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Highlights

•

Using multiple reduced order models can significantly reduce the computational 

cost needed for global sensitivity analysis.

•

Validation set provides an evaluation of the performance of each reduced order 

model (ROM) as a basis for combining them.

•

Validation set provides an indication of the confidence in the accuracy of the final 

estimates from multiple ROMs.

•

Using the locally best ROM for combining multiple ROMs is able to screen out 

ROMs that have a large RMSE locally.

Abstract

Variance-based global sensitivity analysis (e.g., the Sobol’ sensitivity index) can be used

to identify the important parameters over the entire parameter space. However, one 

often cannot afford the computational costs of sampling-based approaches in 

combination with expensive high-fidelity forward models. Reduced-order models (ROM) 

can substantially accelerate calculation of these sensitivities. However, it is usually 

difficult to determine what type of ROM should be used and how accurately the ROM 

represents the high-fidelity model (HFM) results. In this paper, we propose to 

concurrently use multiple ROMs as a way to assess the robustness of the model-

reduction method. Two sets of HFM simulations are needed, one set for building ROMs 

and the other for validating ROMs. Our goal is to keep the total number of HFM 

simulations to a minimum. Ideally some of the HFM simulations in the first set can be 

shared by different ROMs. Based on validation results, the ROMs can be combined with
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different schemes. We demonstrate that we can achieve the goal by using four different 

ROMs and still considerably save computational time compared to using traditional 

HFM simulation for calculating sensitivity indices. We apply the approach to an example

problem of a large-scale geological carbon dioxide storage system, in which the 

objective is to calculate a sensitivity index to identify important parameters. For this 

problem, the locally best ROM provides better estimates than the weighted average 

from all ROMs.

Keywords

Multiple reduced-order models

Global sensitivity analysis

Geological CO2storage

1. Motivation

This work is motivated by the study of Wainwright et al. (2013), in which they performed 

a variance-based global sensitivity analyses (GSA) to calculate the Sobol’ index (Sobol, 

2001, Saltelli, 2002, Sobol et al., 2007) for performance evaluation of a large-scale 

geological carbon dioxide (CO2) storage system. The GSA study is part of the National 

Risk Assessment Partnership (NRAP) project, providing a basis to determine what 

parameters should be included in the risk assessment framework. The numerical model 

used to describe this system, referred to as the Kimberlina model, includes twelve 

discontinuous or continuous (stacked) formations, extending 84 km in the eastern 

direction and 112 km in the northern direction, and involves the simulation of multi-

phase flow processes and related thermodynamic complexities. To conduct variance-

based global sensitivity analyses using such a model, the main challenges include: (1) 

the simulation time is long, i.e., each forward simulation with a high-fidelity model (HFM)

takes about 8–12 h on a 12-processor computer; (2) simulations may not be able to 

finish for given set of modeling parameters, i.e., convergence problems are encountered

for sampled parameter combinations that may be numerically unstable; and (3) the 

number of uncertain parameters is large, leading to the curse of dimensionality problem.

To be able to calculate the global sensitivity coefficients, Wainwright et al. 

(2013) reduced the number of uncertain parameters to five and performed a total of 

2100 HFM simulations. This task would be very challenging if the computational 

resources were not in place. Moreover, one might question whether the sample size is 

sufficiently large even for the reduced parameter dimension. As a result, we are 

motivated to propose an approach that substantially reduces computational costs of that
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challenging problem, i.e., allows for the calculation of sensitivity indices with about 200 

HFM simulations (less than 10% of 2100).

Reduced-order models (ROMs) have been proposed to make such an analysis possible

for a computationally intensive forward model (e.g., Blatman and Sudret, 

2010, Oladyshkin et al., 2012, Pau et al., 2013a). There are many ROM methods, each 

with its advantages and disadvantages depending on the properties (e.g., linearity) of 

the model or function that is being approximated, and the context within which the ROM 

is employed (e.g., for an accurate forward prediction or for an inverse analysis). It is 

usually difficult to find one method that is consistently superior to the others. Often 

times, a good choice of a ROM relies on some prior knowledge of the system response 

surface (e.g., about its linearity or smoothness). This knowledge may not always exist a 

priori, which makes applications of ROM methods difficult. In addition, once a ROM 

method is chosen and applied, the question is how to determine its accuracy, i.e., how 

well it is able to represent the results that would be obtained with the HFM. In this paper,

we propose to use multiple ROMs to address these challenges, while keeping the 

number of HFM simulations to an affordable level. For our analysis we will require two 

sets of HFM simulations: one set for ROM construction and one set for ROM validation. 

We construct four different ROMs for the Kimberlina model. Based on the prediction 

error from the validation set, a combined model prediction can be obtained for any 

parameter values in parameter space. Finally we calculate Sobol’ sensitivity indices 

using the predictions from the combined ROM.

The paper has the following structure. We first briefly describe the four ROMs 

(Section 2) and the Kimberlina model (Section 3). Then we focus on the ROM 

construction, validation, and combination for prediction (Section 4). Finally, we evaluate 

the accuracy and efficiency of the proposed method by comparing the results to those 

obtained by Wainwright et al. (2013), and discuss the confidence in the results 

(Section 5).

