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Abstract

Design and Optimization of a Biomanufacturing-Driven Reference Mission Architecture for
the Human Exploration of Mars

by

Aaron Jacob Berliner

Joint Doctor of Philosophy
with The University of California, San Francisco in Bioengineering

University of California, Berkeley

Professor Adam P. Arkin, Chair

Despite a myriad of national space agencies, industrial partners, university laboratories,
and policy groups preparing for human exploration of the Martian surface, there remains a
need for a single reference mission architecture (RMA) that models and captures the vast
design parameter space, and hence the complexities, of a Mars human exploration oper-
ation. The available literature often focuses on shorter-term, opposition-class exploration
missions of approximately 30 days of surface operations, instead of the more probable,
longer-term, conjunction-class exploration missions of approximately 500 days of surface
operations. A critical aspect of these longer duration missions is determining the food,
medicine, and materials that are necessary to support a crew over the specified lengthy
time-period. In the following dissertation I demonstrate the progress towards the develop-
ment of a biomanufactory-driven RMA. A crewed mission to and from Mars may include an
exciting array of enabling biotechnologies that leverage inherent mass, power, and volume
advantages over traditional abiotic approaches. I begin this dissertation by articulating the
scientific and engineering goals and constraints, along with example systems, that guide the
design of a surface biomanufactory. Extending past arguments for exploiting stand-alone
elements of biology, I argue for an integrated biomanufacturing plant replete with modules
for microbial in situ resource utilization, production, and recycling of food, pharmaceuti-
cals, and biomaterials required for sustaining future intrepid astronauts. Here I also discuss
aspirational technology trends in each of these target areas in the context of human and
robotic exploration missions. I then formalize the mathematical framework for modeling a
biomanufacturing system developing the resources for sustaining a human exploration mis-
sion on the surface of Mars by establishing mission goals, extending the Equivalent System
Mass framework for comparision of missions, develop the framework for modeling a Martian
resource inventory in terms of supplies both produced via ISRU processes and transported as
cargo from Earth, and develop the framework required for sustaining a human crew in terms
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of essential resources. Using this collection of frameworks, I develop a software framework
to implement and integrate process models that can be experimentally validated by the col-
laborations of the Center for the Utilization for Biological Engineering in Space, beginning
with the crop cultivation models for food consumption and pharmaceutical development for
astronauts. Finally, I presents an argument for how Space Bioprocess Engineering drives
sustainability on- and off-World. Although raison d’etre of Space Bioprocess Engineering
is the design, realization, and management of biologically-driven technologies for support-
ing offworld human exploration, it has the potential to offer transformative solutions to the
global community in pursuit of the United Nations Sustainable Development Goals. Here
we address the growing sentiment that investment in spacefaring enterprises should be redi-
rected towards sustainability programs. In outlining the Earth-benefits of dual-use Space
Bioprocess Engineering technologies, we both show that continued investment is justified
and offer insight into specific R&D strategies.
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Center for the Utilization of Biological
Engineering in Space

Even before NASA reached the Moon, endeavors to design mission specifications were
being drafted with step required to reach the surface of Mars[545, 59, 434]. Decades later in
2004, the President Bush unveiled a plan to return to the moon and on to Mars[68]. Now in
2021, the United States of America still dreams of reaching Mars[337].

For decades, NASA has continued to develop a wide array of technologies for advancing
human space exploration. In late 2017, and under the premise that biological systems can
provide utility in space[372, 371], NASA funded a proposal for the establishment of a Space
Technology Research Institute (STRI) called the Center for the Utilization of Biological
Engineering in Space (CUBES) to support biomanufacturing for deep space exploration
that realizes the inherent mass, power, and volume advantages of space biotechnology over
traditional abiotic approaches[209]. I begin my dissertation with this chapter on CUBES,
prior to even the introduction and background of science, as homage to the importance of
institutional management which makes such science possible. Here, I offer a brief explanation
of CUBES in order to (1) establish an envelope of the institution and mandate that scopes
the following dissertation; (2) establish the relationship of CUBES with respect to NASA;
and (3) give credit to the many scientists and engineers who have build our center.

This center was tasked with advancing the practicality of deploying an integrated, multi-
function, multi-organism biological system on a Mars mission through multidisciplinary re-
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search culminating in a biomanufacturing demonstration of materials, pharmaceuticals, and
food. The primary tasks[209] for CUBES are

1. In situ microbial media and feedstock division (MMFD), which harnesses Mars atmo-
spheric and regolith resources for downstream biological use;

2. In situ manufacture of mission products, which creates outputs like propellants and
building materials that are fundamental enablers of any long-duration space mission;

3. In situ food and pharmaceutical synthesis, which allows these long-duration space
missions to be manned, and uses plants and microbes that provide food, nutrients and
medicine;

4. Systems design and integration, to optimally allocate and utilize Mars resources, to
tightly integrate and automate internal processes, and to satisfactorily achieve perfor-
mance per mission specifications.

CUBES was designed in alignment with the 2015 NASA Technology Roadmaps, espe-
cially TA07 Human Exploration Destination Systems. TA07 includes TA7.1 In Situ Resource
Utilization (the MMFD, BBMD, and FPSD will all use such inputs), TA7.2 Sustainability
and Supportability (the MMFD, BBMD, and FPSD will all use sustainable resource recy-
cling), TA7.4 Habitat Systems (CUBES will develop a semi-autonomous proof-of-concept
biomanufacturing demonstration), and TA7.6 Cross-Cutting Systems (the BBMD additive
manufacturing technology will be designed for scaling assembly). Additionally, CUBES
will facilitate the development of technologies in TA06 Human Health, Life Support, and
Habitation Systems by enabling long-duration, deep-space human exploration through the
minimization of resupply consumables and increased Earth independence via Martian in situ
resource utilization, synthetic biology, and biomanufacturing. The FPSD will address TA6.3
Human Health and Performance, and the MMFD will address TA6.1 Environmental Con-
trol, Life Support Systems and Habitation Systems, and TA6.4 Environmental Monitoring,
Safety, and Emergency Response through remediation of toxic perchlorate in the Martian
regolith.

As of the writing of this report in completion of this dissertation, CUBES has published
∼68 papers (all of which can be openly accessed via our website here) and which we have
visualized categorically in the Figure below. An analysis of 47 of the referable papers (via
WebOfScience) reports 540 citations with an average citation of 11.49/paper – and a CUBES
H-Index of 9. Moving into the CUBES no-cost-extension and next phase of CUBES-II we
expect to add another ∼5-10 publications to our dossier in the coming months.

As we wrap up CUBES, we have officially sunsetted our popular seminar series (schedule
available here). Over the course of 5 years, we are proud to have offered ∼60 seminars drawn
from both internal CUBES researchers and external experts in the space and biomanufac-
turing community. All seminar materials have been achieved and can be accessed here.

https://cubes.space/resources
https://www.webofscience.com/wos/woscc/citation-report/a279ad56-268d-4788-8032-2d5fb8c3805c-3e00baed
https://drive.google.com/drive/folders/17YzJQ4E90G_q33vU84TYVDML9zufm5Tk
https://drive.google.com/drive/folders/17YzJQ4E90G_q33vU84TYVDML9zufm5Tk
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Chapter 1

Introduction

1.1 Background and Motivation
In over a century of grand visions for the human exploration of Mars, the notion of footsteps
in red sand have padded from science fiction story devices[458] to the raison d’être of national
organizations. Motivational appeals have been cast in a variety of languages; some have
argued that we must go as a matter of pure science in an effort to probe the untouched
geology for clues to the early solar system or the origins of life. Others have argued that
we must go to answer the challenge of climbing the highest mountain, and others still have
argued that we must go as a means to forge a new future. While motivations vary, we are
certain that meeting the grand scientific and technical challenges required to enable human
exploration of Mars represents a call to the better angels of our nature and will usher in new
paradigms in discovery, development, and society.

Extended human stay in space or upon the surface of alien worlds like Mars introduces
new mission elements that require innovation[394]; among these are the biotechnological
elements[371, 372, 401] that support human health, reduce costs, and increase operational
resilience. The potential for a Mars mission in the early 2030s[147] underscores the urgency
of developing a roadmap for advantageous space biotechnologies.

A major limiting factor of space exploration is the cost of launching goods into space[557].
The replicative capacity of biology reduces mission launch cost by producing goods on-
demand using in situ resources[444], recycling waste products[221], and interacting with
other biological processes for stable ecosystem function[194]. This trait not only lowers
initial launch costs, but also minimizes the quantity and frequency of resupply missions
that would otherwise be required due to limited food and pharmaceutical shelf-life[156] on
deep space missions. Biological systems also provide robust utility via genetic engineering,
which can provide solutions to unforeseen problems and lower inherent risk[371, 40]. For
example, organisms can be engineered on-site to produce a pharmaceutical to treat an unex-
pected medical condition when rapid supply from Earth would be infeasible[366]. A so-called
“biomanufactory” for deep space missions[370] based on in situ resource utilization and com-
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Figure 1.1: Artist’s rendering of a crewed Martian biomanufactory powered by photovoltaics, fed via atmospheric
ISRU, and capable of food and pharmaceutical synthesis (FPS), in situ manufacturing (ISM), and biological loop
closure (LC). Artwork by Davian Ho.

posed of integrated biologically-driven subunits capable of producing food, pharmaceuticals,
and biomaterials (Fig. 1.1) will greatly reduce launch and resupply cost, and is therefore
critical to the future of human-based space exploration[371, 401].

1.2 Thesis Statement
In an effort to address the aforementioned challenges for human exploration of Mars – across
the contexts of spacefaring, space bioprocess engineering, and mission design – we summarize
our over arching hypothesis as

The optimal set of technologies and operational strategies for sustaining a long-
duration human exploration mission on Mars is driven by the design, optimization,
deployment, and management of a surface biomanufactory.

Given that the overarching hypothesis of the CUBES program is that biological engi-
neering technologies can provide utility for long-term human exploration missions on Mars,
my proposed project is the design and optimization of a biomanufacturing-driven RMA for
the human exploration of Mars. In essence, what follows is a collection of models of various
systems designed1 (1) to demonstrate and physical or engineering principle; (2) to prove data
consistency with or discriminate among theories; (3) to predict future behaviors or response

1These goals of constructing a model, generally, are the guidelines of my PI Adam Arkin
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to perturbation; and (5) to design or optimize a system. The reason underlying research
questions that guide the construction and integration of these models are

1. How can we model the parametric constraints on and tradeoffs among bioprocesses
such that they meet or exceed mission need and are engineered to minimize the risk of
failure under different orbital, crew, and landing site scenarios?

2. What are the critical system parameters for demonstrating the feasibility and advan-
tages of biological engineering on a human exploration mission to Mars?

3. Do any requirements for long term exploration exceed the feasible system parameters?

1.3 Thesis Outline
In an effort to most efficaciously present the progress towards address the overall hypothesis
and the accompanying research questions, the following dissertation is organized as follow-
ings.

Chapter 2 explores the future of Space Bioprocess Engineering (SBE) as an emerging
multi-disciplinary field to design, realize, and manage biologically-driven technologies specif-
ically with the goal of supporting life on long term space missions. SBE considers synthetic
biology and bioprocess engineering under the extreme constraints of the conditions of space.
A coherent strategy for the long term development of this field is lacking. In this Perspec-
tive we describe the need for an expanded mandate to explore biotechnological needs of the
future missions. We then identify several key parameters – metrics, deployment and training
– which together form a pathway towards the successful development and implementation
of SBE technologies of the future.

Chapter 3 presents a perspective that articulates the scientific and engineering goals and
constraints, along with example systems, that guide the design of a surface biomanufactory.
Extending past arguments for exploiting stand-alone elements of biology, we argue for an
integrated biomanufacturing plant replete with modules for microbial in situ resource uti-
lization, production, and recycling of food, pharmaceuticals, and biomaterials required for
sustaining future intrepid astronauts. We also discuss aspirational technology trends in each
of these target areas in the context of human and robotic exploration missions.

Chapter 4 presents the progress towards formalizing the mathematical framework for
modeling a biomanufacturing system developing the resources for sustaining a human explo-
ration mission on the surface of Mars by establishing mission goals, extending the Equivalent
System Mass framework for comparision of missions, develop the framework for modeling a
Martian resource inventory in terms of supplies both produced via ISRU processes and trans-
ported as cargo from Earth, and develop the framework required for sustaining a human crew
in terms of essential resources. NASA mission systems proposals are often compared using
an equivalent system mass (ESM) framework, wherein all elements of a technology to deliver
an effect – its components, operations and logistics of delivery – are converted to effective
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masses, which has a known cost scale in space operations. To date, ESM methods and the
tools for system comparison largely fail to consider complexities stemming from multiple
transit and operations stages, such as would be required to support a crewed mission to
Mars, and thus do not account for different mass equivalency factors during each period
and the inter-dependencies of the costs across the mission segments. Further, ESM does not
account well for the differential reliabilities of the underlying technologies. The uncertainty
in the performance of a technology should incur an equivalent mass penalty for technology
options that might otherwise provide a mass advantage. Here we draw attention to the
importance of addressing these limitations and formulate the basis of an extension of ESM
that allows for a direct method for analyzing, optimizing, and comparing different mission
systems. We outline a preliminary example of applying extended ESM (xESM) through a
technoeconomic calculation of crop-production technologies as an illustrative case for devel-
oping offworld biomanufacturing systems.

Chapter 5 presents the computational methods and construction of echusOverlook (eO)
software. eO is a tool for designing, exploring, and optimizing a biologically driven RMA for
human exploration of Mars

Chapter 6 presents the first RMA case-study for evaluating the photovoltaics-driven
power production on Mars. A central question surrounding possible human exploration of
Mars is whether crewed missions can be supported by available technologies using in situ
resources. Here, we show that photovoltaics-based power systems would be adequate and
practical to sustain a crewed outpost for an extended period over a large fraction of the
planet’s surface. Climate data were integrated into a radiative transfer model to predict
spectrally-resolved solar flux across the Martian surface. This informed detailed balance cal-
culations for solar cell devices that identified optimal bandgap combinations for maximizing
production capacity over a Martian year. We then quantified power systems, manufacturing,
and agricultural demands for a six-person mission, which revealed that photovoltaics-based
power generation would require <10 t of carry-along mass, outperforming alternatives over
∼50% of Mars’ surface.

Chapter 7 presents the second RMA case-study for Nitrogen accountancy in space agri-
culture. Food production and pharmaceutical synthesis are critical biotechnologies to enable
human exploration of Mars because they reduce mass and volume requirements through
scalable and modular agriculture in closed-loop systems. The NASA-sponsored modified
energy cascade (MEC) model used to evaluate crop growth is insufficient as a tool to sup-
port exploration missions in its monocrop architecture, incomplete material balances on key
crop cultivation and life support resources like nitrogen, and lack of the rigorous physical
inventory accounting that is required to evaluate mission costs. We expand the MEC model
to account for nitrogen dependence across an array of crops and validate our model with ex-
perimental fitting of parameters. By adding nitrogen limitations, the extended MEC model
accounts for potential interruptions in feedstock supply. Furthermore, we use sensitivity
analysis to distil key consequential parameters that may be the focus of future experimental
efforts. Finally, the integration of physical system inventories enables comparisons in the
choice of architecture and technology.



CHAPTER 1. INTRODUCTION 8

Chapter 8 presents the 3rd RMA case-study for evaluating the cost of pharmaceutical
purification for a long-duration space exploration medical foundry. There are medical treat-
ment vulnerabilities in longer-duration space missions present in the current International
Space Station crew health care system with risks, arising from spaceflight-accelerated phar-
maceutical degradation and resupply lag times. Bioregenerative life support systems may
be a way to close this risk gap by leveraging in situ resource utilization (ISRU) to perform
pharmaceutical synthesis and purification. Recent literature has begun to consider biological
ISRU using microbes and plants as the basis for pharmaceutical life support technologies.
However, there has not yet been a rigorous analysis of the processing and quality systems
required to implement biologically produced pharmaceuticals for human medical treatment.
In this work, we use the equivalent system mass (ESM) metric to evaluate pharmaceutical
purification processing strategies for longer-duration space exploration missions. Monoclonal
antibodies, representing a diverse therapeutic platform capable of treating multiple space-
relevant disease states, were selected as the target products for this analysis. We investigate
the ESM resource costs (mass, volume, power, cooling, and crew time) of an affinity-based
capture step for monoclonal antibody purification as a test case within a manned Mars
mission architecture. We compare six technologies (three biotic capture methods and three
abiotic capture methods), optimize scheduling to minimize ESM for each technology, and
perform scenario analysis to consider a range of input stream compositions and pharma-
ceutical demand. We also compare the base case ESM to scenarios of alternative mission
configuration, equipment models, and technology reusability. Throughout the analyses, we
identify key areas for development of pharmaceutical life support technology and improve-
ment of the ESM framework for assessment of bioregenerative life support technologies.

Chapter 9 demonstrates the impact and value of space-based biomanufacturing. Here we
identify specific off-world scenarios where the concept is most applicable, as well as the vital
inventories that can be made available thereby. This will serve to increase capabilities of
human operations beyond Earth-orbit and allow for extended mission-design through greater
autonomy while minimizing risks through redundancy. We sketch the potential routes and
systems to arrive at these goals in the form of specialized microbial cell factories that can
most meaningfully leverage the resources available along the journey. The strategic vision
presented here relies heavily on synthetic biology, integrates with major plans for in situ
resource utilization, and highlights applications that engineered biology is uniquely suited to
address. We finish by advocating for the research and development investments that need
to be made in order to significantly increase readiness of these technologies over the coming
decade. This dovetails with current efforts to return humans to the Moon – with Mars on the
horizon. Besides ensuring the feasibility and sustainability of crewed Space exploration and
habitation, the advancement of these technologies may spawn a new scalable microgravity-
based biotechnology industry that contributes to the creation of a circular economy on Earth.

Chapter 10 presents an argument for how Space Bioprocess Engineering drives sustain-
ability on- and off-World. Although raison d’etre of Space Bioprocess Engineering is the
design, realization, and management of biologically-driven technologies for supporting off-
world human exploration, it has the potential to offer transformative solutions to the global
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community in pursuit of the United Nations Sustainable Development Goals. Here we ad-
dress the growing sentiment that investment in spacefaring enterprises should be redirected
towards sustainability programs. In outlining the Earth-benefits of dual-use Space Biopro-
cess Engineering technologies, we both show that continued investment is justified and offer
insight into specific R&D strategies.
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Chapter 2

Space Bioprocess Engineering on the Horizon

Space Bioprocess Engineering (SBE) is an emerging multi-disciplinary field to design,
realize, and manage biologically-driven technologies specifically with the goal of sup-
porting life on long term space missions. SBE considers synthetic biology and biopro-
cess engineering under the extreme constraints of the conditions of space. A coherent
strategy for the long term development of this field is lacking. In this Perspective we
describe the need for an expanded mandate to explore biotechnological needs of the
future missions. We then identify several key parameters – metrics, deployment and
training – which together form a pathway towards the successful development and
implementation of SBE technologies of the future.

The following chapter can also found here: A.J. Berliner, I. Lipsky, D. Ho, J. Hilzinger, G.
Vengerova, M. McNulty, K. Yates, N.J.H Averesch, C.S. Cockell, L.C Seefeldt, C.S. Criddle,
S. Nandi, K.A. McDonald, A.A. Menezes, A. Mesbah, A.P. Arkin. Space Bioprocess
Engineering on the Horizon. Communications Engineering. (2022). DOI: 10.1038/s44172-
022-00012-9.

Biotechnologies may have mass, power and volume advantages compared to abiotic ap-
proaches for critical mission elements for long-term crewed space exploration[371, 401]. While
there has been progress in demonstration and evaluation of these benefits for specific exam-
ples in this field such as for food production, and waste recycling, there is only just emerging
possible consensus on the scope of the application of biosynthetic and biotransformative
technologies to space exploration. Additionally, there is almost no formal definition of the
scope, performance needs and metrics, and technology development cycle for these systems.
It is time to formally establish the field of Space Bioprocess Engineering (SBE) to build this
nascent community, train the workforce and develop the critical technologies for planned
deep-space missions. SBE (Fig. 2.1a) borrows elements from a number of related fields such
as the synthetic biology design process from Bioengineering, astronaut sustainability[580,
565] and mission design from Astronautics[232, 147], environmental-context and constraints
from the Space Sciences, and living systems habitability and distribution concepts from

https://www.nature.com/articles/s44172-022-00012-9
https://www.nature.com/articles/s44172-022-00012-9
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Astrobiology[180]. SBE represents an extension of the standard astronautics paradigm in
meeting NASA’s Space Technology Grand Challenges (STGCs) for expanding the human
presence in space, managing resources in space, and enabling transformative space explo-
ration and scientific discovery[514, 372] (Fig. 2.1b). Aspirational realizations of SBE would
feature prominently in establishment of in-orbit test-facilities, interplanetary waystations,
lunar habitats, and a biomanufactory on the surface of Mars[44]. Differentiated from tradi-
tional efforts in space systems engineering, these SBE systems would encapsulate elements
from in situ resource utilization (ISRU) for the production of biological feedstocks such
as fixed carbon and nitrogen for use as inputs for plant, fungal, and microbial production
systems[90, 302], fertilizers for downstream use by plants[444]; in situ (bio)manufacturing
(ISM) to produce materials requisite to forge useful tools and replacement parts[554], food
and pharmaceutical synthesis (FPS) via plant, fungal and microbial engineering for increased
productivity and resilience in space conditions, production of nutrients and protective/ther-
apeutic agents for sustaining healthy astronauts[76, 367]; and life-support loop closure (LC)
for minimizing waste and regenerating life-support functions and biomanufacturing. Maxi-
mizing the productivity of the biomanufacturing elements increases the delivery-independent
operating time of a biofoundry in space while minimizing cost and risk.[435] (Fig. 2.1c). Ul-
timately, efforts must be mounted to: (1) update the mandate to include SBE as a tool for
enabling human exploration; (2) specialize the metrics and methods that guide SBE tech-
nology life-cycle and development; (3) further develop the means by which SBE technologies
are designed for ground-based testing and matured on offworld platforms (Fig. 2.1d); and
(4) train the minds entering the spacefaring workforce to better understand the leverage the
SBE advantages and capabilities.

2.1 An Inclusive Mandate To Leverage SBE
While previous strategic surveys such as NASA’s Journey to Mars program[403] the 2018
Biological and Physical Sciences (BPS) Decadal Survey[2] have acknowledged that plants
and microbes may be integral parts of life support and recycling systems, but can present
challenges to the environmental operation of engineering systems in space due to contami-
nation and other inherent drawbacks. However, no such survey has coherently called for the
development of the science and technology to engineer these organisms and their biotransfor-
mative processes in support of space exploration. The SBE community requires a mandate
that identifies mission designs and elements for which engineering biosystems would be most
appropriate, and defines the productivity, risk and efficiency targets for these systems in an
integrated context with other mission elements and in fair comparison to abiotic approaches.
This will require integration of SBE resources and knowledge across government, industry,
and academia. Previous biological strategies should now specifically call for (1) definition
of the physical engineering constraints on the production systems and development of op-
timized reactor/processing systems for these elements; (2) quantitative assessment of the
bioengineering required to meet performance goals in space given the special physiology
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Figure 2.1: Overview of Space Bioprocess Engineering challenges, components, and platforms. (a) Venn Diagram-
based definition of Space Bioprocess Engineering (SBE) as an interdisciplinary field. (b) NASA’s space technology
grand challenges[514] key by shape and colored by group. (c) Possible SBE components separated by colors for in
situ resource utilization (ISRU), food and pharmaceutical synthesis (FPS), in situ manufacturing (ISM), and loop
closure (LC), with the biological processes inherent to each represented below in circles. (d) Platform evolution for
biological experiments starting with Earth-orbit CubeSats and proceeding through the ISS, Mars-and-Luna-based
rovers, to Lunar and cis-Lunar based human and autonomous systems via the Artemis program.

required in an offworld environment; and (3) development of efficient tooling for offworld
genetic engineering along with the proper containment and clean-up protocols.

Such a mandate would result in: (1) a deeper, more mechanistic understanding of the
growth and phenotypic characteristics of organisms operating in space-based bioprocesses
taking into account issues of differences in gravity, radiation, light, water quality; new ap-
plications of these organisms off-planet; (3) new reactors, bioprocess control designs and
product processing/delivery technologies accounting for these conditions and the specific
constraints of scaling and operational simplicity in space. The development of open, pub-
licly accessible data and tools would enable rigorous comparison among biotechnologies and
abiotic (physical and chemical) approaches, and across mission-scenarios of higher-fidelity.
Ideally, this should create interative sub-communities that may collaborate and compete on
different approaches to meet bioengineering goals and metricize results against the mission
specifications.

SBE is an emerging engineering discipline and there are long but feasible routes from dis-
covery, through invention to application. Furthermore, SBE is multidisciplinary and its util-
ity within the larger space community demands specialized cross-training of diverse teams.
It in such situations agencies like the Department of Energy (DOE) have found it effective
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to ensure there is specific funding to support longer-term team science to accomplish am-
bitious scientific and technical goals. The Industrial Assessment Centers (IACs) program
is one longest-running DOE programs (started in 1976) and has provided nearly 20,000
no-cost assessments for small- and medium-sized manufacturers and more than 147,000
recommendations in an effort to reduce greenhouse gas emissions without compromising
U.S. manufacturing’s competitive edge globally[144]. Conversely, successful examples for
demonstrating the effect of fostering multidisciplinary centers for space-based biotechnol-
ogy can be found in NASA’s Center for the Utilization of Biological Engineering in Space
(CUBES, https://cubes.space/), or ESA’s Micro-Ecological Life Support System Alterna-
tive (MELiSSA, https://www.melissafoundation.org/) program – with the capabilities
to design, prototype, and ultimately translate biological technologies to space while training
the necessary workforce. Such centers are tasked with the development of initial concept
trade studies; defining requirements; managing life-support interfaces; evaluating ground
integration, operations, and maintenance; coordinating mission operations; and supporting
and sustaining engineering and logistics[350, 92]. However, these programs are generally
restricted to shorter operation timelines – and would benefit from a longer horizon. This is
especially true for SBE as biological developments generally require a longer timeframe for
integration in industrial endeavors.

2.2 Specialization of SBE Metrics and Methods
Response to the proposed expanded mandate above requires careful consideration of the
space-specific performance metrics that SBE must fulfill. Payload volume, mass, and power
requirements are made as small as possible and are limited in envelope by their carrier
system. One of the most compelling aspects of biotechnology is the ability of such systems to
adapt to these constraints relative to certain industrial alternatives. To efficiently evaluate
and deploy novel biotechnologies, SBE experiments should begin with standardized unit
operations that clearly define the desired biological function. This allows for a standardized
experimental framework to test modular biotechnologies not only within the system to be
engineered, but also within and between research groups. To define the minimal basis set
of unit operations for a given mission, test and optimize the biotechnologies for each unit
operation, and integrate each unit operation into a stable system, we propose to adopt the
methods from standard bioengineering in the form of a Design-Build-Test-Learn (DBTL)
cycle[112] (Fig. 2.2).

Performance Metrics

The design phase of the DBTL cycle begins with the establishment of core constraints and
engineering targets that can be explored by standardizing the high-priority performance met-
rics ({Modularity, Recyclability, Supportability, Autonomy, Sustainability})- which we argue
gain special weight in space- from which downstream technoeconomic and life-cycle analysis

https://cubes.space/
https://www.melissafoundation.org/
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decisions can be explored (Fig. 2.2a). Modularity assesses the agility of a system in respond-
ing to product changeovers and demand variations to maximize flexible biomanufacturing –
de-risking on-demand biological production. Recyclability assesses the extent to which wastes
and byproducts can be recycled and bioprocesses can be reused/repaired to minimize overall
consumable requirements – de-risking circular bioprocessing. Supportability assesses system
self-sufficiency to maximize self-reliance and minimize logistic resupply requirements from
Earth – de-risking unplanned mission extension. Autonomy assesses the extent to which op-
timal system performance can be realized under unknown and transient offworld conditions,
as well as potential system faults/failures, with minimal human intervention to maximize
the system resilience – de-risking robust and fault-tolerant biomanufacturing. Sustainability
assesses the flow of environmental assets to minimize environmental footprint and maxi-
mize resource efficiency – further de-risking the potential for negative impacts to planetary
protection.

The space-specific constraints on performance include: (1) an exceptionally strong weight-
ing on a low mass/volume/power footprint for the integrated bioprocess; (2) limited logistic
supply of materials and a narrow band of specifically chosen feedstocks; (3) added emphasis
on simplicity of set-up, operation and autonomous function to free up astronaut time; (4)
mission-context de-risking against cascading failure; (5) strong requirements for efficiency
and closed-loop function to maximize efficient resource use and minimize waste products;
(5) a critical need for modularity and ’maintainability’ so that parts can be swapped eas-
ily, new functions added easily, and repairs can be done without logistical support beyond
the crew; (6) an increased dependence on other mission elements such as provision of wa-
ter, gases, astronaut wastes, power, and other raw materials such a regolith which may
vary in abundance, quality, and composition in unpredictable ways; (7) the need to design
sustainable and supportable operation across long time horizons without logistical support
beyond the bounds of the local mission; (8) increased ability to operate in more extreme
environments including low gravity, high radiation, low nutrient input, and other stressors;
(9) process compatibility among common media and operational modes to allow for easy
process integration and risk-reduction through redundancy of systems; and (10) further con-
sideration and development of biocontainment of engineered organisms to prevent (or at least
mitigate) unexpected dispersal of unwanted living systems in pristine or tightly controlled
environments[338, 521, 308].

Ideally, this combination of performance metrics provides informative constraints on biol-
ogy and technology choices. Feedstock, loop-closure, environmental parameters and product
needs will constrain the minimal set of organisms to develop and test for growth rate, op-
timal cultivation, robustness and resilience to space conditions and shelf-life, safety and ge-
netic tractability, product yield, titer and rate, feedstock utilization, ease of biocontainment,
streamlining of purification, and waste streams[31]. Once suitable chassis organisms have
been evaluated and selected, the DBTL cycle can integrate staged co-design of the optimal
process hardware (e.g. molecular biological set-ups, genetic engineering tools, bioreactors,
and product post-processing systems) configuration, operating parameters, and process con-
trollers. Aerobic organisms may be much more efficient but only viable in systems in which
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Figure 2.2: Overview of space systems bioengineering (SBE) performance metrics and the SBE-specific Design,
Build, Test, Learn (DBTL) cycle. The SBE performance metrics in (a) are shaded to correspond to the top level core
constraints and engineering targets within the (b) DBTL cycle.

oxygen is available and easily obtainable. This in particular provides insight into the spe-
cific questions that require further study in terms of organism engineering. The question of
anaerobic versus aerobic metabolism really depends on the product and the style of process –
at small scale aerobics may have an advantage in terms of yield and rate, due to more energy
being derived from the transfer of reducing equivalents to cellular metabolism – while at large
scale, mass-transfer limitations are dominating these parameters (yield and rate), which gives
anaerobics an advantage[560]. Additionally, bioproduct isolation and purification processes
need to be considered beyond the Earth-centric means of fermentation. For example, cell-free
bioproduction systems may prove critical in biotransformation and point-of-care biosensing
as shown in recent space pharming techoeconomic analyses[367]. Operation of the cycle
over increasing scale and ever more realistic deployment environments permits controlled
traversal of the technology readiness levels for each technology and mission.

Design-Build-Test-Learn

In the design phase, we argue that efforts must be made to (1) create a database of engineer-
ing targets (products, production rates, production yields, production titers, risk factors,
waste/recyclability factors, material costs, operational costs, weight, power demand/gen-
eration) that set the core constraints for workflow and mission optimization; (2) leverage
emerging pathway design software and knowledge bases[26] to identify the key types of bi-
ological production workflows (i.e. metabolic engineering strategies[328]) that need to be
modified for different space-based scenarios; (3) identify the supporting biomanufactory de-
sign elements within which these production workflows could be implemented[80, 21, 197];
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and (4) identify the chassis organisms and other biological components[489, 77, 117] that will
be required to compose the complete set for downstream engineering specifications. Systems
designed from a minimal set of reliable parts, standard interconnects, and common controller
languages also offer the best possible chance of characterized reliability under changing en-
vironmental conditions. Therefore, control of hardware and wetware should be augmented
through the design and operation of software support. We see a fundamental effort in SBE as
the amalgamation of space-driven hardware, software, and wetware that follows a synthetic
biology DBTL cycle[97].

