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Enhanced Carbon Flux Response to Atmospheric Aridity
and Water Storage Deficit During the 2015–2016 El Niño
Compromised Carbon Balance Recovery in Tropical South
America
Junjie Liu1,2 , Kevin Bowman1,3 , Paul I. Palmer1,4 , Joanna Joiner5 , Paul Levine1 ,
A. Anthony Bloom1, Liang Feng4,6, Sassan Saatchi1 , Michael Keller1,7 , Marcos Longo1,8 ,
David Schimel1 , and Paul O. Wennberg2

1NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2California Institute of
Technology, Pasadena, CA, USA, 3Joint Institute for Regional Earth System Science and Engineering, University of
California Los Angeles, Los Angeles, CA, USA, 4National Centre for Earth Observation, University of Edinburgh,
Edinburgh, UK, 5Goddard Space Flight Center, Greenbelt, MD, USA, 6School of GeoSciences, University of Edinburgh,
Edinburgh, UK, 7USDA Forest Service, International Institute of Tropical Forestry, San Juan, PR, USA, 8Now at Climate
and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract During the 2015–2016 El Niño, the Amazon basin released almost one gigaton of carbon (GtC)
into the atmosphere due to extreme temperatures and drought. The link between the drought impact and
recovery of the total carbon pools and its biogeochemical drivers is still unknown. With satellite‐constrained net
carbon exchange and its component fluxes including gross primary production and fire emissions, we show that
the total carbon loss caused by the 2015–2016 El Niño had not recovered by the end of 2018. Forest ecosystems
over the Northeastern (NE) Amazon suffered a cumulative total carbon loss of ∼0.6 GtC through December
2018, driven primarily by a suppression of photosynthesis whereas southeastern savannah carbon loss was
driven in part by fire. We attribute the slow recovery to the unexpected large carbon loss caused by the severe
atmospheric aridity coupled with a water storage deficit during drought. We show the attenuation of carbon
uptake is three times higher than expected from the pre‐drought sensitivity to atmospheric aridity and ground
water supply. Our study fills an important knowledge gap in our understanding of the unexpectedly enhanced
response of carbon fluxes to atmospheric aridity and water storage deficit and its impact on regional post‐
drought recovery as a function of the vegetation types and climate perturbations. Our results suggest that the
disproportionate impact of water supply and demand could compromise resiliency of the Amazonian carbon
balance to future increases in extreme events.

Plain Language Summary The carbon storage in tropical South America (SA, 15°S− 10°N) is
equivalent to approximately one third of the carbon currently residing in the atmosphere. The future durability
of this carbon reservoir is very uncertain, contributing significantly to the uncertainties of the global carbon
cycle predictions. The soil and the overlying atmosphere of tropical SA is expected to become drier in the future
so it is critical we understand how the carbon cycle will respond to this combined atmospheric and soil drought.
Using several carbon flux quantities that are constrained by satellite observations, we quantified the recovery of
total carbon loss after the 2015–2016 drought at regional scale. Our work sheds light on how the combined effect
of atmosphere dryness and soil drought exacerbates the impact of either atmosphere dryness or soil drought
alone and delays the recovery of total carbon storage after the drought. Consequently, our study suggests that
tropical SA may eventually become a source of carbon to the atmosphere due to increasing drought events and
decreasing soil water storage, instead of its current net carbon‐neutral state.

1. Introduction
With the carbon storage equivalent to approximately one third of the carbon currently residing in the atmosphere
(S. S. Saatchi et al., 2011), tropical South America (SA, 15°S− 10°N) is a primary contributor to the uncertainties
of the global carbon cycle predictions (Bonan et al., 2019) (IPCC AR5, Chapter 6). The large carbon stock and
poor understanding of the sensitivity of biogeochemical processes to climate stressors highlight the need to better
understand the carbon dynamics over the region. In response to the 2015–2016 El Niño, this region experienced
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high temperatures coupled with one of the most severe and enduring droughts on record (Jimenez et al., 2018).
Compared to the previous 2005 and 2010 Amazonian drought, the drought‐stricken area was most widespread in
2015–2016. The associated reduction of above ground biomass due to this drought had not recovered by the end of
2017 (Wigneron et al., 2020); at which time it is also unclear whether the total carbon loss (including both the
above and below ground biomass and soil carbon) had recovered. In spite of a rich literature that has investigated
the impact of drought and its recovery on the above ground biomass with plot and remote sensing data over the
Amazon (Lewis et al., 2011; Phillips et al., 2009; S. Saatchi et al., 2013), studies that quantify the recovery of total
carbon loss after drought at regional scale are largely absent from the literature. As the 2015–2016 drought was
such a large perturbation to the ecosystem, it is critically important to understand the link between the drought
impact and recovery of the total carbon pools and its biogeochemical drivers.

While precipitation is a key measure of drought, the balance of water supply indicated by total water storage
(TWS) and atmospheric water demand represented by vapor pressure deficit (VPD; difference between saturation
and actual water vapor pressure) can have a more direct impact on plant functioning (Sulman et al., 2016). In
particular, increasing VPD tends to suppress photosynthesis and stimulate transpiration over wet tropics
(Grossiord et al., 2020). While ground water can act as a buffer on atmospheric demand, under prolonged or
severe drought, TWS could be greatly reduced. High VPD coupled with large reductions in TWS can accelerate
tree mortality through either hydraulic failure or carbon starvation (Bonal et al., 2016; Breshears et al., 2013).
Over tropical SA, VPD has increased in recent decades (Barkhordarian et al., 2019) and is projected to continue
increasing (Jensen et al., 2020), while TWS is projected to decrease (Y. Pokhrel et al., 2021). Consequently, it is
crucial to enhance our understanding of how the sensitivity of carbon fluxes to atmospheric aridity can change,
particularly in conjunction with TWS anomalies, and how these factors collectively contribute to carbon flux
anomalies during drought and subsequent recovery. Assessing these aspects is essential for mitigating un-
certainties associated with carbon‐climate feedbacks (Barkhordarian et al., 2021; Cook et al., 2019; Ukkola
et al., 2020).

