comparison/contrast of associative and relational learning: a case study
of relational schema induction

Steven Phillips (steve@ni.aist.go.jp)
National Institute of Advanced Industrial Science and Technology (AIST)

Tsukuba, Ibaraki, 305-8566, Japan

Abstract
Relational schema induction involves a series of learning tasks
conforming to a common (group-like) structure. The paradigm
contrasts associative versus relational aspects of learning for
cognitive, developmental and comparative psychology. Yet, a
theory accounting for the relationship between these forms of
learning has not been fully developed. We use (mathematical)
category theorymethods to redress this situation: both forms of
learning involve a (universal) construction that differs in terms
of “dimensionality”, i.e. one-dimensional (associative) versus
two-dimensional (relational). Accordingly, the development of
relational learning pertains to changes in the dimensionality of
the underlying relational schemas induced.
Keywords: associative learning; relational schema induction;
supervised learning; category; functor; universal construction

Introduction
The relational schema induction paradigm, involving a series
of learning tasks, was introduced to contrast associative ver-
sus relational models of learning (Halford, Bain, Maybery,
& Andrews, 1998) on the basis of learning transfer, i.e. a
faster rate of learning with tasks learned (Harlow, 1949). As-
sociative models (Miller, Barnet, & Grahame, 1995) suppose
stimulus-response co-occurrence drives learning. Relational
models, by contrast, suppose some form of structure mapping
(Gentner, 1983), whereby relations induced from prior tasks
are applied in new tasks to correctly predict novel stimulus
responses. (See the next section, Figure 1, for a characteriza-
tion.) Evidently (Halford, Bain, et al., 1998; Halford&Busby,
2007), such first-trial performance ruled out associative mod-
els as the basis of induction, because novel stimuli were not
previously paired with a target response to drive learning.

First-trial performance is a simple criterion for relational
processes. However, methodological differences complicate
comparisons across species and age-groups (Halford, Wilson,
Andrews, & Phillips, 2014): e.g., whether the relations vary
over trials. Such differences led some to argue that relational
cognition is uniquely human (Penn, Holyoak, & Povinelli,
2008), while others maintain that relational processes are ev-
ident in other species, including insects (Giurfa, 2021).

The current state of affairs raises a conundrum for cognitive,
comparative and developmental psychology. On one hand, if
non-humans and younger age-groups do have a comparable
capacity for relations, then why don’t they show comparable
performance to older humans; on the other hand, if relational
cognitive processes are unique to older humans, then how
does such a capacity evolve or develop?

As a way of addressing this conundrum, we revisit the rela-
tional schema induction paradigm to compare/contrast asso-
ciative and relational learning. Relational schema induction is
attractive in this regard because associative and relational as-
pects of learning are involved within the same paradigm. Yet,
until recently (Phillips, 2021b), a theory of relational schema
induction had not been proposed, beyond appealing to some
form of structure mapping between tasks (Halford, Bain, et
al., 1998). Recent work showed that induction follows from a
particular kind of category theory (Leinster, 2014; Mac Lane,
1998) construction (Phillips, 2021b), detailed later. How-
ever, this work left open a comparison/contrast of the learning
aspects of the paradigm, which we take up here.

We proceed by detailing a specific example of the relational
schema induction paradigm and the formal methods used for
comparison and contrast (Methods). Both forms of learning
are different instances of a common (universal) construction,
but associative and relational learning differ in terms of their
dimensionality (Results), which we preview in the next sec-
tion. The theory also provides the formal connection between
these two forms of learning and hence a basis for development
(Discussion). Additional details appear in the appendices.

Dimensionality: associative (one) vs. relational (two)
The difference between associative and relational processing
is characterized as the dimensionality of maps: associative
processes involve “one-dimensional” maps from stimuli to
responses; relational processes involve two-dimensional maps
between stimulus and response relations (Figure 1). Relation-
based learning transfer is afforded because novel association
a′ obtains from known association a, stimulus relation s and
response relation r (i.e. a′ ◦ s = r ◦ a). This characterization
is made formally precise in the rest of the paper.

S a // R S a //

s

��

R

r

��
S′

a′
// R′

Figure 1: Associative (S→ R) and relational (s→ r) maps.
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Methods
We describe an example of relational schema induction and
the background theory used for comparison and contrast of the
associative and relational learning aspects of this paradigm.

