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SUMMARY

Precise discrimination of tumor from normal tissues remains a major roadblock for therapeutic 

efficacy of chimeric antigen receptor (CAR) T cells. Here, we perform a comprehensive in silico 
screen to identify multi-antigen signatures that improve tumor discrimination by CAR T cells 

engineered to integrate multiple antigen inputs via Boolean logic, e.g., AND and NOT. We screen 

>2.5 million dual antigens and ~60 million triple antigens across 33 tumor types and 34 normal 

tissues. We find that dual antigens significantly outperform the best single clinically investigated 

CAR targets and confirm key predictions experimentally. Further, we identify antigen triplets that 

are predicted to show close to ideal tumor-versus-normal tissue discrimination for several tumor 

types. This work demonstrates the potential of 2- to 3-antigen Boolean logic gates for improving 

tumor discrimination by CAR T cell therapies. Our predictions are available on an interactive web 

server resource (antigen.princeton.edu).

Graphical Abstract
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In Brief

The application of CAR T cells to solid tumors is limited by the difficulty in identifying single 

target antigens that adequately discriminate between tumor and normal tissue to avoid toxicity. We 

leverage large-scale RNA-seq databases from tumor and normal tissues to evaluate the 

discriminatory power of single antigens and antigen combinations. Most single antigens, including 

those currently under investigation as CAR targets in solid tumors, perform poorly. The addition of 

a second or third antigen using AND or NOT gating can significantly improve CAR T cell 

performance. We construct and test a pair of potential AND-gated T cells for renal cell carcinoma. 

A full database of all predicted high-performing antigen pairs and triplets is made available in an 

associated web server (antigen.princeton.edu).

INTRODUCTION

Despite recent clinical success in using engineered T cells to treat hematologic cancers 

(Maude et al., 2018; Neelapu et al., 2017), a major barrier in expanding their use to solid 

tumors is the challenge of specific tumor recognition. Although it is possible to engineer 

chimeric antigen receptors (CARs) directed toward tumor associated antigens, many of those 

antigens, especially in the case of solid tumors, are also expressed, often at lower levels, in 

other normal tissues, leading to cases of toxic cross-reactivity (Lamers et al., 2013; Morgan 

et al., 2010; Parkhurst et al., 2011; Thistlethwaite et al., 2017). While toxicity can in some 

cases be ameliorated by reducing CAR T dosage, the small therapeutic window caused by 

poor discrimination leads to a trade-off between efficacy and toxicity. The difficulty of 
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finding absolutely tumor unique surface antigens that can be distinctly recognized by CARs 

has led some to question the capability of such engineered T cells to ultimately achieve 

success in safely treating solid tumors (Rosenberg and Restifo, 2015).

Current approaches for engineering CAR T cells, however, focus only on recognition of a 

single target antigen. If we consider that solid tumors express an array of antigens, it is 

possible that improved specificity could be achieved through recognition of combinatorial 

antigen signatures (Figure 1A). Such considerations, however, have only recently become 

actionable with advances in synthetic biology approaches to engineering T cell therapies. 

Engineered cells are unique among therapeutic modalities in that they can in principle be 

engineered with multi-antigen recognition circuits. For example, recent advances have 

shown that it is possible to engineer CAR T cells that recognize target cells with 

combinatorial Boolean logic: one can engineer T cells with multi-receptor circuits that 

function as AND gates (requiring two antigens to be present) (Kloss et al., 2013; Roybal et 

al., 2016a, 2016b; Srivastava et al., 2019; Wilkie et al., 2012), NOT gates (Fedorov et al., 

2013), and OR gates (requiring the presence of one of two possible antigens) (Grada et al., 

2013; Hegde et al., 2013). AND gates (high expression of two antigens) and NOT gates 

(high expression of one antigen, low expression of another) could, in principle, significantly 

increase tumor selectivity by limiting cross-reactivity with healthy tissues that also express 

the CAR/TCR target antigen (Figure 1A). It may also be possible to engineer T cells with 

more complex recognition circuits, based on more than two antigens. A critical question that 

remains is how significantly such combinatorial antigen recognition circuits could improve 

targeting of cancers and limit cross-reaction with normal tissues.

Here, we performed a comprehensive computational search of all possible pairs of predicted 

surface antigens in the human genome (2,358 total predicted surface genes with >2.5 million 

total possible surface-presented antigen combinations) to explore the strategy of tumor cell 

targeting by CAR T cells engineered to express multi-receptor circuits that function as 

Boolean logic gates. We score all AND and NOT gates by how well the putative 

combination separates tumor and normal tissue samples for 33 distinct tumor types and 34 

major healthy tissues and then add a third surface antigen to explore more than 60 million 

additional unique AND and NOT gates for triplets. For these logic gates, we define both how 

much off-target toxicity can be avoided (precision) and the potential number of tumor 

samples we can target (recall).

We find that cellular recognition programs which incorporate information from multiple (2 

or 3) antigens, outperform standard single antigen recognition circuits. As the number of 

antigens used to discriminate tumor-versus-normal tissue is increased, the precision of tumor 

detection increases at the cost of decreased recall of all tumor specimens. For most cancer 

types, there are numerous dual antigen combinations that significantly improve the precision 

and recall of the best single antigen, including currently clinically investigated CAR targets. 

For several tumor types, antigen triplets are predicted to show close to ideal tumor-versus-

normal tissue discrimination. We also experimentally validate improved detection of renal 

cell carcinoma (RCC) using computationally identified antigen pairs for proof of principle. 

In total, our work illustrates an overall strategy for merging computational analysis with 
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increasing synthetic biology capabilities to identify and target sectors of antigen recognition 

space that precisely identify and discriminate particular tumor types.

RESULTS

Pipeline for Identifying Antigen Combinations that Improve Tumor Discrimination

Candidate antigens must be recognizable from the cell surface. Toward that end we first 

curated a list of more than 5,000 genes expected to have cell surface expression. Using the 

COMPARTMENTS database (Binder et al., 2014), we further pruned our curated list to only 

include predicted transmembrane proteins that are annotated to be expressed on the plasma 

membrane. Of these, the genes predicted to encode transmembrane proteins, we classified 

potential target antigens as either: “clinical”—involved as a target of a CAR T cell therapy in 

a currently registered clinical trial (29 genes; see Table 1); or “novel” — not currently 

targeted in a known therapeutic T cell clinical trial. In total, this yielded approximately 

2,400 surface-expressed genes across 33 tumor types and 34 normal tissue samples 

(Supplemental Information).

We then use RNA sequencing (RNA-seq) expression data across 9,084 samples taken from 

the Cancer Genome Atlas (TCGA) (https://www.cancer.gov/tcga) and 12,402 samples from 

Genotype Tissue Expression project (GTEx) (GTEx Consortium et al., 2017) to measure the 

level of potential target antigen gene expression. To reduce expression differences due to 

technical variation, we batch corrected all samples and used log transformed TPM 

(transcript per million) normalized read counts. Samples were partitioned using geometric 

sketching (Hie et al., 2019) to get an equal representation of all tissue types and the tumor 

samples in both partitions, with 20% of the data taken for training and the remaining 80% 

set aside for evaluation.

Using the gene expression values of potential target antigens, we calculated a clustering-

based score to quantify the separation between samples of a single tumor type versus all 

normal tissue samples (Figure 1C). Specifically, we chose the Davies-Bouldin metric, which 

measures the ratio of within cluster spread to between cluster distance, as the key component 

of our cluster-based scores. Before settling on Davies-Bouldin we investigated other cluster 

evaluation metrics that could be applied to the cluster separation problem including: 

Silhouette, Dunn’s index, and the Xie-Bene validity measure. While all methods yield to 

similar results, some drawbacks with other metrics made Davies-Bouldin our preferred 

choice. Namely, that: Silhouette gives too much weight to compactness and did not have 

enough variation to differentiate between top antigens; Dunn’s index did not produce 

enough variation in scores; and Xie-Bene generated too many missing values in practice.

