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JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 15 15 OCTOBER 2003
Efficient real-space configuration-interaction method for the
simulation of multielectron mixed quantum and classical
nonadiabatic molecular dynamics in the condensed phase

Ross E. Larsen and Benjamin J. Schwartz
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569

~Received 5 June 2003; accepted 24 July 2003!

We introduce an efficient configuration interaction~CI! method for the calculation of mixed
quantum and classical nonadiabatic molecular dynamics for multiple electrons. For any given
realization of the classical degrees of freedom~e.g., a solvent!, the method uses a novel real-space
quadrature to efficiently compute the Coulomb and exchange interactions between electrons. We
also introduce an approximation whereby the classical molecular dynamics is propagated for several
time steps on electronic potential energy surfaces generated using only a particularlyimportant
subsetof the CI basis states. By only updating the important-states subset periodically, we achieve
significant reductions in the computational cost of solving the multielectron quantum problem. We
test the real-space quadrature for the cases of two electrons confined in a cubic box with infinitely
repulsive walls and two electrons dissolved in liquid water that occupy a single cavity, so-called
hydrated dielectrons. We then demonstrate how to perform mixed quantum and classical
nonadiabatic dynamics by combining these computational techniques with the mean-field with
surface hopping algorithm of Prezhdo and Rossky@J. Chem. Phys.107, 825 ~1997!#. Finally, we
illustrate the practicality of the approach to multielectron nonadiabatic dynamics by examining the
nonadiabatic relaxation dynamics of both spin singlet and spin triplet hydrated dielectrons following
excitation from the ground to the first excited state. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1610438#
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I. INTRODUCTION

The study of chemical and electronic dynamics in t
condensed phase is dominated by simulation technique
which some degrees of freedom are treated quantum
chanically and the remainder are taken to obey class
mechanics.1 Such mixed quantum and classical~QM/CM!
methods must be used because it is far too computation
expensive to solve the time-dependent Schro¨dinger equation
for every electron and nucleus in a many-body syste
Mixed QM/CM methods for electronic dynamics are feasib
because the mass difference between electrons and n
causes a separation of time scales between electronic
nuclear degrees of freedom, so that electronic motions o
Schrödinger’s equation whereas nuclear degrees of freed
propagate according to other rules. The most common
proach has been to treat the nuclear dynamics classically
techniques that include some quantum effects in the nuc
motion, such as second-order quantized Hamilton
dynamics,2 semiclassical dynamics,3 Gaussian wave packet4

or quantum-dressed classical mechanics,5 also have been de
veloped. Although the quantum mechanics of nuclear
namics is certainly of great interest, here we are concer
with the quantum treatment of the electronic degrees of fr
dom, so without loss of generality we will consider the n
clei to obey classical mechanics.

The most popular QM/CM dynamics methods can
divided into two main categories: one in which the dyna
ics is restricted to a single adiabatic electronic state and
other in which the electronic wave function can evolve a
7670021-9606/2003/119(15)/7672/13/$20.00
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superposition of adiabatic electronic states. Adiabatic me
ods rely on the Born-Oppenheimer approximation to rig
ously separate the electronic motions from the nuclear m
tions, and the nuclear dynamics is restricted to a sin
~usually ground state! electronic potential energy surface
Restricting dynamics to the ground state allows the poten
energy surface to be calculated for the full many-elect
quantum system, which is typically done using density fun
tional theory, as in the Car–Parrinello approach.6 On the
other hand, the restriction to the ground state precludes
option of studying excited-state dynamics, so Bor
Oppenheimer-based approaches are incapable of stud
photochemical processes or processes such as ex
recombination7 or curve crossings in molecular reaction d
namics.

In contrast, nonadiabatic methods take into account
fact that the electronic motions cannot be rigorously se
rated from nuclear motions. Nuclear motions can cause
quantum-mechanical wave function to acquire amplitude
more than one adiabatic potential energy surface. Unfo
nately, most implementations of nonadiabatic mix
QM/CM have been limited in the number of quantum m
chanical degrees of freedom they treat. This is because n
diabatic dynamics requires the full many-electron wave fu
tion for both the ground and excited states. Thus, conden
phase systems studied with nonadiabatic dynamics, suc
solvated electrons,8–11proton transfer,12,13charge-transfer-to-
solvent ~CTTS!,14–16 and donor-acceptor electron transf
complexes,17 typically are simulated with only a single quan
2 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ve
d
e
ic
s-
ne
o

e
te
a

th

gl
e

te
c

io
n
o

o
ca
ch

he
al
of
a
m
n
o
n
ss
ze
al
es
le
th
en
a
t

id
y

d
to

ca
s
al
gr
th
te

n
el

be

the
d of
-

of
ra-
o-
for

tes
es,
CI

nt

ax-
tem
in

se it
hy-
f

-
e-
ons
ar
ys-

nts
tis-

ax-
nd

he
st’s
batic
ly,

use
b-

. II
en-
mb
the
ine
ted
n

ics
by
ct
the
th-
lec-

tic
c-
is-

7673J. Chem. Phys., Vol. 119, No. 15, 15 October 2003 Nonadiabatic molecular dynamics
tum degree of freedom.18 This restriction to a single quantum
degree of freedom is unfortunate because there are se
hints that one-electron treatments do not always properly
scribe the electronic structure of solvated systems. For
ample, Sheu and Rossky14 have simulated the nonadiabat
relaxation following CTTS excitation of iodide in water u
ing only a single QM electron that interacted with the iodi
core and solvent molecules through pseudopotentials. H
ever,ab initio calculations by Bradforth and Jungwirth19 re-
vealed a completely different structure for the energy lev
of aqueous iodide than with the one-electron pseudopo
tial. In particular, Bradforth and Jungwirth observed only
single bound CTTS excited state, in sharp contrast to
band of six states of mixeds and d character found in the
one-electron calculations. This suggests that the sin
electron calculations underestimate the magnitude of the
change and Coulomb interactions for higher-lying exci
states by as much as several eV. Thus, it is unclear exa
what single-electron nonadiabatic dynamics can teach
about the relaxation of real multielectron systems.

To address this gap in existing nonadiabatic simulat
methods, in this paper we introduce a new computatio
method to perform nonadiabatic dynamical simulations
multielectron systems. Our approach to multielectr
QM/CM dynamics in the condensed phase is based on
culating adiabatic multielectron wave functions for ea
nuclear configuration using configuration interaction~CI!. In
practice, any CI calculation starts with solutions of t
single-electron Schro¨dinger equation, where the numeric
solution of Schro¨dinger’s equation requires the choice
some basis in which to expand trial solutions. For gas ph
problems involving electron-molecule interactions, it is co
mon to work with bases that explicitly acknowledge the u
derlying molecular geometry, for example, Slater orbitals
Gaussian basis sets.20 Condensed-phase problems, in co
trast, often lead to electronic states that are not closely a
ciated with just a single molecule. These can be delocali
‘‘conduction-band-like’’ states, or they can be rather loc
ized states, residing mostly ‘‘between’’ solvent molecul
so-called solvent-supported states. Thus, to study multie
tron systems without biasing the problem, our choice of
one-electron basis must be able to describe both solv
supported and on-molecule states. The most straightforw
choice of basis, and the one we adopt here, is to solve for
electronic wave functions on a grid. This approach avo
bias and is guaranteed to converge as the grid densit
increased.

Once the single-electron wave functions have been
termined on a grid, the next step of a CI calculation is
evaluate the Coulomb and exchange interactions between
tisymmetrized products of the single-electron states. To
culate these electron-electron interactions using grid-ba
single-electron wave functions, we will introduce a new re
space quadrature that converts the six-dimensional inte
tions into rapidly convergent double summations over
grid points. Once the electron-electron interactions are de
mined, the CI calculation gives thewave functionsfor the
ground and excited states of the multielectron system,
just the charge densities of these states, allowing matrix
Downloaded 07 Oct 2003 to 128.97.34.137. Redistribution subject to A
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ments of observables such as optical transition dipoles to
computed.

