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Clinical epigenomics for cardiovascular disease: Diagnostics 
and therapies

Matthew A. Fischer*, Thomas M. Vondriska
Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at 
UCLA, USA

Abstract

The study of epigenomics has advanced in recent years to span the regulation of a single genetic 

locus to the structure and orientation of entire chromosomes within the nucleus. In this review, we 

focus on the challenges and opportunities of clinical epigenomics in cardiovascular disease. As an 

integrator of genetic and environmental inputs, and because of advances in measurement 

techniques that are highly reproducible and provide sequence information, the epigenome is a rich 

source of potential biosignatures of cardiovascular health and disease. Most of the studies to date 

have focused on the latter, and herein we discuss observations on epigenomic changes in human 

cardiovascular disease, examining the role of protein modifiers of chromatin, noncoding RNAs 

and DNA modification. We provide an overview of cardiovascular epigenomics, discussing the 

challenges of data sovereignty, data analysis, doctor-patient ethics and innovations necessary to 

implement precision health.
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1. Introduction

Widespread clinical implementation of precision medicine has the potential to revolutionize 

clinical care as well as to unleash a myriad of privacy, cost and ethical issues. At present, we 

are in the early stages of integrating epigenetics into this story—where we end up will 

depend on appropriate research, stewardship and implementation.

Exact definitions vary but a key feature of precision medicine is the tailoring of clinical care 

based on an integrated patient history that includes genomic and/or epigenomic data. The 

power and potential of such strategy could have far reaching effects in patient care. Ideally, 

precision medicine would be accomplished through a multi-omics approach taking into 

account individual variability in the genome, epigenome, transcriptome, proteome and 

metabolome to optimally direct clinical care for each individual. An advantage of epigenetic 

measurements is that they reflect heritable factors (i.e. DNA sequence), while at the same 
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time being dynamic and thus capable of incorporating environmental factors, which are of 

critical importance in the pathophysiology of disease.

Heart disease is the leading cause of death for both men and women, as well as across most 

racial and ethnic groups in the United States. In 2017, there were 859,125 deaths due to 

cardiovascular disease in the United States [1]. In addition, the total indirect and direct cost 

of cardiovascular disease in the United States was approximately $351.2 billion for 2014 to 

2015 [1]. The implementation of clinical epigenomics in the prevention and management of 

cardiovascular disease has the potential for significant improvement in patient outcomes. In 

this review, we will outline the field of epigenomics, recent epigenomics studies in 

cardiovascular disease, measurement of epigenetic marks, data analysis and challenges to 

clinical implementation.

2. Overview of epigenetics

Epigenetic modifications can be considered anything that alters gene function without 

altering DNA sequence [2]. This includes modifications to the DNA itself, such as 

methylation [3], in addition to a cadre of proteins that directly bind DNA, such as histones 

and non-nucleosomal chromatin structural proteins [2].

Histone modification influences chromatin accessibility and the binding and activity of 

transcriptional machinery [4,5]. These modifications primarily include histone acetylation, 

phosphorylation and methylation, in addition to other less well-studied modifications. 

Histone acetylation is a dynamic process regulated by two families of enzymes: histone 

acetyl-transferases (HATs) and histone deacetylases (HDACs) [4,5]. HATs use acetyl CoA 

as a cofactor and catalyze the transfer of an acetyl group to the ε-amino group on lysine side 

chains [4]. The addition of an acetyl group changes lysine’s positive charge to a neutral 

charge which can weaken the interaction between histones and DNA. Histone 

phosphorylation is also a dynamic process and takes place on serines, threonines and 

tyrosines [4]. The phosphorylation primarily occurs in the N-terminal histone tails. The 

addition and removal of phosphate groups is regulated by kinases and phosphatases, 

respectively. The addition of a phosphate group to hydroxyl groups of the target amino 

acid’s side chain adds negative charge. Histone methylation can involve mono-, di- or tri-

methylation and typically occurs at the side chains of lysines and arginines. In contrast to 

histone acetylation and phosphorylation, histone methylation does not alter the charge of the 

protein but is influential in chromatin accessibility [6]. While local electrostatic and other 

steric changes play a role in the actions of histone modifications to influence binding to 

proteins and DNA, it is now appreciated that histone modifications often act in concert with 

each other (i.e. combinations of modifications specify different transcriptional outcomes) as 

well as through interactions with other histone binding proteins, such as chromatin readers—

these concepts have been reviewed in detail elsewhere [7–9].

DNA methylation primarily occurs at cytosines contiguous with guanine (CpGs) and plays a 

key role in gene expression, development and disease [3]. DNA methyltransferases catalyze 

the addition of a methyl group from S-adenosyl-L-methionine to the 5-carbon position of 

cytosine. DNA promotor methylation is associated with gene silencing though the exact 
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mechanism is not completely understood as the methyl mark alone does not seem to be 

sufficient to confer silencing [3]. DNA gene body methylation, however, is associated with 

increased transcription. DNA methylation is one of the most studied epigenetic 

modifications and has been implicated in many cancers as well as cardiovascular disease 

processes [10].

