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Submitted to the Annals of Applied Statistics

OPTIMAL MULTILEVEL MATCHING USING NETWORK
FLOWS: AN APPLICATION TO A SUMMER READING

INTERVENTION∗

By Samuel D. Pimentel, Lindsay C. Page, Matthew
Lenard and Luke Keele

University of California, Berkeley, University of Pittsburgh, Wake County
Public Schools, and Georgetown University

Many observational studies of causal effects occur in settings with
clustered treatment assignment. In studies of this type, treatment is
applied to entire clusters of units. For example, an educational in-
tervention might be administered to all the students in a school. We
develop a matching algorithm for multilevel data based on a network
flow algorithm. Earlier work on multilevel matching relied on integer
programming, which allows for balance targeting on specific covari-
ates but can be slow with larger data sets. Although we cannot di-
rectly specify minimal levels of balance for individual covariates, our
algorithm is fast and scales easily to larger data sets. We apply this
algorithm to assess a school-based intervention through which stu-
dents in treated schools were exposed to a new reading program dur-
ing summer school. In one variant of the algorithm, where we match
both schools and students, we change the causal estimand through
optimal subset matching to better maintain common support. In a
second variant, we relax the common support assumption to preserve
the causal estimand by only matching on schools. We find that the
summer intervention does not appear to increase reading test scores.
In a sensitivity analysis, however, we determine that an unobserved
confounder could easily mask a larger treatment effect.

1. Introduction.

1.1. Summer Learning Loss. Summer learning loss, also known as the
“summer slide” or “summer setback” occurs when students educated on the
traditional school calendar experience a decline in academic skills during the
summer when school is not in session (Borman, Benson and Overman 2005;
Cooper et al. 2000; Entwisle and Alexander 1992). Summer learning loss is
a well-documented phenomenon. Estimates of the average summer learning
loss range from roughly one-tenth to one-third of a standard deviation (SD),
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depending on methodology, subgroup, and academic subject (Borman and
Dowling 2006; Quinn 2015; Rambo-Hernandez and McCoach 2015; Skibbe
et al. 2012; Zvoch and Stevens 2015). Cooper et al. (1996) find that summer
loss is particularly prevalent in math computation and spelling, and estimate
an overall loss of 0.14 SDs in math and 0.05 SDs in reading. Since the 1950s,
summer school has been a popular strategy to “keep the faucet on” as well
as to remediate those who fall behind during the traditional school year
(Cooper et al. 2000). Though more recent estimates are not readily available,
approximately nine percent of public school students participated in summer
school in 2000 (Wirt et al. 2000).

This study investigates the effectiveness of a summer school reading in-
tervention in Wake County, North Carolina. North Carolina state legislation
required that students who did not meet district standards at the end of 3rd
grade were required to attend summer reading camps or risk retention. In
summer 2013, the Wake County Public School System (WCPSS) selected
myON, a product of Capstone Digital, for implementation at Title I summer
school sites in an effort to boost reading comprehension among the major-
ity low-SES attendees. myON is a form of internet-based software designed
to serve primarily as an electronic reading device. The software provides
students with access to a library of books and suggests titles to students
based on topic interests and reading ability. Students at myON sites used
the program for up to one-half hour during the daily literacy block and could
continue using the program at home if they had a device and internet con-
nection. The developers of myON claim that students using the software will
improve comprehension through access to more than 10,000 digital books
that include “multimedia supports, real-time reporting and assessments and
embedded close reading tools” (Corp 2015).

Not all summer school students in the Wake County school system were
given access to the myON reading program. Summer school sessions were
held at designated sites, such that students from multiple schools attend
summer school at central locations. The myON program was used by teach-
ers at eight of the 19 summer school sites. Summer school sites were se-
lected for myON usage based on a mix of factors including internet band-
width, computer access, and regional distribution. Students from elemen-
tary schools in Wake County were assigned to summer school sites primar-
ily through geographic proximity. Thus all students in a school close to a
myON summer school site used the myON program during summer school.
Overall, students from 20 schools were exposed to the myON intervention,
while students from 29 schools were not exposed to the myON treatment.
Principals and schools themselves had no input into program participation.
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Given that the intervention was assigned to entire elementary schools, we
conduct a clustered observational study of the effectiveness of the myON
program.

1.2. Clustered Observational Studies. When interventions are randomly
assigned, differences between treated and control groups can be interpreted
as causal effects, but when subjects select their own treatments, differing
outcomes may reflect initial differences in treated and control groups rather
than treatment effects (Cochran 1965; Rubin 1974). Pretreatment differences
or selection biases amongst subjects come in two forms: those that have been
accurately measured, which are overt biases, and those that are unmeasured
but are suspected to exist, which are hidden biases. In an observational
study of treatment effects, analysts typically use pretreatment covariates
and a statistical adjustment strategy to remove overt biases, whereas hidden
biases can be considered through a sensitivity analyses, as we show.

Matching estimators are one method of statistical adjustment for the re-
moval of overt biases designed to mimic a randomized trial by constructing a
highly comparable set of treated and control units. In many settings, treat-
ments are applied to clusters of units instead of to single units. Clustered
treatments are common in educational settings as treatments are applied to
or withheld from entire schools rather than individual students or teachers.
The myON reading intervention is a treatment of this type, as the read-
ing program was offered to all students in schools selected for treatment,
and withheld from all students in schools that did not receive the myON
reading intervention. Moreover, students did not select whether their school
participated in the myON program.

When treatment is randomly assignment to clusters, this is often referred
to as a group randomized controlled trial (RCT). In a clustered observa-
tional study, one might attempt to mimic a group RCT by creating com-
parable pairs of treated and control clusters, since differences in outcomes
might reflect overt bias. When treatments are clustered, data typically have
a multilevel structure with observed and unobserved covariates at both the
cluster and unit levels. For example, in the myON intervention, we observe
student-level covariates such as pretreatment test scores as well as school-
level covariates such as the number of students enrolled.

Thus to remove overt bias in a clustered observational study , researchers
may need to remove treated and control differences in the distributions of
covariates at the cluster level, the unit level, or perhaps both levels. That is,
we require a statistical adjustment strategy that takes into account the mul-
tilevel structure of the data. Standard methods of adjustment for data with
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multilevel structure include hierarchical regression or propensity score meth-
ods (Hong and Raudenbush 2006; Arpino and Mealli 2011; Li, Zaslavsky and
Landrum 2013). Recent work developed a matching algorithm for multilevel
data based on integer programming (Keele and Zubizarreta 2016).

Here, we extend the method in Keele and Zubizarreta (2016) by develop-
ing a new matching algorithm based on network flow optimization. Network
flow optimization is frequently used in operations research and in statistics
for optimal matching (Rosenbaum 1989). Our method is optimal in that it
produces the smallest set of distances between matched clusters and units,
here schools and students. While our method allows less flexibility in requir-
ing specific levels of balance on individual covariates, it is faster and can be
scaled to much larger data sets than methods based on integer programming.
We also modify the basic algorithm to allow treated units to be excluded
from the match in an optimal, dynamic manner, so that researchers can find
the matches that are balanced but retain the largest possible sample size.
We then apply our algorithm to the data from Wake County to evaluate the
myON reading program.