Relational schema induction
Relational schema induction involves a series of cue-target
learning tasks conforming to a group-like structure (Halford,
Bain, et al., 1998). For example, one task instance consists
of stimuli drawn from the set of shapes Sh1 = {4,�,♥} and
the set of trigrams Tri1 = {BEH,FUT,PEJ} and the cue-target
map, τ1 : Sh1 ×Tri1 → Tri1, is shown in Table 1 (left): e.g.,
τ1 : (�,BEH) 7→ FUT. The next task instance consists of new
sets of stimuli and cue-target map, as shown in Table 1 (right):
e.g., τ2 : (♠,NIZ) 7→HUQ. If each trigram locates on a unique
vertex of an equilateral triangle, then each shape corresponds
to a unique rotation sending trigrams to trigrams. For instance,
in the first task, 4, � and ♥ correspond to 0◦, 120◦ and 240◦

rotations, respectively. Participants must demonstrate correct
responses to each cue for a block of trials for a task instance
before proceeding to the next learning task. They are not told
the structure of the task, but are given feedback on each trial
indicating the target (correct response) for the given cue.

Table 1: Relational schema induction tasks.

τ1 BEH FUT PEJ τ2 HUQ KES NIZ
4 BEH FUT PEJ ♣ HUQ KES NIZ
� FUT PEJ BEH ♠ KES NIZ HUQ
♥ PEJ BEH FUT F NIZ HUQ KES

The shapes can also be interpreted as permutation actions
on a row of trigrams. For instance (τ1), 4 is the “no change”
permutation that leaves the relative positions of each trigram
with a row unchanged,� is “shift left withwrap around” action
and heartsuit is the “shift right with wrap around” action.
The relevant data pertain to first-trial responses (Halford,

Bain, et al., 1998) as a measure of learning transfer across
task instances. For the first task instance, first-trial responses
are expected to be at chance level, since the relational schema
has not been determined at this stage. However, first-trial
responses on subsequent tasks are expected to be better than
chance once the relational schema has been induced. Indeed,
participants demonstrated learning transfer on this structure
(relational schema) and other group-like structures (Halford,
Bain, et al., 1998; Halford & Busby, 2007)

The crucial observation is that each shape acts on trigrams.
By locating the trigrams at the vertices of an (imaginary) equi-
lateral triangle we see that the shapes 4, � and ♥ correspond
to 0◦, 120◦ and 240◦ degree rotations. Thus, learning transfer
on a new task instance is afforded by aligning the shapes to ac-
tions on the new trigrams. In this way, feedback on correct re-
sponses for two (so-called information) trials is necessary and
sufficient to determine the correct responses for the remaining
six (shape, trigram) pairs. For example, suppose we learn

from feedback that (♣,KES) 7→ KES and (♠,NIZ) 7→ HUQ,
hence ♣ and ♠ correspond to 0◦ and 120◦ rotation, respec-
tively. Thus, we can infer that (F,NIZ) 7→ KES as the other
rotation, and so on.

Background theory
A summary description is given here of the formal theory
in the appendices. We proceed in three stages. The first
stage formalizes relational schema induction in the more fa-
miliar terms of sets and functions (Appendix A). The second
stage recasts this basic formalism in terms of categories and
functors (Appendix B), providing the framework for our third
stage, which is the comparison/contrast in terms of universal
constructions as constrained optimization (Appendix C).
Sets. Formally, the target of each learning task is a function
from a set of cues to a set of target responses, i.e. a map
from (shape, trigram) pairs to trigrams. However, each task
contains additional structure: the relationships between the
shapes constitute a monoid (definition 1) that can be inter-
preted as acting (definition 8) on the trigrams. For example
(τ1, Table 1), � acts on BEH to produce FUT. All tasks
conform to the same action (relational schema), albeit with
different shapes and trigrams. These tasks are related by
equivariant maps (definition 13), essentially preserving this
relational structure.
Categories. Sets and functions are instances of categorical
constructions. Specifically, a monoid is a category (defini-
tion 16), the learning tasks as actions are functors (defini-
tion 22) and the equivariant maps are natural transformations
(definition 26). The collections of (possible) learning tasks
and their equivariant maps constitute a category (remark 30).
Universal construction. The more general, category theory
formulation affords a unified view of associative and relational
learning as universal constructions (definition 36), i.e. the
best one can do in the given context. In the current context,
induction of relational schemas follows by reconstructing the
underlying monoid (theorem 51) from the category of these
learning tasks. Using this result, we show how the two forms
of learning unify as instances of constrained optimization, i.e.
Kan extensions (definition 54).

