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High-throughput discovery of novel developmental phenotypes

A full list of authors and affiliations appears at the end of the article.

Abstract

Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from 

mouse knockouts of these genes have provided tremendous insight into gene function and 

congenital disorders. As part of the International Mouse Phenotyping Consortium effort to 

generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 
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lethal genes during the production of the first 1751 unique gene knockouts. Using a standardised 

phenotyping platform that incorporates high-resolution 3D imaging, we identified novel 

phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes 

for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that 

incomplete penetrance and variable expressivity are common even on a defined genetic 

background. In addition, we show that human disease genes are enriched for essential genes 

identified in our screen, thus providing a novel dataset that facilitates prioritization and validation 

of mutations identified in clinical sequencing efforts.

Keywords

mouse; embryonic lethal; knockout; KOMP; EUCOMM; IMPC

Introduction

Our understanding of the genetic mechanisms required for normal embryonic growth and 

development has been advanced by the analysis of single mutations generated in individual 

labs or the identification of mutants through focused mutagenesis screens1–4. Systematic, 

standardized approaches to mouse phenotypic analysis complement these data, capitalizing 

on the efficiency provided by scale and reducing the potential for ascertainment bias, 

ultimately providing a means to achieve genome-wide functional annotation. Moreover, 

recent challenges in reproducibility of animal model experimentation5,6 emphasize the need 

for careful standardization of allele design, genetic background, and phenotyping protocols. 

Building on these principles, the goal of the International Mouse Phenotyping Consortium 

(IMPC) is to generate a catalogue of gene function through systematic generation and 

phenotyping of a genome-wide collection of gene knockouts (KO) in the mouse. To date, 

nearly 5000 new knockout lines have been created by IMPC from the International 

Knockout Mouse Consortium (IKMC) resource7–12. Here we report the results of the first 

international, systematic effort to identify and characterize the phenotypes of embryonic 

lethal mutations using a standardised13, high-throughput pipeline. These findings provide 

novel insights into gene function, provide new models for inherited disorders, and shed new 

light on the role of essential genes in a variety of monogenic and complex human disorders.

Results

Intercrosses of 1,751 germ-line transmitted (GLT) heterozygous lines from IMPC 

production colonies1 identified 410 lines that displayed lethality (Fig. 1a), defined as the 

absence of homozygous mice after screening of at least 28 pups (p<0.001 Fisher’s exact test) 

prior to weaning. We also identified 198 “subviable” lines, defined as fewer than 12.5% (half 

of expected) homozygous preweaning pups (full list of genes available in Supplementary 

Table 1). The vast majority of the alleles employed in this study were of “tm1.1” or “tm1b” 

IKMC variants, which disrupt the coding sequence (1704 of 1804 unique alleles; see 

Extended Data Fig.1 for schematics of each allele and Supplementary Table 2 for all other 

alleles employed). Centre-to-centre variability in the proportion of essential genes is 

observed ranging from 4.8%–52.7%, which likely reflects the different biases in gene 
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selection criteria between centres and specific consortium arrangements for lethal gene 

characterization (TCP and UCD) (Extended Data Fig. 2A,B). No significant bias is observed 

in the distribution of lethal genes across mouse chromosomes (Extended Data Fig. 2C,D). 

Overall, however, the lethal proportion (23.4%) is consistent with published observations of 

null alleles7,9,12,13, particularly when combined with subviable lines (11.3%), resulting in 

65.3% viability for IMPC KO lines overall. A main goal of this project is to provide 

phenotype data for unknown or novel genes, i.e. those with no prior report of a targeted null 

allele in the mouse (curated in Mouse Genome Informatics). The primary viability data 

indicated that such unannotated genes displayed an overall viability rate of 66.5%, compared 

to the 62% viability rate among previously reported null alleles (Extended Data Fig. 2E; 

novel versus prior gene lists in Supplementary Table 3; list of all first publications or reports 

of gene knockouts in Supplementary Table 4). These data reveal consistent identification of 

essential genes in our program, and further support that approximately 35% (24% lethal and 

11% subviable) of null mutations across the genome are essential for survival at normal 

Mendelian ratios.

Functional data from mouse knockouts are highly informative, and thus would be predicted 

to have a strong impact on Gene Ontology (GO) Consortium14 annotations. For the 1,751 

IMPC mouse lines phenotyped to date, IMPC phenotyping provides the only experimental 

evidence for over 40% of the genes in our dataset. Using the GO Slim tool, which clusters 

terms associated with each gene into a set of broad categories, we observed enrichment in 

lethal and subviable genes within several categories (Extended Data Fig. 3). Compared to 

novel genes, the number of annotations for a majority Process and Function categories was 

greater for published alleles, highlighting the value of our analysis in assigning function to 

novel, previously uncharacterized genes.

We used data from three recent publications on genome-wide screens for cell-essential genes 

in human cells to address the overlap between essential genes in the human and mouse 

genome15–17. We selected core essential genes from each study and compared to human 

orthologs of mouse essential genes on the consensus list of curated IMPC-MGI genes. We 

found that approximately 35% of core essential genes in each study are associated with 

lethality or subviability in the mouse, with 61–62% of genes currently unknown (Fig. 1b). 

Of the 19 human essential genes common to all three studies that were nonessential in the 

mouse, only three (Rbmx, Dkc1, and Sod1) could be reliably confirmed as a targeted 

knockout of a nonessential gene, highlighting the remarkable concordance between mouse 

and human in their core essential genes.

To expand the depth of our analysis of essential genes, we developed a comprehensive 

phenotyping pipeline designed to identify the time of lethality, assign phenotypes, and 

document LacZ expression patterns at discrete time points (Extended Data Fig. 4)13. A key 

aspect of the pipeline is the incorporation of optical projection tomography (OPT)18, micro-

computed tomography (micro-CT)19,20,21 and high-resolution episcopic microscopy 

(HREM)22, which provide cost-effective, high-throughput approaches to the collection of 

phenotype data, including quantitative volumetric analysis (see below). The catalogue of KO 

lines and all phenotype data are available to the community via the IMPC portal 

(www.mousephenotype.org), with an embryo phenotyping-specific portal at 
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www.mousephenotype.org/data/embryo (a guide to accessing, viewing and using these data 

is available on the IMPC portal at http://www.mousephenotype.org/data/documentation/doc-

explore)

Using a tiered strategy, we established clear viable vs. lethal (defined if homozygous 

embryos were absent or lacked a heartbeat) calls at up to four different time points for a total 

of 283 lethal lines (A comprehensive progress table for all 1861 alleles is provided in 

Supplementary Table 5), the total number varying by progress through the pipeline. From 

these data, we established windows of lethality for 242 genes with complete data to more 

precisely define the timing of embryo death. Figure 1c shows that a majority of lines 

(147/242; 60.7%) died prior to E12.5 and a majority of these (107/147; 72.8%), 

development ceased prior to E9.5, the earliest time point examined. Remarkably only 9 total 

lines die in the E12.5–E15.5 or E15.5–E18.5 windows, while most lines that were viable at 

E12.5 were also viable at the latest time point examined (E15.5 or E18.5). Although viable, 

many of these lines show phenotypes at E15.5 and E18.5 (see below), and ultimately 

succumbed in the perinatal or early postnatal period.