Final clustering-based scores for a given antigen combination, utilize the Davies-Bouldin 

index with a modification to give extra weight for the distance between cluster centers. 

Together, clustering scores take into account the average distance between the two types of 

samples (tumor and normal) and the overall distribution of samples in expression space. 

Clustering-based scores are scaled from 0 to 1, for ease of ordering, with scores close to 1 

indicating the best performing combinations with larger distance and less scatter between the 

classes of samples (see STAR Methods for additional details).

Dannenfelser et al. Page 5

Cell Syst. Author manuscript; available in PMC 2021 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.cancer.gov/tcga


On the training set, we used clustering-based scores to rank all putative target antigens for 

each tumor type by their potential to separate samples of one tumor type from all normal 

tissue samples (Figure 1C). We calculated clustering scores for all surface antigens as a 

single (n = 2,358) and as a pair (n = 2,778,903) for each tumor type. Only singles with high 

antigen expression in the target cancer samples, and pairs of antigens (doubles) that are 

either both highly expressed in the target (AND-gate), or one with high expression and the 

other with low expression in the target (AND-NOT-gate) are useful as viable CAR/TCR 

targets. Given the large number of surface antigens (2,358), the space of potential triplets for 

our set of antigens is >2.2 billion (2,358 choose 3), for efficiency we restricted the search of 

triple antigen gates to single antigens that have at least some discrimination potential as 

assessed in the single antigen search (see STAR Methods). We then calculated clustering 

scores over this restricted set per tumor type for triple AND, AND-AND-NOT, and AND-

NOT-NOT gates.

The clustering-based scores prioritize antigens that have a large distance between tumor and 

normal samples, but we are also interested in a metric that can more directly capture how 

much off-target toxicity can be avoided (precision) and the potential number of tumor 

samples we can target (recall) if Boolean logic gates are used. Decision tree classifiers can 

find boundaries that divide data into groups, while optimizing for the purity of the division. 

New samples can then be labeled with a group depending on which side of the boundary 

they fall on. In our case, decision trees can be used to find an expression value for each 

antigen where samples of a given tumor type are the most separated from normal tissue 

samples, then use the boundary to classify a new sample point as tumor or normal. Since 

clustering scores prioritize antigens that spread the two sample types, we should be able to 

find clear boundaries. To train the decision tree models we used the same training data we 

used for the clustering-based scores and evaluate the resulting models on our held out test set 

of samples (Figure S1). Applying this to the top antigen combinations found via clustering, 

we can then assess how well each of the top performing single, double, and triple gates 

separate tumor samples from normal tissue samples using the resulting F1 score (harmonic 

mean of precision and recall) from classification.

Recognition of All Cancer Types Can Be Improved by Adding Secondary Antigens to 
Current Clinical CAR T Targets

We first calculated clustering-based scores for the current clinically targeted antigens 

described in (Table 1). We compared these single antigen scores with those obtained for 

antigen pairs in which two clinically targeted antigens (clinical antigens) are combined, a 

clinical antigen is paired with a novel putative surface antigen, or two novel surface antigens 

are paired. A spreadsheet listing the top 10 antigen pairs from each type of combination 

(e.g., clinical-clinical, clinical-novel, etc.) per cancer type is provided in the Supplemental 

Information, Table S1 and is ranked by clustering-based scores.

To give us more insight into how well antigens combinations separate normal versus tumor 

samples, we used decision tree models for each single antigen and each antigen pair in the 

top-ranked antigens, as identified by their clustering scores. Decision trees find expression 

level cutoffs for each antigen that separate the classes of samples (tumor and normal). 
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Applying them on held out sample data yielded additional metrics describing how well 

potential antigen combinations separate tumor and normal samples when using distinct 

expression level boundaries (Figure S1).

More specifically for each gate type, we took the top 10 antigen singles or pairs for each 

tumor (330 data points per gate type, from 33 tumors × 10 top combos) and quantified their 

tumor-versus-normal discrimination potential using F1. As shown in Figure 2A, current 

clinical antigens on average lack sensitivity and specificity when used as the sole recognition 

antigen (μF1 = 0.09). However, combining two clinical antigens with AND or NOT logic for 

tumor recognition leads to significant improvement in both precision and recall as seen by 

the jump in F1 (μtop10 F1 = 0.25; Wilcoxon rank sum p = 5.96 × 10−32; n = 669). This 

suggests that simple combinations of already well-verified CAR targets can greatly improve 

the discriminatory ability of CAR T cells. Using the larger pool of novel antigens (that is, 

those identified by our pipeline that are not currently being investigated in clinical trials) 

allows for even more improvement in discrimination both alone, as single antigens (μ1 = 

0.37), and when paired with clinical antigens (μtop10 F1 = 0.5; Wilcoxon ranksum p = 1.33 × 

10−46; n = 676). Novel-novel pairings show even more potential (μtop10 F1 = 0.57). Taken 

together these results suggest that discrimination achievable by current clinical antigens can 

be dramatically improved by incorporating them into antigen pairs recognized by Boolean 

gated T cells.

We also looked at the highest cluster-based scoring clinical and the highest antigen pair for 

each of the 33 individual cancer types (Figure 2B). Thirty-one of the cancers examined 

showed marked improvement from the best clinical antigen to the best double antigen (μΔF1 

= 0.58). Among these best pairs per cancer type we saw reductions in overall cross-reactivity 

(μΔprec = 0.76; n = 31) and an increase in sensitivity (μΔrecall = 0.12; n = 31), with clinical-

novel and novel-novel antigen pairs showing the best discrimination performance. 

Comparing the abundance of AND gates with AND-NOT gates reveals that AND-NOT 

gating is more common among the identified high-performing antigen pairs (Figure 2C).

Within the top 10 clinical-novel antigens for each of the 33 tumor types (330 pairs), we 

found a subset of novel antigens that repeatedly form high-ranking antigen pairs with current 

clinical CAR targets across multiple cancers. We show the most frequently occurring three 

novel antigens in Figure 2D, along with their highest-ranking clinical pairings and 

prevalence across tumor types. These novel antigens encode genes that have been noted by 

prior groups to be upregulated in individual tumors and play a role in tumorigenesis. This 

includes KREMEN2, a paralog of KREMEN1 that has recently been found to promote cell 

survival by blocking KREMEN1 homo-dimerization and induction of cell death (Sumia et 

al., 2019). GRIN2D a glutamate-dependent NMDA receptor has previously been found to be 

upregulated in cancer by IHC (Ferguson etal., 2016), confirming RNA-based results of this 

work, and is believed to play a role tumor vascularization. The Cadherin EGF LAG seven-

pass G-type receptor 3 (CELSR3) has also been identified to be upregulated in malignancies 

and is believed to play a role in cell-cycle regulation (Xie et al., 2020). Taken together, these 

results highlight the power of our approach to systematically identify potentially useful 

novel antigens that can pair with current clinical antigens, across many different tumor 

types, which otherwise might have been “lost in the shuffle.”
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Examples of Antigen Pairs Predicted to Improve Tumor Recognition

Our top possible antigen pairs as ranked by clustering score and their ability to discriminate 

a given cancer type is available through an interactive webserver (http://

antigen.princeton.edu). The webserver allows users to browse top single and doubles per 

tumor type and generate an interactive scatterplot for any possible transmembrane pair. In 

Figure 3, we highlight a few examples of high-performing antigen pairs (high clustering 

scores). These 2D scatterplots show the RNA-seq expression level (as log transformed TPM 

counts) of both antigens where each sample is represented by a point—red signifying cancer 

samples and light gray signifying normal tissue samples. Dark circles highlight the centroids 

for each normal tissue type, as labeled. In these plots, a high degree of separation occurs 

when a cluster of cancer (red) samples are segregated away from the bulk of normal tissue 

samples. This segregation can occur in the upper right quadrant (high:high representing 

AND gate); in the upper left quadrant (low:high representing AND-NOT gate), or lower 

right quadrant (high:low, AND-NOT gate).

