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ABSTRACT OF THE THESIS

An Empirical Network Formation Model with Incomplete Information

by

Wenyu Zhou

Master of Science in Statistics

University of California, Los Angeles, 2019

Professor Yingnian Wu, Chair

This thesis studies a network formation model with incomplete information, which introduces

the neighborhood effect into the analysis of network formation. We show that the model is

identified under some mild conditions. To overcome the computational burden, we propose

to use the nested pseudo-likelihood algorithm to estimate the parameters of interest. Finite

sample performance of the NPL estimation method is investigated through several Monte

Carlo experiments. We find that a positive neighborhood effect makes agents more likely to

form links, which can increase the network density. Besides, we also discuss three potential

research directions.
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CHAPTER 1

Introduction

Understanding network formation process is important for us to answer various real-world

questions, such as “Which countries are more likely to trade with each other,” and “Which

type of friendship is more stable?” In addition, studying network formation process also

has considerable policy relevance. Previous social science studies have shown that networks

could play an important role in determining people’s economic behavior including academic

achievement, technology adoption, welfare participation, etc. Therefore, it is necessary for us

to study network formation process in detail in order to make effective policies and facilitate

policy implementation.

The main goal of studying network formation process is to develop theoretical models that

can capture different statistical features existing in real networks, such as homophily, cluster-

ing, transitivity, sparsity, etc. Even though numerous efforts have been made by researchers

in statistics, economics, sociology and many other disciplines, it is still difficult to achieve

a good balance between tractability and comprehensiveness due to several reasons. First, it

is challenging to obtain enough data for studying network formation. Under most cases, re-

searchers only observe existing networks, which means modeling network formation process

is similar to study a black box. Most currently available network data is static, which deter-

mines it is hard to infer factors that influence network formation from network dynamics. In

addition, many usually unobserved variables, such as personalities, social status, and peer

effects, may greatly affect network formation process. Thus, simply ignoring them can in-

duce significant bias. Second, network formation process is extremely complicated. Besides a

large number of variables can influence network formation, it is often the case that decisions

of forming links are correlated with each other in most cases. If we regard each link as a
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random variable which takes value of 1 or 0, all these variables contained in a network could

be dependent, which makes the problem much harder to deal with. Furthermore, researchers

usually do not have prior information on the structure of interdependence within the network

and need to infer it from the data. The third fundamental difficulty is that estimating a

network formation model is usually computationally intensive and could even be intractable.

This is mainly because the number of links grows at an exponential rate with the number of

agents while modern network data sets could include hundreds of thousands of agents. At

the same, many network formation models can admit multiple equilibria, which may further

worsen the estimation.

In this paper, we develop a network formation model with incomplete information, which

is able to capture several important features of some network formation processes in the

real world. The first feature we aim to model is neighborhood effect that may influence

network formation when two agents decide whether to form a link between each other. As

I mentioned above, decisions of forming links are likely to be dependent while considering

neighborhood effect may help to explain such interdependence within the network. When

two agents decide whether to form a link between each other, besides considering dyadic

variables, it is likely the decision can also be influenced by the decisions of their neighbors.

There are several potential explanations for the existence of neighborhood effect, such as

conformity, imitation and social norms, making people tend to conform to behaviors that

are common among their neighbors when there is neighborhood effect. In the network for-

mation setting, the neighborhood effect means agents may be more likely or less likely to

form links conditional on their neighbor’s behavior. For example, agents in a network would

like to form links with a higher probability if they expect their neighbors also tend to link

to each other. Adding neighborhood effect into the network formation process may help

to model some realistic scenarios, such as those online social networks. The second feature

that is captured by our model is the homophily effect, which has long been recognized by

previous studies. The homophily effect implies that agents are more likely to form links with

others who share similar individual characteristics. In our model, the difference between two

agents is modeled by the distance between two vectors of individual characteristics. Third,
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our model provides an explicit definition of neighborhood. Confining the interdependence of

link formation decisions within a certain neighborhood can greatly simplify our analysis and

computation, which also facilitates asymptotic analysis. The main intuition is that decisions

made by agents that are far away from each other can be thought as nearly independent.

Even though we assume that the size of neighborhood is prior information in this paper,

it may be directly estimated from network data, and we leave this extension as a future

research direction.