Taking advantage of the LacZ cassette present in most IMPC alleles10,11, gene expression 

was evaluated in heterozygous embryos at E12.5 in the lethal/subviable lines. Expression 

patterns fell into three broad categories as shown in Figure 1d (bottom): restricted (e.g., 

Clcf1, Cgn and Kif26b); ubiquitous (e.g., Psen1); or undetectable expression (not shown). 

All images and annotations of the expression atlas are available at the IMPC portal, 

providing a rich and growing in situ expression atlas for the scientific community.

Identification of novel lethal phenotypes

At each time point, gross morphological phenotypes were recorded using a structured set of 

Mammalian Phenotype (MP) terms (Supplementary Table 6). An analysis of phenotype 

areas revealed that the most common phenotype overall was growth/developmental delay 

(Fig. 2a–c) affecting 23.5%, 44.1% and 39.3% of lines at E12.5, E14.5/E15.5 and E18.5, 

respectively. Abnormalities in cardiovascular development were also common, frequently 

observed at both E12.5 and E15.5 (Fig. 2a,b), along with craniofacial malformations and 

defects in development of the limbs and/or tail. At E18.5, a number of mutants exhibited 

respiratory and/or body wall abnormalities (captured as “other”), in addition to the growth 

abnormalities seen at other stages.

Our pipeline has identified a number of novel phenotypes for previously unreported 

knockouts. In all cases, 3D imaging revealed additional phenotypes that might have been 

missed by gross inspection. For example, Tmem132a E15.5 homozygous embryos were 

smaller than littermates, displayed an obvious spina bifida, and narrow, club-shaped limbs 

(Fig. 2d,f). Sagittal cross-sections through the micro-CT data showed the abnormal 

curvature in the spinal column adjacent to the open neural tube, and abnormal head structure 

in mutants (Fig. 2e,g). Kidney defects were also observed in E15.5 mutant embryos (n=3) 

and bladder defects were also evident by E18.5 (n=4) (not shown). Svep1 homozygous 

mutant embryos display multiple defects at both E15.5 and E18.5, severe edema and 

discolouration (Fig. 2h,k), and die in the perinatal period. Additionally, transverse sections 

of micro-CT data from E18.5 embryos revealed abnormal development of the kidney pelvis 
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(Fig. 2i, l), severely hypoplastic lungs and a thin myocardium (Fig 2j,m). Homozygous 

Klhdc2 embryos at E14.5 displayed hindlimb preaxial polydactyly (Fig. 2n,q arrow) and 

edema (Fig. 2n,q arrowhead). Sections of micro-CT volumes additionally revealed 

hypoplastic adrenals (Fig. 2s), displaced kidneys, a shorter tongue, and abnormal intestines 

(Fig 2r).

As stated above, a number of mutants with impaired cardiovascular function were identified 

(Fig. 2a–c), including Strn3, Atg3, and Slc39a8 (Extended Data Fig. 5). Similarly, 

cardiovascular defects were common at E9.5, illustrated in detail using OPT (e.g., 

Tmem100, Extended Data Fig. 6). OPT datasets can be manipulated in three dimensions to 

reveal additional phenotypes such as abnormal neural tube closure, turning and chorion-

allantois fusion seen in homozygous Gfpt mutant embryos (Fig. 2t,u,v,w).

Chtop mutant embryos showed obvious developmental delay, neural tube defects, 

craniofacial dysmorphology, abnormal eye development, and subcutaneous edema. HREM 

was used to define further defects at E14.5 revealing major abnormalities in the ribs and 

vertebrae, the cardiovascular system, and the nervous system at a spatial resolution rivalling 

standard histological techniques (Fig. 3 a–g).

In addition to manual annotation, 3D images are amenable to automated computational 

analyses that can identify mutant anatomical phenotypes that are statistically beyond 

wildtype variation19,20. As an example, prior studies of Cbx4 knockout mice revealed a clear 

hypoplastic thymus23. Automated volumetric analysis of E15.5 Cbx4 null mice generated by 

the IMPC replicated these findings, but also revealed adrenal hypoplasia and smaller 

trigeminal ganglia using deformation-based morphometry and a novel 3D segmented mouse 

embryo atlas (Fig. 3h–j). This analysis also identified a smaller cochlea in Eya4 mutant, 

directing more in depth histopathology analysis to the affected region (Extended Data Fig. 

6).

Some centres have expanded the pipeline to include analyses of lines that are lethal between 

birth and weaning, employing tools such as whole brain MRI. These analyses have identified 

previously unknown phenotypes for Tox3 at P7, including a smaller cerebellum displaying 

hypoplasia and dysplasia, and an absent transient external granular layer (Extended Data 

Fig. 7). Similar analysis of Rsph9, a gene associated with Primary Ciliary Dyskinesia in 

humans (OMIM #612650), has identified a new mouse model of this disease. All P7 

homozygous mice showed enlarged ventricles, while histopathology revealed severe 

triventricular hydrocephalus with marked rarefaction, cavitation, and loss of periventricular 

cortical tissue as well as severe sinusitis, typical of ciliary dysfunction (Extended Data Fig. 

8).

Subviable genes and incomplete penetrance

Unexpectedly, we observed instances of phenotypes that display incomplete penetrance, 

including variable lethality (subviability), despite the standard allele structure and defined 

genetic background. Prior work has shown that lethal genes are much less likely than viable 

genes to have a paralog, and thus less potential for functional redundancy12. Genes from 

subviable lines, by contrast, were significantly more likely to have a paralog, similar to 
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viable lines (Fig. 4a). This is consistent with a model where incomplete penetrance and 

variable expressivity24 are due to cell-autonomous, stochastic variation in gene expression in 

components of disrupted “buffered” pathways25,26, where paralogs may provide functional 

redundancy. For example, two alleles of the Acvr2a gene have been generated on a mixed 

genetic background27,28, and both display variable phenotypes including partial lethality. On 

a uniform C57BL/6N background we also observe subviability and a wide range of 

morphological phenotypes at E15.5 including small or missing mandible, cyclopia, and 

holoprosencephaly (Fig. 4b–i); this is consistent with the normal assembly of ACVR2A into 

a heteromeric signalling complex with its paralog ACVR2B. Other examples include Rab34, 

which has three paralogs in the RAB protein family (Rab6a, Rab6b, and Rab36). In addition 

to the consistent phenotypes of polydactyly and lung hypoplasia, mutants also display highly 

variable craniofacial malformations, haemorrhage, edema, and exencephaly phenotypes 

(Fig. 4j–m).