The tropical SA exhibits a remarkable diversity of plant types, shaped by varying mean climates and a complex
history of human impact. Covering about two‐thirds of the area, the Amazon rainforests boast a significantly
wetter climate compared to the Cerrado region, which occupies most of the remaining one‐third and is charac-
terized by savannas and dry forests. Recent trends in deforestation rates highlight contrasting patterns between
these regions, with the Amazon experiencing a decrease in deforestation while the Cerrado is seeing an alarming
increase, primarily due to demographic pressures and expanding agriculture. Furthermore, the role of fires in
these ecosystems differs substantially; while fire is not a natural disturbance mechanism in the Amazon, the
Cerrado has evolved with fire‐adapted vegetation and is naturally prone to fires. Even within the Amazon, there
are pronounced variations in drought severity in 2015–2016. For instance, the northeast region experienced the
most severe drought in 2015–2016 (Jiménez‐Muñoz et al., 2016) and is predicted to become significantly drier
compared to the rest of the Amazon (Baker et al., 2021). These distinctions suggest that the response of these
regions to droughts and subsequent recovery would be regionally distinct (Stuart‐Haëntjens et al., 2018). To better
understand these nuances and dependencies, we divide tropical South America into three sub‐regions: (a) the
northeast (NE‐Amazon) and (b) the west and southwest (WSW‐Amazon) moist tropical rainforest, and (c) the
southeast dry tropical forest and savanna (SE‐Savanna) (Figure S1 in Supporting Information S1). The NE‐
Amazon includes those grid points over the northeast part of the Amazon Forest that have annual mean pre-
cipitation less than 5 mm/day and the VPD variability more than 0.4 hPa, with a few exceptional points over each
region to ensure continuity (Figures S1 and S2 and Table S1 in Supporting Information S1). The SE‐Savanna
includes the Cerrado region. Among these three regions, the precipitation variability in the NE‐Amazon has
the highest correlation (r = 0.6) with the Oceanic Nino index, implying a stronger teleconnection with El Nino
Southern Oscillation (ENSO) cycle, while the SE‐Savana has the lowest correlation (r = 0.2).

Previous studies assessing the impact of drought and its recovery in the Amazon have primarily relied on pre-
cipitation throughfall experiments (Brando et al., 2019; da Costa et al., 2010; Meir et al., 2009), along with limited
plot data and aboveground biomass data inferred from remote sensing (Lewis et al., 2011; Phillips et al., 2009;
S. Saatchi et al., 2013; Wigneron et al., 2020). Satellite‐based net biosphere exchange (NBE, the net carbon flux
from all land–atmosphere exchange processes except fossil fuel emissions) and its component fluxes provide a
complementary viewpoint allowing us to quantify total carbon pool changes at the subregional scale over tropical
SA. Using 9‐years (2010–2018) of monthly satellite‐constrained NBE estimates and their component fluxes (i.e.,
Gross Primary Production (GPP), ecosystem respiration and wildfire emissions), we aim to address the following
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scientific questions: (a) Has the total carbon loss caused by the 2015–2016 El Niño recovered by December 2018?
(b) Has the response been enhanced by the compound effect of atmospheric aridity and water storage deficit? (c)
How does the carbon cycle response to synergistic anomalies in water supply and atmospheric water demand
during drought and recovery vary among the three sub‐regions and what biophysical processes cause these
differences among sub‐regions? By investigating the heterogeneity of carbon cycle responses to drought and
recovery and examining the dependency of carbon‐climate sensitivities on climate perturbations and vegetation
types in these sub‐regions, we aim to gain deeper insights into the complex dynamics of these ecosystems. Our
understanding of the 2015–2016 drought impact caused by El Niño may also offer valuable perspectives into the
effect of the current (2023–2024) Amazonian drought on the carbon cycle.

2. Materials and Methods
2.1. Observation‐Constrained NBE, Fire, GPP and Proxies, and Total Ecosystem Respiration

Carbon fluxes used in this study including NBE, GPP, and fire emissions have previously been described in detail
(Bowman et al., 2017; Joiner et al., 2018; Liu et al., 2020; Palmer, Feng, & Baker, 2019). We used two NBE
products inferred from atmospheric top‐down flux inversions, CMS‐Flux‐NBE 2020 (Liu et al., 2020) and
GEOS‐Chem‐EnKF (Palmer, Feng, Baker, Chevallier, et al., 2019), constrained by satellite column CO2 (XCO2)
retrievals from GOSAT (version ACOS v7.3) and OCO‐2 (version b9) (O’Dell et al., 2018); both products cover
January 2010–December 2018. CMS‐Flux estimates NBE and its uncertainty with a 4D‐Variational (4D‐Var) and
aMonte Carlo method (Liu et al., 2014, 2020), while GEOS‐Chem‐EnKF calculates NBE and its uncertainty with
an ensemble Kalman filter (Feng et al., 2009; Palmer, Feng, Baker, Chevallier, et al., 2019). Both top‐down
inversion methods utilize atmospheric transport model GEOS‐Chem to link surface carbon fluxes with atmo-
spheric CO2 concentration and adjust the assumed prior fluxes to best match the observed CO2 concentration,
given the prescribed uncertainties in both observations and prior fluxes. Both CMS‐Flux and GEOS‐Chem‐EnKF
have been extensively evaluated against independent aircraft observations (Liu et al., 2020). We calculated the
mean NBE of these two products, with its uncertainties equal to the squared sum of the estimated uncertainties
from both products.

We estimated CO2 fluxes from fire and their uncertainty with the CMS‐Flux inversion system (Bowman
et al., 2017; Liu et al., 2017) by assimilating carbon monoxide (CO) retrievals from MOPITT (Deeter, 2018). CO
is an excellent tracer for fire carbon emissions because of its relatively shorter lifetime (about a month) than CO2.
The estimated fire CO emissions were converted to CO2 emissions using the CO2:CO emission ratios derived
from field and lab experiments (Bowman et al., 2017; Liu et al., 2017). Both fire CO2 fluxes and posterior NBE
are monthly temporal resolution at 4° (latitude) × 5° (longitude) spatial resolution.

We used the daily FluxSAT GPP product (Joiner & Yoshida, 2020; Joiner et al., 2018), which was generated
by a machine learning method using GPP data from flux towers (Pastorello et al., 2020), MODIS reflectance,
solar induced chlorophyll fluorescence (SIF) from TROPOMI, and ancillary meteorological data that includes
2‐m temperature, humidity and surface pressure (from MERRA2 reanalysis). The uncertainty in GPP assigned
by FluxSAT reflects the differences between the predicted GPP from the machine learning algorithm and the
GPP measurements obtained at the flux tower sites (Joiner & Yoshida, 2020). The product captures the daily,
seasonal, and interannual variability of GPP measurements from flux towers. To further support the analysis
based on FluxSAT GPP, we also analyzed OCO‐2 SIF measurements (September 2014‐onward), MODIS
NIRv, and GPP from the one Amazon flux tower site that had a drought event lasting longer than 12 months.
SIF is a by‐product of photosynthesis, and has been shown to be linearly correlated with GPP on monthly
time scale (Frankenberg et al., 2011; Sun et al., 2017) and with NBE over the Amazon (Parazoo et al., 2013).
NIRv is the product of the normalized difference vegetation index (NDVI) and near infrared reflectance.
NIRv explains a large fraction of the variance of GPP on monthly to annual time scales (Badgley et al., 2017;
Ryu et al., 2019).

Following Liu et al. (2017) and Bowman et al. (2017), we calculated the total ecosystem respiration (TER) as:

TER = NBE + GPP − fire (1)

TER, GPP, and fire are always positive, and positive NBE means releasing carbon from the biosphere to the
atmosphere.
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We regridded all the quantities to 4° (latitude) × 5° (longitude) spatial resolution before we calculated regional
values over NE‐Amazon, WSW‐Amazon, and SE‐Savanna using the same regional mask. We calculated the
monthly climatology of carbon fluxes and the climate states using data between January 2010 and December
2018. The carbon flux anomalies represent the differences between monthly values and the monthly climatology,
capturing the impacts of climate as well as other factors like forest degradation and human disturbances, which
can also vary with climate perturbations. Understanding the interplay between these factors and the drought’s
impacts and recovery is crucial, but it requires data with much higher spatial resolution than what was used in this
study.