With the multielectron eigenstates determined by CI,
solvent dynamics can be propagated using any of a myria
adiabatic1,6 or nonadiabatic1,5,13,21,22dynamical schemes. Be
cause molecular dynamics simulations require evaluation
multielectron wave functions for thousands of configu
tions, to make the simulations practical we will also intr
duce a trick to reduce the computational effort needed
solving the multielectron Schro¨dinger equation. The trick
amounts to determining which single-electron product sta
contribute appreciably to the full multielectron eigenstat
and then using only this subset of important states in the
calculations, periodically updating the list of importa
states.

To test our scheme, we will examine nonadiabatic rel
ation dynamics in a two-electron condensed-phase sys
consisting of two electrons that occupy a single cavity
liquid water, thehydrated dielectron. The hydrated dielectron
serves as a useful test of our real-space CI method becau
is closely related to the well-studied case of the single
drated electron.8–11,23–26The hydrated dielectron is also o
interest because it containsonly electron–solvent interac
tions, thus allowing for a detailed study of the interplay b
tween electron-electron and electron–solvent interacti
without complications that might arise from intramolecul
electronic structure. Thus, we will investigate a model s
tem that maximizes the ability of thesolventto modulate the
two-electron wave function, subject only to those constrai
imposed by the electron-electron interaction and spin sta
tics.

In the results presented below for nonadiabatic rel
ation by the hydrated dielectron, we will use Prezhdo a
Rossky’s mean-field with surface hopping~MF/SH!
approach21 for nonadiabatic dynamics. This method lets t
classical degrees of freedom evolve according to Ehrenfe
theorem, but also incorporates decoherence and nonadia
effects by letting the wave function evolve discontinuous
either by mean-field rescaling or via surface hops~electronic
transitions between different adiabatic electronic states!. We
have chosen this nonadiabatic dynamics algorithm beca
of the ease with which it can be implemented for QM pro
lems of any dimensionality.

The rest of this paper is organized as follows. In Sec
we briefly review the CI method and introduce the aforem
tioned real-space quadrature for evaluation of the Coulo
and exchange integrals. We then test this quadrature for
case of two electrons confined to a cubic box and exam
the convergence of our real-space CI method for a hydra
dielectron in a single configuration of liquid water. Sectio
III shows how to use the CI method for molecular dynam
and introduces the idea of saving computational effort
using only an ‘‘important’’ subset of the two-electron produ
basis for the dynamics, with occasional updates of
important-states subset. In Sec. IV we apply our new me
ods to the condensed-phase dynamics problem of the die
tron in liquid water, showing examples of nonadiaba
MF/SH dynamics for both singlet- and triplet-paired diele
trons. For completeness, we include an Appendix with a d
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7674 J. Chem. Phys., Vol. 119, No. 15, 15 October 2003 R. E. Larsen and B. J. Schwartz
cussion of the details of how to implement the MF/SH alg
rithm with CI wave functions. We conclude in Sec. V with
discussion of the full multielectron, nonadiabatic, mix
QM/CM method and some thoughts on future directions.

II. MANY-ELECTRON WAVE
FUNCTIONS USING REAL-SPACE
CONFIGURATION INTERACTION

A. Review of the configuration-interaction method

The CI method~in principle! allows the exact construc
tion of the eigenstates of a system of interacting electro
This technique is well known,27 but in order to fix our nota-
tion for the rest of this paper, we first briefly review th
method.

Configuration interaction calculations solve Schro¨d-
inger’s equation forM electrons by first finding approximat
single-electron eigenstates and then constructing the inte
tion potential in a basis of appropriately antisymmetriz
product states. The so-called ‘‘singles and doubles’’ presc
tion reduces the problem to just two electrons, with t
‘‘noninteracting’’ basis states determined self-consistently
as to take into account the interactions with the remain
M22 electrons. For only two electrons, the exact on
electron states are used to construct the basis~i.e., no self-
consistent calculation is needed! and the single and doubl
excitations form a complete basis. Thus, for the two-elect
problem, ‘‘CI with singles and doubles’’ is equivalent to fu
multireference CI.

Consider the Hamiltonian for two interacting electron

Ĥ125Ĥ11Ĥ21V̂12, ~1!

where the subscripts indicate which electron~s! the operator
acts upon.28 The operatorsĤ1 and Ĥ2 consist of the kinetic
energy and the external potential energy~e.g., from a sol-
vent! operators for each electron, and the interaction betw
the electrons is a Coulomb repulsion,29

^r18 ,r28uV̂12ur1 ,r2&5S e2

r 12
D d~r182r1!d~r282r2!, ~2!

where r 125ur12r2u. Let us denote the single-electro
eigenenergies and eigenstates ofĤ1 andĤ2 by en andun& @or
^r un&[cn(r )], respectively. A two-electron state can be e
panded in terms of appropriately antisymmetrized produ
of single-electron states~in a direct-product Hilbert space!,

unm&65~ un&um&6um&un&)/& ~m.n! ~3!

and

unn&15un&un&. ~4!

Here the plus sign is used for spin-singlet pairs and the
nus sign when the spins are triplet paired, and for notatio
simplicity, we have supressed the relevent spinor produ
Note that the use ofN one-electron eigenstates give
N(N11)/2 spin-singlet orN(N21)/2 spin-triplet product
basis states; by convention we construct the basis u
only m>n.
Downloaded 07 Oct 2003 to 128.97.34.137. Redistribution subject to A
-

s.

c-

-
e
o
g
-

n

n

ts

i-
al
s.

ng

The remaining steps in the CI calculation proceed
follows. Once we have foundN single-electron states, w
write the two-electron eigenstates as linear combinations
product basis states,

uC&65(
n,m

cnmunm&6 . ~5!

The time-independent Schro¨dinger equation implies that

(
nm

cnm~Ĥ11Ĥ21V̂12!unm&65E(
nm

cnmunm&6 , ~6!

from which it is easily seen that the eigenvalues$Ei% and
expansion coefficients$cnm

i % are given by the eigenvalue
and eigenvectors of theN(N61)/23N(N61)/2 Hamil-
tonian matrix (Ĥ11Ĥ21V̂12) ~for notational convenience
we have supressed the6 index on thecnm).

The antisymmetrized product statesunm&6 are eigen-
states ofĤ11Ĥ2 ,

~Ĥ11Ĥ2!unm&65~en1em!unm&6 , ~7!

so thatĤ11Ĥ2 is diagonal in this basis. The interaction, o
the other hand, is not diagonal, and its matrix elements a

6^n8m8uV̂12unm&65E dr1E dr2S e2

r 12
D

3$cn8
* ~r1!cn~r1!cm8

* ~r2!cm~r2!

6cm8
* ~r1!cn~r1!cn8

* ~r2!cm~r2!%, ~8!

1^n8n8uV̂12unm&15&E dr1E dr2S e2

r 12
D

3$cn8
* ~r1!cn~r1!cn8

* ~r2!cm~r2!%, ~9!

and

1^n8n8uV̂12unn&15E dr1E dr2S e2

r 12
D

3$cn8
* ~r1!cn~r1!cn8

* ~r2!cn~r2!%. ~10!

The first term in Eq.~8! is called the Coulomb integral, while
the second~6! term is called the exchange integral; by co
vention, we take Eqs.~9! and~10! to contribute half of their
value to the Coulomb energy and the other half to the
change energy~this is consistent with the division typically
made in, e.g., Hartree–Fock calculations20!.

Equations~6!–~10! must be solved to determine the two
electron eigenstates. The numerical bottleneck in any CI
culation lies in evaluating the Coulomb and exchange in
grals of Eqs.~8!–~10!, and it is this problem to which we
turn our attention in the next subsection.

B. Real-space quadrature
for the Coulomb and exchange integrals

As we have already pointed out, it is often desirable
numerical solutions of the single-electron wave functions
be defined only at discrete grid points; this is the case for
block-Lanczos method we use below in Sec. IV in solvi
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the example problem of a dielectron in liquid water. T
integrals we need to evaluate in Eqs.~8!–~10! assume, how-
ever, that the wave functions are defined everywhere
space, not just at theNc[Ng

3 points on a cubic grid. We mus
therefore develop a scheme that converts grid-based w
functions into continuous functions suitable for insertion in
the above integrands.