RNA has also been implicated in epigenetic regulation of gene expression [11]. There are 

many classes of small RNAs and long non-coding RNAs that are regulators of chromatin 

structure [12]. Small RNAs alter gene expression via RNA interface pathways. In addition, 

some long non-coding RNAs appear to contain signals that recruit chromatin modifying 

complexes. A common process by which small RNAs and long non-coding RNAs modify 

chromatin structure and silence transcription is through the formation of RNA scaffolds. The 

role of RNA in epigenetic regulation has been covered extensively elsewhere [13].

Epigenetic marks are tissue specific. DNA methylation, for example, varies significantly 

across cell types [14]. In whole blood samples, most of the variability in DNA methylation is 

secondary to the cellular composition of the blood sample [15]. For this reason, it is critical 

that the cellular composition of the sample tissue be accounted for when studying epigenetic 

marks [15]. Given that the primary tissue of disease is often impractical to obtain in the 

clinical setting, many epigenome-wide association studies have focused on whole blood 

samples. Paradoxically, some epigenetic marks are conserved across tissues [16] while still 

exerting tissue specific effects (similar to a genetic mutation), further supporting the use of 

whole blood samples to study disease that primarily affects other tissues.

Epigenetic marks are dynamic and may, in some cases, be heritable [2]. These modifications 

can change over the course of one’s life as a result of aging, environmental exposure and 

disease. Smoking and adiposity, for example, can result in epigenetic changes [17]. Habitual 

diet quality results in differential methylation in at least 30 CpGs, 12 of which are associated 

with all-cause mortality [18]. Epigenetic modifications also help modulate gene expression 

in development and disease [19]. Due to the dynamic nature of epigenetic marks, studies 

analyzing the epigenetic features of disease may serve as predictors of outcomes or sequalae 

depending on when in the disease course the sample was obtained [20]. In addition, the 

dynamic nature of epigenetic marks holds the possibility to monitor disease prospectively, 

including surveilling response to treatment [21]. A sizable body of work in animal models 

has implicated epigenomic processes in cardiovascular disease and has been reviewed in 

detail elsewhere [7,22]. Herein we focus on studies in humans.

3. Status of epigenetics in clinical medicine

3.1. Atherosclerosis

Atherosclerosis is the causative process in peripheral artery disease, coronary artery disease 

and cerebrovascular disease. Epigenetic modifications have been implicated in the 

development and progression of atherosclerosis. Increased acetylation of histone H3 lysine 9 

(H3K9ac) and histone H3 lysine 27 (H3K27ac) in smooth muscle cells are associated with 

advanced atherosclerotic lesions compared to healthy carotid arteries [23]. Expression of 

GCN5L and MYST1 which are regulated by histone acetylation is associated with plaque 
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severity in atherosclerosis [23]. Histone deacetylase 9 (HDAC9) has been shown to regulate 

atherosclerotic plaque vulnerability. HDAC9 binds to inhibitory kappa B kinase (IKK) α and 

β which causes IKK to be deacetylated and activated which impacts inflammatory response 

in macrophages and endothelial cells. Inhibition of HDAC9 attenuates atherosclerotic plaque 

formation, disease progression and enhances plaque stability [24]. In addition, histone H3 

lysine 9 (H3K9) and histone H3 lysine 27 (H3K27) hypomethylation are also associated 

with atherosclerotic plaques in smooth muscle cells and inflammatory cells compared to 

healthy carotid arteries. Methylation on histone H3 lysine 4 (H3K4) is associated with 

severity of atherosclerosis [23]. These results demonstrate that histone acetylation and 

methylation are significantly associated with atherosclerosis.

Differential DNA methylation is also associated with atherosclerotic disease. One study [25] 

identified 1985 CpGs associated with atherosclerosis in human aorta samples and found that 

the majority of these sites showed a correlation between hypermethylation and advanced 

atherosclerosis. These significant CpGs were associated with gene expression in the same 

aorta samples. In contrast, another study [26] examining DNA methylation in human 

femoral artery samples found that hypomethylation of differentially methylated CpGs was 

associated with atherosclerotic plaques and that the majority of these sites were associated 

with increased gene expression. In particular, the 14q32 locus was hypomethylated and 

associated with upregulation of several miR-NAs. In the MESA cohort, investigators [27] 

discovered four CpGs whose methylation at least partially mediates expression of cyan 

module genes ABCG1, SC4MOL and LDLR, a known network of coexpressed cholesterol 

metabolism genes. These studies suggest that the pathophysiology of atherosclerosis is 

associated with epigenetic regulation though the mechanics are inadequately understood. 