This article is organized as follows. Section 2 describes the causal frame-
work that we employ and the design of the study. Section 3 reviews match-
ing algorithms based on integer programming and network flows. In this
section, we develop an optimal multilevel matching algorithm based on net-
work flows. and illustrate via simulation the superiority of our algorithms
over a multilevel matching strategy that would match clusters and then units
in a two-step process.

We then perform two matches, one in which we retain all treated units,
and another where we optimally discard treated units to improve balance.
Section 4 shows the resulting matches and analyzes the comparative effec-
tiveness of the myON program in Wake County. Section 5 concludes with a
summary and a discussion.

2. Notation, Definitions, and Causal Framework. We begin by
defining notation and our causal framework. After matching, there are S
matched pairs of schools, s = 1, . . . , S, each with two schools, j = 1, 2, one
treated and one control for 2S total units. The ordered pair sj thus identifies
a unique school. Each school sj contains nsj > 1 students, i = 1, . . . , nsj .
Each pair is matched on a vector of observed, pretreatment covariates: xsji.
We let xsj represent the matrix whose rows consist of the xsji vectors for
each student i in the school indexed by sj with support X ⊂ R. A student
i in school sj is described by both observed covariates and possibly an
unobserved covariate usji. Included among the student covariates may be
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some covariates common to all other students attending that school, and
we call such covariates school-level covariates. For example, while gender
is a student-level covariate, the proportion of male students in a school is
a school-level covariate which takes the same value for all students in the
same school. In our study, treatment assignment occurs at the school level
as whole schools are assigned to treatment or control. If the jth school in
pair s receives the treatment of myON readers, write Zsj = 1, whereas if
this school receives the control and students are not given myON readers,
write Zsj = 0, so Zs1 +Zs2 = 1, for each s as each pair contains one treated
school and one control school. If nsj = 1 for all sj then the clusters are
individuals, and we have unclustered treatment assignment.

We use the potential outcomes framework to define causal effects (Ney-
man 1923; Rubin 1974). In this framework, each student has two poten-
tial responses; one response that is observed under treatment Zsj = 1 and
the other observed under control Zsj = 0. We denote these responses with
(yTsji, yCsji), where yTsji is observed from the ith subject in pair s under
Zsj = 1, and yCsji is observed from this subject under Zsj = 0. Here, yTsji
is the reading test score that student sji would exhibit if he or she uses the
myON software, and yCsji is the test score this same student would exhibit
if he or she does not use the myON software. Under this notation, we al-
low for any arbitrary pattern of interference among students in the same
school but not across schools. In this context, yTsji denotes the response
of student sji if all students in school sj receive the treatment, while yCsji
denotes the response of student sji if all students in school sj receive the
control. Therefore, we do not assume that we would observe the same re-
sponse from student sji if the treatment were assigned to some but not all
of the students in school sj. We let yTsj and yCsj represent the vectors of
potential outcomes yTsji and yCsji respectively for each student i in school
sj. We do not observe both potential outcomes, but we do observe responses:
Ysji = ZsjyTsji+(1−Zsj)yCsji. Under this framework, the observed response
Ysji varies with Zsj but the potential outcomes do not vary with treatment
assignment. Write Y = (Y111, . . . , YS2,ns2)T for the N =

∑
s,j ns,j dimen-

sional vector of observed responses, and write yc, for the vector of potential
responses under control.

Next, we define the causal estimand. First, it is important to note that
the estimand depends on the form of the multilevel match. One approach to
the planning and design of observational studies is to use an analogous ran-
domized experiment as template (Cochran 1965; Rubin 1974). The form of
multilevel match will change depending on the type of experimental design
used as a template. In general, we would argue there are two experimental
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designs that we might use as templates for the matching. The first is the
paired clustered randomized controlled trial. Under this design, clusters are
first paired on covariates, and then within each pair, one cluster is selected
for treatment, and all units within that cluster are treated. Under this ex-
perimental template, we would use the matching algorithm to pair schools
and not students, since in the experimental design only clusters are paired.
As such, under this design template, the causal estimand is the student
level level contrast yTsji−yCsji caused by group level treatment assignment.
Note that if we were to assume the existence of an appropriate superpopu-
lation, it might be natural to focus on an average causal effect of the form
E[yTsji − yCsji] where the expectation is taken over the superpopulation.
We focus on finite sample inference, although the methods we use can easily
be adapted for superpopulation inference (Lehmann and Romano 2005).

However, we might implement a match that pairs both schools and stu-
dents. This second design may be of interest if the intervention is assigned
at the group level but is only targeted at a differentially-selected subset of
units within each cluster. For example, Page and Scott-Clayton (2016) con-
ducted a school-level randomized experiment in which they targeted college-
intending high school seniors with information and personalized reminders
about the process of applying for financial aid. Next, we describe two pos-
sible experimental analogues for this type of match. First, data of this type
could result from a clustered randomized trial (CRT) with non-random unit
level selection. That is, clusters are assigned to treatment and control, but
within the cluster some units are targeted for treatment. Despite random-
ization at the cluster level, an investigator would need to correct for this
selection bias via modeling. The same is true in an observational study.
Matching on student level covariates as well as school level covariates would
allow analysts to model selection at both the school and unit level.

Alternatively, one could conceive of this design as a double blocked de-
sign where first schools are paired on the basis of baseline covariates. Then
once schools are paired, the students within those schools are paired. Such
blocking at the student level would ensure comparability in student level co-
variate distributions beyond what would be achieved by aggregating student
covariates to the school level. However, while such a design is hypothetically
possible, we are unaware of any design actually being implemented. In all
likelihood, blocking on student level covariates would result in some of the
students being discarded especially if the number of students differs across
the two schools. Once both students and schools are paired via the blocking,
the treatment would then be assigned within school pairs at the school level.
Thus, even though treatment assignment is recorded at the school level, the
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treatment would only be applied to a subset of the students within the
school. Such a design would ensure maximum comparability between both
schools and students before randomization occurs.

Theoretically, the myOn intervention conforms to this second template.
That is, the myOn intervention was assigned at the school level but was
only used by the subset of students within each school that were required to
attend summer school, and the method of selecting summer school students
may differ from school to school. Therefore we might wish to match both
schools and students in our application to correct for selection at the student
level. Under this second design template, the causal estimand is a group
level contrast for a set of students within the school who are at risk for the
treatment. For this match, we define the student level covariate space, As ⊂
X. Let 1xsji∈As be an indicator function for the event that xsji is an element
of the set As. The causal estimand under this design is 1xsji∈As(yTsji −
yCsji) where As ⊂ X is the school-pair-specific portion of the support X
describing students who may be required to attend summer school in both
school s1 and s2. The question of which estimand and associated match is
more appropriate is a question for investigators and varies from application
to application. As we outline later, our algorithm accommodates both types
of matches. Henceforth, we denote a match that mimics a group RCT and
does not pair students as Design 1. For a match that pairs both schools and
students, we call this match Design 2.

To identify the causal estimand above, we assume that assignment to Zsj
depends on observable covariates only. Formally, we must assume that

Pr(Zsj = 1|yTsj ,yCsj ,xsj ,usj) = Pr(Zsj = 1|xsj).

