Lawrence Berkeley National Laboratory
 LBL Publications

Title
O(4) Symmetry and Regge Pole Theory
Permalink
https://escholarship.org/uc/item/06p7d46b

Author

Wang, Jiunn-Ming
Publication Date
1967-07-01

University of California

Ernest O. Lawrence Radiation Laboratory

$$
\text { July 27, } 1967
$$

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

AEC Contract No. W-7405-eng-48

O(4) SYMMETRY AND REGGE POLE THEORY

Jiunn-Ming Wang
(Ph。D. thesis)
July 27, 1967
Abstract iii
I. Introduction 1
II. Previous Work. 5
III. The Group O(4) 7
IV. O(4) Symmetry of Scattering Amplitudes 10
V. $O(4)$ Decomposition of the Amplitude. 15
VI. Nucleon-Nucleon Scattering 23
VII. Necessity for an Infinite Sequence of Daughters 34
Acknowledgment 36
Appendices
A. Properties of $d_{j j^{\prime} m}^{(n, M)}(\delta)$ 37
B. Complex 0(4) Angular Momentum. 41
References 47

O(4) SYMMEIRY AND REGGE POLE THEORY
 Jiunn-Ming Wang
 Lawrence Radiation Laboratory
 University of California Berkeley, California

July 27, 1967

Abstract

For reactions in which the initial and final states in the t-channel contain equal mass particles (e.g. $\overline{N N N} \rightarrow \pi \pi$) of masses m and m^{\prime}, we show using analytic continuation and Lorentz invariance that the on-mass shell helicity amplitudes in the region $t=0$, $\left(m-m^{\prime}\right)^{2} \leqq s \leqq\left(m+m^{\prime}\right)^{2}$, are invariant under the group $O(4)$. Decompositions of the amplitudes in irreducible representations of O(4) (four dimensional partial wave expansions) are obtained and related to conventional partial wave expansions. Poles classified according to the $O(4)$ group are shown to lead to infinite families of Regge poles. The formalism is developed for arbitrary spins and the case of nucleon-nucleon scattering is studied in detail. Our results for the Regge pole structure in NN scattering are stronger than those of the conspirator theory.

I. INIRODUCTION

A surprising result of recent work on Regge pole theory is that Regge trajectories really occur in families with definite requirements on the spacing of members of a family and on the behavior of residue functions at zero values of the invariant mass. Such results have been derived explicitly for unequal-mass spin zero scattering amplitudes ${ }^{1,2}$ and for nucleon-nucleon scattering. 3,4

Although analyticity properties of scattering amplitudes at zero values of the Mandelstam invariants are the essential ingredients in the arguments of References 1-4, we would like to focus our attention here on an altogether different method by which similar results can be derived. This method involves the association of the Regge pole structure with a group invariance property of scattering amplitudes closely connected with the underlying Lorentz invariance of the theory.

Physical theories are required to be manifestly invariant under transformations of the Poincare group. Partial wave expansions of scattering amplitudes from which the Regge pole classification is derived should be regarded as decompositions in irreducible representations of the little group of the Poincart group which preserves the total energy-momentum vector K^{μ} in the direct channel. In the physical region, K^{μ} is positive time like and the familiar partial wave expansion is expressed terms of the representation functions of
the corresponding little group $O(3)$. When $K^{\mu}=0$ the little group is enlarged to a group of four dimensional transformations isomorphic to the homogeneous Lorentz group $O(3,1)$ or homogeneous four dimensional rotation group, depending on the region in s where the scattering ampitudes are considered. In order to incorporate the full symmetry of the amplitude at this point one should really expand in representation functions and classify poles in terms of the fourdimensional group. This is the standpoint adopted in this paper.

Consider the process in which momenta $p_{1}+p_{2} \rightarrow p_{1}^{\prime}+p_{2}^{\prime}$, and define $t=K^{2}=\left(p_{1}+p_{2}\right)^{2}, s=\left(p_{1}-p_{1}^{\prime}\right)^{2}$. If the masses $p_{1}{ }^{2}=p_{2}^{2}=m^{2}$ and $p_{1}^{\prime 2}=p_{2}^{\prime 2}=m^{\prime 2}$ are pairwise equal, the point $K^{\mu}=0$ corresponds to forward scattering in the s-channel. In this paper we restrict ourselves to mass configurations of this type.

In more general mass configurations the vector K^{μ} is lightlike whenever $t=0$ and the four-dimensional symmetry does not strictly apply to the mass shell amplitude. An off-shell continuation appears necessary in order to formulate the symmetry. It also seems that analyticity arguments similar to those of References 1 and 2 can be used to show directly that the Regge pole spectrum of the massshell amplitude exhibits the symmetry. 5 There is then the curious circumstance that in pairwise equal mass configurations, as previously defined, group theoretic assumptions are strictly necessary and lead to stronger results than analyticity arguments, ${ }^{6}$ whereas in more general mass configurations analyticity arguments yield as much
-3-
information as group theoretic methods. ${ }^{1}$
In our treatment of the four-dimensional symmetry we obtain the compact group $O(4)$ as the invariance group of the mass-shell amplitude in the unphysical region $t=0,\left(m-m^{\prime}\right)^{2} \leqq s \leqq\left(m+m^{\prime}\right)^{2}$. We emphasize that the way we obtain $O(4)$ symmetry from Lorentz invariance of the scattering amplitudes is different from "Wick rotation. ${ }^{17}$ As will be clear in section II the scattering amplitudes are never continued "off mass-shell." Our treatment applies to all spins, and the use of a compact group leads to considerable simplification over previous formulations. We are specifically interested in the case of nucleon-nucleon scattering and in comparing our results with the conspirator theory of Volkov and Gribov. ${ }^{3}$

In the next section we summarize previous work on this subject, and briefly discuss the group $0(4)$ in Section III. Section IV is devoted to the establishment of the $O(4)$ symmetry of the scattering amplitude at $t=0$. The development of general four dimensional partial wave decompositions and their relation to conventional threedimensional partial wave amplitudes are given in Section V, and in Section VI we consider explicitly nucleon-nucleon scattering. In Section VII we show that if A_{1} is coupled to $\mathbb{N N}$ channel at $t=0$, then no matter how we artificially arrange infinite number of Lorentz poles in the n-plane, A_{1} must be followed by an infinite sequence of daughters in the j-plane. In Appendix 1 properties of $O(4)$ representation matrices used in the text are derived, and in Appendix 2
analytic continuations of the four dimensional partial wave amplitudes are obtained using techniques similar to those of Froissart and Gribov.

II. PREVIOUS WORK

A four dimensional symmetry at the point $K^{\mu}=0$ has long been known to be associated with amplitudes which satisfy a BetheSalpeter equation. This symmetry was discovered and utilized in the early papers on the Bethe-Salpeter equation by Wick ${ }^{7}$ and Cutkosky, ${ }^{8}$ and its consequences for complex angular momentum in the equal mass case were first obtained by Domokos and Suranyi ${ }^{9}$ and by Nakanishi. 10 For unequal mass spin zero Bethe-Salpeter amplitudes it was shown in Reference 1 that this symmetry implies that Regge trajectories have exactly the properties found via the analyticity argument.

The daughter trajectories correspond to what were called abnormal solutions of the Bethe-Salpeter equation in the older literature. ${ }^{11}$ The daughter trajectory results shows that the "abnormal solutions" cannot be dismissed as peculiar features of the BetheSalpeter equations as often suggested; ${ }^{11}$ they are necessary for the analyticity of the unequal mass amplitudes. Although conclusions about the Bethe-Salpeter equation follow most easily from the Wick rotated form, 7 it would seem that most results concerning the fourdimensional symmetry can also be derived in the original Lorentz metric. ${ }^{12}$

Expansion theorems in terms of the four dimensional group can be proven in general using the techniques developed in this paper, and the Regge poles at $t=0$ can be classified accordingly. Since for scattering amplitudes with high enough spin we can not alleviate
the necessity of an infinite sequence of daughters by artificially arranging the Lorentz poles in the $n \sim p l a n e$, it is reasonable to assume that the Lorentz poles are more fundamental than the Regge poles. Or in other words Lorentz poles do not "conspire" in the n-plane. This assumption is also motivated by the results in the Bethe-Salpeter models and in the unequal mass case. ${ }^{1}$

Toller ${ }^{13,14}$ has given an elegant formulation of the fourdimensional symmetry. He studies the forward scattering amplitude in the crossed s-channel and obtains expansion theorems for the amplitude in terms of the continuum of irreducible unitary representations of the non-compact little group $O(3,1)$. He assumes that asymptotic terms corresponding to Regge poles are classified according to this $O(3,1)$ expansion, and explicitly obtains the pole structure of nucleon-nucleon scattering.

Toller's formulation involves new and perhaps very useful ideas. It features a group theoretic interpretation of the Regge background integral and the association of the signature of a Regge pole with the eigenvalue of the TCP reflection operation. A difficulty of the theory is that the expansion theory in terms of the noncompact group $O(3,1)$ seems to apply rigorously only to amplitudes which have no Regge poles to the right of $\ell=-1$ at $t=0$. A difficulty of this type is avoided in our treatment, because the O(4) group is compact. It also seems that the $O(4)$ formulation is considerably simpler than that based on the non-compact $O(3,1)$.

III. THE GROUP O(4)

The Lie group $O(4)$ of rotations in a four-dimensional Euclidean space has six infinitesimal generators, a set J_{1}, J_{2}, J_{3} which generate ordinary rotations in the $y z, x z$, and $x y$ planes, and a set K_{1}, K_{2}, K_{3}, which generate rotations involving the fourth axis, which we call "boosts" in analogy with standard Lorentz group terminology. It is convenient to parameterize finite transformations of $O(4)$ in the form

$$
\begin{align*}
g & =R(\varphi, \theta, 0) I_{3}(\delta) R(\alpha, \beta, \gamma) \\
& =e^{-i \varphi J_{3}} e^{-i \Theta J_{2}} e^{-i \delta K_{3}} e^{-i \alpha J_{3}} e^{-i \beta J_{2}} e^{-i \gamma J_{3}} \tag{1}
\end{align*}
$$

where a standard Euler angle parameterization has been assumed for rotations. The only boost which need be considered explicitly involves the z axis. In this parameterization the invariant volume element on the group manifold is

$$
\begin{equation*}
d g=d \varphi \alpha(\cos \theta) \sin ^{2} \delta d \delta d \alpha d(\cos \beta) d \gamma \tag{2}
\end{equation*}
$$

It is well known that the generators $A_{i}=\frac{1}{2}\left(J_{i}+K_{i}\right)$ and $B_{i}=\frac{1}{2}\left(J_{i}-K_{i}\right)$ satisfy independently the commutation relations of ordinary angular momentum and that there therefore exists a correspondence between $O(4)$ and $S U(2) \times \operatorname{SU}(2)$. In the direct product group pure rotations take the form (U, U) and pure boosts the form $\left(V, V^{-1}\right)$ where U and V are arbitrary elements of $S U(2)$.