Epigenetic regulation, however, may be a target for therapeutics and a biomarker for disease 

progression.

3.2. Hypertension

Hypertension is a common cardiovascular disease and affects more than 1 billion people 

world-wide [1]. In addition, high blood pressure is a common risk factor for stroke, chronic 

kidney disease and heart disease [1]. Epigenetic studies of hypertension are numerous and 

there are clearly many epigenetic mechanisms associated with hypertension. Lower levels of 

5-methylcytosine (5-mC) are present in the DNA of patients with hypertension and the 5-mC 

level is correlated with the stage of hypertension [28]. For example, patients with stage 2 

hypertension (systolic blood pressure > 159 mmHg and/or diastolic blood pressure > 99 

mmHg) have higher 5-mC levels than patients with stage 1 hypertension (systolic blood 

pressure 140–159 mmHg and/or diastolic blood pressure 90–99) [28].

In a genome-wide association study [29] performed in 320,251 individuals of East Asian, 

South Asian and European descent, 12 single nucleotide polymorphisms (SNPs) were 

discovered that are associated with blood pressure. These SNPs are associated with genes 

related to vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal 

function (ARHGAP24, OSR1, SLC22A7 and TBX2). These genetic variants were able to 

predict increased left ventricular mass (secondary to concentric hypertrophy from 

hypertension), serum NT-proBNP levels, cardiovascular mortality and all-cause mortality. 
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These SNPs are also enriched for association with DNA methylation at multiple nearby 

CpGs which suggests that DNA methylation may be part of the pathway linking sequence 

variation with disease at some of these loci. This study demonstrates evidence of DNA 

methylation’s role in blood pressure regulation.

Other epigenetic studies of hypertension focus on epigenetic determinants of blood pressure 

and how these relate to the efficacy of different anti-hypertensive medications. One study 

[30] analyzed the variable response to hydrochlorothiazide (HCTZ) related to SNPs in 

DOT1L, MLLT3, SIRT1 and SGK1 which encode genes in a pathway that control histone 3 

lysine 79 methylation. The candidate SNPs DOT1L, MLLT3, SIRT1 and SGK1 were unable 

to be validated but two possible SNPs were suggested that require separate validation. The 

SNP rs2269879 in DOT1L could be associated with HCTZ response in Caucasians and 

rs12350051 in MLLT3 may be associated with untreated blood pressure in African-

Americans. Studies such as this demonstrate the potential of precision medicine in 

hypertension management and suggest the choice of anti-hypertensive medications may be 

guided by tests that measure a patient’s epigenetic modification profile.

3.3. Metabolic syndrome

Metabolic syndrome refers to a cluster of disorders of metabolism that together 

synergistically increase the risk of heart disease more than the individual components alone. 

These metabolic disorders include elevated fasting blood sugar (>100 mg/dL), elevated 

blood pressure (Systolic blood pressure > 130 mmHg or diastolic blood pressure > 85 

mmHg), increased triglyceride level (>150 mg/dL), low High Density Lipoprotein (<40 

mg/dL in men or < 50 mg/dL in women) and abdominal obesity (waist circumference > 40 

in. in men or > 35 in. in women) [31]. Metabolic disease affects 44% of people over the age 

of 50 in the United States and increases risk of myocardial infarction, stroke and diabetes.

DNA methylation has been shown to be associated with several metabolic processes related 

to metabolic syndrome including hypertension, diabetes and obesity. An epigenome-wide 

association study [32] performed in 201 people from the Metabolic Syndrome in Men 

(METSIM) cohort identified 13 clinical traits in 21 loci from adipocyte samples. Using 

expression quantitative trait loci, 18 candidate genes were identified, of which some had 

known associations with diabetes and obesity. This novel research helps describe the 

molecular effects of metabolic syndrome and increases further understanding of this 

disorder. Several other studies [33,34] have investigated the role of DNA methylation in 

features of metabolic syndrome. An epigenome-wide association study of adipose samples 

[35] identified 2825 genes where DNA methylation and gene expression correlated with 

BMI. In addition, in the same study 711 CpGs were associated with HgbA1c with 14% 

showing positive and 86% showing negative correlation between methylation and HgbA1c. 

Another epigenome-wide association study [36] identified 187 CpGs which were associated 

with BMI. These 187 CpGs were associated with cis expression in blood at 38 annotated 

genes. Altered DNA methylation identified in this study was associated with future 

development of diabetes, a result with significant implications for patient care.
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3.4. Coronary artery disease

Cardiovascular disease is the number one cause of death globally [37] with an estimated 

prevalence of 121,500,000 people in the United States over the age of 20 (48% of the 

population over 20) with 859,125 deaths annually [1]. Coronary artery disease, a subset of 

cardiovascular disease, involves atherosclerotic disease of the coronary arteries that supply 

blood flow to the myocardium. Coronary artery disease is the most common form of heart 

disease in the United States and was responsible for 365,914 deaths in the United States in 

2017 [1]. Several studies have investigated epigenetic risk factors for coronary artery 

disease.

