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ABSTRACT OF THE THESIS

Vision Based Detection of Xylem Water Expression

by

Joshua J. Chen

Master of Science, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022

Dr. Konstantinos Karydis, Chairperson

Stem water potential (SWP) measurements are used in agriculture to determine

the water stress in crops and the optimal irrigation schedule. The current widely used

method to take such measurements is the Scholander pressure chamber due to its simplicity,

but it is labor intensive and presents potential harm to the operator if not prepared or used

properly. Automating the process of taking SWP measurements with a computer vision

control system can help increase efficiency, precision, and accuracy over the current methods,

additionally ensuring operator safety as it is unnecessary for the operator to maintain close

proximity to the chamber. This research aims to pioneer an autonomous computer vision

control system as a means to aid growers and function on the existing platform, with the

intent of eventually being widely adopted in precision agriculture.
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Chapter 1

Introduction

1.1 Motivation

Agriculture has long been a primarily manual sector, with many of its facets fea-

turing little to no automation. However within the most recent decades, efforts to improve

agriculture through the incorporation of technologies from other sectors [1] has given rise

to a more automated, precision agriculture. At the core of our research is a specific aspect

of precision agriculture, precision irrigation, which intends to optimize irrigation patterns

across various crops to generate greater yield and to reduce environmental impacts related

to water usage [2]. To optimize irrigation patterns, agronomists rely on a metric called water

potential to determine a crop’s water stress level [3, 4]. More specifically, agronomists will

measure water potential through leaf stem water potential (SWP) analysis with a pressure

chamber. The returned pressure reading at water expression is then used as a proxy for

water stress level in the crop since the pressure is an indicator of water potential [5, 6]. This

measurement then informs agronomists of the optimal irrigation schedule.

1



The process of conducting SWP analysis currently requires an agronomist to visit

an orchard and conduct measurements in-field. It is proper protocol to first bag the leaf

sample with a reflective foil bag for at least ten minutes to mitigate transpiration during

the measurement process [7]. After which, the leaf sample is excised cleanly at the stem

and placed into a pressure chamber with the xylem exposed to the atmosphere. As the

chamber pressurizes, the agronomist will manually observe water expression at the excised

xylem through a magnifying glass and note the pressure at which a water drop forms. This

entire process is labor intensive, time consuming, and presents potential bodily harm1 to the

pressure chamber operator through turning the excised xylem into a projectile or expelling

particles through the xylem into the operator’s eyes [8]. Given these grievances, it is often

that only a handful of measurements are used to quantify the state of an entire orchard,

resulting in potentially misidentifying the health of an orchard. This inefficiency is what

our work intends to resolve, through automating the SWP analysis process with a computer

vision control system.

1.2 Overview

Automating the SWP analysis process with a computer vision control system to

detect xylem water expression will increase the safety, precision, accuracy, and efficiency

over the current conventional method. This is due to the automated system not requiring

the operator to remain in close proximity to the chamber nor for the operator to input

any manual labor. Additionally, a computer vision control system has a more precise

1Chamber Safety: https://www.pmsinstrument.com/maintenance/safety/
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definition of water expression, whereas different people will have differing definitions of water

expression, so manual measurements may differ among separate agronomists. As such, this

work aims to develop a computer-vision based approach to detect water expression to help

automate part of the SWP analysis process.

We develop and test a learning-based computer vision architecture based on the

YOLOv5 object detection network. We evaluate five distinct variants of the network to

better understand the effect of various parameters and identify the setup that yields the

best results. The validity of our computer vision control system is shown through the results

yielded by two specific variants; the networks yielded mean average precision (mAP) scores

of 99.5% with nearly ideal precision and recall values on the validation set. They also

managed to classify the test set images with a success rate of 99.16%, where the test set

images are unique to both the train and validation set images, and hence not previously

seen by the network.

1.3 Organization

This thesis follows a chronological structure that resembles the workflow of the

research presented. First, the conceptual background and foundation for the work presented

herein are explained. Next, the conceptualization phase is explored, with explanations of

design decisions and details regarding hardware development. Afterwards, details regarding

collecting and processing the image dataset are presented, along with an overview of the

computer vision architecture and training process. Finally, the system validation and results

are discussed, along with plans for future developments.
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Chapter 2

Conceptual Background

This chapter presents the conceptual foundations for our research and explains the

relevance of past and alternative research endeavors in obtaining stem water potential mea-

surements. The indications of stem water potential are explained, followed by an exposition

of the pressure chamber method, alternative paths, and related computer vision topics.