We leveraged several satellite‐constrained GPP, NBE, and fire emission data products that have been validated
and calibrated in previous studies. Though validation of these data sets in representing regional carbon flux
anomalies in tropical SA seemed to be lacking due to absence of ground truth at regional scales, whenever
possible, we analyzed independent data sets throughout the paper to support the conclusions drawn from these
data sets. For example, we showed that the conclusions drawn from GPP data are qualitatively consistent with
those from SIF and GPP at a flux tower site. Satellite observations from multiple sources have become instru-
mental in understanding the impact of extreme events on carbon cycle from earth system standpoint. Yet, how to
validate these satellite‐derived fluxes at regional scales is still challenging, primarily due to the scale mismatch
between site‐level observations and regional impact of extreme events. Careful design of field experiments and
ground site locations that are more representative of regional ecosystem function may pave the path for future
validations of regional carbon fluxes.

2.2. The Timing of the 2015–2016 Drought Stages

The response of climate states and the resultant changes in terrestrial biosphere carbon fluxes over tropical SA
generally lag sea surface temperature (SST) anomalies over the tropical Pacific Ocean during El Niño events
(Kumar & Hoerling, 2003). We define the drought stages using a combination of the monthly FluxSAT GPP
anomalies and the Nino 3.4 index (the mean SST anomaly over 5°N–5°S, 170°W–120°W).

Based only on Nino 3.4, the 2015–2016 El Niño started in April 2015 and ended in April 2016, when the Nino 3.4
exceeded 0.5°C for a period of six months or more. Putting that into the context of GPP anomalies, we define the
start of the 2015–2016 drought as the first month when the regional GPP anomaly was negative for a period of at
least 4 months between April 2015 and April 2016, and the ending of the 2015–2016 drought as the first month
that the GPP anomaly was positive for a period of at least 4 months following the maximumNino 3.4 index. Based
on this refined definition, the starting and ending month of 2015–2016 drought depends on region (Table S3 in
Supporting Information S1). Defining drought periods using precipitation anomalies produced results similar to
using GPP (Figure S2 in Supporting Information S1), with discrepancies of less than 2 months. However, using
GPP to define drought aligns better with the carbon cycle’s response to climate extremes (Frank et al., 2015), as it
can capture ecosystem responses to both water supply and atmospheric water demand anomalies. In contrast,
defining drought using soil moisture or cumulative precipitation deficit anomalies may overlook GPP anomalies
caused by atmospheric aridity.

The post‐drought period extended from the end of the drought to December 2018. Finally, we defined the pre‐
drought from May 2012 until the start of the 2015–2016 drought. May 2012 was chosen as it was the first
month after January 2010 that had an absolute Nino 3.4 index less than 0.5 (i.e., normal).

2.3. Changes of Carbon—Climate Sensitivities as a Function of Climate Anomalies and Their
Contributions to Carbon Flux Anomalies During Drought and Post‐Drought

To investigate whether the response of carbon flux to climate anomalies depend on the magnitude of climate
anomalies, we calculated the sensitivities of carbon flux anomalies to climate state anomalies, including VPD,
temperature, precipitation, and TWS, by fitting a linear model between monthly regional mean carbon flux
anomalies (ΔC) and the monthly regional mean climate state anomalies (ΔM) at each drought stage (s)—pre‐
drought, drought, and post‐drought:

ΔC = fr,s(ΔM) = ar,s ΔM + br,s (2)
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where ΔM represents monthly climate state anomalies (e.g., VPD) relative to
a monthly climatology calculated over 2010–2018 for each region (Figure 1);
ar,s is the fitted linear slope at region r for drought stage s, and br,s is the
corresponding intercept (Figure 1). We define the sensitivities of carbon flux
anomalies to climate anomalies as a function of drought stage following
Novick et al. (2016). We delineate carbon flux‐climate sensitivities by soil
moisture magnitude, effectively isolating the impacts of soil moisture vari-
ability from other climate states on the interannual variability of carbon
fluxes. Values of br,s represent the regional reference carbon flux anomalies
that correspond to soil water anomalies during different drought stages.
Values for the slope ar,s denote the sensitivity of carbon fluxes to climate
anomalies ΔM. If the reference carbon flux anomalies are independent of
drought stages and the sensitivity of carbon flux anomalies to climate
anomalies remain constant with time, ar,s and br,swould be the same across all
drought stages. Otherwise, the response of carbon cycle to drought and re-
covery would depend on both climate anomalies and the changes of reference
carbon flux anomalies due to water availability (Figure 1). The sample size
for the linear fits is the same as the number of months during each drought
stage over each region (Table S5 in Supporting Information S1).

We calculated the contributions of the changes in carbon—climate sensitiv-
ities to the drought response ΔCvaried

drought as:

ΔCvaried
drought= ΔCdrought

drought − ΔCconstant
drought , (3)

where ΔCdrought
drought is the carbon flux anomalies calculated from the linear

carbon‐climate sensitivity relationship derived for the drought period
fdrought(∆M), (Figure 1). It can be written as:

ΔCdrought
drought = fdrought (∆(M)drought) = adrought∆(M)drought + bdrought (4)

where bdrought represents reference carbon flux anomalies during drought, and adrought∆(M)drought represents

carbon flux anomalies due to climate anomalies ∆(M)drought. We use ∆Cslope
drought to represent adrought∆(M)drought and

∆Creference
drought to represent bdrought in Table S4 of the Supporting Information S1.

ΔCconstant
drought represents carbon flux anomalies due to drought, assuming a stable carbon‐climate sensitivity and an

unchanged reference carbon flux anomalies state (i.e., under pre‐drought carbon‐climate sensitivity fpre(∆M)),
and ΔCconstant

drought can be written as:

ΔCconstant
drought = fpre (∆(M)drought)= apre∆(M)drought + bpre. (5)

Then ΔCvaried
drought can be further written as the sum of two terms:

ΔCvaried
drought = (adrought − apre)∆(M)drought + (bdrought − bpre), (6)

where the first term, (adrought − apre)∆(M)drought, represents the carbon flux anomalies from changing sensitivities
to climate anomalies (∆M), and the second term (bdrought − bpre) represents changes in reference carbon flux
anomalies between drought and pre‐drought. Here we simplify the notations by dropping region index r, since we
use the same equations for all three regions.