The RNA-seq expression data show significant overlap between tumor and normal tissue for 

single clinical antigens currently being tested as CAR targets in clinical trials (Figure 3A), 

suggesting that true discrimination between tumor and normal tissue using single antigens 

may be quite difficult. This overlap is greatly reduced by combining information from both 

antigens, with a concomitant improvement in the calculated F! score. The plots shown in 

Figure 3 represent only a small fraction of possible high-performing combinations. Other 

examples are also shown in Figure S3, with all other examples accessible via the webserver. 

We discuss some of these specific antigen pairs in the following sections.

Experimental Validation: Secondary Antigens that Improve CAR T Recognition of Renal 
Cell Carcinoma

This analysis provides a very large dataset of potential antigen pairs (on the order of 

hundreds of thousands; Figure S2B) for clinical translation as AND gate CAR T cells, many 

of which are actionable using currently available antigen recognition domains. To outline 

how antigen pairs can be translated to cellular design and to validate our bioinformatic 

predictions, we have constructed a pair of engineered cell designs capable of specifically 

recognizing RCC. Two predicted examples of combinatorial antigens for RCC recognition 

are shown in Figure 4.

RCC is known to overexpress the tumor associated antigens CD70 and AXL (Jilaveanu et 

al., 2012; Yu et al., 2015), which we experimentally confirmed in an RCC cell line (769-P) 

(Figure S4A). Both of these antigens are currently involved in CAR T trials. However, as 

single CAR targets they are imperfect. CD70 is also expressed on a number of blood cells, 

including activated T cells, germinal center B cells, and dendritic cells in lymph nodes 

(Hintzen et al., 1994; Tesselaar et al., 2003). AXL is also expressed in many normal tissues 

including the lung (Qu et al., 2016). However, we find that the cross-reactive normal tissues 

for these two antigen targets are non-overlapping and, thus, the combination of these two 

complementary clinical antigen targets is predicted to greatly improve discrimination of 

tumor-versus-normal tissue (Figure 4A).
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To take advantage of this complementary pair of AND antigens for RCC, we engineered a 

CAR that recognizes CD70 using its cognate binding partner CD27 as the recognition 

domain (Wang et al., 2017). In vitro cytotoxicity assays showed that this CAR T cell was 

able to clear a RCC line (769-P) but also showed significant cytotoxicity against a B cell line 

(Raji cells). To create a T cell that recognizes AXL AND CD70, we first engineered a 

synNotch receptor (Morsut et al., 2016) using an α-AXL scFv recognition domain fused to 

the Notch transmembrane domain and an orthogonal transcription factor (GAL4-VP64). We 

found that T cells expressing an α-AXL synNotch that are co-cultured with RCC cells 

activate a synNotch GFP reporter; in contrast, the same T cells co-cultured with Raji B cells, 

which do not express AXL, do not activate the AXL synNotch receptor. We then engineered 

AND gate T cells in which an α-AXL synNotch drives expression of a CD70 CAR. We find 

that this AND circuit caused the specific lysis of RCC cells, but not of Raji B cells (Figure 

4A). Thus, the combinatorial recognition of AXL AND CD70 improves upon the CD70 

single target CAR, allowing discrimination between RCC cells and B cells.

Similarly, the single target α-AXL CAR is by itself a potential treatment for RCC (Zhu et 

al., 2019). However, as above targeting AXL is predicted to have toxic cross-reactivity with 

lung tissue. We constructed an AXL CAR, and when expressed in human primary CD8+ T 

cells it was found to have cytotoxic activity against both an RCC cell line and an 

immortalized lung epithelial cell line (Beas2B) (Figure 4B). Based on the current 

bioinformatics analysis of combinatorial antigens, we predicted that the novel antigen CDH6 

(cadherin 6), which has not previously been used as cellular therapy target, would improve 

the precision of an AXL CAR (Figure 4B). CDH6 is a protein that mediates calcium-

dependent cell-cell adhesion with PAX8 lineage-linked expression (de Cristofaro et al., 

2016) in the fetal kidney (Mbalaviele et al., 1998) as well as proximal tubule epithelium and 

is overexpressed in renal and ovarian cancer (Paul et al., 1997). A synNotch receptor 

targeting CDH6 was generated by screening four potential CDH6 scFv’s fused to the 

synthetic Notch core receptor. We found that α-CDH6 synNotch receptors expressed in 

human primary T cells would specifically drive GFP reporter activity when co-cultured with 

an RCC cell line, but not with CDH6 negative lung epithelium cells (Beas2B). When we 

constructed an AND-gate T cell with α-CDH6 synNotch driving expression of an α-AXL 

CAR, we found that specific lysis was only seen for the RCC cell line, and not the lung 

epithelial cell line. Thus, the combinatorial recognition of CDH6 and AXL improves upon 

the AXL single target CAR in that it allows discrimination between RCC cells and lung 

epithelial cells.

These two examples show that there are multiple ways to improve recognition of a specific 

cancer like RCC by harnessing combinatorial antigen recognition. In total, our analysis 

predicts 25 antigen pairs that discriminate RCC from normal tissues with a clustering score 

of >0.85 (Figure S2B). This set of experiments illustrates a pipeline by which improved 

combinatorial CAR T circuits can be computationally identified and validated.
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Triple Antigen Combinations Increase Precision of Cancer Recognition but with Trade-Off 
of Reduced Recall

Adding a third antigen helps improve overall discrimination performance across tumor 

types. We observed an overall increase in classification performance with each additional 

antigen, averaged over the top 10 combos for all tumor and gate types (Figure 5A). With 

significant increases in the mean F1 from 1 to 2 antigens (μF1 single = 0.15; μtop10 F1 double 

= 0.37; Wilcoxon ranksum p = 7.86 × 10−68; n = 2,979) and for 2 to 3 antigens (μtop10 F1 

triple = 0.58; Wilcoxon ranksum p = 2.83 × 10−48; n = 1,578). Likewise, we see a significant 

increase in discrimination potential, moving from a clinical to a clinical-novel pair (μF1 C = 

0.09; μtop10 F1 C:N = 0.5; Wilcoxon ranksum p = 6.06 × 10−81; n = 676) and to a clinical-

clinical-novel triplet (μtop10 F1 C:C:N = 0.66, Wilcoxon ranksum p = 5.00 × 10−8; n = 438), 

suggesting that novels still have additional value when combined with two clinical antigens.

Looking across the top 100 gates per cancer we find that the majority of triples (92%) have 

at least one NOT element, with over half (56%) having two antigens that have low 

expression in the target (AND-NOT-NOTs, Figure 5C). Such a high percentage of NOTs 

further highlights the importance of synthetic NOT gates and our in silico approach, as more 

naive approaches such as combining cancer specific markers in AND gates would miss 

many of the highest discriminatory combinations.

Perhaps the greatest benefit of adding a third antigen is the improvement we observe in 

recognizing challenging cancers. Cholangiocarcinoma, in particular, was the tumor type that 

was the hardest to discriminate, with a max F1 score of 0.26 for a pairing of two novel 

antigens. When adding a third antigen, we were able to reduce predicted off-target toxicity 

and increase sensitivity, by combining a lower-scoring clinical-novel pair with an additional 

novel antigen, increasing the max F1 score by 0.31. Encouragingly, we also see substantial 

increases in the maximum discrimination performance for several other cancer types as well 

(Figure 5B).