Results
Our results build on work showing that induction of relational
schemas is an instance of reconstruction (Phillips, 2021b).
The novel aspect of the current work derives from the ob-
servation that associative learning corresponds to a special
(trivial) case of relational schema induction. The result is
two-fold:

1. (in comparison) associative learning of task instances and
induction of the common relational schema are both in-
stances of reconstruction, but

2. (by contrast) they differ in terms of the “dimensionality” of
the underlying schema, in a formal sense provided here.
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We sketch out their comparison/contrast in the rest of this
section, and formally characterize their dimensionality.
Comparison. We recall that the relational schema (monoid, in
this case) underlying each task is recovered by computing the
end (definition 47) of a hom-functor (examples 49). For the
current example, that is the cyclic group that affords learning
transfer to new instances of the task. In the associative case,
the underlying schema is the trivial (one-element) monoid
(remark 5), whence the equivariant maps reduce to ordinary
functions (remark 28). So, associative learning derives from
the same reconstruction process.
Contrast. The trivial monoid, however, does not afford learn-
ing transfer, since there are no (non-trivial, i.e. non-identity)
relations to base transfer. Consequently, the two forms of
learning differ in terms of learning transfer. This difference
is formally characterized by the dimensionality of the maps
involved (remark 29): non-trivial relational schemas involve
two-dimensional maps (relational learning); trivial schemas
involve one-dimensional maps (associative learning).

Discussion
The relational schema induction paradigm was introduced to
contrast associative versus relational learning (Halford, Bain,
et al., 1998). The paradigm is used here to address two central
questions for cognitive science. (1) What essentially distin-
guishes associative and relational (learning) processes? (2)
How are these two forms of learning related? Our theory says
that (1) associative and relational learning are two instances
of induction by reconstruction where (2) association involves
induction of a trivial relation schema—the mappings are one-
dimensional (associative learning) versus two-dimensional
(relational learning).

This formal comparison/contrast of associative and rela-
tional learning raises two further questions. First, how are
these two forms of learning (formally) related, beyond their
dimensionality? Second, what drives one form of learning to
predominate over the other?

In regard to the first question, category theory provides an-
other kind of universal construction—change of base—that
we expect to play an important role here. In the current con-
text, the categories of learning tasks are constructed on a base
monoid. Monoids are related by monoid homomorphisms
(definition 6). So, the transition between associative and re-
lational learning is predicated on a change of base (monoid
homo)morphism inducing a change in the categories of learn-
ing task. An analogous situation arises in sheaf theory (Mac
Lane & Moerdijk, 1998), where the base is a topological
space. Continuous functions between topological spaces in-
duce functors between categories. Sheaf theory was used to
model changes in learning transfer (Phillips, 2018). An anal-
ogous situation is expected here based on morphisms between
trivial and non-trivial monoids (examples 7) corresponding to
the transition between the two forms of learning.

In regard to the second question, it remains to be explained
why associative learning prevails at all. According to the re-

construction theorem, induction of the relational schema is
necessitated by the data, i.e., the category of learning tasks.
However, younger children in contrast to older children can fail
at induction, as observed in an earlier version of the relational
schema induction paradigm (Halford & Wilson, 1980). Such
differences were characterized in terms of relational com-
plexity (Halford, Wilson, & Phillips, 1998), i.e. the number
related dimensions of task variation, which is similar to our
characterization. However, our use of reconstruction theory
does not say why participants (in particular, younger children)
fail to induce the relevant relational schema given the same
data—series of learning tasks. One approach is to work with
an enriched form of category theory to model resources (see,
e.g., Fong & Spivak, 2018).