One such approach would be to expand the wave fu
tion in a Fourier or other series, but in a disordered sys
such expansions can actually increase the computationa
pense beyond that of a direct, real-space approach. To m
this point clear, suppose that each one-electron state w
expanded in a series,

cn~r !5(
i 51

Nc

an
i f i~r !,

turning each Coulomb or exchange integral in Eqs.~8!–~10!
into a fourfold summation over expansion coefficents, wit
summand that could be nonzero for as many asNc

4 terms. In
a disordered system such as a liquid, we would expect s
an expansion to contain so many terms that the fourfold s
mation would be highly inefficient. Note that the fourfo
summation arises in this CI calculation because we exp
the two-electron wave functions in a product-state basis.
an alternative, we could work directly with the produ
states,

cn~r !cm
! ~r !5(

i 51

Nc

Anm
i f i~r !.

Working in terms of products of single-electron wave fun
tions is akin to forming charge densities, so such a met
would be similar in computational cost to the Hartree term
density functional calculations. Indeed, if the expansion
efficientsAnm are known from previous steps in the calc
lation, this alternate expansion reduces the transformed
electron integrations from orderNc

4 to orderNc
2—the same

cost as the real-space integration. If, on the other hand,
coefficients must be computed separately, the additio
computations~of orderNc

2 in general orNc log2 Nc for a fast
Fourier transform! make the transformed integration schem
more expensive than in real space. Clearly, working w
such expansions makes sense if only a small subset of t
in the expansion contributes to each single-electron st
The wave functions typical of electrons in disordered med
however, cannot be represented by just a few plane wave
other orthogonal polynomials. For such disordered syste
we anticipate that calculating the six-dimensional Coulo
and exchange integrals directly in real space, an orderNc

2

operation, will be computationally most efficient with C
provided that we can perform the real-space integrations w
accuracy comparable to that of Fourier methods. It is to
problem that we now turn our attention.

To compute the Coulomb and exchange integrals in
space with grid-based single-electron wave functions,
wave functions need to be defined everywhere in spac
turns out that a low-order, finite-element approximation s
fices and leads directly to a simple quadrature for evalua
the Coulomb and exchange integrals, Eqs.~8!–~10!. Our
Downloaded 07 Oct 2003 to 128.97.34.137. Redistribution subject to A
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finite-element approach assumes that the one-electron w
function can be represented by a power series inside a c
of sidea around each grid pointr i ~the grid also has spacin
a),

c̃n~r !5@cn~r i !1~r2r i !•¹cn~r i !1¯#/W, ~11!

where the factorW is there to preserve normalization of th
new ~piecewise continuous! wave function upon converting
the normalization sum,( i ucn(r i)u251, into an integral over
the simulation volume. We have found that the lowest-ord
or piecewise-constant, expansion yields sufficient accur
for our purposes, so this rescaling amounts to dividing
grid-based wave function by the square root of the cub
volume,c̃n(r )5cn(r i)/Aa3, in each cube.

Taking the wave functions to be piecewise constant
mediately reduces the Coulomb and exchange integrals
double sum over grid points~an orderNc

2 quadrature! of the
general form

I abcd5E dr1E dr2S e2

r 12
D c̃a* ~r1!c̃b~r1!c̃c

!~r2!c̃d~r2!

5e2(
i 51

Nc

c̃a* ~r i !c̃b~r i !(
j 51

Nc

c̃c
!~r j !c̃d~r j !

3E
Cube i

dr iE
Cube j

dr j

1

r i j
. ~12!

This expression can be rewritten directly in terms of theun-
rescaled~grid-based! wave functions

I abcd5
e2

a (
i 51

Nc

ca
!~r i !cb~r i !(

j 51

Nc

cc
!~r j !cd~r j !f i j , ~13!

where

f i j 5E
0
drE

u i 2 j u
dr 8

1

ur2r 8u
~14!

is the electrostatic potential energy between uniform
charged unit cubes, one centered at the origin, the other
tered at grid pointi 2 j , in a grid of unit spacing. Becausef i j

is independent of any physical parameters in the system
need only tabulate itonce for any givenNg and can there-
after use the table for any CI calculation.

The question of how to efficiently compute integra
having the form of ourf i j has been addressed in a rece
paper by Finocchiaro, Pellegrini, and Bientinesi,30 who
showed how to convert six-dimensional integrals contain
a 1/r 12 kernel into two-dimensional integrals in which th
Coulomb singularity is already integrated out; the remain
two integrations~which must be evaluated numerically! con-
verge rapidly. We have not found it necessary to use
mapping for our Eq.~14! because the six-dimensional inte
grals also can be calculated to a relative accuracy
O(1028) or better using the numerical integration routines
Mathematica. These integrations only need to be perform
once for each of theNg(Ng11)(Ng12)/6 pairs of cubes
that have distinct values off i j .31 For Ng516, tabulatingf i j
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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7676 J. Chem. Phys., Vol. 119, No. 15, 15 October 2003 R. E. Larsen and B. J. Schwartz
took just a few hours on a midrange PC; larger grid sizes
be easily accomodated by noting that for well-separa
cubes,f i j rapidly approaches 1/r i j .32

C. Test of the real-space quadrature:
Two electrons in a cubic box

Perhaps the simplest example of an interacting-elec
system is the case of two electrons in a box bounded
infinite walls. This system recently has been studied in de
by Alavi,33 who obtained exact solutions for this system v
CI using a very efficient hybrid real-space/Fourier-spa
quadrature to evaluate the Coulomb and exchange integ
Eqs. ~8!–~10!. As a test of the accuracy of our~six-
dimensional! real-space technique, we have compared
sum of the Coulomb and exchange integrals for the cas
two electrons in a cubic box computed using Eq.~13! to the
values tabulated by Alavi. The one-electron sta
@cnx ,ny ,nz

(r )}sin(nxpx/L)sin(nypy/L)sin(nzpz/L), whereL is
the box length# were generated analytically on the grid; pro
uct basis states were formed as described in Sec. II A.
results are summarized in Table I for a cube 1 a.u. on a s
Although our real-space method is less computationally e
cient than the hybrid real-space/Fourier-space method in
duced by Alavi, we see that our method converges rap
with the number of grid points and gives similar accurac

The more rapid convergence of Alavi’s hybrid Fouri
method requires tuning of a length-scale parameter ass
ated with dividing the Coulomb and exchange integrals i
real-space and Fourier-space parts. It is interesting to
that for the~111,112! singlet case, Alavi also has compute
the sum of Coulomb and exchange integrals using a di
real-space quadrature that still contains the singular 1r 12

term in the integrand. This so-called ‘‘brute force’’ approa
has an error of roughly 2% withNg516, as compared to ou

TABLE I. Interaction energies~hartrees! for two electrons confined to
an infinite cubic box 1 a.u. on a side. The energies reported are the
of Coulomb and exchange integrals @6^nxnynznx8ny8nz8
3u(e2/r 12)unxnynznx8ny8nz8&6# and the error is computed relative to the r
sults of Alavi~Ref. 33!. Note that Alavi has tabulated more integrals than
report here; we find the same rate of convergence and level of error fo
reported integrals. Because the Coulomb interaction is scale invariant
result for other box sizesL can be found by dividing the tabulated results
L in a.u.

Ngrid (nxnynz ,nx8ny8nz8)
Singlet

~relative error!a
Triplet

~relative error!a

8 ~111,111! 2.9932~1.79%! ¯

16 ~111,111! 3.0341~0.45%! ¯

24 ~111,111! 3.0417~0.20%! ¯

32 ~111,111! 3.0444~0.12%! ¯

8 ~111,112! 3.2469~2.20%! 2.1257~0.13%!
16 ~111,112! 3.3016~0.55%! 2.1282~0.009%!
24 ~111,112! 3.3117~0.24%! 2.1284~0b!
32 ~111,112! 3.3253~0.16%! ¯

8 ~111,123! 2.5448~1.90%! 2.2969~0.27%!
16 ~111,123! 2.5818~0.47%! 2.3028~0.013%!
24 ~111,123! 2.5887~0.20%! 2.3031~0b!
32 ~111,123! 2.5910~0.12%! ¯

aThe error is calculated relative to the values reported in Ref. 33.
bIdentical to the five figures reported in Ref. 33.
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error of only 0.55%. We believe that our real-space quad
ture, Eq. ~13!, converges more rapidly than Alavi’s brute
force version because we preintegrated over the singular
nel when we tabulatedf i j . Although Alavi’s hybrid real-
space/Fourier-space approach is much more efficient
our quadrature for this particular example, Alavi’s hybr
method is limited to problems for which the single-electr
basis states can be represented by just a few Fourier com
nents. The extra efficiency could not be realized for dis
dered condensed-phase systems because, as we discus
Sec. II B, such systems would not have single-electron b
states made up of just a few Fourier components. We bel
that our real-space quadrature gives the best combinatio
efficiency and generality for calculating electron-electron
teractions with grid-based wave functions in disordered s
tems.