An epigenome-wide association study [38] of blood samples in 729 individuals from 

northern Sweden demonstrated 211 CpGs that are associated with a history of myocardial 

infarction. These 211 CpGs were associated with 196 genes, 42 of which have known links 

to cardiac function. Another study [39] investigated the association of DNA methylation 

with myocardial infarction in white blood cell samples from 292 patients with a history of 

myocardial infarction and 292 matched controls (EPICOR study). A differentially 

methylated region within the ZBTB12 gene body and LINE-1 hypomethylation were 

discovered. Gene body hypermethylation has been shown to be associated with increased 

transcription [3]. The significant CpGs in the EPICOR study cohort were then replicated by 

mass spectrometry in 317 myocardial infarction cases and 262 controls (EPIC-NL study). In 

the replication cohort, DNA methylation data improved prediction of cases versus controls 

compared to traditional clinical myocardial infarction predictors alone. These findings are of 

direct clinical relevance as they can be used to screen patients for coronary artery disease 

and implement lifestyle changes and medications to prevent disease progression. Another 

epigenome-wide association study [40] of CRP levels found that CpGs associated with low 

grade inflammation were also associated with incident and prevalent coronary heart disease. 

These inflammation CpGs are another example of potential targets for medications or 

lifestyle interventions to mitigate the risk of coronary heart disease.

Patients with a history of coronary heart disease have different global methylation profiles in 

blood samples. One study [41] showed that 5-methylcytosine (5-mC) and 5-

hydroxymethylcytosine (5-hmC) levels in PBMCs of patients with coronary heart disease 

were higher than in controls. TET proteins are responsible for oxidizing 5-mC into 5-hmC as 

well as 5-formylcytosine and 5-carboxylcytosine [42]. These oxidized 5-mC derivatives can 

then be processed by a variety of mechanisms to demethylated DNA. Interestingly, this 

study [41] also found that TET2 expression was significantly increased in patients with 

coronary heart disease.

Other studies identify epigenetic marks associated with known biomarkers for myocardial 

infarction. Growth-differentiation factor-15 (GDF-15) is a member of the transforming 

growth factor beta (TGF-β). GDF-15 levels increase secondary to pathological stress 

associated with inflammation or tissue damage. GDF-15 has been shown to be increased in 

blood from patients who have had myocardial infarction. An epigenome-wide association 

study [43] of GDF-15 levels in white blood cells in 717 individuals revealed 16 CpGs at 11 

independent loci that were validated in a separate cohort. One of these loci is associated with 
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MIR21 which encodes a microRNA (miR-21) that is known to be associated with the 

development of heart disease.

Dynamic epigenetic modification can also capture treatment effects for known 

cardiovascular risk factors. For example, folate and some B-vitamin (B2, B6, B12 and folic 

acid) supplementation reduces serum homocysteine levels, an independent risk factor for 

cardiovascular disease. One study [44] identified three differentially methylated regions in 

males and two in females, all of which had a positive correlation between hypermethylation 

and myocardial infarction resulting in decreased expression. They found an inverse 

relationship between B-vitamin intake and DNA methylation of candidate genes. Overall, 

they demonstrated that reduced B-vitamin intake results in OCM and Hcy gene 

hypermethylation, decreased gene expression and increased risk of myocardial infarction. 

By contrast, increased B vitamin consumption results in hypomethylation of promotors for 

genes such as cystathionine-beta-synthetase (CBS) which results in increased CBS activity, 

decreased homocysteine levels and decreased cardiovascular disease risk. Studies such as 

this are of significant importance in that they demonstrate response to treatment can be 

captured in epigenetic modification of known cardiovascular risk factors.

3.5. Heart failure

Heart failure affected 5.4 million adults in the United States in 2017 alone. The estimated 

total cost of heart failure in 2012 was $30.7 billion with over two thirds attributed to direct 

costs [1]. Several studies have investigated epigenetic signatures of heart failure subtypes 

such as ischemic cardiomyopathy, dilated cardiomyopathy and hypertrophic 

cardiomyopathy. In one study [45], targeted DNA methylation profiling identified 195 

unique differentially methylated regions with 5 in hypertrophic obstructive cardiomyopathy, 

151 in dilated cardiomyopathy and 55 in ischemic cardiomyopathy. These differentially 

methylated regions were localized to several differentially methylated genes and ncRNA—

linking regulation of these loci to the distinct heart failure subtypes. Subsequent gene/

ncRNA expression analysis using quantitative reverse transcription polymerase chain 

reaction revealed 6 genes and 2 microRNA with significantly up- or down-regulated 

expression consistent with the change in methylation in the corresponding heart failure 

group. This important study shows that gene expression related to several subtypes of heart 

failure are all regulated in part by differential DNA methylation. Other investigators [46] 

identified that in contrast to cardiac development, gene expression related to heart failure 

was related to alterations in active histone marks without major changes in DNA 

methylation and repressive histone marks. Although these studies show different specific 

mechanisms for regulating heart failure gene expression, both suggest the importance of 

epigenetic regulation of the pathophysiology of heart failure.