While we see increases in overall performance for many cancers, we also noticed that for 

some tumor types we do not see a big gain in recognition going from two to three antigens. 

This is because overall the gains in precision come at a cost of reduced recall. Looking at 

both the precision and recall of the top combinations per each gate per tumor in Figure 5D, 

we see as we go from one to two to three antigens we achieve nearly perfect average 

precision (μ precision single = 0.07, μtop10 precision double = 0.44, and μtop10 precision 

triple = 0.90), and this increase is significant from one to two (Wilcoxon rank sum p = 2.45 

× 10−120, n = 2,979) and two to three (Wilcoxon rank sum p = 5.69 × 10−84, n = 1,578). 

However, with each additional antigen there is a significant reduction in the average recall (μ 

recall single = 0.66, μtop10 recall double = 0.52, μtop10 recall triple = 0.47; 1 to 2: Wilcoxon 

rank sum p = 3.55 × 10−9, n = 2,979; 2 to 3: Wilcoxon rank sum p = 5.94 × 10−4; n = 1,578). 

Taken together, we can conclude that 2–3 antigens are likely to be sufficient for precise 

recognition of most tumor types.

Like our examples in Figure 3, we also highlight a few examples of high-performing antigen 

triplets in Figure 5E. As in the 2D scatterplots, red dots are samples are those of a particular 

cancer type (e.g., mesothelioma [left] and melanoma [right]), light gray are normal tissues, 
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and dark blue are highlighting the normal tissue centroids. In both of these example triplets, 

the additional antigen gives a big boost to the overall separation of tumor and normal tissue 

samples, yielding fairly precise triplets that suffer slightly from reduced recall. We show 

more examples along with their corresponding 2D plots in Figure S5.

DISCUSSION

Targeting Antigen Combinations Could Significantly Improve Tumor Recognition

This analysis, based on available gene expression datasets, predicts that using Boolean 

antigen combinations can significantly improve the selectivity of tumor recognition and 

avoidance of normal tissue cross-reactivity. Thus, using Boolean multi-antigen detecting 

engineered T cells has the potential to have a major impact on cancer recognition and the 

development of next generation cellular therapies.

We find that adding new antigens to current clinically actionable CAR targets via AND or 

AND-NOT Boolean recognition is predicted to significantly increase cancer versus normal 

tissue discrimination. Moreover, we can find many novel antigen pairs that show even 

stronger and near ideal discrimination. All cancers show at least several (> 25) antigen pairs 

above a clustering score cutoff of 0.85, with many having thousands of strong pairs, 

suggesting a potential therapeutic avenue for all tumor types when using a pair of antigens 

(Figure S2C). Furthermore, with the addition of triples, every cancer type examined here has 

a promising clustering-based score and an F1 score above 0.5 (out of ideal 1.0). Thus, there 

are likely to be many options of multi-antigen signatures that could be used to recognize any 

one type of tumor.

2–3 Antigen Combinatorial Circuits May Be Sufficient to Achieve Strong Cancer versus 
Normal Tissue Discrimination

Notably, when we examine the precision and recall of detection, we see for top performing 

gates, that as the number of antigens used for detection is increased from two to three, mean 

precision approaches perfection while the recall declines (Figure 5D). This suggests that 

further improvement in therapeutic cell discriminatory potential will require more narrow 

sub-classifications of tumor type; either by pathologic or molecular subtypes (e.g., triple-

negative versus HER2-positive versus hormone receptorpositive breast cancer) of cancers 

defined in TCGA. This number of antigens also matches well with current synthetic biology 

tools, as integrating 2–3 receptor circuits is possible with current gene transfer methods 

(e.g., lentiviral transduction), while four or more receptor circuits would require significant 

improvements in vector payload capacity.

Limitations of This Analysis and Future Challenges

This study shows that combinatorial antigen recognition is predicted to yield much higher 

tumor discrimination than single antigen recognition. Nonetheless, the exact degree of this 

improvement, as well as the exact combinations that could be most clinically useful remain 

less clear, as there remain caveats in interpreting these data. First, this analysis is based on 

gene expression data, while T cell recognition is mediated by protein expression. At this 

time, there is far less extensive protein expression data covering both cancer and normal 
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cells, so we leveraged the vast amount of gene expression data as a proxy. Second, while 

GTEx covers most major tissues, we still have an incomplete set of normal tissue expression. 

Recent developments in single-cell sequencing will help to bridge the gap, providing cleaner 

and more detailed snapshots of expression in healthy cells, while having the additional 

benefit of helping us account for normal cells that may be present in bulk cancer samples. 

Once more widely available, integration of single-cell RNA-seq data of normal and tumor 

cells would improve the specificity of this analysis even further.

Finally, optimal discrimination also involves setting antigen detection thresholds—exactly 

where the cutoff lines of high and low expression is important for discrimination (Figure 

1B). In cases where we observe large distances between tumor and normal samples, 

separation is extremely robust and consequently, shifting threshold cutoffs makes little 

difference in F1. In the other cases, however, F1 scores are highly sensitive to shifts in 

cutoffs. This is why we chose to first rank potential antigen combinations by clustering 

scores and then use a classifier to evaluate performance. Focusing primarily on maximizing 

separation distance ensures that more of our top pairs are robust to thresholding. 

Experimentally, optimizing cutoff thresholds is challenging, since we currently have poor 

control in determining what antigen densities are detected by CARs. However, new efforts 

are ongoing to develop methods for tuning antigen detection cutoffs and sharpness, which 

may help significantly in taking advantage of expression level differences, providing an 

additional untapped source of discrimination information.

It is interesting that the list of current clinical antigens under investigation as CAR targets in 

solid tumors performs relatively poorly compared with the large set of novel antigens 

identified here. It may be that many of the computationally predicted antigens do not 

account for detailed biological and physiological factors. The discrepancy could also simply 

be observed because of poor correlation of gene expression with protein expression, or 

perhaps, because many of the clinically distinguishing markers have not been directly 

compared with all other healthy cells throughout the body. Clearly, disease-specific expert 

knowledge will be critical to filter the antigens identified here. In some cases, however, there 

might be some historical expert bias, where focus has been unequally placed on antigens 

identified early in the study of a disease. We suspect that several of the novel antigens that 

are identified to form high functioning pairs with many current clinical antigens (Figure 2D) 

should be further investigated in future work.

Combining Bioinformatics with Antigen Recognition Circuit Design to Optimize Solid 
Cancer T Cell Therapies

Despite the above caveats, this analysis indicates that combinatorial antigen recognition is 

likely to be able to make a significant contribution to the treatment of at least some, if not 

all, solid cancers by engineered therapeutic cells. This analysis drives home the point that 

recognition of tumors has to take into account a broad set of parameters, such as how much 

overlap there is in expression in normal tissues, and how shared the antigens are among 

patient populations. Gratifyingly, we can see the potential combinatorial antigen circuits 

have to carve this complex antigen recognition space into smaller defined sectors with better 
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tumor-versus-normal tissue discrimination. In principle with AND, OR, and NOT functions, 

we can break up the antigen space in many flexible ways.

This analysis provides a roadmap for a new vision of precision medicine that more deeply 

integrates in silico data analysis with capabilities emerging from synthetic biology and cell 

design. In this case, large-scale genomic data are not used to stratify patients based on 

likelihood of response to a drug, but rather the data become the guide for how to best design 

a smart cellular drug. Here, we search for opportunities to discover, within the 

multidimensional space of antigens, the signatures that can offer us the optimal recognition 

discrimination. Given the very large size of this database, as well as the thousands of 

potential antigen combinations that could be created, we have provided these data in a 

webserver for the community to interrogate potential antigen pairs or triplets for all cancers 

within the TCGA (Figure 6B).