In this paper, the network formation process is modeled by a network game of incomplete

information. Two agents i and j will link to each other if they expect the overall utility

gained from forming the link is positive, as we assume that the utility from forming the link

is transferable. We assume that all links are simultaneously formed in a one-period network

formation game. Agents i and j observe the neighborhood structure, which are determined

by their location in the network Z and the neighborhood size d, as well as the individual

characteristics X of other agents in whole network while the link-level idiosyncratic shock

εij is treated as private information. We use a logistic regression model to incorporate

different variables that may influence the network formation process, including individual

characteristics, neighborhood effects and idiosyncratic shocks. We show that under some

mild assumptions, there exists a unique Bayesian Nash Equilibrium (BNE) for the network

formation game and the model can be identified. Following the literature in game theory,

we propose to use the nested pseudo likelihood (NPL) algorithm to estimate the model and

finite performance of the estimation procedure is investigated through some Monte Carlo

simulations.

The rest of this thesis is organized as follows. In Chapter 2, we conduct a brief literature

review on network formation models. In Chapter 3, we develop the model, discuss the iden-

tification issue and outline the estimation strategy. In Chapter 4, we investigate the finite

sample performance of the estimation strategy through Monte Carlo simulations. In Chapter

5, we discuss future research directions. Finally, Chapter 6 concludes.
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CHAPTER 2

Literature Review

There is large growing literature related to network formation in statistics and economics.

Network formation models studied in statistics literature are usually highly abstracted and

simplified, such as the Erdős and Rényi (1959). model, stochastic block model and the

exponential random graph models (ERGM) model, which enables researchers to apply tools

from probability theory to analyze the network formation process. These statistical network

formation models have been proved to work well in some specific scenarios but may not

capture many important features of social networks. Instead, economists prefer make their

models more close to the reality, especially when they study those social networks existing

in the real world. The main difficulty of this approach, as I mentioned above, is that the

network formation model could become extremely complicated and intractable due to the

interdependence of links. To gain a better understanding of the topic, in this chapter, we

conduct a brief literature review on papers that are most related to this thesis. The first

well-known network formation model can be traced back to the seminal work of Erdös and

Rényi (1959). In this influential model, links are treated as independent random variables

which follows a binomial distribution. Let Aij represent the link between agent i and j,

Aij = 1 if i links to j and Aij = 0 otherwise. The Erdős and Rényi model thus assumes

P(Aij = 1) = p for all i, j ∈ {1, ..., n}, where p is a constant between 0 and 1. Since all

links are independent, classical results, such as law of large numbers (LLN) and central limit

theorem (CLT) can be easily applied to study properties of the model. One popular and

important network formation model, which is a natural extension of the Erdős and Rényi

model, is the so-called stochastic block model (SBM), that was first introduced by Holland

et al. (1983) and Wang and Wong (1987). The model assumes that all n agents have their
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own community identities, i.e., there exists a disjoint partition C1, ..., CK of the set of agents

{1, ..., n}. The probability of observing a link between agents i and j is only determined by

their communities identities. For example, if agent i belongs to community Cm and agent

j belongs to community Cn, the SBM assumes P(Aij = 1) = pmn. The edge probabilities

between these K communities thus can be represented by a K ×K symmetric probability

matrix P. Estimating the stochastic block model is of great research interest in statistics.

Snijders and Nowicki (1997) studies the estimation problem of the stochastic block model

by using Gibbs sampling in undirected networks, while Nowicki and Snijders (2001) further

extends their results by allowing for directed networks and an arbitrary number of classes.

Bickel and Chen (2009) develops a general theory for checking the consistency of community

detection methods that replies on optimizing certain criteria in SBM. Amini et al. (2013)

establishes the consistency of using pseudo-likelihood method to estimate SBM. In addition,

there is a large literature on estimating the stochastic block model using spectral clustering.

See Rohe et al. (2011), Fishkind et al. (2013), Lei et al. (2015) for more details.

Besides SBM, Holland and Leinhardt (1981) proposes the exponential random graph models,

which is a family of probability distributions on graphs. The main idea of this model is that

the probability of observing certain graph is determined by its nodal attributes. Hoff et

al. (2002) proposes a class of random graph models where the probability of forming a

link between agents i and j is determined by their observed characteristics and their latent

positions in the “social space”. Their approach of modeling social networks shares similar

intuitions with subsequent economics research on this topic. Network formation process has

also attracted much attention in economics research, especially in microeconomic theory and

theoretical econometrics. Researchers are interested in developing network formation models

that can explain certain economic behaviors and are consistent with network data. Leung

(2015) develops a network formation model with incomplete information and proposes a two-

step estimation method. However, the consistency of the estimation method replies on the

assumption that the individual characteristics of agents must be discrete in order to construct

a consistent first-stage estimator. This strong assumption may restrict the applicability

of the model. Miyauchi (2016) develops a model which has non-negative externality and
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his approach differs from ours. Graham (2017) proposes a network formation model with

unobserved agent-level fixed effects as follows:

Dij = 1(W
′

ijβ0 + Ai + Aj − Uij ≥ 0)

where Dij = 1 if there a link between agents i and j. Ai and Aj denote the unobserved

agent-level fix effects, Wij is a known function of the individual characteristics of agents i

and j, and Uij is link-level idiosyncratic shock. The main advantage of this model is that it

can partially overcome the omitted-variable bias and works well in sparse social networks.