2. Reduced-order modeling methods

ROM refers to a model that is a computationally efficient approximation of an HFM. 

There are many different ways to approximate a model. In the discipline of subsurface 

flow and transport simulation, a ROM is usually one of the following:

A model with some simplified or ignored physics, which would have been modeled as 

accurately as possible in an HFM. This method can be used to study or separate the 

behaviors caused by various processes. However, replacing a HFM with a simplified 
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model can inadvertently neglect important process in a complex system that may be 

important for some combinations of parameters not studied when the simplified model is

built.

A model that has a coarser mesh than the HFM but with all the known physics 

considered. The discrepancies between the coarse model and HFM must however be 

compensated either through an error model (Kaipio and Somersalo, 2004) or a map 

between the solutions of the coarse model and HFM (Pau et al., 2014).

A model obtained using projection-based model reduction techniques, which has been 

widely used in the field of computational fluid dynamics (e.g., Willcox and Peraire, 

2002). Last decades, the polynomial chaos expansion (PCE) in which a HFM is 

projected onto orthogonal or orthonormal polynomial bases (e.g., Xiu and Karniadakis, 

2002) has become popular. The intrusive version of it is less practical because it 

requires an effort in code modification. While mathematically vigorous for approximating 

partial different equations, these methods are powerful for nonlinear subsurface models.

A response surface model, which establishes an input–output relation between the 

studied parameters and outputs of interest using either an interpolation technique, a 

statistical regression method, or a learning method, such as artificial neural network. 

Model outputs are approximated at un-evaluated parameter points based on existing 

HFM runs at some sampled parameter points, referred to as snapshots. Examples 

include linear lookup tables, kriging, non-intrusive polynomial chaos expansion (PCE) 

(e.g., Oladyshkin et al., 2011, Oladyshkin and Nowak, 2012), Gaussian process 

regression (GPR) (e.g., Rasmussen and Williams, 2006) and radial basis functions 

(RBF) (e.g., Regis and Shoemaker, 2004, Regis and Shoemaker, 2005).

Within NRAP, look-up tables, multi-variate adaptive regression spline (MARS) (Harp et 

al., 2016, Jordan et al., 2015), multi-fidelity models (Bianchi et al., 2016) and ROMs 

based on field data (Zhang et al., 2016), were developed and used to predict the 

behavior of various components (i.e., model output for various parameter combinations 

in the parameter space). Our interest in this work is not to develop a ROM to predict a 

specific system behavior (e.g., pressure), but to estimate a statistical property that 

provides an integrative quantification of the model output (e.g., sensitivity). In this paper,

we will focus on response surface models since these models are usually non-intrusive, 

which means one does not have to re-write governing equations. They are relatively 

easy to implement compared to intrusive methods, and less dependent on the specific 

problem applied. The methods in the second and third categories are intrusive methods,

i.e., the governing equations are changed (for the first category the number of governing
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equation is different between a ROM and its HFM). Razavi et al. (2012)provided a 

comprehensive review on many of these methods.

This study addresses the important issue in practical applications of ROMs that the 

accuracy of a ROM cannot be easily assessed without comparison to the HFM results 

obtained during the prediction phase, which are not available in any practical application

involving ROMs. We propose to examine the robustness of the approximation by 

comparing multiple ROMs developed for the same HFM, and to estimate their relative 

accuracy based on results from a validation set. This approach may also reveal 

shortcomings or errors in the application of certain ROM methods; they will be 

discussed as they arise.

Multiple ROM methods have been applied in the field of optimization and been tested 

for a number of test functions. However, we have not seen them being used and tested 

for a real application. For example, Muller and Piche (2011)proposed to combine 

multiple surrogate models via Dempster–Shafer theory. The pignistic probabilities of the 

models are calculated based on four model characteristics: Correlation coefficients 

(CC), root mean squared errors (RMSE), maximal absolute errors (MAE) and median 

absolute deviation (MAD). They found applying model combinations becomes more 

favorable with increasing number of parameters for the tested functions.

The proposed approach is demonstrated for a variance-based sensitivity analysis (i.e., 

the evaluation of the Sobol’ index), based on the HFM analysis of Wainwright et al. 

(2013). The Sobol’ global sensitivity analysis method provides parameter rankings 

based on how much uncertainty in the final prediction can be attributed to each input 

parameter. Usually the large number of HFM evaluations necessary to perform this type

of sensitivity analysis becomes a major restriction for its application. In the current study

we substantially reduce the computational costs because of ROM methods employed to

calculate these sensitivities. Blatman and Sudret (2010) and Oladyshkin et al. 

(2012) also proposed to use ROM for global sensitivity analysis, but these studies did 

not address the issue of how to evaluate the estimate of the sensitivity indices if there is

no reference available, and therefore how to assess the appropriateness of the selected

ROMs in representing the HFM.