For all cases of lethal and subviable genes, full cohorts of heterozygous mice are phenotyped 

as part of the IMPC Adult Phenotyping pipeline, along with surviving subviable 

homozygous mice in some cases. Viable homozygous animals displayed a greater number of 

phenotype hits per gene than heterozygous mice from the lethal class, although the average 

difference was only 1.44 more hits (Extended Data Fig. 9a). However, subviable mice 

homozygous for a null allele average 5.8 hits per line compared to an average of 4.0 hits per 

line in homozygote and hemizygote viable lines (Extended Data Fig. 9b).

Novel insights into function of genes associated with human disease

It has been shown that genes causing lethality in the mouse are enriched in disease 

genes29, 30. We established orthology between genes in the mouse and human, and used the 

Human Genome Mutation Database (HGMD) to annotate human disease associations31,32. 

We next compiled an updated list of 3326 essential genes by combining the published data 

from the Mouse Genome Informatics (MP terms listed in Supplementary Table 7) database 

and 608 genes identified in the IMPC effort as causing lethality and subviability, along with 

4919 nonessential genes. With these updated lists, we report an even stronger enrichment of 

essential genes relative to nonessential for human disease genes catalogued in the HGMD 

(odds ratio= 2.00, p-value=6.83e-39, Fig.5a). Consistent with this enrichment, of the 3302 

protein-coding HGMD disease genes, 2434 have a reported phenotype and more than half 

(1253) are essential (Fig. 5b; Supplementary Table 8). Furthermore, we found an enrichment 

of essential genes in comparison to nonessential genes (odds ratio=1.16, p-value=0.0015) 

among 6384 genes encompassing or neighbouring the disease- and trait-associated variants 

in the NHGRI-EBI catalog of published genome-wide association studies (“GWAS hits”)33. 

(Fig. 5c).

The IMPC effort expanded a phenotypic spectrum for over 300 genes associated with known 

Mendelian diseases. From 194 subviable genes with identified human orthologs, 57 were 

associated with human disease, of which 34 were previously unreported for their subviable 

phenotypes (Supplementary Table 9; new reports indicated by ‘N’ in column J). For 

example, SET binding protein 1 (SETBP1) has been reported as frequently mutated in 

several types of chronic leukaemia and in Schnizel-Giedion syndrome, a congenital disease 
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characterized by a higher prevalence of tumours, severe mid-face hypoplasia, heart defects, 

and skeletal anomalies34,35. Among 399 lethal genes, 126 human orthologs have been 

associated with human diseases, including 52 disease genes for which our data provide the 

first report of their null phenotype in the mouse (Supplementary Table 10). The human 

orthologs of these novel lethal genes have been linked to metabolic and storage syndromes 

(ADSL, DHFR, GYG1, PC), mitochondrial complex deficiencies (ATP5E, NDUFS1, 
NUBPL, SDHA, SLC25A3, UQCRB), or syndromes caused by disruption of basic 

processes such as replication or translation initiation (EIF2B3, EIF2B4, ORC1). The severity 

of clinical manifestation of these human syndromes ranges from neonatal lethality (BBS10, 
SLC25A3) matching the observed phenotype in the mouse, to neurological disorders and 

intellectual disability (COQ6, DEPDC5, GOSR2, KDM5C, YARS). These differences in 

clinical manifestation may be due to differences between underlying biological processes in 

the mouse and human. Alternatively, a different set of alleles, rather than null, may underlie 

these dominant or recessive human syndromes. GYG1 mutations have been found in patients 

with glycogen storage disease XV36 (GSD15; 61350736), and in an additional seven patients 

with Polyglucosan body myopathy 2 (PGBM2;616199). Both diseases affect skeletal 

muscle, but PGBM2 is characterized by polyglucosan accumulation in muscle and skeletal 

myopathy without cardiac involvement37. Homozygous Gyg null embryos die perinatally 

and show severe heart abnormalities consistent with cardiac hypertrophy evident as early as 

E15.5 (Fig. 5d,e). At E12.5, LacZ expression was detected specifically in the heart and the 

carotid and umbilical arteries, correlating strongly with the heart phenotype and heart 

abnormalities in GSD15 patients (Fig. 5f). Micro-CT images at E18.5 revealed an obvious 

enlargement of the thymus as well as abnormal morphology of the brain and spinal cord 

consistent with degeneration (Extended Data Fig. 10a–h). Gyg mutations have not 

previously been reported in the mouse and this model will be valuable in understanding the 

distinct roles for Gyg in different organs and potentially the consequences of different alleles 

in patients. In another example, for a novel human syndrome arising from a chromosomal 

deletion (16p)38, highlight Kdm8 as a strong candidate amongst a pool of candidate genes 

(Extended Data Fig. 10i–t).

We also used the updated catalogue of mouse essential and nonessential genes to compare 

the mutability of their human orthologs in exome sequence of 60,706 subjects in the Exome 

Aggregation Consortium data (ExAC, Cambridge, MA; http://exac.broadinstitute.org) 

(Exome Aggregation Consortium et al. submitted). The ExAC data were used to generate 

intolerance scores for all protein-coding genes by two different complementary methods; a) 

the Residual Variation Intolerance Score (RVIS) based on intolerance to common missense 

and truncating single nucleotide variation39 and b) the estimation of probability of being 

loss-of-function intolerant (pLI score) (Exome Aggregation Consortium et al. submitted). 

Human orthologs of essential genes are more intolerant to variation (low RVIS and high pLI 

scores) than orthologs of nonessential genes and all genes in the human genome (p-

value<2.2e-16 for lower percentiles in essential genes using the two scoring systems, Fig. 5g 

and h). Moreover, the IMPC effort identified a set of 22 human orthologs of essential genes, 

that were not previously associated with human disease (Fig. 5i; Supplementary Table 11), 

but based on their intolerance to functional variation and lethality of their null alleles in the 

mouse they represent strong candidates for yet undiagnosed human disease.
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Discussion

In this study, we describe the systematic characterization of embryonic lethal phenotypes as 

part the collaborative effort to generate a genome-wide catalogue of gene function. A unique 

aspect of our pipeline is the incorporation of high-resolution, high-throughput 3D imaging 

methods, affording detailed morphological information and automated analysis19. High-

resolution datasets are available to the community through a common portal, facilitating 

additional, in depth analysis by other investigators that will further enrich the phenotype 

calls reported in the primary screen. These data are provided in real time, without embargo, 

to create an “open access” environment that allows investigators to rapidly evaluate new 

models. Importantly, open availability of the mouse models themselves reduces the cost and 

time lost through duplication of effort.19

Beyond the direct benefit to understanding gene function, this resource has significant 

relevance to disease-causative genes in humans. We found that the human orthologs of 

mouse essential genes show evidence of purifying selection in the human population, 

suggesting a common intolerance to mutation in both mouse and humans. Recent work has 

identified cases of homozygous loss-of-function in the human population40,41, 

complementing on-going efforts to discover disease genes in highly consanguineous 

populations, including mutations that are homozygous lethal42,43, (Salaheen et al. 