2.1 Stem Water Potential

As mentioned earlier, stem water potential (SWP) is a metric agronomists rely

on for scheduling and optimizing irrigation patterns [3, 4]. It is a direct indicator of crop

health since water potential refers to the propensity for water to move along a gradient from

the soil, up the plant, and out through transpiration. Greater water potential translates

to higher water stress, meaning the plant needs hydration. There are multiple currently or

previously employed methods to measure SWP [9], with the pressure chamber being one of

the most popular and a benchmark comparison for other methods [10, 11].
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Figure 2.1: Insertion of leaf sample into reflective foil bag.

2.2 Scholander’s Pressure Chamber

The Scholander pressure chamber was first introduced in the 1960s as a means of

measuring SWP since previous methods have proved ineffective [12]. The pressure chamber

method involves inserting a leaf sample into an empty chamber, and having the stem of the

leaf protrude out of the chamber through a single interface, flanked by a rubber compression

gland or o-ring on all sides to grip and stabilize the leaf during water potential measurement.

As a general practice now, leaves are covered with a reflective foil bag (Figure 2.1)

before being excised and during the measurement process in the chamber to mitigate water

loss through transpiration and to prevent faulty SWP measurements. The difference of
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water potential, or hydrostatic pressure needed to reach the wet point, can vary 2-3 bar

between bare leaves and aluminum foil covered leaves [7] despite inserting the samples into

a pressure chamber within 30 seconds after excision. It is also now frequent to perform

these measurements during midday to early afternoon where the photosynthesis rate is

highest to minimize measurement variation and to obtain the most accurate water potential

measurements [13].

The premise for the pressure chamber method is that a sufficiently high hydro-

static pressure applied to the leaf counteracts the cells’ osmotic potential, and forces the

intracellular fluids outward towards atmospheric pressure [14, 15], in this case the excised

xylem shown in Figure 2.2. According to Boyer, this relationship can be summarized as

Ψw = P +Ψs (2.1)

where Ψw represents the osmotic potential of the plant cells, P represents the hydrostatic

pressure within the xylem, and Ψs represents the osmotic potential of solutes in the xylem

sap. This osmotic potential, or water tension, within the plant is caused by a gradient

between the soil moisture and leaf transpiration rate [3]. It is important to note that dryer

soil results in higher water tension within plants, which in turn affects the plant’s carbon se-

questration capabilities and growth rate [16]; therefore, stem water potential measurements

are greatly significant for agronomists, and our work aims to ease the process of obtaining

these measurements through an automated pressure chamber method.
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Figure 2.2: Working concept of Scholander’s pressure chamber.

2.3 Alternate Methods

Since optimizing irrigation patterns relies heavily on water potential measure-

ments, there have been some recent alternative endeavors on obtaining these metrics. The

two newly proposed methods, in addition to being non-destructive, offer scalability over the

current pressure chamber method as they can be used for fast bulk assessment of crops.

However, both methods are extremely sensitive to weather and light conditions due to the

nature of their operating principles.
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Zhao et al. proposed a new method based on employing multi-spectral cameras

on small UAVs to perform high resolution multi-spectral imaging of crops using the canopy

Normalized Difference Vegetation Index (NDVI). The multi-spectral images would then

be used for water potential prediction. However, it was mentioned that the data collected

during the same day from different flights exhibited high variability due to solar motion [17].

Another newly proposed method, by Vila et al., relies on the use of remote sensors

and spectral reflectance of the plant to measure water potential. Although initially promis-

ing, the results yielded low correlation and thus concluded the spectral reflectance method

cannot serve as a viable replacement for the pressure chamber method [18]. These spectral

based methods may not yet be fully developed and may not yet be ready for measuring

water potential, but they have provided us insight on our own xylem imaging task for our

vision model.

2.4 Computer Vision Related Works

Detecting water expression at the excised xylem requires the computer vision sys-

tem to be capable of recognizing the subtle feature variance present on the xylem cross

section. As presented later in Figure 4.2, during water expression, the sharpness, hue, and

saturation of the pith change due to moisture. Additionally, the light refraction characteris-

tics change due to the presence of the sap drop. All of these features can be detected through

a convolutional neural network (CNN) and object detector. Patel et al. demonstrated that

wetness or water drops on the surface of plants can be detected through the use of a deep

CNN with RGB colored images to a high degree of accuracy and reliability [19]. Fuentes et

8



al. presented color invariant features of tomato crop diseases that can be detected through

a CNN [20]. Building upon these findings, we opted to approach our computer vision sys-

tem with a CNN-based object detector, and relevant training image augmentations (applied

from third version onward) that help emphasize features of interest.

9



Chapter 3

Conceptualization & Hardware

Development

This chapter explores the conceptualization phase of our research, where details

and design considerations are explained in depth. Crucial points of focus for this phase

include the selection processes for the pressure chamber and cameras, as well as camera

mount design.