The epigenetic pathogenesis of heart failure is currently an active area of research. One 

study [47] focused on ischemic cardiomyopathy and used genome-wide DNA methylation 

analysis with RNA sequencing to understand the pathogenesis of heart failure in patients 

with ischemic cardiomyopathy. They discovered gene expression related to anerobic 

glycolysis, suppressed oxidative metabolism and altered cell remodeling. In addition, they 

identified KL15 as an upstream regulator of pathologic gene expression in ischemic 
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cardiomyopathy which had epigenetic regulation by EZH2 and hypermethylation. These 

findings are important in identifying how coronary artery disease results in altered gene 

expression that can lead to heart failure. Whereas several researchers have investigated 

individual epigenetic mechanisms related to heart failure subtypes, one study [48] analyzed 

differential DNA methylation and histone modification associated with a common final 

pathway in end stage heart failure in patients with ischemic and idiopathic cardiomyopathy 

undergoing heart transplant. They found differential DNA methylation was present in 

promoter CpG islands, intragenic CpG islands and upregulated genes. Promoter 

hypermethylation has been shown to inhibit gene transcription [3,48,49], in some cases by 

preventing transcription factor binding. Gene body DNA methylation, however, is associated 

with increased transcription [3,48,49]. In end stage heart failure patients, differential histone 

H3 lysine 36 tri-methylation enrichment was associated with coding regions of the genome 

[50]. Lastly, they tested the abundance of RNA transcripts from DUX4 locus and found that 

expression of DUX4 was significantly reduced in idiopathic cardiomyopathy hearts 

compared to control. This reduced expression was also associated with hypermethylation in 

hearts with idiopathic cardiomyopathy. The epigenetic regulation of genes associated with 

end stage heart failure may reflect common targets for treating heart failure. In addition, the 

assessment of these differential epigenetic marks may help prognosticate patients with 

earlier presentation of heart failure.

3.6. Dilated cardiomyopathy

Dilated cardiomyopathy is a disease characterized by progressive dilation of the left 

ventricle resulting in decreased left ventricular systolic function and congestive heart failure. 

There is a familial component to dilated cardiomyopathy with over 40 genes causing 

predisposition to the phenotype. Despite known genetic risk factors, the disease course of 

dilated cardiomyopathy is variable, and it is thought that epigenetic modifications may play 

a role in pathophysiology of the disease. Differential methylation is present in left 

ventricular myocardium in patients with dilated cardiomyopathy [51]. Differential 

methylation in genes LY75, ERBB3, HOXB13 and ADORA2A are associated with dilated 

cardiomyopathy whereas these genes had not previously been implicated in the pathogenesis 

of heart failure or dilated cardiomyopathy. These findings suggest that differential 

methylation may result in altered gene expression in heart failure secondary to dilated 

cardiomyopathy.

A recent epigenome-wide association study [52] of dilated cardiomyopathy using left 

ventricular myocardium samples identified 27 epigenetic loci that were validated in a 

separate cohort. This study also identified an additional 513 genetic loci associated with 

dilated cardiomyopathy by performing methylation-expression quantitative trait locus 

analysis separately in the discovery and validation cohorts and taking the common loci to 

both analyses. Several key genes from other studies (LY75, PTGES, CTNNAL1, TNFSF14, 

MRPL16 and KIF17) were able to be replicated in this analysis. Interestingly, there were 

3798 CpGs that had similar methylation in blood as left ventricular tissue which illustrates 

the potential for peripheral biomarkers for dilated cardiomyopathy. LY75 methylation, 

however, was unfortunately not conserved in blood.
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In dilated cardiomyopathy, one study identified differential methylation CpGs in left 

ventricular myocardium compared to right ventricular myocardium [53]. Tissue samples 

from the same heart were used as a control as the right ventricle is not as severely affected in 

patients with dilated cardiomyopathy. Of the differentially methylated CpGs associated with 

genes, approximately 70% were hypermethylated in the left ventricle when compared to the 

right ventricle. These hypermethylated probes were predominantly found in promoter-

proximal regions such as 200 bp upstream of the transcription start site, the first exon and 

the 5′ untranslated region. Promoter hypermethylation has been shown to be associated with 

gene silencing, in some instances by preventing transcription factor binding [3]. 

Differentially methylated probes were also associated with transcription factor binding sites 

except CCCTC-binding factor. Interestingly, the effect of DNA methylation on gene 

expression was found to be bi-directional with some hypermethylated genes being 

upregulated and some hypomethylated genes being downregulated. Differential methylation 

was also enriched in the cis-regulatory regions of HAND1 and TBX5 which are genes 

involved in left ventricular development [53].