Resources can be modeled by giving the theory a suitable
categorical semantics: e.g., an adjoint functor (remark 44)
to a category modeling resources, such as Petri nets whose
neurons activate when they have a sufficient number of tokens
(neuronal resources). There are adjoint relationships between
certain kinds of formal categories and certain categories of
Petri nets (Baez, Genovese, Master, & Shulman, 2021). In
this way, a model of the theory could be developed to address
capacity as an explanation for failures of induction.

An implicit-explicit distinction
One way to characterize our reconstruction approach to re-
lational schema induction is in terms of an implicit-explicit
distinction. The actions are implicitly given by input-output
relations between trigrams. Computing the end, by compar-
ing those within-task relations across task instances, essen-
tially makes those relations explicit. In effect, this is the
role of hom-functors, by treating morphisms in some cate-
gory C as elements of a set (function space) in Set, in effect,
objectifying an action (compare, e.g., “I run” with “I went
for a run”). Such distinctions are commonplace in so-called
Type 1 versus Type 2 characterizations of cognitive processes
(see, e.g., Evans & Stanovich, 2013). Thus, we expect that a
category theory approach like ours also has applications for
dual-process theories.

Relationship to previous work
Asmentioned earlier, the current result extends previous work
(Phillips, 2021b) by observing that an associative account
of learning in the relational schema induction paradigm is a
special (trivial) case of relational learning, vis-a-vis, a one-
element set is a trivial monoid. Accordingly, the two forms of
learning unify within the more general notion of Kan exten-
sion. The point is not to show that associative and relational
cognition are the same, but rather how they are connected, by
placing them within a common formal framework.

In doing so, our formal approach sheds some light on the
nature of the conundrum over comparative claims of relational
processes, mentioned earlier (Introduction). The theory es-
sentially points out that an associative schema is trivially a
relational schema, vis-a-vis, the trivial monoid. However, the
“extra” dimension, does not add to the complexity (variance)
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of the problem. Themethodological implication is that a com-
parative test of relational schemas in non-humans and younger
age groups necessitates variation over instances of the task:
cf. a single task is trivially a one-task series of tasks. With-
out such variation, caution is warranted over comparisons of
relational processing across cohorts.

The more general message is that while much of the debate
has focussed on distinguishing associative from relational pro-
cesses, less attention has been given to relating these two forms
of cognition. Category theory provides a formal framework
for both comparison and contrast in the form of universal con-
structions: cognitive processes as composition of the common
(mediating) arrow shared by all constructions in the given con-
text (comparison) and the unique arrow that is construction
specific (contrast). In this way, category theory provides a
general principle for cognitive science (Phillips, 2021a).
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Appendix A: Sets
Definition 1 (Monoid). A monoid (M, ·, e) consists of a set
M , a (closed) binary operation ·, and an element e ∈ M , called
the unit, such that for all elements a,b,c ∈ M the operation is:

• unital: a · e = a = e · a, and

• associative: a · (b · c) = (a · b) · c.

Remarks 2. If every element a ∈ M has an inverse, i.e. an
element b ∈ M such that a · b = e = b · a, then the monoid is
also a group. The inverse of a is also denoted a−1.
Example 3 (Cyclic-3 group). The set {0,1,2} together with
addition modulo-3 is a (cyclic) group/monoid, denoted Z/3Z.
Example 4 (Shapes). The set of shapes Sh = {4,�,♥} consti-
tute a cyclic-3 group/monoid, (Sh, ·,4) � Z/3Z.
Example 5 (Trivial). The trivial monoid, denoted 1, has the
unit as its only element, i.e. 1 = ({e}, ·, e).
Definition 6 (Monoid homomorphism). Let M and M ′ be
monoids. A monoid homomorphism is a map h : M → M ′

that for all elements a,b ∈ M preserves the

• unit: h(e) = e′, and

• operation: h(a · b) = h(a) · h(b).

Examples 7 (Monoid homomorphism). Every monoid M is
associated with two homomorphisms:

a. 1→ M , which picks out the unit of M , and

b. M → 1, which sends every element of M to the unit.

Definition 8 (Monoid action). Let (M, ·, e) be amonoid and X
a set. A (left) monoid action on X is a function φ : M×X→ X
that satisfies the following laws for all a ∈ M and x ∈ X :

• identity: φ(e, x) = x, and

• compatibility: φ(a · b, x) = φ(a, φ(b, x)).

