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A deep catalogue of protein-coding variation 
in 983,578 individuals

Kathie Y. Sun1,45, Xiaodong Bai1,45, Siying Chen1, Suying Bao1, Chuanyi Zhang1, Manav Kapoor1, 
Joshua Backman1, Tyler Joseph1, Evan Maxwell1, George Mitra1, Alexander Gorovits1, 
Adam Mansfield1, Boris Boutkov1, Sujit Gokhale1, Lukas Habegger1, Anthony Marcketta1, 
Adam E. Locke1, Liron Ganel1, Alicia Hawes1, Michael D. Kessler1, Deepika Sharma1, 
Jeffrey Staples1, Jonas Bovijn1, Sahar Gelfman1, Alessandro Di Gioia1, Veera M. Rajagopal1, 
Alexander Lopez1, Jennifer Rico Varela1, Jesús Alegre-Díaz2, Jaime Berumen2, 
Roberto Tapia-Conyer2, Pablo Kuri-Morales2,3, Jason Torres4, Jonathan Emberson4, 
Rory Collins4, Regeneron Genetics Center*, RGC-ME Cohort Partners*, Michael Cantor1, 
Timothy Thornton1, Hyun Min Kang1, John D. Overton1, Alan R. Shuldiner1, M. Laura Cremona1, 
Mona Nafde1, Aris Baras1, Gonçalo Abecasis1, Jonathan Marchini1, Jeffrey G. Reid1, 
William Salerno1 ✉ & Suganthi Balasubramanian1 ✉

Rare coding variants that substantially affect function provide insights into the biology 
of a gene1–3. However, ascertaining the frequency of such variants requires large sample 
sizes4–8. Here we present a catalogue of human protein-coding variation, derived from 
exome sequencing of 983,578 individuals across diverse populations. In total, 23% of 
the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals 
of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. 
The catalogue includes more than 10.4 million missense and 1.1 million predicted 
loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF 
variants in 4,848 genes, 1,751 of which have not been previously reported. From 
precise quantitative estimates of selection against heterozygous loss of function 
(LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously 
assessed as tolerant and 1,153 that lack established disease annotation. We also define 
regions of missense depletion at high resolution. Notably, 1,482 genes have regions 
that are depleted of missense variants despite being tolerant of pLOF variants. Finally, 
we estimate that 3% of individuals have a clinically actionable genetic variant, and  
that 11,773 variants reported in ClinVar with unknown significance are likely to be 
deleterious cryptic splice sites. To facilitate variant interpretation and genetics- 
informed precision medicine, we make this resource of coding variation from the 
RGC-ME dataset publicly accessible through a variant allele frequency browser.

Exome sequencing has enabled the discovery of rare coding variants, 
and has thus provided insights into gene function that have accelerated 
the pace of disease-associated gene discovery across Mendelian and 
common disorders1–3,6,9–12. Furthermore, exome sequencing has identi-
fied protective alleles that highlight drug targets that could be ame-
nable to pharmacological intervention2,13–17. For example, anti-PCSK9 
drug therapy is based on the observation that a loss of PCSK9 function 
is associated with reduced levels of cholesterol18.

Cataloguing rare coding variation can help with the implementa-
tion of precision medicine19,20. Large datasets of genetic variation 
that are representative of the human population are essential for 
the comprehensive discovery and interpretation of rare variants. 
Roadmaps for numerous large-scale sequencing studies have been 
proposed, and several efforts are now underway21–24. The Genome 
Aggregation Database4 (gnomAD) and Trans-Omics for Precision 

Medicine8 (TOPMed) initiatives have developed large public databases 
of genetic variation derived from approximately 200,000 individu-
als and 132,000 individuals, respectively. Here, we describe a harmo-
nized collection of exonic data derived from 983,578 individuals who 
represent a diverse array of ancestries. We calculate continental and 
fine-scale ancestry-based allele frequencies across this dataset and 
make the data publicly available through the RGC research browser:  
https://rgc-research.regeneron.com/me.

Survey of variation in the RGC-ME dataset
The Regeneron Genetics Center Million Exome (RGC-ME) dataset con-
tains the genetic variation observed in 983,578 individuals. These data 
span dozens of collaborations, including large biobanks and health 
systems. All data were generated by Regeneron Genetics Center using 
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a single harmonized sequencing and informatics protocol. Previously 
published datasets, such as the UK Biobank and the Mexico City Pro-
spective Study, were reprocessed9,25. The RGC-ME dataset comprises 
both outbred and founder populations spanning African (AFR), Euro-
pean (EUR), East Asian (EAS), Indigenous American (IAM), Middle  
Eastern (MEA) and South Asian (SAS) continental ancestries, and 
includes cohorts with relatively high rates of consanguinity. More than 
190,000 of the unrelated participants (23%) are of non-EUR ancestry 
in the RGC-ME dataset, as compared with 35,000 in gnomAD genomes 
(v.3.1.2), 53,000 in gnomAD exomes (v.2.1.1), and 91,000 in TOPMed 
Freeze 8, indicating that RGC-ME represents a large increase in the 
number of individuals of non-EUR ancestry in datasets of genetic vari-
ation4,8 (Fig. 1a and Supplementary Table 1a).

We performed a comprehensive survey of genetic variation, encom-
passing single-nucleotide variants (SNV) and insertion–deletion (indel) 
variants. To estimate population allele frequencies, we focused on 
821,979 unrelated samples (referred to hereafter as the 822K unrelated 
set; Supplementary Table 1a). We identified 16,425,629 unique mutated 
genomic positions (that is, sites) in autosomal and X-chromosomal 
coding regions, with one unique reference–alternate allele change 
(that is, variant) every two bases on average. In canonical transcripts 
within sequencing target regions, mutations at 35.6%, 32.2% and 9.5% 
of all possible genomic positions that can lead to synonymous, mis-
sense and stop-gained variants, respectively, were observed. In highly 
methylated CpG sites, we observed 95.0% of all possible synonymous, 

92.2% of missense and 78.6% of stop-gained variants. Across all muta-
tional contexts, 21.4% and 8.4% of all possible synonymous variants and 
stop-gained variants, respectively, were observed (Extended Data 
Fig. 1). Thus, RGC-ME represents a major advance towards the com-
prehensive discovery of rare variants.

Among coding variation in canonical transcripts, 1,115,116 pLOF 
variants were identified, which include those causing a premature 
stop, affecting essential splice donor and acceptor sites or causing 
frameshifts (Fig. 1c). Of these pLOF variants, 53.3% were observed 
as singletons; that is, only observed in one individual. In addition, 
4,645,092 synonymous (35.7% as singletons) and 10,444,562 missense 
(40.0% as singletons) variants in canonical transcripts were detected. 
A total of 48% of coding variants in canonical transcripts were unique 
to RGC-ME and absent in other large-scale datasets4,8 (Fig. 1b). Each 
sample had a median of 137 pLOF, 8,652 missense and 10,184 synony-
mous variants (Fig. 1c). AFR individuals had, on average, 18.6% more 
variants across all functional categories compared with individuals of 
other ancestries (Extended Data Fig. 2), as expected on the basis of the 
‘Out of Africa’ model of human population history26.