3.1 Pressure Chamber Choice

Our main considerations when choosing a pressure chamber were the portability

and convenience of operating the device. It was agreed that a portable chamber that can

be operated with minimal components and one that can be used for rapid prototyping of

the computer vision control system, such as data collection, would be the ideal design for

10



Figure 3.1: PMS Instruments Pump-Up Pressure Chamber (Brand: PMS Instruments).

the early phases of this research. With these constraints considered, the choice for our

pressure chamber was the PMS Instruments1 pump-up pressure chamber in Figure 3.1.

This chamber’s conservative size, portability, and ease of use allowed us to collect image

data on avocado crops easily both in-lab and in-field. It requires no electrical power or

compressed air source, as the chamber is pressurized manually by an operator pumping the

piston repeatedly. These attributes proved helpful during rapid prototyping as well when

different camera mounts were being tested on the chamber body.

1PMS Instruments: https://www.pmsinstrument.com/
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One may raise the concern of using a small pressure chamber to conduct our ex-

periments since many crops’ leaves and stems do not necessarily fit nicely into the internal

space, let alone the reflective bags that come with the pressure chamber. To this we empha-

size the focus on using only avocado crops for our experiments due to keeping the debugging

process consistent. Additionally, many of the smaller avocado leaves from our plants fit into

the chamber and the typical pressures seen by avocado (within 20 bar) [21] are within the

safe operating range of the pump-up chamber, making avocado trees an ideal crop to test

on for this research.

During the later stages of this research and subsequently our future works, another

pressure chamber model was selected for validating the combined computer vision control

system and physical system. This model is not a manual pump-up design, but rather

a suitcase type design that requires a compressed air source to pressurize the embedded

chamber. The advantages of this model over the pump-up include the higher pressure

tolerance and lack of movement, which will help the computer vision model immensely

when detecting water expression.

3.2 Camera Selection

The camera selection process involved determining a suitable camera for our xylem

imaging task. Given the diametral magnitude of the excised xylem to be approximately only

2 mm, the constraints specified cameras with close-up magnification and focal capabilities,

but with less magnifying strength than microscope cameras. Logically, we determined the

12



Figure 3.2: Endoscope Camera used for data acquisition with opaque tape modification
(Brand: Suear).

ideal candidates to have a point-blank minimum object distance [22] (MOD), that is, the

minimum distance between the object and camera for focus to be possible. The ideal MOD

we determined is within 7 cm as this precludes much of the unnecessary background in the

camera feed and results in a higher resolution of the xylem’s cross section.

The first idea that materialized was an endoscope camera, or “endocam” for short.

This camera has a minimum object distance of 2-3 cm, which satisfies our close-up MOD

requirement and also happens to be the focal range. The endoscope camera selected for

our work is shown in Figure 3.2, and features a wireless design. Although useful for the

early phase of our imaging task with the setup in Figure 3.3, it features no method to

communicate with a computer in real time to stream video feed, so it proved to be practical

for data collection only.

13



Figure 3.3: Endocam setup for data acquisition.

A more practical choice was reconsidered as we used the endocam for the first half

of data collection. Since we need the camera to communicate with a computer to stream

video data, we opted for the HQ Picamera, which is compatible with the Raspberry Pi

single board computer. The HQ Picamera in Figure 3.4 features a high resolution of 12.3

megapixels and a mount to attach C and CS mount lenses. For our work, we mounted a 16

mm telephoto lens to the HQ Picamera with magnification abilities to observe the viability

of two setups: Reverse lens macrophotography2 and Offset lens.

2Reverse Lens Macro Technique: https://dev.webonomic.nl/macro-photography-with-the-raspberry-pi-
hq-camera-and-reversing-the-lens
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Figure 3.4: High Quality Picamera (Brand: Raspberry Pi Foundation).

For the reverse lens macro setup in Figure 3.5, we attached the HQ Picamera to

a reverse mounted 16 mm telephoto lens via adapters, and connect it all to a Raspberry Pi

3B+ single board computer. This setup mounts the telephoto lens in the reverse orientation

because telescopic lenses offer great magnification abilities when mounted in reverse [23].

When testing this setup, we discovered the magnification was too great and the depth

of field was too shallow, so it was difficult to focus on the entire xylem because the xylem

exceeded the bounds of the frame and focusing the camera with an extremely shallow depth

of field proved difficult and impractical. Additionally to correct the shallow depth of field

issue, the lens aperture was increased, but this presented a lighting issue where the feed

was underexposed.

15



Figure 3.5: Reverse Lens Macro Setup with HQ Picamera.