Matrices of the four-component representation can be constructed from the expression

$$
\left(\begin{array}{ll}
t^{\prime}+z{ }^{\prime} & x^{\prime}-i y^{\prime} \tag{3}\\
x^{\prime}+i y^{\prime} & t^{\prime}-z^{\prime}
\end{array}\right)=U\left(\begin{array}{ll}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) V^{\dagger}
$$

For a boost along the z axis we take

$$
U=\left(\begin{array}{ll}
e^{-i \delta / 2} & 0 \tag{4}\\
0 & e^{+i \delta / 2}
\end{array}\right) \quad V=U^{-1}
$$

and obtain

$$
\left(\begin{array}{c}
t^{\prime} \tag{5}\\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\cos \delta & 0 & 0 & i \sin \delta \\
0 & 1 & 0 & 0 \\
0 & 0 & I & 0 \\
i \sin \delta & 0 & 0 & \cos \delta
\end{array}\right) \quad\left(\begin{array}{c}
t \\
x \\
y \\
z /
\end{array}\right.
$$

The boost matrix obtained in this way differs from the standard form by a unitary transformation. However, the form (5) is best adapted to our configuration where spatial components of four-vectors are imaginary.

Irreducible representations of $O(4)$ are denoted by the pair of numbers (a, b) where a and b are eigenvalues of the Casimir operators $A^{2}=a(a+1), B^{2}=b(b+1)$. There are two convenient basis sets for an irreducible representation, one in which the operators A_{3} and B_{3} are diagonal and the other in which the total angular momentum J^{2} and its third component J_{3} are diagonal. Transformation between the two bases is simply done by adding angular momenta
$\underset{\sim}{A}$ and $\underset{\sim}{B}$ to make $\underset{\sim}{J}$, and it is easy to see that the I.R. (a,b) contains ordinary angular momenta j in integer intervals from $j_{\min }=|a-b|$ to $j_{\max }=a+b$.

In the basis $|(a b) j m\rangle$ the representation matrix of the transformation (I) can be written as

$$
\begin{equation*}
D_{j m ; j^{\prime} m^{\prime}}^{(a, b)}(g)=\sum_{m^{\prime \prime}} D_{m^{\prime \prime}}^{j}(\varphi, \theta, 0) d_{j j^{\prime} m^{\prime \prime}}^{(a b)}(\delta) D_{m^{\prime \prime} m^{\prime}}^{j}(\alpha, \beta, \gamma) \tag{6}
\end{equation*}
$$

where the D^{j} are the ordinary representation matrices of $\operatorname{SU}(2)$, and the boost matrix is found by transformation from the A_{3}, B_{3} basis to be given by the trigonometric polynomial

$$
\begin{equation*}
d_{j j^{\prime} m}^{(a, b)}(\delta)=\sum_{\mu} C(a, b, j ; \mu, m-\mu) C\left(a, b, j^{\prime} ; \mu, m-\mu\right) e^{-i(2 \mu-m) \delta} \tag{7}
\end{equation*}
$$

in which ordinary Clebsch-Gordan coefficients appear as coefficients. The polynomial (7) can be expressed in terms of Gegenbauer functions (see Appendix 1). The normalization of the boost matrices is

$$
\begin{array}{r}
\sum_{m} \int_{0}^{\pi} d \delta \sin ^{2} \delta a_{j j^{\prime} m}^{(a b)^{*}}(\delta) d_{j j^{\prime} m}^{\left(a^{\prime} b^{\prime}\right)}(\delta) \\
=\delta_{a a}, \delta_{b b}, \frac{\pi(2 j+1)(2 j+1)}{2(2 a+1)(2 b+1)} \tag{8}
\end{array}
$$

It will be convenient at a later stage to introduce the quantities $n=a+b$ and $M=a-b$ and to label I.R.'s and representation matrices by the pairing (n, M) instead of (a, b).
IV. $O(4)$ SYMMETRY OF SCATMERING AMPLITUDES

We start by considering t-channel center-of-mass frame helicity amplitudes ${ }^{15} T_{\lambda_{1}} \lambda_{2}{ }^{\prime} ; \lambda_{1} \lambda_{2}\left(p_{1}{ }^{\prime} p_{2}^{\prime} ; p_{1} p_{2}\right)$ for which we assume conventional analyticity properties in the variables $t=\left(p_{1}+p_{2}\right)^{2}$ and $s=\left(p_{1}^{\prime}-p_{1}\right)^{2}$. The Lorentz transformation law

$$
\begin{align*}
& T_{\lambda_{1}} \lambda_{2}^{\prime} ; \lambda_{1} \lambda_{2}\left(p_{1}^{\prime} p_{2}^{\prime} ; p_{1} p_{2}\right)=\sum_{\mu^{\prime},} D_{\lambda_{1}}^{s_{1}} \mu_{1},\left[R_{W}^{-1}\left(\Lambda, p_{1}^{\prime}\right)\right] D_{-\lambda_{2}}^{\prime}-\mu_{2},\left[R_{w}^{-1}\left(\Lambda, p_{2}^{\prime}\right)\right] \\
& \times T_{\mu_{1}}{ }^{\prime} \mu_{2}^{\prime}, \mu_{1} \mu_{2}\left(\Lambda p_{1}^{\prime} \Lambda p_{2}^{\prime} ; \Lambda p_{1} \Lambda p_{2}\right) D_{\mu_{1} \lambda_{1}}^{S_{1}}\left[R_{W}\left(\Lambda, p_{1}\right)\right] D_{-\mu_{2}-\lambda_{2}}^{S_{2}}\left[R_{W}\left(\Lambda, p_{2}\right)\right], \tag{9}
\end{align*}
$$

tells how to transform to an arbitrary Lorentz frame. The Wigner rotations are given by

$$
\begin{align*}
R_{W}(\Lambda, p) & =L^{-1}(\Lambda p) \Lambda L(p) \\
L(p) & =e^{-i \varphi J_{3}} e^{-i \theta J_{2}} e^{-i \delta K_{3}} \tag{10}
\end{align*}
$$

where the J_{i} generate rotations and the \bar{K}_{i} generate boosts. The angles $\bar{\delta}, \theta, \varphi$ specify the orientation of momentum four-vector p according to

$$
\begin{equation*}
p^{0}=m \cosh \bar{\delta}, \quad \underset{\sim}{p}=m \sinh \bar{\delta} \hat{r}(\theta, \varphi) \tag{11}
\end{equation*}
$$

where $\hat{r}(\theta, \varphi)$ is a spatial unit vector of polar angles (θ, φ). For physical (positive time-like) momentum vectors we adopt the convention that $\bar{\delta} \geqq 0$ for particle 1 and $\bar{\delta} \leqq 0$ for particle 2 . In the c.m.
frame in the physical region of the t-channel, $\quad \varphi_{1 / 2}=\varphi_{2}, \quad \theta_{1}=\theta_{2}$, $\bar{\delta}_{1}=-\bar{\delta}_{2}=\sinh ^{-1}\left(\frac{t}{4 m^{2}}-1\right)^{1 / 2}$. These conventions are completely equivalent to those of the second paper of Reference 15 .

By the Hall-Wightman theorem ${ }^{15} \mathrm{Eq}$. (9) can be extended analytically to any transformation Λ of the complex Lorentz group. Further, Eq. (9) still specifies the Lorentz transformation law in unphysical regions of the variables s and t. Continuation in t and s is done via the c.m. frame helicity amplitudes, and Eq. (9) then specifies the transformation law to any frame connected to the c.m. frame by the transformation Λ of the complex Lorentz group.

The first step in obtaining the $0(4)$ symmetry is to continue the t-channel helicity amplitudes from the physical region to $t=0$ defining $\bar{\delta}_{1}=-\bar{\delta}_{2}=i \delta=i \sin ^{-1}\left(1-t / 4 m^{2}\right)^{1 / 2}$ so that ${ }^{18} \delta=\pi / 2$ at $t=0$. We see from (II) that the vector K^{μ} vanishes at $t=0$, and that the amplitude there depends only on the relative momenta $p=\frac{1}{2}\left(p_{1}-p_{2}\right)$ and $p^{\prime}=\frac{1}{2}\left(p_{1}{ }^{\prime}-p_{2}^{\prime}\right)$. After the continuation process just described the relative momentum vector has components

$$
\begin{align*}
& \hat{p}^{0}=0 \\
& \underset{\sim}{p}=\operatorname{im} \hat{r}(\theta, \varphi) \tag{12}
\end{align*}
$$

with arbitrary spatial orientation at $t=0$. This form defines the center-of-mass frame at $t=0$.

The covering group of the complex Lorentz group is $S L(2, C) \times \operatorname{SL}(2, C)$ and we restrict ourselves now to transformations g of its compact subgroup $O(4)$ or rather $S U(2) \times \operatorname{SU}(2)$. Such a transformation takes the
relative momentum vector (12) into a vector of the form

$$
\begin{align*}
& {\underset{p}{ }}^{o}=m \cos \delta \\
& \underset{\sim}{p}=i m \sin \delta \hat{r}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{13}
\end{align*}
$$

where $\delta, \theta^{\prime}, \varphi^{\prime}$ specify the polar coordinates of an arbitrary point on the surface of a four-dimensional Euclidean sphere.

By starting from center-of-mass frame relative momentum vectors (with initial and final state) of variable spatial orientation, we apply transformation g of $O(4)$ and use Eq. (9) to obtain scattering amplitudes for relative momentum vectors p^{\prime} and p with arbitrary orientations on the sphere. This set of on-mass-shell amplitudes is obviously invariant under the group $o(4)$. Variation of p and p^{\prime} over the sphere corresponds to variation of s in the interval $\left(m-m^{\prime}\right)^{2} \leqq s \leqq\left(m+m^{\prime}\right)^{2}$ where m and m^{\prime} are the masses of particles in the initial state and the final state of the t-channel. In this interval, the amplitude is analytic except for possible poles due to bound states in the s and n channels; and possible annihilation cuts at which the amplitude is bounded. For example, in INN scattering there is the deuteron pole in the s-channel and a pion pole and multi-pion and kaon annihilation cuts in the u-channel.

We subtract out the pole terms and treat them explicitly later. This subtraction is done in a Lorentz invariant manner so that the underlying group theory is not destroyed. The amplitude
$T_{\lambda_{1}}{ }^{\prime} \lambda_{2} \lambda_{1} \lambda_{2}\left(p^{\prime},-p^{\prime}, p,-p\right)$ remaining after the subtraction is square integrable as a function of the orientation of p and p^{\prime} on the sphere. It is therefore a bounded integral operator in search of a Hilbert space, and we now define the Hilbert space as the set of functions ${ }^{f} \lambda_{\lambda_{1} \lambda_{2}}(p)$ defined on the sphere through Eq. (13) with norm
(14)
where $d \delta=\sin ^{2} \delta d \delta d(\cos \theta) d \varphi$ is the surface element of the four dimensional sphere. The introduction of a Hilbert space makes it very easy to obtain the group-theoretic decomposition of the amplitude.