Constrained genes
Population-scale sequencing allows the quantification of pLOF variation 
in genes, which is key to understanding the relationship between genes 
and diseases. Several gene constraint metrics have been developed 
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Fig. 1 | Variant survey and population counts in the RGC-ME dataset.  
a, Summed proportional ancestry (sum of weighted ancestry probabilities) at 
continental, sub-continental and regional levels for 821,979 unrelated samples 
(Supplementary Table 1b). All subsequent variant counts and surveys have 
been performed in the unrelated analysis set. UNK, unknown. b, Count of 
variants unique to RGC-ME (that is, variants not in gnomAD v.3.1.2 genomes, 

gnomAD v.2.1.1 exomes and TOPMed Freeze 8), broken down by singletons and 
variant functional category. M, million. c, Variant counts in different functional 
categories, proportion of singletons and per-individual median values. All 
counts were based on variants in the canonical transcript. pLOF includes 
frameshift, essential splice donor and acceptor (excluding splice sites in UTRs) 
and stop-gained variants.
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to estimate the pLOF tolerance of genes27. Here, we estimated pLOF 
depletion using the cumulative frequency of pLOF variants in a gene 
to derive a selection coefficient, shet, that quantifies fitness loss due to 
heterozygous pLOF variation28. We estimated the indispensability of 
16,710 protein-coding genes on the basis of the observed number of 
rare pLOF variants per gene with a cumulative alternate allele frequency 
(AAF) of less than 0.1% compared with the expected number based on 
gene-specific mutation rates (Supplementary Table 2).

The mean shet value in the RGC-ME dataset for canonical transcripts 
was 0.073 (95% highest posterior density (HPD)): [0.043, 0.12] (median 
shet = 0.021) (Fig. 2a), which suggests that, on average, a pLOF would 
result in 7.3% lower evolutionary fitness relative to the reference allele. 
This estimate is comparable with the mean shet value of 0.073 [0.029, 
0.18] (median = 0.028) computed using the same method on the ExAC 
dataset29 (n ≈ 60,000). Our sample size (n ≈ 822,000) helped to accu-
rately quantify rare pLOF variants and compute more precise con-
straint scores than the ExAC values. This finding is best illustrated  
in known haploinsufficient genes, which are expected to be more 
constrained and thus have larger shet values relative to all genes 
(Extended Data Fig. 3a). Compared with values that were computed 
with ExAC data, shet values for haploinsufficient genes in the RGC-ME 
dataset were significantly higher ( sΔ = 0.045het , P = 0.002) and had 
smaller 95% HPD ranges despite those larger means (∆Var(shet) = 
−0.026, P = 4.5 × 10−21). Estimates for all genes were more precise in 
822K samples compared with a randomly downsampled set of 60,000 
samples from the RGC-ME dataset (Extended Data Fig.  3b), in  
which mean and median 95% HPD ranges were 6.2- and 4.0-fold larger, 
respectively.

The shet value is higher in genes that are associated with Mendelian 
diseases28,30 (Extended Data Fig. 3a), and can differentiate groups of 
genes under varying degrees of selection (Fig. 2b). We used shet to 
identify constrained genes by comparing the shet scores of known 
high-constraint genes (haploinsufficient, autosomal dominant 
and developmental-specific autosomal dominant) with those of 
low-constraint genes (haplosufficient and genes with rare biallelic 
pLOF variants from the RGC-ME dataset) (Extended Data Fig. 4a). 
Among 1,476 genes in the ‘high-constraint’ and 3,893 genes in the 
‘low-constraint’ groups, 89.1% of genes with a shet score greater than 
the mean (0.073) and 66.6% of genes with a shet score greater than the 
median (0.021) belonged to the high group (Supplementary Table 2). 
These thresholds served as cut-offs for mean and lower bound  
(2.5% HPD), respectively, to identify highly constrained genes with 
fitness deficits on a par with dominant disease-causing genes that also 
reflect uncertainty in the mean.

We compared shet to other published LOF constraint measures, 
such as LOEUF4, and an alternate method for estimating shet based on 
approximate Bayesian computing31, which we refer to as shet-ABC (Sup-
plementary Figs. 2–4). Spearman rank correlations between shet from 
RGC-ME and these estimates were high (−0.768 with LOEUF; 0.778 with 
shet-ABC). However, shet derived from RGC-ME had higher sensitivity and 
specificity in differentiating between constrained and unconstrained 
genes, compared with LOEUF and shet-ABC (Extended Data Fig. 4a).

Improving shet estimates is most valuable for genes with few expected 
pLOF mutations4, particularly shorter genes. The RGC-ME dataset 
allowed shet to be estimated more precisely for the smallest quantiles of 
gene coding sequence (CDS) length (Extended Data Fig. 3c), and derived 
more informative constraint metrics using an allele-frequency-based 
approach and a larger sample. We derived constraint scores for 923 
genes that had 5 or fewer expected pLOF variants, deemed under-
powered for similar analyses with LOEUF32. These 923 underpowered 
genes were significantly shorter, with a mean CDS length of 573 base 
pairs compared to 1,797 base pairs for genes with more than 5 expected 
pLOF variants. Eighty-six genes were highly constrained, with a mean 
shet value greater than 0.073 and a lower bound greater than 0.021 
(Extended Data Fig. 4b), and are promising candidates for efforts to 
discover new disease-associated genes. Thirty per cent (26 of 86) have 
been linked to human diseases or shown to be essential in mice or cell 
lines (Supplementary Table 2). These include well-studied genes with 
known importance in cellular function, such as the transcription factor 
TWIST1 (ref. 33), DNA- and RNA-binding protein BANF1 (refs. 34,35) and 
transactivator CITED2 (ref. 36).

Overall, 3,988 highly constrained genes had shet values greater than 
0.073 and a lower bound greater than 0.021. Although 1,153 of these 
lack known associations with human diseases or lethal mouse knock-
out phenotypes, they are likely to have high functional importance. 
These constrained genes might lack disease associations because the 
loss of even a single copy is incompatible with life or causes reduced 
reproductive success without clinical disease37.

Constrained coding regions
Identifying sub-genic regions that are intolerant of mutations can reveal 
functionally important regions that would otherwise be missed when 
constraint scores are aggregated at the gene level. Models of local 
coding constraint are powerful tools for identifying protein domains 
with crucial functions and for variant prioritization38–40. In addition 
to gene constraint derived from pLOF variation, we also identified 
regions depleted of missense variation using the missense tolerance 
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Fig. 2 | Estimates of gene-level constraint, representing shet, from the RGC-ME 
dataset. a, Mean shet probability density for 16,710 canonical transcripts with 
95% CIs calculated with 10,000 bootstrapped samples from the means of 
individual genes. b, Odds ratios (points) and 95% CIs (short horizontal lines; 
computed using standard error) for genes with shet cut-off > 0.073 (deemed 
highly constrained genes) to be included in each gene category listed on the  

y axis compared with genes below the cut-off. Genes defined as ‘human 
knockouts’ are those with carriers of rare, biallelic pLOF variants observed in 
the RGC-ME dataset. A total of 16,710 canonical transcripts were included in 
each category, which contained at minimum 234 ‘true’ genes (that category 
being haploinsufficient genes). HGMD, Human Gene Mutation Database.
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ratio (MTR)40,41, defined as the ratio of the observed to the expected 
proportion of missense variants adjusted by synonymous variation 
in a defined codon window. Using the 822K unrelated samples, we 
calculated the MTR for each amino acid along the CDS within sliding 
windows of 21 and 31 amino acids (MTR scores available on figshare; 
see ‘Data availability’) and characterized continuous segments of mis-
sense constrained regions (Supplementary Table 3).