But this network formation model doesn’t consider neighborhood effect and all decisions

of forming links are independent of each other. Sheng (2014) studies a network formation

model with complete information, in which the network formation process is modeled by

a simultaneous-move game. The model thus can admit multiple equilibria which leads to

failure in terms of point identification of parameters. Instead, this paper adopts a partial

identification approach and innovatively utilizes subnetworks to derive bounds. Boucher and

Mourifié (2017) studies a class of exponential random graph models (ERGMs) in which they

recover parameters of interest using a simple logit-based estimation method. The model

studied in this paper is also very different from ours. Another type of network formation

models focuses on dynamic settings, including Hsieh and Lee (2017), Badev (2017), Mele

and Zhu (2017), etc. Most of these dynamic network formation models need to maximize

likelihood functions, which are often computationally infeasible. One possible method to

estimate the model is to adopt Bayesian approach such as MCMC, which is also fundamen-

tally different from the method used here.

This thesis is also closely related to the literature on network games and general games with

incomplete information. Xu (2018) considers estimation of social interaction effects in a

large network game with incomplete information. Our thesis build upon the model studied

in Xu (2018), as we introduce the framework into the analysis of network formation. Other

related literature include Brock and Durlauf (2001), Liu and Zhou (2017), Lee et al. (2014),

etc. These papers study the identification and estimation of binary choice model with social

interaction effects.
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CHAPTER 3

Methodology

3.1 Model

3.1.1 Setup

We consider a simultaneous network formation game with incomplete information. Re-

searchers observe network data G = (V,E), where V = {1, ..., n} is the set of agents and

E is the set of observed links. Besides using graph notation, the network data can also be

represented by an n × n adjacency matrix A, in which Aij = 1 if there is a link between

agents i and j. In this paper, we focus on undirected network, which implies the adjacency

matrix A is symmetric. Following the literature, we set Gii = 0 for all i ∈ V .

Each agent i has public information Ii = (X ′i, Z
′
i)
′, which is also observed by researchers and

all agents in the network. Here Xi is a p×1 vector that denotes the individual characteristics,

while Zi is a q × 1 vector that represents agent i’s geographical information in the network.

The neighborhood of agent i, which is denoted by N(i) is defined as follows:

N(i) ≡ {k | ‖Zk − Zi‖2 < d, k ∈ V, k 6= i}

where ‖·‖ is the Euclidean norm. The definition of N(i) implies that j is i’s neighbor if and

only if the network distance between these two agents is small enough. In the real world,

Zi could either directly denote the geographical location of agent i or some measure of i’s

location in the social network. A good example would be the social network in high school.

Agent i’s decisions of forming links are more likely to be influenced by his classmates in the

same classroom only rather than students in other classrooms.

The decision of forming a link between agents i and j must be agreed by both sides together.
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Specifically, we assume the utility gained from forming a link can be arbitrarily transferred

between two sides. This assumption ensures that Aij = 1 if and only if the total utility

gained from forming the link between i and j is positive. The utility from forming the link

(i, j) is given by

Uij(1) = W ′
ijβ +

λ

|Nij|
∑

(k,l)∈Nij

Akl − εij. (3.1)

Here Wij is a l × 1 vector such that

Wij = f(Xi, Xj), (3.2)

where f(·, ·) is some measurable function. Following the literature, f(·, ·) is symmetric in

its two arguments, so we have Wij = Wji. The function f(Xi, Xj) measures the degree of

homophily between agents i and j. If these two agents have much similarity, which means

the homophily between them is large, so the probability of forming a link between i and j is

large, i.e., f(Xi, Xj) should be small. One potential functional form of f(·, ·) is

f(Xi, Xj) = −‖Xi −Xj‖2 (3.3)

for all i, j ∈ V , where ‖·‖2 is the Euclidean norm. In the equation (3.1.1), λ is a parameter

that measures the strength of the neighborhood effect on agents i and j’s joint decision. We

let Nij to be the set of neighboring decisions of forming links that will influence agents i and