More success was seen with the offset lens setup shown in Figure 3.6, where the

telephoto lens was mounted in the nominal orientation, but with an offset adapter between

the HQ Picamera and the lens itself. The effects of this technique include decreasing the

MOD of the camera and increasing magnification. This allowed us to mount the camera

closer to the stem and preclude most of the unnecessary background from the video frames.

An indispensable advantage the offset camera setup has over the reverse lens setup is the

ability to adjust focus easily. What resulted were highly defined and magnified images of

the xylem, perfect for training our computer vision model in the subsequent phases of the

project.

16



Figure 3.6: Final HQ Picamera setup using offset lens technique.

3.3 Camera Mount

Since both the endocam and HQ Picamera offset configurations offer excellent

xylem imaging, it was decided to use both of these setups for data acquisition. The camera

mount designed in this work considers mounting both setups on the same platform, but

separately, to reduce fabrication material usage. The Oynx 3D printed mount assembly

features two links to grip onto the removable chamber lid, two platforms screwed onto the

links to provide lateral stability, and a transitional fit interface to securely mount the endo-

cam. In addition to the endocam interface, the bottom platform component also features

four screw mounts to secure the HQ Picamera as shown in Figure 3.7.

17



Figure 3.7: HQ Picamera offset lens configuration.

In regard to the endocam setup specifically, it may seem unstable to mount the

endocam through only one platform. Despite this, the endocam does not exhibit any oscil-

latory motion and is practically rigid due to the minimal clearance in the platform interface.

Although the mount is stable, due to the nature of using a manual pump-up pressure cham-

ber to collect the data, vibrational noise can not be zero. Regardless, the preprocessing

18



steps outlined in Sec. 4.3 delete all unusable frames from the video data, and retain the

clear frames where the xylem is in focus.

An additional modification made to the endocam is the addition of opaque tape

around the camera end of the endocam, shown later in Figure 4.1. This serves as an im-

provised aperture control solution since the device features no built-in aperture control and

the LEDs are overexposing the video feed. Collecting usable data where water expression

can be easily observed requires the xylem cross section to be completely visible with no

obstructions and appropriate exposure.
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Chapter 4

Image Dataset Collection

The image dataset of this research consists of approximately 4100 images of dry

and wet xylem cross sections of avocado crops taken from 11 separate videos recorded during

stem water potential measurements with the PMS Instruments manual pump-up pressure

chamber. All videos were recorded through two different camera setups: Endocam and HQ

Picamera. Both camera setups provided excellent magnification of the xylem cross sections

from a top-down perspective and presented clear states for the computer vision model to

learn.

4.1 Collection Procedures

Dataset collection was rooted in the use of macrophotography capable cameras

or macrophotography techniques to produce magnified images of the xylem cross section,

while keeping the camera’s minimum object distance within 7cm to constrain the camera

mount to a conservative size. The videos were recorded with both the endocam and HQ

20



Figure 4.1: PMS pump-up pressure chamber retrofitted with the 3D printed endocam setup,
enabling real-time video feed of the xylem during SWP measurements.

Picamera on a 3D printed mount that fits both setups separately, and could be secured to

the top of the pump-up pressure chamber. Figure 4.1 demonstrates this with the endocam

setup used during outdoor SWP data collection.

The process of taking SWP measurements and collecting video data required fol-

lowing the procedures outlined by Meron et al [7]. The avocado leaves were bagged with

a reflective foil bag for at least ten minutes before excision. Once excised, each leaf was
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then immediately transferred to the pressure chamber for measurement to mitigate water

loss since the ambient conditions that day were hot and dry. Video recording was initiated

only after the pressure gauge displayed at least 5 bar. This was done to decrease video file

size, and subsequently make the preprocessing phase more convenient. The value of 5 bar

was chosen specifically because avocado SWP measurements typically yield values around

12 bar [21]. Table 4.1 presents the SWP pressure measurements conducted during one of

the data collection periods with ten leaves cut by one of two methods. As expected from

Sharon et al., the average SWP pressure measurements were approximately 12 bar.

Table 4.1: Stem Water Potential Measurements

Cut Method # of Leaves Avg. Pressure (Bar) Std. Dev (Bar)

Manual 5 11.34 0.96
End-effector 5 10.84 1.14

4.2 Notable Features

Upon reviewing the collected footage, we noticed that most stems exhibit partic-

ular characteristics during the onset of water expression. Most notably, the xylem’s central

region contains a profoundly white pith when dry, which desaturates into the surrounding

green hues as moisture increases at the stem’s excision. Additionally, either a sap drop or

bubbles are visible at full water expression. These notable features can be extracted and

learned by the computer vision model in differentiating dry and wet xylem states. Figure

4.2 displays these features in transition from dry to wet in juxtaposed frames from the

endocam setup.
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Figure 4.2: a) Xylem Dry State b) Xylem Transitional State c) Xylem Wet State.