The foundation of new SBE performance metrics that guide the design phase of the
DBTL cycle must be augmented with additional downstream efforts in the build and test
phases to (1) develop a process design framework that takes in specific production needs in
amounts/time over acceptable ranges under the constraints expected across different offworld
scenarios; (2) create the biological, process, and mission design software platforms to allow
sophisticated DBTL, risk assessment, and mission choice support; (3) create the sensor/-
controller sets that will allow real-time optimization of biological production workflows; and
(4) develop the online process controller framework that coordinates reactor conditions and
inter-reactor flows to optimize reliable production across all units within acceptable ranges
with minimal power and risk. The realization of this SBE DBTL cycle depends on the in-
tegration of such benchmark models and modeling standards. These benchmarks describe
the dynamics of all SBE processes and relate to the SBE metrics in the design phase from
which optimization can be carried out in the learn phase.

DBTL cycles within the scope of SBE must prepare for both ground- and flight-based
system operations. Ground-based developments must prioritize designs that meet the re-
quirements for flight-based testing, during which system behaviors may be better character-
ized in unique environments such as those offered in micro- and zero-gravity. For instance,
a biological nitrogen-fixing system on Earth must at least be designed to meet the mass
and volumetric constraints required for validated ground-based simulators of microgravity,
GCR, other physical stressors. Meeting certain requirements for time, power, and substrate
usage is essential for any degree of long-term operation. This allows for the in-flight test-
ing of bioreactors previously evaluated on Earth that can more directly measure the effects
micro-gravity, radiation and other stressors on the bioprocessing system. A combination of
ground- and flight- based tests are required for the development of functional and robust
space biosystems.

Development of Means for SBE Flight

Deployment of SBE platforms as mission critical elements will likely be reserved for longer
duration human exploration missions such as those in the Artemis or Mars programs[44].
These future programs are still in the concept and planning stage in development, but will
certainly be composed of a myriad of technologies that range in degree of flight-readiness as
standardized by NASA’s Technology Readiness Level[339] (TRL, used to rate the maturity
of a given technology during the acquisition phase of a program). Recent updates in NASA’s
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definitions of and best-practices for applying the TRL paradigm led to the standardization
and merging of exit criteria between hardware and software systems[229]. However, the TRL
concept as it relates to SBE must be further expanded to include definitions and exit criteria
for ’wetware’ in addition and in relationship to hardware and software elements.

Deployment of SBE is space requires a level of rigor in technology acceptance that is of
a different order than most Earth-based systems because mission failures are exceptionally
costly and difficult to recover from. The missions into which SBE processes will integrate are
hugely complicated and as noted above will be interdependent in complex ways. Thus while

Platform Volume Power Op. Lifetime Temperature Air Comp.

CubeSat 0.0187 m3 20-45 W ∼20 years
PocketQube 0.000125 m3 Variable ∼5 years

Requires heating unit
within constraints Self-contained

Bioculture System Not stated 140W ∼60 days
37-45°C in main
chamber, ambient to
5°C in cooling chamber

Self-contained
medical grade gas

WetLab-2
(SmartCycler) 235.97 m3 350W Extractions <3hrs,

no lifetime stated 50-95°C

Rodent Habitat
Hardware System 0.019 m3 Not stated ∼30 day experiments

Compact Science
Experiment Module 0.0015 m3 3.2W >1 month experiments

Vegetable
Production
System (Veggie)

0.48 m3

growth area
>12 day experiments,
can replace crops

Ambient temp, no
heating module

None, reliant on
cabin air system

Advanced Plant
Habitat (APH)

889.44 m3

growth area ∼1 year 18-30°C Self-contained
gas supply

Spectrum 10 x 12.7 cm
internal area

Not stated
12 day experiments 18-37°C None, reliant on

cabin air comp

BRIC-60 11.03 m3

60M variant can
draw from an external
gas tank

BRIC-100 38.78 m3 >12 day experiments

BRIC-100VC 16.33 m3 4.5 months
Self-contained gas
canister of designated
compositionKSC Fixation

Tubes (KFTs) 0.2387 m3

Unpowered

67 days

Ambient temp,
no heating module Airtight, reliant on

cabin air comp
miniPCR 0.00066 m3 65W ∼2 year <120°C
Group Activation
Pack-Fluid Processing
Apparatus (GAP-FPA)

Eight 6.5 cm3

test tubes
Unpowered
for manual 4-37°C

Multi-use Variable-g
Platform (MVP)

Twelve 800 cm3

modules Not stated Not stated 14-40°C

MinION 0.0796 m3 5W ∼1 year Ambient temp, no
heating module

Airtight, reliant on
cabin air comp

Perseverance
(MOXIE) 0.017 m3 300W ∼2 years 800°C operational

-60°C ambient
CO2 input
CH4 output

Gateway
(HALO)

>125 m3 planned
internal volume ∼60kW >2 years ∼18°C Pressurized cabin air

Mars Hab
(6 Crew) 300 m3 ∼100kW 600 day nominal,

619 day maximum ∼18°C Pressurized cabin air

Table 2.1: Constraints on past and current experimental platforms including Small Satellites (light blue), Space
Stations (medium blue), Rovers (dark blue), planned Lunar Habitation (light red), and Martian Habitation (red).
The shade of color darkens with increasing complexity and cost. The specific sources can be found in the SI.
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low levels TRLs can be reach through unit testing in modest formats both on Earth and in
limited flight experiments, the integrated nature of the bioprocess control and engineering
will require integration testing even at the TRL 4 and 5 levels[229]. To meet acceptance
at TRL 6 and beyond will require long term planning realistic integration and deployment
testing with actual sophisticated space missions and their logistics.

Even at low TRLs, research on the timescales needed to validate extended-use systems
as would be leveraged on extended-stay forward deployment such as Martian or lunar mis-
sions are not possible given the current ISS capabilities and constraints. Constraints in
astronaut time and limitations in hardware designed for shorter experiments prevent testing
times comparable to long duration missions. Table 2.1 outlines a number of constraints on
past and current experimental platforms and provides some basis for constraints of future
systems (Fig. 2.1d). Here we note that extended multigenerational studies, especially in
microbiology, can be difficult with some of the operational lifetimes. [85]. Volume is also
constrained, and available space is broken up into segmented rack testbeds and independent
machines, which can prevent aspects of a system from interacting with each other (Table
2.1). Much of the testing hardware on the ISS is designed for front-end processing and basic
science, and many experiments in microbial observation[286, 67], hybrid life support[284],
antibiotic response[28], and more all require returning samples to Earth for efficient process-
ing, limiting the end-product downstream analysis and use as feedstocks for other integrated
processes, as is needed to advance TRL beyond 6. This also cuts down on the ability to run
DBTL diagnostics and SBE performance metrics on the system in toto as recyclability and
sustainability are reliant on those end-products, and supportability if the processing is often
reliant on Earth resources. Though much of the potential testing: PCR[56], imaging[311],
and DNA sequencing[361, 256] is possible with current miniaturized ISS modules, it may not
all be at the scale needed for future experiments, and there may be gaps in capability as the
field matures. Improved in situ data analysis through development of new, high-throughput
instruments could help close those gaps[280] and allow better metricization of whole systems
under these new performance paradigms.

Lunar and Martian gravity is likely to have distinct biological effects compared to Earth
gravity, resource composition, and radiation profile – and the ISS has only a limited volume
in which to simulate them[583]. Additionally, both ambient environmental and target tem-
perature windows span an extensive range across extraterrestrial environments, as do gas
compositions, making representative testing more difficult in growth and testing chambers
(plant, animal, and microbial) without full environmental control (Table 2.1). Environmen-
tal Control and Life Support System (ECLSS) systems for large-scale plant science requisite
for advancing TRL for downstream lunar and Martian missions also require larger volume
bounding boxes than is currently provided on the ISS[508]. Here we note the trade-offs with
the tight volume and power stores on board. Smaller satellite modules can get technolo-
gies off the ground to advance TRL[351, 329, 469], but feature even greater size handicaps,
and may prevent testing at the integrated, factory level in the DBTL cycle[124, 259]. Sci-
entific instruments and modules on rovers have been geared primarily for exploration and
observation, not technology validation. Dedicated rovers or simply landing SBE payloads
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Figure 2.3: Conceptual undergraduate SBE program. The SBE program is broken in three segments: core STEM
courses, introduction to space ecosystem courses, and track specialization courses for tracks in bioengineering, astro-
nautics, planetary science & astronomy, and systems engineering.

onto extraterrestrial sites, SBE-ready orbiters, and Artemis operations as a stepping-stone
to Mars can all demonstrate technology within a representative context and stand as some
of the premier testbeds to “flight qualify” SBE prototypes[339]. In situ testing is key to
the proposed SBE performance metrics: it forces technology and bioprocesses into accurate,
integrated environments, and provides better confidence under radiation, microgravity, and
isolation.

2.3 Training of SBE Minds
Maturation of space bioprocess engineering requires specialization of the training needed to
produce the next generation of spacefaring scientists, engineers, astronauts, policy makers,
and support staff[243]. Lessons learned from the Space Transportation System (STS) era led
to calls for an increase in Science-Technology-Engineering-Mathematics (STEM) educational
programs[170] beginning in secondary schools[162] and propagating to novel astronautics-
based undergraduate[62] and graduate programs[501], and to the establishment of specialty
space research centers[365] focused on technology transfer[174]. The calls for workforce de-
velopment were repeated just prior to the collapse of the STS program, noting the dangers
likely to arise from the lack of educational and training resources for those entering the
space industry.[204]. Such a risk as described is especially poignant in the case of space-
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based biotechnologies given that mature technologies are far fewer, the new applications
more futuristic, and the disciplines are not well represented in the traditional physics and
engineering curricula. The Universities Space Research Association (USRA) lists 114 in-
stitutions with Space Technologies/Science academic programs while recent accounting of
bioastronautics programs numbers 36[579]. However, the intersection between these lists
yields only 22 schools. Given that US News names 250 world schools that have tagged
themselves with Space Science programs, only ∼8% of these are currently offering bioastro-
nautics specialization – demonstrating that efforts that integrate human performance, life
support and bioengineering are under-served. Furthermore, the bioastronautics programs
such as those offered by schools like Harvard-MIT, University of Colorado Boulder, and
Baylor University are not focused on biomanufacturing aspects that underlie SBE[289].

Academia must be prepared to capitalize on the opportunities of future SBE applications
starting with either the creation of new and interdisciplinary programs or by assembling those
from related disciplines (Fig. 2.1a). Because scientific and mathematical core courses are
relatively standard across SBE-related disciplines, an effective foundation of technical skills
could be easily constructed from the shared curriculum (Fig. 2.3). From there, specific SBE-
driven training can be offered in (1) effects of space on plant and microbes; (2) process design
for low gravity/high radiation; (3) management and storage of biological materials in space
based operations; (4) low energy/low mass bioreactor/bioprocessor design; (5) integrated
biological systems engineering; (6) biological mission planning and logistics; (7) risk and
uncertainty management; (8) containment and environmental impact of biological escape,
films, corrosion and cleanup; (9) policy awareness/development; and (10) ethics of cultivation
and deployment. While the logistics for organizing such pathways for formal SBE training are
non-trivial within the academic machine, we note that nearly all schools listed by USRA offer
the component programs in bioengineering, planetary science or astronomy, and electrical or
systems engineering. Since the courses for such engineering programs are standardized[120],
it stands to reason that establishing focused SBE programs can begin by collecting and
highlighting course combinations. As programs grow, additional faculty with SBE-driven
research can be sourced. Such openings offer a much needed opportunity to address systemic
issues of diversity, equity, and inclusion both within SBE-based academia and the industrial
space community at large[406].

2.4 Moving Forward
Making progress on the program above requires scientists, engineers, and policy experts to
work together to verify, open, and update campaign specifications. The science requires scien-
tists from multiple disciplines spanning biological and space systems engineering that require
a degree of modularity, small footprints, and robustness not found elsewhere. Additionally,
bioprocess and biological engineering must be applied to the building of cross-compatible
and scalable processing systems and optimized organisms within the confines of space re-
actor and product. Finally, coordination mission specialists are critical to deploy tests into
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space during the run-up and through crewed missions. We argue that such groundwork
requires multidisciplinary centers that can build long term partnerships and understanding;
train the workforce in this unique application space; and perform the large-scale, long-term
science necessary to succeed.
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Chapter 3

Perspective: Towards a Biomanufactory on
Mars

A crewed mission to and from Mars may include an exciting array of enabling biotech-
nologies that leverage inherent mass, power, and volume advantages over traditional
abiotic approaches. In this perspective, we articulate the scientific and engineering
goals and constraints, along with example systems, that guide the design of a sur-
face biomanufactory. Extending past arguments for exploiting stand-alone elements
of biology, we argue for an integrated biomanufacturing plant replete with modules
for microbial in situ resource utilization, production, and recycling of food, pharma-
ceuticals, and biomaterials required for sustaining future intrepid astronauts. We also
discuss aspirational technology trends in each of these target areas in the context of
human and robotic exploration missions.

The following chapter can also found here: A.J. Berliner, J.M. Hilzinger, A.J. Abel, G.
Makrygiorgos, N. Averesch, A. Benvenuti, D. Caddell, S. Cestellos-Blanco, A. Doloman,
S. Friedline, D. Ho, W. Gu, S. Sen Gupta, A. Hill, P. Kusuma, I. Lipsky, M. McNulty,
J. Meraz, V. Pane, K. Sander, F. Shi, J. Skerker, A. Styer, K. Valgardson, K. Wetmore,
S. Woo, Y. Xiong, K. Yates, C. Zhang, B. Bugbee, D. Coleman-Derr, S. Nandi, R. Way-
mouth, P. Yang, C.S. Criddle, K.A. McDonald, L.C. Seefeldt, A. Mesbah, D.S. Clark, A.A.
Menezes, A.P. Arkin. Towards a Biomanufactory on Mars. Frontiers in Astronomy and
Space Sciences (2021). DOI: 10.3389/fspas.2021.711550.

3.1 Feasibility, Needs, and Mission Architecture
The standard specifications for Mars exploration from 2009[147] and 2019[319] are not de-
signed as biomanufacturing-driven [40] due to the novelty of space bioengineering. Here,
we outline biotechnological support to produce food, medicine, and specialized construction
materials on a long-term mission with six crew-members and surface operations for ∼500

https://www.frontiersin.org/articles/10.3389/fspas.2021.711550/full
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sols (a Martian sol is ∼40 min longer than an Earth day) flanked by two interplanetary
transits of ∼210 days[376]. We further assume predeployment cargo that includes in situ
resource utilization (ISRU) hardware for Mars-ascent propellant production[467], which is to
be launched from Earth to a mission site. Additional supplies such as habitat assemblies[232,
113], photovoltaics[300, 301], experimental equipment, and other non-living consumables[38]
will be included.

The proposed biomanufactory would augment processes for air generation and water
and waste recycling and purification – typically associated with Environmental Control and
Life Support Systems (ECLSS)[221, 194] – since its needs overlap but are broader, and
drive a wider development of an array of ISRU, in situ manufacturing (ISM), food and
pharmaceutical synthesis (FPS), and loop closure (LC) technologies (Fig. 3.1).

Food, medicine, and gas exchange to sustain humans imposes important ECLSS feasibil-
ity constraints[576, 574, 551]. These arise from a crewmember (CM) physiological profile,
with an upper-bound metabolic rate of ∼11-13 MJ/CM-sol that can be satisfied through
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Figure 3.1: Proposed surface operations are drawn from inventories of in situ resources (red) such as ice, atmo-
sphere, regolith, and sunlight. Atmospheric feedstocks of carbon and nitrogen are biologically fixed via the ISRU
(in situ resource utilization) biomanufactory components (including abiotic processes, purple), providing the source
of biopolymer manufacturing via the ISM (in situ manufacturing) component (grey) and food via the FPS (food
and pharmaceutical synthesis) component (green), which are used for astronaut consumption and utilization during
mission operations. Waste from each of these elements is collected and fed into the LC (loop closure) element (pink)
to maximize efficiency and reduce the cost of supply logistics from Earth.
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prepackaged meals and potable water intake of 2.5 kg/CM-sol[17, 321]. Sustaining a CM
also entails providing oxygen at 0.8 kg/CM-sol and recycling the 1.04 kg/CM-sol of CO2,
0.11 kg of fecal and urine solid, and 3.6 kg of water waste within a habitat kept at ∼294 K
and ∼70 kPa. Proposed short duration missions lean heavily on chemical processes for life
support with consumables sent from Earth[147]. As the length of a mission increases, de-
mands on the quantity and quality of consumables increase dramatically. As missions become
more complex with longer surface operations, biotechnology offers methods for consumable
production in the form of edible crops and waste recycling through microbial digestion[221].
Advancements in biomanufacturing for deep space exploration will ensure a transition from
short-term missions that are reliant on single-use-single-supply resources to long-term mis-
sions that are sustainable.

Biomanufactory Systems Engineering

Efficiency gains in a biomanufactory come in part from the interconnection (Fig. 3.1) and
modularity of various unit operations (Figs. 3.2-3.5)[121]. However, different mission stage
requirements for assembly, operation, timing, and productivity can lead to different optimal
biomanufactory system configurations. A challenge therefore exists for technology choice
and process optimization to address the high flexibility, scalability, and infrastructure mini-
mization needs of an integrated biomanufactory. Current frameworks for biomanufacturing
optimization do not dwell on these aspects. A series of new innovations in modeling processes
and developing performance metrics specific to ECLSS biotechnology is called for, innova-
tions that can suitably capture risk, modularity, autonomy, and recyclability. Concomitant
invention in engineering infrastructure will also be required.

3.2 Food and Pharmaceutical Synthesis
An estimated ∼10,000 kg of food mass is required for a crew of six on a ∼900 day mission to
Mars[371]. Food production for longer missions reduces this mission overhead and increases
food store flexibility, bolsters astronaut mental health, revitalizes air, and recycles wastewater
through transpiration and condensation capture[536, 298]. Pharmaceutical life support must
overcome accelerated instability (∼75% of solid formulation pharmaceuticals are projected to
expire mid-mission at 880 days[371]) and long re-supply times. Pharmaceutical production
for longer missions can mitigate the impact of this anticipated instability and accelerate
response time to unanticipated medical threats. In early missions, FPS may boost crew
morale and supplement labile nutrients[286]. As mission scale increases, FPS may meet
important food and pharmaceutical needs[76]. A biomanufactory that focuses on oxygenic
photoautotrophs, namely plants, algae and cyanobacteria, enhances simplicity, versatility,
and synergy with intersecting life support systems[563, 194]. While plant-based food has
been the main staple considered for extended missions[147, 17, 76], the advent of cultured
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Figure 3.2: FPS (green) system breakdown for biomanufactory elements of (A) crops, (B) a biopharmaceutical, and
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as lettuce. (C) Functional foods such as nutritional supplements are produced via autotrophic growth of A. platensis.
In all cases, biomass is produced, collected, and inedible biomass is distributed to the LC module for recycling.

and 3D printed meat-like products from animal, plant and fungal cells may ultimately provide
a scalable and efficient alternative to cropping systems[73, 420, 226].

FPS organisms for Mars use must be optimized for growth and yields of biomass, nu-
trient, and pharmaceutical accumulation. Providing adequate and appropriate lighting will
be a challenge of photoautotrophic-centric FPS on Mars[352, 296]. Developing plants and
algae with reduced chloroplast light-harvesting antenna size has the potential to improve
whole-organism quantum yield by increasing light penetration deeper into the canopy, which
will reduce the fraction of light that is wastefully dissipated as heat and allow higher plant-
ing density[181]. Developing FPS organisms for pharmaceutical production is especially
complicated, given the breadth of production modalities and pharmaceutical need (e.g., the
time window of intervention response, and molecule class)[366]. Limited-resource pharma-
ceutical purification is also a critically important consideration that has not been rigorously
addressed. Promising biologically-derived purification technologies[334, 555] should be con-
sidered for processing drugs that require very high purity (e.g., injectables).

Developing FPS growth systems for Mars requires synergistic biotic and abiotic opti-
mization, as indicated by lighting systems and plant microbiomes. For lighting, consider
that recent advancements in LED efficiency now make LEDs optimal for crop growth in
extraterrestrial systems[213]. The ideal spectra from tunable LEDs will likely be one with a
high fraction of red photons for maximum production efficiency, but increasing the fraction
of shorter wavelength blue photons could increase crop quality[257]. Similarly, higher photon
intensities increase production rates but decrease production efficiency. Understanding the
associated volume and power/cooling requirement tradeoffs will be paramount to increasing
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overall system efficiency.
For microbiomes, consider that ISS open-air plant cultivation results in rapid and widespread

colonization by atypicaly low-diversity bacterial and fungal microbiomes that often lead to
plant disease and decreased plant productivity[286]. Synthetic microbial communities (Syn-
Coms, Fig. 3.2A) may provide stability and resilience to the plant microbiome and simulta-
neously improve the phenotype of host plants via the genes carried by community members.
A subset of naturally occurring microbes are well known to promote growth of their plant
hosts[215], accelerate wastewater remediation and nutrient recycling[411], and shield plant
hosts from both abiotic and biotic stresses[72], including opportunistic pathogens[464, 49,
305]. While SynCom design is challenging, the inclusion of SynComs in life support systems
represents a critical risk-mitigation strategy to protect vital food and pharma resources.
The application of SynComs to Mars-based agriculture motivates additional discussions in
tradeoffs between customized hydroponics versus regolith-based farming, both of which will
require distinct technology platforms and applied SynComs.

FPS Integration into the Biomanufactory

Our biomanufactory FPS module has three submodules: crops, pharmaceuticals, and func-
tional foods (Fig. 3.2). The inputs to all three submodules (Fig. 3.2) are nearly identical in
needing H2O as an electron donor, CO2 as a carbon source, and light as an energy source, with
the required nitrogen source being organism-dependent (e.g., A. platensis requires nitrate).
H2O, CO2, and light are directly available from the Martian environment. Fixed nitrogen
comes from the biomanufactory ISRU module. The submodules output O2, biomass, and
waste products. However, the crop submodule (Fig. 3.2A) chiefly outputs edible biomass for
bulk food consumption, the pharmaceutical submodule (Fig. 3.2B) synthesizes medicines,
and the functional foods submodule (Fig. 3.2C) augments the nutritional requirements of
the crop submodule with microbially-produced vitamins (e.g., vitamin B12). These outputs
will be consumed directly by crew-members, with waste products entering the LC module
for recycling.

All submodules will have increased risk, modularity, and recyclability relative to tra-
ditional technological approaches. Increased risk is associated with biomass loss due to
lower-than-expected yields, contamination, and possible growth system failure. Increased
modularity over shipping known pharmaceuticals to Mars derives from the programmability
of biology, and the rapid response time of molecular pharming in crops for as-needed pro-
duction of biologics. Increased recyclability stems from the lack of packaging required for
shipping food and pharmaceuticals from Earth, as well as the ability to recycle plant waste
using anaerobic digestion.

At a systems integration level, FPS organism care will increase the crew time require-
ments for setup, maintenance, and harvesting compared to advance food and pharmaceutical
shipments. However, overall cost impacts require careful scrutiny: crop growth likely saves on
shipping costs, whereas pharmaceutical or functional food production on Mars may increase
costs relative to shipping drugs and vitamins from Earth.
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3.3 In situ Materials Manufacturing
Maintaining FPS systems requires cultivation vessels/chambers, support structures, plumb-
ing, and tools. Such physical objects represent elements of an inventory that, for short
missions, will likely be a combination of predeployment cargo and supplies from the crewed
transit vehicle[147]. As mission duration increases, so does the quantity, composition diver-
sity, and construction complexity of these objects. The extent of ISM for initial exploration
missions is not currently specified[147]. Nevertheless, recent developments[417, 418, 391]
imply that ISM will be critical for the generation of commodities and consumables made
of plastics[82], metals[168], composite-ceramics[279], and electronics[554] as mission objects,
with uses ranging from functional tools[199] to physical components of the life-supporting
habitat[418].

Plastics will make up the majority of high-turnover items with sizes on the order of small
parts to bench-top equipment, and will also account for contingencies[437]. Biotechnology in
combination with additive manufacturing can produce such polymeric constructs from basic
feedstocks in a more compact and integrated way than chemical synthesis, because microbial
bioreactors operate much closer to ambient conditions than chemical processes[336]. The ver-
satility of microbial metabolisms allows direct use of CO2 from Mars’ atmosphere, methane
(CH4) from abiotic Sabatier processes[227], and/or biologically synthesized C2 compounds
such as acetate, as well as waste biomass.

A class of bioplastics that can be directly obtained from microorganisms[399] are poly-
hydroxyalkanoates (PHAs). While the dominant natural PHA is poly(3-hydroxybutyrate)
(PHB), microbes can produce various co-polymers with an expansive range of physical prop-
erties[396]. This is commonly accomplished through co-feeding with fatty acids or hydrox-
yalkanoates, which get incorporated in the polyester. These co-substrates can be sourced
from additional process inputs or generated in situ. For example the PHA poly-lactic acid
(PLA) can be produced by engineered E. coli [276], albeit to much lower weight percent than
is observed in organisms producing PHAs naturally. PHA composition can be modulated
in other organisms[452]. The rapid development of synthetic biology tools for non-model
organisms opens an opportunity to tune PHA production in high PHB producers and derive
a range of high-performance materials.

Before downstream processing (melting, extrusion / molding), the intracellularly accumu-
lating bioplastics need to be purified. The required degree of purity determines the approach
and required secondary resources. Fused filament fabrication 3D-printing, which works well
in microgravity[436, 437], has been applied for PLA processing and may be extendable to
other bio-polyesters. Ideally, additive manufacturing will be integrated in-line with bioplas-
tics production and filament extrusion.

ISM Integration into the Biomanufactory

Figure 3.3 depicts the use of three organism candidates (Cupriavidus,Methylocystis, Halomonas)
that can meet bioplastic production needs requires a different set of parameters to optimize
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Figure 3.3: ISM systems breakdown for biomanufactory elements of biopolymer production and 3D-printing. 3D
printed parts are fabricated from bioproduced plastics. Biopolyesters such as PHB, along with corresponding waste
products, are formed in cargo-supplied reactors with the aid of microorganisms. A variety of available carbon
feedstocks can serve as substrates for aerobic auto-, hetero-, or mixotrophic microorganisms such as C. necator,
Methylocystis parvus and Halomonadaceae. All three microbes are capable of using C2 feedstocks (like acetate), while
C. necator and Methylocystis can also use C1 feedstocks. The former utilizes a combination of CO2 and H2 (large
dotted line), while only M. parvus can leverage CH4 (small dotted line).

their deployment, which strongly affects reactor design and operation. These microbes are
capable of using a variety of carbon sources for bioplastic production, each with a trade-off.
For example, leveraging C2 feedstocks as the primary source will allow versatility in the
microbe selection, but may be less efficient and autonomous than engineering a single or-
ganism like C. necator to use CO2 directly from the atmosphere. Alternatively, in the event
that CH4 is produced abiotically for ascent propellant[394], a marginal fraction of total CH4

will be sufficient for producing enough plastic without additional hardware costs associated
with ISRU C2 production. Relying on Halomonas in combination with acetate as substrate
may allow very rapid production of the required bioplastic, but substrate availability con-
straints are higher than for CH4 or CO2/H2. A terminal electron acceptor is required in
all cases, which will almost certainly be O2. Supplying O2 safely without risking explosive
gas mixtures, or wasting the precious resource, is again a question of reactor design and
operation. Certain purple non-sulfur alphaproteobacteria (e.g., Rhodospirillum rubrum and
Rhodopseudomonas palustris) also feature remarkable substrate flexibility and can produce
PHAs.

Bioplastic recovery and purification is a major challenge. To circumvent the need for halo-
genated organic solvents, an osmolysis process[445] may be employed with the halophile[515,
96]. As this still requires substantial amounts of water, an alternative for all three proposed
organisms is to use acetate or methanol as solvents[15, 24]. These inputs can be provided
from other biomanufactory modules.

The high crystallinity of pure PHB makes it brittle and causes it to have a narrow
melting range, resulting in warp during extrusion and 3D-printing. Such behavior places
operational constraints on processing and hampers applications to precision manufactur-
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ing[342]. Workarounds may be through additives, biocomposite synthesis, and copolymer-
ization. However, this ultimately depends on what biology can provide[392]. There is a need
to advance space bio-platforms to produce more diverse PHAs through synthetic biology.

ISM of biomaterials can reduce the mission cost, increase modularity, and improve system
recyclability compared to abiotic approaches. In an abiotic approach, plastics will be included
in the payload, thereby penalizing up-mass at launch. As with elements of FPS and ISRU,
ISM increases flexibility and can create contingencies during surface operations, therefore
reducing mission risk. The high modularity of independent plastic production, filament
formation, and 3D-printing allows for a versatile process, at the cost of greater resources
required for systems operations. Overall, this maximizes resource use and recyclability, by
utilizing mission waste streams and byproducts for circular resource management.

3.4 In situ Resource Utilization
Biomanufacturing on Mars can be supported by flexible biocatalysts that extract resources
from the environment and transform them into the complex products needed to sustain hu-
man life. The Martian atmosphere contains CO2 and N2[371]. Water and electrolytically
produced O2 and H2 are critical to mission elements for any Mars mission. It is very likely
that the expensive and energy-intensive Sabatier plants[227, 369, 107] for CH4 production
will be available per DRA 5.0[147]. While a Haber-Bosch plant could be set up for am-
monia production, this is neither part of the current DRA[147] nor exceptionally efficient
(citation). Thus, For a biomanufactory, we must have carbon fixation reactors to fix CO2

into feedstocks for non-methanotrophs, and have nitrogen fixation reactors to fix N2 to fulfill
nitrogen requirements for non-diazotrophs. Trace elements and small-usage compounds can
be transported from Earth, or in some cases extracted from the Martian regolith. In the
case where power is provided from photocollection or photovoliatics, light energy will vary
with location and season, and may be critical to power our bioreactors.

Although photosynthetic organisms are attractive for FPS, a higher demand for carbon-
rich feedstocks and other chemicals necessitates a more rapid and efficient CO2 fixation
strategy. Physicochemical conversion is inefficient due to high temperature and pressure
requirements. Microbial electrosynthesis (MES), whereby reducing power is passed from
abiotic electrodes to microbes to power CO2 reduction, can offer rapid and efficient CO2

fixation at ambient temperature and pressure[3]. MES can produce a variety of chemicals
including acetate[323], isobutanol[316], PHB[324], and sucrose[402], and therefore represents
a flexible and highly promising ISRU platform technology[5].

Biological N2-fixation offers power- and resource-efficient ammonium production. Al-
though photoautotrophic N2 fixation with, for example, purple non-sulfur bacteria, is pos-
sible, slow growth rates due to the high energetic demand of nitrogenase limits through-
put[145]. Therefore, heterotrophic production with similar bacteria using acetate or sucrose
as a feedstock sourced from electromicrobial CO2-fixation represents the most promising
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production scheme, and additionally benefits from a high degree of process redundancy with
heterotrophic bioplastic production.

Regolith provides a significant inventory for trace elements (Fe, K, P, S, etc.) and, when
mixed with the substantial cellulosic biomass waste from FPS processes, can facilitate recy-
cling organic matter into fertilizer to support crop growth. However, regolith use is hampered
by widespread perchlorate [125, 86, 407], indicating that decontamination is necessary prior
to enrichment or use. Dechlorination can be achieved via biological perchlorate reduction
using one of many dissimilatory perchlorate reducing organisms[559, 132, 70, 71].

