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Abstract

The preliminary STAR data for proton cumulants for central collisions at
√

s = 7.7 GeV are consistent with a two-
component proton multiplicity distribution. We show that this two-component distribution is statistics friendly in that
factorial cumulants of surprisingly high orders may be extracted with a relatively small number of events. As a conse-
quence the two-component model can be tested and verified right now with the presently available STAR data from the
first phase of the RHIC beam energy scan.
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1. Introduction

One of the central question of strong interaction research is the possible existence of a first-order phase
transition accompanied by a critical point. This phase transition, if it exists, is expected to be located in
regions of high net-baryon density. Parts of the high density region of the QCD phase diagram is accessible
to experiment through heavy ion collisions at not too high energy. Since the location of the phase transition
and critical point is not known from first principle, the strategy to search for a phase transition is to scan the
high density region of the phase diagram by measuring relevant observables for a whole range of collision
energies. This is one of the main motivations of the RHIC beam energy scan (BES), the second phase of
which (BES-II) is presently underway (for a recent review on this topic, see [1]). One of the more promis-
ing observables for the experimental detection of the QCD phase transition are fluctuations of conserved
charges, most prominently those of the net-baryon number. Near the critical point (and the phase transition)
these fluctuations are predicted to be enhanced [2] which would result in a non-monotonic behavior of the
net baryon cumulants as a function of the collision energy. During the first phase of the RHIC beam energy
scan (BES-I) the STAR collaboration has measured the cumulants of the (net)-proton distribution for a wide
range of energies [3, 4]. For the most central collisions, these data show an interesting, non-monotonic be-
havior in the ratio of the fourth order over the second order cumulant κ4/κ2. In addition, this ratio increases to
rather large values at the lowest energy of

√
s = 7.7 GeV. A further analysis of the STAR data for the lowest

energies showed that they are consistent with very strong, and positive, four-proton as well as sizable, and
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Fig. 1. Histogram (normalized to unity) of factorial cumulant, C(i)
n , fluctuating from “experiment” to “experiment”, divided by a known

(evaluated analytically) value, Cn, based on 150k events sampled from (a) a binomial distribution (B = 350, p = 0.114, 〈N〉 = pB ≈ 40)
and (b) the distribution given by Eq. (1).

negative, three-proton correlations, which both increase in magnitude with decreasing energy [5]. While a
simple cluster model can describe the magnitude of these correlations [6] it fails to get the signs right. In [7]
it was suggested that the observed correlations are consistent with a two-component or “bi-modal” proton
multiplicity distribution consisting of a dominant binomial distribution with mean

〈
Nlarge

〉
' 40 and another

small component with strength α ' 0.3% and mean 〈Nsmall〉 ' 25. Interestingly, such a distribution is akin
to a multiplicity distribution one encounters for a sufficiently small system in the vicinity of a first order
phase transition [7]. Clearly, additional measurements and analysis will be needed to verify this hypothesis.
Here we will argue that this hypothesis can be tested right know with the presently available STAR data.

2. Two-component model as a statistics friendly distribution

The two-component distribution, which in Ref. [7] was found to reproduce the preliminary measurement
of the proton cumulants by STAR for the most central collisions at 7.7 GeV [3], is

P(N) = (1 − α)P(a)(N) + αP(b)(N), (1)

where α ≈ 0.0033. The distribution P(a)(N) is given by a binomial (Nmax = B = 350, p ≈ 0.1144) and
P(b)(N) is a Poissonian (〈N(b)〉 = 25.3525). The distribution P(N) is depicted as the red points in the right
panel of Fig. 2. The four cumulants measured by STAR obviously do not sufficiently constrain this model,
which in itself has three free parameters. However, as pointed out in [7], this distribution predicts a clear
pattern for its factorial cumulants1

Cn+1

Cn
' −17, (2)

or, in other words, from order to order the factorial cumulants alternate in sign and increase in magnitude
by a factor of ∼ 17. This prediction of the two-component model can and should be tested by extracting
higher order factorial cumulants from the data. And, as we shall elaborate below, if the factorial cumulants
up to order 7 or 8 also agree with the model prediction it is very likely that we deal with a two-component
distribution. If so, one may indeed have a system with two “phases” which can be further explored by
measuring flow and other observables, as discussed in more detail in [7].