4.3 Preprocessing

Preprocessing the images and videos in the dataset was necessary given the nature

of operating the pump-up pressure chamber. Although the camera mount was designed

to stabilize the camera assemblies over the chamber interface, vibrational noise was still

introduced into the videos. The noise in the videos occurred primarily at the end of each

upstroke and downstroke, when the chamber’s internal pneumatic components would collide

at their endpoints. This was inevitable for the particular pressure chamber used throughout

the majority of this research, but the noise was corrected through frame omission.

Since the dataset created in this work relies on images and not videos, the solution

to removing noise was omitting the frames where movement was present and/or the xylem

was not in focus. This was performed by using a desktop annotation tool1 to annotate or

leave void some frames within a video, after the frames had been extracted to a working

directory as images. Once all images have been labeled with a binary class label (0-Dry;

1-Wet) or left blank, a Python script developed in this work was executed to delete zero-

1 Annotation Tool: https://github.com/ManivannanMurugavel/Yolo-Annotation-Tool-New-
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area annotation files and their corresponding frames from the working directory. The result

is a folder of usable images and their corresponding annotation files that are ready to be

partitioned into training, validation, and testing sets.

Within the dataset, only specific images along the trimmed timeline for each video

are used. The images used are from only the clearly dry and clearly wet regimes, no transi-

tional (between dry and wet) regime images are used. This video trimming was performed

to enforce precision regarding the definition of the wet point. With the conventional pres-

sure chamber method, different agronomists may have slightly differing definitions on what

constitutes as the wet point in SWP analysis, so imprecision is an issue. By omitting tran-

sitional regime frames, we are standardizing and keeping the wet point definition consistent

by defining the wet point as when water expression yields a full, distinctive water drop (or

mass of bubbles) on the excised xylem surface.
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Chapter 5

Computer Vision Architecture &

Training

This chapter presents the conceptual background for the software aspect of our

work, along with details regarding the choice of our computer vision model and the training

procedures that follow. Our object detector was trained using Google Colab Tesla T4

GPUs to expedite the training process. In total, five distinctive models were trained with

varying parameters and training images, with versions 3 and onward being trained with

image augmentations.

5.1 Model Choice

Based off of the related works presented in Sec. 2.3 and Sec. 2.4, we decided to

approach the computer vision task with a convolutional neural network (CNN) based object

detector. A CNN alone would not have been appropriate for the task since we are not trying
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to classify an entire image as one of two binary classes, but rather to detect a specific region

of each image (the xylem) and recognize it as dry or wet.

The CNN based object detector model we chose to use for our computer vision

architecture is the YOLOv5 network1, developed by Glenn Jocher and the Ultralytics2 team.

It is based on the previous network version YOLOv4, but boasts faster inference speed

with similar accuracy metrics. So in addition to the high classification accuracy offered

by YOLOv4 [24], YOLOv5 offers great potential in real-time applications. Furthermore,

the YOLOv5 implementation is written in PyTorch3 [25], an open-source machine learning

framework which eases development and deployment.

5.2 Training Partition

Before training can begin, the image dataset was partitioned into training, valida-

tion, and testing sets. The training and validation sets were based off of the same xylem

images, while the testing set was based off of a separate unique set of xylem images to

simulate live inference. The ratio of the partition is approximately 80% (3232) training

images and 20% (809) validation images, along with 119 separate images for the testing set.

These metrics do not include image augmentations seen in the training of versions 3-5 of

our model. As for some training parameters, all models were trained with batch sizes of 16

images and at least 25 epochs.

1YOLOv5: https://github.com/ultralytics/yolov5
2Ultralytics: https://ultralytics.com/yolov5
3PyTorch Open Source Machine Learning Framework: https://pytorch.org/
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5.3 Augmentations

Training the final three versions of our computer vision model differed from the

previous versions with the addition of applying image augmentations to the training data.

As will be discussed in greater detail later in Sec. 6.2, the results yielded by the first two

versions of the model were subpar, and image augmentations were applied to the training

of V3, V4, and V5 to improve the performance over V1 and V2.