j, and it is defined by

Nij = {(r, s) | r < s, r 6= i, s 6= j, r, s ∈ N(i) ∩N(j) },

and |Nij| denote the number of elements in set Nij. The definition implies only decisions

made by pairs of agents that are in both the neighborhood of i and the neighborhood of j

will influence the decision made by agents i and j. Akl is the (k, l)th element in the adjancy
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matrix A. In this thesis, we assume that the idiosyncratic shock on agents i and j’s joint

decision, denoted as εij, is independent and identically distributed across all links and has

the following probability density function

f(εij|I) =
eεij

(1 + eεij)2
, (3.4)

for all i, j ∈ V , which simply implies that conditional on the data I, the shock εij has a logistic

distribution. It is worth noting that it is possible to relax the assumption of having logistic

distribution. Instead, εij could also follow other common distributions such as Gaussian

distribution. The main reason we adopt the assumption of having logistic distribution is

that such assumption could significantly reduce the burden of mathematical derivation and

enables us to get straightforward expressions.

We assume the utility of not forming a link equals 0, i.e.,

Uij(0) = 0, (3.5)

for all i, j ∈ V .

3.1.2 Information Structure

We assume that εij belongs to private information, which implies its value is only known

to agents i and j when they jointly decide whether to form a link Aij between each other.

Agents’ individual characteristics Xi, geographical location in the social network Zi as well

as the size of their neighborhoods d is assumed to be public information. So, we can now

define the information set for agents i and j that they have when making the decision of

forming the link Aij for all agents i, j ∈ V

Fij = { X, Z, d, εij }, (3.6)
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and we can also define the information set for agent i for all i ∈ V

Fi =
n⋃
j

Fij (3.7)

3.1.3 Equilibrium

We now define the equilibrium for this network formation game with incomplete information.

Let θ denote the parameters of interest, i.e., θ = (β′, λ)′. According to the setup of the model,

agents i and j will link to each other if

E[ Uij | Fij, θ ] > 0, (3.8)

which is equivalent to

W ′
ijβ +

λ

|Nij|
∑

(k,l)∈Nij

P(A∗kl = 1 | Fi, Fj, θ)− εij > 0 (3.9)

Here A∗kl denote agents k and l’s equilibrium strategy regarding the formation of link (k, l)

for all k, l ∈ Nij. So, for all agents i, j ∈ V in this network formation game, their pure

equilibrium strategy is

A∗ij(εij | Fi, Fj, θ) =

1 if εij < W ′
ijβ + λ

|Nij |
∑

(k,l)∈Nij

P(A∗kl = 1 | Fi, Fj, θ)

0 otherwise (3.10)

for all i, j ∈ V , which also defines a system of simultaneous equations, i.e., (A∗12, ..., A
∗
n,n−1).

Because we assume that εij follows a logistic distribution for all i, j ∈ V and is independent

across different links, so equation 3.10 defines a sequence of equilibrium choice probabil-

ities. Let σ∗ij(I, θ) = P(A∗ij(εij | Fi, Fj, θ) = 1 | I ) be the equilibrium probability of

forming the link (i, j) for all agents i, j ∈ V , where I = {I1, ..., In}. In addition, let
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Γ∗(I, θ) = {σ∗12, ..., σ∗n−1,n} be the set of equilibrium probabilities for all the links in this

network. According to equation 3.10, we have

σ∗ij(I, θ) =

exp

[
W ′
ijβ + λ

|Nij |
∑

(k,l)∈Nij

σ∗kl(I, θ)

]

1 + exp

[
W ′
ijβ + λ

|Nij |
∑

(k,l)∈Nij

σ∗kl(I, θ)

] (3.11)

for all i, j ∈ V . Equation 7 is derived from the logistic cumulative distribution function

of the logistic distribution. It is worth noting that equation 7 also gives us a system of

simultaneous equations, in which there are n(n − 1)/2 unknown variables that we need to

solve. In fact, solving (I, θ)} from the system of equations is equivalent to solving the system

defined by 3.10, as pointed out by Bajari et al. (2010) and Xu (2018). Based on the results

shown above, we have the following proposition on the equilibrium solution to equation 3.10.

Proposition 1 There exists at least one equilibrium probability profile Γ∗(I, θ) that solves

the system of simultaneous equations defined by equation 3.10.

Proof : Notice that σ∗ij ∈ [0, 1] for all i, j ∈ V , the right hand of equation 3.10 is a function

mapping from [0, 1]n(n−1)/2 to [0, 1]n(n−1)/2, which is continuous. Because [0, 1]n(n−1)/2 is

nonempty, compact and convex, by Brouwer’s fixed point theorem, there exists at least one

equilibrium probability profile Γ∗(I, θ) that solves the system.