For brevity, represent the probability on the left-hand side of this statement
by πsj . We also assume that all schools have some probability of being
treated such that 0 < πsj < 1. The assumption of observable treatment
assignment is often referred to as conditional ignorability or selection on
observables (Rosenbaum and Rubin 1983; Barnow, Cain and Goldberger
1980). If this assumption holds, potential outcomes will be conditionally
independent of treatment assignment and the causal effect of the treatment
will be identified. Later, we will probe the plausibility of this assumption
using a sensitivity analysis.

The second part of the conditional ignorability assumption is known as the
assumption of common support. Common support fails if for any student the
true probability of being exposed to the myON intervention is zero or one.
Very high or low estimates of the propensity score or high pre-treatment co-
variate imbalances for students often signal problems with common support,
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and in these settings we must either relax this assumption or remove study
units to maintain the assumption. Trimming to maintain common support
changes the causal estimand such that it only applies to the population of
units for which the effect of treatment is marginal: units that may or may
not receive the treatment. As such, we could characterize the estimand as
more local, since it applies to only a subset of the treated units. Changing
the estimand through trimming of treated units may be unproblematic if
the data do not represent a well-defined population (Rosenbaum 2012a).
See Crump et al. (2009), Traskin and Small (2011), and Rosenbaum (2012a)
for further discussion of the common support assumption and methods for
dealing with a lack of overlap. The matching algorithm we develop also in-
cludes a form of optimal subset matching for applications where common
support does not hold.

3. Multilevel Matching.

3.1. Review: Multilevel Matching. The goal with matching methods in
an observational study is to mimic the structure of an experimental design:
treated and control units that are similar in terms of observed covariates.
With a multilevel data structure, such as students and schools, the covariates
are observed at both levels and units are found within clusters. That is stu-
dents are nested within school level clusters. As such, a matching algorithm
for multilevel data must make units similar on observables at both levels.
Of course, even the most successful match provides us with no confidence
about the similarity of unobservables for the matched data. One method for
matching with multilevel data is as follows:

1. Pair clusters using cluster level covariates.
2. Pair units within paired clusters (i.e. match units while requiring exact

matches on cluster-level pair IDs).

Keele and Zubizarreta (2016) show that such an approach is not optimal
with respect to minimizing covariate distance. They show that the optimal
matching strategy for multilevel data is:

1. Consider each possible combination of one treated cluster and one con-
trol cluster. Using unit level covariates, calculate a unit level distance
matrix. Summary statistics based on this distance matrix can be used
to assess the quality of the units within each possible set of clustered
pairs.

2. Pair clusters using cluster level covariates and the score information
(based on unit-level covariates) from step 1.
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3. Once clusters are paired, optionally form unit level pairs depending
on the causal estimand of interest. Under Design 1, we would not pair
students, under Design 2 we would pair students.

Such an approach is optimal since it utilizes unit level information in
the cluster pairing unlike the aforementioned naive approach. Keele and
Zubizarreta (2016) developed an optimal multilevel match using mixed in-
teger programming (Zubizarreta 2012). The key advantage of integer based
matching algorithms is that they allow the analyst to target explicit levels
of balance for mean differences across treated and control units. For exam-
ple, these methods allow for the explicit balancing of statistics such as the
Kolmogorov-Smirnov (KS) statistic. The drawback to such methods is that
the computational time necessary for the match may be lengthy.

Many matching algorithms use network flows instead of integer program-
ming to balance covariates by minimizing the total sum of distances between
treated and control units. While network flow algorithms for matching can-
not always incorporate the specific balance goals allowed by integer pro-
gramming, the algorithms are fast and can be applied to very large data
sets with fewer difficulties. To that end, we develop an optimal multilevel
matching algorithm based on network flows.

3.2. Multilevel matching based on network flows. Next, we outline our
matching algorithm in its simplest form. First, we denote the number of
matched cluster pairs as S. For the Design 1 match, we seek to create S
matched pairs of schools such that school-level covariates are balanced across
all schools in the matched sample. Under Design 1, matching school level
covariates may balance student level covariates, but it may not. For the
Design 2 match, we create S matched pairs of schools and, for each such pair,
ms ≤ min(ns1, ns2) matched pairs of students (one student from each school)
such that school level covariates are balanced and student-level covariates
are balanced within each school pair.

For either design, the process starts in an identical fashion. First, student-
level matches are conducted for all possible pairings of treated and controlled
schools. If there are N1 treated schools and N2 control schools, the number
of such possible pairings will be N1×N2. Each of these student-level matches
is then scored based on the balance it achieves on student-level covariates
(worse scores are given to matches with insufficient balance) and on the size
of the sample it produces (worse scores are given to matches with small sam-
ple sizes). The scoring system is inverted, so that the best matches receive
low scores and the poorest ones receive high scores. The scores are then
stored in an N1 by N2 matrix. Next, schools are matched optimally using
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the score matrix as a distance matrix. Below we outline a refinement to this
step to better balance school level covariates.

At this point, the investigator can either choose to rematch students such
that schools and students within schools are paired or stop with paired
clusters such that students are not paired within schools. Importantly, even
if the investigator chooses not to rematch students, student level information
has been used in the school level match.

We now describe two important refinements to the basic algorithm. Both
are designed to allow analysts to improve balance in contexts when the sim-
plest form of the algorithm produces a match where imbalances on covariates
are still deemed to be too large by the investigator.

3.3. Role of refined balance. Matching on the score matrix alone does
not provide any guarantee of balance on school-level covariates (since scores
are computed from student-level covariates only). To allow the investigator
to improve balance over and above that produce by matching on the score
matrix, we include the method of refined covariate balance (Pimentel et al.
2015) in our multilevel matching algorithm. Refined covariate balance is an
extension of fine or near-fine balance. Under fine and near-fine balance con-
straints an optimization routine seeks the closest individual matched pairs
such that the overall match has the closest possible balance on a prespeci-
fied nominal covariate (Rosenbaum 2010; Yang et al. 2012). Refined covari-
ate balance involves matching under multiple nested near-fine balance con-
straints that act in order of priority, balancing the first covariate as closely
as possible, the second as closely as possible under the constraint of the first,
and so on. For example, one might match under 2 levels of near-fine balance,
the first requiring that the match exhibit the best possible balance on Title
I status, and the second requiring that (once Title I status is balanced) the
match achieve the best remaining possible balance on the interaction of Title
I status with an indicator for above-average proportion of new teachers.

Adding refined covariate balance to the matching algorithm has two ad-
vantages. First, it allows investigators to prioritize balance on some school-
level covariates relative to other school-level covariates. If scientific knowl-
edge dictates that some covariates are of higher priority, balance on those
covariates can be targeted for improvement via refined covariate balance.
Second, in multilevel matching applications, the number of covariates may
be large relative to the number of observations at the cluster level. This is
the case in our school-level match, where only 49 schools are present (20
of them treated) and 11 important school-level covariates have been identi-
fied. In situations of this type, the use of refined covariate balance provides
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much stronger guarantees of balance than merely including the covariates in
a propensity score formula or a pairwise Mahalanobis distance (Zubizarreta
et al. 2012). It is true that in the limit, as sample size approaches infinity
while holding the number of covariates fixed, pair matching on a covariate
distance will adjust for all observed confounding and bring observed covari-
ates into perfect balance in the matched sample. However, in finite sample
situations pair matching often struggles to balance all observed variables,
especially when the number of covariates is large relative to the number
of observations. Therefore refined balance, which guarantees optimal finite-
sample balance for a given set of constraints, is a better choice for multilevel
data structures where the number of clusters to match is likely to be small
relative to the number of covariates.