Augmenting training images carries many benefits, such as building a more robust

model and increasing model performance. This occurs since augmenting training images

increases the dataset size and diversity [26], leading to a more well-rounded model that

does not overfit to a particular set of situations. Both V1 and V2 exhibited this issue since

they could classify correctly only the water expression cases that they were trained on. For

cases that involved excessive bubbling or extremely subtle water expression that were not

present in the initial training sets, these two versions had immense difficulty classifying such

cases in the testing sets. However with the training of the final versions, these issues were

surmounted with the addition of more instances of unseen cases and image augmentations

as seen in the batch of training images in Figure 5.1. Additionally, mosaic augmentation

was applied to help the models recognize the xylem in potentially busier backgrounds [27]

from the endocam images.

To apply image augmentations to the training data and ensure compatible for-

matting with the PyTorch framework, we used the recently incorporated Albumentations4

library to augment the training data seamlessly for YOLOv5. The specific image augmen-

4Albumentations: https://albumentations.ai/
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Figure 5.1: A set of training batch images with augmentations for V3.

tations applied are listed below with their details and justifications of use, with Gaussian

Blur and HSV being exclusive to V4 and V5 respectively:

■ Rotation: The input image is rotated by a random angle between -90 and 90 degrees

with a probability of 0.5.

■ Flipping (Horizontal and Vertical): The input image is flipped either horizontally or

vertically with a probably of 0.5 for each augmentation.
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■ CLAHE (Contrast Limited Adaptive Histogram Equalization): The input image is

enhanced to mitigate fogginess [28] with a probability of 0.1. (0.2 for V5)

■ Random Brightness Contrast: The input image has its brightness and contrast ran-

domly adjusted. For our training, the default settings for brightness were changed

so this augmentation would not decrease image brightness, but rather only increase

image brightness with a probability of 0.15. (0.2 for V5)

■ Random Gamma: The input image is subjected to midtone contrast and brightness

adjustments randomly with a probability of 0.1.

■ Sharpen: The input image is sharpened and the result is superimposed on the original

image with low opacity. This augmentation occurs with a probability of 0.1. (0.2 for

V5)

■ Gaussian Blur: The input image is subjected to a Gaussian mask of size 3x3 to 9x9

randomly with a probability of 0.15. This augmentation is applied to only V4.

■ HueSaturationValue (HSV): The input image has its hue, saturation, and luminance

randomly shifted with a probability of 0.15. This augmentation is applied to only V5.

The typical spatial-level transforms like rotation and flipping are applied because

the orientation and appearance of every xylem is unique. Applying rotation and/or flipping

to some training instances simulates “new” xylem profiles that may be observed in a realistic

setting. The remaining augmentations are pixel-level transforms, and they are applied to

account for a more diverse range of lighting conditions that may occur during live testing.

29



Chapter 6

System Validation

This chapter presents the test results yielded by our computer vision model and

discussion of those results. In total, there are five distinctive versions of the computer vision

model, with each version generally improving upon the capabilities of the previous, except

for V4. The first two versions are not trained with augmentations, but the final three

versions are trained with several different image augmentations. Since the final versions

use training data augmentations as a regularization technique, they are more resilient to

overfitting than the first two versions. The accuracy-loss quality metrics confirm this, thus

validating our computer vision model and its potential in automating the SWP analysis

process.

6.1 Testing

Our computer vision model was tested and validated through running inference

on Google Colab and its GPUs. The testing set consists of 119 unique xylem images not
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Figure 6.1: Correctly classified ambiguous case by V3.

seen by the model during training. This was done to verify the model is robust enough for

actual live inference later on in this research endeavor. The first of the five models trained,

V1, was trained on only approximately 2400 images since this was the initial dataset in the

earlier phases of our work. The subsequent V2 was trained on approximately 2900 images,

capturing more water expression cases but still featuring no augmentations. The final

versions were trained on approximately 3200 images, capturing even more water expression

cases including the ambiguous case in Figure 6.1, and featuring a number of augmentations.

6.2 Results

6.2.1 Version 1

The results of V1 were subpar at best, scoring well on the validation set but

classifying the majority of the test set incorrectly. Initially scoring a mAP score of 99.5%
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on the validation set, V1 seemed to possess great potential, but it was extremely overfitted to

only the cases it saw during training, so it was completely lost when classifying test images.

This is explained by the lack of using regularization techniques such as augmentations, and

the limited exposure to general water expression cases during training. The immediate and

obvious solution to improve V1 was to train it with more data.

6.2.2 Version 2

To remedy the shortcomings of V1, V2 was trained for 50 epochs on more cases of

water expression with several more different xylems to combat overfitting. Much like V1,

V2 also scored highly on the validation set, with a mAP score of 99.5%, but it also was

still overfitted as it was incorrectly classifying particular cases it was not trained on, such

as the ambiguous case in Figure 6.1 where the dry and wet states feature only a subtle

Figure 6.2: V2 Quality Metrics.
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difference between them. For V2, the training loss converges at approximately 40 epochs

(Figure 6.2), and this is largely the same with the validation loss. However as mentioned,

V2 is still overfitted because when considering validation classification loss, the values do

not converge cleanly, as the loss starts to increase slightly above 40 epochs. Despite this,

V2 did experience an overall performance increase from V1 because it was able to correctly

classify some of the cases that stumped V1.