We propose to construct different ROMs at the same time for estimating Sobol’ indices 

and obtaining rankings of influential parameters. Then we compare these ROM-

predicted indices and associated parameter rankings. A composite result based on the 

individual ROM results and its variance is also calculated. The goal is to minimize the 
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total amount of HFM simulations by constructing the different ROMs using shared 

snapshots.

The following four ROM methods are considered: (1) Gaussian process regression 

(GPR), which is a Bayesian approach that models the response surface by a mean and 

a covariance function (Rasmussen and Williams, 2006, Pau et al., 2013a, Pau et al., 

2013b); (2) arbitrary polynomial chaos (aPC), which is a stochastic approach in which 

the model output is represented by a polynomial chaos expansion based on an arbitrary

parameter distribution without the need to re-write the governing equations (Oladyshkin 

and Nowak, 2012); (3) cut high-dimensional model representation (Cut-HDMR) (Rabitz 

et al., 1999, Li et al., 2001); and (4) random sampling high-dimensional model 

representation (RS-HDMR) (Li et al., 2002). The two HDMR methods establish input-

output relations by multivariate representations, assuming only relatively low-order 

correlations of the input variables will have an impact on the output, and high-order 

terms can be ignored (Rabitz et al., 1999, Li et al., 2001).

The reasons to select these four ROMs for calculating the Sobol’ index are the 

following: (1) aPC takes into account the parameter distribution for best estimation of 

mean stochastic characteristics and the Sobol’ index can be directly obtained from the 

statistical moments calculated by aPC; (2) the two HDMR methods are similar to aPC in

that they also use polynomial approximations (Lagrange interpolation for Cut-HDMR 

and orthogonal polynomial bases for RS-HDMR). However, the differences that exist 

between the methods may affect the ROM approximation and ultimate results; we 

investigate these effects; (3) GPR is an approach similar to kriging and can thus be 

considered an alternative to the other three ROM methods; (4) both GPR and RS-

HDMR can be constructed at no extra computational cost (i.e., they can use the same 

HFM snapshot simulations used to construct aPC and Cut-HDMR).

In the sections below we will briefly describe the basic theories behind the four ROM 

approaches. The complete formulation and detailed implementation of these ROM 

methods can be found in the references provided in the previous section.

2.1. Gaussian process regression (GPR)

GPR can be considered a generalized kriging method, except that the (input) 

variables p are not limited to spatial variables. The underlying assumption is that the 

model output f(p) can be characterized by a mean m(p) and a covariance function k(p, 
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p′). The GPR approximations of the model output are represented by g(p). The joint 

distribution of f(q) and g(p) is then

(1)[f(q)g(p)]∼N(m(q),[K(q,q)K(q,p)K(p,q)K(p,p)]),q∈SN

where Kij(q,q) = k(qi,qj), subscription i and j represent snapshots. SN represents the 

sample set containing N snapshots {q1,…, qN} for ROM construction. For any given p, 

the GPR procedure gives the expected value and variance of the approximating 

function g(p):

(2)E[g(p)]=K(p,q)K(q,q)−1f(q)+m(q),q∈SN

(3)σg2[g(p)]=K(p,p)−K(p,q)K(q,q)−1K(p,q),q∈SN

The use of a variance allows us to estimate the uncertainty due to the ROM 

approximation. Prior information of the response surface will be helpful in the selection 

of an appropriate covariance function. In addition, for the squared exponential 

covariance function we are using, one needs to determine three 

hyperparameters σf
2, l and σn

2 in the formulation of a Gaussian process, representing the

variance of fi(q), the characteristic length of the parameters, and the noise variance 

of fi(q), where q∊SN. These hyperparameters are obtained by solving an optimization 

problem that maximizes the marginal Gaussian likelihood function (the likelihood that 

the chosen covariance function is a good approximation of the true covariance function).

The parameter distribution is not used to build GPR ROM, which means no prior 

knowledge on such distribution is needed. Since GPR can utilize any arbitrary set of 

parameters, we use all samples in the training set to construct a ROM based on GPR.

2.2. Arbitrary polynomial chaos (aPC)

The polynomial chaos expansion (PCE) method was introduced by Wiener (1938). The 

basic idea of PCE is to project the model response surface onto an orthogonal basis in 

the parameter space, which is an efficient polynomial projection to include nonlinear 

effects in the stochastic analyses. Among various techniques, we are interested in the 

non-intrusive approach, which does not require us to manipulate the PDEs of the 

forward model. The classical PCE method relies on normally distributed parameters to 

obtain an optimal solution. In recent years, the classical PCE has been extended to 

generalized polynomial chaos (gPC) (Xiu and Karniadakis, 2002) to take into account a 

number of theoretical statistical distributions, such as gamma, beta and uniform 

distributions, and arbitrary polynomial chaos (aPC) to handle parameters with arbitrary 

distributions (Oladyshkin and Nowak, 2012). If an arbitrary polynomial basis is used 

(Oladyshkin et al., 2011), the input parameters can have arbitrary distributions. The 

distribution format can be either discrete, continuous, or discretized continuous, or 
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specified either through some statistical moments or an analytical expression of the 

density function.