ISRU Integration into the Biomanufactory

A biomanufactory must be able to produce and utilize feedstocks along three axes as de-
picted in Figure 3.4: CO2-fixation to supply a carbon and energy source for downstream
heterotrophic organisms or to generate commodity chemicals directly, N2-fixation to provide
ammonium and nitrate for plants and non-diazotrophic microbes, and regolith decontami-
nation and enrichment for soil-based agriculture and trace nutrient provision. ISRU inputs
are submodule and organism dependent, with all submodules requiring water and power.
For the carbon fixation submodule (Fig. 3.4A), CO2 is supplied as the carbon source, and
electrons are supplied as H2 or directly via a cathode. Our proposed biocatalysts are the
lithoautotrophic Cupriavidus necator for longer-chain carbon production (e.g., sucrose[402])
and the acetogen Sporomusa ovata for acetate production. C. necator is a promising chassis
for metabolic engineering and scale-up[402], with S. ovata having one of the highest current
consumptions for acetogens characterized to date[326]. The fixed-carbon outputs of this
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submodule are then used as inputs for the other ISRU submodules (Fig. 3.4B,C) in addition
to the ISM module (Fig. 3.1). The inputs to the nitrogen fixation submodule (Fig. 3.4B) in-
clude fixed carbon feedstocks, N2, and light. The diazotrophic purple-non sulfur bacterium
Rhodopseudomonas palustris is the proposed biocatalyst, as this bacterium is capable of
anaerobic, light-driven N2 fixation utilizing acetate as the carbon source, and has a robust
genetic system allowing for rapid manipulation[145, 5]. The output product is fixed nitrogen
in the form of ammonium, which is used as a feedstock for the carbon-fixation submodule
of ISRU along with the FPS and ISM modules. The inputs for the regolith enrichment
submodule (Fig. 3.4C) include regolith, fixed carbon feedstocks, and N2. Azospira suillum
is a possible biocatalyst of choice due to its dual use in perchlorate reduction and nitrogen
fixation[71]. Regolith enrichment outputs include soil for the FPS module (in the event
that solid support-based agriculture is selected instead of hydroponics), H2 that can be fed
back into the carbon fixation submodule and the ISM module, chlorine gas from perchlorate
reduction, and waste products.

Replicate ISRU bioreactors operating continuously in parallel with back-up operations
lines can ensure a constant supply of the chemical feedstocks, commodity chemicals, and
biomass for downstream processing in ISM and FPS operations. Integration of ISRU tech-
nologies with other biomanufactory elements, especially anaerobic digestion reactors, may
enable (near-)complete recyclability of raw materials, minimizing resource consumption and
impact on the Martian environment[431, 332].

3.5 Loop Closure and Recycling
Waste stream processing to recycle essential elements will reduce material requirements in
the biomanufactory. Typical feedstocks include inedible crop mass, human excreta, and other
mission wastes. Space mission waste management traditionally focuses on water recovery
and efficient waste storage through warm air drying and lyophilization[576, 17]. Mission
trash can be incinerated to produce CO2, CO, and H2O [228]. Pyrolysis, another abiotic
technique, yields CO and H2 alongside CH4[482]. The Sabatier process converts CO2 and
CO to CH4 by reacting with H2. An alternate thermal degradation reactor[79], operating
under varying conditions that promote pyrolysis, gasification, or incineration, yields various
liquid and gaseous products. The fact remains however, that abiotic carbon recycling is
inefficient with respect to desired product CH4, and is highly energy-intensive.

Microbes that recover resources from mission wastes are a viable option to facilitate
loop closure. Aerobic composting produces CO2 and a nutrient-rich extract for plant and
microbial growth[442, 443]. However, this process requires O2, which will likely be a limited
resource. Hence, anaerobic digestion, a multi-step microbial process that can produce a
suite of end-products at lower temperature than abiotic techniques (∼35-55◦C compared
to ∼500-600◦C, an order of magnitude difference), is the most promising approach for a
Mars biomanufactory[368, 506] to recycle streams for the ISM and FPS processes. Digestion
products CH4 and volatile fatty acids (VFA, such as acetic acid) can be substrates for
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Figure 3.5: LC-based (pink) anaerobic digestion of mission waste such as inedible plant matter, microbial biomass,
human, and other wastes produce methane, volatile fatty acids (VFAs), and digestate rich with key elemental nutrients
(N, P, K), thereby supplementing ISRU operation.

polymer-producing microbes[397, 94]. Digestate, with nutrients of N, P, and K, can be ideal
for plant and microbial growth[384], Fig. 3.5. Additionally, a CH4 and CO2 mixture serves
as a biogas energy source, and byproduct H2 is also an energy source[474, 285].

Because additional infrastructure and utilities are necessary for waste processing, the
extent of loop closure that is obtainable from a treatment route must be analyzed to balance
yield with its infrastructure and logistic costs. Anaerobic digestion performance is a function
of the composition and pretreatment of input waste streams (crop residuals, feces, urine,
end-of-life bioproducts), as well as reaction strategies like batch or continuous, number of
stages, and operation conditions such as organic loading rate, solids retention time, operating
temperature, pH, toxic levels of inhibitors (H2S, NH3, salt) and trace metal requirements[474,
23, 368, 506, 322, 456]. Many of these process parameters exhibit trade-offs between product
yield and necessary resources. For example, a higher waste loading reduces water demand,
albeit at the cost of process efficiency. There is also a potential for multiple co-benefits of
anaerobic digestion within the biomanufactory. Anaerobic biodegradation of nitrogen-rich
protein feedstocks, for example, releases free NH3 by ammonification. While NH3 is toxic to
anaerobic digestion and must thus be managed[456], it reacts with carbonic acid to produce
bicarbonate buffer and ammonium, decreasing CO2 levels in the biogas and buffering against
low pH. The resulting digestate ammonium can serve as a fertilizer for crops and nutrient
for microbial cultures.

LC Integration into the Biomanufactory

FPS and ISM waste as well as human waste are inputs for an anaerobic digester, with output
recycled products supplementing the ISRU unit. Depending on the configuration of the
waste streams from the biomanufactory and other mission elements, the operating conditions
of the process can be varied to alter the efficiency and output profile. Open problems
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include the design and optimization of waste processing configurations and operations, and
the identification of optimal end-product distributions based on a loop closure metric[39]
against mission production profiles, mission horizon, biomanufacturing feedstock needs, and
the possible use of leftover products by other mission elements beyond the biomanufactory.
A comparison with abiotic waste treatment strategies (incineration and pyrolysis) is also
needed, checking power demand, risk, autonomy, and modularity benefits.

3.6 Discussion and Roadmap
Biomanufactory development must be done in concert with planned NASA missions that can
provide critical opportunities to test subsystems and models necessary to evaluate efficacy
and technology readiness levels (TRLs)[339]. Figure 3.6 is our attempt to place critical
elements of a biomanufactory roadmap into this context. We label critical mission stages
using RMA-S and RMA-L, which refer to Mars surface missions with short (∼30 sols) and
long (>500 sols) durations, respectively.
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Figure 3.6: Proposed roadmap from 2021 to 2052 in log2-scale time of Earth-based developments (black) and their
relationships to ISS (gold), lunar (blue), and Martian (red) missions. Missions range in status from currently op-
erational, to enroute, planned, and proposed. Reference Mission Architecture (RMA)-S is a 30-sol mission, and
RMA-L are missions with more than 500 sols of surface operations. RMA-L1 is the mission target for deployment
of a biomanufactory. An arrival at target location is denoted with a symbol to indicate its type as orbiter, rover,
lander, helicopter, support, or crewed operations. Circled letters are colored by location and correspond to specific
milestones or opportunities for biomanufactory development.

Reliance on biotechnology can increase the risk of forward biological contamination[430].
Beyond contamination, there are ethical issues that concern both the act of colonizing a new
land and justifying the cost and benefits of a mission given needs of the many here on earth.
Planetary protection policies can provide answers or frameworks to address extant ethical
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questions surrounding deep-space exploration, especially on Mars[516, 457]. Critically, sci-
entists and engineers developing these technologies cannot be separate or immune to such
policy development.

Autonomous Martian Surface Missions

Figure 3.6 B○ denotes the interconnection between current Martian mission objects[347, 349,
33, 355, 348, 345, 1] and Earth-based process development elements for a biomanufactory
(Figs. 3.2-3.5). Together with en route autonomous surface missions[346, 344] (Fig. 3.6 C○),
these missions provide a roadmap for continued mission development based on landing loca-
tion biosignatures[69, 532]. The biomanufactory (Figs. 3.2-3.5) will require ample water in
media, atmospheric gas feedstocks, and power that can be bounded by measurements from
autonomous missions. Upcoming sample return missions offer an opportunity to shape the
design of ISRU processes such as regolith decontamination from perchlorate and nitrogen
enrichment for crop growth. Additional orbiters[254] and lander/rover pairs (Fig. 3.6 H○)
have been planned and will aid in the selection of a landing site for short term Martian
exploration missions (Fig. 3.6 J○, K○). Such locations will be determined based on water/ice
mining/availability[362] in Fig. 3.6 I○. These missions can be deployed with specific pay-
loads to experimentally validate biomanufactory elements. Low TRL biotechnologies can
be flown as experimental packages on upcoming rovers and landers, offering the possibility
for TRL advancement of biology-driven subsystems. Planning for such testing will require
coordination with, and validation on, ISS and satellite payloads (Fig. 3.6 E○), for instance,
to understand the impact of Martian gravity, to contrast levels of radiation exposure, and
so on.

Artemis Operations

The upcoming lunar exploration missions, Artemis[497] and Gateway[122], provide addi-
tional opportunities for integration with Earth-based biomanufactory development. Early
support missions (Fig. 3.6 D○, F○) will provide valuable experience in cargo predeployment
for crewed operations, and is likely to help shape logistics development for short-term (Fig.
3.6 J○, K○) as well as long-term Mars exploration missions (Fig. 3.6M○) when a biomanufac-
tory can be deployed. Although ISRU technologies for the Moon and Mars will be sufficiently
distinct due to different resource availabilities, crewed Artemis missions (Fig. 3.6 F○, G○) pro-
vide a testing ground for crewed Mars bioprocess infrastructure. Later Artemis missions
(Fig. 3.6 L○) also provide a suitable environment to test modular, interlocked, scalable reac-
tor design, as well as the design of compact molecular biology labs for DNA synthesis and
transformation. Since these technologies are unlikely to be mission critical during Artemis,
their TRL can be increased and their risk factors studied through in-space evaluation.

The Artemis missions also provide a testbed to evaluate the space-based evolution of
microbes and alterations of seedstocks as a risk inherent to the biological component of
the biomanufactory. This risk can be mitigated by incorporating backup seed and micro-
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bial freezer stocks to reset the system. However, ensuring that native and/or engineered
traits remain robust over time is critical to avoid the resource penalties that are inherent
to such a reset. Consequently, while optimal organisms and traits can be identified and
engineered prior to a mission, testing their long-term performance on future NASA missions
prior to inclusion in life support systems will help to assess whether engineered traits are
robust to off-planet growth, whether microbial communities are stable across crop genera-
tions, and whether the in situ challenges that astronauts will face when attempting to reset
the biomanufacturing system are surmountable. Quantifying these uncertainties during au-
tonomous and crewed Artemis missions will inform tradeoff and optimization studies during
the design of an enhanced life support system for Martian surface bio-operations.

Human Exploration of Mars

Crewed surface operations of ∼30 sols by four to six astronauts are projected[147] to begin in
2031 (Fig. 3.6 J○), with an additional mission similar in profile in 2033 (Fig. 3.6 K○). Given
the short duration, a mission-critical biomanufactory as described herein is unlikely to be
deployed. However, these short-term, crewed missions RMA-S1,S2 provide opportunities to
increase the TRL of biomanufactory elements for ∼500 sol surface missions RMA-L1 (Fig.
3.6M○) in ∼2040 and RMA-L2 (Fig. 3.6 N○) in ∼2044. Building on the abiotic ISRU from
early Artemis missions, we propose that RMA-S1 carry experimental systems for C-and-N-
fixation processes such that a realized biomanufactory element can be properly scaled (Fig.
3.4). Since RMA-S1,S2 will be crewed, regolith process testing becomes more feasible to be
tested onsite on the surface of Mars, than during a complex sample return mission. Addi-
tionally, while relying on prepacked food for consumption, astronauts in RMA-S1 will be able
to advance the TRL of platform combinations of agriculture hardware, crop cultivars, and
operational procedures. An example is growing crops under various conditions (Fig. 3.2A)
to validate that a plant microbiome can provide a prolonged benefit in enclosed systems, and
to determine resiliency in the event of pathogen invasion or a loss of microbiome function
due to evolution. Additionally, the TRL for crop systems can be re-evaluated on account of
partial gravity and/or microgravity.

The RMA-S1 and RMA-S2 crews will be exposed for the first time to surface conditions
after interplanetary travel, allowing for an initial assessment of health effects that can be
contrasted to operations on the lunar surface (Fig. 3.6 F○), and that may be alleviated by
potential biomanufactory pharmaceutical and functional food outputs (Fig. 3.2B,C). The
RMA-S1 and RMA-S2 mission ISRU and FPS experiments will also provide insight into
the input requirements for downstream biomanufactory processes. ISM technologies such as
bioplastic synthesis and additive manufacture (Fig. 3.3) can be evaluated for sufficient TRL.
Further, loop closure performance for several desired products can also be tested. This will
help estimate the impact of waste stream characteristics changes on recycling[60].
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Moving Forward

We have outlined the design and future deployment of a biomanufactory to support hu-
man surface operations during a 500 day manned Mars mission. We extended previous
stand-alone biological elements with space use potential into an integrated biomanufactur-
ing system by bringing together the important systems of ISRU, synthesis, and recycling,
to yield food, pharmaceuticals, and biomaterials. We also provided an envelope of future
design, testing, and biomanufactory element deployment in a roadmap that spans Earth-
based system development, testing on the ISS, integration with lunar missions, and initial
construction during shorter-term initial human forays on Mars. The innovations necessary
to meet the challenges of low-cost, energy and mass efficient, closed-loop, and regenerable
biomanufacturing for space will undoubtedly yield important contributions to forwarding
sustainable biomanufacturing on Earth. We anticipate that the path towards instantiating
a biomanufactory will be replete with science, engineering, and ethical challenges. But that
is the excitement — part-and-parcel — of the journey to Mars.
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Chapter 4

Mathematical Formulations For Mission
Design, Comparison, and Optimization

NASA mission systems proposals are often compared using an equivalent system mass
(ESM) framework, wherein all elements of a technology to deliver an effect – its com-
ponents, operations and logistics of delivery – are converted to effective masses, which
has a known cost scale in space operations. To date, ESM methods and the tools for
system comparison largely fail to consider complexities stemming from multiple transit
and operations stages, such as would be required to support a crewed mission to Mars,
and thus do not account for different mass equivalency factors during each period
and the inter-dependencies of the costs across the mission segments. Further, ESM
does not account well for the differential reliabilities of the underlying technologies.
The uncertainty in the performance of a technology should incur an equivalent mass
penalty for technology options that might otherwise provide a mass advantage. Here
we draw attention to the importance of addressing these limitations and formulate the
basis of an extension of ESM that allows for a direct method for analyzing, optimizing,
and comparing different mission systems. We outline a preliminary example of apply-
ing extended ESM (xESM) through a technoeconomic calculation of crop-production
technologies as an illustrative case for developing offworld biomanufacturing systems.

The following chapter can also found here: D. Ho, G. Makrygiorgos, A. Hill, A.J. Berliner
Towards the Extension of Equivalent System Mass for Human Exploration Missions on
Mars. npj Microgravity. (2022) DOI: 10.1038/s41526-022-00214-7

4.1 Towards an Extension of Equivalent System Mass
Travel to space is limited by the expense of transporting resources beyond Earth’s gravity
well[556]. As a result, early metrics of usability for space systems, especially life support[270],
favored mass as the primary decision factor. Following a request to “provide the designers

https://www.nature.com/articles/s41526-022-00214-7
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of future missions with mature technologies and hardware designs, as well as extensive per-
formance data justifying confidence that highly reliable Advanced Life Support Systems
(ALS) that meet mission constraints can be developed” by the 1997 NASA Research Council
(NRC)[116], the scope of the Equivalent System Mass (ESM) framework was broadened to
account for differences in the cost of resources[150]. The general principle behind this early
metric was to calculate the mass of all of the resources required to make the system work[153].
ESM was expanded from theory[314] to the practice of accounting for processes ranging from
controls[375], agriculture[416], and recycling[295, 233]. Currently, ESM remains the stan-
dard metric for evaluating ALS technology development[388, 7, 295] and systems[17, 154,
511, 473]. It has been adopted for use in trade studies[313, 176, 171], as the metric for life
support sizing[574, 572, 573], and has been incorporated into several tools[129, 137, 415].

In its current form[312], the total ESM M is defined only for the operations at a specific
location as the sum over the set of all systems as

M = Leq

A∑
i=1

[(Mi ·Meq) + (Vi · Veq) + (Pi · Peq) + (Ci · Ceq)︸ ︷︷ ︸
MNCT

+ (Ti ·D · Teq)︸ ︷︷ ︸
MCT

]

for subsystem i ∈ A of the ESM excluding crew-timeMNCT and the ESM including crewtime
MCT where Mi, Vi, Pi, Ci are the initial mass [kg], volume [m3], power requirement [kWe],
and cooling requirement [kg/kWth], D is the duration of the mission segment [sol], Ti is
the crew-time requirement based on an astronaut crew-member (CM) [CM-h/sol], Meq is
the stowage factor for accounting for additional structural masses for a subsystem such
as shelving [kg/kg], Veq is the mass equivalency factor for the pressurized volume support
infrastructure [kg/m3], Peq is the mass equivalency factor for the power generation support
infrastructure [kg/kWe], Ceq is the mass equivalency factor for the cooling infrastructure
[kg/kWth], Teq is the mass equivalency factor for the crew-time [kg/CM-h], and Leq is the
location factor for the mission segment [kg/kg] which accounts for the cost to transport
mass from one location in space to another (such as Earth orbit to Martian orbit). Mass
equivalency factors (Veq, Peq, Ceq, Teq) are used to convert the non-mass parameters to mass.
While the ESM framework[312] has been widely adopted in Environmental Control and Life
Support Systems (ECLSS) analysis[165, 138, 136, 137, 126, 429], it has faced critique for the
ambiguity in its application as well as its difficulty in accounting for development costs[261]
and uncertainty[6]. Alternative frameworks have been proposed to replace[264] or extend
ESM with additional metrics[273] that factor in complexity[272]. Given the widespread use
of ESM, we believe that the framework should be improved with the addition of missing
elements rather than replaced completely.

Previous efforts to quantify the cost in problems of mission-planning/space logistics have
relied on metrics based solely on the Initial Mass to Low Earth Orbit (IMLEO)[231, 444] for
constant commodity supply and demand[249] or on carryalong mass[143]. In such logistics
frameworks like SpaceNet[307, 201, 202] and HabNet[142], cost is kept simple to allow for the
analysis of complex mission architectures with multiple mission segments. Comparatively,
ESM has been most fully developed for ECLSS where the costs of capital equipment, power,
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Figure 4.1: Transit Diagram of proposed Mission Architecture. In Profile 1(grey), (A) a crewed transit ship is
launched directly from the surface of Earth and (B) lands on the surface of Mars where (C) the crew assembles the
cargo in a habitat and carries out (D) surface operations until (E) the crew launches from their initial transit ship
from the surface of Mars into space and (F) lands back on the surface of Earth. In Profile 2(purple), (A) cargo
transit ships without crew are launched directly from the surface of Earth and (B) land on the surface of Mars where
cargo can be unloaded. In the case of reusable rocket systems[449], (C) the cargo rockets can be launched from Mars
and returned to Earth. Once all the cargo has been loaded onto the surface of Mars, (D) a crewed transit ship is
launched directly from the surface of Earth and (E) lands on the surface of Mars where (F) the crew assembles the
cargo in a habitat and carries out (G) surface operations until (H) the crew launches from their initial transit ship
from the surface of Mars into space and (I) lands back on the surface of Earth. In Profile 3(green), a number of (A)
cargo transit ships without crew are launched directly from the surface of Earth and either (B) supply a previously
interplanetary rocket then (C) return to the surface of Earth or (D) travel to the surface of Mars where (E) cargo can
be unloaded. In the case of reusable rocket systems, (F) the cargo rockets can be launched from Mars and returned
to Earth. Once all the cargo has been loaded on the surface of Mars, (G) a crewed transit ship is launched directly
from the surface of Earth to Earth Orbit (H) where it rendezvous with an interplanetary rocket which (I) travels
to Martian orbit. The crew (J) then boards a descent vehicle and lands on the surface of Mars where (K) the crew
assembles the cargo in a habitat and carries out (L) surface operations until (M) the crew launches from their initial
transit ship from the surface of Mars into (N) Martian orbit where they again rendezvous with their interplanetary
rocket which travels to (O) Earth orbit at which point they board a descent rocket in which they (P) finally return
to the surface of Earth.
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operations, transport, and other things have been captured on a common unit scale of mass.
While it provides a method for summing the weighted terms of many subsystems, there is
no explicit ESM equation that captures total mission costs across systems in various stages
of a complex mission[261]. Thus the standard ESM approach faces limitations in that there
(1) exists no explicit language for capturing the set of all segments and (2) there exists
interdependent relationships between the decision variables within separate segments. Here
we see a trade-off in the complexity of the cost function for the complexity of the mission
architecture.

As plans for human exploration continue to be made in anticipation of returning to the
moon[190, 497] and travelling to Mars[404, 44], an added emphasis will be required for opti-
mization of mission architecture[202]. As of now, the current instance of the ESM framework
does not lend itself for use as an objective function in an optimization over a mission – al-
though this ESM has been proposed as the metric for mission optimization[267]. The result
is that this standard framework remains fixed for multi-stage missions and generally (but not
always[138]) faces challenges in providing design or planning information based on subsystem
risk. Thus, the ESM metric is not always helpful when comparing missions with differential
reliability for systems in their proper context. That is, given two possible technologies for
meeting a mission objective, the one that is less likely to fail might be a better choice. To
demonstrate how to formally add reliability metrics to the ESM framework, we take the case
of a new technology platform, biomanufacturing[371, 401, 44], for which there are known and
quantifiable reliability concerns and for which there is little in situ testing for space missions.
In the following work, we propose an extended ESM (xESM) framework to account for the
proposed multi-stage missions and critical mission features, such as reliability. As the scope
of human exploration missions has expanded, the need for new technology platforms has
grown, and it has been proposed that these features best capture the potential of biomanu-
facturing systems[44]. We do not claim a completion of xESM, but rather, we demonstrate
progress along this trajectory in the form of a more generalized framework to (1) account for
multi-staged mission segments (beyond simple summation); (2) account for reliability; and
(3) feed into downstream optimization problems. We also note that this later progress is less
developed in more in line with a discussion rather than a ready-to-use operational strategy.

4.2 Extending ESM for Long-Duration Mission Profiles
Figure 4.1 depicts three profiles with varied transit architectures. Profile 1 (grey) uses a
single journey from Earth to Mars, and although it has been proposed in some forms[590],
it is unlikely this architecture will be adopted due to the substantial mass demands of the
transit ship and the ascent propellant required to leave Mars[61]. In the case of Profile 2
(purple), cargo can be predeployed to Mars through some number of predeployment missions.
Profile 2 introduces segments to a crewed mission to Mars which are not actually crewed,
but instead are either purely cargo-based in which case only the M and V terms factor
into the ESM cost, or autonomous where M,V, P and C for uncrewed operations matter.
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Since cargo missions do not require life support systems, the M cost is reduced greatly[17],
leading to a reduction in overall mission cost, especially for missions that require a great
quantity of goods that can be predeployed. In the most likely Profile 3[394, 395] (green),
crew transportation can further broken down such that smaller crewed vehicles make the
jump from planet to surface and vice-versa, but the interplanetary transit is made on a
larger craft to reduce the mass required for egress from planetary gravity wells.

Previous ESM literature allows for varied equivalency factors based on mission stag-
ing[312], and in such cases, the ESM of distinct segments of a mission are calculated sepa-
rately, then normalized through the use of location factors[172]. However, ESM M for any
set of systems is calculated using a single location factor Leq term as a multiplier. In this
form it is assumed that each subsystem is transported in uniform fashion or that all parts
of a subsystem would correspond to a single Leq term. The profile expansion in Figure 4.1
shows that inventory can be transported in different segments using different crafts which
change the value of Leq. This is supported by non-ESM logistics methods[202]. We argue
that the use of predeployment missions for transporting cargo implies that a system on one
particular segment may utilize components transported from multiple segments, each with
different location factors, motivating the a more generalized articulation of xESM (M0) as

M0 =
M∑
k

Leq,k

Ak∑
i

[(Mki ·Meq,k) + (Vki · Veq,k) + (Pki · Peq,k) + (Cki · Ceq,k) + (Ti ·Dk · Teq,k)]︸ ︷︷ ︸
M0,k

= M0,pd +M0,sf +M0,tr1 +M0,tr2 +M0,tr3

where M is sum of ESM for segments in a mission set with index k. Mission segment S
can be constructed via set-builder notation as S = { (i, j) | i ∈ L2; j ∈ O } for specific com-
binations of locations and operations (see Methods for additional definitions). Essentially,
we have established a graph where the locations represent nodes and the segments repre-
sent arcs, which matches previous formulations of mission logistics[202], although our set of
location nodes is reduced for simplicity and does not include specific Lagrange Points[231].
The generalization enables accounting of mission segment-specific terms such as location
factor Leq and equivalency factors (Meq, Veq, Peq, Ceq, Teq). This generalization also allows
for indexing of mission segment specific subsystems A, further enabling an accounting of
inventory I elements between mission segments S.

Since these developments have been primarily applied to longer-duration ECLSS systems
for the International Space Station (ISS) and not Mars missions, xESM does not include
recent developments in resupply logistics[263] as enabled by the decreasing cost to LEO[266].
Despite a decreased cost to LEO, resupply logistics will be unlikely to impact the initial set
of crewed exploration missions[61] given the difference in resupply costs between the ♁ ♁○
and ♁♂ systems. Although arguments have been raised against the adoption of crew-time
within the ESM[271], we include these terms in our formulation as it has been the standard.
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Inventories and Dependent Factors

With the addition of our method for indexing factors by their location, operation, and hard-
ware, we are now able to address the accountancy of relationships between equivalency/loca-
tion factors and the segment inventory that defines them. In essence, equivalency/location
factors convert non-mass properties to mass properties by means of a ratio, but because that
mass originates from some subset of inventory elements, equivalency and location factors

a

b

c

Figure 4.2: xESM equation for Profile 3 (Figure 4.1) with terms decomposed by subsystem. (a) Breakdown of
inventory transfers across mission timeline colored by mission segment. (b) The generalized xESM equation colored
by mission segment. (c) Expanded xESM equation with colored by mission segment with a non-exhaustive set of
specific segment-dependent relationships elucidated.
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are coupled. The exact nature of this interaction depends on the scenario and the mod-
eling itself, and we aim to present a preliminary rendering of these relationships in Figure
4.2. In our assumptions, we say that predeployment cargo is grouped into cargo shipments
in set j of Mpdj across some number of predeployments npd. We assume that this set of
cargo is composed of items such as habitat assemblies, control hardware, photovoltaics &
batteries, reactors, tanks refrigerators, various experimental apparatus, 3D printers, and
other tools[17]. In the more expanded surface operations term, Figure 4.2 demonstrates that
inventory for surface operations is composed of an assembled habitat, process and reactor
assemblies, mission crew, and integrated power systems. In this scenario, a set of equivalency
factors are required for each segment of the mission.

The location factor Leq is the reciprocal of the payload fraction for transporting mass
between two points in space and can be evaluated as the sum of across multiple orbital ma-
neuvers with different ∆v. Each element in the location mapping L2 has a specific required
∆v. Any segment describing operations in a single location, such as Martian surface oper-
ations, has no mass transport and thus will have a Leq = 1.0. Since ∆v can be related to
the specific impulse Isp and mass fraction m0/mf via the Tsiolkovsky rocket equation[556],
we see how the mass of a specific segment inventory affects the location factor term. In
terms of specific calculations, the mass fraction is the ratio of the of initial total rocket mass
m0 to final total mass mf , and the payload fraction is the ratio of initial total mass m0 to
final delivered mass mp (no propellant, tanks, etc). Meanwhile, the m0, mf , and mp will
be constrained by rocket technology choice. The scaling of the location factor is nonlinear
in the case where some number of predeployments are each limited in payload mass. We
calculate the M0,pd as the sum over the number of total predeployments npd where a given
predeployment j has a set of cargo Ipdj that doesn’t require V , P , or T . The number of
predeployment rockets will be parametric based on the mp for predeployment rockets and
the sum of all inventory mass to be used on the martian surface shipped by predeployment.
As shown in Figure 4.2, the Leq,pdj in the M0,pd term can be related to the M and V terms
for the components of predeployment j, while the Leq,tr1 and Leq,tr2 terms are related to the
M and V for all cargo transported in the complete mission.

Like Leq, equivalency factors are also parametric based on certain elements of a seg-
ment inventory as showed by the cross-dependent mission-segment network (Figure 4.2c).
For example, the volume equivalency Veq for crewed transits in space will be based on the
pressurized volume[172, 155] of the vehicle. Our notation affords the specification of equiva-
lencies with relation to other decision variables, as opposed to the cruder method of assigning
general constants. Figure 4.2 illustrate how the equivalency factors for one segment will of-
ten be parametrically related to decision variables in other segments. This realization only
enforces the importance of our extension by which multiple segments are represented by a
single optimization metric.

Example Calculations

To illustrate the process for calculating xESM with both the traditional approach and our
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Figure 4.3: Comparison of ESM and xESM metrics for whole system mass scenarios. (a) Log-scale comparison of
mission segment mass for increasing mission assembly. Case 0 is a baseline inventory for the flight from Earth orbit
to Mars orbit (tr1) and back (tr2), while life support for a 500 day Mars orbit (tr3) is added in Case 1. The mission in
Case 2 includes descent (des), Mars surface operations (sf), and ascent (asc). All inventory for sf is predeployed (pd) in
Case 3. As the mission grows, both the mass required and the difference between xESM and ESM increases. The final
case shows falling xESM with the removal of sf inventory from tr1 and des. (b) Inventory difference between xESM
and ESM in raw mass, volume, power, cooling, and crewtime across each mission segment, before the application of
location and equivalency factors. (c) Raw inventory difference between xESM and ESM displayed across the four
cases.

proposed method, we provide the following example problems. The first explores a calcu-
lation across all inventory systems of a mission (Figure 4.3) and the second that has been
scoped to the food production (Figure 4.4) using Controlled Ecological Life Support Systems
(CELSS)[561, 32], which we feel serves as an established and graspable biomanufacturing-
based technology[44] for comparison against “bring-everything” or physical/chemical life sup-
port systems[260].