Submitted).

Overall, the data presented here illustrate a rich resource with impact for many scientific 

communities. The high efficiency and reduced cost of CRISPR/Cas9 technology46 will 

allow the IMPC to further expand its coverage of the mammalian genome, and additionally 

provide a means to target genes and sequence features not currently part of the IKMC 

resource. As current estimates indicate that only a small percentage of genes are studied by 

the broad research community47, the systematic approach to phenotyping and unrestricted 

access to data and mouse models provided by the IMPC promises to fill this large gap in our 

understanding of mammalian gene function.

Online Methods

Standardized, consortium-wide protocols are available at the IMPC portal 

(www.mousphenotype.org/impress). These procedures define the minimum standards, 

metadata and protocols for all publically available data. All mouse experiments were 

conducted in accordance with the governmental and funding regulations of the different 

member centres. Details of individual centre-specific methods are posted with the IMPReSS 

procedures. Additional details are provided below.

Mice

All mouse lines in this study are derived from IKMC ES cell resources. All mice are 

produced and maintained on a C57BL/6N genetic background, with support mice derived 

from C57BL/6NJ, C57BL/6NTac or C57BL/6NCrl. Husbandry details vary by centre, and 

can be found at http://www.mousephenotype.org/impress. For timed matings, successful 
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mating and fertilization (0 hour) was calculated to be the midpoint of the dark cycle prior to 

the appearance of the copulation plug.

Gene list analysis

Gene lists were filtered and analysed using MouseMine at Mouse Genome Informatics 

(www.mousemine.org). For segmentation of novel and prior reported KO lines, alleles were 

filtered to include “targeted” and “null” mutations only, as these are comparable to the 

IKMC alleles in this study. A further filtering step was performed to include only lines for 

which phenotypic data (normal or abnormal) are reported.

GoSlim Enrichment

Gene lists were analysed using the GOSlim tool hosted at Mouse Genome Informatics: 

http://www.informatics.jax.org/gotools/MGI_GO_Slim_Chart.html. Both experimental and 

computational analysis codes were included in the search.

Dissection and Preparation of E9.5 and E15.5 Embryos for OPT and micro-CT Imaging

Embryos were dissected in 37°C phosphate buffered saline (PBS) (minus Ca++/Mg++) 

containing Heparin (1 unit/1ml PBS). Extra-embryonic membranes were removed and the 

yolk sac collected for genotyping. The embryos were exsanguinated by severing the 

umbilical vessels with small scissors and rocking them in warm PBS/Heparin for a 

maximum of 5 minutes for E9.5 embryos and 15 minutes for E15.5 embryos. Embryos were 

washed twice with PBS and immersion fixed in 20 – 40 × the volume of 4% 

paraformaldehyde (PFA) prepared in PBS. E9.5 embryos were fixed for 4 hours at 4°C or 2 

hours at room temperature (RT) and E15.5 embryos were fixed overnight at 4°C. After 

fixation embryos were stored at 4°C in PBS containing 0.02% sodium azide (0.2g/l PBS).

Optical Projection Tomography

Sample Preparation—Each E9.5 embryo was embedded in low-melting point agarose. 

The agarose plug was then subjected to a dehydration series using methanol (25%, 50%, 

75%, 100% × 2) where the methanol solutions are replaced once per day. The agarose plug 

was then cleared with BABB (1:2 benzyl alcohol/benzyl benzoate) for three days. The 

BABB solution was replaced once per day during the clearing process.

Imaging—Optical projection imaging was done as previously described1. Briefly, each 

sample was excited by ultraviolet light filtered by the following excitation filter: Semrock 

425/30 BrightLine Bandpass Filter, 25 mm [FF01-425/30-25]. Autofluorescence was 

captured by a CCD camera, where the emission was filtered using the following emission 

filter: 473 RazorEdge Long-pass Filter, U-grade, 50.8mm [LP02-473RU-50.8-D]. The 

sample was rotated 360 degrees at 0.3 degree increments, resulting in 1200 projections. The 

exposure time varied per sample, but the average was 500 ms. The resultant 3D image file 

had an isotropic voxel size of [4.45 µm]3.

Dickinson et al. Page 9

Nature. Author manuscript; available in PMC 2017 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.mousemine.org/
http://www.informatics.jax.org/gotools/MGI_GO_Slim_Chart.html


Micro-Computed Tomography

Sample Preparation—Each E15.5 embryo was subjected to hydrogel stabilization2. 

Briefly, the embryo was incubated in 20 mL hydrogel solution containing a mixture of ice-

cold 4% (wt) PFA, 4% (wt/vol) acrylamide (Bio-Rad, Mississauga, ON, Canada), 0.05% 

(wt/vol) bis-acrylamide (Bio-Rad, Mississauga, ON, Canada), 0.25% VA044 Initiator (Wako 

Chemicals USA, Inc., Richmond, VA, USA), 0.05% (wt/vol) saponin (Sigma-Aldrich, St 

Louis, MO, USA) and PBS at 4°C for 3 days. After incubation, the tube containing the 

embryo was placed in a dessication chamber where air in the tube was replaced with 

nitrogen gas. The tube was placed in a 37°C water bath for 3 hours. Lastly, the samples were 

separated from the encasing gel and place into iodine solution. Each E15.5 mouse embryo 

was stained with 50 mL of 0.1N iodine solution (Sigma-Aldrich) for 24 hours. The iodine-

stained embryo was then embedded in agarose within an 11-mm centrifuge tube and 

positioned in the micro-CT scanner for imaging.

Imaging—3D datasets were acquired for each mouse embryo using a Skyscan 1172 high-

resolution micro-CT scanner (Bruker, Billerica, MA, USA). With the X-ray source at 100 

kVp and 100 µA and the use of a 0.5 mm aluminum filter, each specimen was rotated 360° 

around the vertical axis, generating 1200 views in 5 hours. These image projections were 

reconstructed into digital cross-sections using the Feldkamp algorithm3 for cone beam CT. 

The resulting 3D data block contained 2000×1000×1000 voxels of [13.4 µm]3 voxel size.

High-resolution episcopic microscopy (HREM)

Protocols for the preparation and imaging of embryos by HREM are described in detail.4 All 

analysis was performed on E14.5 embryos.

Automated Image Analysis

The automate image analysis was performed as fully described in5. The segmented 3D atlas 

of structures used to automate volume measurements was described and presented in6.