Based on polynomial chaos theory, the model output can be approximated as

(4)a(p)=∑i=1Nciϕi(p)

Here the function ϕi is the multi-variate orthogonal polynomial basis for the vector p of 

input parameters, and ci are the expansion coefficients that relate model outputs to 

model inputs. The minimum number of terms N depends on the order of the 

expansion d (i.e., the polynomial order) and the number of parameters n, as shown in 

Eq. (5):

(5)N=(d+n)!(d!n!)

Once the orthogonal bases are obtained for arbitrary distributions (Oladyshkin and 

Nowak, 2012), the remaining problem is to find the N unknown coefficients ci(i = 1,

…, N). This requires at least N equations, which means at least N parameter samples 

and N HFM simulations are needed. A sampling method named collocation method 

demands only the number N of HFM simulations and the ROM solutions are exact at 

the sampling points. The optimal choice of sampling (collocation) points is taken as the 

roots of the polynomial of one degree higher than the order used in the chaos 

expansion according to Villadsen and Michelsen (1978).However, if the number of HFM 

simulations is more than N (the number of equations is more than the number of 

unknowns), a least-squares method can be used to determine the coefficients.

aPC has mainly been applied to uncertainty quantification because (1) the locations of 

collocation points are chosen based on the parameter distribution for best estimation of 

mean stochastic characteristics, and (2) the statistical moments of model outputs as 

well as the Sobol’ index can be calculated analytically. In this work, we will take 

advantage of this analytical form and use it to test whether the sample size for 

calculating the Sobol’ index in our application is large enough.

2.3. High-dimensional model representation (HDMR)

The HDMR method is based on the assumption that a multivariate function representing

a multidimensional physics output can be represented by contributions from 

independent individual input and correlated contributions from multiple input 

variables/parameters (Rabitz et al., 1999):

(6)f(p)=f0+∑i=1nfi(pi)+∑1≤i<j≤nnfij(pi,pj)+...+f1,2,...n(p1,p2,...,pn)

Here, p is the input vector containing n parameters, and f0 (i.e., the zeroth-order term) is 

a constant representing the mean response of f(p). The first-order terms (i.e, fi(pi)) 

denote the independent contribution to f(p) by the ith input variable acting alone, and 
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higher-order terms reflect correlated contributions from multiple input variables (i.e., the 

second-order term fij(pi,pj) represents the correlated contribution from variable pi and pj, 

and so on). The last term contains the residual nth order correlated contribution of all 

input variables. Experience shows that expansion to second order and ignoring higher-

order terms can often provide a good approximation (Li et al., 2001, Ziehn and Tomlin, 

2008). Notice the expansion order here in HDMR is different than the polynomial order 

in aPC. For example, the first-order term fi(pi) in HDMR may contain higher-order 

polynomials.Two typical HDMR expansions are Cut-HDMR and random-sampling 

HDMR (RS-HDMR) depending on the expression of each term on the right-hand side of 

Eq. (6). In Cut-HDMR, a reference point p¯=(p¯1,...,p¯n) is chosen in the n-dimensional 

input variable p space, and the component functions with respect to reference 

point p¯ have the following forms

(7)f0=f(p¯)fi(pi)=f(pi,p¯i)−f0fij(pi,pj)=f(pi,pj,p¯ij)−fi(pi)−fj(pj)−f0...

Here the notation f(pi,p¯i)=(p¯1,...,p¯i−1,pi,p¯i+1,...,p¯n) means that all input variables are 

at their reference point except pi.

The construction of a Cut-HDMR includes three steps: (1) determine the expansion 

order and truncate the higher-order terms; (2) select sample points for each input 

variable to evaluate the function terms using Eq. (7); (3) select an interpolation scheme 

(e.g., Lagrange interpolation) to approximate the component function values at other 

points. The Lagrange interpolation scheme results in a polynomial approximation of 

each component function. If each input variable is sampled at s different values, the 

total number of HFM simulations N needed for a Cut-HDMR can be calculated using 

Eq. (8), where d is the expansion order:

(8)N=∑i=0dn!(n−i)!i!(s−1)i

In our study, the sample points for each input variable are chosen as the roots of 

Legendre polynomials mapped to the parameter ranges (Liu, 2013). The Sobol’ indices 

can be approximated by integrating the Cut-HDMR ROM with Gauss–Legendre 

quadrature with the above-mentioned sample points as abscissas.The second type of 

the expansion is RS-HDMR. It is also referred to as ANOVA-HDMR (aHDMR). Similar to

the statistical tool ANOVA (analysis of the variance), each component function in the 

expansion is a random quantity uniquely contributing to the overall variance of the 

output, taking an integral expression:

(9)f0=∫Knf(p)dpfi(pi)=∫Kn−1f(p)dpi−f0fij(pi,pj)=∫Kn−2f(p)dpij−fi(pi)−fj(pj)−f0...