Compared with benign missense variants, ClinVar pathogenic mis-
sense (two stars or more) variants were highly enriched in the top 
percentile of exome-wide MTR scores (odds ratio = 100.0 and 89.8, 
computed with 21- and 31-codon windows, respectively; Fig. 3a). Our 
sample size, which is nearly four times larger than that used in previous 
MTR estimates41, resulted in improved discrimination between patho-
genic and benign variants for top-10-percentile MTR scores in which we 
observed significant enrichment (Fig. 3a). This larger sample size ena-
bled us to identify 24% more missense variants in the top-1-percentile 
constrained MTR scores (512,499 versus 413,147) compared with a sub-
sampled set of 225,000, after adjusting for a false discovery rate (FDR) 
lower than 0.1. In addition, the increased power derived from 822K 
samples resulted in higher resolution for distinguishing pathogenic 

from benign variants for MTR computed with 21-codon windows, albeit 
at the expense of having fewer scored missense variants overall (295,958 
constrained missense variants).

Deleterious variants are expected to have lower allele frequencies 
than neutral variants, owing to negative selection. We can infer the 
functional importance of different classes of variation by comparing 
the proportion of singletons in each class. We computed the deleteri-
ousness of variants using an updated mutability-adjusted proportion 
of singletons (MAPS) metric5,32 and derived an MTR score threshold at 
which their MAPS score corresponds to that of missense variants that 
were predicted to be deleterious by five out of five prediction algorithms 
in dbNSFP (v.3.2; see Supplementary Information); that is, 5/5 missense 
variants. Variants with MTR values in the top-15-percentile exome-wide 
threshold (MTR < 0.841) were predicted to be as deleterious as 5/5 mis-
sense variants (Extended Data Fig. 5a). For 31-codon windows, 1.24% 
(129,990) of all missense variants (excluding known ClinVar pathogenic 
variants) observed in the RGC-ME dataset had significant MTR scores in 
the top 15 percentile. These missense variants in the top 15 percentile of 
exome-wide MTR are potentially deleterious and could be suitable for 
prioritization in projects aiming to discover disease-associated genes.
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correction). c, Distribution of the proportion of genes located in exome-wide 
top-15-percentile MTR regions against the heterozygous selection coefficient, 
shet. Genes with a significant proportion in the most constrained 15-percentile 
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a missense-specific constrained gene, along with the domain structure of the 
protein. The blue MTR-constrained region is defined by top-15-percentile 
exome-wide MTR rank. The N-terminal region containing amino acids 1–80 is 
depleted of missense variation, even though KRAS is tolerant of heterozygous 
LOF variation (shet = 0.002).
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MTR is a useful metric of regional constraint that may capture func-
tionally important segments within genes. We defined MTR-constrained  
regions as continuous regions within a protein that have variants 
with MTR values in the top-15-percentile threshold (Supplementary 
Information and Extended Data Fig. 6a). We identified 41,114 missense 
constrained regions in 12,349 genes (Supplementary Table 3). Our 
findings overlap with results from a previous study38 that estimated the 
regional observed-to-expected missense ratio (ɣ) from around 60,000 
ExAC samples (Extended Data Fig. 6b) to derive a composite missense 
deleterious score called MPC. We refer to the MPC-derived constrained 
regions as MPC segments, and compared these with MTR-constrained 
regions. MTR-constrained regions had a median length of 22 residues 
[14–35, quartile 1–quartile 3], compared with 358 [208, 579] in MPC 
segments. Overall, we identified 8.59 times more MTR-constrained 
regions than MPC segments (ɣ ≤ 0.612, top 15 percentile) across 2,832 
transcripts with data from both methods (Extended Data Fig. 6c).

We examined the distribution of de novo missense variants in 
MTR-constrained regions and observed a significant enrichment 
(P = 2.61 × 10−10) of variants identified in individuals with neurodevel-
opmental disorders (Extended Data Fig. 7a,b). Case variants were 1.85 
times [1.50, 2.31 (95% CI)] more likely to occur in constrained regions, 
compared with controls. As expected, well-supported (two stars or 
more) ClinVar pathogenic missense variants were also highly enriched 
(P ≈ 0) in MTR-constrained regions. Pathogenic variants were 8.82 
times [8.17, 9.53 (95% CI)] more likely to occur in missense constrained 
regions than were benign variants.

Missense constrained sites were found in key functional regions, such 
as DNA-binding regions and active sites (Fig. 3b). Among membrane 
proteins, transmembrane regions ranked higher in MTR-constrained 
regions than did cytoplasmic and extracellular domains. We also 
compared the overlap of MTR-constrained and functional regions 
by computing Jaccard indices. Ubiquitin-conjugating (UBC) core 
domains and DNA-binding regions had the highest overlap with con-
strained regions ( Jaccard index = 0.52 and 0.18, respectively), sug-
gesting that, among UBC enzymes, more than half of the union set 
between MTR-constrained regions and core domains overlapped. Other 
enriched functional regions included protein kinases and nuclear recep-
tor ligand-binding domains (Supplementary Table 4).

A total of 4,064 genes contained regions depleted in missense varia-
tion with a significant proportion of their coding sequence in the top 15 
percentile of MTR (binomial test with π0 = 0.15, P < 0.05 after multiple 
testing correction; Supplementary Table 5). To identify genes with 
signatures of missense-only constraint, we assessed the LOF-constraint 
metric, shet, of these highly missense constrained genes (Fig. 3c). Among 
the 4,064 genes, 1,482 either were not LOF constrained or lacked shet 
estimates. These genes had significantly shorter CDS lengths than those 
of the 1,424 LOF-specific constrained genes (P = 2.9 × 10−40, Wilcoxon 
test; Extended Data Fig. 7c). Estimating region-level LOF constraint is 
difficult owing to strong selection against pLOF variants, which leads 
to a paucity of pLOF variation. MTR serves as a complementary lens for 
identifying, first, functionally important regions at a higher resolution 
than gene-level LOF constraint, and, second, regions within genes that 
are depleted of missense variation but tolerant of LOF variation. For 
example, KRAS, a well-known oncogene, is LOF tolerant (shet = 0.002, 
LOEUF = 1.24); however, the first 80 amino acids (42%) of the protein 
sequence were ranked in the top 1 percentile of exome-wide MTR 
(Fig. 3d). This region includes the P-loop, switch 1 and switch 2 func-
tional domains, which form crucial binding interfaces for effector 
proteins42, and these results therefore highlight the importance of 
regional constraint metrics.