We change to bra-ket notation and write

$$
\begin{equation*}
{ }^{T} \lambda_{1}{ }^{\prime} \lambda_{2} \lambda_{1} \lambda_{2}\left(p_{1}^{\prime}-p_{1}^{\prime} p_{1}-p\right)=\left\langle p^{\prime} \lambda_{1}^{\prime} \lambda_{2}^{\prime}\right| T\left|p \lambda_{1} \lambda_{2}^{\prime}\right\rangle . \tag{15}
\end{equation*}
$$

The ket $\left|p \lambda_{1} \lambda_{2}\right\rangle \equiv\left|\hat{e}(\delta \theta \varphi) \lambda_{1} \lambda_{2}\right\rangle$ is an improper basis ket of the Hilbert space. It is defined in terms of the ket $\left|\overline{\mathrm{p}} \lambda_{1} \lambda_{2}\right\rangle$ with momentum $\overline{\mathrm{p}}$ in the direction of the north pole of the sphere by

$$
\begin{equation*}
\left|p \lambda_{1} \lambda_{2}\right\rangle=e^{-i \varphi J_{3}} e^{-i \Theta J_{2}} e^{-i \delta K_{3}}\left|\overline{p \lambda_{1}} \lambda_{2}\right\rangle \tag{16}
\end{equation*}
$$

We have introduced the unit vector $\hat{e}(\delta \theta \varphi)$ of polar orientation
in the four-dimensional space, and our kets are normalized by

$$
\begin{equation*}
\left\langle p^{\prime} \lambda_{1} \cdot \lambda_{2}^{\prime} \mid p \lambda_{1} \lambda_{2}\right\rangle=\delta^{3}\left(\hat{e}^{\prime}-\hat{e}\right) \delta_{\lambda_{1}} \lambda_{1} \delta_{\lambda_{2}} \lambda_{2} . \tag{17}
\end{equation*}
$$

The ket transform under $O(4)$ according to

$$
\begin{equation*}
U(g)\left|p, \lambda_{1} \lambda_{2}\right\rangle=\sum_{\mu_{1} \mu_{2}^{\prime}}^{D_{\mu_{1}} \lambda_{1}}\left[R_{w}(g, p)\right] D_{-\mu_{2}-\lambda_{2}}^{s_{2}}\left[R_{W}(g,-p)\right]\left|g p, \mu_{1}, \mu_{2}\right\rangle \tag{18}
\end{equation*}
$$

where $U(g)$ is the unitary operator in the Hilbert space corresponding to the transformation g of $O(4)$. Invariance under $O(4)$ is expressed simply by the equation

$$
\begin{equation*}
U\left(g^{-1}\right) T U(g)=T . \tag{19}
\end{equation*}
$$

-15-
V. $O(4)$ DECOMPOSITION OF THE AMPLITUDE

Our goal is to obtain the four-dimensional partial wave expansion of the amplitudes (15), and we do this by decomposing the Hilbert space into finite-dimensional subspaces whose basis states transform according to definite irreducible representations of $O(4)$. The invariance property (19) ensures a corresponding decomposition of the matrix elements of the operator \mathbb{T}, and this decomposition is the desired partial wave expansion. Our procedure is well known in ordinary quantum mechanics. 19

We study first the behavior under ordinary rotations of the north pole helicity ket $\left|\bar{p}_{\lambda} \lambda_{2}\right\rangle$. For an ordinary notation $R(\alpha, \beta, \gamma)$ the Wigner rotations (10) are given by

$$
\begin{align*}
R_{W}[R(\alpha, \beta, \gamma), \bar{p}] & =R(\alpha, \beta, \gamma) \\
R_{W}[R(\alpha, \beta, \gamma),-\bar{p}] & =e^{-i \pi K_{3}} R(\alpha, \beta, \gamma) e^{+i \pi K_{3}} \\
& =R(\alpha,-\beta, \gamma) \tag{20}
\end{align*}
$$

The relation $-\bar{p}=e^{+i \pi K_{3}} \bar{p}$ is implied by previous conventions. ${ }^{18}$ The last equality in (20) follows from the group structure of $0(4)$. Using (18) and (20) we obtain
$R(\alpha, \beta, \gamma)\left|{\bar{p} \lambda_{1}}_{1} \lambda_{2}\right\rangle=\sum_{\mu_{1} \mu_{2}}(-1)^{\lambda_{2}-\mu_{2}}{ }_{D_{\mu_{1} \lambda_{1}}^{s}}^{s_{1}}(\alpha, \beta, \gamma) D_{-\mu_{2},-\lambda_{2}}^{s_{2}}(\alpha, \beta, \gamma)\left|\bar{p}_{1} \mu_{2}\right\rangle$.

We define a new set of kets by the equation

$$
\begin{equation*}
|p s \lambda\rangle=\sum_{\lambda_{1} \lambda_{2}}(-1)^{s_{2}-\lambda_{2}} \mathrm{C}\left(s_{1} s_{2} s ; \lambda_{1},-\lambda_{2}\right)\left|p, \lambda_{1} \lambda_{2}\right\rangle, \tag{22}
\end{equation*}
$$

of which the north pole ket $|\overline{\mathrm{p} s} \lambda\rangle$ transforms under rotations according to the I.R.'s of $\mathrm{SU}(2)$,

$$
\begin{equation*}
\mathrm{U}[\mathrm{R}(\alpha \beta \gamma)]|\overline{\mathrm{p}} s \lambda\rangle=\sum_{\lambda^{\prime}} D_{\lambda^{\prime} \lambda^{\prime}}^{\mathrm{s}}(\alpha \beta \gamma)\left|\overline{\mathrm{p}} s \lambda^{\prime}\right\rangle . \tag{23}
\end{equation*}
$$

The phase factor $(-1)^{s_{2}-\lambda_{2}}$ is very important to the final results. The quantum number s, although a purely rotational quantum number, differs from the total spin normally defined for two-particle systems. Total spin is usually defined by coupling the two spins in the center-of-mass frame, whereas our spin s is defined in the "north pole frame." These frames are connected by the boost $\exp \left[-i \frac{\pi}{2} K_{3}\right]$ which does not commute with rotations. Hence the relation between the two total spins is not simple.

The integral over the group

$$
\begin{equation*}
\int \mathrm{dg} \mathrm{D}_{j \mathrm{~m}, j^{\prime} \mathrm{m}}^{(\mathrm{ab})^{*}}(\mathrm{~g}) \mathrm{U}(\mathrm{~g})|\overline{\mathrm{p} s} \lambda\rangle \tag{24}
\end{equation*}
$$

either vanishes or defines a state transforming according to the I.R. (a,b). Using (1), (6) and (23), one can easily integrate over the angles α, β and γ, and find that the integral vanishes unless $j^{\prime}=s, m^{\prime}=\lambda$ and that it is independent of λ. It also vanishes
unless the angular momenta j and s are contained in the representation (a, b), so that $|a-\mathrm{b}| \leqq j, \mathrm{~s} \leqq \mathrm{a}+\mathrm{b}$. Therefore (24) reduces to the set of states

$$
\begin{equation*}
|a, b, j, m s\rangle=N_{s}^{a b} \sum_{\lambda} \int d \& D_{m \lambda}^{j}(\varphi \theta 0)^{*} d_{j s \lambda}^{*}(a, b)(\delta)|p s \lambda\rangle \tag{25}
\end{equation*}
$$

for which a, b, j and s satisfy the inequality above, and the set of states (25) is complete in the Hilbert space. For fixed a, b and s, the states $|a, b, j, m, s\rangle$ transform according to the I.R. (a, b). The spin index s plays a role similar to the helicity in the treatment of Jacob and Wick. ${ }^{15}$ A state with a given value of s contains O (4) representations with $|M|=|a-b| \leqq s$.

The normalization constant which is fixed by the requirement

$$
\left\langle a^{\prime} b^{\prime} j^{\prime} m^{\prime} s^{\prime} \mid a b j m s\right\rangle=\delta_{a} a^{\delta_{b}} b^{\delta_{j}} j^{\delta_{m}} m_{s} \delta_{s}
$$

is given by

$$
\begin{equation*}
\left(\mathbb{N}_{s} a b\right)^{2}=(2 \pi)^{-2}(2 s+1)^{-1}(2 a+1)(2 b+1) \tag{27}
\end{equation*}
$$

The unitary transformation matrices

$$
\begin{align*}
& \left\langle p^{\prime} \lambda_{1} \lambda_{2} \mid p s \lambda\right\rangle=\delta^{3}\left(\hat{e}^{\prime}-\hat{e}\right) \delta_{\lambda, \lambda_{1}-\lambda_{2}} C\left(s_{1} s_{2} s ; \lambda_{1},-\lambda_{2}\right)(-1)^{s_{2}-\lambda_{2}} \\
& \left\langle p s \lambda \mid a b j m s^{\prime}\right\rangle=\delta_{s s}, \mathbb{N}_{s}^{a b} D_{m \lambda}^{j}(\varphi, \theta, 0)^{*} d_{j s \lambda}^{(a, b)^{*}}(\delta) \tag{28}
\end{align*}
$$

which can easily be obtained from (22) and (25) are very useful in deriving the decomposition theorems we need.

Before obtaining these expansion theorems it is useful to study the behavior of the states (25) under the discrete transformations parity and charge conjugation. To do so it is simplest to introduce the direct product notation

$$
\begin{equation*}
\left|{\bar{p} \lambda_{1} \lambda_{2}}\right\rangle=\left|\lambda_{1}\right\rangle(x) e^{+i \pi K_{3}}\left|-\lambda_{2}\right\rangle \tag{29}
\end{equation*}
$$

in which the different transformation properties of particles 1 and 2 are manifest. The individual kets $\left|\lambda_{1}\right\rangle$ and $\left|\lambda_{2}\right\rangle$ transform in the same way under the group.

The parity operator commutes with rotations and anti-commutes with boost generators. Therefore

$$
\begin{align*}
P\left|{\bar{p} \lambda_{1} \lambda_{2}}\right\rangle & =\eta_{1} \eta_{2}\left|\lambda_{1}\right\rangle\left\langle x_{2} e^{-i \pi K_{3}} \mid-\lambda_{2}\right\rangle \\
& =(-1)^{2 s_{2}} \eta_{1} \eta_{2}\left|\bar{p} \lambda_{1} \lambda_{2}\right\rangle \tag{30}
\end{align*}
$$

where η_{1} and η_{2} are the intrinsic parities of particles 1 and 2.
Charge conjugation is useful only for particle-antiparticle channels, so we take $s_{1}=s_{2}$. It commutes both with parity and with transformations of the proper group $O(4)$, and is equivalent to a factor $(-1)^{2 s} 2$ times the exchange operator of the two particles. Therefore

$$
\begin{align*}
c\left|\bar{p} \lambda_{1} \lambda_{2}\right\rangle & =(-1)^{2 s_{2}}\left\{e^{i \pi K_{3}}\left|-\lambda_{2}\right\rangle\right\}(x)\left|\lambda_{1}\right\rangle \\
& =e^{+i \pi K_{3}}\left|\bar{p},-\lambda_{2},-\lambda_{1}\right\rangle . \tag{BI}
\end{align*}
$$

From (22), we easily obtain

$$
\begin{align*}
\mathrm{P}|\hat{e}(\delta \theta \varphi) s \lambda\rangle & =(-1)^{2 s_{2}} \eta_{1} \eta_{2}|\hat{e}(-\delta, \theta, \varphi) s \lambda\rangle, \\
c|p s \lambda\rangle & =(-1)^{s+\lambda} e^{+i \pi K_{3}}|p s \lambda\rangle . \tag{32}
\end{align*}
$$