Here dpi stands for the product dp1dp2...dpn without dpi. This expansion is mainly used 

for the purpose of statistical analysis (Rabitz et al., 1999). To reduce the computational 

burden in approximating integrals, Alis and Rabitz (2001)suggest approximating each 
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component function by an orthogonal polynomial series expansion. The coefficients of 

the expansion can then be approximated by selecting a single set of random samples 

and running the HFM at the selected samples. Similar to aPC, the Sobol’ sensitivity 

indices can be readily extracted from the expansion coefficients, as a result of the 

orthogonality of the polynomial bases employed. The sample size N is typical chosen 

based on consideration of affordable computational cost and approximation accuracy, 

i.e., this size N is determined by the user.

Depending on the details of the implementation of HDMR, both HDMR methods can be 

polynomial approximations as is aPC. However, the main differences are that (1) the 

polynomial order for aPC is determined by the user, wheras the polynomial order for 

Cut-HDMR is determined by s (number of samples for each parameter) if the Lagrange 

interpolation is used, and the polynomial order for RS-HDMR is also determined by the 

user; (2) the total number of snapshots needed is different, which depends on 

polynomial order in aPC; the expansion order and sin Cut-HDMR. There is no strict 

requirement for RS-HDMR; and (3) the actual snapshot locations, as well as the choice 

of the orthogonal bases and expansion terms are different: they are determined by the 

underlying parameter distribution in aPC; they generally are uniformly distributed in Cut-

HDMR; they could be anywhere in the parameter space in RS-HDMR.

3. The Kimberlina model

The Kimberlina model (Zhou et al., 2011, Birkholzer et al., 2011, Wainwright et al., 2013)

was developed to simulate a hypothetical geological CO2 storage project in the Southern

San Joaquin Basin in California, USA. The geological model was based on actual field 

data from many oil wells in that region, reflecting realistic geological CO2 storage 

reservoir conditions. The numerical model domain shown in Fig. 2 is about 84 km by 

112 km in each direction. The storage formation, the Vedder formation, is about 400 m 

thick and at about 2750 m below the ground surface. The formation dips at an average 

slope of 7° from a shallow outcrop area located along the eastern model boundary. The 

Vedder sand is quite permeable, providing sufficient injectivity. The overlying Temblor–

Freeman Shale with a thickness of 200 m is considered a suitable caprock for 

stratigraphic containment of the injected supercritical CO2. The hypothetical scenario is 

that CO2 is to be injected at the center of the model (the center of the spider net grid) at 

a rate of 5 M ton/yr for 50 years. The 3D numerical mesh of the high-fidelity model 

(HFM) contains twelve geological formations, represented by about 65,000 elements. 

The refined mesh in the center of the domain reflects expectation of multiphase 

processes and strong pressure buildup due to CO2 injection. The HFM simulation is 
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performed using the massively parallel multiphase simulator TOUGH2-MP (Zhang et al.,

2008) with the ECO2N module to simulate injection and migration of supercritical CO2 in

the brine reservoir. The ECO2N module describes the thermodynamics and 

thermophysical properties of H2O NaCl CO2 mixtures, including phase transitions 

and dissolutions (Pruess, 2005). The period to be simulated consists of 50 years of 

injection and 150 years of post-injection. A typical HFM simulation takes about 8–12 h 

on a 12-processor computer.

In this paper, we use the Kimberlina model of Wainwright et al. (2013) as the high-

fidelity model. Examining modeling errors of that model, specifically those caused by the

assumption that geological properties are homogeneous within a given layer, is outside 

the scope of this study. Based on the intended use of the model, different outputs are 

studied as the performance measure of interest. For example, plume size is likely a 

relevant metric, so is the overpressure zone above a critical pressure. We consider four 

outputs of interest: SA, SB, PA and PBrepresenting the CO2 saturation (S) and pressure 

increase (P) at two selected locations (Fig. 1b), Point A (near field) and Point B (fault 

location), which are 1.8 km and 7.3 km updip from the injection location, respectively. 

They are considered as point-based performance measures of CO2 plume and pressure

behavior due to CO2 injection. We include both point pressure and saturation outputs 

because pressure is representative of relatively linear, smooth (over time) behavior, and

point saturation, which is representative of a very non-linear (almost binary) output. 

Since our goal is to study how ROMs’ abilities to approximate outputs of different 

smoothness affect the determination of global sensitivities indices, we omit other 

outputs that were studied in Wainwright et al. (2013). Five parameters are considered 

uncertain: reservoir horizontal permeability (Res. kh); reservoir porosity (Res. φ); 

reservoir compressibility (Res. βp); reservoir van Genuchten m parameter (Res. m); and 

caprock permeability (Caprock kh). The two permeabilities follow a lognormal 

distribution, while other parameters are normally distributed. As mentioned earlier, we 

want to test the accuracy of our approach by comparing results to the ones obtained 

by Wainwright et al. (2013). The parameter ranges are taken from Wainwright et al. 

(2013). Wainwright et al. (2013) discussed two variance-based sensitivity measures: 

The Sobol’ sensitivity index to identify the influential parameters, and the total sensitivity

index to identify unimportant parameters. The computational costs of the two are similar.