6.2.3 Version 3

V3 yielded wonderful and accurate classification results, thus becoming the first

robust model we have trained as of yet. The training and validation loss for V3 start to

converge after 20 epochs (Figure 6.3), albeit with some minor fluctuations in the training

loss due to using image augmentations as a regularization technique. In comparison to V2,

Figure 6.3: V3 Quality Metrics.
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Figure 6.4: V3 Confusion Matrix with perfect recall and precision on validation set.

V3 is not overfitted since its validation classification loss does not increase after the initial

convergence. It also attained a mAP score of 99.5% on the validation set, with perfect

recall and precision (Figure 6.4) all within 25 epochs, though in hindsight it would have

been preferred to train it for at least 45 epochs since a shorter training period may result in

a more underfitted model. Regardless, the increased robustness of V3 (and the subsequent

versions) is attributed to the training data augmentations and the training set expansion

of additional general water expression cases.
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Figure 6.5: Correctly classified dry instance of the blurry case by V3.

V3 was given 119 test images from both the endocam and HQ Picamera configu-

rations during simulated inference, and it was able to classify 118/119 test images correctly,

a high success rate of 99.16%. The misclassified image is of the blurry case (Figure 6.5).

Despite this, the model was still able to classify the other blurry case instances correctly,

albeit with a lower confidence that ranges between [0.68 − 0.80]. In addition to classify-

ing the majority of the blurry cases correctly, V3 was also able to classify the ambiguous

case (Figure 6.1) correctly, the case that the previous versions struggled to recognize subtle

changes between the dry and wet states. Another case seen frequently during our data

collection that V3 (along with V4 and V5) was trained on is the bubbly case (Figure 6.6),

where water expression resulted in a mass of white bubbles rather than a sap drop. This is

a critical case to train our model on because the mass of white bubbles could potentially be
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Figure 6.6: Correctly classified wet instance of the bubbly case by V3.

mistaken as the white pith of a dry xylem. However, misclassification on this case was not

an issue for V3 since all instances of the bubbly case were classified correctly, with decent

confidence around 0.9.

Of all test cases, the computer vision model performed the best on the HQ Picam-

era images (Figure 6.7), scoring [0.91 − 0.95] confidence on most instances. This is due to

the higher quality images the HQ Picamera is able to capture. Although all images from

both camera configurations were resized to 640x640 prior to training, the downsizing of the

high quality images retained better quality than the endocam images, so the model was

able to classify the high quality images with more confidence.
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Figure 6.7: Correctly classified instances of the HQ Picamera images by V3.

6.2.4 Version 4

The fourth version, V4, is a slightly modified retrain of V3. The modifications

include increasing the number of training epochs from 25 to 45 and applying Gaussian

Blur as an additional pixel-level image augmentation. The intent of using the Gaussian

Blur augmentation is to help the model recognize blurry or out-of-focus cases (better than

V3) that may arise from faulty SWP measurement setup by a pressure chamber operator.

However, V4 did not see the same performance (Figure 6.8) as V3 as the performance

decreased slightly, with the success rate dropping to 114/119 (95.7%) images classified

correctly. Additionally, the confidence for the correctly classified cases of V3 decreased

substantially, with previously 0.9 confident dry cases dropping to only 0.6 confident. All

misclassified images were of the blurry case, so the modification that created V4 seemed to

have backfired. The following version, V5, omits the Gaussian Blur augmentation and opts

for another, HSV augmentation.
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Figure 6.8: V4 Quality Metrics.

6.2.5 Version 5

V5 is also a slightly modified retrain of V3, with modifications including increasing

the number of training epochs from 25 to 50, increasing the probability of applying specific

augmentations, and applying the new HSV augmentation to the training data (Figure A.7).

As mentioned earlier in Sec. 4.2, some notable features in the xylem through water expres-

sion include the appearance of a sap drop or bubbles, and color changes in the pith. The

appearance of water is a color invariant feature, so HSV was applied to capitalize on this

wet state sensitivity. As for pith color variation, HSV helps highlight dry state features

more prominently, like the reddish-brown hues present in some xylems. The idea here is to

use HSV to emphasize features characteristic to either state and have the model learn to

recognize those distinctive features.
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Figure 6.9: V5 Quality Metrics.