Understanding ‘human knockouts’
Identifying genes with biallelic pLOF variants provides an opportu-
nity to understand gene function directly through the phenotypic 

characterization of individuals who have such variants—effectively, 
naturally occurring ‘human knockouts’. The RGC-ME dataset includes 
founder populations and cohorts with high rates of consanguin-
ity, contributing to a comprehensive collection of homozygous 
loss-of-function variation25,43–45. Overall, we identified 4,686 genes 
comprising 8,576 rare (AAF < 1%) homozygous pLOF variants in 64,852 
individuals (Supplementary Table 6). Furthermore, we identified 1,205 
genes with carriers of rare (AAF < 1%) heterozygous pLOF variants in 
trans; that is, compound heterozygotes, 162 of which lacked homozy-
gous pLOFs. In total, 4,848 genes were discovered with carriers of bial-
lelic pLOF variants in which both alleles of a gene were affected by pLOF 
variation and could be described as putative gene knockouts (pKOs). 
Of these, 1,751 (1,650 from homozygous pLOFs only) have not to our 
knowledge been previously reported. Biallelic pLOF variants in RGC-ME 
are rare; 64.3% of homozygous pLOF variants and 37.4% of pKOs were 
detected in one participant (Fig. 4a). As expected, cohorts with higher 
rates of consanguinity were enriched in homozygous pLOF variants, 
compared with outbred populations, despite smaller sample sizes 
(Fig. 4b,c and Extended Data Table 1).

pKOs were significantly less constrained, with a lower shet (on average 
−0.074 [−0.077, −0.071 (95% CI)], t-test) relative to all other genes. Only 
2.67% of pKOs had an shet value greater than 0.073, as compared with 
21.6% of all human genes, and 47.2% of pKOs were in the lowest quintile 
of shet scores exome-wide (shet < 7.07 × 10−3). A caveat is that shet, like most 
gene-specific measures of constraint, is designed to capture the effect 
of heterozygous LOF46. Although genes containing biallelic pLOF vari-
ants are under less heterozygous selective pressure, existing sample 
sizes are inadequate47 to directly compute selection on homozygous 
variation. pKOs are overrepresented in drug and xenobiotic metabolism 
pathways (Supplementary Fig. 6).

Among very rare doubleton variants for which we observed exactly 
two copies of the alternate allele, we observed a clear excess of 
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homozygotes that is likely to be explained by population structure 
and background inbreeding. For example, among missense and syn-
onymous variants, we observed 5,857 and 2,490 homozygotes among 
1,580,917 and 679,335 doubleton variants, respectively, compared with 
a Hardy–Weinberg equilibrium (HWE) expectation of fewer than one 
homozygote in each case. These estimates corresponded to a back-
ground inbreeding coefficient of 0.37%. Among pLOF variants, we 
observed only 406 homozygotes among 129,405 doubleton variants 
(Supplementary Table 7). Although this number is much larger than 
HWE expectations, it is around 15% less than the expected 479 homozy-
gotes calculated using an inbreeding coefficient of 0.37% (P = 0.0095, 
Fisher’s exact test). This suggests that a notable proportion of these 
homozygotes were never observed in our sample population.

Genes with biallelic inactivating mutations could reveal potential 
drug targets that can be disrupted with minimal side effects43. Drug 
targets with homozygous pLOF variants in humans are more likely to 
progress from phase I trials to approval44. Of 997 inhibitory preclinical 
targets listed in the Drug Repurposing Hub, 182 (18.3%) had at least one 
individual with a rare biallelic pLOF variant in the RGC-ME dataset48. 
In-depth phenotyping of human knockouts can help researchers to 
better understand the efficacy and side-effect profiles of these poten-
tial drug targets. Human knockouts provide a way to understand the 
consequences of lifelong deficiency of a gene49.

Annotation of splice-affecting variants
Several prediction tools50–53 have been developed to understand the 
effects of genetic variants on alternative splicing. Although these tools 
mainly assess whether a variant affects splicing, some also provide a 

pathogenicity metric or score threshold as a measure of deleterious-
ness. Predicted cryptic splice sites with SpliceAI scores greater than 
0.8 have been validated at high rates using RNA sequencing and are 
as depleted at common allele frequencies as pLOF variants50. Here, we 
used human genetic data to optimize splice prediction score thresholds 
enriched for deleterious variants that affect splicing. We systematically 
quantified the deleteriousness of variants at various splice prediction 
score thresholds using the MAPS metric. As previously demonstrated2,4, 
pLOF variants had the highest MAPS scores, followed by missense, 
synonymous and noncoding variants, respectively (Fig. 5a).

We used splice predictions from SpliceAI50 and MMSplice51 to group 
variants into predicted splice score bins, and identified the minimum 
threshold at which the MAPS score of the variants is equal to that of 5/5 
missense variants (variants predicted to be deleterious by five out of 
five prediction methods). The proposed prediction score thresholds 
of 0.35 for SpliceAI and 0.97 for MMSplice pathogenicity (Fig. 5a and 
Extended Data Fig. 5b) identify predicted deleterious splice-affecting 
variants (SAVs).

A total of 296,696 predicted deleterious coding SAVs (inclusive of 
canonical splice sites, splice region and untranslated region (UTR) 
splice sites) in the RGC-ME dataset had scores that exceeded the 
MAPS-derived splicing thresholds for both SpliceAI and MMSplice 
(referred to as the intersection set; Extended Data Fig. 8a). Of these, 
43.5% (129,118) were cryptic splice sites (that is, non-canonical splice 
sites). Unsurprisingly, canonical splice sites and variants within the 
splice region comprised the largest category of predicted deleterious 
SAVs. Both SpliceAI and MMSplice identified around 80% of LOFTEE 
(loss of function transcript effect estimator; ref. 4) high-confidence 
splice sites and around 10% of variants within splice regions as predicted 
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(n = 34,512,842 variants). b, Enrichment of ClinVar pathogenic variants  
(two stars or more) in predicted SAVs compared with corresponding variant 
sets filtered by either LOFTEE, 5/5 missense deleteriousness models or CADD. 
Points represent odds ratios and bars depict 95% CIs (two-sided Fisher’s exact 
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high-confidence. c, Empirical validation of MAPS-predicted deleterious SAVs 
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validated SDVs compared with non-SDVs. Points represent odds ratios and bars 
depict 95% CIs (two-sided Fisher’s exact test, no multiple testing correction).  
A total of n = 36,636 variants, of which 346 SAVs are validated SDVs, are included.
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deleterious SAVs (Extended Data Fig. 8a,b). In addition, around 68% of 
LOFTEE low-confidence splice sites were predicted to be deleterious 
SAVs (94% of low-confidence splice sites were in the UTR). The impact 
of non-canonical splice variants on alternative splicing is often under-
estimated; we found that missense variants accounted for 11.3% of all 
predicted deleterious SAVs identified by both SpliceAI and MMSplice 
in the RGC-ME dataset (Extended Data Fig. 8a,b).