D. Application to the condensed phase:
The dielectron in water

We now apply our method to the hydrated dielectro
This dielectron system is similar to the two-electrons-in
box case discussed above in that the electrons are confin
a cavity by the repulsive water-electron pseudopotentia24

but it is different in that solvation provides an attractive w
in addition to the repulsive confining potential, and that t
cavity size and shape will fluctuate in time. The sing
electron wave functions for this system cannot in genera
represented by just a few Fourier components, so this p
lem is just the sort for which our real-space quadrature,
~13!, was designed. In our calculations, the electron-wa
interaction is taken to be the pseudopotential of Schnit
and Rossky,24 allowing us to make a direct comparison of th
properties of the dielectron with the large body of literatu
on the single electron generated using th
pseudopotential.11,23,25Details of the model and the numer
cal methods are given in Sec. IV A.

Tables II and III show the lowest four two-electron e
ergies for bound spin-singlet and spin-triplet dielectrons,
spectively, as functions of the number of single-electr
states used to form the CI basis. In each case, the energ
are calculated using a single equilibrated water configura
taken from an equilibrium molecular dynamics simulati
run on either the singlet or triplet ground-state surface,
described in Sec. IV B. In both cases, it seems that at leas
single-electron states must be used for the basis to ach
energies accurate to better than a fewkBT. However, the
computational cost of the Coulomb and exchange ener

m

all
he

TABLE II. Singlet dielectron energies~eV! in a representative equilibrated
water configuration as a function of the number of single-electron st
used in the CI calculation, withNg516. The number of states in the sym
metrized product basis isNstates(Nstates11)/2.

Nstates E1 E2 E3 E4

4 25.90 23.10 22.62 22.21
8 26.30 23.79 23.37 23.24
10 26.53 23.99 23.45 23.38
12 26.54 24.26 23.59 23.46
15 26.55 24.29 23.73 23.61
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scales asNstates
4 , so it is desirable to use as small anNstatesas

possible. We have found that a choice ofNstates510 is satis-
factory for our molecular dynamics because errors associ
with integrating the equations of motion produce ene
fluctuations larger than the error made by keeping only
states; thus, as we discuss in more detail in Sec. IV,Nstates

510 is large enough to adequately conserve the total en
in our MD runs.

III. MAKING MIXED QUANTUM AND CLASSICAL
DYNAMICS WITH CI PRACTICAL:
THE ‘‘IMPORTANT’’ STATES APPROXIMATION

Although we have established that the real-space
method can be used to determine eigenstates for any
realization of the single-electron potential, there is still so
work to be done before the CI prescription can be used
molecular dynamics~MD! simulations. This is because i
MD simulations, the electronic eigenstates and the force
the electrons exert on the classical degrees of freedom
to be calculated at every time step—leading to thousand
nontrivial CI calculations even for simulations of mode
length. The slowest step in our grid-based CI implementa
turns out to be computing the Coulomb and exchange i
grals, Eqs.~8!–~10!, between all pairs of product basis state
For example, with 10 single-electron states~which gives 55
product basis states!, we must compute 54355/251485 dis-
tinct six-dimensional Coulomb and exchange integrals; fo
163 grid, this calculation took of order 5 min on an AMD
Athlon 1.7 GHz PC. To make dynamics practical we m
therefore find a way to reduce the number of matrix eleme
of V̂12 that have to be computed at every time step.

Our solution is to make use of the fact that most of t
product basis states contribute very little to any of the low
lying two-electron eigenstates. We make this idea quan
tive by ordering the product basis statesunm&6 by the
amount they contribute to a given eigenstate,cnm

i @Eq. ~5!#,
and seeing how many basis states,Nimp , are ‘‘important’’—
that is, how many are needed for the sum of their contri
tions, (nm

Nimpucnm
i u2, to be greater than some fractionf imp .

For example, the aqueous singlet dielectron typically ne
only 15 product basis states to add up to 99.9% of
ground-state wave function (f imp50.999). The ground-stat
energy computed in this 15 basis-state subspace differs
the full 55 basis state~i.e., all two-electron configuration
with 10 single-electron eigenstates! energy by only;0.1%.
To achieve 99.95% accuracy (f imp50.9995), 19 product-

TABLE III. Triplet dielectron energies~eV! in a representative equilibrate
water configuration as a function of the number of single-electron st
used in the CI calculation, withNg516. The number of states in the ant
symmetrized product basis isNstates(Nstates21)/2.

Nstates E1 E2 E3 E4

4 24.16 22.04 21.89 20.78
8 24.47 22.34 22.19 21.84
10 24.50 22.44 22.25 21.87
12 24.50 22.49 22.28 21.90
15 24.51 22.50 22.36 21.91
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basis states must be kept on average, leading to ene
within 0.06% of the full 55 basis-state result. Keeping on
19 of the 55 basis states results in an eightfold reduction
the number of CI matrix elements that need to be calcula

For molecular dynamics, the reductions in computatio
effort discussed above will hold only as long as the import
subspace remains unchanged. Our goal is to run dynam
using only the important subsbace for some timetupdatebe-
fore needing to recalculate thefull two-electron CI matrix.
This idea of explicitly using only a subset of basis states a
periodically updating the subset is reminiscent of the nei
bor lists used in classical molecular dynamics simulation34

The fraction of the eigenvector that needs to be kept,f imp ,
and the time between updates,tupdate, must be determined
empirically on a case by case basis. We have chosenf imp and
tupdate by requiring that molecular dynamics conserve e
ergy.

Insight into how to choose the parametersf imp and
tupdatecan be gained by examining the amount of compu
tional effort saved with this prescription. On average, fo
given value of f imp , the important basis uses onlyNimp

product states out of theNtot available. Therefore, for eac
time step between updates, we perform (Nimp /Ntot)

2 as
many computations as we would with the full basis. Ma
ematically, given a molecular dynamics time stepDt and the
time between updates,tupdate, we perform only a fraction

h~Dt;Nimp,tupdate!5S Nimp

Ntot
D 2S 12

Dt

tupdate
D1S Dt

tupdate
D ~15!

as many computations as without the important-states
proximation. The first term in Eq.~15! gives the computa-
tional cost of the CI calculation for times between updat
and the second term gives the cost associated with per
cally recomputing the full CI matrix. Equation~15! shows
that a balance must be struck between keeping as few s
as possible but having to update more frequently and ca
lating a larger number of states but updating the import
basis less often.

The above discussion implicitly assumes that only
single two-electron state is of interest at any given insta
However, any calculation that allows nonadiabatic dynam
requires knowledge of more than just the occupied state—
surface hopping or mean-field dynamics, we also need
know aboutunoccupiedstates—so we need to generalize t
idea of the important-states subspace. When the impor
basis states have been selected to accurately represent o
single two-electron eigenstate, the other two-electron eig
states formed from the subspace-only Hamiltonian will n
necessarily be related to any of the two-electron eigenst
of the full Hamiltonian. We therefore also need to keep
our subspace the product basis states that are importan
eachtwo-electron eigenstate of interest. For the aqueous
electron, for instance, representing each of the lowest f
two-electron eigenstates to 99.95% accuracy requires 4
the 55 product basis states; for this case, the important-s
approximation gives very little computational benefit. How
ever, accurate dynamics does not necessarily require
precision forevery two-electron eigenstate. It turns out th
we only need high accuracy for two-electron eigenstates

s
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have appreciable amplitude; weakly populated two-elect
states do not need to be as well represented to maintain
ergy conservation in the molecular dynamics. We have fo
that in MF/SH simulations of the aqueous dielectron, it s
fices to represent the unoccupied eigenstates atf imp599% to
maintain energy conservation in the molecular dynamics
described below in Sec. IV A. This prescription requires
average just 36 important-basis states to describe the lo
six singlet eigenstates~six being all that are needed for th
nonadiabatic runs described below!. For the spin-triplet case
we find that only 33 of 45 basis states are needed to ge
lowest six eigenstates~needed for the nonadiabatic run b
low! to an accuracy off imp50.9995 for the ground eigen
state andf imp50.99 for the other eigenstates.