The range of recognition functions that we can achieve will likely have a major impact on 

how engineered cell therapies can detect cancer and other diseases. The variety of 

recognition modalities means that we have great potential to sector multidimensional antigen 

space in a diversity of ways to find those ways that best segregate disease tissues from 

normal tissues. Thus, harnessing the computational capabilities of living cells, and using in 
silico analysis to guide their deployment, provides a broad new frontier for recognizing and 

attacking complex diseases such as cancer.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, (Wendell.lim@ucsf.edu). To ensure a 

fast response, please copy Noleine.Blizzard (noleine.blizzard@ucsf.edu) and Michael 

Broeker (Michael.Broeker@ucsf.edu) in any requests related to the paper.

Materials Availability—Plasmids generated in this study are in the process of being 

deposited to AddGene.

Data and Code Availability—The R and python code used to score antigen combinations 

along with methods for regenerating the major figures in this paper freely available for non-

commercial use and is deposited in GitHub at https://github.com/ruthanium/antigen-combos-

scripts.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Source of Primary Human T cells—Blood was obtained from Blood Centers of the 

Pacific (San Francisco, CA) as approved by the University Institutional Review Board. 

Primary CD4+ and CD8+ T cells were isolated from anonymous donor blood after apheresis 

(described in methods).
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METHOD DETAILS

Defining the Space of Candidate Antigens—We defined potential candidate antigens 

as genes with known or predicted cell surface expression, restricting our search space to 

current clinical targets and genes coding for transmembrane proteins. More specifically, we 

assembled a set of 29 unique clinical antigens along with their indications that have shown 

promise in the literature or are targets in currently active CAR or TCR trials and mapped 

them to their corresponding genes. To assemble the list of transmembrane proteins we 

started with a list of putative transmembrane genes then filtered by localization to the plasma 

membrane as annotated in the COMPARTMENTS database (Binder et al., 2014) with high 

confidence (level 3 or higher), yielding a list of 2,358 genes. The COMPARTMENTS 

database uses a combination of manually curated literature, text mining, high-throughput 

screens, and sequence prediction methods to make subcellular location predictions.

Gene Expression Data Processing—We gathered gene level RSEM processed TPM 

counts for healthy human tissue samples from the Genotype Tissue Expression (GTEx) 

project version 7 and gene level RSEM processed tumor samples from The Cancer Genome 

Atlas (TCGA) firehose. All together there were 21,486 samples covering 34 tissues and 33 

cancer types (see Table S2 for individual breakdowns per tissue and tumor type). To remove 

differences due to technical variation and thus combine these data from these two different 

sources we applied batch correction using a parametric empirical Bayes framework using the 

COMBAT function in the SVA R package (Johnson et al., 2007).

Intelligent Subsampling and Data Partitioning—To increase the speed of our 

clustering score calculations as well as partition our data into training and test sets we used 

geometric sketching (Hie et al., 2019). Geometric sketching allows us to subsample the 

space of samples maintaining the overall structure of the data by fitting a plaid covering and 

sampling points from within each region of the covering. In simulations across 8 different 

sketch sizes for 5 iterations across 100 gene pairs (10 fixed genes paired with 10 random 

genes) we observed no loss of performance (see Figure S2B) when calculating Davies-

Bouldin and Manhattan distance but substantial gains in runtime. Based on these simulations 

we chose to use a sketch size of 20% of all data for calculating clustering-based scores as 

well as the training data for classification and the remaining 80% of the data was held out 

for testing our classification models.

Clustering-Based Scores—We chose to adapt a method used to evaluate clustering, 

Davies-Bouldin (DB), to measure the ratio of within cluster spread to cluster distance. We 

considered the case where there are 2 clusters: a tumor cluster (given set of tumor samples) 

and a tissue cluster (all normal tissues samples). Lower DB scores are better as they indicate 

less within cluster distance (more tightly packed samples) and more distance between the 

cluster centers (more distance between tumor and normals). More formally, we use the 

following equations to calculate DB:

DB =
Si + Sj
Mi, j
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which measures the ratio of scatter between the target tumor type (Si) and the cluster of 

normal tissues (Sj) to the distance between the two clusters. Scatter for each cluster is 

calculated using:

Si = 1
Ti ∑

j = 1

Ti
∣ Xj − Ai ∣

where Ti is the number of samples in a given cluster and Xj is the location of a given sample 

and its distance from its cluster centroid (Ai).

The distance between the clusters, Mi, is calculated by subtracting the distance of the two 

cluster centers.

Mi, j = ∣ Ai − Aj ∣

Where Ai is the centroid of the cancer cluster, and Aj is the centroid of the normal tissue 

cluster.

To give extra weight to the distance between clusters, we also calculated the Manhattan 

distance (d) between the normal and the tumor clusters and used this in the final clustering 

score. To compute a more interpretable clustering-based score to use throughout our search, 

we rescaled log DB and log distance values across all gene pairs and tumor samples to be 

between 0 and 1, where 1 represents the best (smallest) DB score and the largest scaled 

distance. The minimum of these two scores is the final clustscore, thus a clustscore of 1 has 

the smallest DB and largest distance. Formally,

clustscoret, pi, j = min
i, j

log DBt,pi,j − min
t, x

(log(DBt,x))

max
t, x

(log(DBt,x)) − min
t, x

(log(DBt,x)) ,
log dt,pi,j − min

t, x
(log(dt,x))

max
t, x

(log(dt,x)) − min
t, x

(log(dt,x))

where t is a tumor type and pi,j is a pair of genes made up of gene i and gene j and the min 

and max scores are calculated over all pairs.

Search Space Reduction for Triples—To reduce the number of transmembrane and 

clinical antigens for triple antigen search we looked at the performance of single antigens to 

create a smaller set of potential antigens per tumor type. The intuition being that each 

antigen must contribute at least a small amount of improvement to be a high scoring triple. 

To be included in the set of putative antigens per cancer, we required a single antigen to have 

a Davies-Bouldin score <= 5 and a Manhattan distance > 2. This filtering reduced the 

potential antigens to the following: Acute Myeloid Leukemia: 525, Adrenocortical 

Carcinoma: 169, Bladder Urothelial Carcinoma: 68, Brain Lower Grade Glioma: 361, Breast 

Invasive Carcinoma: 48, Cervical Squamous Cell Carcinoma and Endocervical 

Adenocarcinoma: 118, Cholan-giocarcinoma: 69, Colon Adenocarcinoma: 131, Esophageal 

Carcinoma: 40, Glioblastoma Multiforme: 274, Head and Neck Squamous Cell Carcinoma: 

102, Kidney Chromophobe: 140, Kidney Renal Clear Cell Carcinoma: 30, Kidney Renal 
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Papillary Cell Carcinoma: 115, Liver Hepatocellular Carcinoma: 110, Lung 

Adenocarcinoma: 27, Lung Squamous Cell Carcinoma: 59, Lymphoid Neoplasm Diffuse 

Large B-cell Lymphoma: 416, Mesothelioma: 93, Ovarian Serous Cystadenocarcinoma: 102, 

Pancreatic Adenocarcinoma: 36, Pheochromocytoma and Paraganglioma: 233, Prostate 

Adenocarcinoma: 60, Rectum Adenocarcinoma: 118, Sarcoma: 64, Skin Cutaneous 

Melanoma: 194, Stomach Adenocarcinoma: 35, Testicular Germ Cell Tumors: 125, 

Thymoma: 205, Thyroid Carcinoma: 72, Uterine Carcinosarcoma: 90, Uterine Corpus 

Endometrial Carcinoma: 86, and Uveal Melanoma: 299. The clustering scores were then 

calculated as described in the above section.