We will only discuss the Sobol’ sensitivity index.
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1. Download high-res image     (1MB)

2. Download full-size image

Fig. 1. Plan view (Wainwright et al., 2013) of (a) the Vedder formation (green area) with 
faults (red lines), and (b) the model domain with numerical grid. In (a), blue polygons 
show hydrocarbon fields in the region with data used for the development of geologic 
model and spatial distribution of rock properties. In (b), the red lines delineate the faults 
that are explicitly represented in the model, the blue point is the injection location, and 
the red dots (Points A and B) are used for point-based performance measures. (For 
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 2. The root mean square error (RMSE) from the comparison to validation set 1 for 
(a) for PA; (b) for PB; (c) for SA; and (d) for SB.

The Sobol’ sensitivity index Si, also referred to as the first-order sensitivity index, 

measures how much uncertainty (variation) in the output f(p) comes from each input 

parameter pi. For consistency, we use the same algorithm and the same realizations 

used by Wainwright et al. (2013) to calculate Si, which is based on an algorithm 

developed by Saltelli et al. (2006) and modified by Glen and Isaacs (2012). The number 

of simulations required by this algorithm is m(n + 2), where mis the number of the 

randomly generated sets of parameters, and n is the number of parameters. Wainwright

et al. (2013) set m = 300 and n = 5, resulting in 2100 HFM simulations. The question 

remains if m = 300 is sufficient since no convergence study (i.e., calculating the 

sensitivity index with an increasing number of realizations until the results are stable) 

was performed.

4. ROM-based analysis

4.1. ROM construction

Our goal of using a ROM to calculate the Sobol’ sensitivity index Si is to reduce the 

computational cost by at least a factor of 10, which means the number of HFM 

simulations for all the ROMs should be less than 210. We make the following decisions:

1.

We use a second-order aPC, which needs 21 HFM simulations according to 

Eq. (5). The work of Oladyshkin et al., 2011, Oladyshkin et al., 2012indicates that

sufficiently accurate results can be obtained with a second-order aPC.

2.

We use the second-order expansion of the Cut-HDMR method since it is typically

sufficient for most problems (Rabitz et al., 1999, Li et al., 2001). In addition, s = 3 

samples (mapped Legendre polynomial roots) is used for each parameter to limit 

the number of HFM simulations to 51.

3.

The total number of HFM runs needed to construct aPC and Cut-HDMR is thus 

72. Results from these 72 HFM simulations are then used to construct both GPR 

and RS-HDMR, i.e., these two ROMs are built at no extra HFM simulation costs.

4.

GPR and RS-HDMR are constructed based on the same 72 HFM snapshots.
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5.

The next step is to validate the four ROMs.

4.2. ROM validation

The goal of the validation set is to investigate how well each ROM can estimate the 

output of interest over the entire parameter range. Therefore, the parameter samples 

should be as uniformly distributed as possible over the entire range. For this purpose, 

we generate a Sobol’ sequence (Sobol, 1967) containing 100 HFM realizations, with the

first 50 realizations forming validation set 1, and all 100 realizations forming validation 

set 2. The Sobol’ sequence provides the best uniform distribution in the multi-

dimensional unit hypercube for a given number of realizations. Comparing errors from 

the two validation sets can indicate if a sample size of 50 is sufficient for validation 

purposes.

We will use the root mean square error (RMSE) at different times to compare the ROM 

predictions relatively the HFM (set 2 is shown in Fig. 2). The RMSEs of the ROMs have 

similar temporal characteristics. Figure 4 of Wainwright et al. (2013)shows the time 

evolution of pressure and saturation at points A and B for their reference parameter set. 

Figure 5 of Wainwright et al. (2013) is a set of Monte Carlo simulation results showing 

the time evolution of the pressure and saturation at points A and B, which can be used 

to understand these RMSEs. For pressure estimation, the error tends to be highest 

around year 50, corresponding to the highest pressure build-up at the end of injection. 

For SA predictions, two main increases in RMSEs from the ROMs correspond to a 

sudden saturation increase at early time between 20 and 30 years, and a decrease 

around 70 years in most realizations. The actual location of relatively large errors varies 

for different ROMs, because the time when SA increases or decreases depends on the 

ROM’s accuracy with which it represents the system state at the particular realization of 

the validation parameter set. This behavior can be attributed to the fact that in general 

ROMs cannot capture sudden output changes very well, as is the case for SA. However, 

the RMSE curve for SB predictions is smoother than for SApredictions due to the fact that

Point B is much farther away. For all the ROMs, the largest error over time is higher at 

Point A than at Point B. This is because Point A is closer to the injection point, which 

leads to a larger magnitude in both pressure and saturation changes over the simulation

period.