Predicted deleterious SAVs were enriched in well-supported ClinVar 
pathogenic variants (two stars or more) compared with other metrics 
of variant deleteriousness (Fig. 5b); for example, compared with com-
bined annotation dependent depletion (CADD)54,55 score ≥ 20 (odds 
ratio = 4.5, P = 0). Missense SAVs were significantly enriched for patho-
genic variants compared with 5/5 missense variants (odds ratio = 1.8, 
P = 3.3 × 10−8) and missense variants with CADD ≥ 20 (odds ratio = 3.6, 
P = 1.01 × 10−26), respectively. Notably, splice sites in the intersection set 
were also significantly enriched for pathogenic variants compared to 
LOFTEE high-confidence splice sites, indicating that the MAPS-derived 
metric identifies deleterious splice sites. Similar results were obtained 
when we evaluated the enrichment of pathogenic variants compared 
with benign ones (Supplementary Table 8a).

We next assessed the MAPS-derived splice prediction thresholds for 
variants that have been experimentally assessed for splicing effects56–58 
(Supplementary Table 9). Predicted deleterious SAVs identified in the 
intersection set were significantly enriched in experimentally validated 
large-effect splice-disrupting variants (SDVs) compared with non-SDVs 
in all functional categories except the splice site category, although 
the odds ratio was greater than one for splice sites (Fig. 5c). Variants of 
unknown significance (VUSs) in ClinVar that were predicted as deleteri-
ous SAVs were also significantly enriched in experimentally validated 
SDVs (Fig. 5c). Of the 563 predicted deleterious SAVs assayed in the 
experimental data, 346 (61.5%) were SDVs and more than half were 
cryptic splice sites, including 13 ClinVar VUSs (Extended Data Fig. 8d).

We also derived stringent thresholds to identify SAVs by removing 
canonical splice sites and calibrating exclusively coding non-splice-site 
(nonSS) variants to a MAPS score comparable with 5/5 missense vari-
ants. These thresholds corresponded to a SpliceAI score of 0.43 and an 
MMSplice score of 0.97 (Extended Data Fig. 5c). Pathogenic enrichment 
was consistent when comparing deleterious coding nonSS and missense 
SAVs with corresponding variant categories filtered by CADD ≥ 20 (Sup-
plementary Table 8b,c). Consistent results were also obtained when 
comparing the enrichment of deleterious SAVs in SDVs to non-SDVs after 
applying thresholds for coding nonSS variants (Extended Data Fig. 8c,e).

Clinical utility of rare variants
To understand the prevalence of disease-associated alleles in the gen-
eral population, we identified well-supported ClinVar59 pathogenic vari-
ants (two stars or more) across 2,042 genes in 822K unrelated RGC-ME 
samples. We found that 40.7% of pathogenic variants (20,343/49,990) 
were observed in the RGC-ME dataset, of which 99.6% (20,262) had an 
AAF of less than 0.1% and 17.8% (3,619) were observed once. In compari-
son, 20% (9,821) and 29% (14,700) of pathogenic variants were observed 
in ExAC exomes (n ≈ 60,000) and gnomAD v.2.1.1 exomes (n ≈ 126,000), 
respectively (Extended Data Fig. 9a). This highlights the importance of 
the RGC-ME dataset’s larger sample size in identifying rare pathogenic 
variants. On average, individuals carry 1.58 pathogenic variants, with 
the majority of these individuals being heterozygous carriers of these 
variants. Specifically, 61.4% of the 822K unrelated individuals were 
heterozygous carriers of pathogenic recessive alleles in 1,143 of 2,659 
known autosomal recessive genes (mean, 0.98 pathogenic alleles per 
person); 0.21% of the samples were homozygotes of pathogenic vari-
ants in 167 autosomal recessive genes; and 3.64% were heterozygous 
carriers of 353 of 1,629 total autosomal dominant genes. Pathogenic 
variant annotations should be interpreted cautiously owing to the 
incomplete penetrance of disease alleles60.

The American College of Medical Genetics identified a set of genes 
(ACMG SF v.3.1) with clinically actionable variants that predispose 
individuals to diseases and for which medical interventions are avail-
able to reduce mortality and morbidity61. Among the 822K unrelated 
individuals, 22,846 (2.77%) had at least one ClinVar-reported (two stars 
or more) pathogenic missense or pLOF variant for 72 out of 76 autoso-
mal genes on the ACMG list (Supplementary Table 10). As expected, two 
of the most prevalent pathogenic variations were the HFE Cys282Tyr 
allele (enriched in EUR, nEUR-homozygotes = 3,220 and AAFEUR = 13.8%) and 
the TTR Val142Ile allele (enriched in AFR, nAFR = 1,670 and AAFAFR = 3.4%).

We also tallied carriers of likely pathogenic pLOF variants (novel 
variants not yet reported as pathogenic in ClinVar) in 44 genes in which 
truncation is known to lead to disease. A total of 2,357 (0.3%) individuals 
in the RGC-ME dataset carried 1,407 likely pathogenic variants across 
40 of these genes. In total, 3.06% of the individuals in the RGC-ME 
dataset were carriers of pathogenic or likely pathogenic variants. 
Excluding individuals with high-frequency pathogenic variants in the 
HFE (Cys282Tyr) and TTR (Val142Ile) genes, 2.38% of the individuals 
in the RGC-ME dataset carried an actionable variant (Supplementary 
Table 10). This number is comparable with those from other reports6,7,62 
of actionable variants, which range from 2% to 4.1% for gene sets that 
include ACMG v.2.0 and v.3.0. As expected, pathogenic variants are rare 
in large-scale studies of the general population. We found that 39% and 
79% of pathogenic and likely pathogenic variants, respectively, were 
singletons. Focusing on non-ACMG genes, we found that 1.27% of indi-
viduals were heterozygous carriers of pathogenic variants in autosomal 
dominant genes, and 0.21% were homozygotes of pathogenic variants 
in autosomal recessive genes.

Because the RGC-ME dataset includes uniformly processed exome 
data from a relatively large proportion of individuals from continental 
ancestries other than EUR, we assessed the range of allele frequencies 
of variants present in ClinVar across four continental populations: 
AFR, EUR, IAM and SAS. Approximately 34% of unique pathogenic 
coding variants in equalized subsamples were observed only in indi-
viduals of non-EUR ancestry, which indicates that sampling diverse 
populations is necessary for the comprehensive identification of rare 
variation. Across all unrelated individuals, on average, those of EUR 
ancestry had 63% more pathogenic variants that were well character-
ized (rated two stars or more) per sample than did individuals of AFR 
ancestry. Conversely, individuals of EUR ancestry had, per sample, 
25.6% fewer VUSs (Extended Data Fig. 9b,c) and 18.6% fewer variants 
across all functional types (Extended Data Fig. 2). In individuals of AFR 
ancestry, a consistent pattern of significantly fewer high-confidence 
(two stars or more) pathogenic variants (−0.576 [−0.567, −0.585  
(95% CI)], t-test) to a surplus of VUSs (42.13 [421.97, 42.28]), com-
pared with individuals of EUR ancestry, suggests that the most well- 
characterized pathogenic variants were depleted in this population 
(Extended Data Fig. 9b). Recruiting diverse individuals to enable 
the identification and characterization of novel pathogenic vari-
ants might help to address this ascertainment bias. Further analyses 
of pathogenic coding variants and differentiated alleles between 
ancestries are included in Supplementary Fig. 7 and Supplementary  
Table 11.