The first example is offered to demonstrate a broad comparison between ESM/xESM, and
in Case 0, we represent a base mission with the corresponding inventory required to fly from
Earth orbit to Mars orbit (Str1 : 210d, 6CM) and back (Str2 : 210d, 6CM), and we assume
the orbital mechanics allow for this transit. In Case 0, the inventory elements in a craft are
scaled for their entire duration of use (420d), and consumables (food, waste collection, water)
are used or discarded as time passes. In Case 1, we build on the base case by including the
segment in which the crew would orbit Mars (Str3 : 210d, 6CM); and like in the previous case,
items in a craft are scaled for their entire duration of use (920d). In Case 2, we continue to
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Figure 4.4: Comparison of ESM and xESM metrics focused on the stored food cost. (a) Log-scale comparison of
mission segment mass for different food strategies. Case 2s is the food cost of Case 2 in Figure 4.3. Case 2b reduces
the amount of stored food for sf from 500 days to 70 days, assuming a hypothetical future agriculture system could
grow the difference. In Case 3b, the sf inventory is predeployed, and grown food also sustains the majority of sf.
The ESM differences between 2s and 2b and between 2s and 3b show the rough mass requirement for the design and
development of such an agricultural system. (b) Raw inventory difference between xESM and ESM mass, volume,
power, cooling, and crewtime across each mission segment, before the application of location and equivalency factors.
(c) Raw inventory difference between xESM and ESM displayed across the three cases.

build on the previous case by including descent (Sdec: 500d, 4CM), surface operations (Ssf:
500d, 4CM), and ascent (Sasc: 1d, 4CM). Here the M , V , P , C inventory terms needed for
Ssf are carried in Str1 and Sdec (with crewtime requirements for these items not accounted
for). Here, 4 crew-members are left in orbit on Str3 . In calculating xESM, the M term for
Isf is ignored during Ssf, as no mass is “moved” during this segment as it was previously
transported to the surface via Str2 and Sdec; additionally, Sasc is assumed only to transport
crew-members back to orbit. In Case 3, we achieve the proposed Profile 3 architecture from
Figure 4.1 where the surface mission inventory is supplied via predeployment (Spd) rather
than the initial transit and decent. Calculations of system mass (ESM and xESM) in Figure
4.3 show the expected increase in cost moving from Case 0 to Case 2 in which the size of
the inventory grows in relation to the complexity of the situation (see SI for details). Also
as expected, the use of predeployments in Case 3 deduces the xESM cost by ∼26% while
only reducing ESM cost by ∼2.5% (Figure 4.3a). As the mission scope grows, both the mass
required and the difference between xESM and ESM increases as outlined by Figure 4.3b,c.

The three Cases in Figure 4.4 consider the food system and the potential impact of
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agricultural biotechnology to supply astronauts with their caloric and nutritional needs. We
assume that each of 6 CMs has a daily dry mass food requirement of 0.617kg/CM-d[17]. We
use this requirement to calculate the prepackaged food requirements of the two transit legs
of each mission scenario, as well as the extra 70 or 500 days of food for surface operations in
Cases 2s and 2b respectively. Given the recently updated infrastructure costs[17] associated
with a Mars Surface Habitat Vehicle[574], we calculate ESM through consideration of the
food subsystem including food, packaging, refrigeration[574, 17], and processing. In Case
2s, we consider only the stored food requirements from Case 2 from Figure 4.3. In Case
2b, we consider the stored food requirements during surface operations decreased from 500d
to 70d and the remaining food was produced via agriculture. In a long-duration mission
scenario in which food is grown during surface operations, and where literature suggests
that a sizable initial hardware set would be required[17]. This set could include hydroponic
growth chambers, water filtration, refrigeration, etc. along with additional support hardware
like pumps, filters, etc[17]. In Case 3, we consider the transportation of the biomanufacturing
system during predeployment rather than with the crew. During initial transit as well as
the return transit, the crew relies on prepackaged food – crop growth begins on the first day
of surface operations, necessitating another ∼70 days of predeployed food while the surface
hardware grows the first crop[17]. Variation in crop selection and growth conditions during
surface operations have been proposed, but this bounding assumption is consistent with
crops such as lettuce and wheat[17, 561, 542].

Like Cases 0-4, xESM costs for Cases 2s, 2b, and 3b are larger than their ESM alter-
native, however, in Case 2s (w/o biomanufacturing, only ‘bring everything’) and Case 2b
(w/ biomanufacturing), the xESM option is significantly larger than the ESM option for
calculation. The difference between the xESM and ESM calculation results is an increased
mass on the transit to Mars and reduced mass for surface operations and return transit. The
primary trade-off here is that xESM provides a higher fidelity model for multi-segmented
missions given that it includes the costs for all mission segments where an item is carried,
while the ALSSAT’s ESM calculation method does not include preceding mission segments
ALSSAT[574]. This result is especially important considering downstream biomanufacturing
options which show a reduced xESM metric in scenarios where predeployment is leveraged
to reduce the cost associated with the transit. Additionally, our “bring everything” mission
which does not rely on biomanufacturing yields larger costs overall from increased stored
food. All three scenarios have equivalent Tr2 ESM and xESM; this shows that in the last leg
of the journey, or in a segment that is not influenced by future operations, ESM equals xESM.
While simplified, this captures many of the critical features necessary to demonstrate the
need for ESM extension. In cases where inventory from one segment can be used to satisfy
constraints in another segment, the ESM summation of separately optimized mission seg-
ments can be less optimal than an ESM optimized with an objective function that accounts
for both segments and constraint functions containing both terms from both segments. Given
that system mass analyses are often used in the preliminary evaluation of technologies, it
becomes more important for when considering biomanufacturing platforms to leverage the
xESM formulation to provide a higher fidelity and more favourable metric. However, we
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also must clarify that the aim in exploring this example is not to make claims about specific
technology, but rather to provide an example for differentiating ESM and xESM.

4.3 Towards xESM Analysis and Optimization Under
Uncertainty

So far, we have looked at the xESM framework for calculating segmented costs. Based on
the scenario chosen, the xESM metric is ultimately determined based on some set of specific
technologies that are used. Simpler cases, as the ones given in the examples assume that
(1) the behavior of a particular system is fully known on Mars and (2) the operation of the
systems is undisturbed by external factors. Although several systems can reliably be consid-
ered as deterministic in this scope, effects such as micro-gravity might affect the dynamics
of specific processes in a biomanufacturing context. Moreover, each process possesses a set
of faulty states, i.e., technical issues may cause a system to under-perform significantly. De-
tailed analysis of novel systems, e.g., in the biomanufacturing case, requires the description
of the operation of systems using mathematical models. To this end, the xESM framework
can be used both to analyze the cost of individual processes as well as the cost of integrated
processes in any desired segment, as they operate in time. A simulation-based analysis, either
some cost analysis of specific elements or some end-to-end optimization procedure, makes
use of models to simulate the systems, the environment and associated costs for achieving
the mission objectives. As a remark, we should note that the sophistication of the simulated
case study can vary. For instance, higher-level decisions can be optimized for without the
need of detailed models for individual components, while exact scheduling [47] and opera-
tional decision making should involve dynamical models for the various subsystems [383].
This principle has been widely adopted in manufacturing settings for design and control.
Parts of the costs not commonly accounted for in cost calculations for space missions like
ESM are uncertainty and risk. The latter are important factors during the design phase as
we need to ensure safety in a robust, worst-case setting[398].

Uncertainty can be broken down categorically into two groups: aleatory[20] and epis-
temic[139]. Aleatory uncertainties are random and stochastic in nature and, although they
can be examined via systematic testing, they cannot be reduced below some threshold. On
the other hand, epistemic uncertainties can be reduced through applying additional knowl-
edge and testing much more effectively. Moreover, uncertainties can be categorized and
modeled as time-varying and time-invariant. In our case, there are several components,
both explicitly and implicitly appearing in the xESM framework, that can be considered
as uncertain. Let θ ∈ Θ ⊂ Rn

θ denote a vector of uncertainties (both time-varying and
invariant). Epistemic uncertainties include time-varying variables such as unmodeled dy-
namics (e.g., states of the system not taken into account) or time-invariant variables, for
example, physical parameters of systems (e.g., kinetic parameters) or operational factors
(e.g., efficiency of lights). Aleatory uncertainties can include purely stochastic dynamics
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of systems and are typically time-varying, while including operational uncertainties related
to equipment switching to a faulty state. In our context, note that the multi-segment ap-
proach allows for considering segment-specific uncertainties, for example, θpd ⊂ Θ are the
predeployment-specific uncertainties and θsf ⊂ Θ are the uncertainties directly related to
the surface operations.

Before formally defining an optimization problem, we should mention that the cost is
generally a function of decision variables which reflect design choices regarding the specific
utilization of available technology. Let us now focus on a particular segment, i.e., the surface
operations and let usf ∈ Rn denote a set of decision variables for the surface operations. (e.g.,
amount of crop biomass that should be grown over some production cycle or the allocated
area for plant growth). The mass-equivalent cost for the surface operations in this case is a
function in the form M0,sf (usf ; θsf ). The decision variables can be fixed a priori or, more
realistically, should be determined upon the solution of an optimization problem that seeks
to minimize M0,sf in while accounting for uncertainties. The latter implies that typically
we are interested in some expected value of the cost, i.e., EΘ [M0,sf (usf ; θsf )]. In a more
general sense, each segment j induces an expected cost EΘ [M0,j(uj, θj)]. Thus, reliability
and uncertainty metrics also should be considered in an optimization setting. [441].

As the entire mission is broken down into segments and sub-segments, we can define task-
specific performance level requirements which, when not fulfilled at several points in time,
the mission can be considered to be failing. In other words, when simulating some part of the
mission, uncertainty can lead to a sequence of faults manifesting themselves (either due to
uncertainty in the system dynamics or due external disturbances and equipment faults) until
the mission has to be abandoned. This is a useful definition for incorporating risk into the
mission design given the dynamic nature of operations and the breakdown of mission stages
that was introduced earlier. Using the notion of segments, we can define as πt,j(θj ;uj) the
probability density function of segment j failing the earliest at time t, under some decision
variable vector uj. Subsequently, we can rely on sample-based methods to calculate the
aforementioned probability, e.g., Monte Carlo sampling. Subsequently, we can define the
expected failure time of segment j under the set of decisions uj as t̂f (uj) =EΘ [πt,j(θj ;uj)],
which also reflects the reliability of the design uj. Note that faults and failure are connected
but not identical [535]. We define as faults the sequence of events that need to occur such
that their accumulation over time (in terms of number and magnitude) lead to an overall
failure condition. Therefore, all uncertainties can be propagated into a single indicator which
is the time of mission failure, which can be used for further analysis.

We can now shift our attention towards a stochastic optimal decision making for uj,
discussing the elements that would construct a proper stochastic optimization problem [373,
374] . The main element is the objective function. In a naive approach, we would seek the
design uj such that the expected segment cost is minimized. Nevertheless, this is not the best
approach because we need to account for the confidence in the value of the expected cost.
Therefore, the objective should include the variance of the segment cost due to uncertainty,
i.e., V [M0,j(uj, θj)]. Last, but not least, a design that causes the segment to fail at a
particular day should be incur a penalty to the objective, related to the probability of failure
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as opposed to the probability of a loss of crew (Pr(LOC))[140]. We can define a scale of that
penalty as s(uj), which can assume many forms, with the requirement that a mission that
lasts longer is penalized less.

Under the simple assumptions that (1) the goal of human exploration missions is to carry
out science experiments[61] and that (2) experiments are carried out each day, a worst case
scenario is a complete mission scrub in which all science objectives planned beyond the day of
mission failure cannot be completed. Overall, the main idea is that if the mission is to fail on
the very first days, then it would need to be redone on a following mission. The assumption
being made by this simple penalty is that if a mission were to fail early, the ESM cost of
that mission left incomplete would be partially added onto next one. We argue that this
is a valid initial construction of a penalty term based on assumption that incomplete work
during a mission is required. This statement is especially valid for early human exploration
missions where experimental use of new equipment is important in validating its use or raising
technology readiness level to acceptable values for future missions. While we recognize that
the standard recommendation in Decision Theory is to ignore sunk costs, we argue that the
in our paradigm, this added penalty is not such a sunk cost. In classical decision analysis, a
sunk cost is a sum paid in the past that is no longer relevant to decisions in the future[244]
and thus should be ignored when making decisions. We argue that in our paradigm, we
are analyzing the impact on a mission of some choice in technology that has some defined
uncertainty, and thus no cost has been sunk. In the parlance of decision analysis, this is an
example of a prospective cost, and is not to be ignored.

The objective for an optimization problem on a segment can now be written as

f(uj) = E [M0,j(uj, θj)] + wvV [M0,j(uj, θj)] + wps(uj)

where wv is a weight that assesses the importance of variance of the cost in the objective and
wp is a cost, in system mass units, which, as discussed, attains values approximately equal
to a nominal ESM cost for the segment. Moreover, depending on the nature of the problem,
the optimization is complemented with various robust constraints. The latter ensure the safe
operation of the systems, such as achieving several thresholds of productivity. A detailed
optimal decision making problem formulation is heavily case-dependent and a complex issue
to address, however, we envision that the objective function would generally attain this
particular in most cases. Last, but not least, the optimization can be extended to a mission-
wide horizon by replacing the segment-specific cost with the total cost.

4.4 Future Work
The use of the xESM framework helps guide the development and implementation of software
for a reference mission architecture for long-duration human exploration of Mars. We recog-
nize that this extension of ESM as a metric for mission scenario comparison is preliminary
and not exhaustive in its scope. We also note that no single analytical result such as ESM or
xESM will be the sole factor the technology specification or platform decision-making. The
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differences presented are important but modest and are in scale with the uncertainty of the
quantities used as the inputs. In addition to incorporation of mission parameters, specific
constants and terms in our formulation are required, such as a more precise calculation of
equivalency factors for cooling, power, volume, and crew-time and distillation of the specifics
for risk fractions. Future endeavors include a comprehensive optimization problem formula-
tion and solution based on the xESM framework both for biologically and non-biologically
driven missions. Moving forward, we hope that our extension of ESM provides the basis for
continued systems engineering and analysis research for a more quantitative and inclusive
design and optimization of long-term human exploration missions.

4.5 Methods

Mathematics

Let L be a set of locations composed by L = { ♁, ♁○,♂, ♂○ } where ♁ is Earth surface, ♁○
is low Earth orbit, ♂ is Martian Surface, and ♂○ is low Martian orbit. Let L2 be the set of
pairs in L which describe from starting to ending location. Let O be the set of operations
composed by O = { f, b,m } where f1 is cargo, b2 is robotic, and m3 is crewed. Let Λ(i, j) be
the mapping from some pair of i ∈ L2,j ∈ O to the setR of rockets, vehicles, and habitats. A
mission segment S can be constructed via set-builder notation as S = { (i, j) | i ∈ L2; j ∈ O }
for specific combinations of locations and operations as

S = { (i, j) | i ∈ L2; j ∈ O }
Spd = { (i, j) | i ∈ { ♁ ♁○, ♁○♂○, ♂○♂ } ; j = f }

= { (♁ ♁○, f) + ( ♁○♂○, f) + (♂○♂, f) }
Ssf = { (i, j) | i = ♂♂; j 6= f }

= { (♂♂, b) + (♂♂,m) }
Str1 = { (i, j) | i ∈ { ♁ ♁○, ♁○♂○, ♂○♂ } ; j = m; k ∈ Λ(i,m) }

= { (♁ ♁○,m) + ( ♁○♂○,m) + (♂○♂,m) }
Str2 = { (i, j) | i ∈ { ♁○♁, ♂○ ♁○,♂♂○ } ; j = m }

= { ( ♁○♁,m+ (♂○ ♁○,m) + (♂♂○,m) }
Str3 = { (i, j) | i ∈ { ♂○♂○ } ; j 6= f }

= { (♂○♂○, b) + (♂○♂○,m) }

for the abstract segments of predeployment (pd), crewed transit from Earth to Mars (tr1),
Martian surface operations (sf), crewed transit back from Mars to Earth (tr2), and either
autonomous or crewed operations aboard the interplanetary vehicle in Martian orbit (tr3).

1Elder Furthark[519] rune f *fehu meaning “cattle”, used here to imply “cargo”
2Elder Furthark rune b *berkanan meaning “tree”, used here to imply “autonomy”
3Elder Furthark rune m *mannaz meaning “man”, used here to imply “crewed”
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The complete mission objectM is therefore constructed as the collection of these abstract
segments in conjunction with the selection of a specific technology in R as

M = { (k, `) | k = (i, j)∀ {Spd,Ssf,Str1 ,Str2 ,Str3 } ; ` = Λ(i, j) }
and can be used in the construction of a generalized total mission ESM M0 as

M0 =
M∑
k

Leq,k

Ak∑
i

[(Mki ·Meq,k) + (Vki · Veq,k) + (Pki · Peq,k) + (Cki · Ceq,k) + (Ti ·Dk · Teq,k)]︸ ︷︷ ︸
M0,k

= M0,pd +M0,sf +M0,tr1 +M0,tr2 +M0,tr3

as the sum of ESM for segments in a mission set M. Essentially, we have established a
graph where the locations represent nodes and the segments represent arcs, which matches
previous formulations of mission logistics[202], although our set of location nodes is reduced
for simplicity and does not include specific Lagrange Points[231]. The generalization enables
accounting of mission segment-specific terms such as location factor Leq and equivalency
factors (Meq, Veq, Peq, Ceq, Teq). This generalization also allows for indexing of mission
segment specific subsystems A, further enabling an accounting of inventory elements between
mission segments.

Example Problem Calculations

Inventories for the whole system mass in Figure 4.3 and the agricultural system mass in
Figure 4.4 are rendered from ALSSAT[574] calculation outputs for a Closed Loop (Air and
Water subsystems) mission. The segment parameters for a full transit are as follows; tr1:
6 crew, 210 days, tr2: 6 crew, 210 days, tr3: 2 crew, 500 days, sf: 4 crew, 500 days, asc:
4 crew, 1 day, desc: 4 crew, 1 day. All other configurations are set to their default value.
Note that to calculate xESM inventories, technologies that remain on the same craft were
scaled to their upper bound of usage. For example, the air processing equipment for the
craft throughout tr1, tr2, and tr3 were scaled for 920 days of operation. Consumables (such
as stored food) were initially be scaled for 920 days and decreased accordingly as they were
used.

Penalty for Mission Failure

The penalty associated with the mission failure can be defined in various ways. For example,
we can define the following relationship between the penalty cost and the duration of the
mission

s(uj) =

(
1− t̂f (uj)

ttot

)
,

which expresses a linear decrease of the penalization with the number of days.
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Chapter 5

Computational Methods and Construction of
echusOverlook Software

Design practices and tools for human exploration missions have evolved in concert with
mission complexity over the past half century of the space age. As collective thought
turns toward the exploration of Mars and of the Moon, including the Artemis Pro-
gram, technologies new and old have been proposed to address challenges in astronau-
tics. However, the coordination of these challenges has lagged behind the advances of
technologies themselves. This drives our development of echusOverlook (eO), an open-
source Python library that captures the explorable mission design space, standardizes
the definition of mission components, and democratizes the process of distilling tech-
nologies to sustain human exploration. No existing mission design software allows
users to build and simulate technologies of their own design, because they are limited
to the space of hard coded options. The open and modular framework of eO attempts
to reflect and integrate the collaborative contributions of the community. For a given
configuration, eO calculates the exchange of resources between system components
using a crewmember model and mass balancing logic. This mission representation is a
precursor to computations including inventory generation, techno-economic analysis,
and performance assessment of simulated discrete and stochastic behavior. Calcula-
tions are benchmarked against and on par with the ALSSAT for inventory generation,
and with HabNet for mission simulation. eO supports both private, local data and the
publishing of mission designs to a central public server, where they can be extended
by the global community. We reproduce the ALSSAT model of a closed-loop mission
with a biomass system, and extend it in eO with the modular addition of a novel
bioprocess that produces parathyroid hormone for skeletal anabolism. The expansion
of mission technologies beyond abiotic hardware to biotic design is a key motivator
for eO’s accessibility, which attempts to meet NASA’s Space Technology Grand Chal-
lenges by bridging the space sciences and biological engineering communities. Our
software, data, and models will be released and maintained on GitHub.
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The following chapter is under development for publication as A.J. Berliner, D. Ho, K.
Yates, G. Makrygiorgos, A. Mesbah, S. Nandi, K. McDonald, A.P. Arkin. echusOverlook:
In silico Knowledge-base and Simulation Framework for Human Exploration Operations
of Mars. (In preparation, expected submission Fall 2022).

5.1 Introduction to Mission Design Software
Design practices and tools for human exploration missions have existed since the earliest of
the Mercury program[87] and have evolved in concert with mission complexity over the past
half century of the space age[304]. As the collective thought across multiple space agencies
turns to the exploration of Mars[546, 503], technology platforms – new and old, incremental,
and novel – have been proposed to address a wide array of challenges across nearly all aspects
of astronautics[147, 385]. However, the coordination of such challenges has lagged behind
specific advances of the technologies themselves – motivating a need for systems engineering
frameworks capable of exploring the interplay between platforms and solutions[377]. Such
a design space must be subtended in order to distill an optimal set of technologies and
operational strategies for sustaining a long-duration human exploration mission on Mars.

Among the many newly-proposed technologies that have been shown as critical in en-
abling human exploration on Mars, biological technologies have been identified as critical
in sustaining astronauts and reducing mission cost[371, 372]. The optimal set of technolo-
gies and operational strategies for sustaining a long-duration human exploration mission
on Mars is driven by the design, optimization, deployment, and management of a surface
biomanufactory[44]. Recently the components of Space Bioprocess Engineering (SBE)[43]
have been codified to include (1) in situ microbial media production, which harnesses Mars
atmospheric and regolith resources for downstream biological use; (2) in situ manufacture
of mission products, which creates outputs like propellants and building materials that are
fundamental enablers of any long-duration space mission; and (3) in situ food and phar-
maceutical synthesis, which enables manned long-term space missions and the use of plants
and microbes for food, nutrients and medicine to astronauts[44]. The realization of these
systems into a technology platform for future work by NASA requires both the biological
engineering required to achieve technology milestones as described above, and the systems
engineering needed to analyze, test, improve, and integrate the many processes into a single
biomanufacturing system. Here we present the design and construction of the echusOverlook
(eO) software as a means and method for evaluating mission architecture across a myriad
of metrics common to Environmental Control and Life Support System (ECLSS)[429]. Such
metrics may include equivalent system mass (ESM)[314, 314, 152], reliability, and cost-
benefit trade-offs.

Mission ‘planners’ have requirements for basal support of the crew for particular[17, 230].
These requirements are staged out from prelaunch through the return in multiple stages –
each with different requirements to be met that may include preparation for the next stage
and operation within a stage[147]. A fraction of these can be provided by systems that
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incorporate biological components beyond the crew themselves- plants and microbes most
probably[42]. These systems each have their own costs and benefits that accrue in both their
independent operation and their connections to other mission systems and operations across
stages[41]. Costs include material costs, power costs, weight, operational costs in labor and
risks of failure, etc. Benefits include the production of required functions and possible side-
benefits to other mission operations (e.g. waste recycling or air filtration). There may be
more than one possible system available to fulfill a given requirement. Thus, selection of a
set of biotechnologies to fulfill a set high level mission requirements, calls for selecting a set of
operationally compatible biotechnological systems optimized within and across the mission
elements and mission stages so that the most optimal system configuration can be chosen.

Various aspects of mission design have been explored across a number of software artifacts
as shown in Table 5.1. Beginning with the Microsoft Excel-based Advanced Life Support
Sizing Analysis Tool (ALSSAT)[573] in 1998, the complexity of such software has grown
through the establishment of dynamic modeling methods. Likewise, the fidelity of mod-
els has increased with moderate tradeoffs in convergence time. Table 5.1 also shows that
software has been developed in parallel by both NASA and ESA which underscores a lack

Modeling
Tool

Year of
Initial
Release

Year of
Last
Update

Summary SS/D/S Fidelity Speed Availability Programming
Language

ALSSAT[573, 572, 574] 1998[360] 2012[575]

NASA’s Advanced Life Support Sizing Analysis Tool was developed
for use in the sizing and analysis of Environmental Control and Life
Support Systems (ECLSS) for spacecraft and habitats. The purpose
of this tool is to perform life support system trade studies and
analysis.

SS L O(s)

Lengthy
application
through NASA’s
Software Portal.
Under export
control

Microsoft Excel
and Visual Basic
Macros

ELISSA[138, 136] 1999[360] 2018[137]

The Environment for Life-Support Systems Simulation and Analysis
(ELISSA) tool has been developed at the Institute of Space Systems
(IRS), University of Stuttgart since the mid-90s and allows the
analysis and validation of new ECLSS designs, as well as system
optimization

SS/D M O(m) Unavailable MATLAB

EcoSim[428] 1999[534] 2021[149]

ESA’s Standard Software based on a simulation tool developed
by Empresarios Agrupados for modelling physical processes
that can be expressed in terms of Differential algebraic equations
or Ordinary differential equations and Discrete event simulation.
Intended for detailed ECLSS controls and operations analysis.

D/S M O(w) Commercial
Payware

Standalone Tool
in Visual Basic
and C++

BioSim 2003[293] 2015[292] Developed by TracLabs (NASA JSC Contractor) exclusively for
integrated ECLSS controls research D/S H O(s) Available.

GPL v3 Java

V-Hab[476, 130] 2009[128] 2019[440]

Developed by TU-Munich dynamically simulates life support
systems and their subsystems, as well as their interactions with
a modeled crew metabolism. the goal of V-HAB is to create a
holistic tool that can be used during the complete life cycle of
an ECLSS, from the initial feasibility studies, through requirements
definition to subsystem and system design and even utilization and
operation of the system.

D/S H O(m)
Private.
Accessible
by request.

MATLAB

SCALISS
/ALiSSE 2010[63] 2017[57]

A European Tool for Automated Scaling of Life Support Systems.
The aim of the SCALISS study was to understand and investigate
in ECLSS functionality, technologies and scalabilities in order to
produce a robust initial design starting point for future Phase-A
studies with an
automated tool.

SS M O(m) Unavailable Standalone
Tool, Java

HabNet 2015[142] 2019[58]

Developed by MIT as an integrated habitation and supportability
architecting and analysis package. Tool quantitatively evaluates
various technology options for a proposed mission architecture in
terms of their functional performance, their failure modes, their
supportability requirements, and ultimately their initial deployment
and lifecycle operational costs.

D H O(m) Partially
accessible. MATLAB

eO 2021 – Tool for designing, exploring, and optimizing a biologically-driven
reference mission architecture for human exploration of Mars D/S H O(m) Available and

Open Source Python

Table 5.1: Comparison of Life Support Systems Software Packages
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of standardization between space agencies. Moreover, the development of recent tools has
been outsourced either by private industries in the case of EcoSimPro[428] or by academic
institution via V-Hab[128] or HabNet[142]. The result of such outsourcing has led to two pri-
mary issues with the life support systems software: tools (1) operate on poorly-standardized
mission architectures, methods, and data (2) are predominately either protected for reasons
of academic priority or private financial concerns. Propagation of such issues has led to
barriers in both the free discussion of methods and the agency for new players to contribute
– in many forms ranging from mission elements to performance metrics to general biological
ideas – to the grander mission of human exploration.

As outlined in Table 5.1, the echusOverlook software has been designed to maximize
availability to the space mission design community while also meeting the fidelity and con-
vergence time of previously developed tools. What cannot be captured by these criteria,
however, is that eO is a dynamic, living software framework. There are no predetermined
and immutable data types, calculations, metrics, or simulations. At this level of abstraction,
eO fully supports the design of non-biological missions while being extensible enough to
accurately describe and model complex bioengineering systems. Any mission to Mars with
any reference mission architecture, any set of processes, and any inventory can be described
and modeled inside eO. This allows eO to address both the ECLSS-based goals of SBE[372]
and meet NASA’s Space Technology Grand Challenges[514] by bridging the space sciences
and biological engineering communities[43]. eO fosters both Standardization of mission ele-
ments and operations by the space science and engineering community and Democratization
of novel biological system elements by the biological science and engineering community to
meet the needs and requirements of both user-groups.

5.2 Preliminary eO Software Design and Overview
Initial feedback in regards to eO gathered from NASA stakeholders at the CUBES Y4 Spring
Review stressed the importance of not developing the software in a vacuum – and encour-
aged our team to renew our efforts to establish communication with NASA’s mission design
specialists. After much assistance from our NASA point-of-contact, Dr. John Hogan, we
were able to schedule an initial meeting to

1. Form a community of mission planners, life support systems designers, espace scientists,
and bioengineers;

2. Review what is known about possible mission specification or modeling that has been
done for chemical and biotechnologies that support food, pharmaceutical and material
production in space; and

3. Explore current Bioregenerative LSS and ECLSS and determine what elements have
been missing from mission design.
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Figure 5.1: eO Meeting Attendees

Prior to the meeting with the attendees outlined in Figure 5.1, we solicited feedback to
a set of questions designed to gauge the interest for the echusOverlook software for human
exploration mission design and optimization (emphasizing biomanufactory-driven RMAs and
technologies). We collected the responses and presented them back to the attendees at the
meeting which was designed to explain our preliminary efforts, discuss struggles, collect
needs, and learn of others we might need to interview. The responses are presented in
Figure 5.2.

We presented eO with a preliminary user story in which a user would want

1. to specify mission goals formally,

2. to be prompted towards inclusion of mission elements/processes to support those goals,

3. be able to efficiently populate those processes with possible inventories to support those
processes and models of their operation, and

4. given these constraints to select from possible mission architectures that can support
lift of these proceses to their sites of action.

Given these sets of possible alternatives to process, inventory and mission architecture, we
proposed that the user would wish to be able to create more or less optimal scenario composed
of these and compare them for trade-offs against different mission metrics including standard
mass, power requirements; modularity/ interoperability requirements, minimum waste and
maximum recycling requirements, etc. The user story provided a preliminary design pathway
in which the proposed story would be supported through:
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Figure 5.2: Feedback from a form distributed to stakeholders to gauge the interest for in eO.

1. Creation of a databases of processed, models, inventory elements, mission architectures
that can be extended, and used together to create models of different mission scenarios

2. Allow building of multiple and community extension of models of mission elements
ranging from very top level ESM like models of their costs to detailed dynamical
models of their operation

3. Allow model optimization, sensitivity/uncertainty analysis, and cross-model compari-
son for decision support.
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4. Allow open, transparent, FAIR sharing of data, models and analysis among diverse
communities to support effective comparison, incremental development, and ease of
checking/rechecking results.

Following the preliminary meeting, we established a set of future goals:

1. Collecting and collating all known information about the physical specifications and
form factors for operation of technological elements (life support, biomanufacturing,
etc.) on-board transit craft, space-stations and surface elements.

2. Collecting and collated all known information about costs/models for operations of
these platforms that affect the costs and operations of the tech support elements (how
different rockets, etc. effect the cost of operations in 1.)

3. Collecting and collating all known actual and possible mission architectures for planned
missions over the next 30 years to serve as templates for the RMA structures in
echusOverlook

4. Collecting, improving, and testing different models of critical technological elements
in the LSS, ECLSS, biomanufacturing space or other biologically-linked operations for
test bedding the systsem and supporting the evolution of this community for driving
innovation in these elements over the next decades.

5. Developing a community to ensure we are building a usable, accelerating software
framework for the larger community even beyond space bioengineering;

6. Developing a clear communication and alliance with other mission planning and tech
development groups so we remain relevant.

5.3 Software Overview
eO models the parametric constraints on and tradeoffs among bioprocesses such that they
meet or exceed mission need and are engineered to minimize the risk of failure under different
orbital, crew, and landing site scenarios. Through the integration of both a knowledge-base
and simulations, eO is designed to elucidate the critical system parameters for demonstrating
the feasibility and advantages of biological engineering on a human exploration mission to
Mars. The echusOverlook repository is available for download (https://github.com/cubes-
space/echusOverlook) and can be accessed via command line, Jupyter notebook, or text
editor.

User Story

The user story diagram (Figure 5.3a) describes how a user starts with the setup of “campaign”
and proceeds through from design to the technoeconomic calculation through simulation

https://github.com/cubes-space/echusOverlook
https://github.com/cubes-space/echusOverlook
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and ends with either the submission of results back to the eO database or an adjusting of
parameters for additional calculation and/or simulation. Users begin by creating a space
logistics network (SLN) by selecting the data elements for use from existing data in eO
which can then be modified. eO is initially seeded with a library of common ontologies,
datasets, and operations, and the user community is encouraged to upload new components
and their results. Each SLN is used to determine mission needs and constraints and is

Figure 5.3: Overview or echusOverlook software. Design of eO (a) user journey/story with (b) system architecture.
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composed of operations across a series of mission segment with locations such as Earth, Low
Earth Orbit (LEO), Cis-lunar Space, Luna, Interplanetary Space, Martian Orbit, Mars, etc.
Default mission data packages are available as a starting point for users to not only decrease
the barrier of entry to space mission design, but also to standardize the use of eO across
multiple instances. The user can easily create additional ontologies, variables, and models
by uploading new types of information, allowing for the freedom to construct a mission
component using any data type necessary to describe it. Once a SLN has been validated, the
user can perform downstream a variety technoeconomic analyses and/or initiate a simulation
for exploring the dynamics of their system.