3.4. Optimal Subset Matching in a Multilevel Match. For a specific data
set, we may find either that there is a lack of overlap in the covariate dis-
tributions or that balance is poor after the matching is complete. In both
cases, too much overt bias remains when the match uses all treated observa-
tions. One solution is to trim units from the treated group to maintain the
common support assumption or improve balance. Methods such as optimal
subset matching (Rosenbaum 2012a) and cardinality matching (Zubizarreta,
Paredes and Rosenbaum 2014) are designed to find the largest subset of the
treated group such that covariate overlap or balance is deemed acceptable.
Next, we add a form of optimal subset matching to our multilevel match to
deal with such constraints.

Before we review technical details, we discuss conceptual issues that arise
when using optimal subsetting in a multilevel matching context. A multilevel
match complicates such trimming since one can choose to trim either treated
clusters, units, or both. The type of trimming will depend on the form of the
match. If one pairs both clusters and units as would be the case under Design
2, some unit level trimming is almost impossible to avoid. That is, unless
the samples of students in control schools are uniformly substantially larger
than the samples in all treated schools, some of the student-level matches
in step 1 will involve treated groups that are larger or very similar in size
to their control groups. In these settings, under student level pair matching,
some treated units will invariably be trimmed or excluded from the match.
Here the trimming is not done to enforce balance or common support, but
is simply a byproduct of the structure of the pair match. Under Design 2,
one might also choose to trim students to improve student-level covariate
balance. Our algorithm allows for either form of trimming. Finally, under
either Design 1 or 2 one may trim treated clusters to maintain common sup-
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port and improve covariate balance at the cluster level. This would involve
removing complete treated schools from the match.

Optimal subset matching is a network flow algorithm for pair matching
which allows the match to exclude treated units by paying a penalty for each
match excluded (Rosenbaum 2012a). For a given penalty δ̃, optimal subset
matching considers only subsets of treated units such that adding any addi-
tional treated unit increases the best overall matched cost (distance) by at
least δ̃. Among these treated subsets, it chooses the one for which the overall
matched distance can be made smallest and the matched control group as-
sociated with that configuration. The choice of which individuals to exclude
is made concurrently with the choice of matched pairs. To prevent the exclu-
sion of overly large numbers of treated units, optimal subset matching may
incorporate an additional parameter n which specifies a minimum number
of treated units that must be included. When n is equal to the size of the
treated population and there are as many controls as treated, optimal subset
matching is equivalent to ordinary optimal pair matching.

In addition to offering a formal definition and an applied example of
matching with refined covariate balance, Pimentel et al. (2015) provide a
network flow algorithm to solve such matching problems, although it does
not allow treated units to be excluded. We use an adaptation of this algo-
rithm that also allows exclusion of treated units. Specifically, the familiar
penalty parameter δ̃ is used to represent the cost of excluding a treated indi-
vidual from the match. For sufficiently large values of δ̃, the match does not
exclude anyone and the algorithm behaves exactly as in the original paper;
as δ̃ is decreased, more and more treated units will be excluded. For any
given value of δ̃ and given set of balance constraints, the algorithm guaran-
tees that the match produced has optimal refined balance among matches
with the same number of treated units excluded. For a characterization of
the optimality of matches produced by this modified algorithm and a tech-
nical description of the alterations it requires in the original algorithm of
Pimentel et al. (2015), see Pimentel and Kelz (2017).

If it is necessary to trim either treated schools or students then the causal
estimand has been changed due to the match. For example, if we trim at
the school level only, we would exclude schools with covariates outside set
A, a subset of school level covariates. Here, we denote 1xsj∈A is an indicator
function for the event that xsj is an element of the set A. The estimand is now
1xsj∈A(yTsji−yCsji), a subsample treatment effect defined by the school level
covariates in A, as the estimand now depends on school level covariates. If
we trim students, our causal estimand is now the subsample treatment effect
defined by the student level covariates in As. This estimand is identical in
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form to the one defined for Design 2: 1xsji∈As(yTsji−yCsji). In our example,
this would be the set of students for whom there is some probability that they
attend summer school. If it is necessary to trim both students and schools,
then our causal estimand focuses on the population of schools and students
for whom the intervention is marginal. Alternatively, it is the subsample
treatment effect defined by the school and student level covariates in A and
As, respectively. As outlined above, this may be a reasonable decision in an
observational study when interest is in a marginal population who might or
might not receive the treatment of interest rather than a known, a priori
well-defined population. This applies to the myON treatment in that the
treated schools are those that happen to be located near a summer school
site with the technical capacity for the intervention.

3.5. A General Algorithm. Next, we precisely define our approach to
multilevel matching with network flows. We outline two different algorithms
depending on the design chosen by the investigator. First, we might wish to
match under Design 1, where we intend to preserve the causal estimand as
a school level effect. We do this by pairing schools, but not pairing students
within schools. We define this form of match under Algorithm 1:

1. Create a distance matrix M for all students in the dataset, using
student covariates only. For each possible combination of one treated
school i and one control school j:

• Match the students in school i to the students in school j on the
appropriate submatrix of M .

• Assign a score `ij to this match using a pre-specified scoring rule
which depends on the size of the matched samples and the balance
achieved on student covariates, and store it in a matrix.

2. The score matrix produced by the pairwise school matches now gives
distances between all pairwise treated-control school combinations.
If desired, this score matrix may be combined with a distance ma-
trix computed from school-level covariates. Use this matrix to match
schools, with (optional) refined covariate balance constraints on school
covariates via fine balance. Optionally, the analyst may use an optimal
subset match with subset penalty δ̃2 to further improve balance. The
student-level matched samples consists of all students in any school
that was selected in the school match.

Under Algorithm 1, we still use student level information in the pairing of
schools, but we do not pair the students directly after schools are matched.

Next, we define Algorithm 2, which matches both schools and students.
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1. Create a distance matrix M for all students in the dataset, using
student covariates only. For each possible combination of one treated
school i and one control school j:

• Match the students in school i to the students in school j on the
appropriate submatrix of M using optimal subset matching with
penalty δ̃1 and minimum sample size nij .

• Assign a score `ij to this match using a pre-specified scoring rule
which depends on the size of the matched samples and the balance
achieved on student covariates, and store it in a matrix.

2. Using the score matrix produced by the pairwise school matches (or
if desired, the score matrix and a school-level distance matrix com-
puted from school covariates may be combined), match schools using
an optimal subset match with refined covariate balance constraints on
school covariates, with subset penalty δ̃2.

3. Combine the student matches computed in step 2 for the school pairs
computed in step 3 to produce an overall matched sample of students.

Application of Algorithm 2 results in a set of matched schools with stu-
dents within those schools that are also paired. The algorithm may trim
either treated schools, treated students or both in order to balance covari-
ates and maintain the common support assumption.