The set X is called an M-set.
Example 9 (Task). Each task instance τ : Sh×Tri→ Tri is a
monoid action, e.g., see Table 1.
Definition 10 (Transpose). Let φ : M × X → X be a monoid
action. The transpose of φ, denoted φ̃ (or simply φ), is the
function φ̃ : M → (X → X ) sending each element a ∈ M to
the function φa : X → X , called the component of φ at a.
Example 11 (Transpose). The transpose φ̃ sends each shape
to a component action on trigrams.
Remark 12. When M is trivial the transpose picks out the
identity function, φ : e 7→ (1X : x 7→ x).
Definition 13 (Equivariant map). Let X and Y be M-sets for
a monoid M . An equivariant map is a function f : X → Y
such that f (a · x) = a · f (x) for all a ∈ M and x ∈ X .
Example 14 (Task map). The tasks τ1 : Sh1×Tri1→ Tri1 and
τ2 : Sh2×Tri2→ Tri2 (Table 1) are related by equivariant maps
via an isomorphism Sh1 � Sh2 aligning the shapes in τ1 to the
shapes in τ2. Specifically, for the set of shapes Sh1 as the
monoid and monoid action τ′1 : Sh1×Tri2→ Tri2 we have the
equivariant map f : Tri1→ Tri2, and for the set of shapes Sh2
as the monoid and monoid action τ′2 : Sh2 × Tri1 → Tri1 we
have the equivariant map g : Tri2→ Tri1. The isomorphism is
called a change of base (see Discussion).
Remark 15. When M is the trivial monoid, every function
f ∈ Y X is an equivariant map.

Appendix B: Categories
Definition 16 (Category). A category C consists of a collec-
tion of objects, O(C) = {A,B, . . . }, a collection of morphisms,
M (C) = { f ,g, . . . }—a morphism written in full as f : A→ B
indicates object A as the domain and object B as the codomain
of f—including for each object A ∈ O(C) the identity mor-
phism 1A : A→ A, and a composition operation, ◦, that sends
each pair of compatible morphisms f : A→ B and g : B→ C
(i.e. the codomain of f is the domain of g) to the composite
morphism g ◦ f : A→ C, that together satisfy the laws of:

• identity: f ◦1A = f = 1B ◦ f for every f ∈M (C), and

• associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f for every triple of
compatible morphisms f ,g, h ∈M (C).

Remark 17. The opposite category to C, denoted Cop, has
the objects of C and the morphisms of C “reversed”, i.e. a
morphism A→ B in C is a morphism B→ A in Cop.
Example 18 (Set). The category Set has sets for objects and
functions for morphisms. The identity morphisms are identity
functions and composition is composition of functions.
Remark 19. A set A is construed as the category having the
elements a ∈ A as objects and no non-identity morphisms.
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Example 20 (Monoid). A monoid, M , is a one-object cate-
gory, whose morphisms are the elements of M . The identity
is the unit and composition is given by the binary operation.

Example 21 (Mon). The category Mon has monoids for ob-
jects and monoid homomorphisms for morphisms.

Definition 22 (Functor). A functor is a “structure-preserving”
map from a category C to a category D, written F : C→ D,
sending each object A and morphism f : A→ B in C to the
object F (A) and the morphism F ( f ) : F (A) → F (B) in D
(respectively) that satisfies the laws of:

• identity: F (1A) = 1F (A) for every object A ∈ O(C), and

• compositionality: F (g◦ f ) = F (g) ◦F ( f ) for every pair of
compatible morphisms f ,g ∈M (C).

Remarks 23. Functors preserve identities and composition.

Example 24 (Monoid homomorphism). Amonoid homomor-
phism is a functor that preserves the unit and operation.

Example 25 (Monoid action). Suppose a monoid action φ :
M × X → X . The transpose φ : M → (X → X ) corresponds
to the functor M → Set that sends each element a ∈ M to the
function φa : X → X .