Systems Architecture

The eO data module acts as a knowledgebase to describe the mission parameters – both
user-defined and calculated – and can be considered as the set of instructions from which
simulations are first constructed, parametrized, and run – and later as the container in
which simulation results are added. The interactions of these components (Figure 5.3b) are
governed by a number of modules including OrbitalMechanics, MartianEnviornment, Processes,
Inventory, and Crew. A number of “start-up” examples are provided in the knowledgebase
and include complete reference mission architectures and other case studies such as inventory
constructs from NASA’s ALSSAT[575] and BVAD[16] and sortie and outpost surface missions
described in HabNet[142].

Mission architectures are assembled from disparate data types, from graphs[231] to in-
ventories[16] to simulated processes[128]. Currently, data and their associated context are
siloed in spreadsheets, on pencil and paper, and in publications. Not only is there no ini-
tiative for communicating and sharing this data, but this also slows the process of making
global updates across the field based on new information. To address these issues, we use
CORAL: a backend framework for creating FAIR data—findable, accessible, interoperable,
and reusable—among a community of researchers[91]. CORAL supports dynamic creation
of FAIR data types for data kept in spreadsheets, translating information stored locally into
objects that can be found and used by others. All data uploaded to the eO database through
CORAL is validated by eO ontologies and accompanied by context, such as units, sources,
and references to other modules.

Through CORAL, spreadsheet uploads to describe components of the mission, including
the inventory, processes, and reference mission architecture, allow users of eO to build and
simulate missions of their own design. Default and user-defined information that has been
uploaded through CORAL resides in an ArangoDB database instance on the local machine.

5.4 Results
The following results are presented for three distinct case studies that validate eO against
alternative frameworks for TEA calculations and process simulation while also demonstrating
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the extensibility of eO for the creation and analysis of novel SSB technologies in a mission
context.

Case Study 1: Technoeconomic Analysis and Validation of “Bring
Everything” Scenario

eO was designed to be competitive with previously created software such as the ALSSAT[575]
and thus requires methods for carrying out technoeconomic analysis (TEA) in the form of
sizing and trade studies – and thus eO’s TEA methods require the inclusion of mission design
metrics. The history of space mission design is replete with a number of such metrics that
range in scope and complexity (Table 5.2). ECLSS technology selection was initially carried
out by assigning a Technology Readiness Level (TRL)[339] value and has evolved to account
for Integration and Systems Readiness (IRL, SRL)[470, 471, 472, 473]. However, despite the
standardization of TRL criteria[179, 229], such “mangagement” metrics are often considered
lacking in objectivity[269] and do not readily lend themselves to optimization.

The impact of specific technology choices are usually evaluated through the more quantifi-
able metric of the equivalent system mass (ESM)[312] which provides a method for distilling
the mass of all of the resources of a larger system. Despite its status as the gold standard,
ESM has been criticized for a number of short-comings such as ambiguity of application
and non-accounting of development costs[261] and uncertainty[6]. Efforts to address these
challenges metric have been proposed in the form of (extended ESM) which addresses unre-
solved complexities stemming from multiple transit and operations stages, such as would be
required to support a crewed mission to Mars and also provides an accountancy for the uncer-
tainties inherent in mission planning[41]. Additionally, a number of alternative metrics have
been proposed to surplant[264, 273] ESM that consider complexity[272]. Most recently, the
Life Support Multi-Dimensional Assessment Criteria (LSMAC) metric has been proposed to
incorporate a myriad influences of influences including maintainability, risk Analysis, TRL,
radiation impacts, manufacturing costs, reliability, human factors, and autonomous opera-
tion[6]. Such a multitude of metrics underlying TEA has led to a difficulty in comparing
the technologies that have been evaluated differently – compounding complexity to the pre-
viously described differences in technology specifications from across multiple data-sets and
literature sources. The initial release of eO addresses these challenges through the inclusion
of all frameworks in Table 5.2 – enabling multi-metric TEA. Additionally, the extensibility
of eO provides for creation of new metrics which can be uploaded and shared similarly to
specific technology objects – further standardizing and democratizing mission design.

Preliminary RMAs propose 30 sols of surface operations driven by an opposition-class
transit by a small crew of 4-6 astronauts[147]. Such short-term missions do not led themselves
construction and operation of biomanufactory-based set of technologies and instead opt for
a “bring everything” (BE) scenario in which the majority of consumables such as food,
tools, and medicine are packaged turn-key and transported via predeployment or as cargo
on the primary mission vehicle[44, 42]. Given that the BE scenario serves as a standard
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Metric Description Formulation

Technology-
Integration-Systems
Readiness Level
(T/I/S-RL)[339,
473]

A series of methods for estimating the
maturity, interoperability, usability of
technologies on a scale from 1-9 during
the acquisition phase of a program

T, I ∈ [1, 9], S =
∑n

j=1

∑n
i=1

IijTj
mj

Equivalent System
Mass (ESM)[314,
312]

A method to evaluate a system or tech-
nology based upon its mass, volume,
power, cooling and manpower require-
ments by relating all parameters to
mass equivalency.

M = Leq
∑A

i=1[(Mi ·Meq) + (Vi · Veq) +
(Pi · Peq) + (Ci · Ceq) + (Ti ·D · Teq)]

Extended Equiva-
lent System Mass
(xESM)[41, 367]

A method for extending ESM to ac-
count for multi-staged missions and re-
liability and feed into downstream opti-
mization problems.

M =
∑M

k Leq,k
∑Ak

i [(Mki ·
Meq,k) + (Vki · Veq,k) + (Pki · Peq,k) +
(Cki · Ceq,k) + (Ti ·Dk · Teq,k)]

Initial Mass to Low
Earth Orbit (IM-
LEO)[444, 231]

A method for calculating the total mass
of a system from to LEO for down-
stream relationship to the gear ratio.

M =
∑M

k

∑Ak
i Mki

Systems Com-
plexity Metric
(SCM)[272]

A method for evaluating the complex-
ity of an integrated system in terms of
the interactions and interoperability be-
tween subsystems.

C = (L− 1)S2 + N2

SL−1

Table 5.2: Mission desgin metrics. For T/I/S-RL: T and I are the TRL and IRL values in range [1, 9], n is the
number of subsystems, m is the mass of the subsystem, and S is the SRL value. For ESM, xESM:M is the calculated
mass, A is the set of subsystems,M is the set of mission segments, Mi, Vi, Pi, Ci are the initial mass [kg], volume
[m3], power requirement [kWe], and cooling requirement [kg/kWth], D is the duration of the mission segment [sol],
Ti is the crew-time requirement based on an astronaut crew-member (CM) [CM-h/sol], Meq is the stowage factor for
accounting for additional structural masses for a subsystem such as shelving [kg/kg], Veq is the mass equivalency factor
for the pressurized volume support infrastructure [kg/m3], Peq is the mass equivalency factor for the power generation
support infrastructure [kg/kWe], Ceq is the mass equivalency factor for the cooling infrastructure [kg/kWth], Teq is
the mass equivalency factor for the crew-time [kg/CM-h], and Leq is the location factor for the mission segment
[kg/kg] which accounts for the cost to transport mass from one location in space to another. Mass equivalency factors
(Veq, Peq, Ceq, Teq) are used to convert the non-mass parameters to mass. For IMLEO:, M is the set of mission
segments to LEO. For SCM: C is the systems complexity value, L is the level number, N is the number of nodes,
and S is the number of subsystems.

for RMA design, we leverage the existing literature for programmatic representation of a
500 sol surface mission with an initial inventory population to demonstrate the validation of
eO’s TEA module. Validations of the eO TEA capabilities are presented in Figure 5.4 as a
comparison across a myriad mission architectures using the metrics presented in Table 5.2.
Each RMA was constructed by assigning standard mission variables such as crew-number and
mission duration, a “scenario” such as open loop (OL) or closed-loop (CL), and technology
choices the corresponding variable specification for air, food, thermal and waste subsystems.
The comparison of eO’s calculated ESM values against those from the ALSSAT validate our
agency in constructing the distribution of BE scenarios.
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a b c d e

f

Figure 5.4: Technoeconomic Validation of eO against the NASA ALSSAT. (a) Visual depiction of transition matrix for
closed loop “bring everything” scearnio. (b) Bar chart demonstrating eO calculation and comparison of 4 scenarios in
terms of the standard ESM metric using a breakdown of ESM by components such as Mass, Volume, Power, Cooling,
and Crew Time. (c) Bar chart with same comparisons as (b) using ESM fraction. (d) Bar chart demonstrating
eO calculation and comparison of 4 scenarios in terms of the standard ESM metric using a breakdown of ESM by
material composition in terms of metal, plastic electronics, water, etc. (e) Bar chart with same comparisons as (d)
using ESM fraction. (f) Bar chart comparison of subsystems for each scenario.

The basic schema for carrying out ESM-based TEA in eO is shown in Figure 5.3 in
which resources such as O2 are used to populate stocks of transition matrices given some
initial states. The transition matrices (Figure 5.4a) serve as the starting point for all TEA
calculations. Transition matrices can be visualized in eO as a combined directed graphic
showing the transfer of resources. Here we show an example transition matrix for a closed
loop (CL) BE scenario with resources of O2, H2O, CO2, N2, solids (define), and energy in
[kJ]. In Figure 5.4b we demonstrate eO’s agency in calculating and comparing 4 scenarios in
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terms of the standard ESM metric, and we further compare each scenario using a breakdown
of ESM by components such as Mass, Volume, Power, Cooling, and Crew Time. In Figure
5.4c we breakdown the same elements from 5.4b using ESM fraction rather than pure ESM
which allows for a more in depth comparison of ESM components on a standardized scale.
In Figures 5.4d,e we further compare each scenario using a breakdown of Mass and Mass
Fraction (respectively) by element such as structural metal, plastic, water, biomass, elec-
tronics, etc. This demonstrates eO’s extensibility beyond the standard ALSSAT. In Figure
5.4f we further expand the subsystem hardware to compare each scenario.

Case Study 2: Dynamic Simulation

The nature of manned missions and their components can be modeled by hybrid systems
that mix two kinds of behaviours: (1) the discrete and stochastic behaviour which is in
general due to failures and repairs of the system’s constituents and (2) the continuous and
deterministic physical phenomena which evolve inside the system. eO was designed to be
competitive with previously created software such as the HabNet[142] and thus requires
methods for defining and running simulations of both individual systems for exploring the
deep subsystem-specific parameters and their local optima and entire campaigns composed
of many systems in order to understand their dynamics and interoperabilities globally.

Simulations in eO are carried out using the PyCATSHOO framework[103, 102, 135] for
Piecewise Deterministic Markov Processes (PDMPs)[183]. PyCATSHOO is a modeling tool
for distributed hybrid stochastic automata. eO endeavors to simulate the failures and re-
pairs of Inventory objects and the continuous products of chemical and physical reactions
carried out during surface operations. The relationships between and within the Environ-
ment, Inventory, Habitat, Processes, and Crew classes are expressed through PyCATSHOO.
Mission reliability is calculated by PyCATSHOO as the expected duration of time that mis-
sion parameters are within safety margins. Cases resulting in mission failure as described by
Do et al. in HabNet[142] included the following: crew starvation, crew dehydration, crew
hypoxia, crew hyperoxia, crew CO2 poisoning, cabin pressure, high fire risk, and crop death.
Therefore, while simulating a mission, PyCATSHOO tracks and plots CO2 levels, O2 levels,
pressure, and amount of food over time.

While inventory models in the previous case explored the technology choice landscape
problem[106], the assumptions necessary to static mission design tools limit their ability to
describe and compare real missions. Dynamic simulations are required to articulate and asses
system behaviors like processing cycles, processor scheduling, supply and demand variations,
transients, interruptions, and failures – all of which can determine the cost and success of a
proposed mission architecture[265].

The first step towards dynamic models is to raise abstraction barriers between items; for
example, through the object-oriented frameworks in tools like Biosim and HabNet [142]. This
enables the definition of objects that store attributes about themselves, while responding to
incoming information from other objects. Past tools store this mission information in Excel
formulas or MATLAB/Java code. However, accessibility and standardized definitions are
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Figure 5.5: Process simulation in terms of (a) representation of systems & states, (b) dynamics, and a preliminary
(c technoeconomic analysis.

related: even if an object was dynamic, users would be limited to a static set of said objects
if they could not create new items of their own. In eO, we formalize the definition of objects
and their interactions. We chose PyCATSHOO for its ability to describe an object’s dynamic
variables; the conditional update of those values; an object’s automata; the conditional
transitions between those states; and the importing and exporting of values without prior
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knowledge of who to receive resources from, or distribute resources to. Furthermore, the
transition rate matrices in eO exposes these innards of a mission, displaying every string in
the network that can be pulled, and summarizing them at a glance.

In 5.5, the static mission configuration from the previous section is extended to a duration
of 500 days and converted to a dynamic model. The usage requirements of a technology (by
which it is scaled) often originate from information that originates from the crewmembers,
not the machine itself, so such edges that were once assigned a float value were now defined
by a method that is evaluated at each simulation timestep. As a benchmark, these values
were recovered after simulation, and their averages were found to be nearly identical to the
original static float. The graph on the right was repopulated with simulation results.

Given how mission architectures spring from crew needs, we next benchmarked eO’s
simulation module on different metabolic models, from HabNet and the BVAD, that capture
hourly fluctuations in resource needs based on the daily schedule. Because eO objects are
modular, we also used eO to scale the same inventory configuration as before, except with
dynamic simulation that allows for fluctuation in crew need, and then calculated ESM. While
there was negligible difference between the dynamic model of the static original, using the
same mission design with a different crew metabolic models caused great differences in the
resulting ESM, showing the need for such a modular framework that allows benchmarking
across multiple versions of the same object, and the standardization of which models to use.
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Chapter 6

Case Study 1: Photovoltaics-Driven Power
Production on Mars

A central question surrounding possible human exploration of Mars is whether crewed
missions can be supported by available technologies using in situ resources. Here, we
show that photovoltaics-based power systems would be adequate and practical to sus-
tain a crewed outpost for an extended period over a large fraction of the planet’s
surface. Climate data were integrated into a radiative transfer model to predict
spectrally-resolved solar flux across the Martian surface. This informed detailed bal-
ance calculations for solar cell devices that identified optimal bandgap combinations
for maximizing production capacity over a Martian year. We then quantified power
systems, manufacturing, and agricultural demands for a six-person mission, which re-
vealed that photovoltaics-based power generation would require <10 t of carry-along
mass, outperforming alternatives over ∼50% of Mars’ surface.

The following chapter can also found here: A.J. Berliner, A.J. Abel, M. Mirkovic, W.
Collins, A.P. Arkin, D. Clark. Photovoltaic and Photoelectrochemical Production Capac-
ity can Support Human Exploration on Mars. Frontiers in Astronomy and Space Sciences
(2022). DOI: 10.3389/fspas.2022.868519.

6.1 Power Production on Mars
Long-duration space missions or continuously-occupied extraterrestrial outposts require Earth-
independent power and chemical supply. Mars has an abundance of in situ resources, includ-
ing (sub)surface water ice[567] and carbon and nitrogen in atmospheric CO2 and N2[552].
Efficient conversion of these resources to reduced forms of hydrogen, nitrogen, and carbon
would represent an enabling step towards sustaining a permanent human presence in space.
In analogy to the proposed terrestrial “Hydrogen Economy”, molecular hydrogen (H2) can be
used as a platform molecule for energy storage, on-demand power supply, and as a reactant

https://www.frontiersin.org/articles/10.3389/fspas.2022.868519/abstract
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driving CO2 and N2 (bio)chemical reduction on Mars[341, 44, 95].
Water electrolysis with selective catalysts can drive water reduction to H2 on cathode

surfaces. This technology is attractive for space manufacturing applications since reactions
can proceed at high rates at room temperature, enabling the use of low-weight, 3D-printable
plastic reactors[44]. Commercial electrolyzers can evolve H2 from water with up to ∼80%
energy efficiency[531]. Directly solar-powered (i.e., photoelectrochemical (PEC)) devices
have also received significant attention, with solar-to-chemical efficiencies reaching blue>19%
for H2 production[98]. Once generated, H2 can drive N2 reduction to ammonia via the
Haber-Bosch process for crop fertilizer[44], CO2 reduction to CH4 via the Sabatier process
or methanogenesis for ascent propellant generation[371], and CO2 reduction to bioplastics

Figure 6.1: Overview and calculation of spectral flux using atmospheric data. (A) Sunlight incident on the solar
cells is mediated by orbital geometry and local atmospheric composition of gases, ice, and dust. (B, C, and D)
Temperature, partial pressure of atmospheric gases and concentration and effective radii of ice and dust particles
as a function of altitude above the surface. (E) Information flow in the calculation scheme. Dotted lines represent
functions used for calculations; solid lines represent data used as parameters. MCD, Mars Climate Database; LRT,
LibRadtran. (F) Total (black), direct (blue), and diffuse (red) solar flux at Jezero Crater at solar noon averaged
over the course of a typical Martian year. In (B), (C), (D), and (F), solid lines represent yearly averages and shaded
regions represent the standard deviation due to seasonal variation.
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following a variety of metabolic processes for habitat and spare parts manufacturing[44, 401].
The primary alternatives for powering life support systems and chemical production fa-

cilities on Mars are miniaturized nuclear fission reactors[147] and photovoltaic (PV) arrays.
While fission reactors are expected to behave similarly regardless of their location, the pro-
ductivity limits of PV and photoelectrochemical devices are not well-characterized for the
Martian surface mainly due to differences in the surface temperature and solar intensity and
spectrum from typical conditions on Earth or in space.

In an effort to determine the potential of PV and PEC devices to support a crewed
mission to Mars, we integrated relevant climate data from the Mars Climate Database[448]
into a radiative transfer model, libRadtran[358], to predict spectrally-resolved solar flux
across the Martian surface over the course of a year. The modeling overview and sample
calculations for Jezero Crater are provided in Fig. 6.1. Sunlight incident on the surface
originating from the top of the atmosphere (TOA) is mediated by orbital geometry and
local atmospheric composition of gases, ice, and dust for a given location (Fig. 6.1A). We
determined the partial pressures of constituent gases (Fig. 6.1B) and the concentrations
and effective radii of ice (Fig. 6.1C) and dust (Fig. 6.1D) particles as a function of altitude
above the surface and provided these data as inputs to a downstream radiative transfer model
(diagrammed in Fig. 6.1E). We then calculated the spectrally-resolved solar flux (Fig. 6.1F).
At short wavelengths (<400 nm), light transmission through the atmosphere is limited by
molecular scattering (primarily by CO2) and scattering from dust particles[539]. Scattering
and absorption by gas molecules is significant at wavelengths below 300 nm, but this region
is not considered here because it represents a very small fraction of the available solar flux
(<0.5%). Above 400 nm, most transmission loss is due to scattering from dust particles.
This is markedly different from the case on Earth, where significant molecular absorption by
water molecules limits the transmission of near-infrared light.

6.2 Results
The modeling results were used to inform efficiency calculations for PV and PEC devices
producing electricity and H2. Detailed balance calculations (section 4 in the Supplementary
Information)[146, 211] revealed ideal current-voltage characteristics for optically-thick de-
vices consisting of 1-, 2-, and 3- junction PV and 1- and 2-junction PEC absorbers dependent
on the bandgaps associated with each absorber (Fig. 6.2). Absorber numbers were selected
to represent historical choices for PV devices on Martian rovers[505, 299] and state-of-the-
art PEC devices[98, 578, 255]. For PEC devices, we assumed an electrical load consisting of
the thermodynamic redox potential and a variable overvoltage term that incorporates loss
mechanisms inevitable to a practical PEC device beyond radiative recombination already
considered in the detailed balance[146, 211].

m
The maximum efficiency for PV devices increases from 31.4% (1-junction; Eg=1.23 eV)

to 51.3% (3-junction; Eg, 1 = 1.77 eV, Eg,2 = 1.16 eV, Eg,3 = 0.72 eV) with judicious
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Figure 6.2: Theoretical efficiencies of PV and PEC devices. Detailed-balance efficiency limits as a function of
bandgap energies for (A) single-junction, (B) two-junction, (C) three-junction photovoltaic devices. (D, and E)
Solar-to-chemical (STC) efficiency for two-junction water splitting PEC devices producing molecular hydrogen with
0 mV (D) and 700 mV (E) overvoltage. (F) STC efficiency and optimal bandgaps for two-junction H2-generating
PEC devices as a function of overvoltage. Coloring in (A) and (F) correspond to contour coloring in (B, C) and (D,
E) respectively. Average flux at solar noon at Jezero Crater is used as the reference solar spectrum.
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Figure 6.3: PV and PEC production rates. (A) Average and (B) daily maximum solar flux (black, left axis) and
surface temperature (purple, right axis) as function of (A) time of day and (B) time of year. (C, E) average and (D,
F) daily maximum production capacity of power (C, D) and H2 (E, F) using 3-junction PV and 2-junction PEC cells
as described in the main text. Solid lines in (A, C, E) correspond to averages; shaded areas represent the standard
deviation due to seasonal variation. Jezero Crater is used as the location for plots.

choice of bandgaps (Fig. 6.2A-C). For PEC devices, optimal bandgap choice and efficiency
are strongly dependent on system losses (Fig. 6.2D-F), reflecting the importance of careful
device construction and catalyst selection[239]. For a realistic overvoltage loss of 700 mV[211,
146, 239], a maximum solar-to-chemical blueconversion (SCC) efficiency of 27.8% is feasible
for H2 production.

To evaluate the potential for solar cells to supply power and commodity chemicals, we
determined the maximum practical production capacity for 3-junction PV (operating at 80%
of the detailed balance limit) and 2-junction PEC devices (with a 700-mV overvoltage) over
the course of a Martian year (Fig. 6.3). Daily and seasonal variation in solar flux and
temperature (Fig. 6.3A, B) cause substantial (∼27% deviation from the yearly average)
changes in production rates (Fig. 6.3C, D). We defined solar day (sol) 0 at a solar longitude
(Ls) of 0◦ (vernal equinox) and assumed the solar cell operating temperature was equal to
the surface temperature at all points. Dust storm season begins at sol ∼372 (Ls∼180◦)
and is primarily responsible for the drop in production capacity from a peak of blue∼1.7
kWh/m2/day at Jezero Crater to a minimum of blue∼1.0 kWh/m2/day at the height of dust
storm intensity around the winter solstice (Ls ∼270◦, sol ∼514).

Bandgap combinations that maximize production over the course of a year are 5-15%
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different from those that optimize efficiency at solar noon (Table S8). For both PV and PEC
devices, the top junction bandgap shifted up (for H2-generating PEC devices, from 1.64 eV
to 1.77 eV), while the bottom junction bandgap shifted down (from 0.95 eV to 0.83 eV).
Hence, the photon absorption window for the bottom junction is broadened (by ∼35% for
the PEC device). This likely works to maximize productivity during the less dusty season
(higher solar flux, Fig. 6.3B) by accounting for the relative blue-shift of surface-incident
light (Fig. 6.1F) due to reduced scattering.

6.3 Discussion
Production capacity of power and commodity chemicals must compare favorably to the de-
mand necessary to sustain a Martian habitat and depends on the outpost location on the
planet surface (Fig. 6.4A). Moreover, energy storage capacity is crucial for solar-powered
production systems because the sun sets daily. We therefore developed a detailed process
model to account for power systems demands, including habitat maintenance (for exam-
ple, habitat temperature control and pressurization), fertilizer production for agriculture,
methane production for ascent propellant, and bioplastics production for spare parts man-
ufacturing (Fig. S12). We considered four different power generation scenarios: (1) nuclear
power generation with the miniaturized nuclear fission Kilopower system; (2) PV power gen-
eration with battery energy storage (PV+B); (3) PV power generation with compressed H2

energy storage produced via electrolysis (PV+E); and (4) PEC H2 generation with com-
pressed H2 energy storage (PEC). In our calculations, we assumed a capacity factor of 75%
to account for the solar flux deviation throughout the Martian year (Fig. 6.3) and sized
energy storage systems (batteries or compressed H2) to enable 1 full day of operations from
reserve power. We then calculated the carry-along mass requirements for each of the power
generation systems considered.

Of the three solar-driven power generation options, only the PV+E system outcompetes
the nuclear system based on carry-along mass (Fig. 6.4B, C; supplementary Fig. S13). For
the PV+E system, the total carry-along mass increases from ∼8.3 t near the equator to
∼22.4 t near the South Pole (Fig. 6.4B), corresponding to the reduced average daily power
generation of the PV array as the latitude is adjusted away from 0◦ (Fig. 6.4A). The nuclear
power system is predicted to require ∼9.5 t; hence, the PV+E system out-performs this
option across ∼50% of the planet’s surface (Fig. 6.4B).

In addition to predicting production capacity and carry-along mass, our model provides
design rules for optimal solar cell design. Optimal absorber bandgaps for the PV array
are strongly dependent on the location on the surface of Mars blue(Fig. 6.4D-F). Several
factors cause this variation: the total depth of the air column above a given location (i.e., the
difference between the height of the atmosphere and the altitude), gradients in dust and ice
concentrations and particle radii, and orbital geometry effects that cause different effective
air column thicknesses for locations near the poles. Lower elevations, higher dust and/or
ice concentrations, and increasing distance away from the equator (near-polar latitudes)



CHAPTER 6. CASE STUDY 1: PHOTOVOLTAICS-DRIVEN POWER PRODUCTION
ON MARS 73

Figure 6.4: Solar productivity across the Martian surface. (A) Average daily solar power production capacity across
the Martian surface. (B) Total carry-along mass required for power production using the PV+E generation system.
Black dashed line corresponds to breakeven location with nuclear power generation. (C) Carry-along mass breakdown
for locations in (B) for each power generation option. Black dashed line corresponds to breakeven with nuclear power
generation. Optimal (D) top, (E) middle, (F) bottom bandgaps for the 3-junction PV array.

all cause an increase in the optical depth of the air column, which enhances the fraction
of light that is scattered. Because the spectrum of scattered light is slightly red-shifted
with respect to direct light (Fig. 6.1F), optimal bandgaps decrease to capture more lower-
energy photons (Fig. 6.4D-F) in regions where the optical depth is higher. For example,
at equivalent latitudes, the optimal bandgaps are wider for regions with higher elevations
than for those with lower elevations because the fraction of light that gets scattered is lower.
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Regional differences in atmospheric conditions can drive countervailing effects; because the
Northern Hemisphere experiences generally lower dust concentrations than the Southern
Hemisphere, the lower elevation in the Northern Hemisphere does not result in (on average)
narrower optimal bandgaps. Instead, the reduced dust concentration (relative to that of
the Southern Hemisphere) results in a reduced optical depth, resulting in wider optimal
bandgap combinations (Fig. 6.4D-F). blueIn sum, optimal bandgaps for the top absorber
range from ∼1.7 eV to ∼1.84 eV (Fig. 6.4D), from ∼1.08 eV to ∼1.27 eV for the middle
absorber (Fig. 6.4E), and from ∼0.64 eV to ∼0.85 eV for the bottom absorber (Fig. 6.4F).
Optimized triple-junction solar cells could be fabricated from, for example, GaInAsP alloys
on Ge substrates with minimal lattice mismatch (<∼1%)[578] or by utilizing compositionally
graded buffer layers to minimize threading dislocations[287]. These strategies have been
deployed previously with success in high-efficiency triple junction device architectures[186].

In conclusion, solar cell arrays with careful attention to semiconductor choice and device
construction represent a promising technology for sustaining an Earth-independent crewed
habitat on Mars. Our analysis provides design rules for solar cells on the Martian surface
and shows that solar cells can offer substantial reduction in carry-along mass requirements
compared to alternative technology over a large fraction of the planet’s surface.
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Chapter 7

Case Study 2: Nitrogen Accountancy in Space
Agriculture

Food production and pharmaceutical synthesis are critical biotechnologies to en-
able human exploration of Mars because they reduce mass and volume require-
ments through scalable and modular agriculture in closed-loop systems. The NASA-
sponsored modified energy cascade (MEC) model used to evaluate crop growth is
insufficient as a tool to support exploration missions in its monocrop architecture,
incomplete material balances on key crop cultivation and life support resources like
nitrogen, and lack of the rigorous physical inventory accounting that is required to
evaluate mission costs. We expand the MEC model to account for nitrogen depen-
dence across an array of crops and validate our model with experimental fitting of
parameters. By adding nitrogen limitations, the extended MEC model accounts for
potential interruptions in feedstock supply. Furthermore, we use sensitivity analysis
to distil key consequential parameters that may be the focus of future experimental
efforts. Finally, the integration of physical system inventories enables comparisons in
the choice of architecture and technology.

The following chapter is under development for publication as A.J. Berliner, K. Yates,
M. McNulty, P. Kusuma, S. Zhen, S. Sen Gupta, G. Makrygiorgos, A.A. Menezes, B.
Bugbee, A. Mesbah, A.P. Arkin, S. Nandi, K. McDonald. Nitrogen Accountancy in Space
Agriculture. (In preparation, expected submission Summer 2022).

Martian-based agriculture (Fig 7.1A) has been shown to be a feasible[17, 564] alternative
to prepackaged meals, but caloric intake alone does not fully describe the requirements for
astronaut sustainability; pharmaceutical needs must also be met to ensure crew health.
Additionally, the space environment imposes further risk of compromised food consumables
necessitates additional reserves of elemental carbon, nitrogen, and phosphorus[366, 253].
While some physico-chemical means exist for recycling a subset of these elements, they
are usually mass and energy intensive[356], and generally require additional downstream
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processing[173]. Given that the demand for consumable food mass scales nearly linearly
with the increasing mission duration/crew size and that storage of larger quantities of food
necessitates additional costs in refrigeration, storage, and power, crop cultivation provides a
means for cost reduction[581, 41]. Furthermore, consumables must be maintained longer in
harsher environments, increasing both financial and mass costs.

Martian-based agriculture (Fig 7.1a) has been shown to be a feasible[17, 564] alternative
to prepackaged meals, but caloric intake alone does not fully describe the requirements for
astronaut sustainability; pharmaceutical needs must also be met to ensure crew health.
Additionally, the space environment imposes further risk of compromised food consumables
necessitates additional reserves of elemental carbon, nitrogen, and phosphorus[366, 253].