3.6. Choosing appropriate penalty parameters. Notice that besides re-
quiring the researcher to specify relevant student and school covariates and
a set of balance constraints (for school covariates), Algorithm 2 relies on
tuning parameters δ̃1, δ̃2, and (for each choice of i and j) nij . Algorithm 1

relies only on δ̃2. How should these parameters be chosen effectively?
When excluding treated students, we recommend setting the values nij

as a fixed, relatively large proportion (perhaps 80%) of the smaller of the
two sample sizes in schools i and j. This ensures that even when students
are excluded, most students will be retained and limits the degree to which
a matched sample selected in a school pair can differ from the full samples
in both schools. Following the recommendation in Rosenbaum (2012b), δ̃1
can be set as a fixed, small percentile of the pairwise Mahalanobis distances
among all students in the dataset, perhaps the fifth or the tenth percentile.

Setting δ̃2 in order to exclude entire treated schools can be done by tak-
ing quantiles of the values in the school distance matrix (analogous to the
strategy for setting δ̃1), especially when no balance constraints on school
covariates are used. When balance constraints are present, appropriate val-
ues of δ̃2 are more difficult to derive a priori and to interpret, since balance
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constraints are implemented internally by imposing additional penalties not
reflected in the pairwise distances. Because of the difficulty of setting δ̃2 in
this context, the R package matchMulti which implements both algorithms
offers users the option to supply a desired number of schools to retain, and
conducts a binary search in the penalty space (essentially, repeating step 2
of the algorithm over many values of δ̃2 until it finds a penalty inducing the
desired sample size.

As a general rule, we recommend excluding as few units as possible; i.e. the
initial match may be run with nij values set at 100% of the smaller sample
size in the pair i, j (excluding as few students as possible) and instructing
the algorithm to set δ̃2 so all treated schools are retained. If balance on
student covariates is poor, values for nij and δ̃1 can be decreased gradually,
to encourage exclusion of more students, until balance is achieved; similarly,
if school balance is poor, the desired number of schools retained can be
decreased in increments of 1. Note, however, that the analysts may wish to
first impose refined balance constraints on school level covariates via fine
balance before using penalties to remove treated schools. The fine balance
constraints can be a very effective way to improve balance without discarding
schools. Importantly, since outcome data is not examined until after a final
match has been chosen, the validity of statistical tests is not affected by this
iterative processes checking balance and rematching.

3.7. Simulation Study. Next, we evaluate our proposed matching method
through a simulation. In the simulation, we compare our multilevel matching
algorithm to a match that first matches schools without reference to student
covariates. Hereafter, we denote the match that only uses school level covari-
ate information in the first stage as the “naive” match. Before proceeding
to the simulation, we review some relevant analytic results. Zubizarreta and
Keele (2016) considered the optimality of a multilevel matching algorithm
based on integer programming. While our algorithm is based on network
flows, the proof in Zubizarreta and Keele (2016) extends to our algorithm.
Therefore, we should never expect the naive match to perform better than
our optimal approach. However, in a specific application, the naive match
may perform as well as the optimal method we propose. Thus a simulation
will help us understand whether our optimal approach is clearly superior or
whether a naive approach will tend to produce similar results in data like
that in the myON evaluation.

To bolster the realism of the simulations, we generated the simulated
data from the myON data. However, in the simulated data, we increased
the imbalance in the covariates that measure student and school level test
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scores in both reading and mathematics. We increased the imbalance by
increasing the treated means and by adding a random draw from a Normal
distribution with a mean of four and a standard deviation of one. Thus
we systematically increased the imbalance in these four covariates, but also
introduced stochastic variability in the imbalance across the simulations.
Finally, for the two treated schools with the largest multivariate distances
from the controls, we increased the imbalance on test scores by additional
two-tenths of a standard deviation at both the student and school level for
one school and for the other school by a quarter of a standard deviation.
To generate outcomes in the simulated data, we first generated an outcome
model by regressing the test score outcome in the myON data on the baseline
covariates. We then generated simulated outcomes via a linear model based
on the simulated data, the coefficients from the outcome model, a treatment
effect of two-tenths of a standard deviation, and Normally distributed errors
with a mean and standard deviation of one.

We repeated the simulation 1,000 times. For each simulation, we applied
our multilevel match algorithm twice. First, we did not allow for optimal
subsetting, and for the second run of the multilevel match, we allowed op-
timal subsetting. We also applied the naive matching method that matched
directly on school level covariates. For both matches, we matched under De-
sign 1 and did not match students. We did this for a one specific reason. In
the simulated data, we increased the imbalance on student level test scores.
The multilevel match incorporates student level information into the school
match, while the naive method only does so through aggregated test scores.
Thus in the simulation, we should be able to observe whether our matching
algorithm can reduce imbalance in student level covariates while preserving
the structure of a clustered randomized trial.

For the naive match, we used the optimal matching algorithm in the R

package optmatch. While there are many different matching algorithms that
we could have used, we selected this matching algorithm for a specific reason.
Our multilevel match also relies on the basic algorithm in the optmatch

library. The key difference is that our algorithm alters the order of the
match by first matching students and then using that information to match
schools. A naive implementation of optmatch matches schools first without
fully incorporating student level information into the match. Therefore, by
implementing the naive method using optmatch, we reduce the comparison
between the matching algorithms to the order of the match. We did not apply
a caliper to any of the matches. For the multilevel matches, we prioritized
balanced on test score covariates in the simulation. Prioritizing balance on
a subset of covariates will tend to make balance worse on other covariates.
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Thus, we seek to observe whether we can improve balance on these covariates
while maintaining acceptable balance on the other covariates.

For each simulation, we record measures of both balance and bias in the
treatment effect estimates. First, for each test score covariate, we calculated
the percentage change in bias reduction. We calculated this by taking the
percentage change from before and after matching in the absolute stan-
dardized difference for each test score covariate. Second, we recorded the
average absolute standardized difference after matching for all the covari-
ates included in the match. Third, we record bias as the average difference
between the estimated effect and the true treatment effect. Finally, we cal-
culated a relative measure of bias using the percentage change between the
unadjusted estimate of the treatment effect and the adjusted estimate of the
treatment effect after matching.

Table 1 contains the results from the simulation. Column 1 of the table
contains the results from the naive match. The naive match produces an av-
erage standardized difference of 0.30 while reducing test score imbalance by
2.4% to 10%. The multilevel match without optimal subsetting, produces
superior imbalance reduction on the test score covariates. The multilevel
match reduces bias by at least 11% and in one case by as much as 44%. In
particular, it is worth noting the imbalance reduction in the student level
covariates. The multilevel match produces greater imbalance reduction for
the student level data, since the imbalance in student level covariates is ac-
counted for in the school level match. Moreover, the overall level of balance is
improved under the multilevel match as the average standardized difference
is 0.21. Column 3 of Table 1 contains the results from the multilevel match
where the algorithm performed optimal subsetting by removing two schools
from the match. The multilevel match with optimal subsetting produces the
best results as the amount of bias reduction is now between 15% to 60%,
with an average standardized difference of 0.18. Reducing imbalance also
translates into reduced bias in the estimated treatment effect. The naive
match reduced bias by 4.5% relative to the unadjusted estimate, while the
multilevel match reduced bias by 6.6% and 11.5% when optimal subsetting
is applied.