3.2 Identification

In this section, we discuss the identification issue of the model. First, we consider the

uniqueness of the equilibrium in this network formation game. Proposition 1 ensures the

existence of Bayesian Nash Equilibrium in this network formation game, but there may be

multiple equilibrium, which would lead to the failure of identification of the parameters θ. To

establish the uniqueness of the equilibrium, we impose the following additional assumption.

Assumption 1 In the network formation model discussed in this thesis, λ < 4.
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The Assumption 1 basically assumes that the scale of the neighborhood effect should be

reasonable. The intuition of this assumption is also straightforward. More specifically, as

the neighborhood effect becomes larger, the dependence between agents i and j’s decision

on the link (i, j) and their neighbor’s decisions will increase. In this case, there may exist

multiple equilibria as they can all solve the system of simultaneous equations. Under this

assumption, we have the following result.

Proposition 2 If Assumption 1 is satisfied, there only exists a unique equilibrium probability

profile Γ∗(I, θ) that solves the system of simultaneous equations defined by equation 3.10.

Proof: See the Appendix.

Proposition 2 is important for us to discuss the identification of the parameters θ. If there

are more than one equilibrium, we must impose extra equilibrium selection mechanisms to

determine the one that fits the data. Otherwise, the model will be incomplete and we can’t

consistently estimate the parameters of interest in this model. There are some theoretical

literature dealing with the multiple equilibria problem, such as Sheng (2014), Brock and

Durlauf (2001), Leung (2015), Tamer (2003) and Tamer (2010), and we leave this question

as a future research direction.

The parameters that we aim to identify in this thesis is θ = (β′, λ)′ ∈ Rl+1. We first consider

the following transformation of σ∗ij(I, θ). By equation 7, we have

lnσ∗ij(I, θ) = W ′
ijβ +

λ

|Nij|
∑

(k,l)∈Nij

σ∗kl(I, θ)− exp

1 + exp (W ′
ijβ +

λ

|Nij|
∑

(k,l)∈Nij

σ∗kl(I, θ))


After some simple algebra, we have

lnσ∗ij(I, θ)− ln(1− σ∗ij(I, θ)) = W ′
ijβ +

λ

|Nij|
∑

(k,l)∈Nij

σ∗kl(I, θ) (3.12)

We will use equation 3.12 to identify the parameters of interest θ. Notice the LHS of

the above equation is identified according to the definition of identification. Furthermore,

12



lnσ∗ij(I, θ) is also identified, again by the definition of identification. So, the identification

problem of the parameters in equation 3.12 in fact can be reduced to the similar problem

in linear regression models, i.e., the matrix of independent variables should have full rank.

Next, we propose the sufficient condition to establish the identification of the parameters. Let

Sij =

W ′
ij,

1

|Nij|
∑

(k,l)∈Nij

σ∗kl(I, θ)

′

Now we give the full rank condition as follows.

Assumption 2 The matrix E[SiS
′
i] has full rank, i.e., Rank(E[SijS

′
ij]) = l + 1.

The full rank assumption is very common in the literature. This is in fact a quite weak

assumption in the network environment. For example, the full rank condition can be sat-

isfied easily if the function f(·, ·) which maps X to W is nonlinear and there are enough

variations regarding agents’ neighborhood. Many empirical studies have shown that there

exists significant heterogeneity in the neighborhood of agents in the network, which is likely

to ensure the validity of the full rank condition. Based on the above assumption, we can

now establish our main identification result.

Proposition 3 Under Assumption 1 and Assumption 2, the parameters θ = (β′, λ)′ of the

network formation discuessed in this thesis is identified.

Proof: By equation 3.12, we have

E[Sij[lnσ
∗
ij(I, θ)− ln(1− σ∗ij(I, θ))]] = E[SijS

′
ijθ]

Let

Ri = lnσ∗ij(I, θ)− ln(1− σ∗ij(I, θ)).

Therefore, we have

θ = (E[SijS
′
ij])
−1E[SijRi]
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Since E[SiS
′
i] has full rank and the equilibrium is unique, θ is identified.