Variable Description Unit Former Variable[17]
a Empirical exponent - n
cCO2 Concentration of CO2, molar µmolCO2 mol−1

air [CO2]
fE Fraction of edible biomass after tE - XFRT
gatm Atmospheric aerodynamic conductance molwater s−1 m−2 gA
gsfc Canopy surface conductance molwater s−1 m−2 gC
gsto Canopy stomatal conductance molwater s−1 m−2 gS
hR Relative humidity - RH
“̇mB Biomass per time, areal g d−1 m−2 CGR
“mE Biomass, areal, edible g m−2 TEB
“mT Biomass, areal, total g m−2 TCB
m̌ Mass, molar g mol−1 MW
“̇n Moles per time, areal mol d−1 m−2 DCG, DOP
“̇nps,gross Gross canopy photosynthesis µmolC s−1 m−2 PGROSS
“̇nps,net Net canopy photosynthesis µmolC s−1 m−2 PNET

Patm Total atmospheric pressure kPa PATM

pS Saturated vapour pressure kPa VPSAT

TD Temperature, dark cycle °C TDARK

TL Temperature, light cycle °C TLIGHT

tsol Length of local sol h d−1 DPG
“̇Vtrs Daily transpiration rate L d−1 m−2 DTR
wC Biomass carbon fraction - BCF
YO2 Oxygen production factor molO2 mol−1

C OPF
YQ Canopy quantum yield molC,fixed

molγ,absorbed
CQY

∆p Vapour pressure deficit kPa VPD
ηC Carbon use efficiency, 24 hr molC,biomass

molC,fixed
CUE24

σ Density, areal, mass kg m−2 -
σN Density, areal, numeric m−2 -
Φγ Photosynthetic photon flux µmolγ m−2 s−1 PPF
Φγ,E Photosynthetic photon flux, effective µmolγ m−2 s−1 PPFE
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While some physico-chemical means exist for recycling a subset of these elements, they
are usually mass and energy intensive[356], and generally require additional downstream
processing[173]. Given that the demand for consumable food mass scales nearly linearly
with the increasing mission duration/crew size and that storage of larger quantities of food
necessitates additional costs in refrigeration, storage, and power, crop cultivation provides a
means for cost reduction[581, 41]. Furthermore, consumables must be maintained longer in
harsher environments, increasing both financial and mass costs.
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Figure 7.1: Mars-based Agriculture Overview. (a) Scheme for deploying agriculture systems on Mars using ISRU with
an expansion of potential crops within habitat and their index within extended MEC model. The expansion of crop
systems includes example groupings of crops with hydroponic reactor logistics. (b) Systems diagram for crop growth
reactor taking in media ({M}), ammonium (NH+

4 ), water (H2O), carbon dioxide (CO2), light (γ), and power (∼○) to
produce some crop (in this case lettuce), pharmaceuticals, and biowaste. (c) Graphical breakdown of and interaction
between MEC Lettuce model variables. D. Total crop biomass “mT (blue) and crop growth rate “̇mB (gold) for Dry
Bean, Lettuce, Peanut, Rice, Soybean, Sweet Potato, Tomato, Wheat, White Potato at Φγ = 500 [µmolγ m−2 s−1],
cCO2 = 1200 [µmolCO2 mol−1

air ]. E. Contours of biomass accumulation for each crop terminating at each crop’s harvest
time tM across Φγ and cCO2.

A primary advantage of a synthetic biology in space is the interconnectivity and recy-
clability of diverse capability elements. Thus far, crop cultivation has been studied and
characterized in many configurations (Fig 7.1a) as an isolated system, with the exception of
some studies on air revitalization[158, 194]. Correspondingly, the established crop cultiva-
tion mathematics[17] of NASA’s modified energy cascade (MEC) model[268] are designed to
model crop cultivation behavior of a single crop type in isolation (Fig 7.1b,c), focusing on
providing information relevant to traditional crop cultivation outcomes (e.g. food, environ-
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Figure 7.2: Total crop biomass “mT (blue) and crop growth rate “̇mB (gold) for Dry Bean, Lettuce, Peanut, Rice,
Soybean, Sweet Potato, Tomato, Wheat, White Potato at Φγ = 500 [µmolγ m−2 s−1], cCO2 = 1200 [µmolCO2 mol−1

air ].

mental revitalization). In the MEC, biomass per unit area in a single reactor of some crop i
is denoted as “mB,i and formulated as a continuous differential equation by

d “mB,i

dt
= “̇mB,i =

m̌C

wC,i

“̇nC,i (7.1)

= 0.0036 · m̌C

wC,i
(Hi · ηC,i · Ai · YQ,i · Φγ,i) (7.2)

where “̇mB is areal crop biomass growth rate on a dry weight basis in [g m−2 d−1], t is time in
[dAE] (days after emergence of the cotyledon), m̌C is the molar mass of carbon in [g mol−1],
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Figure 7.3: Contours of biomass accumulation for each crop terminating at each crop’s harvest time tM across Φγ
and cCO2.

wC is the unitless biomass carbon fraction, and “̇nC is the daily carbon gain in [molC m−2 d−1].
The “̇nC term can be represented as the product of photoperiod H in [h d−1], 24-hour carbon
use efficiency ηC in [molC,biomass mol−1

C,fixed], the unitless fraction of photosynthetic photon
flux absorbed by the plant canopy A, canopy quantum yield YQ in [molC,fixed mol−1

γ absorbed],
photosynthetic photon flux density Φγ in [µmolγ m−2 s−1]. We find the total areal biomass
“mT,i in [g m−2] and the edible areal biomass “mE,i in [g m−2] for some crop i by

“mT,i =

ˆ tM,i

0

“̇mB,i dt (7.3)

“mE,i = fE,i

ˆ tM,i

tE,i

“̇mB,i dt (7.4)

where fE,i is the unitless, crop-specific fraction of daily carbon gain allocated to edible
biomass after tE,i, which is the crop-specific time at onset of organ formation in [dAE] (Figs.
7.2,7.3).
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Like most of the traditional life support elements, crop cultivation, and the supporting
mathematics, require re-packing and updating to meet the demands of long-duration mis-
sions, including aspects of synthetic biology. The following characteristics lacking from the
current crop cultivation mathematics are critical for a model in a long-duration space explo-
ration mission architecture: (1) systems design – the ability to fit within a larger systems
framework and interconnect with upstream and downstream operations; (2) compatibility
with equivalent system mass (ESM) based decision making and optimization; (3) well un-
derstood parameter sensitivity and robustness. In this work, we aim to adapt the existing
MEC model for crop cultivation to improve its readiness for systems integration and next-
generation space exploration analysis. We implement model improvements in each of the
three aforementioned critical characteristics. The MEC model is re-worked for systems de-
sign – mathematics are converted into differential equations, communicated in terms of mass
and energy balances, generalized for multiple crops and multiple reactors, and written in
code compatible with systems integration. Additionally, the model is improved through the
inclusion of nitrogen-based limitations. This enables a more robust scenario and systems
analysis that may be particularly important for synthetic biological approaches to life sup-
port. More robust ESM integration is added, using preliminary and pre-optimized values.
Finally, the crop cultivation model mathematics are characterized in further depth through
sensitivity analysis.

Nitrogen Productivity Model

Nitrogen is an essential plant nutrient central to the synthesis of photosynthetic proteins and
pigments. The availability of nitrogen in the rootzone is therefore a decisive factor for plant
photosynthetic capacity, growth, and yield [216, 167]. Modeling the effect of nitrogen on plant
growth conditions becomes of paramount importance within the scope of biologically-driven
mission planning since nitrogen is a limited resource that needs to be optimally allocated
to ensure proper food and pharmaceuticals production and subsequently safety of the crew
members. A Martian mission design is a non-trivial problem and since the decision making
is partially driven by models, any uncertainty regarding their predictive capability should
be taken into account. Thus, working toward a validated model that forecasts the success of
crop growth given the availability of nitrogen, as well as a description of confidence in this
prediction, is of great importance towards our goal.

Nitrogen productivity theory (NPT) is a model of plant growth rate as a linear function
of plant nitrogen content[13]. NPT is applicable when nitrogen is the limiting factor for
biomass growth. The equation which describes growth has the form:

dmB

dt
= ẎN(mB,mN)mN (7.5)

where mB is total plant biomass on a dry weight basis in [gDW], t is time in [d], and mN is to-
tal amount of nitrogen in the plant in [gN]. ẎN is nitrogen productivity, the biomass produced
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per amount of nitrogen in the plant per day, a function of mB and mN, in [gDW g−1
N d−1]. Re-

arranging, nitrogen productivity is defined in quantities that can be experimentally measured
(Equation 7.6).

ẎN =
1

mN

dmB

dt
(7.6)

Results and Discussion

An experiment was designed to characterize the effect of nitrogen concentration in the nu-
trient support solution (NSS) of a hydroponic system on biomass generation in Lactuca
sativa cv. “Waldmann’s Green”, a loose leaf lettuce. Nitrate (NO3

– ) was given in equal
concentration for all N conditions, while ammonia (NH3) concentration varied. Three ni-
trogen concentrations were chosen: deficient (1.0 mM nitrate, 1.5 mM ammonia), normal
(1.0 mM nitrate, 6.5 mM ammonia), and excess (1.0 mM nitrate, 11.5 mM ammonia). En-
vironmental set points were bounded as follows: photosynthetic photon flux density, Φγ:
225± 25 µmolγm−2 s−1; atmospheric concentration of carbon dioxide, cCO2: 525± 125 ppm;
air temperature, T : 22± 2 °C; relative humidity, hR: 50± 10 %; pH: 6.0± 1.0; photoperiod,
H: 16 h d−1. Biomass and nitrogen measurements were taken at 11, 20, 25, 30, 35, and 40
dAE.

The biomass data were compared to the output of the MEC model in Equation 7.1 using
the average values of Φγ and cCO2 logged in the hydroponic system (Fig. 7.4a). The planting
density, σN , was normalized to 19.2 m−2, and the fresh weight water fraction was assumed
to be 0.95, both per their NASA reference values[17].

The excess nitrogen condition resulted in the lowest average biomass at harvest time
([range-units = single]3035AE), while the normal condition resulted in the highest. The
MEC prediction of biomass followed the normal nitrogen condition closely over the time
period shown. Its predicted values were similar to the deficient condition measurements
until day 30, and its predictions were consistently higher than the measured biomass in the
excess condition. This demonstrates that the MEC needs to be extended to account for
nitrogen availability whether in deficit or excess.

Over time, the plants under all conditions contained an increasing average quantity of
nitrogen (Fig. 7.4b), but the average weight percentage of N decreased. Toward tM, the
average percentage of N in plants in the normal condition was less than that of the plants in
the excess condition, but the plants in the normal condition achieved the greatest average
biomass, indicating that excess nitrogen condition may result in growth-inhibiting stresses.
In the deficient condition, the average plant N content was lower than in the other conditions,
but the average biomass was higher than the plants in the excess condition and was similar
to that of the plants in the normal condition up to 30 dAE. This indicates that the plants
in deficient conditions may have used N for growth more efficiently than plants in the other
conditions at the expense of their average biomass at tM.

Nitrogen productivity was calculated from biomass and nitrogen content data. The values
are plotted in Figure (Fig. 7.4c). The overall average nitrogen productivity under the
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a b c
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Figure 7.4: (a) Measured areal ("per area") biomass and MEC model prediction. The MEC output was calculated
with Φγ of 225 molγm−2 s−1 and cCO2 of 525 ppm. (b) Measured percentage of total nitrogen by weight in plants
over time. Only one measurement could be performed at 20 dAE. (c) Nitrogen productivity calculated from two
measured quantities, biomass and nitrogen content. Error bars represent propagated error. (d) Relative change (RC,
∆c), of measured molar concentration, c(t), of ammonia and nitrate, and their calculated sum, to initially charged
concentration, c(t0), in NSS reservoirs over time for each N condition, where ∆c ≡ [c(t) − c(t0)]/c(t0). Error bars
represent 1 SD. N = 3 for each data point. (e) Lettuce in different conditions at 27 dAE. The range marked in grey
is the specified harvest time, tM, [range-units = single]3035AE [17]. Error bars represent 1 SD. N = [5, 10] for each
data point. Solid lines represent measurements; dotted lines are derived/calculated values
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normal N condition was 1.33± 0.79 gDW g−1
N d−1; under the deficient and excess conditions,

it was 1.49± 0.99 and 1.90± 1.32, respectively. The average of ẎN across all conditions is
1.47± 0.99. Empirical values in literature for ẎN in other plants are on the order of 10−1 to
100, though it should be noted that these mostly describe woody plants [13]. ẎN appears to
decrease near the end of the exponential phase of growth.

The levels of nitrate and ammonia in the NSS reservoirs were measured from [range-units
= single]240AE to determine uptake behavior. The relative change of the concentrations from
the initial value is shown in Figure 7.4. Relative to the initial concentration, nitrate was
depleted more quickly than ammonia in the excess and normal N conditions, while in the
deficient condition it was depleted similarly to the ammonia. The depletion of nitrogen con-
tinued even as a number of plants were harvested and removed from the system every 5 days.
By 32 dAE, the plants in the deficient condition had depleted almost all available nitrogen.
Nonetheless, plants are able to effectively take up nitrogen even when its concentration is
near zero [414].

Plant growth and development and depends largely on the available concentration of
nitrogen in growth conditions, whether in soil or in soil-less hydroponic systems. The mineral
nutrients are absorbed by plant roots and therefore their availability in the soil or hydroponic
medium is critical for its absorption to maintain normal physiological processes[447].

Nitrogen plays an essential role in the structure of amino acids and N-bases; therefore its
depletion in the growth medium may halt important physiological processes crucial for plant
growth[10]. In general, a plant in N stress conditions exhibits symptoms such as stunted
growth, yellowing of the leaves, leaf death, and reduction in chlorophyll production, and
therefore ultimately contributes heavily to the reduction of overall crop yield[386]. Alterna-
tively, an excess of N availability can also negatively affect plant growth parameters such as
root and shoot biomass[447]. In lettuce, nitrogen stress conditions result in a slower growth
rate and reduction in water content[480].

Recently, as an alternative to conventional soil production, growing lettuce hydroponically
is a popular approach, especially in urban settings, uncultivated lands, and other constrained
environments. Comparing key parameters in lettuce plants grown in the same nitrogen
and environmental conditions in soil and hydroponics revealed no significant differences in
morphological features except enhanced root growth in hydroponics[310]. Therefore, lettuce
plants may exhibit comparable morphological features or biomass production in both soil
and hydroponics given equal concentration of N, and the results presented here are expected
to be applicable across different biomass production systems.

While the value of ẎN was calculated from measured data and could simply be assumed
to be a species-specific constant, a deterministic approach should be pursued. Ågren assumes
its form is

ẎN = α− βmB

mN
(7.7)
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where α is the leading term in [gDW d−1 g−1
N ] and β is a correction term in [d−1]. Combining

Equations 7.5 and 7.7:

1

mB

dmB

dt
= α

mN

mB

− β (7.8)

we define in terms of the two parameters the relative growth rate (left hand side), which
is the change in plant biomass per change in time, dmB/dt [gFW d−1], per plant biomass,
mB [gFW], in units of [d−1]. Both parameters could be fitted to the empirical data, but a
biochemical interpretation is preferred. Ågren presented one such quantity: the amount of
nitrogen in the plant allocated for non-growth purposes, which may be described by βmB/α
(from Equation 7.8 rearranged)[13]. Building on NPT, Verkroost & Wassen described α as
the product of the efficiency of formation of photosynthetic nitrogen from total plant nitrogen
[unitless] and efficiency of biomass formation from photosynthetic nitrogen [gDW d−1 g−1

N ] and
β as the degradation rate of photosynthetic nitrogen [d−1] [537]. Photosynthetic nitrogen
refers to biologically active nitrogen in photosynthesis-involved enzymes. A fully determin-
istic model would also require modeling the nitrogen uptake rate of the plant, which is
complicated by the plant’s growth and dynamic response to the nature of its nitrogen supply
in terms of quantities and molecular forms[247].

Methods

Nomenclature reformation considered chemical engineering conventions, IUPAC[220] and
IUPAP documentation, and intuitive understanding. Variables and subscripts which refer
to quantities are typeset in italic, while non-quantitative subscripts are in roman. Accent
marks above variables are used to denote per time (�̇), per area (“�), and per volume (�̆).
Mnemonically, one might think of the breve above volumetric variables as a vessel to be filled,
while the inverted breve above areal variables implies relation to the breve while perhaps
reminding one of a surface.

The lettuce plants were grown in an environmentally controlled chamber with their
roots immersed in the NSS liquid. The chamber is designed to produce consistent results.
Whole plants were harvested and weighed, pooled by nitrogen condition, then frozen to
−80 °C, followed by measurement of the nitrogen content via the Dumas method (AOAC
992.15)[https://www.medallionlabs.com/tests/protein-dumas/]. Nitrate concentration in the
NSS was measured using a sensor (Horiba Scientific LAQUAtwin NO3-11). Ammonia
concentration was determined by a spectrophotometric method adapted from Kempers &
Kok[283].
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Chapter 8

Case Study 3: Evaluating the cost of
pharmaceutical purification in space

There are medical treatment vulnerabilities in longer-duration space missions present
in the current International Space Station crew health care system with risks, aris-
ing from spaceflight-accelerated pharmaceutical degradation and resupply lag times.
Bioregenerative life support systems may be a way to close this risk gap by leveraging
in situ resource utilization (ISRU) to perform pharmaceutical synthesis and purifi-
cation. Recent literature has begun to consider biological ISRU using microbes and
plants as the basis for pharmaceutical life support technologies. However, there has
not yet been a rigorous analysis of the processing and quality systems required to
implement biologically produced pharmaceuticals for human medical treatment. In
this work, we use the equivalent system mass (ESM) metric to evaluate pharmaceu-
tical purification processing strategies for longer-duration space exploration missions.
Monoclonal antibodies, representing a diverse therapeutic platform capable of treat-
ing multiple space-relevant disease states, were selected as the target products for this
analysis. We investigate the ESM resource costs (mass, volume, power, cooling, and
crew time) of an affinity-based capture step for monoclonal antibody purification as
a test case within a manned Mars mission architecture. We compare six technologies
(three biotic capture methods and three abiotic capture methods), optimize schedul-
ing to minimize ESM for each technology, and perform scenario analysis to consider
a range of input stream compositions and pharmaceutical demand. We also compare
the base case ESM to scenarios of alternative mission configuration, equipment mod-
els, and technology reusability. Throughout the analyses, we identify key areas for
development of pharmaceutical life support technology and improvement of the ESM
framework for assessment of bioregenerative life support technologies.
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The following chapter can also found here: M.J. McNulty, A.J. Berliner, P. Negulescu, L.
McKee, O. Hart, K. Yates, A.P. Arkin, S. Nandi, and K.A. McDonald. Evaluating the
cost of pharmaceutical purification for a long-duration space exploration medical foundry.
Frontiers in Microbiology. (2021).
DOI: 10.3389/fmicb.2021.700863.

8.1 The need for a pharmaceutical foundry in space
Surveying missions to Mars, like the InSight lander (Overview | Mission – NASA’s InSight
Mars Lander) launched in 2018 and Perseverance rover in 2020, directly support the objec-
tives of NASA’s long-term Mars Exploration Program: an effort to explore the potential
for life on Mars and prepare for human exploration of Mars. The maturation of the pro-
gram requires redefining the risks to human health as mission architectures transition from
the current ‘Earth Reliant’ paradigm used on the International Space Station (ISS) to the
cislunar space ‘Proving Grounds’ and finally to deep-space ‘Earth Independent’ mission ar-
chitectures, as defined in NASA’s report titled, “Journey to Mars: Pioneering Next Steps in
Space Exploration”.

Human missions to Mars will be “Earth Independent”, meaning there will be very limited
emergency evacuation and re-supply capabilities along with substantially delayed communi-
cations with the Earth-based mission team. The NASA Human Research Roadmap currently
rates most human health risks, which include ‘risk of adverse health outcomes & decrements
in performance due to inflight medical conditions’ and ‘risk of ineffective or toxic medica-
tions during long-duration exploration spaceflight’, as either medium or high risk for a Mars
planetary visit/habitat mission. Risk ratings are based on failure mode and effects analysis
and on hazard analysis using dimensions of severity, occurrence, and detectability. A recent
review highlights the current understanding of the primary hazards and health risks posed
by deep space exploration as well as the six types of countermeasures: protective shielding,
biological and environmental temporal monitoring, specialized workout equipment, cognition
and psychological evaluations, autonomous health support, and personalized medicine[11].

Of these countermeasures, it could be argued that medicine is the most crucial and
least advanced towards mitigating space health hazards. There is very limited information
on, and few direct studies of, pharmaceutical usage, stability, and therapeutic efficacy (i.e.,
pharmacokinetics, pharmacodynamics) in spaceflight or in a Mars surface environment[53].
Furthermore, flown stores of pharmaceuticals face two additional barriers: (1) radiation-
accelerated degradation[156], and (2) addressing a myriad of low occurrence and high impact
health hazards without the ability to fly and maintain potency of therapeutics for all of them.
In these circumstances, it is often more beneficial to build robustness to these low occurrence
health hazards rather than to try to predict them. It is therefore imperative that on-planet
and/or in-flight pharmaceutical production be developed to bridge this risk gap. These
pharmaceutical foundry technologies will supplement, not replace, the flown pharmaceutical
formulary designed to treat anticipated medical threats during space missions.

https://www.frontiersin.org/articles/10.3389/fmicb.2021.700863/full
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8.2 The bottleneck of space foundries: purification
Biopharmaceuticals must be purified after accumulation with the biological host organism,
or cell-free transcription-translation reaction, in order to meet requirements for drug deliv-
ery and therapeutic effect[214]. The majority of commercial biopharmaceutical products are
administered via intravenous and subcutaneous injection[493]. Biopharmaceutical formula-
tions for injection requires high purity (>95%) product, as impurities introduced directly
into the bloodstream can trigger significant immune responses and reduce efficacy[208].

Downstream processing of biopharmaceuticals is therefore usually a resource-intensive
section of overall processing, being cited as high as 80% of production costs (and contri-
butions of input mass) for monoclonal antibody (mAb) therapeutics produced using mam-
malian cell cultures[446, 64]. In addition to the processing burden for biopharmaceutical
injectables, there are also often substantial storage costs involving complex supply chain and
storage management with stability requirements for factors including temperature, time, hu-
midity, light, and vibration[512]. There are several approaches being pursued to overcome
the challenges and costs associated with downstream processing and formulation.

First are the tremendous efforts in process intensification[507]. While the highly sen-
sitive nature of biopharmaceuticals to minor process changes has introduced barriers and
complexities to innovation through process intensification that have not been realized in
non-healthcare biotechnological industries, there have been significant strides made in the
past decade in the areas of process integration[504], automation[433], and miniaturization[9,
121].

Another route that researchers are pursuing to reduce downstream processing costs and
resources is a biological solution to processing technology. In the same vein that the bio-
pharmaceutical industry sprung out of researchers leveraging the power of biology to produce
therapeutically relevant molecules that were inaccessible or excessively costly by means of
chemical synthesis, researchers are now also trying to apply that same principle to purify-
ing therapeutically relevant molecules. The simplicity of production, reagents that can be
produced using self-replicating organisms, and potential recyclability of spent consumables
are significant advantages of biological purification technology for space or other limited
resource applications. Examples of primary biological technologies include fusion tags[36,
36], stimuli-responsive biopolymers[488], hydrophobic nanoparticles[275], and plant virus
nanoparticles[555, 528].

Lastly, there are vast efforts to establish alternative drug delivery modalities[18]. Other
modalities that do not require injection and which might be more compatible to adminis-
tration in limited resource environments, such as oral consumption, nasal spray, inhalation,
and topical application, have long presented challenges in biopharmaceutical stability (e.g.,
denaturation in stomach acid) and delivery to the active site (e.g., passing the gut-blood
barrier) that minimize product efficacy and necessitate costly advanced formulations and
chemistries[381].

A particularly promising drug delivery technique to circumvent downstream processing
burdens is to sequester the active pharmaceutical ingredient in the host cells of the upstream
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production system as a protective encapsulation in order to facilitate bioavailability through
oral delivery[297]. It represents an opportunity to greatly lower the cost of in situ production
of human medicine for a space mission. This technique presumes that the host system is
safe for human consumption, and so naturally lends itself to utility in systems such as
yeast and plant production hosts. Oral delivery via host cell encapsulation has been recently
established as commercial drug delivery modality with the US Food and Drug Administration
approval of Palforzia as an oral peanut-protein immunotherapy[540]. However, this solution
is not necessarily amenable to the diversity of pharmaceutical countermeasures that may
be required, especially for unanticipated needs in which the product may not have been
evaluated for oral bioavailability.

8.3 Space economics
In 2011, the space shuttle program was retired due to increasing costs, demonstrating that
reduction of economic cost is critical for sustaining any campaign of human exploration[549].
Although recent efforts in reducing the launch cost to low earth orbit by commercial space
companies have aided in the redefinition of the space economy[188], the barrier to longer
term missions, such as a journey to Mars, is still limited by the extreme financial cost in
transporting resources. Additionally, it has been shown that as the mission duration and
complexity increases – as expected for a human mission to Mars – the quantity of supplies
required to maintain crew health also increases[17]. In the case of meeting the demand for
medication, biopharmaceutical synthesis has been proposed as an alternative to packaging
a growing number of different medications[371, 367]. Assuming that both technologies can
meet mission demand, selection of the production-based biotechnology platform will be de-
pendent on its cost impact. It is therefore critical that the cost model of biopharmaceutical
synthesis accounts for and minimizes the cost of any and all subprocesses, including those
for purification.

The current terrestrial biopharmaceutical synthesis cost model does not align with the
needs for space exploration environments. For example, the literature highlights the high
cost of Protein A affinity chromatography resin ($8,000 – $15,000/L) and the need to reduce
the price[357]. However, the purchase cost of chromatography resin is not nearly as critical
in space environment applications where the major costs are more closely tied to the physical
properties of the object (mass, volume, refrigeration requirements, etc.), as a result of fuel
and payload limitations and the crew time required for operation[271]. The distinct cost
models of space and terrestrial biopharmaceutical production may increase the burden of
identifying space-relevant processing technologies and may also limit direct transferability of
terrestrial technologies without attention given to these areas.

On the other hand, changing incentives structures relating to sustainability and the
advent of new platform technologies are rapidly increasing alignment and the potential for
technology crossover. For example, companies like On Demand Pharmaceuticals (ondemand-
pharma.com), EQRx (eqrx.com), and the kenUP Foundation (kenup.eu), initiatives leading

ondemandpharma.com
ondemandpharma.com
eqrx.com
kenup.eu
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to industry adoption of environmental footprint metrics such as E-factor[487]and Process
Mass Intensity (PMI)[64], and diffusion from the adjacencies of green and white biotechnol-
ogy[527] all promote development of accessible and sustainable technologies. As these trends
pertain to space-relevant processes, these examples can also be viewed as driving more closed
loop systems composed of simpler components.

Reference mission architecture

The evaluation of biopharmaceutical system cost for space applications requires the estab-
lishment of a reference mission architecture (RMA) as a means for describing the envelope
of the mission scenario and distilling initial technology specifications which relate to the
proposed subsystem in question[61]. This RMA can be used to orient and define the spe-
cific mission elements that meet the mission requirements and factor into the calculations
of cost for deploying biopharmaceutical technologies. Ultimately, the RMA provides the
means to determine and compare cost given specification of mission scenarios that utilize
the technology in question. We envision developing and integrating biotechnological capa-
bilities back-ended by purification and quality systems into standard methods composed of
a series of unit procedures that maintain astronaut health via the Environmental Control
and Life Support Systems (ECLSS)[221]. In this study, we begin to build towards this vision
by proposing a high-level RMA that specifies a biopharmaceutical demand partially fulfilled
through biomanufacturing over the course of a defined production window.

In planning for future human exploration missions, technology choices and life-support
systems specifications are often evaluated through the metric of the equivalent system mass
(ESM)[312]. Driven by the economic factor of cost in dollars required to transport mass into
orbit, the ESM framework accounts for non-mass factors such as power, volume, and crew-
time by relating them to mass through predetermined equivalency factors. ESM has been
used to evaluate the mass of all of the resources of a larger system including water, shield-
ing materials, agriculture and recycle loop closure. Currently, ESM remains the standard
metric for evaluating advanced life support technology platforms[233, 581]. In the Space
Systems Bioengineering context of realizing a biomanufactory on the surface of Mars[44],
recent advances in extending this metric have been proposed in the form of extended equiv-
alent system mass which attempts to address complexities stemming from multiple transit
and operations stages, as would be required to support a crewed mission to Mars[41]. It
also accounts for uncertainties inherent in mission planning such as technology failures and
their downstream effects as propagated through a mission such as refrigeration failures in
systems housing medicine that requires specific cooling. Such advances in the ESM frame-
work aid in the assessment of biopharmaceutical technologies as elements in the context
of proposed ECLSS given the inherent stochastic nature of human health, especially in a
space environment[52]. Here, we calculate ESM at multiple mission segments across which
biopharmaceutical purification is deployed.
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8.4 Materials & Methods

Unit procedure selection

The medical significance of mAb therapies and the highly developed and specialized purifica-
tion technology provide a fertile ground for techno-economic feasibility analysis of an ISRU-
based pharmaceutical foundry for space. The first reason is that there are mAb therapies
commercially approved or in development for multiple important disease states of space-
flight including osteoporosis[169], migraines/headaches[477], seizure[587], pneumonia[241],
ocular herpes[294], otitis media[246], various oncological indications[582], and fungal in-
fections[529]. A second reason is that degradation products of mAb therapies are known
to result in, not just reduced efficacy, but also deleterious effects (e.g., harmful immune
reactions in patients) that further compound concerns of pharmaceutical stability over a
long-duration mission[303]. Thirdly is that a common manufacturing system can be used
to produce treatments for a variety of indications which is highly advantageous in mass and
volume savings for spaceflight. And fourthly, the economic incentive of research into mAb
purification technology has resulted in a plethora of technologies, enabling this analysis to
include head-to-head comparisons between multiple mAb capture steps of different origins

Figure 8.1: Monoclonal antibody production consists generically of product accumulation, clarification, initial pu-
rification, formulation, and fill & finish. Here we investigate six technologies for the capture step within the first
purification step in a space mission context using extended equivalent system mass. The manufacturing origin of the
capture reagent is denoted as either (A) abiotic or (B) biotic.
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(e.g., biotic, abiotic) and different processing mechanisms (e.g., bind-and-elute mode liquid
chromatography, precipitation). It is in comparing the differences between these technolo-
gies that we can uncover general insights into the desired components of a pharmaceutical
foundry for space.

Monoclonal antibody therapy is a platform technology that supports human health across
a diversity of medical indications with a generally maintained molecular structure, in large
part due to the coupling of high target selectivity in the two small and highly variable
complementarity-determining regions located in the antigen-binding fragments[195] and con-
trol of the biological action on that target (i.e., effector function) through the generally con-
served fragment crystallizable (Fc) region[277]. This otherwise high structural fidelity con-
served across mAb therapy products (which are primarily of the immunoglobulin G class)
spans a wide variety of therapeutic indications and creates an opportunity for generic mAb
production process flows, which include technologies devised specifically for mAb produc-
tion[499]. This specialized manufacturing, which is most notable in the use of the affinity
capture step targeting the Fc region of an antibody with the use of the protein-based ligands
derived from the Staphylococcus aureus Protein A molecule, can be tuned for highly effi-
cient purification of mAb and antibody-derived (e.g., Fc-fusion protein) class molecules[357].
Therefore, we have decided to investigate the Protein A-based affinity capture step in isola-
tion as a starting point for understanding the costs of a potential pharmaceutical foundry in
space.

It is worth noting that other similar protein ligands, such as Protein G and Protein L,
are also widely used for their ability to capture different types of immunoglobulin classes
and subclasses more efficiently[99].

We chose to analyze six Protein A-based capture step procedures: three commercially
available abiotic technologies (pre-packed chromatography (CHM), spin column (SPN), mag-
netic bead (MAG)) and three development-stage biotic technologies (plant virus-based nanopar-
ticle (VIN), elastin-like polypeptide (ELP), and oilbody-oleosin (OLE)) (Fig. 8.1). Com-
mercial technology procedures are based on product handbooks while the procedures of de-
veloping technologies, which we would classify as Technology Readiness Level 2 per NASA’s
guidelines, are based on reports in literature. This set of procedures was selected to survey
a wide range of operational modalities, technological chassis, and perceived advantages and
disadvantages (Table 8.1).

All six of the unit procedures are operated in bind-and-elute mode, in which a clarified
mAb-containing liquid stream is fed into a capture step containing Protein A-based ligand,
which selectively binds the mAb and separates the mAb from the bulk feed stream. The
mAb is eluted from the Protein A-based ligand and recovered using a low pH buffer to
dissociate the mAb from the ligand. Finally, the low pH environment of the recovered mAb
is pH neutralized for future processing or storage. The analysis does not consider differences
in mAb processing upstream or downstream of the affinity capture step that may arise from
differences in the unit procedure operations.