Dissection and Preparation of P7 Brains for Whole Brain MRI

Pups were tattooed and genotyped at P3 to determine homozygous viability. At P7, 

homozygous pups were sedated by intraperitoneal injection of ketamine (150 mg/kg) and 

xylazine (10 mg/kg) at 0.1ml/10gm body weight. Pups were then trans-cardially flushed 

with 30mL of PBS (Wisent) containing 1 unit/ml Heparin and 2 mM Gadolinium (Gd) 

(“ProHance” gadoteridol by Bracco Diagnostics), followed by fixation with 30mL of PBS 

containing 4% paraformaldehyde (PFA) (Electron Microscopy Sciences) and 2 mM Gd. 

Flushing and fixation proceeded at a slow flow rate of 1.0 ml/min at room temperature. 

Following perfusion, the brain was extracted within the skull with the skin, zygomatic 

bones, eyes, and lower jaw removed. The brain and remaining skull structure were incubated 

in 35 mls of 4% PFA containing 2 mM Gd overnight at 4°C and then transferred to PBS 

containing 0.02% sodium azide with 2 mM Gd for at least 3 days prior to imaging.
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Image Acquisition

Images were acquired on a 7 Tesla MRI scanner (Varian Inc., Palo Alto, CA)7. The contrast 

required for registration and assessment of volume is not acceptable with our typical T2-

weighted imaging sequence. Therefore, diffusion weighted imaging was performed to 

enhance the contrast between white and gray matter to aid in the registration and volume 

measurements.

Diffusion Imaging Sequence

The diffusion sequence uses an in-house custom built 16-coil solenoid array to acquire 

images from 16 brains in parallel8. The diffusion sequence used was a 3D diffusion-

weighted FSE, with TR= 270 ms, echo train length = 6, first TE = 30 ms, TE = 10 ms for the 

remaining 5 echoes, one average, FOV = 25 mm × 14 mm × 14 mm, and a matrix size of 

450 × 250 × 250, which yielded an image with 56 µm isotropic voxels. One b=0 s/mm2 

image was acquired and 6 high b-value (b = 2147 s/mm2) images were acquired at the 

following directions (1,1,0), (1,0,1), (0,1,1), (−1,1,0), (−1,0,1) and (0,1,−1) corresponding to 

(Gx,Gy,Gz). Total imaging time was ~ 14 hours.

Registration and Analysis

To visualize and compare the mouse brains for the anatomical volume assessment the 6 high 

b-value images were averaged together to make a high contrast image necessary for accurate 

registration. Then these images were linearly (6 parameter followed by a 12 parameter) and 

nonlinearly registered together. All scans were then resampled with the appropriate 

transform and averaged to create a population atlas representing the average anatomy of the 

study sample. All registrations were performed using a combination of the mni_autoreg 

tools9 and ANTS10. The result of the registration was to have all scans deformed into exact 

alignment with each other in an unbiased fashion. For the volume measurements, this 

allowed for the analysis of the deformations needed to take each individual mouse’s 

anatomy into this final atlas space, the goal being to model how the deformation fields relate 

to genotype7,11. The Jacobian determinants of the deformation fields are then calculated as 

measures of volume at each voxel. These measurements were examined on a voxel-wise 

basis in order to localize the differences found within regions or across the brain. Multiple 

comparisons were controlled for by using the False Discovery Rate (FDR)12.

LacZ staining

Whole litters of E12.5 embryos were fixed in 4% PFA for 1 hour (range for other centres) in 

PBS at 4°C with gentle shaking. Embryos were then washed 3× in detergent rinse (2mM 

MgCl2, 0.02% Igepal, 0.01% sodium deoxycholate and 0.1M phosphate (K2HP04/

KH2PO4) buffer, Ph 7.5) at 4°C, then moved to X-gal staining solution (2mM MgCl2, 

0.02% Igepal, 0.01% Sodium deoxycholate, 5mM Potassium Ferricyanide, 5mM Potassium 

Ferrocyanide, 1 mg/mL X-gal in 0.1M phosphate buffer pH, 7.5) for 48 hours at 4°C with 

gentle shaking in the dark. Stained embryos are rinsed briefly in PBS at room temperature, 

then postfixed overnight at 4°C in 4% PFA. After three rinses in PBS, embryos are 

transferred to 50% glycerol/PBS solution for imaging and storage. Images are taken using 

centre-specific equipment, using standard orientations. Portions of the tail of individual 
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stained embryos were removed for genotyping after imaging and assayed for zygosity and 

sex.

Identification of human orthologs of essential genes and non-lethal genes

To investigate the relevance of novel developmental phenotypes uncovered in the IMPC 

project, we combined the IMPC data with phenotype data for targeted loss-of-function 

mutant lines reported in the Mouse Genome Informatics database (MGI)13. Genes annotated 

with any of 50 Mouse Phenotype (MP) terms including prenatal, perinatal and postnatal 

lethal phenotypes (Supplementary table 7)14 were considered to be essential genes (n=3023) 

(Supplementary table 8). The MGI database was also used to select genes with reported 

targeted loss-of-function phenotypes that are not embryo or pre-weaning lethal (non-

essential genes; n=4995). The IMPC effort expanded these lists with 252 essential genes, 

101 genes with sub-viable phenotypes and 701 genes with viable mutant phenotypes. 

Whenever discrepancy appeared between the lethality status reported in publications (i.e. in 

MGI) and in the IMPC data, we included phenotypes reported by IMPC as these lines were 

generated on a defined C57BL/6N background background and phenotyped using a 

standardized pipeline. We used the MGI mouse-human orthology annotation resulting in 

3229 essential and 4757 non-essential human orthologs with unambiguous chromosomal 

position. Annotations of all human protein-coding genes (Ensembl Genes version 8215), 

including essential/non-essential status, RVIS16, pLI scores (Exome Aggregation 

Consortium, submitted) and human disease annotations from HGMD17 and OMIM18, were 

listed in Supplementary Table 8. Enrichment of HGMD disease genes between our gene sets 

of interest (i.e. EGs, NEGs and all protein-coding genes) was assessed by two-sided Fisher’s 

exact test. EG vs. NEG (odds ratio=2.00, p=7.80e-46), EG vs. ALL (odds ratio=3.13, 

p=2.42e-160), NEG vs. ALL (odds ratio=1.56, p=1.83e-29). Difference in intolerance scores 

between our gene sets of interest was assessed by one-sided Wilcoxon rank sum test. RVIS: : 

EG vs. NEG (p<2.2e-16), EG vs. ALL (p<2.2e-16), NEG vs. ALL (p=0.579). pLI: EG vs. 

NEG (p<2.2e-16), EG vs. ALL (p<2.2e-16), ALL vs. NEG (p= 4.15e-05).