Initially, the resulting performance of V5 (Figure 6.9) over 50 epochs of training

did not seem to yield results much better than that of V3. The classification confidence

of all cases except for the blurry case remained the same, about 0.9 confidence in general.

Contrary to our expectations, HSV augmentation initially did not seem to improve the

performance of the model since the success rate was 114/119 (95.7%). Much like V4, all

misclassified images were of the blurry case. However, a closer reexamination of the blurry

case images revealed that the dry state of the blurry case does exhibit features characteristic

to the non-bubbly wet state, such as light refraction and softer profiles. V5 classified the

dry blurry case as wet with a confidence of approximately 0.9, and while this seems to be

poor performance if considering metrics purely, the ability for V5 to recognize these features

that are characteristically wet prove otherwise. Additionally, V5 scored high, but not ideal

precision and recall (Figure 6.10), so it is less likely to be overfitted compared to V3.
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Figure 6.10: V5 Confusion Matrix.

6.3 Discussion

Of all versions of the computer vision model trained, V3 and V5 are the most

promising given their classification performances. V3 had a success rate of 99.16% and

V5 had a success rate of 95.7%. On paper it seems that V3 is the better model, but V5 is

more consistent with identifying characteristically wet features (Sec. 6.2.5) and V3 identified

the dry blurry cases correctly. Given this detail and the ideal precision and recall on the

validation set, V3 may be slightly overfitted to recognize specific cases, and can’t predict

as well as V5 in the general sense. Regardless, both V3 and V5 will be used for our next

evaluation steps including live inference with a static pressure chamber.
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Chapter 7

Conclusions and Future Work

This chapter concludes the research presented herein and discusses some directions

and ideas for future continuation of the automated SWP analysis project. Some future

plans already discussed with the Agricultural Robotics (Agrobotics) project group include

continued development and refinement of the system presented herein on a larger, static

pressure chamber, and the integration of the system with the other projects on the Clearpath

Robotics UGV platform, Husky1.

7.1 Conclusions

We were successful in developing a computer vision model for a control system in

the grander goal of automating the SWP analysis process. The final versions of the computer

vision model, namely V3 and V5, attained mAP scores of 99.5% on the validation set and

high precision and recall. V3 classified the testing set with a success rate of 99.16% and V5

1Husky UGV from Clearpath Robotics: https://clearpathrobotics.com/husky-unmanned-ground-vehicle-
robot/
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with a success rate of 95.7%. Both versions of the model have merit, with V5 possessing an

edge over V3 due to its additional HSV augmentations, despite having a lower classification

success rate. Between the two model versions, V5 also is more consistent in recognizing

characteristically wet features in the dataset than V3. Our models are robust since they

were capable of discerning dry and wet states from multiple different cases likely to be seen

in a real-world scenario. This proves the validity of our system and its potential to automate

the SWP analysis process.

7.2 Future Work

7.2.1 Inference and Development on Static Pressure Chamber System

The immediate future will involve running live inference with the models on a

static pressure chamber setup and refining the system so detection can occur real-time. We

emphasize the use of a static pressure chamber here because it will provide much needed

stability when conducting SWP measurements, unlike the pump-up chamber used for data

collection. Additionally, the static design offers higher maximum operating pressure limits

to permit the analysis of a wider range of crops.

The general direction for development on the static pressure chamber system is

to design a new camera mount for the HQ Picamera setup, and devise a method to feed

pressure measurements to the Raspberry Pi. These pressure measurements can be collected

from an embedded pressure sensor in the chamber, and they function as either the detected

SWP value at water expression or a threshold to release air pressure from the chamber
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Figure 7.1: Static pressure chamber concept for computer vision control system to be inte-
grated with.

to prevent overpressurization. The system concept is summarized in Figure 7.1, where

the solenoid valves are controlled to permit airflow in or out of the chamber based on the

readings from the pressure sensor and the detection state of the computer vision system.

7.2.2 Incorporation with other Agrobotics Systems

Once the live inference system functions and is refined, the computer vision control

system will be incorporated with the other subsystems under Agrobotics, including the

leaf cutter end-effector system through ROS2 nodes. The intent is to have these systems

coordinate with each other on the Husky UGV platform to enable in-situ field testing of a

truly autonomous SWP measurement system.

2ROS (Robot Operating System): https://www.ros.org/
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Appendix A

Supplementary Material

A.1 Version 3

Figure A.1: V3 Precision.
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Figure A.2: V3 Recall.

Figure A.3: V3 mAP Score.
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A.2 Version 5

Figure A.4: V5 Precision.

Figure A.5: V5 Recall.
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Figure A.6: V5 mAP Score.

Figure A.7: Training batch images for V5.
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