Following the same strategy, we calculated the contributions of the changes in carbon—climate sensitivities to the
drought recovery as:

Figure 1. Schematic diagram to illustrate the impact of sensitivity changes on
carbon flux anomalies during drought. ΔCdrought

drought is the carbon flux anomalies
due to the drought climate anomalies and the carbon‐ sensitivities derived for
the drought period fdrought(∆M). ΔCconstant

post represents what carbon flux
anomalies would be during drought under pre‐drought carbon‐climate
sensitivity fpre(∆M). ΔCvaried

drought represents the carbon flux anomalies from
changing sensitivities to climate anomalies (∆M) and changes in reference
carbon flux anomalies (bdrought − bpre) between drought and pre‐drought.
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ΔCvaried
post = ΔCpost

post − ΔCconstant
post (7)

where ΔCpost
post is the carbon flux anomalies due to the post‐drought climate anomalies and the carbon‐ sensitivities

derived for the post‐drought period. It can be written as:

ΔCpost
post = fpost (∆(M)post) = apost∆(M)post + bpost (8)

and ΔCconstant
post represents what carbon flux anomalies would be during post‐drought under pre‐drought carbon‐

climate sensitivity fpre(∆M). Similarly as Equation 6, ΔCvaried
post can be written:

ΔCvaried
post = (apost − apre)∆(M)post + (bpost − bpre) (9)

A value of zero ΔCvaried
drought or ΔC

varied
post means that the sensitivity of carbon flux anomalies to climate anomalies does

not change between the different drought stages and the reference carbon flux anomalies are not a function of
drought stages (Figure 1). A nonzero value of ΔCvaried

drought or ΔC
varied
post indicates that carbon cycle response to drought

and recovery is not only a function of climate anomalies ∆(M), but also a function of the changes in carbon‐
climate sensitivities.

2.4. BR‐Sa3 Site Description and Data Set

The BR‐Sa3 locates within the NE‐Amazon region (3.02°S, 54.98°W), which is within LBA‐ECO flux tower
network. The data is available at (Saleska et al., 2013). In our analysis, we used the monthly VPD (VPD_F), GPP
(GPP_NT_VUT_REF) and soil water content (SWC_F_MDS_1) stored in the full set data set that covers January
2000–December 2004.

2.5. Evaporation, Transpiration, Water Use Efficiency, and Land‐Atmosphere Coupling

We further analyzed evaporation and transpiration data from GLEAM 3.5a (Martens et al., 2017) (https://www.
gleam.eu/), and calculated the squared Pearson correlation coefficient (R2) between evapotranspiration (ET)
anomalies and VPD anomalies for each drought stage over the three regions. GLEAM calculated ET as a product
between evaporative stress factor and potential evaporation. The evaporative stress factor was based on obser-
vations of the microwave Vegetation Optical Depth (VOD) and estimates of root‐zone soil moisture. Potential
evaporation was based on observations of surface net radiation, near surface air temperature, and wind. The
microwave observations made the GLEAM data set advantageous over tropical regions more influenced by
clouds (Miralles et al., 2020; Salazar‐Martínez et al., 2022). Evaluation against ET products from eddy covariance
towers showed that GLEAM ET has comparable or better performance than other available ET products over the
tropics and SA (Melo et al., 2021; Salazar‐Martínez et al., 2022). Furthermore, we only used ET interannual
variabilities in this study which is more robust among different remote‐sensing‐based ET products than the
absolute estimates (Pan et al., 2020).

We further calculated water use efficiency (WUE) as the ratio between GPP and transpiration, which describes the
carbon fixed through photosynthesis by terrestrial ecosystems relative to the water lost through transpiration. The
changes of WUE reflect the adaptive strategies to drought stress. Increasing WUE during drought can be an
indicator of drought adaptation (Yang et al., 2016).

Evapotranspiration reflects water supply from the land surface, while VPD represents atmospheric dryness. Both
quantities are influenced by temperature and precipitation, but changes in either ET or VPD can also affect the
other, creating a land‐atmosphere feedback loop. For instance, an increase in ET can lead to a decrease in VPD,
whereas an increase of VPD may result in higher ET. Therefore, a higher value of R2 between ET and VPD
signifies more pronounced interactions between land processes and atmospheric dryness. This suggests that R2

between ET and VPD can indicate the strength of the land‐atmosphere coupling and feedbacks (Humphrey
et al., 2021).
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3. Results
3.1. The Response of Tropical SA Biosphere Carbon Cycle to the 2015–2016 Drought and Recovery

Our top‐down NBE estimates indicate that the tropical SA land as a whole was close to carbon neutral
(− 0.01 ± 0.16 GtC/year) for the full study period 2010–2018 (Table S2 in Supporting Information S1), with
annual fire emissions equal to 0.22± 0.03 GtC/year and the net ecosystem exchange (NEE=NBE − fire) equal to
− 0.21 ± 0.03 GtC/yea. This result is broadly consistent with the 0.29 ± 0.40 GtC/year net carbon flux estimate
based on aircraft observations during the same time period (Gatti et al., 2021) and the bottom up inventories
(Harris et al., 2021; Hubau et al., 2020; Phillips et al., 2017; Xu et al., 2021). Similar to the aircraft inversion
results (Gatti et al., 2021), we find that the close‐to‐carbon‐neutral tropical SA land is due to the compensation of
carbon source over the northeast Amazon and the net carbon sink over the west Amazon (Table S2 in Supporting
Information S1).

The 2015–2016 drought greatly reduced GPP and increased the net carbon release into the atmosphere across
the three study regions (Figure 2). The loss of total carbon pools, measured as cumulative changes of NBE
since the start of drought, had not been balanced by carbon uptake so that the cumulative emissions are positive
over the NE‐Amazon and SE‐Savanna, but had recovered over the WSW‐Amazon by the end of 2018
(Figure 2). This corresponds to different characteristics of drought over these three regions. The length of
drought was comparable between the NE‐Amazon and the WSW‐Amazon, while the SE‐Savanna experienced a
longer drought period (Table S3 in Supporting Information S1). The NE‐Amazon had the strongest increase in
VPD and largest reductions in TWS during the drought, as precipitation was anomalously negative even before
the start of 2015–2016 El Niño. Conversely, the WSW‐Amazon had the weakest increase in VPD and smallest
reductions in TWS, resulting from the above‐average precipitation before the start of drought and a weaker
precipitation anomaly during the drought (Figure S2 in Supporting Information S1). Consequently, among the
three regions, the WSW‐Amazon had the weakest cumulative reduction in GPP (− 0.26 ± 0.11 GtC) and the
smallest cumulative increase in NBE (0.16 ± 0.08 GtC) during the drought (Figure 2 and Table S4 in Sup-
porting Information S1). It is also where the recovery of the total carbon pool was the fastest (Figure 2b). By
December 2018, the accumulated NBE anomaly was close to zero (− 0.07 ± 0.16 GtC accumulated NBE). In
contrast, the NE‐Amazon had a 0.62 ± 0.09 GtC cumulative increase in NBE and 0.51 ± 0.16 GtC cumulative
reduction in GPP during the drought (Figure 2a). The cumulative NBE and GPP anomaly were − 0.03 ± 0.12
and 0.23 ± 0.09 GtC, respectively, during the immediate post drought period (Table S4 in Supporting Infor-
mation S1). The cumulative NBE anomaly was 0.59 ± 0.16 GtC during April 2015–December 2018, indicating
that although the NBE and GPP fluxes returned to pre‐drought levels by 2017 (Figure 2), the total carbon pools
lost during the drought were not fully recovered by the end of 2018. The much faster recovery of ecosystem
carbon fluxes than the biomass carbon pools were also observed in previous controlled burned experiments in
Amazon (Brando et al., 2019). Note here we approximate the total carbon pool changes as cumulative NBE,
ignoring the impact of changes of lateral carbon transport on the changes of carbon pools.