CHM is a chromatography system consisting of a liquid sample mobile phase which is
pumped through a pre-packed bed of Protein A-fused resin beads housed in a column. SPN is
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a similar system, in which a Protein A-fused resin bead bed has been pre-packed into a plastic
tube housing and the mobile phase flow is controlled via centrifugation of the plastic tube.
MAG is a slurry-based magnetic separation system that uses superparamagnetic particles
coated with Protein A-fused resin mixed as a slurry with the feed mAb stream for capture
and elution of the mAb by magnet. VIN is a sedimentation-based system that uses plant
virion-based chassis fused with Protein A-based ligands in suspension for capture of the mAb
and centrifugation, assisted by the sedimentation velocity contribution of the chassis, to
isolate and elute the mAb. ELP is a precipitation-based system that uses stimuli-responsive
biopolymers fused with Protein A-based ligands in suspension for capture of the mAb and
external stimuli (e.g., temperature, salt) to precipitate the bound complex and elute the
mAb. OLE is a liquid-liquid partitioning system that uses oil phase segregating oleosin
proteins fused with Protein A-based ligands to capture mAb in the oil phase and then elute
the mAb into a clean aqueous phase.

Techno-economic evaluation

Techno-economic evaluations are performed using the recently proposed equations for ESM
that include calculation of costs at each mission segment[41]. Equivalent system mass (ESM)

Figure 8.2: An illustration of the reference mission architecture in which (A) a crewed ship is launched from the
surface of Earth and lands on Mars and (B) assembles a pre-deployed habitat on the Martian surface to perform
operations before (C) a return transit to Earth on the same ship. Pharmaceutical needs are supported by flown stores
until partway through surface operations, at which point needs are met by pharmaceuticals produced using in situ
resource utilization. Production is initiated prior to the need window to ensure adequate stocks are generated by the
time it is needed. Rocket artwork adapted from Musk, 2017[394]. Habitat artwork by Davian Ho.
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for the mission M0 is defined as
ENTER LATER
The mission timeline depicted in Figure 8.2 provides insight into the proposed RMA

and downstream crew needs and mAb production horizon. Here we assume a total mission
duration of 910 days. First, a crew of 6 will travel from Earth to low Earth orbit, then board
an interplanetary craft for a 210-day journey to Martian orbit, where the crew will descend
to the surface in a separate craft, allowing the large transit vehicle to remain in orbit. Once
on Mars, the crew will perform surface operations for 600 days. Following surface operations,
the crew will leave Mars in a fueled ascent craft, board the interplanetary vehicle, and return
to Earth orbit in 200 days. The mission timeline, crew size, and ESM equivalency factors are
consistent with the recent RMA presented for inclusion of biomanufacturing elements[44].

The mission demand for mAb therapies is assumed to be 30,000 mg over the entirety
of the mission (supporting logic detailed in Supplementary Information, Table S10). Phar-
maceutical stores and production resources are assumed to be flown with the crew transit
(no pre-deployment in order to maximize shelf-life). We assume that the production re-
sources are stable throughout the mission duration. We conservatively assume (in the face
of insufficient spaceflight stability data for biologics for a more refined estimate) that the
first 600 days of pharmaceutical demand will be met through flown stores (20,000 mg), at
which point pharmaceutical ISRU manufacturing is needed (10,000 mg) to alleviate the im-
pact of accelerated pharmaceutical degradation and provide supplementary medication. The
pharmaceutical production window opens prior to the ISRU demand timeframe and persists
through a portion of the return transit (up to mission day 810) to reflect the expected life
support advantage of maintaining capabilities to counter unanticipated needs or threats. We
assume that the Protein A-based unit procedures consistently yield 98% recovery of mAb
from the input stream.

Unit Procedure Selection

Deterministic models for each unit procedure were developed in Microsoft Excel using ref-
erence protocols cited in Table 8.1 as a series of executable operations, each containing a
set of inputs defined by cost categories (labor, equipment, raw materials, consumables) that
are correspondingly populated with characteristic ESM constituent (mass, volume, power,
cooling, labor time) values (model composition illustrated in Supplementary Information,
Figure S14). Unit procedures have been defined as the smallest single execution (i.e., unit)
of the secondary purification capture step procedure according to the reference protocol.
We define the unit capacity by volume according to the equipment and consumables used
(e.g., 2 mL maximum working volume in a 2 mL tube) and by mAb quantity according
to the binding capacity for the given method (e.g., 1 mg mAb/mL resin) (Supplementary
Information, Table S11). Unit procedures with no explicit working volume constraints (i.e.,
the liquid solution volume for biotic technologies) have been defined with a maximum unit
volume of 2 mL. ESM-relevant characteristics of individual inputs (e.g., equilibration buffer,
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2 mL tube) are defined based on publicly available values, direct measurements taken, and
assumptions (which are explicitly identified in the spreadsheet).

Unit Procedure ID Method Technology Used Reference

Pre-packed
chromatographyA

Liquid chromatography Pre-packed HiTrap MabSelect SuRe
column of novel alkali-tolerant re-
combinant Protein A-based ligand
coupled with an agarose matrix

Vendor handbooks

Spin columnA Centrifuge-assisted liquid
chromatography

Pre-packed Protein A HP SpinTrap
spin column containing Protein A
Sepharose High Performance

Magnetic beadA Magnetic separation Protein A Mag Sepharose super-
paramagnetic beads coupled with
native Protein A ligands

Plant virus-based
nanoparticleB

Sedimentation complex Plant virion, Turnip vein clearing
virus, presenting a C-terminal coat
protein fusion display of Protein A
(domains D & E)

Werner et al. 2006[555]

Elastin-like polypeptideB Inverse transition cycle Elastin-like polypeptides (78 pen-
tapeptide (VPGVG) repeats) fused
with Z domain, an engineered B do-
main of Protein A

Sheth et al. 2014[488]

Oilbody-oleosinB Liquid-liquid partition Arabidopsis oleosin fused at the N-
terminal with an engineered Protein
A(5)

McLean et al. 2012[363]

Table 8.1: List of Protein A-based monoclonal antibody capture step unit procedures included for analysis. A abiotic
technology; B biotic technology

There are several model features that we have considered and decided not to include
within the scope of analysis. Packing and containers for the inputs are not included for
three reasons: 1) the contributions of the container are considered negligible as compared to
the input itself (e.g., container holding 1 L buffer as compared to the 1 L of liquid buffer); 2)
materials flown to space are often re-packaged with special considerations (Wotring, 2018);
and 3) the selection of optimal container size is non-trivial and may risk obscuring more rele-
vant ESM findings if not chosen carefully. We do not consider buffer preparation and assume
the use of flown ready-to-use buffers and solutions. Furthermore, refrigeration costs of the
input materials and costs that may be associated with establishing and maintaining a sterile
operating environment (e.g., biosafety cabinet, 70% ethanol in spray bottles) are expected
to be comparable between unit procedures and not considered. Impacts of microgravity on
unit procedure execution are not considered for the return transit production. Refrigeration
costs associated with low temperature equipment operation (e.g., centrifugation at 4◦C) are
included in the equipment power costs.

Inputs common across unit procedures are standardized (Supplementary Information,
Table S11). One operational standardization is the inclusion of pH neutralization of the
product stream following the low pH elution mechanism, which was explicitly stated in some
procedures while not in others. Input quantities are scaled from a single unit to determine the
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number of units required to meet the reference mission architecture specifications. The ESM
constituent inputs (mass, volume, power, cooling, labor time) are converted into equivalent
mass values using RMA equivalency factors (Supplementary Information, Table S13).

8.5 Results & Discussion

Standardization of manufacturing efficiency

Given the limited granularity of the presented reference mission architecture, which was
scoped as such to reflect the lack of literature presenting an overarching and validated Con-
cept of Operations for a Transit to Mars[19], we do not define strict manufacturing scheduling
criteria for pharmaceutical production. Construction of a detailed pharmaceutical produc-
tion RMA is hindered by uncertainty in the number and identity of mAb therapy products
that would be included within mission scope, the decay rate of mAb therapy stores in the
mission environments, and a reasonable basis for building robustness to unanticipated dis-
ease states. Rather, we choose to establish an objective comparison between unit procedures
by normalizing for scheduling-associated manufacturing efficiencies. We accomplish this by
first identifying the number of batches per mission (and thus batch size) needed to meet the
mAb demand (base case of 10,204 mg mAb feed assuming 98% recovery) that minimizes the
ESM output for a given unit procedure, and then running the simulation of pharmaceutical
production at that number of mission batches, as shown in Figure 8.3a and tabulated in
Supplementary Information, Table S14.

In Figure 8.3b – e, we visualize a deconstruction of ESM output, using the VIN unit
procedure as an example, by key performance metrics that vary with a scheduling dependence
in order to illustrate the significance of batch optimization in unit procedure comparison.
The processing of a given batch volume and mAb quantity is allocated into a number of units,
as determined by the volume and mAb quantity constraints of a given unit procedure, and
a number of use cycles per batch, as determined by the capacity of the equipment specified
in the given unit procedure. We show how the variation in ESM output over the number
of mission batches maps to extent of unit vacancy or underutilization (Figure 8.3b), extent
of operational equipment (e.g., centrifuge) vacancy or underutilization (Figure 8.3c), and
number of required use cycles (Figure 8.3d). We also show an oscillatory behavior in the
scheduling (i.e., total mAb purified per mission, % purified at surface operations) that quickly
dampens as number of mission batches increases (Figure 8.3e). This behavior is a result of
the assumption that the mAb feed stream is coming from a discrete upstream production
batch (e.g., batch-mode bioreactor) that does not output partial batch quantities, as opposed
to a continuous upstream production for which there are no defined batches. Accordingly,
partial batch needs are met by the processing of a full batch.
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Figure 8.3: (A) Scheduling optimization for the establishment of base case scenarios for each unit procedure. The
value for number of batches corresponding to the minimum equivalent system mass for each unit procedure, as
indicated by black circle markers. Key operational parameters impacted by mission scheduling (shown using the
VIN procedure) include (B) unit underutilization or vacancy, (C) equipment underutilization or vacancy, in this case
represented by the centrifuge as the bottleneck, (D) the number of use cycles, and (E) the total quantity of monoclonal
antibody (mAb) per mission and per surface operation (sf). CHM, pre-packed chromatography; SPN, spin column;
MAG, magnetic bead; VIN, plant virus-based nanoparticle; ELP, elastin-like polypeptide; OLE, oilbody-oleosin.

Base case scenario

The ESM and output metrics of the base case scenario (10,000 mg mAb demand, 1 mg
mAb/mL feed concentration, 98% recovery) for each of the six unit procedures are shown
in Figure 8.4a-f. From this viewpoint of an ESM output for an isolated unit procedure
outside the context of a full purification scheme, the ESM ranked from lowest to highest
are VIN < SPN < OLE < CHM < MAG < OLE. However, we reason that it is more
important to understand the model inputs that influence the ESM output rankings than to
use the rankings in this isolated subsystem analysis to make technology selection choices,
which requires the context of a full pharmaceutical foundry and of linkages to other mission
elements.

We observe that mass costs are generally the primary contributor to ESM output, except
for the MAG and ELP procedures in which labor time costs are larger. The mass costs
are not closely associated to any given cost category across unit procedures, but rather the
breakdown of mass costs varies widely by unit procedure.

Power costs (kW) are disproportionately high given that the static nature of ESM as-
sumes constant usage, and thus energy (kWh) in this context (i.e., the power supply to the



CHAPTER 8. CASE STUDY 3: EVALUATING THE COST OF PHARMACEUTICAL
PURIFICATION IN SPACE 97

Figure 8.4: Base case equivalent system mass results broken down by (A)mass (M), volume (V ), power (P ), and labor
time (T ) constituents, (B) transit to Mars (tr1), surface operations (sf), and return transit (tr2) mission segments,
and (C) labor (L), equipment (E), raw materials (R), and consumables (C) cost category for the six tested Protein
A-based monoclonal antibody affinity capture step unit procedures segregated by abiotic (white background) and
biotic (grey background) technologies. Also shown are the (D) labor and operation times, (E) number of use cycles,
and (F) number of units required for each unit procedure to meet the reference mission demand. CHM, pre-packed
chromatography; SPN, spin column; MAG, magnetic bead; VIN, plant virus-based nanoparticle; ELP, elastin-like
polypeptide; OLE, oilbody-oleosin.

equipment is not turned off in this analysis). These costs represent an upper bound assuming
that the power supply system capacity is sized to support a maximal power consumption in
which all power-drawing elements are simultaneously in operation. Time of power usage as a
fraction of duration are as follows: CHM (99%) > MAG (78%) > ELP (48%) > SPN (45%)
> OLE (42%) > VIN (30%). The lower use fraction unit procedures are therefore paying a
relatively higher cost per unit power demand in this current method. The electrical needs of
the equipment used by the unit procedures are within NASA-proposed Mars mission RMA
bounds, with energy use across all unit procedures would peak at ∼1% of a proposed Mars
transfer vehicle electric capacity (50 kWe) or ∼5% of the habitat capacity (12 kWe) of a
reference stationary surface nuclear fission power reactor[147].

The mission segment breakdown of ESM illustrates the relatively high costs of pharma-
ceutical manufacturing capabilities for transit, even for the transit to Mars (tr1) in which
there is no actual production taking place. There is a strong economic incentive to limit
the amount of supplies flown on tr1. Alternatives such as the pre-deployment of reagents
and consumables and limiting of production to surface operations on Mars (which has lower
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RMA equivalency factors for mass and volume than transit operations) must be balanced
against the risk to human health posed by removing pharmaceutical production capabilities
from a mission segment and potentially exposing the supplies to longer storage times that
could challenge shelf lives.

Labor and operation times are important parameters in the broader mission and phar-
maceutical foundry context. These unit procedures represent a single step of pharmaceutical
production, which if realized in a space mission context, would, in turn, need to be a small
portion of a crew member’s time allocation. Assuming 40-hour work weeks for crew mem-
bers, the labor time spans a range of ∼1% (CHM) to ∼14% (ELP) of the available crew
time over the 600-day production window. It is not feasible to operationalize with such high
labor and operation times at this scale of production, particularly as they stand for MAG
and ELP. While strategies such as batch staggering and concurrency can be used to reduce
durations, advanced automation will almost certainly need to be built into the core of a
pharmaceutical foundry.

A prevailing trend throughout the unit procedures is that the number of unit executions
and use cycles required by a given unit procedure are positive correlated with the ESM
output value, except for the equipment cost-dominant and higher unit capacity CHM pro-
cedure. The equipment modeled in the analysis for CHM and the other unit procedures are
almost certainly not space-ready and could be further designed to reduce mass and volume
and increase automation to reduce crew labor time. The increased equipment costs in the
CHM procedure are primarily due to automation and monitoring hardware for running liq-
uid chromatography, which is reflected in the minimal labor costs of the CHM procedure.
Miniaturization efforts, such as those focusing on microfluidic systems [Millet et al., 2015;
Rodríguez-Ruiz et al., 2018; Murphy et al., 2019], are emerging as a potential path towards
mitigating the high equipment costs associated with highly automated and tightly controlled
manufacturing, which are crucial for freeing up valuable crew time.

The number of unit executions is determined by the binding capacity of the technology
and the nominal unit size. This indicates that the unit capacity for purification is an im-
portant consideration and influential factor. Unit sizing is an important consideration that
is valuable to assess more holistically within the broader pharmaceutical production and
mission context.

The number of use cycles is determined by the number of unit executions required and
by the maximal unit capacity of the equipment items (e.g., if you presume that an 18-slot
centrifuge is the equipment bottleneck then the effective number of batches is the number
of units required divided by 18). Therefore, it can be understood that the equipment unit
capacity is a critical parameter in tuning the number of use cycles and, by extension, the labor
costs. For processes with lower labor costs, due to the intrinsic nature of the procedure or
through automation of labor, equipment unit capacity will still influence the total duration
and production throughout. The MAG and ELP procedures yield both high labor and
duration times and are thus particularly sensitive to the equipment capacity.
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Contextualizing ESM with supporting evaluations

Having acknowledged shortcomings of ESM as a decision-making tool for comparison of
alternative approaches in isolated subsystems, we propose that supplementary evaluations
can assist in contextualization. A primary gap of an isolated subsystem ESM analysis is a
lack of information on the holistic usefulness or cost of a given employed resource, which
could include its synergy with other mission subsystems and its extent of recyclability, or
waste loop closure, within the mission context. For example, the isolated subsystem analysis
does not capture information on the broad applicability that a centrifuge might have for
use in other scientific endeavors, nor do the ESM outputs reflect the > 93% recyclability of
water achieved by the recycler on the ISS (Steven Siceloff, 2008) that may be generalizable
to future missions.

Figure 8.5: (A) Process mass intensity (PMI) evaluation of the unit procedures broken down by raw materials (R)
and consumables (C) contributions. (B) Cycle volume for each unit procedure. CHM, pre-packed chromatography;
SPN, spin column; MAG, magnetic bead; VIN, plant virus-based nanoparticle; ELP, elastin-like polypeptide; OLE,
oilbody-oleosin.

The use of environmental footprint metrics, such as PMI, may be one valuable step
towards capturing missed information on recyclability. PMI is a simple metric of material
efficiency defined as the mass of raw materials and consumables required to produce 1 kg
of active pharmaceutical ingredient. The study by Budzinski et al. introducing PMI for
biopharmaceuticals presents data from 6 firms using small-scale (2,000 - 5,000 L reactor) and
large-scale (12,000 - 20,000 L reactor) mAb manufacturing operations, finding an average
7,700 kg of input is required to produce 1 kg of mAb[64]. Figure 8.5a presents PMI evaluation
for the six capture steps included in analysis, which result in PMI outputs as low as 2,390 kg
of input (CHM) and as high as 17,450 kg of input (MAG) per 1 kg of mAb. A comparison of
these outputs to those of Budzinski et al. indicates that we may be observing roughly similar
values after accounting for the high cost of initial purification in the study, representing∼60%
of the total PMI reported, the elevated feed mAb concentration (i.e., cell culture titer) of
1 – 5.5 g mAb/L, and adjustments for economies of scale when operating at such low cycle
volumes (Figure 8.5b). Consumable costs appear to be the most sensitive to scale, which
represents ∼1% total PMI on average in the values reported by Budzinski et al. and ranges
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Figure 8.6: Specific equivalent system mass (per unit mass monoclonal antibody produced) broken down by labor
(L), equipment (E), raw materials (R), and consumables (C) cost categories as a function of feed monoclonal anti-
body (mAb) concentration for (A) CHM, (B) SPN, (C) MAG, (D) VIN, (E) ELP, and (F) OLE. CHM, pre-packed
chromatography; SPN, spin column; MAG, magnetic bead; VIN, plant virus-based nanoparticle; ELP, elastin-like
polypeptide; OLE, oilbody-oleosin.

from 35% (CHM) to 77% (OLE) here. Budzinski et al. also go one step further to distinguish
water as a separate category from raw materials and report that >90% of the mass is due
to water use. Here we assume pre-made buffers and do not directly add water in this study,
so we refrain from a similar calculation, but it is worth noting that the extent of water use
may also serve as a reasonable starting surrogate for extent of achievable recyclability in a
space mission context.

Scenario analysis

We analyzed the specific ESM output broken down by cost category for the six unit proce-
dures over a range of input stream mAb concentrations (Figure 8.6) and mission demand
for mAb (Figure 8.7). Specific ESM, termed cost of goods sold in traditional manufacturing
analyses, is the ESM output required to produce 1 mg mAb. This is used in the scenario
analyses to normalize ESM output across variation in mission demand for mAb. The opti-
mal number of batches per mission was found and used for each unit procedure and scenario
tested (Supplementary Information, Tables S16 – S17).

We observe the general and expected trends that specific ESM decreases with an in-
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Figure 8.7: Specific equivalent system mass (per unit mass monoclonal antibody produced) broken down by labor (L),
equipment (E), raw materials (R), and consumables (C) cost categories as a function of mission production demand
for monoclonal antibody for (A) CHM, (B) SPN, (C) MAG, (D) VIN, (E) ELP, and (F) OLE. CHM, pre-packed
chromatography; SPN, spin column; MAG, magnetic bead; VIN, plant virus-based nanoparticle; ELP, elastin-like
polypeptide; OLE, oilbody-oleosin.

creasing feed stream mAb concentration and mission demand. The CHM procedure exhibits
notably limited sensitivity to feed stream mAb concentration, which can be attributed to
the equipment-dominated cost profile, fixed column size, and nature of the governing refer-
ence protocol that does not specify restrictions on sample load volume. Depending on the
pre-treatment of the feed stream, it may be more reasonable to impose constraints on the
sample load volume. In contrast, the specific ESM output of the CHM procedure is the
most sensitive to mission mAb demand with higher demand increasingly offsetting the fixed
capital costs. The CHM procedure is also the largest capacity unit modeled in the analysis
(i.e., CHM capacity is 30 mg mAb/unit as compared to 2.7 mg mAb/unit for MAG, the
next highest capacity unit) and is accordingly expected to scale well with demand.

The SPN, ELP, OLE procedures exhibit behaviors in which the specific ESM output
abruptly plateaus with an increasing feed stream mAb concentration. This observation can
be attributed to the unit procedure operating in a mAb binding capacity-limited regime (as
opposed to volume-limited for more dilute feeds) which also then controls and maintains unit
procedure throughput (e.g., the ELP number of units, 37,044, and use cycles per mission,
2,058, is constant at and above 0.35 mg mAb/mL input stream concentration). This can be
de-bottlenecked via technology (e.g., improved chemistry of the capture step unit leading to
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higher binding capacity) or methodology (e.g., increased concentration of the capture step
unit leading to higher binding capacity) improvements.

Low demand scenarios are particularly relevant for examination in a space health context,
as small capacity redundant and emergency utility is a likely proving ground for inclusion
of a space pharmaceutical foundry. At the lower boundary of the tested range (1,000 mg
mAb/mission), we see the ESM outputs from lowest to highest are re-ordered as MAG < VIN
< SPN < OLE < ELP < CHM. Minimization of equipment costs are particularly important
in this regime, and it is observed that, indeed, the ESM output near completely aligned with
the ranking of equipment cost (MAG < VIN < SPN < ELP < OLE < CHM). It is likely
that other non-ESM factors such as integration with other flown elements will understand-
ably influence the design and composition of early and low capacity flown pharmaceutical
foundries.

Alternate scenarios and mission configurations

We explored variations to the base case RMA for all six unit procedures including scenarios
in which the pharmaceutical manufacturing resources are shipped prior to the crew in pre-
deployment, (+)pd, the production window has been truncated to close with the end of
surface operations, (-)tr2, and a combination of the two prior modifications, (+)pd (-)tr2

(Figure 8.8). Costs of pre-deployment are included in the analyses and mission demand is
kept constant regardless of the production window.

In all cases the ESM totals were reduced from the base case. Additionally, the general
trend held that (-)tr2 scenario resulted in lower ESM totals than (+)pd scenario except for
SPN, in which the increased raw material and consumable costs of (-)tr2 were sufficiently
large to outweigh the reduction in equipment and labor costs of (+)pd. The combination
(+)pd (-)tr2 scenario resulted in the lowest ESM totals at a fraction of the base case (as
high as 39% reduction in SPN and as low as 21% reduction in ELP).

Equipment & unit throughput

Acknowledging the significance of the equipment capacity on ESM output, we further ex-
plored this contribution by comparing the base case ESM output of the centrifuge-utilizing
procedures (SPN, VIN, ELP, OLE) to that resulting from the use of alternative centrifuge
models (Supplementary Information, Table S18). This effectively results in a trade of equip-
ment costs and batch throughput. The optimal number of batches per mission was found
and used for each unit procedure and interval tested (Supplementary Information, Table
S19).

We observe in Figure 8.9 that the ESM values increased with the size of the centrifuge
model, 12-slot < 18-slot (base) < 48-slot. The labor and consumables savings of higher batch
throughput were outweighed by the higher equipment costs (including higher power costs).
Operation duration is an important metric relevant to a pharmaceutical foundry that is not
well reflected in ESM that is also impacted by this alternative scenario. The exception to
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Figure 8.8: Evaluation of extended equivalent system mass values in various mission configurations broken down
by labor (L), equipment (E), raw materials (R), and consumables (C) cost categories cost category and mass (M),
volume (V), power (P), and labor time (T) constituents for CHM, (A, G), SPN, (B, H), MAG, (C, I), VIN, (D,
J), ELP (E, K), and OLE, (F, L). Configurations include the base case scenario of manufacturing resources flown
with the crew for pharmaceutical production on the surface and return transit (Base), and alternatives in which the
manufacturing resources are flown prior to the crew in pre-deployment, (+)pd, the production window is limited to
surface operations, (-)tr2, and a combination of the two previously stated alternatives, (+)pd (-)tr2. CHM, pre-packed
chromatography; SPN, spin column; MAG, magnetic bead; VIN, plant virus-based nanoparticle; ELP, elastin-like
polypeptide; OLE, oilbody-oleosin.

this trend is the 48-slot condition for the ELP procedure, in which a lower consumable cost
related to the number of use cycles per mission (i.e., pipette tips, tubes, gloves) sufficiently
lowered the total ESM below the 18-slot condition.

Technology reusability

The number of use cycles for liquid chromatography resins is an important economic param-
eter in commercial pharmaceutical manufacturing[425]. Here we explore the impact of use
cycles on the CHM and ELP procedures in a space mission context, looking at no reuse nor
regeneration operation of the purification technology, (-)Reuse, and at an increased number
of use cycles, (+)Reuse (Figure 8.10).

We observe that the terrestrial importance of use cycles does not prevail in this isolated
ESM evaluation in a space context. The high purchase costs of resin are not considered
in ESM and the impact of the reuse cycles is reduced to the mass and volume savings of
the pre-packed column consumable. There is a minor decrease in ESM of the (+)Reuse
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Figure 8.9: Changes in extended equivalent system mass values with different capacity centrifuge models broken
down by labor (L), equipment (E), raw materials (R), and consumables (C) cost categories and mass (M), volume
(V), power (P), and labor time (T) constituents for SPN (A, E), VIN (B, F), ELP (C, G), and OLE (D, H). SPN,
spin column; VIN, plant virus-based nanoparticle; ELP, elastin-like polypeptide; OLE, oilbody-oleosin.

over the base case scenario, but both of these result in substantially higher ESM than the
(-)Reuse scenario, particularly for the ELP procedure, in which the regeneration operation
has been removed in addition to the reusability of the technology. These results echo the
trend of single-use technology in commercial biotechnology in which manufacturers look to
disposable plastic bioreactor and buffer bags as a means to reduce cleaning and validation
costs (Shukla and Gottschalk, 2013). It would be valuable to further consider the utilization
of single-use technology in a space pharmaceutical foundry, and in other space systems
bioengineering applications, but it is important to point out the limited scope of this ESM
analysis. Here we reiterate that the single unit procedure scope establishes a modular basis
for pharmaceutical foundry ESM evaluation but does not realize the true circular economy
advantages of reuse, which may be considerable for the regeneration step, and of biological
systems for production of the purification reagent in general.

Conclusion & Future Directions

In this study, we have introduced and applied the ESM framework to biopharmaceutical
processing as a first step towards modeling and understanding the costs of Space Systems
Bioengineering and, more specifically, of a long-duration space exploration medical foundry,
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Figure 8.10: Changes in extended equivalent system mass values with reusability of purification technology broken
down by labor (L), equipment (E), raw materials (R), and consumables (C) cost categories and mass (M), volume
(V), power (P), and labor time (T) constituents for CHM (A, C), and ELP (B, D). (-)Reuse considers the technology
as single-use and accordingly discards the unit procedure cleaning operations; (+) Reuse considers additional reuse
cycles of the technology. CHM, pre-packed chromatography; ELP, elastin-like polypeptide.

which we believe may one day constitute a critical bioregenerative component of ECLSS
for humans to be able to explore the surface of Mars. We have observed that the static
behavior of ESM, while certainly maintaining usefulness in early-stage analyses, may stymie
later-stage analyses of bioregenerative life support technologies, which tend to behavior more
dynamically than traditional abiotic counterparts. In the future, higher fidelity analyses may
be performed using tools such as HabNet[142], although the use of such dynamic mission
design and modeling tools will require additional software engineering efforts. As it stands
now, our techno-economic calculations both satisfy the three fundamental aspects for life
support modeling[263, 267] and provide helpful directions for future efforts to incorporate
purification processes in space systems bioengineering.

The mAb affinity capture step represented an ideal starting point for biopharmaceuti-
cal purification cost analysis given the breadth of the mAb treatments for space-important
health indications, the fact that mAb purification is considered a platform technology, and
the diversity of affinity capture technologies. However, there are additional processing cat-
egories, such as size exclusion, ion exchange, and hydrophobic interaction unit procedures,
which could be similarly studied in isolation for their general relevance in biopharmaceutical
manufacturing. Establishing a unit procedure knowledge base for space-relevant economics
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of biopharmaceutical purification would provide additional benefit to the community.
We acknowledge that the ESM analysis performed in this study utilizes current Earth-

based technologies, not Mars-designed processes, and that as technologies evolve and expand
the analysis will need to be updated. The need to revisit and update ESM analyses period-
ically as technology develops is standard practice. This is well illustrated in a recent ESM
analysis of plant lighting systems that compares solar fiber optics to photovoltaic-powered
light emitting diode hybrid systems[213]. The study results reversed decade-old trade study
outcomes in which solar fiber optics scored more favorably, citing rapid advances in solar
photovoltaics and light emitting diode technologies.

Furthermore, the analysis presented does not encapsulate potentially significant charac-
teristics of the unit procedures at the interfaces of the upstream and downstream biomanu-
facturing elements. For example, at the upstream interface the biotic unit procedures (VIN,
ELP, OLE) have been reported in literature to be effective capture mechanisms in “dirtier”
feed solutions, perhaps absolving the need for more complex pre-capture clarification steps by
virtue of process integration. At the downstream end, the eluate of the CHM unit procedure
can be directly fed to the subsequent processing step, which would be particularly amenable
for other column-based unit procedures, resulting in lower labor time and manufacturing
duration. We also do not account for the uncertainty in performance associated with the
developmental state of the technology. There have been substantially lower research and
development investments in the biotic technologies than in the commercially available abi-
otic technologies; one may reasonably assume that there is more potential for improvements
through biotic unit procedure optimization, while also considering that a larger driving force
in abiotic unit procedure optimization for commercial terrestrial operations may balance or
outweigh this. Forecasting on the technology development dynamics in the context of these,
and other, forces could provide significant additional insights.

Several overarching lessons on the development required for deployment of pharmaceu-
tical purification technology to support human health in space can be gleaned from the
cost breakdown of the ESM framework employed in this study. The high mass costs for
the mAb capture technologies investigated suggest strong incentives to pursue efforts in
miniaturization to reduce not only equipment mass, but also reagent mass, as preparation
for pharmaceutical foundries in space. The high labor costs and duration of some of the
technologies studied likewise suggests that automatization of biopharmaceutical purification
would be impactful. Automatization could also conceivably be valuable in reducing mass
costs associated with manual manipulation, such as pipette tips and gloves, and those as-
sociated with ensuring sterile operation. We also underline the importance of scheduling
and equipment sizing optimization; for example, the ESM penalty for capturing the mission
demand of mAb with the VIN unit procedure yielded up to 40% higher total ESM for non-
optimal scheduled manufacturing batches. Given the advantage of in situ manufacturing to
respond to uncertainty in mission medicine demand, further research to explore scheduling
and equipment sizing under uncertainty would provide valuable insight.

There are a series of challenges facing pharmaceutical foundries in space beyond process-
ing. Perhaps the most daunting of these is the incompatibility of existing pharmaceutical reg-
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ulatory compliance frameworks with the design constraints of in situ manufacturing. There
are currently dozens to hundreds of analytical tests required to confirm process and product
quality prior to release of the pharmaceutical for administration to human patients[389],
which translates into a highly burdensome cost for in situ manufacturing of pharmaceuticals
in space. Fortunately, there is a strong and parallel terrestrial need to reduce the burden
of regulatory compliance while maintaining standards of quality assurance and control for
personalized medicine, an individualized and patient-specific approach to medical care with
widespread support. As mentioned earlier, trends of distributed and sustainable biomanu-
facturing on Earth provide additional support for reducing ESM-relevant costs.