Understanding VUSs is currently a bottleneck in the interpretation of 
variation in clinically relevant genes and a challenge in clinical manage-
ment19. Although VUSs have less empirical evidence for pathogenicity, 
they comprise the bulk of ClinVar, with more than one million variants. 
Notably, VUSs in regions of low MTR may be deleterious, comprising 
5,079 (0.68%) VUSs in the top 1 percentile of MTR-constrained regions 
and 17,500 VUSs (2%) in the top 15 percentile (Supplementary Table 12). 
Using the MAPS-derived splicing score thresholds, we identified more 
than 11,000 candidate deleterious cryptic splice sites among VUSs 
(1,366 synonymous variants in 822 genes and 10,407 missense vari-
ants in 3,501 genes), offering potential insights into their functional 
consequences for clinical prioritization and interpretation efforts.
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Discussion
The RGC-ME dataset, derived from 983,578 exomes, provides a har-
monized catalogue of around 20 million coding variants in individuals 
from a diverse array of ancestries and is publicly accessible at https://
rgc-research.regeneron.com/me/home. Cataloguing variation at scale 
provides an opportunity to accurately estimate the frequency of rare 
variants—allowing us to precisely compute gene and regional constraint 
metrics, expand the compendium of rare human knockouts, annotate 
deleterious cryptic splice sites, characterize variant frequencies across 
different ancestries and assess the population prevalence of pathogenic 
variation. RGC-ME will be an invaluable resource for interpreting rare 
variants and is a step towards the realization of precision medicine.
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Gonçalo Abecasis1, Aris Baras1, Michael Cantor1, Giovanni Coppola1, Andrew Deubler1, 
Aris Economides1, Adolfo Ferrando1, Luca A. Lotta1, John D. Overton1, Jeffrey G. Reid1, 
Alan Shuldiner1 & Katherine Siminovitch1

Sequencing and Lab Operations
John D. Overton1, Christina Beechert1, Erin D. Brian1, Laura M. Cremona1, Hang Du1, 
Caitlin Forsythe1, Zhenhua Gu1, Kristy Guevara1, Michael Lattari1, Alexander Lopez1, 
Kia Manoochehri1, Prathyusha Challa1, Manasi Pradhan1, Raymond Reynoso1, 
Ricardo Schiavo1, Maria Sotiropoulos Padilla1, Chenggu Wang1 & Sarah E. Wolf1

Clinical Informatics
Michael Cantor1, Amelia Averitt1, Nilanjana Banerjee1, Dadong Li1, Sameer Malhotra1, 
Justin Mower1, Mudasar Sarwar1, Deepika Sharma1, Jeffrey C. Staples1, Sean Yu1 & 
Aaron Zhang1

Genome Informatics and Data Engineering
Jeffrey G. Reid1, Mona Nafde1, George Mitra1, Sujit Gokhale1, Andrew Bunyea1, 
Krishna Pawan Punuru1, Sanjay Sreeram1, Gisu Eom1, Sujit Gokhale1, Benjamin Sultan1, 
Rouel Lanche1, Vrushali Mahajan1, Eliot Austin1, Sean O’Keeffe1, Razvan Panea1, 
Tommy Polanco1, Ayesha Rasool1, William Salerno1, Xiaodong Bai1,45, Lance Zhang1, 
Boris Boutkov1, Evan Edelstein1, Alexander Gorovits1, Ju Guan1, Lukas Habegger1, 
Alicia Hawes1, Olga Krasheninina1, Samantha Zarate1, Adam J. Mansfield1, Evan K. Maxwell1, 
Suganthi Balasubramanian1, Suying Bao1, Kathie Sun1 & Chuanyi Zhang1

Analytical Genetics and Data Science
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Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Genetic variation data for 821,979 unrelated individuals are made 
publicly available through the RGC-ME browser (https://rgc-research.
regeneron.com/me/home). Features include genomic locations, alleles, 
fine-scale ancestry assignments, population-specific allele frequencies 
and functional annotations for the genetic variants. In addition, vcf 
files can be downloaded from the web portal. Exome-wide MTR scores 
are available for download from figshare: https://doi.org/10.6084/
m9.figshare.24587328 (ref. 63). The human reference genome GRCh38 
can be obtained from ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes/
ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_anal-
ysis_set_plus_decoy_hla.fa. Ensembl Release 100 gene and transcript 
builds can be accessed from https://ftp.ensembl.org/pub/release-100/
gtf/homo_sapiens/ and corresponding gene and transcript reference 
nucleotide and protein sequence data from https://ftp.ensembl.org/
pub/release-100/fasta/homo_sapiens/. Individual-level sequence data 
have been deposited with the UK Biobank and are freely available to 
approved researchers. Instructions for access to UK Biobank data 
are available at https://www.ukbiobank.ac.uk/enable-your-research. 
Information about the data access policy for researchers interested 
in the Mexico City Prospective Study data can be found at https://
www.ctsu.ox.ac.uk/research/prospective-blood-based-study-of-150- 
000-individuals-in-mexico. Geisinger Health System individual-level 
data are available to qualified academic, non-commercial researchers 
through an information transfer agreement by contacting Lance J. 
Adams (ljadams1@geisinger.edu). Information about the data access 
policy, procedures and contact details for the cohorts included in this 
dataset can be obtained through the URLs given in the RGC-ME browser 
at https://rgc-research.regeneron.com/me/data-contributors. This 
information is also provided in Supplementary Table 1c, with relevant 
references if available.

Code availability
Publicly available software and packages used in this study are 
described in the Supplementary Information. In summary, sequenc-
ing reads were generated using bcl2fastq v.2.20 and were mapped to 
references using BWA-MEM v.0.7.17. Variants were identified using 
DeepVariant v.0.10, aggregated with GLnexus v.1.4.3 and converted to 
bed, bim or fam format using PLINK v.1.9. Variants were annotated with 
VEP (Ensembl, v.100.4) and pLOF variants were further classified with 
the VEP LOFTEE plug-in. Array variants were phased using Eagle v.2.4 
and imputed using Minimac4. PLINK v.2 was used for principal compo-
nent analysis and to compute Fst, a measure of genetic differentiation 
among population groups. The csq function in BCFtools v.1.18 was used 
to annotate in-frame indels resulting from a combination of frameshift 
indels on the same haplotype, and bedtools v.2.30.0 was used to deter-
mine the genetic context and neighbouring nucleotides of variants. 
Picard LiftoverVcf v.3.0.0 was used to transform sequence coordi-
nates to GRCh38. Relatedness was determined with PRIMUS: https://
primus.gs.washington.edu/primusweb/res/documentation.html. We 
adapted scripts from https://github.com/pjshort/dddMAPS to compute 
updated MAPS metrics. For identifying compound heterozygous vari-
ants, exome variants were merged with a well-imputed common variant 
backbone and phased using SHAPEIT5 (https://github.com/odelaneau/
shapeit5). Large-scale data manipulation used Scala v.2.12 on a 10.4 LTS 

runtime (Apache Spark v.3.2.1) with standard Spark functions. Beyond 
standard R packages, visualization tools and data-processing libraries 
(for example, dplyr, ggplot2 and data.table), we used rstan (v.2.33) 
to build Bayesian hierarchical models for calculating heterozygous 
selection coefficients, rmutil (v.4.1.2) to project LOF accrual and boot 
(v.4.1.1) for bootstrapping. Python code used standard packages (for 
example, scipy, numpy and pandas) for analysis, scikit-learn (v.1.0) to 
model variant quality (see Supplementary Tables 13 and 14) and sqla-
lchemy (v.2.0.23) to store and query tables. Custom code to generate 
LOF projection curves is available at https://github.com/rgcgithub/
rgc_me_analysis.
 