Overlap between cell-essential genes in human haploid cells and human orthologs of 
essential genes in the mouse

We used data from three recent publications on genome-wide screens for cell-essential genes 

in human cells to address the overlap between essential genes in the human and mouse 

genome19,20,21. From these papers, we selected 1580 core EGs (genes above essentiality 

threshold in at least 3 out 5 cell lines in the study) from Hart et al., 1739 core EGs (genes 

above essentiality threshold in at least 2 out 4 cell lines in the study) from Wang et al. and 

1734 core EGs (genes above essentiality threshold in at least 1 out 2 cell lines in the study) 

from Blomen et al. We used the combined IMPC-MGI EG list (n=3326, see above) to assess 

the overlap between human cell-essential genes identified in these three studies and essential 

genes in the mouse.

Identification of genes encompassing or surrounding disease and trait- associated SNPs 
(“GWAS hits“)

6384 protein-coding genes encompassing or/and neighboring disease- or trait-associated 

variants (“GWAS genes”) were obtained from the GWAS Catalog22 (downloaded on April 
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29, 2016). Specifically, we used the “mapped genes” from the GWAS Catalog which are 

defined as genes mapped to the strongest SNP from GWAS reports. The mapped genes are 

defined as the genes encompassing the GWAS SNP(s), (i.e. located in coding or intragenic 

regions; n=4228) or the two genes that map upstream and downstream of the GWAS SNP(s) 

(i.e. in intergenic regions; n=3422). Enrichment of GWAS genes between our gene sets of 

interest was assessed by two-sided Fisher’s exact test. P-values in Fisher’s exact test for 

enrichment of genes surrounding GWAS hits between: EG vs. NEG (odds ratio=1.16, 

p=0.0015), EG vs. ALL (odds ratio=1.56, p=5.80e-31), NEG vs. ALL (odds ratio=1.35, 

p=1.18e-19).
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Extended Data

Extended Data Figure 1. 
Standard IMPC allele variants and number of alleles for each included in this study. a, 
Conditional-ready, knockout-first allele (tm1a) design (top) with LacZ reporter, and the Cre 

converted (tm1b, bottom) version lacking the neo cassette and critical exon. The promoter 

driven variant is illustrated. b, Schematic of the small number of alleles included where the 

distal loxP had been lost during targeting (tm1e, top) and the converted (tme.1) variant with 
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the neo cassette removed. c, Velocigene “definitive null” design (top, tm1) where the LacZ 

cassette replaces the coding sequence of the target gene, and Cre-excised variant (bottom, 

tm1.1). Details of all alleles used are listed in Supplementary Table 2 and 5. Additional 

details and schematics of all allele variants are available at: http://

www.mousephenotype.org/about-ikmc/targeting-strategies

Extended Data Figure 2. 
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Spine (a) and mosaic (b) plots of progress examining primary viability of IMPC lines for 

each IMPC Center, segmented by ‘Lethal”, ‘Subviable’ or ‘Viable’ outcome. The mosaic 

plot shows the significant overrepresentation of viable lines from UCD and lethal lines from 

ICS, NING, and TCP. c,d, Spine and mosaic plots of primary viability outcome by 

chromosome, showing no significant deviation from the expected distribution. e, 

Comparison of the percentage of viable, subviable, and lethal lines between genes for which 

no targeted KO alleles have been reported (novel) and genes for which one or more KO 

alleles has been reported. BCM: Baylor College of Medicine; GMC: German Mouse Clinic; 

H: MRC Harwell; ICS: Institut Clinique del la Souris (PHENOMIN); J: The Jackson 

Laboratory; NING: Model Animal Research Center, Nanjing University; RBRC: RIKEN 

BioResource Center; TCP: Toronto Centre for Phenogenomics; UCD: University of 

California, Davis; WTSI: Wellcome Trust Sanger Institute.
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Extended Data Figure 3. 
Multiple GOSlim categories show enrichment for lethal and subviable genes versus viable 

genes from the IMPC dataset. The analysis was performed for GO Process (a), GO Function 

(b) and GO Component (c) categories. X-axis is the proportion of genes in each class that 

are annotated for the GOSlim group for each category. d–f, Novel lethal IMPC genes, 

previously reported IMPC genes and all MGI genes were subject to the same analysis, 

showing the large effect analysis and characterization of lethal genes has on GO analysis.
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Extended Data Figure 4. 
Schematic of the IMPC embryonic lethal phenotyping pipeline. Lines are defined as lethal if 

zero homozygous animals are identified after 28+ animals have been genotyped. The 

KOMP2/IMPC centres begins with a mid-gestation (E12.5) screen, while the DMDD 

program initiates screening at the organogenesis phase (E14.5). If no homozygotes are 

identified (after >=28 embryos screened), centres will examine and characterize embryos at 

the pattern formation stage (E9.5). Homozygous embryos at this stage will be scored for 

gross anatomical defects and imaged using OPT. If live homozygotes are identified at E12.5, 

centres will proceed with the screen at E15.5 or E18.5. This decision is based on the 

presence of any observable phenotype at E12.5 and is at the discretion of the centre. 

Embryos collected at E15.5 are imaged via iodine-contrast microCT. Once sufficient 

numbers are collected, image registration and quantitative volumetric analysis is performed. 

Each time point should be considered independently, as some included strains have not been 

completely analysed and progression through each time point is at the discretion of the 

centre. For each term, two mutants with the same phenotype are required to score a hit.
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Extended Data Figure 5. 
Cardiac defects in Strn3, Atg3, and Slc39a8 mutant embryos a,b severe fetal edema and 

sporadic hemorrhaging in E15.5 homozygous mutant embryos versus controls (n = 7 

mutants analyzed) c,d Subtle, but consistent cardiac septal defects (arrowhead) observed 

transverse micro-CT volume sections in Strn3−/− embryos (d) versus control (c) (n = 5 

mutants analyzed). Atg3+/− (e) and Atg3−/− (f) E14.5 embryos imaged by micro-CT after 

contrast staining showing evidence of novel heart morphological defects including 

ventricular septal defects (white arrows in f). Atg3−/− mice also show abnormal atrio-

ventricular valves. (n = 4 mutants analyzed). Transverse (g,h) and coronal (i,j) sections 

through micro-CT volumes of mutant and control Slc39a8 E14.5 embryos reveals novel 

heart morphological defects including ventricular septal defects (white arrows in h). 

Slc39a8−/− mice also show the absence of sternum, a small chest cavity and a small liver (j) 
(n = 4 mutants analyzed).
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Extended Data Figure 6. 
High-resolution 3D imaging reveals phenotypes in Tmem100 and Eya4 mutant embryos. 

Tmem100−/− embryos have abnormal heart development compared to Tmem100+/+ controls. 

E9.5 Tmem100−/− embryos had large pericardial effusion and cardiac dysmorphology and 

enlargement (arrow) when compared to E9.5 Tmem100+/+ (WT) embryos as seen by (a) 

OPT imaging and (c) bright-field microscopy resulting in lethality. (8 Tmem100+/+ vs. 8 

Tmem100−/− with all 8 showing the defect). (b) LacZ expression in the E12.5 Tmem100+/− 

embryo indicated expression in the heart (arrows), blood vessels and craniofacial regions 
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(blue). d–i, MicroCT imaging revealed a small cochlear volume in E15.5 Eya4−/− embryos. 