Over the SE‐Savanna, the cumulative NBE anomaly was 0.25 ± 0.08 GtC during drought. Both GPP and
total ecosystem respiration (TER) were reduced, with cumulative GPP reduced by 0.51 ± 0.11 GtC and
cumulative TER reduced by 0.36 ± 0.20 GtC (Figure 2c). The fire anomaly was also the largest, with the
cumulative 0.08 ± 0.01 GtC fire carbon emission during September 2015–June 2017, much larger than the
0.01 and − 0.04 GtC cumulative fire carbon emission anomaly over the NE‐Amazon and WSW‐Amazon
respectively. The cumulative NBE anomaly was − 0.12 ± 0.03 GtC during the recovery period, and the
cumulative NBE anomaly was 0.13 ± 0.16 GtC during September 2015–December 2018 (Figure 2c),
implying that the total carbon stocks did not recover by the end of 2018. Since decreases of GPP and TER
canceled each other to a large degree over the SE‐Savanna, the cumulative NBE anomaly was dominated by
the carbon loss from fire.

The cumulative NBE over the whole tropical SAwas 0.65± 0.28 GtC by December 2018, indicating that the total
carbon loss had not yet recovered to pre‐drought conditions driven largely by GPP suppression in the NE‐Amazon
(Figure 2).

AGU Advances 10.1029/2024AV001187

LIU ET AL. 7 of 18

 2576604x, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024A

V
001187, W

iley O
nline L

ibrary on [11/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Figure 2.
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3.2. The Dominant Role of the Increased Sensitivities of Carbon Fluxes to Extreme Climate Anomalies in
the Response to the 2015–2016 Drought and Recovery

The recovery of the carbon cycle from the drought is in part a function of the climate forcing along with the
initial carbon and hydrological state (Bloom et al., 2020). However, as this climate forcing becomes more
extreme, the coupling between these processes could change (Brando et al., 2019; Frank et al., 2015; Fu
et al., 2020). To quantify the contributions of changing carbon‐climate sensitivities to the drought response and
recovery, we first calculate carbon‐climate sensitivities by linear regression of carbon flux anomalies against
climate driver anomalies at three stages of drought (i.e., pre‐drought, drought, and post‐drought). With a
stepwise multi‐variable linear regression, we found that VPD anomalies (∆VPD) explain most of the inter-
annual variability (IAV) in GPP anomalies (∆GPP). The relationship between ∆ GPP and temperature
anomalies are not significant (p > 0.05) given constant VPD during pre‐drought and drought in all three re-
gions, as reflected in the small changes in R2 when we add temperature anomalies in the linear regression
(Figure S3 in Supporting Information S1).

We therefore focus on changes in the sensitivities of ∆C to ∆VPD and the reference carbon flux anomalies from
changes in water storage anomalies derived from the univariate linear regressions over these three periods
(denoted as γcVPD). This allows us to discuss the synergistic effect between atmosphere aridity and water storage
deficit at different drought stages. We quantify the impact of the changes in carbon‐climate sensitivities on carbon
flux anomalies by calculating what the carbon flux anomalies would be during the drought and recovery period
using pre‐drought γcVPD, which we denote as flux anomalies under “nominal” sensitivity (Figure 1). We then
calculate the contributions from changing γcVPD, which we denote as anomalies under “perturbed” sensitivity, as
the differences between flux anomalies under “drought” or “post‐drought” sensitivity and the carbon flux
anomalies under “nominal” sensitivity (Equations 6 and 9). The either enhanced or reduced response to climate
anomalies is reflected in the non‐zero values in the “perturbed” anomalies. The differences between the actual
carbon flux anomalies and the sum of “nominal” and “perturbed” anomalies are residuals that could not be
explained by the carbon‐climate sensitivity function we fit. We primarily focus on the changes of γGPPVPD re-
lationships and its contribution to ΔGPP since it is the dominant driver for the NBE anomalies during drought
conditions. Because total ecosystem respiration is less sensitive to ΔVPD, the quantity γTERVPD (Table 1) is less
robust than γGPPVPD.

3.2.1. The Dependence of ∆C/∆VPD (γc
VPD) Sensitivities on the Magnitude of Climate Anomalies

The γGPPVPD and γNBEVPD show a strong regional dependence on drought stage (Figures 3a–3c and Table 1). Among the
three regions, we find that ΔGPP has the largest sensitivity to ΔVPD over SE‐Savanna during all three stages
(Figure 3 and Table 1), corresponding to the lowest WUE and the driest climate (Table S1 in Supporting In-
formation S1). The comparatively low WUE over SE‐Savanna is consistent with previous studies (Tang
et al., 2014). Persistent dryness caused by the 2015–2016 El Niño increased the absolute γGPPVPD over the forest,
particularly a large reduction of the reference carbon flux anomalies but decreased the γGPPVPD over SE‐Savanna
(Figure 3 and Table 1).

When controlling temperature changes in calculating the partial correlation between ∆GPP and ∆VPD, the R2

(GPP, VPD|T ) is comparable with R2 (GPP, VPD). This implies that changes in atmospheric water vapor are more
important than changes in atmospheric temperature in explaining changes in atmospheric aridity and subse-
quently its control on GPP variability (Table 1). The increased absolute ∆GPP − ∆VPD sensitivity contributed to
the increased ∆NBE − ∆VPD sensitivities during drought over the two forest regions (Figure 3).

Figure 2. The impact of the 2015–2016 drought and recovery on tropical South America (SA) biosphere carbon cycle. (a) Northeast Amazon (NE‐Amazon); (b) West
and southwest Amazon (WSW‐Amazon); (c) Southeast‐Savanna (SE‐Savanna). Green, black, blue, and red are GPP, NBE, TER, and fire and the corresponding
uncertainties. The top panels on (a–c) are monthly flux anomaly (GtC/month: left y‐axis, and gC/m2/day: right‐axis). The bottom panels on (a–c) are cumulative carbon
flux anomalies (GtC). The two magenta dashed lines enclose the 2015–2016 drought time period for each region. The drought period is defined from an impact
perspective, corresponding to negative GPP anomalies (Section 2). The mean states are defined over January 2010–December 2018. The green to red shaded color
indicates that Nino 3.4 larger than 0.5°C with increasing magnitude, while blue shaded color indicates Nino 3.4 less than − 0.5°C. GPP: gross primary production; NBE:
net biosphere exchange; TER: total ecosystem respiration. Even though monthly NBE and GPP have returned to pre‐drought values in early to late 2017, the
accumulated carbon loss represented by the accumulated NBE has not recovered in the tropical SA, dominated to the large carbon loss over NE‐Amazon.
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The changes in the sensitivities of carbon fluxes to climate anomalies and reference values during the drought
stage are also observed in the ∆NIRv/∆VPD and ∆SIF/∆VPD relationships over the forest regions (Figures S4
and S5 in Supporting Information S1), supporting the reduction of photosynthesis due to reduction of water
storage and changes in the sensitivity to ∆VPD with persistent drought. The increasing sensitivity of photo-
synthesis to VPD anomalies as the soil water decreases was previously observed in field‐grown crops (Xue
et al., 2004).