63.	 Sun, K. Exome-wide MTR scores computed with RGC-ME data for all possible missense 
variants in canonical transcripts. figshare https://doi.org/10.6084/m9.figshare.24587328 
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Extended Data Fig. 1 | Mutation saturation survey in RGC-ME data. Counts 
are based on variant-transcript pairs. *Methylation level: mean methylation 
values across tissues of >0.65, 0.2–0.65, <0.2 correspond to methylation level 
of 2, 1, 0, respectively. CpG sites with methylation level of 2 are highly methylated, 

sites with methylation level 0 or 1 are grouped as lowly methylated sites. Variants 
are subset to target exome regions. Only variants that passed QC are included 
in the number of all possible variants.



Extended Data Fig. 2 | Box plots summarizing counts of variants observed 
in each unrelated sample in the RGC-ME dataset. The lower bound, centre 
and upper bound of each box plot represents the 25, 50, and 75 percentiles of 
the distributions of counts. Points represent outliers, and whisker minima and 

maxima represent the smallest and largest points 1.5-times beyond the 
interquartile range. Individuals were assigned discrete ancestries based on 
overall fine-scale ancestry probabilities >50% and a total of 755,261 individuals 
were included. See Supplementary Table 1 for sample size breakdowns.
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Extended Data Fig. 3 | shet distribution across gene essentiality and disease 
categories, and evidence that a larger sample improves the precision of shet 
estimates. a, Proportion of genes in each disease/essentiality annotation list 
(gathered from published literature and databases) that correspond to each 
shet decile. b, Ratio of variances from MCMC sampling for shet calculated on full 
dataset (824k) and randomly downsampled set of 60,000 individuals. The 
mean ratio around 0.05 suggests that gene-level variance from the full dataset 

is 20x smaller than variance for the same gene using the downsampled set. This 
is the case despite similar, or even higher, shet mean estimates as shown by the 
colour bar. c, Mean (points) and 95% HPD (green bars) from MCMC sampling for 
shet estimates of genes in each CDS length quantile for downsampled 60k (left) 
and full 822K (right) samples. HPD and variance in panels b,c were derived from 
MCMC sampling for 8,000 final iterations.



Extended Data Fig. 4 | Comparisons between shet computed with RGC-ME 
and other gene constraint metrics. a, Receiver operator curves showing the 
discrimination between the “high” and “low” constraint genes using different 
constraint metrics: shet-RGCME, shet-ABC, and LOEUF for transcripts with values  
from all three methods. The highly constrained category comprised 1,476 
haploinsufficient and autosomal dominant (including developmental-specific) 
genes and the comparison group was represented by 3,893 haplosufficient and 
genes with rare, biallelic pLOFs in RGC-ME. Dotted lines indicate specificity and 
sensitivity for shet = 0.073. Sensitivity = TP / (TP+FN), Specificity = TN / (TN+FP). 
Spearman rank correlations between shet from RGC-ME with these estimates are 
high (-0.768 with LOEUF, 0.778 with shet-ABC). b, shet vs LOEUF results for 973 genes 
with ≤5 expected LOFs. 5 genes are highlighted for short coding sequence 
length (CDS), that are constrained according to shet (both mean>0.073 and lower 
bound>0.021) and unconstrained according to LOEUF. LOEUF is an alternate 
measure of pLOF-based gene constraint and ranges from 0 to around 2;  
a value < 0.35 is considered constrained. Error bars (grey lines) around shet 
denote 95% highest posterior density.
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Extended Data Fig. 5 | Determination of the MAPS score threshold to  
define constrained regions and SAVs. a–c, To systematically evaluate the 
deleteriousness of missense variants at various MTR scores, we compared 
MAPS scores across MTR (a) and splice score (b,c) thresholds. a, MTR was 
divided from 5% to 100% with step size of 5% (lower MTR percentile is more 
constrained). For each MTR percentile threshold, we divided variants into two 
sets: variants that pass the percentile threshold (red dots), and variants greater 
than the percentile (blue dots). The y axis represents MAPS score for each set  
of variants; the x-axis shows the tested MTR percentile threshold. Error bars 
represent standard deviation around the mean proportion of singletons per 
bin. A total of 68,636,473 variants were included in this analysis. b,c, Schematic 
of MAPS-derived filters for SpliceAI and MMSplice for all variants (b) and coding 

nonSS variants (c), respectively. A list of prediction score thresholds were set 
up for both SpliceAI and MMSplice, ranging from 0.1 to 0.99, with step size of 
0.02. For each threshold, we divided variants into two sets: the set of variants 
that passed the threshold, represented as red dots, and the set of variants that 
failed the filter, represented as blue dots. The y axis represents MAPS score  
for each set of variants; the x-axis shows the tested score threshold. All MAPS 
scores were calculated based on the set of variants that pass QC metrics  
and have splice prediction scores in RGC-ME unrelated samples. Error bars 
represent standard deviation around the mean proportion of singletons per 
bin. For all variants (b), the total number of variants were n = 12,886,467 and 
20,604,651 for SpliceAI and MMSplice, respectively. For coding nonSS variants 
(c), n = 5,468,779 and 4,013,820 for SpliceAI and MMSplice, respectively.