E15.5 Eya4−/− embryos were registered to an average control dataset of the same age 

followed by automated analysis to show that mutant embryos had a statistically smaller 

cochlear volume compared to Eya4+/+ (WT) embryos. (d) Transverse, coronal, and sagittal 

sections through the right cochlea are marked with a horizontal and vertical dashed line in 

the transverse section to indicate the location of the coronal and sagittal sections, 

respectively. The color corresponds to areas of larger (red) and smaller (blue) volumes in the 

KO embryos. The color bar minimum corresponds to a false discovery rate (FDR) threshold 

of 5%. Hypoplastic bilateral cochlear structures are highlighted in blue. (8 Eya4+/+ (WT) vs. 

8 Eya4−/− (KO) with all 8 showing the defect). (e) LacZ imaging in the E12.5 Eya4+/− 

revealed Eya4 gene expression (blue) in the cochlear region (arrow). (f,g) H&E stained 

histological sections through the right cochlea of an Eya4+/+ embryo (f) compared to an 

Eya4−/−embryo (g) confirmed the hypoplastic phenotype. (h,i) Higher magnification of the 

region (indicated by the white boxes) showed abnormal perilymphatic (periotic) 

mesenchyme in mutant embryos. In the mutant embryo (i) the perilymphatic mesenchyme 

did not show rarefaction and had reduced vacuolation versus control (h) (arrows) suggesting 

the cochlear hypoplasia was due to delayed perilymph development.

Dickinson et al. Page 21

Nature. Author manuscript; available in PMC 2017 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 7. 
Coronal sections of Whole Brain MRI revealed many volume changes in the P7 Tox3−/− 

(WT) mice. (a) P7 Tox3−/− (KO) mice brains were registered to an average control dataset of 

P7 Tox3+/+ (WT) brains. The color corresponds to areas of larger (red) and smaller (blue) 

relative volumes in the KO embryos. The color bar minimum corresponds to a false 

discovery rate (FDR) threshold of 5%. KO mice exhibited altered volumes in multiple brain 

structures including an enlarged pons, amygdala, and thalamus/hypothalamus and a 

decreased pontine nucleus when compared to the WT brains (arrows). Most striking was the 

decrease in the size of the cerebellum of the KO mice (arrows). (8 Tox3+/+ (WT) vs. 10 

Tox3−/− (KO) with all 10 showing the defects). Histological analysis of Tox3−/− (KO) mice 

revealed abnormal development of the cerebellum. (b,c) The cerebellum of P7 Tox3−/− (KO) 

mice is hypoplastic and dysplastic characterized by markedly reduced fissure formation, 

poor delineation of folia, and disorganized cortical structure and layering (c) when compared 

to the P7 Tox3+/+ (WT) mice (b) (arrows). In some segments, there was complete absence of 

folial pattern. (d,e) Higher magnification revealed that the normally transient external 

granular layer was absent in the Tox3−/− (KO) mice and the subjacent molecular layer was 

hypotrophic and irregular in thickness and in multiple foci extremely thin or absent; in these 

foci the Purkinje cells extended to the pial surface (arrows). The Purkinje cell layer was also 

jumbled with no evidence of cell polarity (e).
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Extended Data Figure 8. 
Coronal sections of whole brain MRI revealed enlarged ventricles in the P7 Rsph9−/− (KO) 

mice. (a) P7 Rsph9−/− mice brains showed enlarged left and right lateral ventricles (arrows) 

when virtually sectioned from rostral to caudal and compared to a WT average of P7 

Rsph9+/+ mice brains. (8 Rsph9+/+ (WT) vs. 10 Rsph9−/− (KO) with all 10 showing the 

defects). Histological analysis of Rsph9−/− (KO) mice confirmed abnormal brain 

development. (b,c) Arrows indicate severe hydrocephalus of the left and right lateral 

ventricles of the Rsph9−/− (KO) P7 mice (c) compared to the Rsph9+/+ (WT) mice (b). The 
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third ventricle was also enlarged but not seen in this section. (d,e) Higher magnification of 

the cerebrum showed marked rarefaction, cavitation, and loss of periventricular cortical 

tissue (arrow) in the KO mice (e) compared to WT (d). (f,g) Coronal section through the 

nasal region revealed that the sinuses of the KO mice were filled with pus (asterisks) (g).

Extended Data Figure 9. 
Phenotype hit rates from the adult phenotyping pipeline for lethal, subviable and viable 

lines. a, Comparison of hit rates between lethal and subviable line heterozygotes versus 
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viable line homozygotes. b, Homozygous subviable cohorts show a dramatically higher hit 

rate versus lethal line heterozygotes and viable line homozygotes.

Extended Data Figure 10. 
LacZ expression in Gyg heterozygous and homozygous embryos at E12.5 showed specific, 

strong expression in the heart and surrounding major vessels (i.e, the dorsal aorta, the carotid 

artery and umbilical artery) (a,b), consistent with smooth muscle cells at this stage. 

Homozygous embryos were recovered at expected proportions at E12.5, E15.5 and E18.5 
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and could not be distinguished from wild type and heterozygous embryos by outward 

appearance. However, inspection of cross-sections through the whole embryo microCT 

images of E18.5 and E15.5 embryos showed abnormalities in several areas of the developing 

embryo. Thickened myocardium was evident in the hearts of 2 of 3 homozygotes examined 

at E15.5 as shown in Figure 5. Coronal cross-sections also confirmed thickened myocardium 

in E18.5 mutant hearts (arrows; n=5 mutants), compare wt (c) to Gygtm1b/tm1b(d). From the 

E18.5 sections, it was also obvious that the thymus was enlarged in mutants (n=5 mutants) 

compared with controls (*), but the thymus appeared normal in E15.5 mutant embryos (data 

not shown). E18.5 mutant embryos also exhibited abnormal gaps in the brain and spinal cord 

that we interpret as neural degeneration; compare wt littermates (e) to Gygtm1b/tm1b mutants 

(n=5 mutants) (f). Abnormalities in the nervous system, similar to abnormalities in the heart, 

were obvious at E15.5. Representative images are shown from sagittal cross-sections 

through a wild type (g) and a homozygous Gyg mutant E15.5 embryo (h) (n=3). E15.5 