During the recovery stage, the ∆GPP/∆VPD relationships became less significant (p > 0.05) over both forest
regions, suggesting a lagged effect from the 2015–2016 drought (Bloom et al., 2020; Frank et al., 2015), while
over SE‐Savanna the absolute ∆GPP/∆VP relationships became larger and more significant. The differences in
the γGPPVPD over the three regions during the recovery stage is consistent with differences in the ∆SIF/∆VPD and
∆NIRv/∆VPD relationships (Figures S4 and S5 in Supporting Information S1).

The increased ∆GPP/∆VPD sensitivity during persistent drought is further supported by flux tower observations.
Within the LBA‐ECO flux tower network (Saleska et al., 2013), we find the BR‐Sa3 site (see Section 2), located
within the NE‐Amazon region (3.02 S, 54.98 W), experienced a drought event longer than 12 months (Figure S6
in Supporting Information S1). While there was essentially no sensitivity of ∆GPP to ∆VPD during non‐drought
conditions, the relationship became highly negative during drought (Figure S6 in Supporting Information S1).

3.2.2. The Contributions of the Changing Sensitivities of Carbon Flux Anomalies to Extreme Climate
Anomalies in the Response to the 2015–2016 Drought and Recovery

The shift in γGPPVPD from pre‐drought to drought was the major driver for the GPP reduction during drought in two
forest regions. If γGPPVPD had remained unchanged, the GPP reduction would have been only about 20% of the actual
GPP reduction over NE‐Amazon during the drought (0.11± 0.06 vs. 0.51± 0.16 GtC; light blue relative to brown
in Figure 4a; Table S4 in Supporting Information S1), and over the WSW‐Amazon, the GPP would have
increased by 0.06 ± 0.04 GtC instead of decreasing by 0.26 ± 0.11 GtC (Figure 4b and Table S4 in Supporting

Table 1
Summary of the Linear Fitting Between Carbon Flux Anomalies (i.e., GPP and NBE) and VPD Anomalies During
Pre‐Drought, Drought, and Post Drought Over NE‐Amazon, WSW‐Amazon, and SE‐Savanna Shown in Figure 3

Region Variables Drought stage Slope Intercept R2 P‐value R2 (γVPD|T) PVPD|T

NE‐Amazon γGPPVPD Pre‐drought − 0.14 ± 0.05 0.06 ± 0.02 0.42 <0.05 0.41 <0.05

Drought − 0.15 ± 0.04 − 0.10 ± 0.04 0.75 <0.05 0.56 <0.05

Post‐drought − 0.05 ± 0.06 0.06 ± 0.03 0.11 >0.05 0.08 >0.05

γNBEVPD Pre‐drought 0.08 ± 0.06 − 0.09 ± 0.03 0.12 <0.05 0.01 >0.05

Drought 0.10 ± 0.05 0.19 ± 0.07 0.38 <0.05 0.16 >0.05

Post‐drought − 0.14 ± 0.10 − 0.03 ± 0.05 0.18 <0.05 0.29 <0.05

WSW‐Amazon γGPPVPD Pre‐drought − 0.11 ± 0.04 0.07 ± 0.02 0.41 <0.05 0.34 <0.05

Drought − 0.10 ± 0.04 − 0.12 ± 0.03 0.61 <0.05 0.51 <0.05

Post‐drought − 0.07 ± 0.06 0.03 ± 0.01 0.18 <0.05 0.49 <0.05

γNBEVPD Pre‐drought 0.08 ± 0.07 0.03 ± 0.04 0.08 >0.05 0.03 >0.05

Drought 0.10 ± 0.07 0.07 ± 0.05 0.24 <0.05 0.00 >0.05

Post‐drought − 0.17 ± 0.07 − 0.15 ± 0.03 0.40 <0.05 0.12 >0.05

SE‐Savanna γGPPVPD Pre‐drought − 0.36 ± 0.06 − 0.11 ± 0.04 0.73 <0.05 0.62 <0.05

Drought − 0.20 ± 0.08 − 0.18 ± 0.10 0.40 <0.05 0.23 <0.05

Post‐drought − 0.43 ± 0.13 0.07 ± 0.09 0.62 <0.05 0.66 <0.05

γNBEVPD Pre‐drought 0.13 ± 0.06 − 0.04 ± 0.04 0.25 <0.05 0.04 >0.05

Drought 0.10 ± 0.05 0.09 ± 0.05 0.37 <0.05 0.01 >0.05

Post‐drought 0.02 ± 0.0.4 − 0.15 ± 0.03 0.08 >0.05 0.01 >0.05

Note. γGPPVPD represents the linear fitting between GPP anomalies and VPD anomalies, while γNBEVPD represents the linear fitting
between NBE anomalies and VPD anomalies. The table also shows R2 (γVPD|T) and PVPD|T values for the partial linear
regression between carbon flux anomalies and VPD when controlling temperature changes.
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Figure 3. Sensitivities of carbon flux anomalies to VPD during pre‐drought (blue), drought (red), and post‐drought (black) conditions, 2015–2016. Left panels: Regional
scatterplots of GPP or NBE anomaly and VPD anomaly for NE Amazon (a) and (b), WSW Amazon (c) and (d), and SE‐Savanna (e) and (f) (regions are defined in
Figure 1). Linear model fits of carbon flux anomalies and VPD anomalies during pre‐drought, drought, and post‐drought conditions are denoted by blue, red, and black
lines, respectively; linear fit parameters are reported in Table 1. Inset plots on left three panels show the TWS anomaly during drought (red) and pre‐drought (blue)
conditions when the absolute VPD anomaly is less than 0.2 hPa (denoted by gray shaded area and the gray arrows indicate where the TWS anomalies were calculated).
The sensitivity of carbon flux anomalies to atmosphere aridity greatly increased during drought and decreased post drought compared to pre‐drought over the two forest
regions, reflected in the changes in both the slope and the intercept, while the sensitivity of GPP to atmosphere aridity changed in the opposite direction over SE‐
Savanna.
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Information S1). Of the 0.51 ± 0.16 GtC GPP reduction over NE‐Amazon, − 0.26 ± 0.08 GtC anomalies come
from the VPD anomalies (∆GPPslopedrought in Table S4 of the Supporting Information S1), and − 0.25 ± 0.13 GtC
comes from reference carbon flux anomalies due to the water storage deficit during drought (Table S4 in Sup-
porting Information S1). The reference ∆GPP is 0.13 ± 0.03 under the pre‐drought state, (Table S4 in Supporting
Information S1), implying the strong impact of the changes in water storage during drought on plants produc-
tivity. Over the WSW‐Amazon, change of the reference carbon flux anomalies is also the main contributor to the
changes in γGPPVPD (Table S4 in Supporting Information S1). Different from the two forest regions, over SE‐
Savanna, the change in γGPPVPD reduced the drought impact on GPP by 0.08 ± 0.14 GtC (Figure 4c and Table S4
in Supporting Information S1).