3.7. Atrial fibrillation

Atrial fibrillation is the most common persistent cardiac arrhythmia with more than 2.7 

million people affected in the United States [54]. Atrial fibrillation is associated with 

increased risk of stroke, heart failure, dementia, myocardial infarction and death. Several 

studies have investigated the contribution of genetic variation to atrial fibrillation, but the 

molecular mechanisms of the identified SNPs are unknown. An epigenome-wide association 

study [55] of patients in the Framingham cohort identified two CpGs associated with 

incident atrial fibrillation and five CpGs associated with prevalent atrial fibrillation. In 

addition, fourteen previously validated SNPs were associated with at least one of the CpGs 

associated with atrial fibrillation. These results demonstrate that DNA methylation is 

associated with the pathophysiology of atrial fibrillation.

Differential DNA methylation has also been identified in left atrial tissue of patients with 

permanent atrial fibrillation [56]. Previous genome-wide association studies implicated 

PITX2, CCDC141 and CACNA1C which were found to be differentially methylated in left 

atrial tissue in patients with permanent atrial fibrillation. Genes with previously described 

differential expression in atrial fibrillation were analyzed and 12 were found to be 

hypomethylated and 8 to be hypermethylated. Real time quantitative PCR of four of these 20 

genes confirmed differential methylation was associated with changes in gene expression.

3.8. Epigenetic sequencing and data acquisition

Several forms of epigenetic mark have been shown to be amenable to reproducible 

measurement across labs. A community-wide bench-marking study involving 18 different 

laboratories in 7 different countries was able to generate consistent results in 21 locus-

specific assays and 6 global assays [57]. For this reason, epigenetic data is well-suited for 

biomarker studies and clinical diagnostics.

Many platforms exist for obtaining epigenetic data from blood and tissue samples. For DNA 

methylation, bisulfite treated DNA can be analyzed with either methylation microarray or 

Fischer and Vondriska Page 9

J Mol Cell Cardiol. Author manuscript; available in PMC 2021 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



next generation sequencing. It must be noted, however, that analysis of bisulfite treated DNA 

cannot distinguish between 5-mC and 5-hmC [58], thus limiting the appreciated individual 

impact of 5-hmC. The most recent microarray platform is the Illumina MethylationEPIC. 

The MethylationEPIC microarray interrogates the methylation status of 853,307 CpGs. 

Microarray platforms have well established analysis, are cheaper, require little DNA and 

provide a uniform set of CpGs for all samples. Microarrays are limited by variation from 

experimental conditions and batch effects which can limit reproducibility [59].

Next generation sequencing includes whole genome bisulfite sequencing (WGBS) and 

reduced representation bisulfite sequencing (RRBS). Although all CpGs may be attempted 

to be sequenced, some sites have low coverage (<10×). In addition, WGBS though 

comprehensive is still too expensive to be deployed on a population scale. RRBS uses 

restriction enzyme digestion to cut DNA into fragments between two C’s at CCGG sites 

which are frequently found in CpG islands and promoters. In general, RRBS typically 

captures 80% of CpG islands and 60% of promoter regions. It is far more time- and cost-

effective than WGBS [60]. The disadvantages of RRBS is that coverage of CpGs across 

multiple samples can be inconsistent, some genes lack coverage and the resulting analysis is 

complex. Beyond WGBS and RRBS, there is targeted bisulfite sequencing which utilizes 

DNA or RNA probes to target selected regions in the genome for bisulfite sequencing [61].

Tissue selection for epigenetic studies is of crucial importance. A balance must be struck 

between accessibility of the tissue and the association of that tissue with the primary disease 

process. Most epigenome-wide association studies are in blood due to the ease of obtaining 

this data and the extent of prior research on analysis of blood samples in epigenome-wide 

association studies. Epigenome-wide association studies have also been performed on 

adipose tissue [32,36], myocardium [19,45,50–53], brain tissue [62] and many other sources. 

Tissue samples contain a range of cell types that must be accounted for in the statistical 

analysis. Blood samples contain DNA from a variety of peripheral leukocytes including 

neutrophils, lymphocytes (CD8+ T cells, CD4+ T cells, CD56+ natural killer cells and 

CD19+ B cells) and CD14+ monocytes. Blood has also been shown to contain circulating 

cell-free DNA released from dying cells in organs throughout the body [63] which could be 

a biomarker for organ dysfunction or graft failure. Cell-free DNA has also been used to 

identify thousands of bacteria and viruses within the human microbiome from blood samples 

[64].