Gygtm1b/tm1b mutant embryos have a flattened forebrain with reduced lateral ventricles, as 

well as excess space within the cephalic and cervical flexures. i–t, tm1a and tm1b alleles can 

lead to phenotypes of differing strength in Kdm8 mutants. Abnormal phenotype of 

Kmd8tm1a/tm1a mice at E18.5: i, k, m, o, q: WT fetuses; j, l, n, p, r: mutant fetuses. i, j, 
gross morphological appearance of E18.5 fetuses. k–n, photomicrographs of the palate and 

heart taken during necropsy. g– j, histological sections at similar levels of the trachea and the 

nasal cavities. (n = 4 mutants analyzed at E18.5). Morphology of control (s) and mutants (t) 
Kmd8 embryos at E9.5 captured by OPT showing developmental delay at that stage, 

including small size and lack of turning. Arrows, unfused palatal shelves; arrowheads, arch 

of the aorta. (n = 7 mutants analyzed at E9.5) Bar = 1 mm
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Figure 1. Large-scale identification of essential genes
a, Number of viable, subviable and lethal genes identified from intercrosses of IMPC 

knockout (KO) alleles. b Core essential human genes identified in three studies, 158016, 

173917, and 173415 (top row) (see Material and Methods). Pie-charts indicate overlap 

between core human cell-essential genes and orthologous genes in the mouse: essential 

(red); non-essential (green) and genes with unknown function in the mouse (blue). c, 
Numbers and percentages of 242 IMPC lines showing lethality within a particular temporal 

window. d, Specific LacZ expression for Clcf1, Cgn, Kif26b and widespread expression 

shown for Psen1.
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Figure 2. Systematic identification of novel embryonic phenotypes
a–c, Frequency of gross morphology phenotypes at E12.5, E15.5, E18.5 (Supplementary 

Table 6). d–g, Spina bifida in E15.5 Tmem132a knockout embryos (arrow) (n=4 mutants), 

as well as narrow limbs with fewer digits (n=5 mutants). h–m, Gross morphology of E18.5 

Svep1 knockout embryos reveals severe edema (k versus h; white arrowheads). Transverse 

views reveal an abnormal renal pelvis (i versus l, arrow), hypoplastic lungs, and thin 

myocardium (arrows in m versus j). Lu=lungs; Li=liver; Sc=spinal cord (n=14 mutants). n–
s, Mutant (q) E14.5 Klhdc2 embryos show polydactyly (arrow) and edema (arrowhead) 
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versus controls (n). Sagittal views revealed a thin body wall (arrow in r) and missing 

adrenals (s) (n=2, E14.5, n=3, E18.5). t–w, E9.5 OPT surface renderings show abnormal 

allantois development (u), failure to complete turning (u–w) and abnormal heart looping (w) 

in mutant Gfpt1 embryos (n=4 mutants).
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Figure 3. Deep phenotyping through high-resolution 3D imaging and quantitative volumetric 
analysis
a–g, Phenotypic features of Chtop null embryos identified by HREM imaging (n = 4 

mutants analysed). a, 3D surface model of a mutant embryo b, Sagittal view, revealing 

abnormal topology of pancreatic tissue (pa). Inlay shows stomach (s) with a defect in.the 

formation of the diaphragm (dia) (asterisk). c. Coronal plane to reveal double outlet right 

ventricle (rv), persisting truncus arteriosus (pta), and ventricle septum defects (vs). d, 
Transverse section showing defects in the right aortic arch (raa) and retroesophageal left 

subclavian artery (lsa). e, Coronal section showing neural tissue (arrowhead) abnormally 

protruding into the 3rd brain ventricle (III), and unelevated palatine plates (pp). f, Coronal 

section showing bicuspid aortic valve (av). g, Sagittal section showing fused spinal ganglia 

(fsg) and additional ganglion material (ag) caudal to the occipital bone (ob) (2/4 embryos). 

li, liver; lu, lung; lv, left ventricle; e, esophagus; sc, spinal chord; I, 1st brain ventricle and 

left telencephalon; II, 2nd brain ventricle and right telencephalon; c, cusp of semilunar valve; 

sg, spinal ganglion; dr, dorsal roots of spinal nerve; tongue (to); pulmonary valve (pv). h, 
Coronal and transverse sections through composites of Cbx4−/− embryos registered to an 

average control dataset. Blue = smaller volumes in the mutant; red = larger volumes. The 

blue clusters in the top panel correspond to the smaller right and left thymic rudiments, the 

adrenals in the middle panel, and the trigeminal (V) ganglia in the bottom panel (n = 8 

mutants). i, Whole structural volume differences for the left and right thymic rudiment. j, 
Whole structural volume differences for the adrenal glands. Error bars represent 95% 

confidence intervals.
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Figure 4. Frequent instances of subviability, incomplete penetrance, and variable expressivity in 
a uniform genetic context
a, Comparison of the total percentage of unique genes that lack a paralog between viable, 

subviable, and lethal. b–i, Surface renderings (b–e) and transverse sections of the heads (f–
g) of E15.5 Acvr2a−/− embryos reveal a range of phenotypes (n = 8 mutants). j–m, Variable 

expressivity of phenotypes is observed in Rab34 mutant embryos at E18.5, (n = 7 mutants).
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Figure 5. Essential genes are enriched in human disease genes and intolerant to genetic variation
a,. The fractions indicate the number of HGMD disease genes (n=3302) among 3326 

Essential genes (EG in red); 4919 Nonessential genes (NEG in green) and 19568 protein-

coding genes (ALL in blue). Fisher’s exact test for enrichment: EG vs. NEG (odds 

ratio=2.00, p=7.80e-46), EG vs. ALL (odds ratio=3.13, p=2.42e-160), NEG vs. ALL (odds 

ratio=1.56, p=1.83e-29). b, Essentiality status of 3302 HGMD disease genes. c. The 

fractions indicate the number of genes encompassing or neighbouring GWAS hits33 

(n=6384) divided by essentiality status. Fisher’s exact test for enrichment: EG vs. NEG 
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(odds ratio=1.16, p=0.0015), EG vs. ALL (odds ratio=1.56, p=5.80e-31), NEG vs. ALL 

(odds ratio=1.35, p=1.18e-19). d,e, Gyg null embryos at E15.5 show enlarged atria and a 

thickened ventricular wall versus controls. f, LacZ expression for Gyg was seen in the heart 

and vascular system (homozygote shown).. sc=spinal cord; l=lung; s=septum; at=atrium; 

vt=ventricle. (n = 5 mutants) g, Distribution of percentiles of the Residual Variation 

Intolerance Score (RVIS) across three classes of genes: EG, NEG and ALL Wilcoxon rank 

sum test: EG vs. NEG (p<2.2e-16), EG vs. ALL (p<2.2e-16), NEG vs. ALL (p=0.579). h, 
Distribution of percentiles of the probability of being loss-of-function intolerant (pLI) across 

three classes of genes: EG, NEG and ALL. Wilcoxon rank sum test: EG vs. NEG 

(p<2.2e-16), EG vs. ALL (p<2.2e-16), ALL vs. NEG (p= 4.15e-05). i, Chromosomal 

distribution of 22 human orthologs of RVIS and pLI intolerant essential genes that are not 

currently included in the catalogues of Mendelian disease genes.
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