During the post‐drought, the perturbation in γGPPVPD (gray bars in Figure 4) slowed the GPP recovery by 50% over
the WSW‐Amazon but accelerated the GPP recovery over savanna/shrubland (Figure 4c and Table S4 in Sup-
porting Information S1). Over the whole drought and post‐drought period, the GPP would have increased by
0.37 ± 0.14 GtC over the NE‐Amazon and WSW‐Amazon by December 2018 based on the nominal γGPPVPD (light
blue in Figure 4), instead of decreasing by 0.45 ± 0.25 GtC (brown in Figure 4). The enhanced sensitivity to
atmospheric aridity and changes in reference carbon flux anomalies due to water storage anomalies during the
drought exacerbated the reduction in GPP and therefore slowed the recovery over these two forest regions. While
over SE‐Savanna, the GPP would have decreased by 0.53 ± 0.74 GtC under pre‐drought sensitivity instead of
decreasing only by 0.29 ± 0.14 GtC by December 2018. Thus, the savanna/shrubland is more resilient to drought
(Stuart‐haëntjens et al., 2018).

The increased coupling between NBE and atmospheric aridity during the drought leads to much larger NBE
responses over all three regions (Figure 4 and Table S4 in Supporting Information S1). The changes in reference
carbon flux anomalies from changes in water availability during drought contributed an additional

Figure 4. The enhanced response to atmosphere aridity greatly increased the carbon loss during drought and slowed the
recovery afterward. Light blue: the carbon flux anomalies based on pre‐drought (nominal) sensitivities to atmosphere aridity;
Gray: the carbon flux anomalies attributed to changing sensitivities (disturbed) to atmosphere aridity; Brown: the actual
cumulative carbon flux anomalies (actual) during drought and post drought. The carbon flux anomalies based on either the
drought or post‐drought sensitivities to atmosphere aridity are the sum of nominal anomalies (light blue) and the disturbed
anomalies. The difference between the brown bars and the sum of light blue and gray color represents the residual carbon flux
anomalies that cannot be explained by the sensitivities to atmosphere aridity. (a) NE‐Amazon; (b) WSW‐Amazon; (c) SE‐
Savanna. Over SE‐Savanna, the changing sensitivity during drought has less impact on GPP than on NBE.
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0.46± 0.12 GtC released to the atmosphere primarily over NE‐Amazon (Table S4 in Supporting Information S1),
about 74% of the actual NBE anomaly. Over SE‐Savanna, despite the reduced GPP response to VPD anomalies,
the change in γNBEVPD increased NBE anomalies by 0.13 ± 0.08 GtC because of the increased sensitivity of the TER
anomaly to ∆VPD (Figure S7 in Supporting Information S1). During post‐drought recovery, the cumulative net
carbon uptake anomaly was close to zero over NE‐Amazon (NBEpost; Figure 4a). Under the nominal sensitivity,
the carbon uptake would have been − 0.20 ± 0.05 GtC. However, the changed γNBEVPD led to a substantial increase in
carbon loss of 0.20 ± 0.13 GtC leading to a neutral accumulation. Consequently, the loss of carbon during the
drought was not compensated by an expected post‐drought recovery. Over the WSW‐Amazon, however, the
− 0.33 ± 0.13 GtC cumulative net carbon uptake anomaly largely originated from the change in ∆TER/∆VPD
sensitivity (Figure S7 in Supporting Information S1), driven by decreased TER. Reduced TER during post‐
drought periods over the Amazon has also been observed in plot data during previous droughts, caused by
changes in carbon allocation strategies during drought (Doughty et al., 2015). Reduced TER has also been
observed during post‐fire recovery (Brando et al., 2019). Thus, over theWSW‐Amazon, even with the muted GPP
recovery, possibly due to lagged effects on TER from the drought, NBE still showed the strongest recovery rate.
Overall, however, the change in γNBEVPD during drought and recovery resulted in an additional 0.53 ± 0.38 GtC
released to atmosphere over tropical SA, which is comparable to the actual 0.65 ± 0.28 GtC cumulative NBE
anomaly by December 2018. This suggests that the tropical SA carbon cycle would have largely recovered from
drought by December 2018 based upon nominal sensitivities to ΔVPD and pre‐drought reference carbon flux
anomaly state during the drought and recovery periods.

3.2.3. What Causes the ∆C/∆VPD Sensitivities to Change During Drought?

We explore the possible mechanisms causing the changes in ΔC/ΔVPD sensitivities (γCVPD) during persistent
drought conditions from two intrinsically linked perspectives: adaptation strategies unique to vegetation types and
climate and the coupling between water supply and atmospheric water demand.

The WSW‐Amazon includes the wettest part of Amazon with a short dry season (Carvalho et al., 2021) and
annual mean precipitation larger than 2000 mm/year (Table S1 in Supporting Information S1). The normal ample
water supply causes the transpiration to be atmospheric demand‐limited even during drought (Y. N. Pokhrel
et al., 2014). Thus, in response to a large increase in VPD, both transpiration and total evapotranspiration (ET)
increased despite decreasing GPP (Figure S8 in Supporting Information S1). As a result, WUE decreases (Table
S4 in Supporting Information S1). The increase of evapotranspiration coupled with decreasing precipitation
reduced soil water content during drought. Even with climatological values of VPD (i.e., VPD anomaly is within
0.2 hPa), the TWS anomaly (∆TWS) declined by 55.1 mm over WSW‐Amazon from pre‐drought to drought,
contributing to the changes in reference carbon flux anomalies in γCVPD (Figure 3 and Table 1). The coupling
effect between ∆VPD and ∆TWS in controlling GPP variability is supported by the increased R2 from 0.66 to
0.76 when including the interactive effect between ∆VPD and ∆TWS in the multi‐variable linear regression
(Figure S3 in Supporting Information S1). Reduced water supply and increased water demand from increasing
VPD can cause failure in hydraulic transport and subsequent mortality (da Costa et al., 2010; Olson et al., 2018),
which is especially prevalent in large trees during persistent drought (da Costa et al., 2010) and may have
contributed the decrease in GPP. The legacy effect of hydraulic failure during drought could also contribute to the
slow recovery of WUE and GPP (Bennett et al., 2023; Brodribb & Cochard, 2009).