3.3 Estimation

In this section, we discuss the estimation of the network formation model. Notice that agents’

equilibrium strategies A∗ij are independent of each other conditional on I and P(A∗ij = 1|I) =

σ∗ij(I, θ) for all i, j ∈ V . Therefore, we can derive the conditional log-likelihood function from

the perspective of researchers, i.e.,

L̂(θ) =
2

n(n− 1)

∑
i<j,i6=j

[
A∗ij lnσ∗ij(I, θ) + (1− A∗ij)(1− lnσ∗ij(I, θ))

]
(3.13)

where {σ∗ij(I, θ)}i<j. satisfies the system of simultaneous equations defined by equation 7.

And we have

θ̂MLE = arg max
θ∈Rl+1

L̂(θ)

The MLE estimator is known to be consistent under some additional mild conditions. How-

ever, it’s usually very difficult to calculate the MLE estimator because the computational

burden. When there are n agents in the network, there will be n(n− 1)/2 decisions needed

to be estimated and there are no closed expressions for {σ∗ij(I, θ)}i<j, which make the op-

timization problem almost impossible to solve. To overcome this computational problem,

we propose to use the nested pseudo likelihood algorithm (NPL) to calculate the estimated

parameters. The nested pseudo likelihood estimator has been widely used in literature to es-

timate dynamic discrete games, such as Aguirregabiria and Mira (2007), Liu and Zhou (2017)

and Lin and Xu (2017). We first give the some definitions. Denote σ = {σ12, ..., σn−1,n} to

be some arbitrary probability profile. Let

Sij(σ) =

W ′
ij,

1

|Nij|
∑

(k,l)∈Nij

σkl

′ (3.14)

14



to be the link-level characteristics that influence the formation of the link (i, j). Also, let

Γij(σ, θ) =
exp [Sij(σ)′θ]

1 + exp [Sij(σ)′θ]
(3.15)

and

L̂NPL(θ, σ) =
2

n(n− 1)

∑
i<j,i6=j

[
A∗ij ln Γij(σ, θ) + (1− A∗ij)(1− ln Γij(σ, θ))

]
. (3.16)

The nested pseudo likelihood algorithm (NPL) is given as follows.

Algorithm 1 Nested Pseudo Algorithm

1: σ[0] = [0.5, ..., 0.5] ∈ Rn(n−1)/2, θ̂
[0]
NPL = 0 and k = 1;

2: θ̂
[1]
NPL = arg max

θ
L̂NPL(θ, σ[0]);

3: while
∥∥∥θ̂[k]NPL − θ̂

[k−1]
NPL

∥∥∥ > 10−3 do

4: k = k + 1;

5: θ̂
[k]
NPL = arg max

θ
L̂NPL(θ, σ[k−1]);

6: σ[k] = Γ(σ[k−1], θ̂
[k]
NPL);

7: end while

Under some additional mild conditions, the nested pseudo likelihood estimator is con-

sistent and asymptotically normal. See Aguirregabiria and Mira (2007), Kasahara and Shi-

motsu (2012) and Lin and Xu (2017) for more details.
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CHAPTER 4

Monte Carlo Simulations

In this section, we conduct limited Monte Carlo simulations to test the effectiveness of the

NPL estimation method proposed in Chapter 3 and the validity of the network formation

model discussed in the thesis. We first discuss the data generating process for the individual

characteristics (X ′i, Z
′
i)
′ and the adjacency matrix A of the network.

4.1 DGP for Individual Characteristics

To reduce the computational burden, we assume {Xi}i=1,...,n is a scalar which is drawn from

an i.i.d. standard normal distribution for all i = 1, ..., n.

Xi ∼ N(0, 1)

For the geographical location of agent i in social space, we assume Zi is a 2× 1 vector and

has a i.i.d. 2-dimensional uniform distribution with support [0, 10], for all agent i ∈ V , i.e.,

(Zi1, Zi2) ∼ U [0, 10]× U [0, 10].

We use this setting as we aim to mimic the geographical distribution of agents in social

networks in reality.

4.2 DGP for the Adjacency Matrix A

For different agents i and j in the network, their distance is determined by

dij = ‖Zi − Zj‖2

16



If dij < d̄ = 2, we assume agent j belongs to agent i’s neighborhood, and vice versa.

{N(i)}i=1,...,n and {Nij}i<j are constructed according to the definitions in Chapter 3. The

following figures describe the geographical location of three simulated networks.

For Wij, we assume

Wij = −|Xi −Xj|

for all agents i, j ∈ V . So, the utility of forming the link (i, j) for all agents i, j ∈ V is given by

Uij(1) = −|Xi −Xj| · β +
λ

|Nij|
∑

(k,l)∈Nij

Akl − εij.