Single cell epigenetics allows for evaluation of epigenetic variability across a population of 

cells from a given tissue in a single person. Single cell epigenetics circumvents the issue of 

cell type heterogeneity within tissue samples which creates artificial differences in DNA 

methylation due to differences in cellular abundance rather than biological differences from 

differential CpG methylation. In humans, single cell DNA methylation has been analyzed in 

pre-implantation embryos [65], spermatagonial stem cells [66], colorectal cancer [67] and 

other populations. In mice, one study [68] analyzed transcriptome and methylome 

reprograming in myocyte-derived cardiac progenitor cells. Although single cell epigenetics 

is an emerging field of analysis, it has the potential to better refine our understanding of 

epigenetic regulation in distinct cell populations. In addition, this technology will prove 
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crucial in understanding epigenetic regulation in less abundant sub-populations of cells that 

have disease relevance [69].

Study design is of critical importance in epigenetic research. Given that epigenetic marks are 

dynamic, differential methylation may reflect risk factors for a disease or downstream 

consequence of a disease depending on the timing of sample acquisition [70]. For this 

reason, epigenetic case control studies cannot differentiate between risk factors for disease 

and sequalae of disease. Sample size requirements are also variable depending on the effect 

size of the epigenetic loci, mean methylation difference between cases/controls and 

methylation variability at loci of interest [71]. One study [72] estimated statistical power for 

EPIC array studies using a statistical threshold of p < 9.42 × 10–8. They estimated >80% 

power to detect a mean methylation difference of 5% between 100 cases and 100 controls at 

85% of sites in their simulated dataset. In addition, the method of DNA methylation data 

acquisition also affects the requisite sample size with beta-binomial statistical models in 

sequencing data being more sensitive and thus requiring smaller sample size [73]. 

Epigenetic datasets are also large and can have possible unknown confounders such as 

population stratification [74] and cell type heterogeneity [15]. Ancestry data and cell type 

estimates should be covariates accounted for prior to data analysis [15,74]. In addition, the 

statistical analysis of such large datasets can lead to type I error [75]. Statistical inflation 

should be controlled using methods such as the Benjamini-Hochburg procedure or the 

Bonferroni correction [59]. Epigenetic studies should also have separate discovery and 

validation cohorts to further prevent spurious genetic and statistical associations [59]. 

Validation cohorts can involve separate samples from the same population (essentially 

reproducibility or internal validation) or preferably samples from a different population with 

either differently measured outcomes, sampling strategy or timepoint of sampling [76].

3.9. Data analysis

All epigenomic data needs to be processed using suites of often publicly available programs, 

as has been reviewed elsewhere [59,77,78] and in what constitutes a continually evolving 

aspect of this field. Our remarks here focus on DNA methylation, given its emergent role as 

a disease relevant biomarker in human disease. Prior to analyzing for differential 

methylation, the methylation data needs to be pre-processed. For Illumina microarray data, 

one must 1) obtain data via bead-level intensity extraction, 2) perform signal intensity 

adjustment, 3) calculate average beta value (methylation ratio) detection p-value, 4) perform 

normalization and 5) perform batch correction. These steps can be accomplished with 

Illumina’s GenomeStudio module or the R package ‘minfi’ [79]. For next generation 

bisulfite sequencing, the data must 1) have its read quality assessed and cleaned up, 2) be 

aligned to a reference genome and 3) CpG methylation status extraction. In RRBS, the 

sequencing reads require alignment and processing steps that are unique to RRBS [80].

Prior to statistical analysis of the data, it is important to consider all of the methylation 

covariates of the data. Age [81], smoking history [82], BMI [83] and cell type composition 

[14] are all known to affect DNA methylation, and these must be taken into account to 

analyze the biological question being investigated. Cell type heterogeneity is a common 

confounder of epigenome-wide association analysis and is not typically measured directly. 
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Correcting for cell-type heterogeneity has been discussed most extensively in whole blood 

samples. Overall, there are two basic methodologies of correcting for cell type 

heterogeneity: reference-free and reference-based techniques. Reference-free methods 

assume that the major sources of variability in the methylation dataset are secondary to cell 

type heterogeneity and seek to create variables explaining this variability that serve as 

surrogates for cell type. These reference-free methods include RefFreeEwas [84], ReFactOR 

[85] and FaST-LMM-EWASher [86]. Because the first several principal components in 

principal component analysis (PCA) of methylation data are associated with cell type [87], 

principal components can be added as covariates in regression analysis to reduce statistical 

inflation associated with cell-type heterogeneity. ReFactOR and FaST-LMM-EWASher are 

in fact variants on PCA and have been shown to increase statistical power and reduce false 

positives in simulated and real methylation datasets [85,86]. It is notable that in all 

reference-free methods, true biological signals can inadvertently be removed using reference 

free cell type correction. Reference-free methods can also correct for systemic confounding 

not related to cell type heterogeneity. Referenced based methods such as the Houseman 

algorithm [88] estimate cell type composition from CpGs known to be associated with cell 

type.