Evaluation of Top Clustering-Based Scores—We chose the top 10 antigen pairs per 

antigen class (C:C, C:N, and N:N) for each tumor based on their clustering scores for a total 

of ~330 pairs per tumor type. Within the top 10 per class per tumor we only allowed a 

particular gene in a pair to appear a maximum of two times, preventing potential pairs from 

being dominated by a single gene with high separation. We further restricted our analysis to 

single antigens that are high, and pairs of antigens that have at least one antigen predicted to 

have high expression (high:high, high:-low, and low:high) pairs.

To calculate the discriminatory ability of any particular antigen or antigen combination we 

constructed decision tree (DT) models on the 20% training partition using antigen 

expression as features and evaluated performance on the held out 80% of the data. More 

explicitly, for antigen pairs we used the rpart R package to construct two single feature 

decision trees with c=−1 and a max depth=1 forcing each tree to have a single split. We then 

used these splits to draw a classification boundary and calculated precision (the proportion 

of predicted positives that are correct), recall (the proportion of real positives that are 

predicted positive), and F1 scores (the harmonic mean of precision and recall), as shown in 

the following:

F1 = precision ⋅ recall
precision + recall

Construct Design—All synNotch receptors used in this study were built using the mouse 

Notch1 (NM_008714) minimal regulatory region (Ile1427 to Arg 1752). The following 

binding domains were engineered into synNotch receptors: α-AXL scFv (Grada et al., 2013; 

Hegde et al., 2013) (https://patents.google.com/patent/WO2012175691A1/en), and the α-

CDH6 scFv clone V10 (https://patents.google.com/patent/WO2016024195A1/en). synNotch 

receptors were designed to include either Gal4 DNA-binding domain (DBD) VP64 fusion 

proteins as a synthetic transcription factor. All synNotch receptors contain an N-terminal 

CD8α signal peptide (MALPVTALLLPLALLLHAARP) for membrane targeting. 

Following the CD8α signal peptide, Gal4 synNotch receptors contain a myc tag 

(EQKLISEEDL) for easy and orthogonal surface detection with α-myc AF647 (Cell 

Signaling #2233) AF488 (R&D Systems #IC8529G), respectively.

All CARs used in this study were designed by fusing scFvs to the human CD8α chain hinge 

and transmembrane domains and the cytoplasmic regions of the human 4-1BB and CD3ζ 
signaling proteins. The following binding domains were engineered into CARs: α-AXL 
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scFv (https://patents.google.com/patent/WO2012175691A1/en), and the CD27 extracellular 

domain. All CARs included an N-terminal V5 tag for easy detection with α-V5 PE (Thermo 

Fisher #12-6796-42). All CARs contain an N-terminal CD8α signal peptide.

For experiments with T cells expressing a synNotch receptor the Gal4 system was utilized, 

and the receptors were cloned into a modified pHR’SIN:CSW vector containing a 

constitutive PGK promoter. For these experiments, the pHR’SIN:CSW vector was also 

modified to make the response element plasmids. Five copies of the Gal4 DNA binding 

domain target sequence (GGAG-CACTGTCCTCCGAACG) were cloned 5’ to a minimal 

CMV promoter. Also included in the response element plasmids is a PGK promoter that 

constitutively drives mCherry or BFP expression to easily identify transduced T cells. For all 

synNotch response element vectors, the inducible transgene (e.x. CAR or TCR) was cloned 

via a BamHI site in the multiple cloning site 3’ to the Gal4 response elements. All constructs 

were cloned via InFusion Cloning (Takara Bio #638910).

Primary Human T Cell Isolation and Culture—Primary CD4+ and CD8+ T cells were 

isolated from anonymous donor blood after apheresis by negative selection (STEMCELL 

Technologies #15062 and 15023). T cells were cryopreserved in RPMI-1640 (Corning 

#10-040-CV) with 20% human AB serum (Valley Biomedical, #HP1022) and 5% DMSO 

(Sigma-Aldrich #472301). After thawing, T cells were cultured in human T cell medium 

consisting of X-VIVO 15 (Lonza #04-418Q), 5% Human AB serum and 10 mM neutralized 

N-acetyl L-Cysteine (Sigma-Aldrich #A9165) supplemented with 30 units/ mL IL-2 (NCI 

BRB Preclinical Repository) for all experiments.

Lentiviral Transduction of Human T Cells and Target—Lenti-X293T packaging 

cells (Clontech #11131D) were cultured in medium consisting of Dulbecco’s Modified 

Eagle Medium (DMEM) (Gibco #10569-010), 10% fetal bovine serum (FBS) (University of 

California, San Francisco [UCSF] Cell Culture Facility), and gentamicin (UCSF Cell 

Culture Facility). Fresh packaging cells were thawed after cultured cells reached passage 30.

Pantropic VSV-G pseudotyped lentivirus was produced via transfection of Lenti-X 293T 

cells with a pHR’SIN:CSW transgene expression vector and the viral packaging plasmids 

pCMVdR8.91 and pMD2.G using Fugene HD (Promega #E2312). Primary T cells were 

thawed the same day, and after 24 hr in culture, were stimulated with Dynabeads Human T-

Activator CD3/CD28 (Thermo Scientific #11131D) at a 1:3 cell:bead ratio. At 48 hr, viral 

supernatant was harvested, and the primary T cells were exposed to the virus for 24 hr. At 

day 5 post T cell stimulation, Dynabeads were removed and the T cells expanded until day 

12 when they were rested and could be used in assays. T cells were sorted for assays with a 

FACs ARIA II on day 5 or 6 post T cell stimulation.

Cancer and Target Cell Lines—The cancer cell lines used were Raji B cell Burkitt 

lymphoma cells (ATCC #CCL-86), and 769-P renal cell carcinoma cells (ATCC 

#CRL-1933). Rajis and 769-Ps were cultured in RPMI 1640 with L-glutamine (Corning 

#10-040-CV) supplemented with 10% FBS. The immortalized healthy tissue cell lines or 

primary human cells were Beas2B lung epithelial cells (ATCC #CRL-9609). Beas2B cells 
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were cultured in BEBM (Lonza #CC3171) supplemented with the BEGM kit (Lonza 

#CC-3170).

Levels of various antigens were determined via flow cytometry after staining cells with the 

following antibodies: α-CD70 APC (Biolegend #355109), α-AXL APC (R&D systems 

#FAB154A), and α-CDH6 AF647 (R&D systems #FAB2715R).

Antibody Staining and Flow Cytometry Analysis—All antibody staining for flow 

cytometry was carried out in wells of round-bottom 96-well tissue culture plates. Cells were 

pelleted by centrifugation of plates for 4 min at 400 x g. Supernatant was removed and cells 

were resuspended in 50 μL PBS containing the fluorescent antibody of interest. Cells stained 

25 minutes at 4°C in the dark. Stained cells were then washed two times with PBS and 

resuspended in fresh PBS supplemented with 1% FBS and EDTA for flow cytometry with a 

BD LSR II. All flow cytometry data analysis was performed in FlowJo software (TreeStar).

In Vitro Stimulation of synNotch T cells—For all in vitro synNotch T cell assays 

(including both reporter and killing assays), T cells were co-cultured with target cells at a 

1:1 ratio, with anywhere from 1e4-1e5 each/well. The Countess II Cell Counter 

(ThermoFisher) was used to determine cell counts for all assay set up. T cells and target 

cells were mixed in 96-well tissue culture plates in 200 μL T cell media, and then plates 

were centrifuged for 1 min at 400 x g to initiate interaction of the cells. For assays with Raji, 

round-bottom 96-well plates were used. For assays with all other target cells, flat-bottom 96-

well plates were used. Cells were co-cultured for anywhere from 18 to 96 hours before 

analysis via flow cytometry with a BD LSR II.