In this thesis, I set β = 1 and consider three different cases regarding the value of λ: (1)

λ1 = 0; (2) λ2 = 0.5; (3) λ3 = 2. The three choices of λ correspond to three different

network formation scenarios in the real world. The first case, in which λ1 = 0, means there

is no neighborhood effects. The second case, in which λ2 = 0.5, represents the situation

where there is a relatively weak neighborhood effect that influences the network formation

process, while the third case with λ3 = 2 corresponds to the situation where there is a strong

neighborhood effect.

To generate the simulated adjacency matrix from the network formation model discussed in

this thesis, I first solve for the equilibrium probabilities defined by 7, i.e., σ∗ = {σ∗12, ..., σ∗n−1,n}.

After getting the equilibrium probabilities, I draw εij from a i.i.d. standard logistic distribu-

tion for all i, j ∈ V . Finally, the Aij is determined by comparing Uij(1), which is calculated

from equation 4.2, and zero. If Uij(1) > 0, Aij = 1, otherwise Aij = 0, for all agents i, j ∈ V .

I consider different network sizes: (1) small-sized network with n1 = 50; (2) medium-sized

network with n2 = 100; (3) large-sized network with n3 = 200. For each size of network, I

repeat each numerical experiment for 1000 times and collect the mean and standard error of

the NPL estimators.
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Figure 4.1: Geographical Distribution of A Simulated Network with 50 Agents

True Value of λ0 Parameters Mean S.D.

0 λ 0.0074 0.1378

β 1.0031 0.1114

0.5 λ 0.5067 0.1162

β 1.0042 0.9920

2 λ 2.0039 0.1093

β 1.0034 0.9897

Table 4.1: Results of Monte Carlo Simulation for Networks with 50 Agents
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Figure 4.3: Geographical Distribution of A Simulated Network with 100 Agents

True Value of λ0 Parameters Mean S.D.

0 λ 0.0056 0.0723

β 0.1027 0.0606

0.5 λ 0.5043 0.0642

β 1.0019 0.0613

2 λ 2.0051 0.0621

β 1.0022 0.0584

Table 4.2: Results of Monte Carlo Simulation for Networks with 100 Agents
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Figure 4.5: Geographical Distribution of A Simulated Network with 200 Agents

True Value of λ0 Parameters Mean S.D.

0 λ 0.0035 0.0340

β 0.9993 0.0312

0.5 λ 0.5016 0.0315

β 1.0018 0.0296

2 λ 2.0029 0.0289

β 1.0009 0.0282

Table 4.3: Results of Monte Carlo Simulation for Networks with 200 Agents

22



F
ig

u
re

4.
6:

G
ra

p
h

of
S
im

u
la

te
d

N
et

w
or

k
s

w
it

h
n

=
20

0

T
h
e

gr
ap

h
on

th
e

le
ft

co
rr

es
p

on
d
s

to
th

e
ca

se
in

w
h
ic

h
λ

=
0,

th
e

gr
ap

h
in

th
e

m
id

d
le

co
rr

es
p

on
d
s

to
th

e
ca

se
in

w
h
ic

h

λ
=

0.
5,

an
d

th
e

gr
ap

h
on

th
e

ri
gh

t
co

rr
es

p
on

d
s

to
th

e
ca

se
in

w
h
ic

h
λ

=
2.

23



The simulation results show that the nested pseudo likelihood algorithm (NPL) works

well for estimating the parameters of the simultaneous network formation model discussed

in this paper. The estimated values of parameters are essentially unbiased. The simulation

results also imply that agents i and j are more likely to link to each other if the neighborhood

effect becomes stronger, which is consistent with our intuitions.
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CHAPTER 5

Future Research Directions

In this chapter, I would like to briefly discuss the future research directions of the network

formation model studied in this thesis as well as the topic of network formation process in

general.

The first interesting extension of the model is to estimate the neighborhood size d directly

from the realized network data. In this thesis, we assume that the neighborhood size d is

known to researchers, which is a high-level assumption, and we have to admit that in most

cases, researchers may not have information about agents’ neighborhood size d. However, if

researchers pick a wrong value of d, the model is likely to be misspecified and can generate

misleading conclusions. To see this, we can consider two extreme cases. First, notice that

there will be no agents in agent i’s neighborhood for all i ∈ V if d → 0. In this case, the

benchmark model degenerates into the simplest bilateral network formation model, which is

essentially a logistic regression model. In the second case, if we assume the support of {X}i is

finite and d→∞, the benchmark model will converges to a stochastic block model when the

number of agents n grows. A true neighborhood size d is likely to make the model somewhere

in between the simplest model and the stochastic block model. Estimating d from network

is in fact possible. The intuition is that if there is enough variation in the geographical

distribution of all agents, a misspecified d will lead to a lower likelihood. However, since

the number of agents in the neighborhood is a discrete, there may exist multiple d which

can fit the data, which implies d could only be partial identified if we don’t impose strong

assumptions.