Amongst the four different ROMs, GPR and Cut-HDMR have the smallest RMSE, and 

their predictions are almost indistinguishable. Surprisingly, RS-HDMR performs poorly 

for pressure and reasonably well for saturation. This indicates that RS-HDMR has a 
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unique advantage in situations where the response surface is not smooth. In this 

analysis, aPC performs poorly compared to GPR and Cut-HDMR. In particular, aPC has

large errors in saturation at a few (temporal) locations. However, the large error is likely 

due to a mismatch between the distribution of the training sample set and the validation 

sample set. Recall that the HFM simulations used to build aPC are selected based on 

the parameter distribution, i.e., more samples are taken from the region with higher 

probability density, compared to the validation set, which is sampled from a uniform 

distribution. This leads to relatively large errors from realizations in the validation set 

that are far outside the snapshot range (recall that only 21 snapshots were taken in a 

five-dimensional parameter space to construct aPC).

If our final goal were to compare the four ROMs, the comparison would not have been 

fair because the number of HFM runs were different for different ROMs. However, such 

a comparison is just an intermediate step for validating ROMs and it does not serve to 

select the best ROM. For aPC and Cut-HDMR, there is an optimal way of choosing the 

samples used to construct the ROM; it depends on the number of parameters and 

polynomial orders, resulting in a different number of HFM runs used to construct these 

ROMs. On the other hand, GPR and RS-HDMR can handle any given set of samples, 

allowing us to just reuse the samples used by aPC and Cut-HDMR. Thus, we optimally 

created 4 different ROMs using the minimal total number of HFM runs.

There is not much difference in the RMSE obtained for validation sets 1 and 2, 

indicating that a Sobol’ sequence of 50 realizations is sufficient for validation purposes 

involving five parameters. Nonetheless, for combining individual ROMs (see next 

section), we use the results from validation set 2, which contains 100 realizations.

4.3. ROM combination

Even though on average GPR and Cut-HDMR estimates have smaller errors than RS-

HDMR and aPC estimates, each ROM has the potential to provide better estimates than

its competitors depending on (1) the output of interest; (2) the prediction time; (3) the 

sampled parameter set. As a result, we decide to investigate two methods to estimate 

predictions using a combination of all four ROMs: (1) use a weighted average to 

combine the predictions from all four ROMs with weights computed from

(10)wi=1RMSEi∑i=141RMSEi

where wi is the weight (a function of output of interest and time), and i is an index 

indicating estimates from aPC, GPR, Cut-HDMR and RS-HDMR; and (2) use the ROM 



estimate that gives the best local estimate, i.e., for each prediction, find the closest 

realization (in parameter space) from the validation set, check which ROM produces the

least error for an output of interest at a particular time, then use that ROM for this 

particular prediction of the output of interest at this time.

Combining ROMs using the weighted method requires a total number of weights that is 

equal to the product of the number of outputs (i.e., PA, PB, SA, SB) times the number of 

prediction times, i.e., in our study 4 × 32 = 128.

Fig. 2 also shows the RMSE for the prediction of 100 realizations in the validation set 

using both the weighted average ROMs and the locally best ROM. As expected, the 

error from the locally best ROM is smallest compared to individual ROM predictions and

the weighted average ROM predictions. For this particular problem, we have also tested

different weighting schemes for calculating wi when computing the RMSE of the 

weighted average ROM and found the results insensitive to the weighting scheme used.

This is because both GPR and Cut-HDMR have similar RMSEs that are either 

significantly smaller than or the same as those of other ROMs, and thus similar larger 

weights or same weights (compared to other ROMs) no matter what schemes are used.

4.4. ROM-based Sobol’ sensitivity index

The estimated Si from each individual ROM is plotted in Fig. 3, Fig. 4, Fig. 5, Fig. 6. For 

comparison purpose, Fig. 9 shows the Sobol’ indices calculated based on the 2100 

HFM simulation results from Wainwright et al. (2013). Because the pressure propagates

much faster than the migration of the CO2, the pressure at Points A and B is sensitive to

changes in the parameters almost immediately after CO2 injection starts, while it takes 

some time for the sensitivity of saturation to appear at the more distant Point B. 

Pressure is primarily sensitive to only the permeability kh over the entire simulation 

period, while saturation has significantly more complex temporal dependence on time.
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Fig. 3. The Sobol’ sensitivity index Si calculated using GRP (a) for PA; (b) for PB; (c) 
for SA; and (d) for SB.
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Fig. 4. The Sobol’ sensitivity index Si calculated using the aPC (a) for PA; (b) for PB; (c) 
for SA; and (d) for SB.
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Fig. 5. The Sobol’ index Si calculated using the Cut-HDMR (a) for PA; (b) for PB; (c) for SA;
and (d) for SB.
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Fig. 6. The Sobol’ index Si calculated using the RS-HDMR (a) for PA; (b) for PB; (c) for SA;
and (d) for SB.
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Compared to Fig. 9, all ROMs are able to identify the influential parameters correctly at 

low computational costs. This suggests ROMs with larger RMSE, i.e., aPC and RS-

HDMR, are useful in statistical applications, such as uncertainty quantification; 

conversely, they may not be applicable in areas that need accurate individual 

predictions, such as in inversions or other optimization problems. Large errors for 

isolated parameter sets will only have a small effect on the overall statistical results 

evaluated over the entire parameter space.