Statistical methods of analyzing epigenetic data are numerous [89]. Microarray data analysis 

predominantly involves comparison of beta-values (methylation ratio) between two groups. 

Illumina Methylation Analyzer (IMA) is specifically developed for 450 K microarray data. 

Two group analysis with IMA involves ‘limma’ (moderated t statistics), student t statistics or 

Wilcoxon rank sum test. ‘Minfi’ is an R package that also compares individual CpG 

methylation with continuous variables by linear regression or categorical variables by F-test 

[60].

Next generation sequencing data can also be analyzed by ratio-based or count-based 

statistical methods. Ratio-based methods use the same methods described for microarray 

data by calculating the methylation ratio for each CpG but this ignores differences in 

sequencing depth at each CpG. Count-based statistical methods include contingency table 

tests (e.g. methylKit [90], COHCAP [91]), logistic regression (e.g. methylkit) or beta-

binomial models (e.g. RADmeth [92], MethylSig [93], MOABS [94], DSS general [95], and 

MACAU [96]). Of these, beta-binomial models perform best in analysis, due to their ability 

to model overdispersion and accounting of coverage data for each CpG but are 

computationally intensive [73,97]. Computation time is longer using RADmeth taking 

approximately 1 to 2 h on a modern personal computer to analyze 39 samples with 

approximately 50,000 CpGs each [73]. MethylSig, MOABS, DSS general and MACAU are 

able to analyze the same dataset on the order of minutes [73]. Datasets with many more 

samples or CpGs may require a computer cluster to perform computation. DSS general, 

however, is more efficient and can analyze datasets with millions of CpGs on a modern 

personal computer in under an hour.

4. Benefits and challenges in clinical implementation

The clinical implementation of epigenetics has enormous potential, particularly in treating 

cardiovascular disease. Epigenetic marks can be used to monitor response to treatment of 
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disease and predict therapeutic response. In luminal B breast cancer, DNA methylation has 

been shown to improve prediction of response to neoadjuvant chemotherapy [98]. DNA 

methylation has also been shown to be associated with response to etanercept in patients 

with rheumatoid arthritis [99]. Epigenetics could be used to predict disease and, 

subsequently, to predict the disease course and response to treatment. The clinical impact of 

such technology could revolutionize patient care and have far reaching effects.

These benefits, however, are not without difficulty. With the vast increase in biological 

information captured by state-of-the-art epigenomic technologies comes the thorny 

challenges of clinical implementation of these technologies. How we meet these challenges 

will determine the extent to which epigenomic knowledge can be deployed to influence 

clinical care. Privacy is of the utmost concern especially with sequencing data because 

individual genetic and epigenetic risk factors can be found in the dataset.

Who owns the data? The patient certainly has a right to their own epigenetic data and should 

be able to request their data returned later if they would like to withdraw from research. The 

return of epigenetic data should have a predetermined procedure to transfer the data with a 

genetic counselor to help explain the results, especially if the epigenetic data contains 

actionable information. Each patient’s preferences should also be clearly recorded during 

enrollment into the study including whether they would like to be contacted later about 

significant results or follow-up.

The cost of acquiring epigenetic data is high though as technology improves these costs will 

decrease. Given the dynamic nature of epigenetic data, the timing of data acquisition is of 

critical importance and the optimal timing of repeated sampling must be empirically 

determined for different disease settings. More research is required on this subject, 

especially as the epigenetic profiling of single patient samples become broader and are 

implicated in wider reaches of clinical care.

Who needs epigenetic profiling? Until this technology is affordable as standard lab tests, 

who needs epigenetic risk profiling will likely be determined by which patients are deemed 

to have high risk medical conditions based on analysis of clinical risk factors. Machine 

learning, a form of artificial intelligence which allows computers to learn and make 

predictions from data, has the advantage of being able to uncover complex associations in 

large datasets which is well suited to epigenetic data [100]. As such, machine learning may 

better help to classify disease based on epigenetic risk factors [101–103] and may be able to 

offer individualized treatment to improve outcomes. The long-term answer to the question of 

who needs epigenetic profiling will be dependent on how effectively large cohort studies 

demonstrate strong predictive or preventative value, thereby encouraging insurers and health 

systems to invest in the tools for widespread adoption. The ultimate impact of epigenomic 

medicine will finally rely on the empowerment of the (appropriately educated) physician to 

use the insights from these tools to manage health in an accountable manner over the life of 

the patient (Fig. 1).
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Fig. 1. Integrating epigenomics into patient care.
Epigenetic marks incorporate environmental and genetic factors into the pathophysiology of 

many aspects of cardiovascular disease. These epigenetic biosignatures can be used by 

clinicians to treat disease and monitor individual response to treatment. Integrating 

epigenetic data, analysis and clinician education into patient care are crucial next steps in 

implementation to improve clinical care at a population level.
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