IV. APPLICATION: DYNAMICS OF THE AQUEOUS
DIELECTRON

In this section, we will demonstrate the ability of ou
real-space CI method to calculate the nonadiabatic relaxa
dynamics for the two-electron condensed-phase case o
hydrated dielectron. Although there has been disagreem
about whether the hydrated dielectron has been directly
served in flash photolysis experiments,35 Schmidt and Bartels
have argued36 that the lack of an ionic strength effect in th
recombination of single hydrated electrons,eaq

2 1eaq
2

→2OH21H2, implies that paired electrons should b
stable. Semicontinuum dielectric calculations also sugg
that the singlet hydrated dielectron should exist.37 In addi-
tion, the ground state of the dielectron has been studie
water clusters by Kaukonenet al.38 using spin density func-
tional theory. In order to accelerate the statistical sampl
of electron-water configurations, these workers set the m
of oxygen equal to that of hydrogen; thus, the trajectories
Ref. 38 do not contain dynamical information and serve o
to sample phase space. Furthermore, because the system
forced to run on the absolute ground state, the dielec
occasionally switched back and forth between singlet
triplet spin states. This switching is unexpected beca
nonadiabatic effects cannot produce intersystem cross
from one spin state to another. Spin-singlet and spin-trip
states mix only in the presence of magnetic fields,29 so the
intersystem crossing observed by Kaukonenet al.must be an
artifact of restricting the dynamics to the global ground sta
Stable dielectrons in ammonia have also been predicted
Deng, Martyna, and Klein, who used spin density functio
theory combined with Car-Parrinello simulation39 to study
metal-ammonia solutions for metal concentrations that al
the formation of dielectrons.

A. Model and computational details

Our simulation of the hydrated dielectron consists of 2
classical water molecules and two QM electrons. We mo
the water using SPC-flex potentials40 and propagate the clas
sical trajectories using the Verlet algorithm34 with a time step
of Dt50.5 fs. As mentioned in Sec. II D, we describe t
water-electron interaction using the pseudopotential
Schnitker and Rossky,24 and calculate the force of the ele
trons on the water using the Hellmann-Feynman form
~see the Appendix!. The constantN,V,E simulations had a
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temperature of;300 K and took place in a box 18.17 Å o
a side, giving a density of 0.997 g/cm3. The single-electron
eigenstates are calculated using an iterative block-Lanc
procedure described in detail elsewhere.8 For the dielectron
in water, a grid size ofNg516 is the minimum necessary t
adequately solve the discretized Schro¨dinger equation with
the iterative block-Lanczos procedure, and we use this g
size for all dielectron calculations reported in this paper.

Because CI is just a general method for finding adiaba
multielectron eigenstates, we can in principle use any no
diabatic molecular dynamics algorithm to model dielectro
relaxation. Since the two-electron CI calculation is the m
computationally expensive step, we restrict ourselves
nonadiabatic methods that rely only on local informati
about the two-electron wave function. We therefore do
consider methods that require self-consistent or nonlocal
culations, such as the stationary phase surface hop
algorithm.8,41 From the remaining local nonadiabatic met
ods, we choose to use Prezhdo and Rossky’s MF
method,21 which combines mean-field ~Ehrenfest!
dynamics42 ~including occasional collapses of the wave fun
tion to take into account decoherence! with Tully’s fewest-
switches surface hopping@also known as molecular dynam
ics with quantum transitions~MDQT!#.13,22Both MDQT and
MF/SH are attractive choices for many-electron nonadiab
dynamics because in these methods calculation of
Hellmann-Feynman~HF! forces and the nonadiabatic cou
pling scale linearly with the number of electrons. We choo
MF/SH instead of MDQT because MF/SH does not requir
swarm of trajectories from each classical initial condition
thus, within the stochastic approximations described in
Appendix, every MF/SH trajectory is physically meaningfu
The details of MF/SH, along with explicit formulas for th
nonadiabatic coupling and hopping probabilities for the m
tielectron case, are given in the Appendix. The tim
dependent Schro¨dinger equation was propagated betwe
molecular-dynamics time steps using a fourth-order Rung
Kutta integrator, with a time stepdt5Dt/500 and a linear
interpolation between the two-electron eigenenergies at ti
t and t1Dt. The mean-field consistency criteria were tak
to be violated when the momentum condition@Eq. ~A5!# is
larger than 0.1 and when the position condition@Eq. ~A6!#
becomes larger than the Bohr radiusa0 . In the runs reported
here, mean-field rescaling occurred only from violations
the momentum condition.

As we discussed in Secs. II D and III, in order to ma
molecular dynamics with CI wave functions practical, w
must set three parameters; the number of one-electron s
used for the product basis,Nstates: the fraction of the eigen-
vectors kept when determining the important states,f imp ;
and the time between updates of the important states,tupdate.
These parameters must be chosen so as to minimize com
tational cost while maintaining correct dynamics; we gau
the correctness of the dynamics by requiring the total ene
of the mixed QM/CM system to be conserved.43

The first parameter to be set is the number of sing
electron states used to construct the product basis,Nstates.
We determined this parameter by running ground-state, s
singlet dynamics and constructing thefull CI matrix atevery
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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time step. We find that with molecular dynamics time ste
of 1 fs or 0.5 fs, the total energy is conserved43 whenever
Nstates>10. The energy is conserved fairly well withNstates

58, but occasionally we saw large~;0.1 eV! and rapid
~;50 fs! excursions in the total energy for this smaller bas
Large energy changes on such a fast time scale are a sign
the molecular dynamics is not correct~presumably, the two-
electron ground state needs to mix in unavailable high
lying single-electron states in order for the HF force to
consistent with the ground-state energy!, so we rejectNstates

58 as too small. TakingNstates510 results in drift just barely
acceptable by the standard mentioned above, but becau
the ;Nstates

4 scaling in the size of the full CI matrix, we
choose the smallest possible number of single-elec
states, hereNstates510, even though energy conservatio
does improve withNstates512.

Having determined thatNstates510 suffices to maintain
adequate energy conservation, we turn next to setting
parameters that make molecular dynamics practical,f imp ,
and tupdate. We ran 1–2 ps ground-state trajectories
f imp50.999, 0.9995, and 0.9999, and found that in orde
avoid visible discontinuities~greater than;0.05 eV! in the
total energy at the update points, we must choosetupdate

52, 3, and 4 fs, respectively,44 and eitherDt50.5 fs orDt
51 fs. Using Eq.~15!, we have tabulated the efficiency fa
tor, h, for these parameters. The results, presented in T
IV, show that for ground-state adiabatic molecular dynam
runs the important-states scheme gives the greatest ga
computational efficiency with f imp50.9995 and tupdate

53 fs. Likewise, Table IV shows that for nonadiabatic d
namics with Dt50.5 fs, takingtupdate53 fs, f imp50.9995
for the first excited state, andf imp50.99 for the lowest other
five two-electron states provides the best combination of
ficiency and accuracy. We therefore chooseDt50.5, tupdate

53 fs, and f imp50.9995 for both the singlet and triple
nonadiabatic runs discussed below.

B. Nonadiabatic relaxation of excited dielectrons

We now apply our real-space, CI method with t
important-states approximation to the MF/SH molecular
namics algorithm to simulate the nonadiabatic relaxation
hydrated dielectrons. We shall examine the relaxation of b

TABLE IV. Efficiency gains for different ‘‘important-states’’ parameters fo
spin-singlet hydrated dielectrons. The results were calculated using Eq.~15!,
with Nstates510 used to construct the product basis andtupdatechosen to be
as large as possible while maintaining energy conservation. The third
fourth columns give the result when only the ground state is used to gen
the important-states basis. The right-most column estimates the com
tional efficiency for nonadiabatic dynamics with a time stepDt50.5 fs,
keeping accuracy for the lowest six two-electron energies. The total num
of important states,Nimp , was the average found from three representat
water configuations, withf imp for the first excited state given in the tabl
and with f imp50.99 for the remaining five states.

f imp tupdate ~fs! h(Dt51.0 fs) h(Dt50.5 fs)
h(Dt50.5 fs)
~nonadiabatic!