Flow Cytometry-Based T Cell Cytotoxicity Assay—For all cytotoxicity assays, 

synNotch T cells, constitutive CAR or untransduced T cells were co-cultured with target 

cells at a 1:1 ratio as described above. After intended periods of incubation, samples were 

centrifuged for 4 min at 400 x g, after first being transferred to a round-bottom 96-well plate 

if necessary. Supernatant was then removed and cells were resuspended in PBS 

supplemented with 1% FBS and EDTA for flow cytometry with a BD LSR II. Control 

samples containing only the target cells were used to set up flow cytometry gates for live 

target cells based on forward and side scatter patterns. For assays with all other target cells, 

target cells were gated on low CellTrace Far Red dye (Thermo Fisher #C34564) or low CD3 

staining, as T cells used in these assays were either labeled with CellTrace Far Red or the 

samples were stained with α-CD3 APC/Cy7 (Biolegend #317342) to specifically label T 

cells. The level of target cell survival was determined by comparing the fraction of target 

cells alive in the culture compared to treatment with untransduced T cell controls. Three 

technical replicates are performed for each experiment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 2- and 3-antigen AND or NOT logic gates improve tumor discrimination of 

CAR T cells

• All transmembrane antigen combination pairs and triples are computationally 

screened

• Combinatorial antigens that outperform current clinical CAR T cells are 

predicted

• Adding antigens improves precision at the cost of recall; 2–3 is optimal
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Figure 1. Computationally Enumerating Combinatorial Antigen Sets Predicted to Improve T 
Cell Discrimination of Cancer versus Normal Cells
(A) Single antigen targets for CAR T cells often show cross reactivity with subset of normal 

tissues. Combinatorial recognition circuits (AND, NOT, etc.) could improve discrimination.

(B) Single antigen targets theoretically hit samples that have high expression of antigen A or 

B. Using Boolean T cells we can target specific patterns of antigen expression reducing off-

target toxicity.

(C) Computational pipeline for identifying antigen pairs with improved tumor 

discrimination. For each cancer type (N = 33), normalized RNA-seq expression data are 

combined with RNA-seq data for 34 normal tissues. All potential transmembrane antigen 

pairs are then evaluated for their potential to separate samples of a given tumor type from all 

normal samples in expression space. Shaded boxes highlight specific steps of the pipeline 

starting with a representation of the expression data, followed by the scoring method, and 

toy examples highlighting how evaluation metrics are calculated.
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Figure 2. Dual Antigen Use Greatly Improves the Precision of Cancer Detection
Antigen combinations were ranked by their clustering scores for each tumor and each gate 

type (e.g., clinical, novel, clinical-clinical, clinical-novel, or novelnovel). In this figure 

different subsets of the top antigens (e.g., the top scoring singlet/pair or the top 10 

combinations) are taken and their F1 scores are used to describe their potential 

discriminatory power.

(A) Distribution of tumor-versus-normal discrimination scores (F1) for the top clinical 

antigens or top 10 novel antigens for each cancer type, and for the top 10 antigen pairs 

(clinical-clinical, clinical-novel, or novel-novel) for each cancer type. F1 scores range 

between 0 (no sensitivity and specificity) and 1 (perfect precision and recall). Here, we see 

significant gains in discrimination power going from a clinical antigen to a single novel 

antigen (p = 8.41 × 10−69; n = 646) and from a clinical-clinical antigen pair to a clinical-

novel pair (p = 1,38 × 10−11; n = 660).

(B) Improvement in tumor-versus-normal discrimination with dual antigen recognition by 

cancer type. F1 scores are shown for the highest clustering score single clinical antigen and 

the highest clustering score dual antigen pair. All antigen pairs improve over the highest 

performing single clinical antigen.
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(C) Pie chart showing the composition of different gate types of pairs in the top 10 per tumor 

type. A AND B gates have high expression of both antigens, A AND NOT B have high 

expression of one antigen and low expression of the second antigen. The majority of pairs 

are AND NOT gates.

(D) Novel antigens (hubs, blue) identified that form high-performing pairs with numerous 

current clinically targeted CAR antigens (spokes, orange). Edge weights and color 

correspond to the number of applicable cancer types.
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Figure 3. Numerous Potential Antigen Pairs Show Significant Improvement in the Precision of 
Tumor Recognition
(A) Examples of antigen pairs with improved tumor-versus-normal discrimination by 

switching from single to dual antigen recognition. 2D plots show expression level of both 

antigens in normal tissue samples (gray) versus specific cancer-type samples (red). Navy 

circles show centroids for each of the normal tissue types (labeled when close to red cancer 

cluster). Pairs were scored by clustering as well as by F1 score. Density function of single 

antigen expression in tumor (red) and normal (gray) tissue are plotted on respective axis, 

including an optimal point of discrimination showing the best potential tumor-versus-normal 

discrimination using a single antigen.

(B) Example 2D plots as in (A) highlighting potential AND gates that combine known CAR 

target pairs (clinical-clinical), known CAR targets paired with new potential antigens 

(clinical-novel), and pairs of new potential targets (novel-novel).

(C) Example 2D plots as in (B) highlighting potential NOT gates.
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Figure 4. Computationally Predicted Antigen Pairs Can Be Constructed as AND-Gated CAR T 
Cells in a Laboratory Setting, with Precise In Vitro Discrimination
(A) RCC recognition circuit: CD70 and AXL. Segregation of RCC samples (red points) 

versus normal tissue samples (gray points) in antigen expression space, highlighting overlap 

of CD70 expression with normal blood samples (green points). We constructed an anti-AXL 

synNotch receptor and validated that human T cells expressing the receptor can detect 769-P 

renal cell cancer cell line (CD70+AXL+), but not Raji B cell line (CD70+AXL−)via FAC 

detection of GFP reporter induction. In cell killing assays, we compared human primary 

CD8+ T cells constitutively expressing the anti-CD70 CAR with the same cells transfected 

with the anti-AXL synNotch driving anti–CD70 CAR AND-gate circuit. The single antigen 

targeting anti-CD70 CAR T cells killed both RCC and B cell lines, while the circuit T cells 

selectively killed RCC cells (n = 3, p value from unpaired two sample student’s t test).

(B) RCC recognition circuit: AXL and CDH6. Segregation of RCC samples (red points) 

versus normal tissue samples (gray points) in antigen expression space, highlighting overlap 

of AXL expression with normal lung samples (green points). We constructed an anti-CDH6 

synNotch receptor and validated that human T cells expressing the receptor can detect 769-P 

renal cell cancer cell line (AXL+CDH6+), but not the Beas2B lung epithelial cell line (AXL

+CDH6−)via FAC detection of GFP reporter induction. In cell killing assays, we compared 

human primary CD8+ T cells constitutively expressing the anti-AXL CAR with the same 

cells transfected with the anti-CDH6 synNotch driving anti–AXL CAR AND-gate circuit. 
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The single antigen targeting anti-AXL CAR T cells killed both RCC and lung cell lines, 

while the circuit T cells selectively killed RCC cells (n = 3, p value from unpaired two 

sample student’s t test).
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Figure 5. Antigen Triplets Can Significantly Improve Recognition of Challenging Cancers with 
Some Reduction in Sensitivity
(A) (Left) Distribution of tumor-versus-normal discrimination scores (F1) for top 10 antigen 

singlets, doublets, and triplets. We see significant performance improvements going from 1 

to 2 antigens (p = 7.68 × 10−68; n = 2,979) and 2 to 3 antigens (p = 2.83 × 10−48; n = 1,578). 