Using the symmetry properties $(A-2)$ and ($A-3$) of the boost matrices we finally find

$$
\begin{align*}
& \text { P|abjms } \left.\rangle=\eta_{1} \eta_{2}(-1)^{2\left(a+b+s_{2}\right)-j-s} \mid \text { bajms }\right\rangle \tag{33}\\
& \left.C \mid \text { abjms }\rangle=(-1)^{2 a-s} \mid \text { abjms }\right\rangle . \tag{34}
\end{align*}
$$

The reduced matrix elements 〈abjms' $|T| a b j m s\rangle$ are diagonal. in a, b, j, and m and independent of j and m because of Schur's lemma and $O(4)$ invariance. We introduce the notation

$$
\begin{equation*}
\mathbb{T}_{s^{\prime} \mathrm{s}}^{\mathrm{M}}=\langle\text { abjms }| T|a b j m s\rangle \tag{35}
\end{equation*}
$$

where $n=a+b, m=a-b$. Parity conservation (33) implies that

$$
\begin{equation*}
\mathrm{T}_{s^{\prime} \mathrm{s}}^{\mathrm{n}, \mathrm{M}}=\eta_{1}^{\prime} \eta_{2}^{\prime} \eta_{1} \eta_{2}(-1)^{2 s_{2}+2 s_{2}^{\prime-s-s^{\prime}}} \mathrm{T}_{\mathrm{s}^{\prime} \mathrm{s}}^{\mathrm{n},-\mathrm{M}} \tag{36}
\end{equation*}
$$

For ikentical particles or for particle-antiparticle channels, ints implies that

$$
\begin{align*}
& T_{S^{\prime} S}^{n, M}=(-1)^{s+S^{\prime}} T_{S^{\prime} S}^{n,-M} \\
& T_{S^{\prime} S}^{n, O}=0 \quad \text { if } \quad(-1)^{s+S^{\prime}}=1 \tag{37}
\end{align*}
$$

These relations restrict the number of independent reduced matrix elements.

The transformation matrices (28) can be used to construct expansion theorems in terms of the $T_{S^{\prime} S}^{n M}$ for amplitudes $\left\langle p^{\prime} s^{\prime} \lambda^{\prime}\right| T|p s \lambda\rangle$ or $\left\langle p^{\prime} \lambda_{1}{ }^{\prime} \lambda_{2}{ }^{\prime}\right| T\left|p \lambda_{1} \lambda_{2}\right\rangle$ with arbitrary orientation of p and p on the four-dimensional sphere. These expansions converge in the I_{2} topology on the sphere. We write explicit expansions only for the amplitudes necessary for the further development of the theory.

The conventional c.m. frame helicity amplitude at $t=0$ is given by

$$
\begin{equation*}
T_{\lambda_{1}}{ }^{\prime} \lambda_{1}{ }^{\prime} \lambda_{1} \lambda_{2}(\theta)=\left\langle\hat{e}\left(\frac{\pi}{2}, \theta, 0\right) \lambda_{1}{ }^{\prime} \lambda_{2}{ }^{\prime}\right| T\left|\hat{e}\left(\frac{\pi}{2}, 0,0\right) \lambda_{1} \lambda_{2}\right\rangle \tag{38}
\end{equation*}
$$

Inserting complete sets of states (25) and using (27) and (28), we obtain

$$
\begin{align*}
& T_{\lambda_{1}}{ }^{\prime} \lambda_{2}{ }^{\prime} \lambda_{1} \lambda_{2}(\theta)=(2 \pi)^{-2}(-1)^{S_{2}{ }^{\prime}-\lambda_{2}^{\prime}+S_{2}-\lambda_{2}} \\
& x \sum_{s_{=}=\mid s_{1}-s_{2}}^{s_{1}+s_{2}^{\prime}} \sum_{s^{\prime}=\mid s_{1}^{\prime}-s_{2}}^{s_{1}^{\prime}+s_{2}^{\prime}} \sum_{M=-\min \left(s, s^{\prime}\right)}^{\min \left(s, s^{\prime}\right)} \sum_{n=\min \left(s, s^{\prime}\right)}^{\infty} \sum_{j=|M|}^{n} \\
& \times\left[\left(2 s^{\prime}+1\right)(2 s+1)\right]^{-1 / 2} C\left(s_{1}{ }^{\prime}, s_{2}{ }^{\prime}, s^{\prime} ; \lambda_{1}{ }^{\prime},-\lambda_{2}{ }^{\prime}\right) C\left(s_{1}, s_{2}, s ; \lambda_{1},-\lambda_{2}\right) \\
& x\left[(n+1)^{2}-M^{2}\right] T_{s^{\prime} s}^{n, M}{\underset{j s^{\prime} \lambda^{\prime}}{ }\left(\frac{(\pi}{2}\right)}_{\left(d_{j s \lambda}\right)}^{(n, M)}\left(\frac{\pi}{2}\right) d_{\lambda \lambda^{\prime}}^{j}(\theta) \tag{39}
\end{align*}
$$

where $\lambda=\lambda_{I}-\lambda_{2}, \quad \lambda^{\prime}=\lambda_{1}^{\prime}{ }^{\prime}-\lambda_{2}{ }^{\prime}$. The partial wave helicity amplitudes ${ }^{20}\left\langle\lambda_{I}{ }^{\prime} \lambda_{2}{ }^{\prime}\right| T^{j}\left|\lambda_{1} \lambda_{2}\right\rangle$ can be identified as the coefficients of $\alpha_{\lambda \lambda^{\prime}}^{j}(\theta)$ in Eq. (39). Parity conserving helicity amplitudes, the amplitudes which are Reggeized, can be obtained by forming suitable linear combinations.

To project out the $O(4)$ partial wave amplitudes $T_{S}^{n M}$'s we define the amplitudes

$$
\begin{equation*}
T_{s^{\prime} s \lambda}(\delta)=\left\langle\hat{e}(\delta, 0,0), s^{\prime} \lambda\right| T|\hat{e}(0,0,0), s \lambda\rangle \tag{40}
\end{equation*}
$$

observing that invariance under rotations about the z -axis implies that these amplitudes are diagonal in λ, and that invariance under the mirror reflection $P \exp \left[-i \pi J_{2}\right]$ implies

$$
\begin{equation*}
T_{s^{\prime} s \lambda}(\delta)=\eta_{1}^{\prime} \eta_{2}^{\prime} \eta_{1} \eta_{2}(-1)^{2 s_{2}+2 s_{2}+s^{\prime}+s-2 \lambda} T_{s^{\prime} s-\lambda}(\delta) \tag{41}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
T_{S^{\prime} S \lambda}(\delta)=(-1)^{s^{\prime}+S} T_{S^{\prime} S-\lambda}(\delta) \tag{42}
\end{equation*}
$$

for identical particles or particle and antiparticle. These amplitudes have the simple decomposition

$$
\begin{align*}
& T_{s^{\prime} s \lambda}(\delta)=(2 \pi)^{-2}\left[(2 s+1)\left(2 s^{\prime}+1\right)\right]^{-1 / 2} \\
& \times \sum_{M}\left[(n+1)^{2}-M^{2}\right] a_{s^{\prime} s \lambda^{n}(\delta) T_{s}^{\prime} s}^{n M} \tag{43}
\end{align*}
$$

where the sums have the same limits as in (39). $T_{S^{\prime}, s}$ can be projected out using Eq. (8), and we obtain

$$
\begin{equation*}
T_{s^{\prime} s}^{n M}=\sum_{\lambda=-m i n\left(s^{\prime}, s\right)}^{\min \left(s^{\prime}, s\right)} \int_{0}^{\pi} d \delta \sin ^{2} \delta T_{s^{\prime} s \lambda}(\delta) d_{s^{\prime} s \lambda}^{n M}(\delta) \tag{44}
\end{equation*}
$$

The $O(4)$ partial wave amplitudes, defined for physical n by Eq. (44) can be continued to complex n using techniques ${ }^{2 l}$. similar to those of Froissart and Gribov.
VI. NUCLEON-NUCLEON SCATYTERING

At this point we restrict ourselves explicitly to the process $\mathbb{N N} \rightarrow \mathbb{N} \bar{N}$, the simplest spin configuration in which the $O(4)$ symmetry leads to interesting results. In this process s and therefore M are restricted to the values 0 and 1. Parity conservation, (37) and (42), implies that $s=0$ and $s=1$ states do not couple. Therefore we can simplify the notation by setting $T_{S}^{n, M} \equiv \delta_{S} S_{s} T_{S}^{n, M}$. There are three independent amplitudes $T_{0}^{n 0}, T_{1}^{n, 0}$ and $T_{1}^{n, 1}$ for a given n.

We write expressions for the parity conserving helicity amplitudes of GGMW, ${ }^{22}$

$$
\begin{align*}
& f_{0}^{j}=\left\langle\frac{1}{2}, \frac{1}{2}\right| T^{j}\left|\frac{1}{2}, \frac{1}{2}\right\rangle-\left\langle\frac{1}{2}, \frac{1}{2}\right| T^{j}\left|-\frac{1}{2},-\frac{1}{2}\right\rangle, \\
& f_{1}^{j}=\left\langle\frac{1}{2},-\frac{1}{2}\right| T^{j}\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\left\langle\frac{1}{2},-\frac{1}{2}\right| T^{j}\left|-\frac{1}{2}, \frac{1}{2}\right\rangle, \\
& f_{11}^{j}=\left\langle\frac{1}{2}, \frac{1}{2}\right| T^{j}\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\left\langle\frac{1}{2}, \frac{1}{2}\right| T^{j}\left|-\frac{1}{2},-\frac{1}{2}\right\rangle, \\
& f_{22}^{j}=\left\langle\frac{1}{2},-\frac{1}{2}\right| T^{j}\left|\frac{1}{2},-\frac{1}{2}\right\rangle+\left\langle\frac{1}{2},-\frac{1}{2}\right| T^{j}\left|-\frac{1}{2}, \frac{1}{2}\right\rangle, \\
& f_{12}^{j}=2\left\langle\frac{1}{2}, \frac{1}{2}\right| T\left|\frac{1}{2},-\frac{1}{2}\right\rangle . \tag{45}
\end{align*}
$$