0.999 2 0.51 0.31 0.56
0.9995 3 0.41 0.27 0.54
0.9999 4 0.50 0.42 0.60
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spin-singlet and spin-triplet dielectrons following excitatio
from the equilibrium ground state to the first excited sta
The initial configurations and water velocities used for t
nonadiabatic runs were taken from long singlet and trip
ground-state trajectories that will be discussed in detail i
subsequent paper.45

Figure 1 shows the eigenenergy history for the nonad
batic dynamics of a spin-singlet dielectron after excitati
from the ground to the first excited state. Before excitation
t50, the singlet dielectron occupies a single, slightly a
pherical~cf. Ref. 38 and Fig. 2! cavity; the dielectron charge
density has a radius of gyration of about 2.4 Å, 20% larg
than that for the hydrated electron.25 The ground state of the
dielectron has a lower energy~;26.0 eV! than that of two
noninteracting electrons in a single-electron cavity~;2
322.7 eV525.4 eV!.25 This is surprising because the Co
lomb and exchange interactions add;4.5 eV to the ground-
state energy of the singlet dielectron, which means that e
electron has an extra;2.5 eV favorable interaction with the
solvent when in the dielectron cavity than in a sing
electron cavity.46 This extra stabilization leads to more boun
single-electron states than the three seen for a single elec
and, as we will show in a subsequent paper,45 leads to an
optical absorption spectrum with significant oscillat
strength to the blue of the absorption of the single hydra
electron.

Upon excitation, we see in Fig. 1 the usual8–11,14,15rapid
destabilization of the ground state as the solvent struc
rearranges to accomodate the newly occupied excited s
After the Stokes shift has brought the ground and exci
states close in energy, solvent motions induce a nonadiab
transition back to the ground state, following which th
ground state then rapidly reequilibrates. We can underst
the driving force behind the dynamics both after excitati
and after the nonadiabatic transition back to the ground s
by examining the charge densities of the ground and fi
excited states following the initial excitation. Figure 2 show

FIG. 1. Time dependence of the spin-singlet dielectron’s adiabatic en
levels. The bold solid line indicates which state is occupied at any time
time t50 fs, the dielectronic wave function is instantaneously changed fr
the ground state to the first excited state (ai→d i2 in the notation of the
Appendix!. For clarity, we display everyother two-electron eigenstate be
ginning with the second excited state and keep only the lowest nine a
batic eigenstates~that is, only states 1, 2, 3, 5, 7, and 9 are shown!.
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that at timet50 fs ~just before the excitation! the ground-
state charge density is concentrated in a single, somew
aspherical cavity. On excitation to the first excited state,
charge density acquires two lobes that are slightly off
from the ground state’s center, but with most of the cha
still contained in the original cavity.47 In response to this
change in the charge density the solvent moves to occupy
narrow waist of the excited-state charge density, driving
the energy of the ground state. After 150 fs, the lobes of
excited state have split into two holes separated by;5.8 Å,
and the unoccupied ground state has more charge in on
the holes, with some charge density spreading to the o
hole.48 A nonadiabatic transition back to the ground sta
takes place 561 fs after the excitation. The subsequen
equilibration happens because the newly occupied gro
state has most of its charge in only one of the holes, so
solvent can quickly squeeze out the nearly empty hole
repolarize around the occupied cavity to regenerate
equilibrated dielectron state.

Figure 3 shows the eigenenergy history for the nonad
batic dynamics of a spin-triplet dielectron after excitati
from the ground to the first excited state. Before excitation
t50, the triplet dielectron occupies a peanut-shaped ca
~cf. Ref. 38 and Fig. 4!. In order to characterize this non
spherical state, we have calculated the principal moment
inertia of the triplet dielectron charge distribution~divided by
the electron mass!. The square roots of these moments giv
measure of the size of the dielectron along the principal a

FIG. 2. Three-dimensional contour plots of the dielectron charge densit
the spin-singlet dielectron ground~left column! and first-excited~right col-
umn! states for the indicated timest after excitation. The lighter outer con
tours show the dielectron charge density at 10% of the maximum value,
the darker inner contours show the density at 50% of the maximum den
The nonadiabatic transition to the ground state occurs at the timt
5561 fs.
Downloaded 07 Oct 2003 to 128.97.34.137. Redistribution subject to A
at
e
t
e

he
p
e

of
er

e-
d
e
d
e

-

t
ty

of

a
s,

and their average values are 8.1 Å, 7.9 Å, and 2.6 Å;
almost-cylindrical symmetry of the triplet dielectron dens
is shown by the near equality of the two largest momen
The ground-state energy of the triplet dielectron~;24.7 eV!
is greater than for two widely separated hydrated electro
~;2322.7 eV525.4 eV!,25 implying that the triplet dielec-
tron is at best metastable. The Coulomb~;4.3 eV! and ex-
change~;21.2 eV! interactions contribute a net;3.1 eV to
the triplet energy, indicating that the peanut-shaped ca
around the triplet dielectron provides;1.2 eV more favor-
able electron-solvent interaction per electron than doe
spherical single-electron cavity. Just as in the singlet ca
this extra stabilization leads to more triplet bound states t
the single electron has. However, as we will show in a s
sequent paper,45 the triplet dielectron has a smaller gap b
tween the ground and excited states, resulting in less o
lator strength to the blue of the absorption spectrum of
single hydrated electron than for the singlet dielectron.

The mechanism and time scale for relaxation of the sp
triplet dielectron are very different than for the spin-sing
case. Figure 3 shows that excitation to the first adiab
eigenstate leads to a very rapid reduction in the energy of
excitedstate, in contrast to the slower shift in ground-sta
energy for the spin-singlet case. Within about 50 fs,
Stokes shift causes the two lowest-lying eigenstates to
come nearly degenerate, which lets the solvent quickly
duce a nonadiabatic transition to the ground state. The tri
relaxation does resemble that of the singlet in that it requ
a large Stokes shift before a nonadiabatic transition to
ground state can take place@cf. Eq. ~A2!#, but the rapid sta-
bilization of the occupied excited state is the opposite
what is seen in the other examples of nonadiabatic dynam
in water.8,9,11,14,15The origin of this reversal can be seen
Fig. 4. Upon excitation to the excited state at timet50 fs,
the region of highest charge density is transferred from e
of the two lobes of a peanut-shaped ground state to the ce
of the cavity near the narrowest part of the ground-st

of

nd
ty.

FIG. 3. Time dependence of the spin-triplet dielectron’s adiabatic ene
levels. The bold solid line indicates which state is occupied at any time
time t50 fs, the dielectronic wave function is instantaneously changed fr
the ground state to the first excited state (ai→d i2 in the notation of the
Appendix!. Only the lowest nine adiabatic eigenstates are shown.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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charge density. The appearance of charge in a region p
ously occupied only by water molecules is accompanied b
large force repelling the now unfavorably solvating first-sh
water molecules, and we speculate that motion of water
of this region is what drives the rapid solvent stabilization
the excited state. If this is indeed the case, then the s
singlet and spin-triplet relaxations differ because in the s
glet case excitation largely moves charge density from
place to another inside the original cavity, whereas the e
tation of triplet dielectrons results in charge density ins
the repulsive region of the water-electron pseudopoten
Figure 4 also shows that by timet551 fs, the ground- and
excited-state charge densitites are~energetically nearly de
generate! perpendicular peanut shapes that are slightly m
compact than the size of the equilibrium ground-state pea
A few tens of femtosecond later, att569 fs, a nonadiabatic
transition takes place and within just a few hundred fem
seconds the triplet dielectron regains its equilibrium cha
distribution, as is shown by Figs. 3 and 4.