In the simulations, we find that a multilevel match algorithm which con-
siders balance at both student and school level performs better than a naive
match that breaks the match into sequential steps. Moreover, the simulation
also clearly demonstrates that optimal subsetting can be a useful strategy
for reducing bias. Of course, this comes at the cost of altering the causal esti-
mand, since the estimand no longer applies to the entire treated population
of schools.
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3.8. Two Matched Comparisons. The data from the myON study con-
tain 3434 summer school students from 49 schools, of which students from
20 schools (containing a total of 1371 summer school students) received the
myON intervention. Since treatment status was defined through proximity
to summer school sites with the technical capacity to support the myON
intervention, we judge that our study population does not represent any
natural larger population. Moreover as we noted, within each school the in-
tervention only applies to the subset of students who must attend summer
school. Thus Design 2 may be the most appropriate for the myOn applica-
tion. Therefore, we created one matched sample using Algorithm 2, pairing
both schools and students within schools. Moreover, we allow in our match
for the removal of both treated schools and students to maintain overlap
in the treated and control distributions. Therefore, our study population
will not be representative of the larger population of students for whom
the myON intervention is not marginal. It also implies that our causal esti-
mand which is defined at the school level only applies to a set of marginal
students, not the entire set of students that receive the school-level myON
treatment. However, for purposes of comparison, we also include one addi-
tional match under Design 1. This match will at least maintain the status
of our group level causal estimand. However, this may come at the cost of
higher levels of overt bias. We created this matched sample using Algorithm
1, which paired schools using student level balance information but retained
all students within the matched schools.

For the match based on Design 2, we first created a robust Mahalanobis
distance matrix (Rosenbaum 2010, section 8.3) among all students in the
data based on individual pre-treatment reading and math test scores, His-
panic and African American indicator variables, sex, and indicators for par-
ticipation in the special education program. The δ̃1 parameter was set as the
75th percentile of the costs in the overall robust Mahalanobis matrix, mean-
ing the match will prefer to exclude treated units rather than form pairs
with distances from the largest quantile of possible pair distances, and the
nij parameter was set to min{0.8Ti, Cj} where Ti is the number of students
from treated school i and Cj is the number of students from control school
j. This ensured that wherever possible at least 80% of the treated students
in each school were retained.

Once student-level matches were computed, they were scored as follows:

1. Initialize score to a large value L.
2. Subtract the number of matched samples formed.
3. Check post-match balance on the following student-level covariates:

individual pre-treatment reading and math test scores, Hispanic and
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African American indicator variables, sex, and indicators for partici-
pation in special education. For each absolute standardized difference
(see Section 4.1) above 0.2, add a penalty of 10L.

This scoring strategy prioritizes large matches over small matches (since
large matches have lower scores after step 2), but the large penalties in step
3 ensure that adequate balance is the primary criterion in assigning scores.

Next, schools were paired following step 2 of the algorithm. Two layers of
refined covariate balance constraints were added, each layer an interaction
of categorical school covariates (e.g., Title 1 status) and appropriate coars-
enings of continuous school covariates (i.e. indicators for whether individual
values of the proportion of new teachers, proportion of English-proficient
students, etc. exceed certain quantiles of their distributions). After examin-
ing larger matches and finding them insufficiently balanced, we ultimately
excluded four treated schools for a final matched sample of 16 school pairs
(this result was obtained by setting δ̃2 to 107). Combining the first-stage
school-to-school matches corresponding to the matched school pairs, we ob-
tained an overall matched sample of 1,532 students, 766 from schools with
the myON intervention and 766 without (meaning a total of 605 treated
students were trimmed from the treated sample).

For the second match under Design 1, we used a scoring function similar
to the one used in Step 1:

1. Initialize score to a large value L.
2. Subtract the harmonic mean of the number of treated students and

the number of control students.
3. Check balance on the following student-level covariates: individual pre-

treatment reading and math test scores, Hispanic and African Ameri-
can indicator variables, sex, and indicators for participation in special
education. For each absolute standardized difference above 0.2, add a
penalty of 10L.

The school match in Step 2 was very similar to the one conducted as part
of Algorithm 2: the same set of refined covariate balance constraints was
used. The new match also excluded the same number of treated schools (4)
for better comparability of the two matches (this corresponded to reducing
the δ̃2 parameter to 106). As a result, the resulting matched sample had 16
sets of paired schools (although these were not the same schools as those
selected by Algorithm 1). Combining the full student samples from each
school in the paired samples, we obtained a student sample size of 2284,
1106 from schools with the myON intervention and 1178 from schools with-
out (meaning a total of 265 treated students were excluded). However, in
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this match, treated students were excluded only because we trimmed four
treated schools. We did not trim any students from treated schools that were
retained and paired to control students.

4. Analysis of the myON Intervention.

4.1. Balance Across the Two Matches. First, we report balance results
for the two matches compared to the unmatched data. To assess the quality
of the match, we used the standardized difference, which for a given vari-
able is computed by taking the mean difference between matched schools
or students and dividing by the pooled standard deviation before matching
(Silber et al. 2001; Rosenbaum and Rubin 1985; Cochran and Rubin 1973).
We attempted to make all standardized differences less than one-tenth of
a standard deviation, which is often considered an acceptable discrepancy,
since we might expect discrepancies of this size from a randomized experi-
ment (Silber et al. 2001; Rosenbaum and Rubin 1985; Cochran and Rubin
1973; Rosenbaum 2010).

Table 2 contains the results for balance on school level covariates. First,
while there are clear differences between treated and control schools in the
unmatched data, those discrepancies are not extreme as none of the stan-
dardized differences exceed 0.30, however, most of the standardized dif-
ferences exceed 0.20. In general, treated schools tend to have higher test
scores, lower staff turnover, and a lower percentage of nonwhite teachers.
Next, balance on school level covariates after matching is identical for both
matches, since our matching algorithm under Design 1 and 2 does not differ
at the school level and thus produces identical balance results. While the
unmatched standard differences are not large, reducing them further proved
difficult. We were unable to lower all the standardized differences below the
0.10 benchmark, even after we discarded 4 treated schools in the match.
However, overall balance is markedly improved compared to the unmatched
data, Figure 1 provides a visual summary of the overall improvement in
balance.

Next, we report the balance for the student-level covariates in Table 3.
Again, the differences in the unmatched data are all quite small. We now
observe differences in the balance statistics, since in one match we did not
pair students, and in the other, each student within a matched school is
paired with a student. In this data, matching schools only (Design 1) im-
proves student balance modestly. Here, matching students as well as schools
(Design 2) produces very similar levels of balance to Design 1.
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Table 2
Balance at the school level for unmatched data and two matched comparisons. Both
means and standardized differences are weighted by the number of students in each

school. St-diff is the standardized difference.

Unmatched School Only School & Student
Match Match

–St-diff– –St-diff– –St-diff–

Composite Test Score 0.21 0.04 0.04
Percent Proficient Reading 0.11 0.07 0.07
Percent Proficient Math 0.20 0.06 0.06
Percentage Student With Free Lunch -0.10 0.10 0.10
Percentage LEP -0.29 0.06 0.06
Average Daily Attendance 0.03 0.13 0.13
Percentage of Teachers Beginners 0.28 0.18 0.18
Percentage of Staff Turnover -0.28 0.17 0.17
Percentage of Nonwhite Teachers -0.26 0.07 0.07
Title 1 School -0.11 0.00 0.00
Title 1 Focus School 0.02 0.14 0.14
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Fig 1. Boxplots of the distribution of absolute standardized differences for school level
covariates. The first boxplot is for the unmatched data, the second for a match that pairs
schools only, and the third for a match that pairs both students and schools.
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Table 3
Balance on student level covariates. St-diff is the standardized difference.