We identify the partial wave helicity amplitudes in (39) and use (37) and ($A-11$) and ($A-12$) to write

$$
\begin{align*}
& \text {-24- } \\
& f_{0}^{j \pm}=\left[6 \pi^{2}(2 j+1)\right]^{-1}\left[\sum_{\substack{k=\bar{l} \\
\text { od }}}^{\infty}(j+k+1)^{2}\left|\alpha_{j 10}^{j+k, 0}\left(\frac{\pi}{2}\right)\right|^{2} T_{1}^{j+k, 0 \mp}\right. \\
& \left.+\sum_{\substack{k=0 \\
\text { even }}}^{\infty} 2(j+k)(j+k+2)\left|a_{j 10}^{j+k, 1}\left(\frac{\pi}{2}\right)\right|^{2} T_{1}{ }^{j+k, 1 \pm}\right] \text {, } \tag{46}\\
& f_{I}^{j \pm}=\left[3 \pi^{2}(2 j+1)\right]^{-1}\left[\sum_{\substack{k=0 \\
\text { even }}}^{\infty}(j+k+1)^{2}\left|d_{j 11}^{j+k, 0}\left(\frac{\pi}{2}\right)\right|^{2} T_{1}{ }^{j+k, 0 \pm}\right. \\
& +\left.\sum_{\substack{k=1 \\
o \bar{d} \bar{d}}}^{\infty} 2(j+k)(j+k+2)\left|a_{j 11}^{j+k, 1}\left(\frac{\pi}{2}\right)\right|^{2} T_{1}^{j+k, 17}\right|_{(47)}, \\
& f_{11}^{j \pm}=\left[2 \pi^{2}(2 j+1)\right]^{-1} \sum_{\substack{k=0 \\
\text { even }}}^{\infty}(j+k+1)^{2}\left|a_{j 00}^{j+k, 0}\left(\frac{\pi}{2}\right)\right|^{2} T_{0}^{j+k, 0 \pm}, \\
& f_{22}^{j \pm}=\left[6 \pi^{2}(2 j+1)\right]^{-1} \sum_{\substack{k=0 \\
\text { even }}}^{\infty} 2(j+k)(j+k+2)\left|d_{j l 1}^{j+k, 1}\left(\frac{\pi}{2}\right)\right|^{2} \mathrm{~T}_{1}^{j+k, 1 \pm} .
\end{align*}
$$

The \pm superscripts refer to signatures and should be disregarded until we discuss them explicitly below. Amplitudes $\mathbb{T}^{j+\kappa, 0}$ with κ even do not contribute in (46) becuase the corresponding $a_{j 10}^{j+k, 0}\left(\frac{\pi}{2}\right)$ vanish. Similar remarks apply to the other terms. From (48) and (49) we see that only $M=0$ couples to the parity conserving helicity state 1 , and only $M=1$ couples to the helicity state 2. Therefore. the amplitude $f_{l 2}^{j}$ which couples these two states must vanish, a result which is also obtained in the conventional theory. ${ }^{22}$

Formulae (46)-(49) relate the conventional parity conserving partial wave helicity amplitudes to the $O(4)$ partial wave amplitudes for integer values of j. In Appendix B, we study the problem of obtaining the appropriate continuation of these relations to complex j. We summarize here the results of that study, and then go on to examine the structure of Regge pole families. There are subtle points involved in the treatment of Appendix B, and the reader interested in the detailed implementation of these ideas is urged to read it.

For convenience, we use the generic symbols T^{n} and f^{j} to denote any one of the set of corresponding amplitudes. In Appendix B it is shown that there exist separate continuations $T^{n \pm}$ away from even and odd integer n respectively, which are holomorphic in the half-plane $\operatorname{Re} \mathrm{n}>\mathbb{N}$, where \mathbb{N} is the number of subtraction necessary in the forward dispersion relations in nucleon-nucleon scattering. A simple multiple of $T^{n \pm}$ satisfies the requirements of Carlson's theorem and therefore T^{n} is the unique holomorphic continuation
in $\operatorname{Re} n>N$ with reasonable asymptotic behavior. In particular asymptotic behavior in $\operatorname{Re} n$ assures the convergence of (46)-(49) uniformly in j. We refer to the $T^{n \pm}$ as the amplitudes of even and odd Lorentz signature respectively.

When the continuations $T^{n \pm}$ are inserted in Eqs. (46)-(49), these equations may be used to define continued partial wave amplitudes ${ }^{23} f^{j \pm}$ away from even and odd integral j which are holomorphic in $\operatorname{Re} j>N$. As simple multiple of the $f^{j \pm}$ defined in this way satisfies the hypotheses of Carlson!s theorem, and the theorem assures us that these $f^{j \pm}$ coincide with the conventional continuations away from even and odd integers with the same analyticity and asymptotic properties.

In the region $\operatorname{Re} n<N$ very little has been proven about the analyticity properties of the $T^{n \pm}$. We adopt as a working hypothesis the assumption that the $T^{n \pm}$ have only simple poles in the region Re $n<\mathbb{N}$. This corresponds to the assumption of j-plane meromorphy usually made in phenomenological applications of s-matrix theory. Other kinds of singularities, for example branch points, would yield families of similar singularities equally spaced in the j-plane at $t=0$. In this paper we study only poles.

A pole in $T^{n \pm}$ is called a Lorentz pole, following Toller. Since the three independent amplitudes $T_{0}^{n O \pm}, T_{1}^{n O \pm}$ and $T_{1}^{n l \pm}$ correspond to transitions from states which transform according to different I.R.'s of the invariance group $O(4)$ combined with parity,
the Lorentz poles of each amplitude will be independent. Each Lorentz pole, at $n=\alpha^{ \pm}$gives rise to an infinite family of Regge poles whose structure can be deduced from Eqs. (46) -(49).
I. Lorentz pole of $T_{0}^{n}, 0 \pm(M=0, s=0)$. Near such a pole the amplitude behaves like

$$
\begin{equation*}
\mathrm{T}_{0}^{j+k, 0 \pm} \approx \frac{\gamma^{ \pm}}{j+k-\alpha^{ \pm}} \tag{50}
\end{equation*}
$$

This amplitude couples only to $f_{11} \pm$, and from (46) the Lorentz pole yields a series of Regge poles spaced by two units of angular momentum at $j=\alpha^{ \pm}, \alpha^{ \pm}-2, \cdots$, with residues $\beta^{0 \pm}, \beta^{2 \pm}, \cdots$. The ratio of the residues of the parent and daughter poles can be computed from Eq. (48). We obtain, for example,

$$
\begin{align*}
\beta^{2} / \beta^{0} & =(2 \alpha+1)\left|\alpha_{\alpha 00}^{\alpha, 0}\left(\frac{\pi}{2}\right)\right|^{2} /(2 \alpha-3)\left|d_{\alpha-2,00}^{(\alpha, 0)}\left(\frac{\pi}{2}\right)\right|^{2} \\
& =\frac{2 \alpha+1}{4 \alpha} . \tag{51}
\end{align*}
$$

All Regge poles in this family have signature $(-1)^{\mathfrak{j}}$ equal to Lorentz signature and $P=(-l)^{j}=C$. An additional series of poles with opposite signature and parity but the same charge conjugation would appear at $j=\alpha^{ \pm}-1, \alpha^{ \pm}-3, \cdots$ in the unequal mass case. ${ }^{1}$ n, $0 \pm$
II. Lorentz pole of $T_{1} \quad(M=0, s=1)$. This Lorentz pole leads to Reggae poles of $\mathrm{f}_{1}^{j \pm}$ at $j=\alpha^{ \pm}, \alpha^{ \pm}-2, \cdots$ with residues $\beta_{I}^{0 \pm}, \beta_{1}^{2 \pm}$, \cdots and to Reggae poles of $f_{0}^{j \mp}$ at $j=\alpha^{ \pm}-1, \alpha^{ \pm}-3, \cdots$ with residues
$\beta_{0}^{17}, \beta_{0}^{37}, \cdots$. From Eqs. (46)-(47) and Eqs. (A7)-(A8) we calculate ratio

$$
\begin{align*}
\beta_{0}^{1 \mp} / \beta_{1}^{0 \pm} & =2(2 \alpha+1)\left|a_{\alpha-1,1,0}^{\alpha, 0}\left(\frac{\pi}{2}\right)\right|^{2}(2 \alpha-1)\left|\alpha_{\alpha, 11}^{\alpha, 0}\left(\frac{\pi}{2}\right)\right|^{2} \\
& =(2 \alpha+1) / \alpha(\alpha+1) . \tag{52}
\end{align*}
$$

All Rage poles in this family have a common charge conjugation value opposite in sign to the Lorentz signature. The Regge poles of $f_{l}^{j \pm}$ have $P=-(-1)^{j}=C$ and those of $f_{0}^{j \mp}$ have $P=-(-1)^{j}=-C$.
III. Lorentz pole of $T_{1}{ }^{n} l^{ \pm}(M=1)$. This Lorentz pole yields Regge poles of $f_{0}^{j \pm}$ and $f_{22}^{j \pm}$ at $j=\alpha^{ \pm}, \alpha^{ \pm}-2, \cdots$, and poles of $f_{l}^{j \mp}$ at $j=\alpha^{ \pm}-1, \alpha^{ \pm}-3, \cdots$. The ratio of residues of the leading members of the singlet and coupled triplet series is, from Eq. (46), (49) and (A-10).

$$
\begin{equation*}
\beta_{22} / \beta_{0}=(\alpha+1) / \alpha \tag{53}
\end{equation*}
$$

All poles of this family have charge conjugation equal to Lorentz signature. The poles of $f_{0}^{j \pm}$ have $P=-(-1)^{j}=-C$, those of $f_{22}^{j \pm}$ have $P=(-1)^{j}=C$, and those of $f_{1}^{j \bar{q}}$ have $P=-(-1)^{j}=C$.

The variation of the discrete quantum numbers C and P within a Regge family can be understood easily. The charge conjugation operation commutes with all the transformations of the $0(4)$ group, and its eigenvalue within a given irreducible representation depends only on the Casimir operators of $O(4)$ and not, for example, on the
j-value of the individual state in the representation. For this reason a Lorentz pole and all the Regge poles to which it gives rise have the same charge conjugation. The same remarks apply to all internal quantum numbers such as iso-spin.

Parity does not commute with $O(4)$ transformations containing boosts, and a Lorentz pole does not therefore have a definite parity. In an $M=0$ representation there is a definite correlation between the parity of a basis state and its j-value, Eq. (33). The parity of a Regge pole in an $M=0$ family is therefore correlated with the j value of possible physical states on the trajectory, and this structure is exhibited in families I and II. The basis states of $M \neq 0$ representations are not parity eigenstates, and in general have nonvanishing coupling to angular momentum helicity states of both parities. Parity doubling, the occurrence of opposite parity states of the same j-value, should be expected in Regge families corresponding to $M \neq 0$ Lorentz poles; this phenomenon is exhibited in family III.

A given Lorentz pole can couple to many different channels at $t=0$. Because of $0(4)$ invariance it couples to states of the same M-value in all the different channels. ${ }^{24}$ Therefore M is a universal quantum number of trajectories at $t=0$. If $M=0$, then the quantity $P \cdot(-1)^{j}$, the product of parity and signature, is the same in all channels to which the trajectories of the corresponding Regge family couple.

All Regge trajectories at $t=0$ must be classified in $O(4)$ families: Trajectories which couple to pseudoscalar meson pairs at $t=0$ must correspond to Lorentz poles with $M=0$ and $s=0$, since these are the only $O(4)$ states which contribute in the t channel process $\mathbb{N}+\overline{\mathbb{N}} \rightarrow$ PS + PS because of the final state spins. ${ }^{25}$ Therefore P, P^{\prime} and ρ which couple to $\pi \pi$ and ω, φ and A_{2} which couple to $K \bar{K}$ must be the leading trajectories of $O(4)$ families of type I.