Definition 26 (Natural transformation). Let F,G : A→ C be
functors. A natural transformation η : F

.
→ G is a family

of C-morphisms {ηA : F (A) → G(A) |A ∈ O(A)} such that
G( f ) ◦ ηA = ηB ◦F ( f ) for every morphism f : A→ B in A,
as indicated by the following commutative diagram:

A

f

��

F (A)
ηA //

F ( f )
��

G(A)

G( f )
��

B F (B)
ηB

// G(B)

(1)

The morphism ηA is called the component of η at A.

Example 27 (Equivariant map). Suppose a monoid M and
actions φ : M × X → X and ψ : M ×Y → Y . An equivariant
map f : X → Y is a natural transformation, f : φ

.
→ ψ, as

indicated by the following commutative diagram:

∗

a

��

X
f //

φa

��

Y

ψa

��
∗ X

f
// Y

(2)

Remarks 28. When M = 1, naturality is trivially satisfied:

∗

e

��

X
f //

1X

��

Y

1Y
��

∗ X
f
// Y

(3)

so every function f ∈ Y X is an equivariant map, shown by the
following diagram with identities collapsed as they convey no
additional information (variation):

∗ X
f // Y (4)

Remark 29. Contrast the dimensionality of diagram 4 (one-
dimensional) and diagram 2 (two-dimensional).
Remark 30. An M-set S is represented by the pair (S,σ)
consisting of a set S and a functor σ : M → (X → X ). M-set
representations and their equivariant maps form a category,
denoted MSet. The forgetful functor U : MSet→ Set forgets
the actions, i.e. U : (S,σ) 7→ S.
Remark 31. When M = 1 the category of M-sets, denoted
1Set, is isomorphic to the category of sets, i.e. 1Set � Set.
Definition 32 (Functor category). The collection of functors
from a category C to a category D and their natural transfor-
mations is called a functor category, denoted DC.
Example 33 (Diagrams). Let 2 denote the category with two
objects and no non-identity morphisms The functor category
C2 contains all functors picking out pairs of objects and natural
transformations picking out pairs of morphisms from C.
Remark 34. C2 � C×C.
Example 35 (Diagonal, product). The diagonal and product
functors pertain to functor categories.

a. Diagonal. ∆ : C→ C2; A 7→ (A, A), f 7→ ( f , f ).

b. Product. Π : C2→ C; (A,B) 7→ A× B, ( f ,g) 7→ f ×g.

Appendix C: Universal constructions
Definition 36 (Universal morphism). Let G : A→ C be a
functor and X an object in C. A universal morphism from
X to G is a pair (A, φ) consisting of an object A in A and a
morphism φ : X → G(A) in C such that for every object Y
in A and every morphism g : X → G(Y ) in C there exists a
unique morphism u : A→ Y in A such that g = G(u) ◦ φ, as
indicated by commutative diagram

X
φ //

g
!!

G(A)

G(u)
��

A

u

��
G(Y ) Y

(5)

Remark 37. φ corresponds to component φA of the natu-
ral transformation φ : X

.
→ G, where X denotes the constant

functor picking out the object X in diagram 5, cf. diagram 1.
Remark 38. The dual version of a universal morphism has the
directions of arrows reversed, i.e. from a functor F : A→C to
an object Y in C such that the following diagram commutes:

X

u

��

F (X )

F (u)
��

f

!!
B F (B)

ψ
// Y

(6)
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Definition 39 (Initial object). In a categoryC, an initial object
(if it exists) is an object, denoted 0, such that for every object
Z there exists a unique morphism u : 0→ Z (all in C).
Remarks 40. The dual notion is the terminal (final) object,
denoted 1, i.e. u : Z → 1 exists uniquely for all Z .
Example 41 (Initial/final—Set). In Set, the initial object is
the empty set and the final object is any one-element set.
Example 42 (Initial/final—Mon). The initial and final object
in Mon is the trivial monoid.
Example 43 (Product—universal morphism). A product of A
and B is the universal morphism (A×B, π) from the diagonal
functor, ∆, to the pair of objects (A,B), where π = (π́, π̀) is
the pair of projections π́ : A× B→ A and π̀ : A× B→ B.
Remarks 44. A universal morphism from every object Z in
C to the functor G : D→C implies an adjoint situation, i.e. a
functor F : C→D forming a pair, denoted F aG, e.g., ∆ a Π:

Z
〈1,1〉 //

〈 f ,g〉 !!