Unmatched School Only School & Student
Match Match

–St-diff– –St-diff– –St-diff–

Reading Pretest Score -0.02 -0.06 -0.02
Math Pretest Score -0.02 -0.07 -0.07
Male 0/1 -0.09 -0.08 -0.09
Special Education 0/1 0.09 0.13 0.09
Hispanic 0/1 0.02 -0.03 -0.01
African-American 0/1 -0.00 -0.08 -0.06

4.2. Randomization Inference in Clustered Designs. In our analysis, we
assume that, after matching, treatment assignment is as-if randomly as-
signed to schools. That is, after matching, it is as if the toss of a fair coin
was used to allocate the myON reading program within matched school
pairs. The set Ω contains the 2S treatment assignments for all 2S clus-
ters: Z = (Z11, Z12, . . . , ZS2)

T . Under our identification strategy, we assume
that the probability of receiving treatment is equal for both schools in each
matched pair. If true, the conditional distribution of Z given that there is
exactly one treated unit in each pair equals the randomization distribution,
and Pr(Zsj = 1) = 1/2 for each unit j in pair s (see Rosenbaum 2002 for
details). However, in an observational study, Pr(Zsj = 1) = 1/2 may not
hold for each unit j in pair s due to the presence of an unobserved covariate
usji. We explore this possibility throughthe sensitivity analysis in Section
4.5.

To test Fisher’s sharp null hypothesis of no treatment effect, we define a
test statistic T = t(Z,R). If the sharp null hypothesis holds, then R = yc
and T = t(Z,yc). We choose T to be a test statistic from Hansen, Rosen-
baum and Small (2014). Specifically let qsji be a score or rank given to Ysji,
so that under the null hypothesis, the qsji are functions of the yCsji and
xsji, and they do not vary with Zsk. The test statistic T is a weighted sum
of the mean ranks in the treated school minus the mean ranks in the control
school. Formally the test statistic is

T =

S∑
s=1

BsQs

where

Bs = 2Zs1 − 1 = ±1, Qs =
ws
ns1

ns1∑
i=1

qs1i −
ws
ns2

ns2∑
i=1

qs2i.
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and where ws are weights which are a function of nsj . Hansen, Rosenbaum
and Small (2014) show that T is the sum of S independent random vari-
ables each taking the value ±Qs with probability 1/2, so E(T ) = 0 and
var(T ) =

∑S
s=1Q

2
s. The central limit theorem implies that as S →∞, then

T/
√

var(T ) converges in distribution to the standard Normal distribution.
Note the framework of Hansen, Rosenbaum and Small (2014) applies di-
rectly to either Design 1 or Design 2, since under both designs we assume
treatment is applied at the cluster level.

We use two different sets of weights. The first set of weights, ws ∝ 1,
weight each set of matched pairs equally. The second set of weights are
proportional to the total number of students in a matched cluster pair:
ws ∝ ns1 + ns2 or ws = (ns1 + ns2)/

∑S
l=1(n11 + n12). These weights allow

the treatment effect to vary with cluster size. This would be true if, for
example, the effect of the myON reading intervention was perhaps larger in
smaller schools. Below we discuss how we incorporate the different weights
into the sensitivity analysis.

If we test the hypothesis of a shift effect instead of the hypothesis of no
effect, we can apply the method of Hodges and Lehmann (1963) to estimate
the effect of being offered the myON reading program. The Hodges and
Lehmann (HL) estimate of τ is the value of τ0 that when subtracted from
Ysji makes T as close as possible to its null expectation. Intuitively, the point
estimate τ̂ is the value of τ0 such that T equals 0 when Tτ0 is computed from
Ysji−Zsjτ0. If the treatment has a constant additive effect, Ysji = yCsji + τ
then a 95% confidence interval for the additive treatment effect is formed
by testing a series of hypotheses H0 : τ = τ0 and retaining the set of values
of τ0 not rejected at the 5% level. Using constant effects is convenient, but
this assumption can be relaxed; see Rosenbaum (2003).

4.3. The Effectiveness of the myON Intervention. Next, we report the
results on the effectiveness of the myON intervention for both matches.
The causal estimand for each match is slightly different. For the match that
paired both students and schools (Design 2), the estimand pertains to the set
of schools and students for whom treatment is marginal. As such, the causal
estimand does not apply to all treated students. The school-only match
represents a true group-level estimand, as such it represents the effect of
the myON intervention on the population that attended a marginal treated
school.

Hansen, Rosenbaum and Small (2014) suggest adjusting for baseline stu-
dent covariates by applying a regression model to the matched data and
using the ranks of the residuals when Ysji is regressed on the student-level
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covariates. We regressed the outcome, reading test scores recorded after sum-
mer school, on student level test scores recorded prior to summer school. We
performed the regression analysis via Huber’s method of m-estimation. To
allow our analysis to be fully transparent, we report results for both matches
with and without regression adjustment for baseline student level test scores.

We first test the sharp null hypothesis that the myON intervention is
without effect. For the Design 1 match, without regression adjustment with
constant weights ws ∝ 1, the approximate one-sided p-value is 0.415. Us-
ing weights proportional to cluster size, the approximate one-sided p-value
is 0.456. The p-values after adjustment are 0.315 and 0.343, respectively.
Thus we are unable to reject the null that the myON intervention is com-
pletely without effect. For the Design 2 match, If we do not apply regression
adjustment and use constant weights ws ∝ 1, the approximate one-sided
p-value is 0.205. If we use weights proportional to cluster size, the approxi-
mate one-sided p-value is 0.338. The p-values for the test of the sharp null
for the regression adjusted data are very similar at 0.288 and 0.269 respec-
tively. Again, we are unable to reject the null that the myON intervention
is completely without effect.

Next, we report confidence intervals and point estimates. Table 4 contains
both point estimates and 95% confidence intervals for both the Design 1 and
Design 2 matches, with and without regression adjustment. In the absence
of bias from hidden confounders, under Design 1, without adjustment, the
point estimate is τ̂ = 4.7 with a 95% confidence interval of [−5.8, 20.5],
and 1.81 with a 95% confidence interval of [−4.2, 9.4], with adjustment. For
Design 2, the point estimate is τ̂ = 0.745 with a 95% confidence interval of
[−5, 8] without regression adjustment, and τ̂ = 1.5 with a 95% confidence
interval of [−4.2, 9.4] with regression adjustment. Under Design 1, the role of
adjustment via regression is clear as the confidence interval is much narrower.
However, under Design 2, matching on students appears to serve a similar
role. We next explore the likelihood that bias from a hidden confounder
masks a treatment effect.

4.4. Test of Equivalence and Sensitivity Analysis. Next, we apply a test
of equivalence to test the hypothesis that τ̂ is less than an educationally
meaningful effect size. This will allow us to probe the possibility that bias
from a hidden confounder is masking an actual treatment effect leaving the
analyst to conclude there is no effect when in fact such an effect exists. We
can explore this possibility by combining a test of equivalence with a sensi-
tivity analysis (Rosenbaum 2008; Rosenbaum and Silber 2009; Rosenbaum
2010).
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Table 4
Outcome estimates and confidence intervals for both matches. Estimates reported both

with regression adjustment for baseline test scores and without adjustment.