The task of extracting higher order factorial cumulants is helped considerably by the fact that the above
distribution, Eq. (1), is statistics friendly [8]. By this we mean that a surprisingly small number of events

1We note that STAR uses Cn to denote cumulants, which we denote them by κn.
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Fig. 2. Left panel: The relative error, ∆Cn/Cn, of the factorial cumulants for various proton multiplicity distributions based on 150k
events. The magenta line represents the results if we assume that the data are not efficiency corrected. Right panel: Various orders of
the Poisson-Charlier expansion of the multiplicity distribution compared with that of the two-component model, Eq. (1), (red points).
The black line corresponds to the binomial distribution which is obtained from the distribution P(N) of Eq. (1) by turning off the small
component, α = 0.

is needed to extract factorial cumulants of high order. This property is due to the presence of the second
component, even though it is rather small, α ' 0.3%, as we demonstrate in Fig. 1. There we show the
distribution of extracted values for the factorial cumulants for “experiments” with 150k events, approxi-
mately the number of events STAR has recorded for central collision at

√
s = 7.7 GeV. The width of these

distributions then give us the expected statistical error for a measurement with 150k events. The left panel
shows the distribution if we just sample a binomial distribution, i.e. the distribution P(N), Eq. (1), without
the small component, α = 0 (this distribution is plotted as black dashed line in the right panel of Fig 2).
The right panel of Fig. 1 shows the distribution with the small component included. Clearly, the expected
statistical error is much smaller in the second case, even though we only have a very small admixture of the
second component. This is more clearly seen in the left panel of Fig. 2, where we show the expected relative
error for factorial cumulants up to ninth order for a binomial, negative binomial distribution as well as for
the two-component distribution, Eq. (1). Also shown, in magenta (open circles), are the relative errors if we
assume that the data are not efficiency corrected but still follow a two-component distribution (for details
see [8]). We note that the numerically extracted statistical errors agree perfectly with those obtained from
the so called delta method [9]. More precisely, the predicted values of the factorial cumulants up to eighth
order are (the first four agree with the preliminary STAR data by construction):

C5 = −307 (1 ± 0.31), C6 = 3085 (1 ± 0.41),
C7 = −30155 (1 ± 0.61), C8 = 271492 (1 ± 1.06), (3)

for efficiency uncorrected data and

C5 = −2645 (1 ± 0.14), C6 = 40900 (1 ± 0.18),
C7 = −615135 (1 ± 0.26), C8 = 8520220 (1 ± 0.42), (4)

for efficiency corrected data. The errors quoted here are only due to the sample size and do not account for
additional systematic uncertainties for example due to the efficiency corrections [9]. Also, the central values
of our prediction are based on the central values of the preliminary STAR data for the proton cumulants. In
other words we did not do any error propagation here.

Given the small expected statistical errors, a measurement of factorial cumulants up to the eighth order
should be possible if the data are efficiency corrected. If the factorial cumulants extracted from the STAR
measurement agree with the above predictions, it will provide strong evidence that we are indeed dealing
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with a two-component multiplicity distribution.2 This is demonstrated in the right panel of Fig. 2, where
we show results of the Poisson-Charlier expansion for a probability distribution [10] at various orders. As
discussed in more detail in [7], the Poisson-Charlier expansion of order n generates a probability distribution
based on the first n factorial cumulants in such a way that it reproduces these first n factorial cumulants. If
we use only the first four factorial cumulants generated from the two-component distribution (which by
construction agree with the STAR data), the resulting Poisson Charlier distribution (dot-dashed magenta
line) does not agree with that of the two-component distribution (red points). This demonstrates that, as
already pointed out, four cumulants hardly constrain a probability distribution. However, using the first six
factorial cumulants (dashed green line), the Poisson-Charlier distribution is already very close. And with the
first eight factorial cumulants the resulting Poisson-Charlier distribution (full blue line) is almost identical
with that of the two-component model (red points). And, with the expected improved statistics from the
second phase of the beam energy scan, the distribution could be constrained even further.

Of course, even if a two-component distribution is experimentally confirmed, one still needs to rule out
other sources for such a distribution, such as a possible contamination of the data by events from a different
centrality class etc.

3. Conclusions

In conclusion, we have shown that a two-component multiplicity distribution is statistics friendly in the
sense that factorial cumulants of rather high order may be extracted even with limited statistics. This allows
to test and confirm right now the hypothesis of a two-component model of Ref. [7] with the presently avail-
able statistics of the STAR measurement from BES-I. If this hypothesis is confirmed, and, if any possible
experimental effects and backgrounds have been ruled out, we may actually have a first glimpse at the QCD
phase transition. This can then be further tested by measuring other observables such as flow for events with
small and large number of protons within the same centrality class.
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