The quantum numbers of the A_{l} trajectory suggest that it be identified with the leading member of an $0(4)$ family of type II. ${ }^{26,27}$ The next leading member is a trajectory of the singlet f_{0}^{j+} amplitude. This trajectory lies one unit below the A_{1} at $t=0$, and its first physical manifestation would be a $J^{P G}=0^{--}$particle. The $0(4)$ symmetry at $t=0$, of course, does not require that the subsidiary trajectories of a family rise high enough to make physical particles. We merely observe here that the $\pi(1640)$ meson 28 is a possible candidate for the 0^{--}meson just described.

The π, η, and B trajectories couple to the f_{0}^{j} amplitude. If their residues are non-vanishing at $t=0$, the trajectories are presumably associated with Regge families of type III, since empirically they seem to correspond to leading members of $O(4)$ families. This assignment requires the existence of a trajectory of the f_{22}^{j} amplitude with intercept at $t=0$ equal to that of the original trajectory.

Since the 0^{+}parity partner of the π meson is not observed at low mass, the f_{22}^{j} trajectory of the pion family would have to have an extremely shallow or even a negative slope. The ratio $\beta_{22}(0) / \beta_{\pi}(0)$ of the residues of triplet and singlet trajectories is negative if $\alpha_{\pi}(0)<0$, and this may be connected with the behavior of the triplet trajectory suggested above. The $\pi_{v}(1030)$ meson ${ }^{28}$ is a possible candidate for the O^{+}state on this trajectory.

Another possibility for π trajectory is that it corresponds to the leading member of an $M=0, s=1$ family. ${ }^{29}$ From Eqs. (46)(47), such a family can not contribute to NIN scattering, since the pion can not couple to the $f_{l}^{j 0}$ amplitude because of G-parity. However such a family certainly can contribute to $\Delta \Delta$ scattering. A similar argument can be made for the η and B trajectories.

The $O(4)$ classification of the π, η, A_{1} and B trajectories can in principle be verified in detailed Regge pole analyses of processes to which these trajectories couple. Simultaneous analysis of the processes $n p \rightarrow p n, \quad y p \rightarrow \pi^{+} n$, and $\pi^{-} p \rightarrow \rho^{\circ} n$ would be important for a better understanding of this subject. It seems that successful analyses have not so far been obtained. 30

In the conspirator theory ${ }^{3,4}$ of NN scattering roughly similar results are obtained from the identity ${ }^{22}$

$$
f_{0}^{j-1}-f_{0}^{j+1}-\frac{j-1}{j} f_{22}^{j-1}+\frac{j+2}{j+1} f_{22}^{j+1}-\frac{2 j+1}{j(j+1)^{f} 1}{ }^{j}=0
$$

which must be satisfied as $t=0$ in order to avoid a kinematic singularity of the pseudoscalar invariant amplitude. Near a Regge pole the identity can be satisfied either by a vanishing residue or by correlation in position and residue of the Regge poles of the three partial waves which participate in Eq. (54). Such correlations are called conspiracies. ${ }^{4}$ There are an infinite number of conspiring families which can satisfy the identity (54). Gribov and Volkov ${ }^{1}$ admit only two possible finite conspiracies. Because they reject the possibility of daughter trajectories, their solution must be regarded as inadequate.

Since the analyticity requirements are built into our theory the partial wave identities are automatically satisfied. The predictive power of the $O(4)$ symmetry is much stronger than that of Eq. (54). Indeed we find on the basis of group theoretic requirements that families II and III are the only possible conspiracies.

Although calculation of ratios of Regge pole residues within a given $O(4)$ family usually requires explicit evaluation of the coefficients in Eqs. (46)-(49), the ratio of residues of the leading members can be obtained very simply from Eq. (54). In fact the moment of truth in our calculation came when the requirement of agreement between both methods of calculating the ratio of residues was checked. It is easy to see that the values (51) and (52), calculated group theoretically, are exactly the values required by Eq. (54).

In both the conspirator and $O(4)$ theories, there is no a priori requirement (contrary to older theories) that residues of trajectories of the f_{0}^{j} and f_{l}^{j} amplitudes vanish at $t=0$. From our point of view, whether a trajectory couples or decouples from some particular channel at $t=0$ is determined by its Lorentz quantum numbers (M and Lorentz signature) together with the usual quantum numbers (such as signature, parity and G-parity).
VII. NECESSITY FOR AN INFINITE SEQUENCE OF DAUGHTIERS

We have shown in the previous sections that a single Lorentz pole corresponds to an infinite family of Regge poles. However one might also worry that the Lorentz poles are arranged (counter-conspiracy) so that all but the single leading member of the Regge family cancels out. In the previous sections we rejected this possibility by the assumption that the poles which correspond to the full little group is fundamental. At $t=0$, the little group is $0(4)$, and the poles induced by this group are the Lorentz poles and not Regge poles.

In this section we show that it is in fact impossible to cancel out all the daughter Regge poles in a family by artificially arranging the Lorentz pole in the n-plane. An infinite number of daughters must exist as a consequence of Lorentz invariance of the scattering amplitudes. To show this, we observe that if members of different $O(4)$ representations interfere destructively in one amplitude, they must interfere constructively in some other amplitude. That is, let us suppose that the Regge daughters are in fact absent in some amplitude; this will give us conditions on the counterconspiring Lorentz poles. We can then find another amplitude, related to the first by $O(4)$ but not by $O(3)$, in which the daughters must appear. Thus the daughter trajectories must exist. We need only assume that the parent trajectory does not itself decouple at $t=0$.

Let's consider the A_{1} trajectory in $\overline{N N}$ amplitudes as an example. The A_{1} trajectory appears in the amplitude $f_{1}{ }^{j-}$.

If no trajectory appears at exactly one unit above A_{1} at $t=0$, there must be a Lorentz pole in $T_{I}{ }^{n, 0-}$ at $n=\alpha_{A_{1}}$ since the series in Eq. (47) converges uniformly in n. Let's first show that in order to be consistent with Eqs. (46), (47), and (49), which are direct consequences of Lorentz invariance of the scattering amplitudes, there must exist a pole at $j=\alpha_{A_{j}}-1$ in one of the amplitudes f_{0}^{j+}, f_{1}^{j-} and $f_{22}{ }^{j+}$.

The Lorentz pole of $T_{1}{ }^{n, 0-}$ at $n=\alpha_{A_{1}}$ produces a daughter pole in f_{0}^{j+} at $j=\alpha_{A_{1}}-1$, corresponding to $k=1$ in Eq. (46). In order for this daughter pole to be canceled out, there must exist a Lorentz pole in $T_{1}^{n, l+}$ at $n=\alpha_{A_{1}}-1$ wi.th the correct residue. This Lorentz pole with $M=1$ also gives a pole in f_{22}^{j+} at $j=\alpha_{A_{1}}-1$ which can never be canceled out. Therefore the nonexistence of a pole at $j=\alpha_{A_{1}}-1$ in any of the amplitudes f_{0}^{j+}, f_{1}^{j-}, f_{22}^{j+} conflicts with Lorentz invariance.

Similar arguments can be made for the lower lying daughter tra,jectories, and the conclusion is that for any integer k, there must exist at least $\frac{1}{2} k$ daughters.

Unfortunately in the $N \bar{N} \rightarrow N \bar{N}$ reaction a similar argument can not be made for the trajectories P, ρ, ω, etc. which contribute only to the f_{11}^{j} amplitude, the corresponding Lorentz poles having $s=0$. However if one goes to reactions with higher spin, for example $\pi \pi \rightarrow \rho \rho$ in the t-channel, then these trajectories contribute to O (4) partial wave amplitudes with $s=2$, and the same argument
can be used to establish the existence of an infinite number of daughters. Also, although we have proved the existence of an infinite number of daughters, we didn't prove the existence of all the daughters which we expect to exist from the Lorentz pole hypothesis. This situation can be improved indefinitely when we go to higher and higher spin channels.

ACKIVOWLEDGMENTP

The author wishes to thank Professor Geoffrey F. Chew for unfailing guidance and encouragement throughout the author's career as a research graduate student. The author is happy to thank Dr. Daniel Z. Freedman for many invaluable discussions which are essential to this work. He is also indebted to Dr. Jerome Finkelstein for a suggestion which led to the work in Section VII.

This work was done under the auspices of the U. S. Atomic Energy Commission.

$$
-37-
$$

APPENDIX A. PROPERIIES OF ${\underset{j}{j j}{ }_{j}^{(n, m}(\delta)}_{(\delta)}$
All properties of the boost representation functions needed in the text can be derived from the defining equation

$$
d_{j s \lambda}^{(n, M)}(\delta)=\sum_{\mu}^{C}\left(\frac{n+M}{2}, \frac{n-M}{2}, j, \mu, \lambda-\mu\right) C\left(\frac{n+M}{2}, \frac{n-M}{2}, s, \mu, \lambda-\mu\right) e^{-i(2 \mu-\lambda) \delta}
$$

by using known properties of the Clebsch-Gordan coefficients. We note first the properties

$$
\begin{align*}
\alpha_{j s \lambda}^{(n, M)^{*}}(\delta)= & a_{j s \lambda}^{(n, M)}(-\delta)= \tag{A-2}\\
& d_{j s-\lambda}^{(n, M)}(\delta)= \\
& a_{j, 1)^{j-s} d_{j s \lambda}^{(n-M)}(\delta)}^{(n,-M)}(\delta) \tag{A-3}\\
& a_{j s \lambda}^{(n, M)}(\delta)=(-1)^{n+M-\lambda} a_{j s \lambda}^{(n, M)}(\delta-\pi) .
\end{align*}
$$

The boost functions can be expressed in terms of Gegenbauer functions by using recursion relations for the Clebsch-Gordan coefficients and the basic relations

$$
\begin{align*}
& C_{n}^{1}(\cos \delta)=\sin (n+1) \delta / \sin \delta \\
& \frac{d^{k}}{d x^{k}} C_{n}^{\lambda}(x)=2^{k} \frac{\Gamma(\lambda+k)}{\Gamma(\lambda)} C_{n-k}^{\lambda+k}(x) \tag{A-4}
\end{align*}
$$

The case $M=s=\lambda=0$ has been treated by Bander and Itzykson. ${ }^{31}$ Their result can be written as

$$
{\underset{j}{j 00}}_{(n, 0)}(\delta)=\left\{\frac{(2 j+1) \Gamma(n-j+1)}{(n+1) \Gamma(n+j+2)}\right\}^{\frac{1}{2}}(2 i)^{j} \Gamma(1+j) \sin ^{j} \delta C_{n-j}^{1+j}(\cos \delta)
$$

More general cases can be obtained using (A-5) and the recursion relations of Bander and Itzyson, ${ }^{31}$ Eq. (3.7.13) of Edmonds ${ }^{32}$ and the relation

$$
\begin{align*}
& {[(J-\mu)(J+\mu+i)]^{\frac{1}{2}} C\left(j, j^{\prime} J, m, \mu-m+I\right) } \\
&= {\left[\left(j^{\prime}-\mu+m\right)\left(j^{\prime}+\mu-m+1\right)\right]^{\frac{1}{2}} C\left(j, j^{\prime}, J ; m, \mu-m\right) } \\
& \times[(j-m+I)(j+m)]^{\frac{1}{2}} C\left(j^{\prime} J, m-I, \mu-m+1\right) . \tag{A-6}
\end{align*}
$$

We list the results

$$
\begin{align*}
& d_{j 10}^{(n, 0)}(8)=\left(\frac{3}{n(n+2)}\right)^{\frac{1}{2}} i \frac{d}{d \delta} d_{j 00}^{(n, 0)}(\delta) \\
& d_{j 11}^{(n, 0)}(\delta)=\left(\frac{3}{(n(n+1)(n+2) j(j+1)}\right)^{\frac{1}{2}}\left[n(n+1)+1+\frac{d^{2}}{d \delta^{2}}\right]\left[\sin \delta d_{j 00}^{(n, 0)}(8)\right] \\
& (A-8) \tag{A-9}\\
& d_{j 10}^{(n, 1)}(\delta)=\left(\frac{n-1}{(n+2)(n+j+1)(n-j)}\right)^{\frac{1}{2}}\left[(n+2) \cos \delta+\sin \delta \frac{d}{d \delta}\right] d_{j 11}^{n-1,0}(8) \tag{A.10}\\
& d_{j 11}^{(n, 1)}(\delta)=[8 j(j+1)]^{-\frac{1}{2}}\left[3 e^{-i \delta}+e^{i \delta}+2 \sin \delta\left(\frac{d}{d \delta}-i n\right)\right] d_{j 10}^{(n, 1)}(\delta)
\end{align*}
$$

for the functions which contribute in NN scattering.