Design 1: School Only Match

Unadjusted Regression Adjusted
Point Estimate 4.74 1.81
95% Confidence Interval [-5.8, 20.5] [-4.22, 9.42]

Design 2: School & Student Match

Unadjusted Regression Adjusted
Point Estimate 0.745 1.5
95% Confidence Interval [-5, 8] [-4.24, 9.42]

Under a test of equivalence, the null hypothesis asserts H
(ι)
6= : |τ | > ι for

some specified ι > 0. Rejecting H
(ι)
6= provides a basis for asserting with

confidence that |τ | < ι. H
(ι)
6= is the union of two exclusive hypotheses:

←−
H

(ι)
0 : τ ≤ −ι and

−→
H

(ι)
0 : τ ≥ ι, and H

(ι)
6= is rejected if both

←−
H

(ι)
0 and

−→
H

(ι)
0 are rejected (Rosenbaum and Silber 2009). We can apply the two tests

without correction for multiple testing since we test two mutually exclusive
hypotheses. Thus we can test whether the estimate from our study is differ-
ent from other possible treatment effects which are represented by ι. With a
test of equivalence, it is not possible to demonstrate a total absence of effect,
but in the absence of unobserved confounders we may hope to demonstrate

that our estimated effect does not exceed ι, by rejecting H
(ι)
6= : |τ | > ι.

Next, we use a sensitivity analysis to quantify the degree to which a key
assumption must be violated in order for our inference to be reversed. We
use a model of sensitivity analysis discussed in Rosenbaum (2002, ch. 4),
which we describe below. In our study, matching on observed covariates xsji
made schools more similar in their chances of being exposed to the treat-
ment. However, we may have failed to match on an important unobserved
covariate usji such that xsj = xsj′ ∀ s, j, j′′, but possibly usj 6= usj′ . If
true, the probability of being exposed to treatment may not be constant
within matched school pairs (and hence within matched student pairs). To
explore this possibility, we use a sensitivity analysis that imagines that be-
fore matching, school j in pair s had a probability, πsj , of being exposed
to the myON intervention. For two matched schools in pair s, say j and j′,
because they have the same observed covariates xsj = xsj′ it may be true
that πsj = πsj′ . However, if these two schools differ in their unobserved co-
variates, usj 6= usj′ , then these two schools may differ in their odds of being
exposed to the myON intervention by at most a factor of Γ ≥ 1 such that
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(1)
1

Γ
≤
πsj/(1− πsj′)
πsj′/(1− πsj)

≤ Γ, ∀ s, j, j′, with xsj = xsj′ .

If Γ = 1, then πs = πs′ , and the randomization distribution for T is
valid. If Γ > 1, then quantities such as p-values and point estimates are
unknown but are bounded by a known interval. Under a test of equivalence,

we may be able to reject H
(ι)
6= : |τ | > ι if the p-value from the test is less

than some threshold, typically 0.05. Rejecting this null allows us to infer
that the estimated treatment effect is not as large as ι. We then apply the
sensitivity analysis to understand whether this inference is sensitive to biases
from nonrandom treatment assignment. In the analysis, we observe at what
value of Γ the upper-bound on the p-value exceeds the conventional 0.05
threshold for each test. If this Γ value is relatively large, we can be confident
that the test of equivalence is not sensitive to hidden bias from nonrandom
treatment assignment. The derivation for a sensitivity analysis appropriate
for test statistic T can be found in Hansen, Rosenbaum and Small (2014).

Sensitivity to hidden bias may vary with the choice of weights ws (Hansen,
Rosenbaum and Small 2014). To understand whether different weights lead
to different sensitivities to a hidden confounder, we can conduct a different
sensitivity analysis for each set of weights and correct these tests using a
Bonferroni correction. However, Rosenbaum (2012b) shows that the Bonfer-
roni correction is overly conservative and develops an alternative multiple
testing correction based on correlations among the test statistics. We use this
correction for multiple testing correction which produces a single corrected
p-value for each value of Γ.

4.5. How Much Bias Would Need to be Present to Mask an Educationally
Significant Effect?. First, we set ι to .20 of a standard deviation, which
is considered to be an educationally significant effect size in the relevant
literature. We do not present results for the test of equivalence for all four
point estimates. We only apply the test of equivalence to the unadjusted
point estimates. These are the largest and smallest estimates across both
designs, thus the results we report will bracket the tests of equivalence for
the adjusted point estimates.

First, we present the results for the unadjusted point estimate in Design
1, which is the largest of the four point estimates. If we assume that there

is no hidden bias such that Γ = 1, and test
←−
H

(ι)
0 , we find that the one-sided

p-value from this test is 0.033. We then test
−→
H

(ι)
0 , and we find that the one-

sided p-value is 0.11. Therefore, we are unable to reject the null that the
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treatment effect we observe in this study is educationally significant. Next,
we apply the test of equivalence to the unadjusted point estimate in Design
2, which is the smallest of the four point estimates. We first assume that

there is no hidden bias such that Γ = 1, and we test
←−
H

(ι)
0 and find that the

one-sided p-value from this test is 0.025. We then test
−→
H

(ι)
0 , and we find that

the one-sided p-value is 0.034. Therefore, we are able to reject the null that
the treatment effect we observe in this study is educationally significant. Is
this inference sensitive to bias from a confounder? We find that when Γ is as
small as 1.2 the p-value for the test of equivalence is 0.049. Thus if students
differed by as much as 20 percent in the odds of being treated that could
explain our inference. As such, our study’s findings are fairly sensitive to
possible bias from a hidden confounder.

5. Summary and Discussion. Here, we developed a new matching
algorithm for hierarchical or multilevel data structures. Building on pre-
vious work, we follow the strategy of first matching individuals and then,
considering these optimal individual level matches, match clusters. How-
ever, we use a more standard matching framework based on network flows
as opposed to integer programming. Although we cannot target all balance
constraints as directly as previous methods did, our algorithm is much faster
and can be more easily scaled up to large matching problems without the
use of specialized computing techniques such as parallel processing of the
matches. We also develop two versions of the algorithm. The first is designed
to closely follow the template of a group RCT and does not pair students
within schools. The second algorithm pairs both students and schools. We
think it is most applicable in contexts like the myON intervention where
the treatment only applied to a subset of students within treated schools.
Under both algorithms, analysts can choose to trim treated units to improve
balance or maintain the common support assumption.

Our application highlights some clear limitations that can arise in clus-
tered observational studies. Here, the pool of controls is fairly small, and
as a result, we are unable to produce a match where satisfactory balance
is achieved on all covariates. When this occurs, optimal subsetting of the
treated group is often the only way to reduce imbalances. When trimming
the sample, investigators should take care to communicate to readers how
the sample has changed and the population that defines the causal estimand.
Finally, we highlight how clustered observational studies often require design
choices that are absent when treatment assignment is not clustered. Criti-
cally, the choice between either Design 1 or Design 2 alters the estimand,
since pairing students will invariably trim the treated sample. Moreover,
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these design choices should be made blind to outcomes. Ideally, outcome
measures would be merged with the data after the matching is complete
(Rubin 2008).
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