However, ROMs with smaller RMSE, as determined from the previous section, are able 

to capture the temporal changes in Si more accurately. GPR and Cut-HDMR both result 

in very similar Si estimates compared to those determined using HFM. For aPC, Si starts

to be non-zero at about 50 years, while the other three ROMs calculate non-zero 

sensitivities after approximately 30 years. The later appearance of Si is due to the fact 

that none of the 21 training HFMs used to build the aPC ROM results in a CO2 plume 

arrival earlier than 50 years. However, Fig. 6shows that despite the large RMSE of the 

pressure predicted by RS-HDMR, the negative effects on the computed Si is small and 

limited to parameters that are non-influential. Thus, while ROMs with small RMSE 

generally estimate Si more accurately, ROMs with larger RMSE can still lead to a 

relatively good estimate of Si.

Fig. 7, Fig. 8 are the Sobol’ indices calculated from the 2100 predictions obtained using 

the weighted average ROM and locally best ROM, respectively. Since GPR and Cut-

HDMR have smaller RMSE, and therefore larger weights in the weighted average ROM,

the Si estimates using the weighted average ROM are expected to be similar to the 

ones from GPR and Cut-HDMR. This is confirmed by Figs. 3, 5 and 7. The locally best 

ROM best approximates the temporal variation of Siobtained by the HFM. This can be 

clearly seen during the periods when the CO2front arrives at Point B.
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Fig. 7. The Sobol’ sensitivity index Si calculated using the predictions from the weighted 
average ROM (a) for PA; (b) for PB; (c) for SA; and (d) for SB.
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Fig. 8. The Sobol’ sensitivity index Si calculated using the predictions from the best local
ROM (a) for PA; (b) for PB; (c) for SA; and (d) for SB.
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Fig. 9. The Sobol’ sensitivity index Si calculated using the HFM (Wainwright et al., 2013)
(a) for PA; (b) for PB; (c) for SA; and (d) for SB. The thick lines are the estimated sensitivity 
lines, and the thin lines represent their confidence intervals.

In addition to sample-estimated values, aPC has the advantage that the analytical form 

of Sobol’s indices can be obtained easily (Oladyshkin et al., 2012). We compare the 

Sobol’s indices directly from the aPC analytical form and those from the analysis of aPC

prediction results of 2100 (m = 300) realizations. They are similar (the same main 

influential parameters are identified) with negligible differences, suggesting that m = 300

is sufficient.

5. Summary and conclusion

Although the Sobol’ indices of Wainwright et al. (2013) can be used to verify the 

proposed method in our example, such “true” results do not exist in real applications. 
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We have showed that ROMs with small RMSE will typically lead to better estimates 

of Si, although the converse is not necessarily true. However, small RMSE for even a 

small validation sample set increases our confidence in the Si computed by a ROM. 

Based on this observation and Fig. 2, it is clear that results from the locally best ROM 

(Fig. 8) are considered to be the best estimates. The locally best ROM also provides 

better estimates than each individual ROM, as well as the weighted average ROM. With

the locally best ROM, the total computational effort is associated with running 

21 + 72 + 100 = 193 HFM realizations, compared to 2100 HFM simulations needed 

by Wainwright et al. (2013); we achieve 90% reduction in computational cost.

This work was motivated by the difficulty in performing global sensitivity analyses using 

time-consuming HFM simulations, and the difficulty in evaluating ROM performance if it 

were used for such an analysis. We propose to use multiple ROMs to approximate the 

HFM simulation results while limiting the total number of HFM simulations needed to 

build those ROMs. We reach the following conclusions for the proposed method:

1.

The computational effort is significantly reduced (in our case, it is reduced by 

more than 90%) while obtaining sufficiently accurate estimates of the Sobol 

sensitivity indices. The HFM simulations include two sets: one set for building 

ROMs, and one set for ROM validation. The choice that two of the four ROMs 

can be created using the same HFM simulations already available from the 

construction of the other two ROMs helps reduce the number of HFM simulations

needed for multiple ROMs.

2.

The use of a validation set provides (1) an evaluation of the performance of each 

ROM, and therefore a basis for developing a combined ROM that is either a 

weighted average of all four ROMs or the locally best ROM; and (2) an indication 

of the confidence one might have in the accuracy of the final estimates.

3.

The efficiency of the combined ROM (either weighted average ROM or the locally

best ROM) allows one to conduct a convergence study of the statistical estimates

or global sensitivity analysis, which further increases our confidence in these 

estimates.

4.

https://www.sciencedirect.com/science/article/pii/S1750583616301086?via%3Dihub#bib0155
https://www.sciencedirect.com/science/article/pii/S1750583616301086?via%3Dihub#fig0040
https://www.sciencedirect.com/science/article/pii/S1750583616301086?via%3Dihub#fig0010


Compared to the weighted average ROM, using the locally best ROM to combine

ROMs has the advantage to weigh in the ROMs that perform well at some point 

in the parameter space, but screen out ROMs that have a large RMSE at this 

point.

5.

The proposed method provides a powerful tool in uncertainty quantifications for 

large models within a risk assessment framework.
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