A second potential research direction is to consider use more complicated utility functions.

It is possible that the homophily, which is represented by Wij in the benchmark model, is
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a nonlinear function of individual characteristics of two agents. In the benchmark model,

we assume the function is known to simply our analysis, which may lead to bias in reality.

One possible way to overcome this problem is to use semiparametric or nonparametric utility

function, which is left for future studies.

The last research direction is to adopt machine learning methods into the economic analysis

of network formation process. The network formation model is essentially a supervised

learning problem, in which the input include variables that can influence the formation of

the link between agents i and j, and output is 1 if the link is formed and 0 otherwise. Machine

learning methods, including neutral network (NN), deep neutral network (DNN) and random

forests, have achieved great success in many supervised learning problems. These machine

learning techniques may also be applied to develop empirical network formation models,

which may have wide application in the real world. To my knowledge, some statisticians

and researchers of computer science have already applied machine learning methods into

developing models for link prediction. For example, Li et al. (2014) developed a deep learning

framework to study the link formation process in a dynamic environment. As mentioned in

the first chapter of this thesis, it is very difficult to consider the interdependence structure

contained in social networks. Analytical models can barely catch every aspect since the

interdependent relations are largely remain unknown and are usually nonlinear. Machine

learning methods are advantageous in dealing with nonlinear and complicated functions,

making them promising in the economic analysis of network formation process.
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CHAPTER 6

Conclusion

In this thesis, I studies a simultaneous network formation model with incomplete information.

The model can help to explore how neighborhood effect influences the network formation

process. We successfully show that the model is identified and can be consistently esti-

mated using the nested pseudo-likelihood algorithm (NPL). I conduct various Monte Carlo

simulations to investigate the finite sample performance of the NPL estimator. The simula-

tion results implies that the neighborhood effect may play an important role in determining

agents’ decisions of forming links: a positive neighborhood effect can motivate agents to

conform to the behavior of their neighbors. To my best knowledge, this thesis is the first

work introduces the neighborhood effect into the analysis of network formation process. I

also discuss three potential research directions in the thesis and I hope to conduct the related

research in the future.
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CHAPTER 7

Appendix

Proof of Proposition 2: The proposition 2 is proved by contradiction. First, for a strategy

profile σ = {σ12, ..., σn−1,n}i<j and the set of information I, define

gij(σ, I, θ) =

exp

[
W ′
ijβ + λ

|Nij |
∑

(k,l)∈Nij

σkl

]

1 + exp

[
W ′
ijβ + λ

|Nij |
∑

(k,l)∈Nij

σkl

]

Fix I and the number of agents n. Suppose there are two different equilibria, which are

denoted by σ∗ and σ†. There exists some pair (i, j) such that

σ∗ij − σ
†
ij =

∑
(k,l)∈Nij

∂gij(σ̃, I, θ)
∂σkl

(σ∗kl − σ
†
kl),

where the equality comes from mean value theorem. Without loss of generality, we assume

σ∗kl ≤ σ†kl. We have σ∗kl ≤ σ̃kl ≤ σ†kl, for all (k, l) ∈ Nij. Notice that

ln gij(σ, I, θ) = W ′
ijβ +

λ

|Nij|
∑

(k,l)∈Nij

σkl − ln (1 + exp

W ′
ijβ +

λ

|Nij|
∑

(k,l)∈Nij

σkl

)

which implies

∂gij(σ, I, θ)
∂σij

=
λ

|Nij|
[gij(σ, I, θ)(1− gij(σ, I, θ)] .
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So,

σ∗ij − σ
†
ij = gij(σ

∗, I, θ)− gij(σ†, I, θ)

=
∑
Nij

λ

|Nij|
[gij(σ̃, I, θ)(1− gij(σ̃, I, θ)] (σ∗kl − σ

†
kl)

≤ 1

4
λ max

(k,l)∈Nij

|σ∗kl − σ
†
kl|

This implies

max
i,j∈V
|σ∗ij − σ

†
ij| ≤

1

4
λmax
i,j∈V

max
(k,l)∈Nij

|σ∗kl − σ
†
kl|

≤ 1

4
λmax
k,l∈V

|σ∗kl − σ
†
kl|

If λ < 4, there will be a contradiction. So, there is only a unique equilibrium if λ < 4.
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