Extended Data Fig. 6 | MTR-based segmentation and comparison of 
constrained regions in 2,832 genes that have constrained regions in both 
MTR and MPC (matched on transcript IDs). a, Dashed line indicates the top-
15-percentile exome-wide MTR threshold used for MTR-based segmentation 
(0.841). Blue and red regions represent MTR-constrained and unconstrained 
regions, respectively. b, Constrained MTR regions that overlap with MPC 
segments. 80% of MTR-constrained regions (represented by the combined 
area of red and yellow) overlap with MPC-constrained segments (yellow), 
whereas 40% of constrained MPC segments (represented by the combined  

area of green and yellow) are included in the intersection (yellow). The numbers 
indicated on the Venn diagram represent number of amino acids. Aside from 
2,832 genes that had both MTR- and MPC-constrained regions, an additional 
297 genes had only MPC-constrained segments, and 9,514 genes had only 
MTR-constrained regions (not included in the Venn diagram). c, Distribution  
of the fold change of the number of MTR-constrained regions and constrained 
MPC segments (γ ≤ 0.6) per gene. Dashed line indicates the median fold change 
of 3. Data shown is for the 2,832 genes that have constrained region annotations 
both in MTR and MPC segments.
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Extended Data Fig. 7 | Constrained MTR regions are enriched in ClinVar 
pathogenic variants and shorter than LOF-specific constrained genes.  
a, Odds ratios (points) comparing enrichment of pathogenic versus benign 
ClinVar variants (solid line) and de novo variants in cases versus controls 
(dotted line) in MTR-constrained regions. Error bars represent 95% CIs (Fisher’s 
exact test). The total number of variants in each comparison are shown in b for 
the MTR-percentile cut-offs highlighted in yellow. In total, 5,818 case and 553 
control variants were used in the de novo analysis and 7,944 pathogenic and 
11,993 benign variants were used in the ClinVar analysis. b, Table of case and 
control variants in constrained and unconstrained regions to compute 
statistical tests for ClinVar (“CV”) and de novo (“DN”) variants across 5 different 
MTR-percentile thresholds (13-17%, yellow boxed region in a). Statistics include 

hypergeometric tests (p-value for enrichment of case and control variants in 
constrained regions) and odds ratios comparing enrichment of case vs control 
in constrained regions. The background rate of constrained regions among 
variants in the comparison set represented by “% constrained background”.  
c, CDS length comparison between 1,482 missense-specific constrained  
genes (defined where >15% of gene is in the top 15 percentile of MTR, based  
on one-sided binomial tests with π0 = 0.15, p < 0.05, Bonferroni corrected)  
and 1,424 LOF-specific constrained genes with shet score <0.073. Log10 CDS 
length for all 19,644 genes (canonical transcripts) shown in the grey curve.  
The missense-specific constrained genes had significantly shorter CDS length 
than LOF-specific constrained genes (p = 2.9 × 10−40, two-sided Wilcoxon test).



Extended Data Fig. 8 | Characteristics of predicted deleterious SAVs.  
a, Summary of unique variant-transcript pairs of predicted deleterious SAVs in 
different functional categories using MAPS-defined prediction score thresholds 
for SpliceAI and MMSplice. Percents are computed out of total variants in each 
effect class. b, Distribution of different functional categories of predicted 
deleterious SAVs. (HC: High confidence, LC: Low confidence. These annotation 
tags are derived from LOFTEE). c, Empirical validation of MAPS-predicted 

deleterious coding nonSS SAVs: enrichment of predicted coding nonSS 
deleterious SAVs in experimentally validated SDVs compared to non-SDVs. 
Odds ratios (points) were derived using two-sided Fisher’s exact test and  
error bars show 95% CIs. A total of n = 17,395 variants, of which 147 SAVs were 
validated SDVs, were included. d,e, Fraction of predicted deleterious SAVs  
(d) and coding nonSS SAVs (e) that were validated as SDVs by any of the three 
splice reporter assays.
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Extended Data Fig. 9 | ClinVar variant counts. a, Counts of autosomal 
pathogenic ClinVar high-confidence variants (two stars or more) observed in 
large-scale exome sequencing studies, including RGC-ME, gnomAD (exomes, 
v2.1.1), and ExAC, are indicated on the top of each bar. The left axis indicates  
the total coverage of ClinVar pathogenic variants represented in each  
dataset. b, Bars and points both depict the mean per cent difference of per- 
individual counts in ClinVar categories (pathogenic 0+, 1+, 2+, VUS+CI) across 
continental ancestries using all unrelated samples, with respect to EUR (e.g. 
[countAFR – countEUR]/countAFR × 100). CV0, 1, and 2 refer to ClinVar pathogenic 
star rating 0+, 1+, and 2+ categories, respectively. VUS/CI combines variants 
annotated as “variants of unknown significance” and “conflicting interpretations”. 
All per-individual counts in non-EUR were significantly different compared to 
counts in EUR (e.g. per-individual counts of ClinVar 2+ variants in AFR were 

0.576 [0.567, 0.585] lower than those in EUR) except for ClinVar 0+ counts in 
IAM compared with EUR (t-tests with Bonferroni correction). Error bars show 
95% CI of mean per cent difference from t-test. c, Per-individual count of VUSs 
and conflicting information (CI, left); and pathogenic variants (right) in RGC-ME 
for all unrelated samples. The lower bound, centre and upper bound of each 
box plot represents the 25, 50, and 75 percentiles of the distributions of counts. 
Points represent outliers, and whisker minima and maxima represent the 
smallest and largest points 1.5-times beyond the interquartile range. For b,c,  
a total of 749,584 unrelated individuals were included across 4 ancestries  
and individuals were assigned discrete ancestries based on overall FSA 
probabilities >50%; see Supplementary Table 1a for sample size breakdowns. 
The x-axis indicates ClinVar star rating which is a measure of the confidence  
of the annotation (pathogenic/benign).



Extended Data Table 1 | Sample breakdown of individuals with rare biallelic pLOF variants by ancestry

Counts of genes with rare homozygous and rare compound heterozygous pLOF variants (includes variants with AAF < 0.01). ‘Total samples’ denotes the number of individuals per ancestry in the 
related dataset (983,578 individuals) based on continental ancestry with a probability assignment greater than 50%. 
*Includes cohorts with high rates of consanguinity.








	A deep catalogue of protein-coding variation in 983,578 individuals

	Survey of variation in the RGC-ME dataset

	Constrained genes

	Constrained coding regions

	Understanding ‘human knockouts’

	Annotation of splice-affecting variants

	Clinical utility of rare variants

	Discussion

	Online content

	Fig. 1 Variant survey and population counts in the RGC-ME dataset.
	Fig. 2 Estimates of gene-level constraint, representing shet, from the RGC-ME dataset.
	Fig. 3 Missense regional constraint captured by MTR.
	Fig. 4 Rare biallelic pLOF variants and ‘human knockouts’ in the RGC-ME dataset.
	Fig. 5 Identification of deleterious variants that are predicted to affect splicing.
	Extended Data Fig. 1 Mutation saturation survey in RGC-ME data.
	Extended Data Fig. 2 Box plots summarizing counts of variants observed in each unrelated sample in the RGC-ME dataset.
	Extended Data Fig. 3 shet distribution across gene essentiality and disease categories, and evidence that a larger sample improves the precision of shet estimates.
	Extended Data Fig. 4 Comparisons between shet computed with RGC-ME and other gene constraint metrics.
	Extended Data Fig. 5 Determination of the MAPS score threshold to define constrained regions and SAVs.
	Extended Data Fig. 6 MTR-based segmentation and comparison of constrained regions in 2,832 genes that have constrained regions in both MTR and MPC (matched on transcript IDs).
	Extended Data Fig. 7 Constrained MTR regions are enriched in ClinVar pathogenic variants and shorter than LOF-specific constrained genes.
	Extended Data Fig. 8 Characteristics of predicted deleterious SAVs.
	Extended Data Fig. 9 ClinVar variant counts.
	Extended Data Table 1 Sample breakdown of individuals with rare biallelic pLOF variants by ancestry.