Compared to the WSW‐Amazon, the forest over the NE‐Amazon has less annual precipitation and has experi-
enced much larger reduction in ground water during drought (Figure S2 in Supporting Information S1). During
the drought stage, TWS declined by 120.1 mm from pre‐drought under the climatological VPD value, driving the
large change in the reference carbon flux anomalies from pre‐drought to drought for both GPP and NBE (Figure 3
and Table S4 in Supporting Information S1). As a result, despite the relatively small changes in transpiration
during early drought, the large reduction of water supply causes the transpiration to become water‐supply limited.
Thus, transpiration decreases as the drought persists (Figure S2 in Supporting Information S1). The reduction in
ET and TWS under high VPD condition indicates that water demand is not being met and suggest that there is
considerable water stress occurring, consistent with the greatly decreased GPP. The synchronization of decrease
in both ET and GPP leads to much smaller changes inWUE compared to theWSW‐Amazon (Table S4 and Figure
S8 in Supporting Information S1). Consistent with being more drought tolerant, the WUE and GPP quickly
recovered after drought in the NE‐Amazon (Table S4 in Supporting Information S1).
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The increased sensitivity of the carbon cycle to the intense atmospheric aridity during a loss of soil water supply is
confirmed with the observations from the BR‐Sa3 site. Due to the persistent drought at the site, the soil water
content reduced; the rate in soil moisture anomaly decreased from +3.4 mm/month during pre‐drought to
− 5.4 mm/month during the drought when the absolute VPD anomaly was within 0.3 hPa, implying the combined
effect of reduced soil water supply and increased atmospheric aridity led to changes in the ∆GPP/∆VPD sen-
sitivities (Figure S6 in Supporting Information S1). The large reduction of water storage was also observed in
other field experiments (Jipp et al., 1998).

The SE‐Savanna is most adapted to drought stress. During the drought period, the transpiration rate decreased the
most while WUE remained comparable to the value during the pre‐drought period (Table S4 in Supporting In-
formation S1), and the land‐atmosphere coupling weakened (Figure S9 in Supporting Information S1) that
resulted in reduced absolute ∆GPP/∆VPD sensitivity (Figure S10 in Supporting Information S1). The land‐
atmosphere coupling recovered to pre‐drought level (Figure S9 in Supporting Information S1) and WUE
quickly recovered to the above‐normal value after drought, which led to the overshooting GPP recovery (Table S4
in Supporting Information S1).

4. Discussion
The relative resistance and resilience to drought among the three regions revealed in this study is consistent with
the resistance‐resilience theory and the meta‐analysis based on flux tower observations in Stuart‐Haëntjens
et al. (2018), that suggests that wetter forests are generally more resistant to drought but take longer to recover
(i.e., less resilient). By contrast, dry forest and savanna/shrubland ecosystems are less resistant to drought due to
lower soil moisture but recover faster due to more rapid recovery of grasses and sprouting shrubs.

The SE‐Savanna ecosystem showed less resistance to drought—ΔGPP has the largest sensitivity to ΔVPD
(Table 1)—but more resilience, reflected in the much stronger GPP recovery, than predicted by the pre‐drought
∆GPP/∆VPD sensitivity (Figure 4). In the SE‐Savanna, the plants quickly reduced water loss during drought,
preventing structural damage to the plants and ensuring a quick recovery. Similarly strong post‐drought recovery
of savanna/shrubland is reported in field experiments over Africa (Wilcox et al., 2020). Additionally, it takes time
to recharge soils. This time frame may be shorter for shrublands because they have lower foliage cover and have
less water demand (Ivanov et al., 2012; Longo et al., 2018).

In contrast, the continued water loss over WSW‐Amazon during drought may have caused functional impairment
(e.g., lost xylem hydraulic conductance) and damage to sensitive plant species (Ruehr et al., 2019), which
contributes to the slow recovery of GPP after drought. The long‐term throughfall exclusion experiment observed
higher percentage of mortality from larger trees as drought persists, supporting our hypothesis (da Costa
et al., 2010). Any impact of tree mortality on soil carbon pools and the subsequent soil respiration have been
accounted for in the NBE anomalies. Nonetheless, more observations are needed to better understand the cou-
plings among water loss, plant functional changes, and drought recovery.

The response of GPP and TER to the 2015–2016 drought and recovery was asynchronous in time over the forest
regions: theGPPanomalywas the dominant driver for theNBE increase during the drought, but TERplayed amuch
larger role following the event.We attribute themuch larger increase of net carbon uptake during post‐drought over
theWSW‐Amazon to the decrease of TER.Considering only the slow recovery ofGPP, the carbon sinkwould have
declined, consistent with a weakened carbon sink after drought based on above‐ground biomass over Amazonia
forest (Yang et al., 2018). Even though reduced TER after drought was observed in forest plots in previous drought
(Doughty et al., 2015) and in controlled fire experiment (Brando et al., 2019),more in situmeasurements are needed
to test our conclusion. In the SE‐Savanna, however, responsesweremore synchronous, reflected in the reduction in
both GPP and TER during drought and an increase of both GPP and TER afterward. This phase difference between
GPP and TER response over the forest and savanna/shrubland may be due to the longer residence time of foliage
and fine roots over forest than over savanna/shrubland (Bloom et al., 2016).

The CMIP6 models predict a reduction of total water storage (TWS) by 50–200 mm over Amazon under RCP 6.0
scenario by the late 21st century, especially over the NE‐Amazon and southwest Amazon (Jensen et al., 2020; Y.
Pokhrel et al., 2021)—an anomaly larger than the TWS anomaly seen during 2015–2016 El Niño over some
regions. Our results suggest that both GPP and net carbon uptake will become more sensitive to atmospheric
aridity over the Amazon with the decrease of TWS in the future, making the terrestrial carbon cycle more
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vulnerable to drought. As a result, tropical SAmay become a source of carbon to the atmosphere due to increasing
drought events and decreasing TWS in the future instead of the current net carbon‐neutral state (Liu et al., 2020)
(i.e., carbon uptake is of a similar magnitude to carbon release). Recent results fromGatti et al. (2021) suggest that
this shift of sink to source may already be occurring in the highly degraded forests in the Southeastern Amazon.
Currently, the biosphere on land absorbs about a quarter of fossil fuel emissions annually, a weakening of this
uptake increases the pressure to increase the rate of reducing fossil fuel emissions and develop other negative
emissions technologies to limit the temperature increase to 2.0°C by the end of this century.

5. Conclusion
We find that the carbon loss due to the 2015–2016 drought had not fully recovered by the end of 2018 over the
tropical South America, driven by a persistent carbon loss in the Northeast Amazon. We attribute the slow re-
covery to the large carbon loss from the intense atmospheric aridity, coupled with changes of reference carbon
flux anomalies due to reduced water supply during drought. Our results suggest that the tropical south America
carbon cycle would have largely recovered from drought by December 2018 based upon nominal sensitivities to
ΔVPD and pre‐drought reference carbon flux anomaly state during the drought and recovery periods. We show
that the attenuation of carbon uptake is three times higher than expected from the pre‐drought sensitivity to at-
mospheric aridity and ground water supply. Our study provides empirical evidence for the enhanced response of
forests to compound anomalies in atmospheric aridity and total water storage anomalies during severe drought
(Breshears et al., 2013). The increased sensitivity to atmospheric aridity during drought was concurrent with the
strengthening of the land‐atmosphere coupling, highlighting the importance of accurately simulating land‐
atmosphere interactions in earth system models (Humphrey et al., 2021).
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