The same plot is shown on the right for top 10 clinical antigen singlets, clinical-novel 

antigen doublets, and clinical-clinical-novel antigen triplets. Again, we see significant 

increases in performance going from clinical to clinical-novel pairs (p = 6.06 × 10−81; n = 

676) and from clinical-novel pairs to clinical-clinical-novel triplets (p = 5.00 × 10−8; n = 

438). F1 scores range between 0 (no sensitivity and specificity) and 1 (perfect precision and 

recall).

(B) Improvement in tumor-versus-normal discrimination with triplet antigen recognition by 

cancer type. F1 score ranges from best single clinical antigen (gray circle) to best double 

with at least one clinical antigen (blue circle) to best triplet with at least one clinical antigen.

(C) Pie chart showing the composition of different gate types (high:high:high, high:high:low, 

and high:low:low) of triplets in the top 100 per tumor type.
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(D) Each gray dot represents the precision (left) or recall (right) for one of the top antigens 

(single, double, and triples) for a single tumor type. Gray lines show the median illustrating 

the global increase in precision when including more antigens at the expense of recall. 

Precision has a significant increase and recall a significant decrease when going from one to 

two (precision: Wilcoxon rank sum p = 2.45 × 10−120, n = 2,979; recall: Wilcoxon rank sum 

p = 3.55 × 10−9, n = 2,979) and two to three antigens (precision: Wilcoxon rank sum p = 

5.69 × 10−84, n = 1,578; recall: Wilcoxon rank sum p = 5.94 × 10−4; n = 1,578).

(E) Example 3D triplet antigen gates showing expression level of all antigens in normal 

tissue samples (gray) versus specific cancer-type samples (red). Tissue centroids are in dark 

blue. Triplets were scored by clustering as well as by F1 score.
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Figure 6. In Silico T Cell Circuit Design: Expansive Search and Provided Resources
(A) In silico analysis of tumor-versus-normal expression data can be used to identify 

discriminatory antigen patterns. These potential antigen signatures can then be used as the 

basis for synthetic biology engineering of precision therapeutic T cells.

(B) We have generated an interactive webserver that allows public access to the datasets 

used in this paper; allowing users to identify potential discriminatory singlets, doublets, and 

triplets for cancer detection in the future (antigen.princeton.edu).
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Table 1.

“Clinical” Antigens Currently under Investigation as CAR Targets in Clinical Trials as Identified from 

Clinicaltrials.gov

Antigen Clinical Trial

AXL NCT03393936

CAIX-2 DDHK97-29

CD133 NCT02541370

CD137 NCT02862704

CD147 NCT04045847

CD70 NCT02830724

CD80 NCT03198052

CEA NCT01373047

CLDN18 NCT03159819

EGFR NCT02331693

EpCAM NCT02915445

EPHA2 NCT03423992

FAP NCT01722149

FOLR1 NCT00019136

GD2 NCT00085930

GPC3 NCT02959151

IL13RA2 NCT00730613

HER2 NCT02442297

L1CAM NCT02311621

MSLN NCT02930993

MET NCT01837602

MUC1 NCT02617134

MUC16 NCT02498912

PD-L1 NCT0330834

PSCA NCT02744287

PSMA NCT01929239

ROR1 NCT02706392

ROR2 NCT03393936

VEGFR2 NCT01218867
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa647 mouse anti-myc tag clone 9B11 Cell Signaling Technology Cat#2233S; RRID:AB_823474

PE mouse anti-V5 tag clone TCM5 Thermo Fisher Cat#12-6796-42; RRID:AB_2784630

APC mouse anti-human CD70 clone 113-16 Biolegend Cat#355109; RRID:AB_2562480

APC mouse anti-human AXL clone 108724 R&D Systems Cat#FAB154A; RRID:AB_2062558

Alexa647 mouse anti-human CDH6 clone 427909 R&D Systems Cat#FAB2715R; RRID:AB_2078122

APC/Cy7 mouse anti-human CD3 clone OKT3 Biolegend Cat#317342; RRID:AB_2563410

Chemicals, Peptides, and Recombinant Proteins

In-Fusion HD Cloning Plus Takara Bio Cat#638910

N-acetyl L-Cysteine Sigma Aldrich Cat#A9165

Recombinant human IL-2 protein NCI BRB Preclinical 
Repository

https://ncifrederick.cancer.gov/research/brb/

Gentamicin UCSF Cell Culture Core N/A

Penicillin-streptomycin UCSF Cell Culture Core N/A

Fugene HD Promega Cat#E2312

DMSO Sigma Aldrich Cat#472301

EDTA Thermo Fisher Cat#AM9260G

CellTrace Violet Thermo Fisher Cat#C34557

CellTrace Far Red Thermo Fisher Cat#C34564

CellTrace CFSE Thermo Fisher Cat#C34554

Critical Commercial Assays

RosetteSep Human CD8+ T cell Enrichment Cocktail STEMCELL Technologies Cat#15023

RosetteSep Human CD4+ T cell Enrichment Cocktail STEMCELL Technologies Cat#15022

AllPrep DNA/RNA Mini Kit Qiagen Cat#80204

Cell Culture Reagents

PBS UCSF Cell Culture Core N/A

TrypLE Express Thermo Fisher Cat#12504013

RPMI-1640 w/ L-Glutamine Corning Cat#10-040-CV

Human Ab Serum Valley Medical Cat#HP1022

X-VIVO15 Lonza Cat#04-418Q

DMEM Gibco Cat#10569-010

FBS UCSF Cell Culture Core N/A

GlutaMAX Thermo Scientific Cat#10569-044

BEBM (Bronchial Epithelial Cell Growth Basal Medium) Lonza Cat#CC-3171

BEGM Bronchial Epithelial Cell Growth Medium BulletKit Lonza Cat#CC-3170

Dynabead Human T cell Activator anti-CD3/CD28 Thermo Fisher Cat#11131D

Experimental Models: Cell Lines

LentiX 293T Clontech Cat#11131D

Raji cells ATCC Cat#CCL-86

769-P ATCC Cat#CRL-1933
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REAGENT or RESOURCE SOURCE IDENTIFIER

Beas2B ATCC Cat#CRL-9609

Recombinant DNA

pHR_SFFV Addgene ID#79121

pHR_PGK Addgene ID#79120

pHR_Gal4UAS_PGK_mCherry Addgene ID#79124

pHR_Gal4UAS_tBFP_PGK_mCherry Addgene ID#79130

pHR_SFFV_antiCD70_BBZ This paper CD27 sequence from UniPortKB – P26842 
(CD27_Human)

pHR_SFFV_antiAXL_BBZ This paper scFv sequence in WO2012175691A1

pHR_pGK_antiAXL_synN_G4VP64 This paper scFv sequence in WO2012175691A1

pHR_pGK_antiCDH6_synN_G4VP64 This paper scFv sequence in W02016024195A1

pHR_Gal4UAS_antiCD70_BBZ_PGK_BFP This paper CD27 sequence from UniPortKB – P26842 
(CD27_Human)

pHR_Gal4UAS_antiAXL_BBZ_PGK_BFP This paper scFv sequence in WO2012175691A1

Software and Algorithm

Prism Version 7a Graphpad N/A

FlowJo V10.4.0 TreeStar N/A

rpart package R https://cran.r-project.org/web/packages/rpart/

R version 3.5.3 R N/A

ComBat in SVA package R https://www.bioconductor.org/packages/
release/bioc/html/sva.html

clustscore and analysis This paper https://github.com/ruthanium/antigen-combos-
scripts

Deposited Data

COMPARTMENTS (cellular location data) Binder etal. 2014 https://compartments.jensenlab.org

Other

Webserver for exploring the data in this publication This paper antigen.princeton.edu
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