The calculations presented here only scratch the sur
of hydrated dielectron system. In forthcoming papers,45 we
will describe in detail the equilibrium properties of hydrat
dielectrons, including discussions of their geometry, stabil
spectroscopy, and nonequilibrium dynamics following ph

FIG. 4. Three-dimensional contour plots of the dielectron charge densit
the spin-triplet dielectron ground~left column! and first-excited~right col-
umn! states for the indicated timest after excitation. The lighter outer con
tours show the dielectron charge density at 10% of the maximum value,
the darker inner contours show the density at 50% of the maxim
density. The nonadiabatic transition to the ground state occurs at
time t569 fs.
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toexcitation, with an emphasis on the role played by e
change in determining excited-state lifetimes and solvat
dynamics.

V. DISCUSSION

In this paper we have introduced a method for calcu
ing nonadiabatic mixed QM/CM dynamics for interactin
electrons in disordered condensed-phase systems. Non
batic dynamics requires not just the electronic ground-s
density, but the full ground- and excited-state wave fun
tions. We have shown that these many-electron wave fu
tions can be computed by a novel real-space CI approach
practice, the method relies on two new developments,
static and the other dynamical, to make multielectron no
diabatic dynamics computationally feasible. First, we ha
introduced an efficient real-space quadrature to calculate
Coulomb and exchange interactions between electrons
disordered system. This quadrature uses a low-order fin
element expansion of the electronic wave functions a
works well even for single-electron wave functions that ca
not be simply represented by Fourier~or other orthogonal
eigenfunction! components. Second, we have introduced
idea of ‘‘important states’’ to improve the efficiency of non
diabatic mixed QM/CM dynamics for multielectron system
By periodically identifying those single-electron product b
sis states that contribute significantly to the many-elect
eigenstates and constructing the CI matrix for just this s
basis~between updates!, we were able to reduce the cost
solving the multielectron quantum problem by nearly 50
with negligible error.

We combined our real-space/important-states CI met
with the MF/SH ~Ref. 21! algorithm for nonadiabatic
QM/CM dynamics and studied the nonadiabatic relaxat
dynamics of the hydrated dielectron. To the best of o
knowledge, this is the first CI-based calculation of multiele
tron nonadiabatic solvation dynamics. We plan to study b
the equilibrium and nonequilibrium properties of the h
drated dielectron in detail in future work,45 but the limited
results of Sec. IV were sufficient to demonstrate that
methods introduced here do allow the simulation of mu
electron, condensed-phase, nonadiabatic dynamics. Wo
also underway in our group to incorporate two-electron c
culations into simulations of charge-transfer-to-solvent re
tions ~CTTS! in systems with solvated alkali metal anions

We close with some comments on possible extension
the methods introduced in this paper. In addition to the fix
spin algorithm presented here, it would be straighforward
incorporate solvent-induced or external magnetic fields i
the formalism in order to explore how intersystem crossin
might affect many-electron dynamics and relaxation in
condensed phase. Finally, it is important to note that e
though the examples considered in this paper had only
electrons, the algorithm presented here can be generalize
larger numbers of electrons. Certainly, any many-elect
molecular dynamics calculation can make use of the idea
keeping only important states in an expansion basis, reg
less of whether or not the basis states are of the CI prod
form. Furthermore, any CI treatment for more than two el
trons will require the evaluation of Coulomb and exchan
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integrals of the form of Eq.~12!, so the real-space quadratu
we have introduced can be used with more than two e
trons for no more computational costthan with two elec-
trons. Of course, at some point the cost of diagonalizing
many-electron CI matrix must become greater than the
of computing the Coulomb and exchange integrals, bu
will be interesting to discover just how far full, multirefe
ence CI can be taken in disordered systems.
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APPENDIX: MEAN-FIELD WITH SURFACE HOPPING
FOR CI WAVE FUNCTIONS

The CI method we have developed produces multie
tron wave functions for both the ground and excited state
any given electron–environment interaction. For examp
given the positions at any instantaneous configuration
some solvent along with the electron-solvent interaction,
can find the~adiabatic! eigenstatesC i for the multielectron
system. Armed with these states, the system can be pr
gated using a variety of mixed quantum and class
schemes.1 In this Appendix, we review the MF/SH algorithm
introduced by Prezhdo and Rossky, and give explicit form
las for the Hellmann-Feynman force and nonadiabatic c
pling for two-electron CI wave functions. For traditional su
face hopping or adiabatic~Born-Oppenheimer! dynamics,
the equations shown here apply with the appropriate~trivial!
specialization.

The MF/SH algorithm combines MF dynamics, in whic
the state of the quantum subsystem is a normalized mix
of the adiabatic eigenstates,uC&5( iai(t)uC i&, with surface
hopping, which allows discontinuous transitions betwe
states. The classical MF forces on the solvent degree
freedom are given by the HF force described below, and
adiabatic expansion coefficientsai evolve according to the
time-dependent Schro¨dinger equation

i\ȧi5(
j

aj~ t !S Ejd i j 2 i\ K C jU ]C i

]t L D , ~A1!

whereEj is the adiabatic energy of the two-electron statej .
The factor^C j u]C i /]t& is called the nonadiabatic couplin
coefficient. Integrating Eq.~A1! and the classical equation
of motion using the HF force ensures that the total energ
the mixed quantum/classical system is conserved.

The sorts of mixed states just described arise from p
sage through regions with strong nonadiabatic coupli
away from regions of strong nonadiabatic coupling, quant
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systems~especially condensed-phase systems! are not typi-
cally found in mixed states. This implies that every so oft
the wave function is reset to a pure state; such reductions~or
collapses! of the wave function are ascribed to decoheren
Decoherence is taken into account in MF/SH by induc
discontinuous changes in the MF wave function wheneve
‘‘mean-field consistency’’ criterion~described below! is vio-
lated. In addition, quantum transitions between adiab
states, surface hops~SHs!, are incorporated by allowing tran
sitions between different adiabatic states.

In numerical implementations, the nonadiabatic coupl
coefficients can be easily calculated using, e.g., a cent
difference for the time derivative, which is all that is need
to propagate the wave function. To include surface hopp
however, it has proven convenient to write the nonadiab
coupling in a form that highlights the coupling to nucle
degrees of freedom.13 To do this, one simply expands th
nonadiabatic coupling in terms of displacements of the c
sical degrees of freedom,

K C jU ]

]t
C i L 5Ṙ•^C j u¹RC i&

5Ṙ•

^C j u¹RĤuC i&
~Ei2Ej !

[Ṙ•di j ~R!, ~A2!

where we have defineddi j , thenonadiabatic coupling vector
between statesi and j .49 It is computationally most conve
nient to use the second-to-last expression above to com
di j because it can be calculated using the same code a
the Hellmann–Feynman forces@see Eq.~A3! below#.50 Note
that in the absence of magnetic fields to mix the singlet a
triplet ~6! states, the nonadiabatic coupling between sta
with differing spin symmetry vanishes.29

For the mean-field trajectory, the HF force associa
with each degree of freedoml is

Fl52^Cu]Ĥ/]luC&

52(
i , j

aiaj
!(

n,m
(

n8,m8
cnm

i cn8m8
j

3E dr S ]H1~r !

]l D rn8m8,nm
(2)

~r !, ~A3!

where we have taken advantage of the symmetryĤ15Ĥ2

and noted that (]V̂12/]l)50.51,52 This force has the sam
form as the single-electron HF force, except that a tw
electron densityr (2)(r ) replaces the single-electron densi
as the effective classical charge density. The two-elect
densityr (2)(r ) can in turn be written in terms of diagona
@raa

(1)(r )5uca(r )u2# and off-diagonal @rab
(1)(r )

5ca(r )cb
!(r )# one-electron densities:

rnm,n8m8
(2)

~r !5@rn8n
(1)

~r !dm8m1rm8m
(1)

~r !dn8n

6rm8n
(1)

~r !dn8m6rn8m
(1)

~r !dnm8#,

rnn,n8m8
(2)

~r !5&@rn8n
(1)

~r !dm8n1rm8n
(1)

~r !dn8n#,

rnn,n8n8
(2)

~r !52rnn
(1)~r !dnn8 . ~A4!
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The plus signs are for spin-singlet states, the minus signs
for spin-triplet states, and the latter two equations only ap
for the spin-singlet case.