To derive Eqs. (46)-(49) one needs the following symmetry properties of boost functions of argument $\pi / 2$ which can be obtained from $(A-5),(A-7)-(A-10)$:

$$
\begin{align*}
a_{j s \lambda}^{(n, 0)}\left(\frac{\pi}{2}\right) & =(-1)^{n-j+s+\lambda} d_{j s \lambda}^{(n, 0)}\left(\frac{\pi}{2}\right) \tag{A-11}\\
a_{j 1 \lambda}^{(n, 1)}\left(\frac{\pi}{2}\right) & =(-1)^{n-j+\lambda} a_{j 1 \lambda}^{(n,-1)}\left(\frac{\pi}{2}\right) \\
& =(-1)^{n-j+\lambda} d_{j l-\lambda}^{(n, 1)}\left(\frac{\pi}{2}\right) . \tag{A-12}
\end{align*}
$$

These relations are valid for complex j and n with $n-j=k$ a nonnegative integer. These relations can be derived more simply by taking $\delta=\pi / 2$ in ($\mathrm{A}-2$) and ($\mathrm{A}-3$) and using Carlson's theorem to extend the result to complex j, n with $n-j=\kappa$.

For use in Appendix B we list the boost functions with $j=s$:

$$
\begin{aligned}
d_{000}^{(n, 0)}(\delta) & =(n+1)^{-1} C_{n}^{1}(\cos \delta) \\
d_{110}^{(n, 0)}(\delta) & =3[n(n+1)(n+2)]^{-1}\left\{n^{2} C_{n}^{1}(\cos \delta)-4 C_{n-2}^{2}(\cos \delta)\right] \\
d_{111}^{(n, 0)}(\delta) & =6\left[n(n+1)(n+2)^{-1} C_{n-1}^{2}(\cos \delta)\right. \\
& =d_{11-1}^{(n, 0)}(\delta) \\
& =d_{110}^{(n, 1)}(\delta)
\end{aligned}
$$

$$
\begin{equation*}
d_{111}^{(n, 1)}(\delta)+d_{11-1}^{(n, 1)}(\delta)=3[n(n+1)(n+2)]^{-1}\left\{n(n+1) c_{n}^{1}(\cos \delta)-2 c_{n-2}^{2}(\cos \delta)\right] \tag{A-13}
\end{equation*}
$$

These formulas can be derived from (A-5), (A-7)-(A-10) using recursion relations for the Gegenbauer functions.

APPENDIX B. COMPLEX O(4) ANGULAR MOMENTIUM

 In $\mathbb{N N}$ scattering Eq. (42) implies$$
\begin{align*}
& T_{S^{\prime} s \lambda}(\delta) \tag{B-1}\\
& T_{1 \lambda}(x)=\delta_{s^{\prime} s^{\prime}} T_{1 \lambda}(x) \tag{B-2}\\
& T_{1-\lambda}(x)
\end{align*}
$$

where $x=\cos 8$, so that there are three independent amplitudes of the form (40). O(3) invariance gives

$$
\begin{align*}
& T_{s \lambda+1}(x=1)=\langle\hat{e}(000) s \lambda| J_{-} \mathbb{T}+ \\
&+\hat{e}(000) s \lambda\rangle[s(s+1)-\lambda(\lambda+1)]^{-1} \tag{B-3}\\
&= T_{s \lambda}(1) \\
& \text { Using } J_{+} e^{-i \pi K_{3}}=-e^{-i \pi K_{3}} J_{+}, \text {the relation } \tag{B-4}\\
& T_{s \lambda+1}(-1)=-T_{s \lambda}(-1)
\end{align*}
$$

can be similarly obtained. Relations (B-3) and (B-4) which restrict to two the number of independent amplitudes at threshold in the s and u channels reflect the well-known fact that the scattering of two spin $1 / 2$ particles at threshold is characterized by two parameters, the scattering lengths.

The projection formulas (44) which define the $0(4)$ partial wave amplitudes for integer n can be written

$$
\begin{equation*}
T_{s}^{n M}=\sum_{\lambda=-s}^{s} \int_{-1}^{1} d x \sqrt{1-x^{2}} T_{x \lambda}(x) d_{s s \lambda}^{n, M}(\delta) \tag{B-5}
\end{equation*}
$$

Using an explicit expression for the NNT scattering amplitudes in terms of Fermi amplitudes, ${ }^{22}$ one can show that the amplitudes $T_{\mathrm{x} \lambda}$. ${ }^{2}$) are free of kinematical singularities. ${ }^{33}$ They therefore satisfy dispersion relations which may be written, ignoring subtractions, as

$$
\begin{equation*}
T_{x \lambda}(x)=\frac{1}{\pi} \int_{-1}^{\infty} d x^{\prime} \frac{A_{s \lambda^{\prime}}\left(x^{\prime}\right)}{x^{\prime}-x}+\frac{1}{\pi} \int_{x_{0}}^{\infty} d x^{\prime} \frac{B_{s \lambda^{\prime}}\left(x^{\prime}\right)}{x^{\prime}-x} \tag{B-6}
\end{equation*}
$$

where ${ }^{34}$

$$
x_{0}=\frac{2 m_{\pi}^{2}}{m_{N}^{2}}-1, \quad x=1-\frac{s}{2 m \mathbb{N}^{2}}=-1+\frac{u}{2 m \mathbb{N}^{2}}
$$

$A_{s \lambda}\left(x^{\prime}\right)$ is the s-channel, discontinuity and $B_{s \lambda}\left(x^{\prime}\right)$ is the u-channel discontinuity to which pion annihilation contributes.

We wish to obtain a continuation in n of $\mathrm{T}_{\mathrm{s}}^{\mathrm{nM}}$ by substituting the dispersion relation ($B-6$) in ($B-5$) and using arguments similar to those of Froissart and Gribov. This substitution leads to the result

$$
\begin{equation*}
\mathrm{T}_{\mathrm{s}}^{\mathrm{nM}}=\sum_{\lambda=-\mathrm{s}}^{-s}\left[-\int_{-\infty}^{-1} d x A_{s \lambda}(x) E_{s s \lambda}^{n M}(x)+\int_{x_{0}}^{\infty} d x B_{x \lambda}(x) E_{s s \lambda}^{n M}(x)\right] \tag{B-7}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{s^{\prime} s \lambda}^{n M}(x) \equiv \frac{1}{\pi} \int_{-1}^{1} d x^{\prime} \frac{\sqrt{1-x^{\prime}}}{x-x^{\prime}} a_{s^{\prime} s \lambda}^{n 0}\left(x^{\prime}\right) \tag{B-8}
\end{equation*}
$$

$\mathrm{E}_{\mathrm{SS} \lambda}^{\mathrm{nM}}(\mathrm{x})$ can be evaluated using $(\mathrm{A}-13)$ and the following formulae:

$$
\begin{align*}
& \frac{1}{\pi} \int_{-1}^{1} d x^{\prime} \sqrt{1-x^{\prime}} \tag{B-9}\\
& \frac{1}{\pi} \int_{-1}^{1} d x^{\prime} \sqrt{1-x^{\prime}} \frac{C^{2}}{x-x^{\prime}} \equiv D_{n}^{1}(x)=\left(x-\sqrt{x^{2}-1}\right)^{n+1} \\
& x-x^{\prime}=\frac{1}{4\left(x^{2}-1\right)}\left[n D_{n+1}^{1}(x)-(n+2) D_{n-1}^{1}(x)\right] \tag{B-10}\\
&+\left[\frac{1}{4} \frac{1}{x-1}-\frac{(-1)^{n}}{x+1}\right]
\end{align*}
$$

Using ($A-13$) and ($B-7$)-($B-10$) we can write explicitly

$$
\begin{align*}
T_{0}^{n 0}= & \frac{(-1)^{n}}{n+1} \int_{1}^{\infty} d x A_{00}(-x) D_{n}(x)+\frac{1}{n+1} \int_{x_{0}}^{\infty} d x B_{O O}(x) D_{n}(x) \quad(B-11) \tag{B-1.1}\\
T_{1}^{n 0}= & \frac{3}{n(n+1)(n+2)}(-1)^{n} \int_{1}^{\infty} \frac{d x}{x^{2}-1}\left[A_{10}(-x)\left[\left(x^{2}-1\right) n^{2} D_{n}^{1}(x)-\left[(n-1) D_{n}^{1}(x)-(n+1) D_{n-2}^{1}(x)\right]\right\}\right. \\
& +\frac{\left.A_{11}(-x)\left[n D_{n+1}^{1}(x)-(n+2) D_{n-1}^{1}(x)\right]\right]}{n(n+1)(n+2)} \int_{x_{0}}^{\infty} \frac{d x}{x^{2}-1}\left[B_{10}(x)\left\{\left(x^{2}-1\right) n^{2} D_{n}^{1}(x)-\left[(n-1) D_{n}^{1}(x)-(n+1) D_{n-2}^{1}(x)\right]\right\}\right. \\
& \left.+B_{11}(x)\left[n D_{n+1}^{1}(x)-(n+2) D_{n-1}^{1}(x)\right]\right]
\end{align*}
$$

$$
\begin{align*}
T_{1}^{n 1}= & \frac{3}{2 n(n+1)(n+2)}(-1)^{n} \int_{1}^{\infty} \frac{d x}{x^{2}-1}\left[-A_{10}(-x)\left(n D_{n+1}^{1}(x)-(n+2) D_{n-1}^{1}(x)\right\}\right. \\
& \left.+A_{11}(-x)\left\{\left(x^{2}-1\right) 2 n(n+1) D_{n}^{1}(x)-\left[(n-1) D_{n}^{1}(x)-(n+1) D_{n-2}^{1}(x)\right]\right\}\right] \\
& +\frac{3}{2 n(n+1)(n+2)} \int_{x_{0}}^{\infty} \frac{d x}{x^{2}-1}\left\{B_{10}(x)\left(n D_{n+1}^{1}\left(x^{\prime}\right)-(n+2) D_{n-1}^{1}\left(x^{\prime}\right)\right\}\right. \\
& \left.+B_{11}(x)\left\{2 n(n+1)\left(x^{2}-1\right) D_{n}^{1}(x)-\left[(n-1) D_{n}^{1}\left(x^{\prime}\right)-(n+1) D_{n-2}^{1}(x)\right]\right\}\right] \tag{B-13}
\end{align*}
$$

The (non-Carlsonian) contributions of the terms of the second bracket in ($B-10$) to ($B-12$) and ($B-13$) vanish because of the symmetry properties (B-3) and (B-4). The same symmetry properties, applied to the absorptive parts, ensure that the integrals ($B-12$) and ($B-13$) converge in spite of the singular factor $\left(x^{2}-1\right)^{-1}$. The role of the symmetry properties (B-3) and (B-4) in ensuring the success of the complex n continuation of the $T_{S}^{n M}$ is very interesting.