Z × Z

f ×g

��

(Z, Z )

(〈 f ,g〉,〈 f ,g〉)
��

( f ,g)

&&
A× B (A× B, A× B)

(π́, π̀)
// (A,B)

(7)

F (G) is called the left (right) adjoint of G (F).
Remark 45. Products are instances of limit functors, Lim :
CJ → C forming a general class of adjoints, ∆ a Lim. For
products, J = 2 picks out pairs of objects and morphisms.
Definition 46 (Wedge). Awedge to a functor F : Cop×C→D
is a dinatural transformation ω : D→̈F consisting of a family
of D-morphisms {ωA : D→ F (A, A) |A ∈ O(C)} such that for
each f : A→ B in C the following diagram commutes:

D
ωA //

ωB

��

F (A, A)

F (1A, f )
��

F (B,B)
F ( f ,1B )

// F (A,B)

(8)

Definition 47 (End). The end of a functor F : Cop ×C→ D
is a pair (E,ω) consisting of an object E in D and a wedge
ω : D→̈F such that for every wedge β : Z→̈F there exists a
unique morphism u : Z → E such that β = ω ◦u. Object E is
also denoted

∫
A∈C F (A, A), or

∫
C F.

Remark 48. An end is a universal wedge.
Examples 49 (Hom-set). Object and morphism relations are
determined by hom-functors: e.g.,Hom(A,−) : C→ Set sends
each object B to the set of morphisms Hom(A,B) and each
morphism f to composition operation ( f ◦) : g 7→ f ◦ g. A
set of natural transformations between a pair of functors is
(re)constructed from the end of a hom-functor.

a.
∫

C Hom(−,−) � Nat(1C,1C).

b.
∫

C Hom(F−,G−) � Nat(F,G).

Remark 50. For example 49(b), substitution yields

E
ωA //

ωB

��

Hom(F A,GA)

Hom(1FA,Gf )
��

Hom(FB,GB)
Hom(F f ,1GB )

// Hom(F A,GB)

(9)

where E identifies with the set of natural transformations, {η},
and ωA with the component, ηA ∈ Hom(F A,GA), according
to the naturality condition (see diagram 1).
Theorem 51 (Reconstruction). Let M be a monoid and MSet
the category ofM-set representations for M . (U : MSet→ Set
is the forgetful functor.)

∫
MSet Hom(U−,U−) � M .

Remark 52. This theorem is a category theory version of
Tannakian reconstruction (see NLab, 2014, 2019).
Remark 53. All previous universal constructions are sub-
sumed by a single pair of constructions, defined next, regarded
as a form of constrained optimization.
Definition 54 (Kan extension). Let X : A→C and F : A→B
be functors. The (right) Kan extension of X along F is a
pair (R, ε ) consisting of a functor R : B→ C and a natural
transformation ε : RF

.
→ X such that for any functor M : B→

C and natural transformation µ : MF
.
→ X there exists a unique

natural transformation δF : M
.
→ R such that µ = ε ◦ δF , as

indicated by the right commutative diagram:

X
η //

ν !!

LF

γF

��

MF

δF
��

µ

!!
NF RF

ε
// X

(10)

Dually, the left Kan extension of X along F is the pair (L, η)
given by the left commutative diagram (above).
Example 55 (Limits). Limits of type (shape) J obtain as the
left Kan extension of the identity functor along the diagonal
functor (∆) yielding the limit functor (Lim):

CJ

Lim(Π)

  
C

∆

>>

1
// C

(11)

For pairs (J = 2), the left Kan extension along the diagonal
yields the product functor, Π : (A,B) 7→ A× B. Compare
diagram 10 with diagram 7. All adjoints extend this way.
Remark 56. Kan extensions can be regarded as constrained
optimization: e.g., the optimal extension (Π) that recovers the
original functor (1) given the constraints (∆).
Example 57 (Ends). Ends obtain as the left Kan extension of
the identity along the hom functor (in theorem 51):

SetP

End

""
Set

Hom
<<

1
// Set,

(12)
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P =MSetop×MSet. For M = 1, replace MSet with 1Set.
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