As we have already pointed out, the MF/SH algorith
uses a reference trajectory to incorporate decoherence
ad hocmanner. In ordinary MF dynamics, the state of t
quantum subsystem is described by the expansion co
cientsai , as noted above, but an additional piece of bo
keeping is used to include surface hopping in MF/SH d
namics; at each time, the system is considered to be ‘‘in
particular adiabatic state~even though the true state is act
ally a mixture!. The mean-field part of the algorithm the
uses two distinct classical systems to include dephasing i
approximate way. Thephysical coordinatesR are those of
the actual classical system, whereas a second set ofreference
coordinatesRre f comprises a fictitious system which is us
to decide when to collapse the mean-field wave function
the pure reference statenre f by setting aj5d j ,nre f

. The
physical coordinatesR obey mean-field dynamics, wherea
the reference coordinates propagate according to forces
termined by just the reference two-electron eigenst
uC re f&5unre f& associated withRre f , notR. The HF force for
the reference trajectory can be calculated with Eq.~A3!, with
ai5d i ,nre f

, and the charge densities determined using
single-electron states associated withRre f , as mentioned
above.

Initially, the reference positions and velocities match t
physical coordinates and velocities, but the reference tra
tory evolves according to the reference HF forces descri
above instead of the MF forces from the mixed state.
more and more nonreference states begin to mix into the
wave function, the physical and reference coordinates
momenta~denotedP and Pre f) diverge. This divergence is
used as a criterion forMF rescaling, which mimics decoher-
ence by resetting the mixed state parametersai→d i ,nre f

,
Rre f→R and Pre f→P whenever the physical and referen
trajectories violate the MF consistency criteria,

uPi2Pre f
i u

uPi1Pre f
i u

!1, ~A5!

uRi2Rre f
i u!a0 , ~A6!

for any classical coordinatei . The specific limits on position
and momentum deviation used to determine rescaling
free parameters in this theory and, as such, must be d
mined empirically for any given system. As these limits a
proach zero~i.e., if no mixing is allowed!, the MF dynamics
reduces to motion on a single Born–Oppenheimer poten
energy surface~so-called adiabatic dynamics!.

Surface hopping is incorporated into the MF/SH by
troducing a second wave function which, following Won
and Rossky,23 we call theauxilliary wave functionuCaux&.
Note that our auxilliary wave function is called theprimary
wave function by Prezhdo and Rossky,21 and our MF wave
function is what Prezhdo and Rossky originally referred to
the auxilliary wave function. We reemphasize that here
use Wong and Rossky’s convention.23 The auxilliary wave
function evolves in time according the same Schro¨dinger
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equation that governs the physical MF~mixed-state! evolu-
tion, Eq. ~A1!, but its expansion coefficientsai

aux are never
reset. For each time step in which no MF rescaling ta
place, there is a possibility that the system will undergo
surface hop, in which the reference statenre f changes to
statej . Surface hops between statesi and j occur stochasti-
cally, with a probability Pi→ j given by Tully’s fewest-
switches prescription22

Pi→ j522ReS aj
aux

ai
aux K C jU ]C i

]t L DDt, ~A7!

whereDt is the molecular dynamics time step and the abo
form is only valid whenC i andC j are normalizedadiabatic
eigenstates. When a transition to statej occurs, the MF ex-
pansion coefficients change discontinuously toai5d i j and
the reference trajectory changes to match the physical
Rre f→R andPre f→P.

The final aspect of the MF/SH algorithm is the same
for other SH methods, and this is to ensure energy conse
tion following either a mean-field rescaling or a surface ho
Every time either a mean-field rescaling or a surface h
takes place, the energy in the quantum-mechanical s
system changes discontinously by an amountDEQM . To
conserve the total energy in the system, therefore, any ex
energy must be dumped into the classical degrees of free
and any deficit must be taken from the classical kinetic
ergy. Each classical degree of freedom receives or don
energy according to how much it contributes to the nonad
batic coupling, as determined by Eq.~A2!. The details of this
partitioning have been discussed elsewhere13,21 and remain
unchanged for the two-electron case.
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course, be represented as a direct product of single-electron oper
interactions between the electrons will not be diagonal in a one-elec
basis.

29Because the Coulomb interaction does not affect the spin of an elec
spin flips can only be induced by terms in the electron-solvent Ham
nians~e.g., by magnetic fields induced by moving charges in the solv!
or by direct spin-spin interactions. In this work, we will neglect such s
interactions, but we note that the extension to such cases is straigh
ward.

30D. Finocchiaro, M. Pellegrini, and P. Bientinesi, J. Comput. Phys.146,
707 ~1998!.

31The factor of 1/6 in the number of pairs of cubes that have distinct va
of f i j results from the symmetry of the cubic lattice.

32For instancef0,15 ~that isf between two cubes separated in thex, y, or z
direction by 15 steps should be about 1/1550.06̄. The tabulated value
from our numerical computation isf0,1550.066666628..., a difference o
roughly 331028. To order 1028, therefore, we can use our tabulate
values to computef between cubes within 16 grid points of each oth
approximating all other values off by 1/r .

33A. Alavi, J. Chem. Phys.113, 7735~2000!.
34M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids~Oxford

University Press, London, 1992!.
35N. Basco, G. A. Kenney, and D. C. Walker, Chem. Commun. 917~1969!;

N. Basco, G. A. Kenney-Wallace, S. K. Vidyarthi, and D. C. Walker, C
J. Chem.50, 2059~1972!; D. Meisel, G. Czapski, M. S. Matheson, and W
A. Mulac, Int. J. Radiat. Phys. Chem.7, 233 ~1975!.

36K. J. Schmidt and D. M. Bartels, Chem. Phys.190, 145 ~1995!.
37See D. F. Feng, K. Fueki, and L. Kevan, J. Chem. Phys.58, 3281~1978!,

and references therein.
38H.-P. Kaukonen, R. N. Barnett, and U. Landman, J. Chem. Phys.97, 1365

~1992!.
39Z. H. Deng, G. J. Martyna, and M. L. Klein, Phys. Rev. Lett.68, 2496

~1992!; 71, 267 ~1993!; J. Chem. Phys.100, 7590~1994!; G. J. Martyna,
Z. H. Deng, and M. L. Klein,ibid. 98, 555 ~1993!.

40K. Toukan and A. Rahman, Phys. Rev. B31, 2643~1985!.
41F. Webster, E. T. Wang, P. J. Rossky, and R. A. Friesner, J. Chem. P

100, 4835~1994!.
Downloaded 07 Oct 2003 to 128.97.34.137. Redistribution subject to A
-

tt.

rs:
n

n,
-
t

or-

s

.

ys.

42J. J. Sakurai,Modern Quantum Mechanics, revised ed.~Addison-Wesley,
Reading, MA, 1994!, Chap. 2.

43We define energy conservation by requiring any long-term drift in the to
energy to be within the rms fluctuation over the course of a 2 ps run. The
rms energy fluctuation is 0.08 eV forDt51.0 and 0.02 eV forDt
50.5 fs.

44In the test run forf imp50.9999, a single discontinuity was seen wi
tupdate54 fs and not withtupdate53 fs, so thetupdate54 fs criterion is ac-
tually overly generous.

45R. E. Larsen and B. J. Schwartz~unpublished!.
46A simple uncertainty-principle argument shows that the kinetic ene

reduction associated with going from a cavity 4.0 Å in diameter to one
Å in diameter is less than;0.1 eV.

47This change of shape from an ‘‘s-like’’ symmetry to a ‘‘p-like’’ symmetry
is similar to what happens when a single hydrated electron is excited~see
Refs. 9, 11, and 23!, so it is not suprising that the time scale and mech
nism of the Stokes shift are similar for the hydrated electron and
singlet dielectron.

48The two cavities of the excited state dielectron cannot properly be thou
of as two separated single electrons because the exchange ener
;0.5 eV indicates that each one-electron basis state has amplitude in
holes.

49Although Eq.~A3! is the most computationally efficient way to calcula
the nonadiabatic coupling vector, some insight can be gained by exp
ing the two-electron wave functions,C in terms of the product states. Thi
expansion shows that the nonadiabatic coupling comes from a
of direct coupling between the individual product stat
(;cn8m8

j cnm
i

6^n8m8u¹Runm&6) and coupling caused by changes in the

expansion coefficients (;cnm
j ċnm
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