The $D_{n}^{1}(x)$ are entire functions of n, and Eqs. (B-11)-(B-1.3) therefore converge and define amplitudes $T_{S}^{n M}$ analytic in the halfplane $\operatorname{Re} \mathrm{n}>\mathbb{N}$, where \mathbb{N} is the number of subtractions necessary in the dispersion relations (B-6). To obtain amplitudes with reasonable asymptotic behavior in n, we replace the factor $(-1)^{n}$ by \pm, in this way defining amplitudes $T_{S}{ }^{n M t}$, of definite "Lorentz signature," which interpolate from even and odd integers, respectively.
-45-
We now investigate the asymptotic behavior in n of the $T_{s}^{n} \cdot M^{ \pm}$, with explicit reference to the amplitude $T_{0}^{n, 0 \pm}$ of simplest structure. Introducing the variables $x=\cosh \bar{\delta}$ and $x=\cos \delta$ we can write ($B-11$) as

$$
\begin{align*}
(n+1) T_{0}^{n O \pm}=\int_{0}^{\infty} d \bar{\delta} & \sinh \bar{\delta}\left[{ }^{+} A_{00}(-\cosh \bar{\delta})+B_{O O}(\cosh \bar{\delta})\right] e^{-\bar{\delta}(n+1)} \\
& +\int_{0}^{\hat{O}_{0}} d \delta \sin \delta B_{O O}(\cos \delta) e^{+i \delta(n+1)} \tag{B-14}
\end{align*}
$$

where $\varphi_{0}=\cos ^{-1} x_{0}$. We divide the interval of integration of the first term in (B-14) into two intervals (0,1) and ($1, \infty$). The infinite integral is bounded in magnitude by $D e^{-R e n}$ where D is a constant. The integral over (0,1) can be estimated very simply, letting $C^{ \pm}(\bar{\delta})= \pm \mathrm{A}_{00}(\cosh \bar{\delta})+\mathrm{B}_{00}(\cosh \bar{\delta})$, we obtain

$$
\begin{equation*}
\left|\int_{0}^{1} a \bar{\delta} \sinh \bar{\delta} C^{ \pm}(\bar{\delta}) e^{-\bar{\delta}(n+1)}\right| \leqq \frac{1}{(\operatorname{Re} n)^{2}} \max _{0 \leqq \delta \leqq 1}\left|C^{ \pm}(\delta)\right|\left[1+0\left(\frac{1}{\operatorname{Re} n}\right)\right] \tag{B-15}
\end{equation*}
$$

as $\operatorname{Ren} \rightarrow \infty$ and a constant bound as $\operatorname{Im} n \rightarrow \infty$.
The second term in ($B-14$) is only slightly more complicated.
We integrate by parts and easily obtain the estimate

$$
\begin{equation*}
\left|\int_{0}^{\varphi_{0}} d \delta \sin \delta B_{00}(\cos \delta) e^{+i \delta(n+1)}\right| \leqq \frac{A}{|n|}+\frac{B}{|n|} e^{-\varphi_{0} \operatorname{Im} n} \tag{B-16}
\end{equation*}
$$

where A and B are constants.

The angle φ_{O} is greater than $\pi / 2$ and we must multiply $T_{0}^{n O t}$ by the factor $\exp \left[-i\left(\varphi_{0}-\frac{\pi}{2}-\epsilon\right) n\right]$ where ϵ is positive infinitesimal in order to obtain amplitudes which satisfy the requirements of Carlson's theorem in the form pertaining to continuation from alternate integers. Similar asymptotic estimates can be derived for the amplitude $T_{1}^{n, 0 \pm}$ and $T_{1}^{n, 1 \pm}$.

By setting $n=j+\kappa$ and $T_{S}^{n, M \pm}=T_{S}^{j+\kappa, M \pm}$, it is a straightforward matter to use the asymptotic bounds just derived to show that the infinite series (46)-(49) converge uniformly in j and therefore define functions $f^{j \pm}$ analytic in $\operatorname{Re} j>N$ which coincide with the physical partial wave amplitudes at even and odd integral values of j. The amplitudes $\exp \left[-i\left(\varphi_{0}-\frac{\pi}{2}-\epsilon\right)\right] f^{j 士}$ satisfy the asymptotic requirements of Carlson's theorem and therefore coincide for all j with the conventional continuations away from even and odd integers with the same asymptotic properties. Amplitudes $a^{j \pm}(t)$ defined by Froissart-Gribov integrals fail to have the required asymptotic behavior near $t=0$, but closely related amplitudes do, 35 and one can show that

$$
\begin{equation*}
f^{j \pm}= \pm e^{-i \pi j} a^{j \pm}(t=0) \tag{B-17}
\end{equation*}
$$

Conditionally convergent expansions of the form of Eqs. (46)(49) can be written for the bound state pole terms subtracted from the amplitudes in the group theoretic analysis. The pole contributions can therefore be included in the final form of the $O(4)$ decompositions.

REFERENCES

I. D. Z. Freedmand and J. M. Wang, Phys. Rev. 153, 1596 (1967).
2. D. Z. Freedman, C. E. Jones and J. M. Wang (to be published).
3. D. V. Volkov and V. N. Gribov, Soviet Physics, JETP 17, 720 (1963).
4. M. Gell-Mann, E. Leader, XIII International Conference on HighEnergy Physics at Berkeley, 1966. Also see L. Durand, III, Phys. Rev. Letters 18, 58 (1967).
5. This has been proven in References 1 and 2 for spin zero amplitudes. But the question remains whether the analyticity argument based on unequal mass kinematics determines the spectrum uniquely when spins are present. Domokos (to be published) has emphasized the difficulty of formulating the symmetry on the mass shell in the general mass case.
6. For equal mass spin zero scattering analyticity arguments are mute on the question of Regge pole families, while the group theory predicts the existence of infinite families. In the nucleonnucleon case, the analyticity argument gives an important constraint, but the group theoretic results are far stronger as we shall see.
7. G. C. Wick, Phys. Rev. 96, 1124 (1954).
8. R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).
9. G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).
10. N. Nakanishi, Phys. Rev. 136, B1830 (1964).
11. For a list of references about abnormal solutions see
N. Nakanishi, Phys. Rev. 138, B1182 (1965).
12. S. Nussinov and J. Rosner, J. Math. Phys. I, 1670 (1966).
13. M. Toller, Nuovo Cimento 37, 631 (1965), University of Rome Reports 76 and 84.
14. A. Sciarrino and M. Toller, University of Rome Report 108.
15. M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959); G. C. Wick, Ann. Phys. 18, 65 (1962).
16. Y. Hara, Phys. Rev. 136, B507 (1964). L. L. Wang, Phys. Rev. 142, 1187 (1964). H. P. Stapp (to be published).
17. D. Hall and A. S. Wightman, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 31, No. 5 (1957). H. P. Stapp, Lawrence Radiation Laboratory Report UCRL-10843.
18. The choice of phase in the square root argument of the inverse sine is immaterial if it is adhered to consistently. See T. L. Trueman and G. C. Wick, Ann. Phys. 26, 322 (1964).
19. E. P. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, Academic Press, New York, 1959.
20. The normalization of these amplitudes is given by

$$
T_{\lambda_{1}} \lambda_{2} \lambda_{1} \lambda_{2}(\theta)=\sum(2 j+1) a_{\lambda \lambda^{\prime}}^{j}(\theta)\left\langle\lambda_{1} \lambda_{2}^{\prime}\right| T_{1}^{j}\left|\lambda_{1} \lambda_{2}\right\rangle .
$$

21. This is shown in Appendix B for $N \bar{N}$ scattering.
22. M. L. Goldberger, M. T. Grisaru, S. W. MacDowell and D. Y. Wong, Phys. Rev. 120, 2250 (1960).
23. The absolute value signs and complex conjugates in (46)-(49) refer specifically to integral j. It is a simple matter to remove them and define continuations of products of two ${\underset{j}{j s \lambda}}_{(j+\mu, M)}^{\left(\frac{\pi}{2}\right)}$ which are analytic in j.
24. As discussed earlier the $0(4)$ symmetry does not strictly apply to two-body unequal mass channels. However the pole structure in the unequal mass case would still exhibit the symmetry (see footnote 5), so that the quantum number M would be meaningful. even in unequal mass channels.
25. This argument should be compared to the conventional argument based on angular momentum conservation, crossing, and factorization which shows that the $\overline{N I N}$ residue β_{22} of any trajectory which couples to pseudoscalar meson pairs must vanish at $t=0$. See Reference 2.
26. Assignment to a type III family is possible, but unlikely since it requires the existence of high lying trajectories of the $f_{0}{ }^{j}$ and $\mathrm{f}_{22}^{\mathrm{j}}$ amplitudes.
27. L. Durand (Reference 4) has suggested an A_{1} conspiracy of this type.
28. A. Rosenfeld et al., Revs. Modern Phys. 39, I (1967).
29. We are grateful to Professor G. F. Chew for discussions on this point.
30. See F. Arbab and J. Dash (to be published). We are grateful to them for discussions about current phenomenological Regge analysis of NN scattering. Also see R. J. N. Phillips (to be published).
31. M. Bander and C. Itzykson, Rev. Modern Phys. 38, 330 (1966), (see Appendix). Our $\mathrm{a}_{j 00}^{\mathrm{nO}}(\delta)$ in this paper by an overall factor.
32. A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton (1957).
33. This result can be generalized to any pairwise equal mass process using the results of the second paper in Reference 16.
34. Actually because only $M=0 \quad s=0$ states couple to pseudoscalar pairs at $t=0$, only $T_{0 O}(x)$ will contain the $\pi \pi$ and $K \bar{K}$ branch points. The annihilation threshold for $T_{10}(x)$ and $\mathrm{T}_{11}(\mathrm{x})$ is actually

$$
x_{0}=\frac{9 m_{\pi}^{2}}{4 m_{N}^{2}}-1
$$

35. A. Q. Sarker, Nuovo Cimento 30, 1298 (1963).

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

$$
\theta
$$