The analyses presented in this study motivate future investigation into the ESM out-
put of a complete pharmaceutical foundry for a more complete comparison to other ECLSS
needs and subsequent formal evaluations of medical risk (i.e., loss of crew life, medical evac-
uation, crew health index, risk of radiation exposure-induced death from cancer) mitigation
as a balance to the ESM costs. The Integrated Scalable Cyto-Technology system[121], re-
ported in literature as capable of “end-to-end production of hundreds to thousands of doses
of clinical-quality protein biologics in about 3 d[ays],” is an automated and multiproduct
pharmaceutical manufacturing system that may serve well as a starting point for a complete
pharmaceutical foundry evaluation. While downstream costs are typically a large proportion
of terrestrial biopharmaceutical production costs, they may represent an even higher propor-
tion of the overall ESM costs. ESM is more closely aligned to PMI as a metric than to cost
of goods sold in dollars, suggesting that downstream contributions to ESM may similarly
dominate. Budzinski and team found that downstream operations contributed 82% of the
total PMI for commercial mAb production[64].

Assembly of a complete pharmaceutical foundry ESM model would also enable investi-
gation of more nuanced RMA design considerations, such as those relating to the influence
of a fixed set, or anticipated probability distribution, of pharmaceutical product diversity
and batch size on optimal system composition to meet given medical risk thresholds. As
stated in the original presentation of ESM theory and application, comparison of multi-
ple approaches for a given subsystem with ESM, such as we are studying with the capture
step of a mAb pharmaceutical foundry, should satisfy the same product quantity, product
quality, reliability, and safety requirements[314]. Of these assumptions, the product quality
and safety requirements prove challenging for implementation in pharmaceutical foundry
comparisons. It is worth noting that reliability is not considered in the scope of this prelim-
inary study, given the varying technology readiness levels of the unit procedures, but that it
should be included in future analyses of full purification schemes. By extension, the impact
of microgravity and reduced gravity on reliability and unit operation performance, while not
investigated in this study, is an important and complex consideration, that requires signifi-
cant research to address. Similarly, stability of the production resources over the course of a
mission duration should be further considered in future works. High product sensitivity to
process changes, and the large battery of testing sometimes required to observe them (the
extent of which will also change with the processes employed), creates a situation where ESM
comparisons of pharmaceutical foundries that serve as technology decision making tools will
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absolutely need to meet this requirement, albeit at a considerable cost and/or complexity of
execution.

The assessment of equivalent safety requirements, to the best of the knowledge of the
authors, has been approached thus far in an ad hoc and qualitative manner, relying on
extensive subject manner expertise and working process knowledge. One promising route to
strengthening these critically important safety assessments would be to implement a formal
assessment framework based on the environmental, health, and safety (EHS) assessment
proposed by Biwer and Heinzle[51] , in which process inputs/outputs are ranked based on
a series of hazard impact categories (e.g., acute toxicity, raw material availability, global
warming potential) and impact groups (e.g., resources, organism). The key to a systematic
space health-centric safety assessment like this is to establish space-relevant EHS impact
categories (e.g., planetary protection, crew and ship safety). An improvement of the EHS
underpinnings has the potential to provide significant benefits to future ESM analyses in the
increasingly complex mission architecture of longer-duration missions.
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Chapter 9

Futures: Biomanufacturing for Space
Exploration - What to Take, When to Make,
How to Break Even

As renewed interest in human space-exploration intensifies, a coherent and modernized
strategy for mission-design and planning has become increasingly crucial. Biotechnol-
ogy has emerged as a promising approach to increase mission resilience, flexibility,
and efficiency by virtue of its ability to efficiently utilize in situ resources and reclaim
resources from waste streams. Since its infancy during the Apollo years, biotechnol-
ogy, and specifically biomanufacturing, have witnessed significant expansions of scope
and scale. Here we outline four primary mission classes, on Luna and Mars, that
drive a staged and accretive biomanufacturing strategy. Each class requires a unique
approach to integrate biomanufacturing into the existing mission architecture and
so faces unique challenges in technology development.These challenges stem directly
from the resources available in a given mission class—the degree to which feedstocks
are derived from cargo and in situ resources—and the degree to which loop-closure is
necessary. We see that as mission duration and distance from Earth increase, the ben-
efits of specialized sustainable biomanufacturing processes increases. Here we present
a strategic approach, guided by technoeconomics, to development, testing, and deploy-
ment of these technologies serves to nucleate the larger effort of supporting a sustained
human presence in space. The processes needed for each scenario spans the technical
breadth of synthetic biology to design engineering, from sophisticated genetic tailor-
ing of chassis-organisms to building scalable, automated, easily operable bioreactors
and processing systems. As space-related technology development often does, these
advancements are likely to have profound implications for the creation of a stable,
resilient bioeconomy on Earth.
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With reinvigorated curiosity and enthusiasm for space-exploration and increasingly com-
plex campaigns, humanity prepares to return to the Moon en route to Mars[497, 175, 119].
Efforts to modernize mission architectures[394]—combinations of inter-linked system ele-
ments that synergize to realize mission goals[557]—will need to leverage an array of enabling
technologies including biomanufacturing towards the realization of such grand visions[385,
401, 17, 380]. Microbial biomanufacturing has the potential to provide integrated solu-
tions for remote or austere locations, especially where supply chains for consumable and
durable goods cannot operate reliably[44, 110]. Complementary to, but distinguished from
merely remediative and extractive microbial functions, such as biomining[205, 468], off-world
biomanufacturing corresponds to any deployable system that leverages biology as the pri-
mary driver in generating mission-critical inventory items of increased complexity, i.e., the
de novo synthesis of components for the formulation of food, pharmaceuticals, and materials
[375, 538, 164, 258, 219, 340, 453]. When integrated effectively into mission architectures,
bio-based processes will significantly de-risk crewed operations through increased autonomy,
sustainability, and resilience, freeing up valuable payload capacity[43].

Key to the efficacy of biotechnology as a support of human space-exploration is its ef-
ficiency in using in situ resources (in situ resource utilization, ISRU) and the ability to
utilize waste streams from other mission elements and recycle its own products (loop-closure
LC)[391, 320, 198]. As missions expand, progressive advancement and wider implementa-
tion of in situ (bio)manufacturing (ISM/bio-ISM) will lead to greater independence, en-
abling more complex mission-designs with extended goals, and may eventually enable a
self-sufficient human presence across the solar system. Biomanufacturing is appropriate for
that purpose, because high-volume resources, like fixed carbon and nitrogen (as well as as
well as low-volume, but critical resources such as minerals) can be produced and recovered
in compact autonomous systems that are analogous to Earth’s biogeochemical cycles[375,
538, 164, 258, 219, 340, 453, 160]. Biochemistry also provides access to a plethora of organic
compounds, often at unrivaled purity and selectivity, many of which are not accessible by
other means [309, 12].

Biologically-driven ISM in support of space-exploration becomes more significant the
deeper humans venture into space: As the support of supply chains becomes increasingly
challenging the further humans travel, ISM is most feasible in locations where resources are
available, accessible and abundant, such as the Moon but even more so Mars (Figure 9.1).
The advantages and drawbacks of biotic and abiotic approaches for ISM, in particular for life-
support but also auxiliary functions for extended human operations beyond Earth-orbit, have
previously been discussed at length[371, 372, 401, 44] (qualitatively summarized in Table S4),
but an actionable roadmap for deploying biomanufacturing-based systems within upcoming
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campaigns has yet to be formulated. Here, we discuss the applicability of biologically driven
ISRU and LC in different off-world cases and present a qualitative techno-economic analysis
(TEA) to assess different space-travel scenarios. Pursuant, we lay out paths for readying
bio-based technologies for inclusion into mission-design and deployment, to enable the next
phase of roadmapping for crewed missions into deep-space.

9.1 Off-world Biomanufacturing Approaches

Concepts-of-Operations: Differentiating ISM-Modes

Given that biomanufacturing is uniquely suited to play significant roles in the specific realms
of food, materials, and therapeutics, a key challenge in realizing its potential rests in the
availability and abundance of feedstocks that are mobilizable by microbes—provided through
logistic resupply (directly or from re- and up-cycling of mission products) or obtained from
in situ resources. This abundance depends on the destination and mission class and leads
to a qualitative discrimination of cases as shown in Figure 9.1a. The in situ resources
that may provide useful feedstocks to drive biomanufacturing processes on the Moon and
Mars are broken down in Figure 9.1b, which aids in comparing mission profiles. For each
case, different concepts-of-operations (CONOPS) are applicable—these CONOPS conform
to specific inventory needs as they relate to mission- and crew-requirements and depend on
the resources availability for ISM. The environmental context informs the specification of
feedstocks and processing pipelines (LC or ISRU), as shown in Figure 9.1c.

Each case comprises a unique set of inventory elements; such elements may include in-
frastructure components (e.g., habitat assemblies and furnishing, functional hardware/appli-
ances as well as scientific equipment and tools), transported as either pre-deployment cargo
or with the crew. These elements are used to assemble the larger integrated habitation and
life-support systems as well as (bio-)ISM-based LC or ISRU systems and infrastructure re-
lated to mission-objectives[218]. While all such cases are distinct in terms of operations[147],
they serve as exemplars to better understand biomanufacturing strategies in relationship to
mission elements that might provide resources, crew count/needs, and logistical constraints.

Implementation of Bio-ISM Dependent on Off-World Case

Case 1 (Moon, stable logistics) considers Artemis-like Lunar operations[497], specifically
short stay missions for small numbers of astronauts carrying out tight scientific and techni-
cal explorations and tests. Because of the short times and logistic accessibility, crew-needs
for food, medicine and materials can be provided through carry-along and resupply from
Earth[492, 250], rather than relying on the more complex, risky and time-intensive technolo-
gies of biomanufacturing. Also, due to the dearth of in situ resources on the Moon (Figure
9.1b)[118], the scale of biomanufacturing will be constrained by the supply chain and capa-
bility for recycling these elements[191]. However, because of the well-supported environment,
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it is an ideal location to prove and improve technologies for biomanufacturing in space by
testing automated and scaling operation of critical bioreactor systems for different biopro-
cess types (e.g., electro- and photo-autotrophic (gas) bioreactors for lithoautotrophic and/or
saprotrophic fermentation of macronutrients[31]), all of which are likely to have physiological
and operational challenges in a low-gravity, resource-poor environment[290, 242, 481]. To
this end, systems that have achieved a Technology Readiness Level[339, 179] (TRL) of 5
are well suited to be implemented and evaluated. While these systems currently exist in
isolation or partially integrated in laboratory and industrial contexts, building automated
end-to-end, compact systems (advancement past TRL 7) will be a key requirement for case
1, so as to meaningfully scale to future, more constrained mission architectures.

Case 2 (Moon, disrupted logistics) considers advanced Lunar operation capabilities when

Figure 9.1: Approaches to in situ biomanufacturing dependent on off-world cases. The context-specific off-world cases
1-4 are defined in a, mapped as quadrants on qualitative spectra for the availability of in situ resources and logistic
resupply. The surface-accessible in situ resources for the Moon and Mars are compared in b in form of gases and
solids, broken down into elemental compositions (SNOPs: sulfur, nitrogen, oxygen, phosphorus). Biomanufacturing
concepts-of-operations (CONOPS), outlined in c, are color-coded for the operational mode: outgoing from initial
cargo (black lines), CONOPS can rely on either loop-closure (LC, blue lines), in situ resource utilization (ISRU,
orange lines), or both (LC+ISRU, green lines).
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extensive infrastructure has been deployed on the Moon. To increase the time for oper-
ations between resupply (and defending against unexpected resupply disruption), storage
facilities will be increased and biomanufacturing become more attractive. Given the paucity
of feedstock raw materials on the Moon, which do not provide the central resources neces-
sary for bio-ISM (Figure 9.1b)[118], hyper-efficient use of stored supplies and efficient use
of other available mission products and waste-streams via LC must be engineered. Deriva-
tization of packaging materials, such as biodegradable plastics, and minimal processing sys-
tems for black and grey water could provide significant augmentations to expected feedstock
and extend the operational times of biomanufacturing systems in the event of scheduled
or unplanned disruption of the supply chain[17]. Under extreme conditions, being able to
switch biomanufacturing operations from, for example, complex vegetable foods to faster
and less resource-intense production of simple cellular foods becomes paramount to defray
risk. These challenges require innovations in new alternative feedstock engineering in or-
ganisms; co-design of mission materials for biological consumption; development of basic
waste-processing systems; and flexible re-configurable infrastructures for production to re-
spond to changing resource conditions. Applicable technologies comprise systems that have
been tested in the relevant environments and brought to TRL over 7 within operations of
Case 1, and are ready for implementation into mission architecture.

Case 3 (Mars, rudimentary logistics) considers basic biomanufacturing systems deployed
on Mars with poor logistic resupply due to increased interplanetary distance but with greater
availability of in situ resources compared to the Moon. While mission-design is still charac-
terized by small crews on round-trips, resource constraints carry different weight. Given the
extent and degree of the unknowns involved, these missions are ideally designed to maximize
safety and stability by preparing for diverse contingencies. Providing those redundancies is
exceedingly challenging due to the remoteness of Mars[147]. Hence, meaningful bio-ISM is
necessary—with substantial scaling of the systems brought to TRL 8 to 9 in cases 1 and 2.
While a portion of the food, therapeutics and materials will still derive from cargo, signif-
icant ISRU of regolith, water, and atmosphere must be implemented in addition to LC, to
ensure mission flexibility and resilience. For food, nutritional completeness and palatability,
together with customization of texture, flavor, and format will be of central importance. To
further safeguard crew-health, essential therapeutics that cannot be included in cargo due to
restrictions such as shelf-life, are within scope. For maximum fidelity of mission operations,
a range of multi-purpose (thermoplastic) materials is useful for additive manufacturing—
demand scales in correlation with mission duration with a greater factor than for food or
pharmaceuticals. Enabling technologies include: modular fermentations and bioprocesses at
scale, optimized genetically engineered microbial strains to efficiently produce intermediates
(i.e., ingredients, agents, crude polymer), and formulation/processing systems to assemble
the final products (i.e., meals, drugs, manufactured items)[44].

Case 4 (Mars, developed logistics) envisages a fully developed and integrated biomanufac-
tory where essential logistic resupply is enabled by interplanetary networks and deep-space
outposts[331, 84, 25], combined with extensive ISRU and LC. Specifically, this case would
entail sustained human operations on Mars on the verge of permanent settlement. The
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extensive infrastructure that must be deployed for this kind of mission-design enables pro-
duction of complete and diverse foods with a spectrum of forms and nutrition, a holistic
range of therapeutics, and different bulk as well as specialty materials (plastics, metals,
composites) that allow not only the maintenance but also expansion of infrastructure, semi-
or fully autonomously. Biomanufacturing technologies and auxiliary infrastructure need to
be fully developed and matured to readily deploy tailored microbial cell factories that can
potentially be engineered on-demand as the need arises. To this end, even the accommoda-
tion of a “space biofoundry” (i.e., automated infrastructure for engineering and analytics of
biological systems[234]) in the mission architecture is within scope. Eventually, this will also
entail the ISM of specialty chemicals and reagents like e.g., phosphoramidites for DNA syn-
thesis, supporting on-site bioengineering[466], in addition to the total inventories of foods,
therapeutics and materials.

Off-World Mission-Scenarios and Bio-Available Inventories

CONOPS for ISM—the flow of resources and integration of LC with ISRU—not only differ
for the four considered off-world cases, but are dependent on and influenced by mission-design
scenario. To assess the potential impact that biomanufacturing can have on mission-design
more quantitatively, five distinct but comparable scenarios were established as per Figure
S15a. The outlined scenarios were designed with the objective of greatest comparability
among destinations (Moon or Mars), and are agnostic of the cases previously described in
Figure 9.1 (which served to aide in grouping mission architectures by location and bioman-
ufacturing strategies). Scenarios ‘A’ and ‘B’ correspond to single sorties to the Moon and
Mars, respectively, using standard surface operation duration[17]. Meanwhile, scenarios ‘C’
to ‘E’ consider 5,400 days of surface operations either as multi-sortie campaigns (scenar-
ios ‘C’ and ‘D’) or in a single sortie (scenario ‘E’). Using NASA’s ’Advanced Life Support
Sizing Analysis Tool’ (ALSSAT)[317], an analysis of cargo inventory broken down for each
scenario and compared by means of Equivalent Systems Mass (ESM, see BOX)[314] was
conducted (see SI for details on data aggregation). The bar-charts in Figure S15 decompose
the scenario-cost by means of ESM, differentiated by components (mass, power, cooling,
volume, crew-time; S15b), system elements (waste, food, water, air, thermal; S15c) and ma-
terial composition (structural metal, plastic, water, biomass, electronics, etc; S15d), serving
as prima facie estimates for mission-expense.

This preliminary TEA provides a primary step towards drawing a relationship from
the availability of cargo resources to potential inventory elements that lend themselves to
biomanufacturing. Apart from highlighting that longer duration Mars journeys have the
highest ESM effort, the analysis also provides insight into inventory differences, which has
implications for applicability of ISM among the scenarios. Figure S15b shows that across
all scenarios the primary cost in terms of ESM will be mass itself, followed by volume.
The biomanufactory schema breakdown in Figure 9.1 is supported by the data in Figure
S15c, which shows that ESM for scenarios ‘A’ and ‘C’ (Moon) are dominated by air systems
(∼30% and 26%, respectively) while scenarios ‘B’ ,‘D’ and ‘E’ (Mars) are dominated by
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Figure 9.2: Breakdown of inventory elements dependent on mission scenario. Panel a provides an overview of
parameters for exemplar mission-design scenarios: ‘A’ and ‘B’ correspond to single sorties (N) to the Moon and Mars
respectively using standard surface operation duration[17], while ‘C’ and ‘D’ correspond to multi-sortie campaigns
with the same 5,400 days of total surface operation as in ‘E’. These parameters can be used to calculate the ESM cost
and include equivalency factors for Volume (Veq), Power (Peq), Cooling (Ceq), Crew-Time (CTeq), and Location (Leq).
Panels b – e visualize the inventory breakdown by component (b), system element (c), and material composition (d
& e), respectively: the bar-charts in panels b – d show the breakdown in ESM units (on the left, in mass [kg]), and
the fractional breakdown of each scenario (on the right, unit-less). The bar-charts in panel e visualize the absolute
(left, in mass [kg]) and fractional (right, unit-less) inventory breakdown of material composition. ESM = Equivalent
Systems Mass[314] – for more information see the BOX, as well as the SI.

food systems (∼38%, 38% and 59%, respectively). Given the resources associated with each
location, more air system supplies are required on the Moon, which does not lend itself to
carbon dioxide fixation technologies as on Mars. In all scenarios the primary costs will be
structural metals, plastics, water, and biomass. Most notably, Figure S15c shows that both,
the mass and ESM for each scenario, is dominated by cargo composed of metal and plastics.
Unfortunately, structural metal is likely to remain unsuitable for biomanufacturing for the
foreseeable future. While biomanufacturing is usually conceived towards food production
or therapeutics for sustaining astronauts, we note that plastic represents ∼17% of mass in
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BOX: Assessment of Economics, Feasibility and Risk of Mission-Architecture
In-space biomanufacturing systems will need to demonstrate superiority over tradi-
tional systems in supporting crewed space-missions. To this end, traditional mission-
designs must be directly comparable to those augmented with biomanufacturing. One
of the more widely used metric to quantify specific attributes of life-support systems
is Equivalent Systems Mass (ESM)[314]. In brief, ESM allows mass, volume, power
and crew-time to be converted into a single metric in kilograms-equivalent to predict
the up-mass requirement[312]. ESM has become a standard metric also for comparing
biomanufacturing systems[148, 39], however, it cannot account for aspects such as risk,
sustainability, recyclability, complexity, modularity, reliability, robustness, resilience,
readiness, scalability, or safety.
As a complement to ESM, the concept of payback time (PBT)[541] has been devel-
oped to assess some of these criteria – PBT reflects cost, recyclability, and economic
sustainability. Specifically, the PBT is useful in assessing ISRU options, as it allows
comparison of the cost to launch and deploy (bio)manufacturing capabilities with the
cost of a continuous resupply from Earth over time. Adding statistical risk assessments
to the PBT can also help to quantify risk, safeguarding robust and reliable systems.
For example, the concept could determine the statistical risk of landing on Mars, with
the risk reduction of reduced number of landings on one side but a loss of the payloads
carrying ISM hardware being more critical than failure of resupplying missions on the
other side. The statistical value of those risk-factors must be carefully assessed based
on previous missions, the general technology development roadmap, and the expected
learning rates on those factors. Through reliable and generalizable analyses like these,
the biomanufacturing approaches which are most vital can be meaningfully assessed.

shorter duration scenarios ‘A’ and ‘B’ and from ∼36% up to 60% in longer duration scenarios
‘C’, ‘D’ and ‘E’. This supports the emphasis on ISM of these materials with increasing
mission-duration. Further, with an estimated ∼12% to 16% of the total cargo-mass being
water, the associated systems contribute ∼15% to 20% of total ESM (Figure S15c). Because
the mass contribution from water is higher for scenarios ‘A’ and ‘B’, any biomanufacturing
strategy employed should be geared towards water recovery and reuse.

9.2 Integrating Biomanufacturing with Mission-Architecture

Rational Coupling of Biological Systems and Resources

Selection of the specific feedstocks utilizable for different ISM purposes must be guided by
critical consideration for recycling of resources at molecular and elemental level—any dead-
end, non-recyclable stream will eventually require a resupply from Earth. For auxiliary
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functions (e.g., materials for additive manufacturing), production volume is more important
than continuity and response time (as is critical in case of food and therapeutics), there-
fore requiring the adaptation of widely available resources (carbon dioxide and derivable
single-carbon compounds or crude biomass), either directly (where available), or through
(physico)chemical means (e.g., as secondary beneficiary of propellant production from in situ
resources)[486]. Hence, the collective approach to more deeply developing synthetic biologi-
cal tools for bio-ISM must begin with the feedstocks—sugars or other purified multi-carbon
compounds (e.g., higher alcohols and fatty acids) will likely not be the prime substrates of
biomanufacturing in space, but rather the products/intermediates in a manufacturing chain
or loop that serves life-support (within LC elements such as regeneration of oxygen and
waste reclamation)[479]. Critically, because in space savings on payload supersedes com-
mercial relevance, adaptation of non-model microbes that save mass is much more valuable.
The range of microbial taxa being proposed and investigated for in space-applications is,
however, still narrow and often limited to the few model organisms (e.g., E. coli and S. cere-
visiae) whose popularity in Earth-based applications is mostly rooted in legacy. Although
a great deal of progress has been made to adapt these organisms to utilization of single-
carbon feedstocks[192, 184], they are still outclassed by organisms naturally capable of these
functions[427, 465]. Therefore, species with nutritional modes and metabolism uniquely
suited to leverage resources available through LC and ISRU must be considered for devel-
opment of ISM systems, basing their selection on application (feedstock/product pairing,
scale, continuity, and responsiveness of the respective process) and scenario-specific criteria
(environmental parameters)[31, 419]. Specifically, organisms with the ability to assimilate
single-carbon compounds alongside organics (mixotrophy) are most suitable. For this pur-
pose, expansion of metabolic engineering efforts to create (synthetic) pathways that increase
the carbon-efficiency of metabolism and/or allow the catabolism and subsequent up-cycling
of non-natural feedstocks, like e.g., synthetic plastics, is also sensible[522, 115]. To illustrate
these considerations, a qualitative breakdown of possible production routes/flow of carbon
through different biomanufacturing approaches for inventory items from case-dependent in
situ resources is established in Figure 9.3.

Production of Materials for Manufacturing

For off-world ISM of materials and fabrication of mission objects a multitude of different
approaches exist, many of which are still inhibited by the extent of initially required critical
infrastructure[203, 104]. Biomanufacturing has the potential to surmount this limitation, by
supporting the fabrication of consumable and durable goods made of plastics[29, 340, 282],
metals[168, 554], and ceramics[279] (∼18% to 60%, ∼13% to 50%, and ∼1% of total mission
ESM respectively, Figure S15d) with uses and sizes ranging from small replacement parts
and functional tools to physical components of the life-supporting habitat[418, 335].

In combination with additive manufacturing[589], bioplastics could make up the major-
ity of high-turnover items with regular demand, while also providing for contingencies, i.e.,
non-anticipated servicing and repairs of incidental nature. Such polymeric constructs can be
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derived from basic (carbon) feedstocks in a more compact and integrated way in a one-step
bioprocess than by chemical synthesis, especially in the case of comparatively (to Earth-
based manufacturing industry) low-throughput products[44, 401]. Furthermore, especially
high-performance polymer-fibers such as for example aramids and arylates have a range of
applications in space technology, including ballistic protection. The building blocks for these,
or even final polymeric materials of equivalence, can be obtained through biomanufactur-
ing[29, 30]. Technologies for production of biomaterials, in particular bioplastics, from in
situ resources like carbon dioxide are also immediately relevant to providing solutions for
the most pressing challenges of humanity on Earth. This includes mitigation of greenhouse
gas emissions through carbon-capture and carbon-neutrality (i.e., LC), as well as reduction
of environmental pollution by non-biodegradable materials. Biomaterials production from
inorganic carbon is therefore an enabling technology for the evolution of a circular economy
and sustainable (bio)chemical industry on Earth[461].

Figure 9.3: Breakdown of available routes for bioproduction of inventory elements from carbon dioxide—either as in
situ or recovered resource. Connecting lines represent possible paths for carbon-compound conversion of intermediates
to products. Usability of different feedstocks is tied to nutritional mode of the microbial host organism (more than
one nutritional mode is possible for certain organisms). Classes of products are assigned to respective microbes in
respect of their metabolism as well as not represented ‘shadow-characteristics’ of the chassis (e.g., aerobic/anaerobic,
prokaryotic/eukaryotic, metabolic rate, robustness, etc.), rather than ability to (naturally) derive the respective
compounds. While metabolic engineering theoretically allows almost any bio-available compound to be produced
in any organism, the effort required for realization can be excessive. For example, oxygen-dependent pathways will
hardly be functional in obligate anaerobes without extensive modifications. Likewise, correct folding of proteins with
high post-translational modifications in prokaryotes is unlikely. Products may or may not comprise some of the initial
feedstocks, hence consecutive runs through this chart to up-cycle carbon are conceivable.
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Use of soil and rock (Figure 9.1b), while likely large by volume for surface operations
as components of buildings and structures, has a limited number of applications due to the
poor mechanical properties of regolith (e.g. low flexibility and plasticity)[396, 585, 100].
Nevertheless, autonomous 3D-printing of infrastructure relying on regolith and composites
thereof with (thermoplastic) binding resins has been proposed and prototyped (also see
SI)[517, 248]. This requires significant up-mass of auxiliary equipment to allow for e.g.,
stripping and processing of topsoil, as well as the raw material for the binding resin. If,
however, the binding agents (such as polyesters like polylactic acid) could also be derived
or produced on-site from in situ resources, an additive manufacturing method may become
immediately more feasible[315, 251].

Another possibility to overcome the low versatility of raw regolith and leverage it as an
in situ resource is to extract certain elements of interest for further processing and applica-
tion. Performed with microorganisms, this process, known as bioleaching, is already being
applied on Earth (e.g., for 20% to 30% of global copper production[577]). For space appli-
cations, three classes of resources are distinguished: (1) metals and minerals like iron and
sulfur oxides[83, 343], or silicates[109], all of which are common in various regolith types
and can be extracted for construction purposes and other bulk applications[468]; (2) rare
earth elements like lanthanides, scandium and yttrium, which can be extracted from specific
regolith types[364]; (3) noble metals found in components of electronics brought from Earth
(e.g., copper), which could be reused for new circuitry. While (1) and (2) are part of ISRU
and (3) contributes to LC, all of these extraction processes can be combined and coupled
with additive manufacturing for perpetual or on-demand ISM. For Earth, these technolo-
gies would further contribute to advancement of remediation techniques, contributing to the
move towards a more sustainable and circular economy.

9.3 Paths to Realization of Emerging Technologies

Readying Microbial Production Systems for off-world Bio-ISM

While having gained significant traction over the last decade, the study of space biomanufac-
turing is still limited to small-scale microgravity experiments[523, 558, 237] (e.g., BioRock[111]
or Rhodium Inflight Biomanufacturing[166]). More extensive R&D will be required to ready
bio-ISM technologies for implementation in mission architectures, especially to scale and
adapt synthetic biology and bioprocess engineering to the relevant (off-world) environments
(specifically Moon and Mars)[43, 485]. To this end, the development of microbial cell factories
must go hand-in-hand with the development of appropriate hardware for in-space bio-ISM.
Specifically, standardized but versatile bioreactor systems that are scalable, automatable and
capable of providing the environmental conditions for handling and cultivation of microbes
in different off-world scenarios are required, combined with autonomous data acquisition for
process and hardware performance characterization to monitor production outcomes (scal-
able yield, titer, and rate, as well as controlled quality).
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Integration of Research and Development with Public and Private Sectors

To evolve the technological readiness in the described areas requires scientists and engineers
from various fields spanning biology, chemistry, physics, and engineering to work together to
advance microbial cell factories and build cross-compatible and scalable processing systems
within the confines and stressors of space[43]. Biomolecular, bioprocess, and biosystems
engineering must be integrated with pre-processing of resources and downstream processing
of products, and tied in with mission-support infrastructure and logistics. Coordination
mission specialists are critical to deploy tests in space under different constraints (scenarios)
and build long-term partnerships and understanding between the public and private sectors.
Such groundwork requires long-lived multidisciplinary centers that are secure from volatility
of markets and swings of political agendas to perform the large-scale, long-term science
necessary to succeed. A dedicated space-based R&D Hub as an associated ’field-station’
could greatly streamline and facilitate the advancement of fundamental technology that
increases TRLs. Service providers would dedicate and manage resources both on the ISS
(near-term) and next-generation space station(s) (mid-term). This pipeline would ensure
testing, prototyping, and maturation of technologies in space with assigned, predictable
launches, hardware and support.

9.4 Outlook
The strategic application of biomanufacturing will de-risk and expand crewed space-exploration
capabilities. The farther from Earth the more mission-critical biomanufacturing becomes –
Lunar missions may be not sustained only supplemented with LC, recycling and repurposing
of waste-streams, Mars missions will require ISRU. To take full advantage of mission supplies
and in situ resources, advanced biomanufacturing technologies must be developed – given
the austerity of the Moon and Mars, research efforts must be geared towards the most abun-
dant resources to benefit future deep-space missions. Near-term Lunar missions will serve to
build-out and stress-test LC technologies that will inform long-term ISM processes on Mars.
Techno-economic analyses of mission scenarios direct the strategic development of hardware
and can, as opposed to hardware, be readily implemented at trivial capital cost. Biomanu-
facturing technologies for both, LC as well as ISRU, have promise for dual-use applications
on Earth for a circular-economy and in extreme or inaccessible environments.
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Chapter 10

Futures: Space Bioprocess Engineering Drives
Sustainability On- and Off-World

Although raison d’etre of Space Bioprocess Engineering is the design, realization, and
management of biologically-driven technologies for supporting offworld human explo-
ration, it has the potential to offer transformative solutions to the global community
in pursuit of the United Nations Sustainable Development Goals. Here we address
the growing sentiment that investment in spacefaring enterprises should be redirected
towards sustainability programs. In outlining the Earth-benefits of dual-use Space Bio-
process Engineering technologies, we both show that continued investment is justified
and offer insight into specific R&D strategies.

The following chapter is under development for publication as A.J. Berliner, I. Lipsky,
G.L. Vengerova, A.P. Arkin. Space Bioprocess Engineering Drives Sustainability On- and
Off-World. (In preparation, expected submission Summer 2022).

Less than a year after the triumph of NASA’s 1969 Apollo moon landing, Gil Scott-
Heron’s spoken-word poem, Whitey on the Moon, struck a resounding chord amongst the
American populace by calling out social and economic disparities in the allocation of pub-
lic funds[478]. Now more than 50 years after the debut of Small Talk at 125 and Lenox –
and with NASA preparing to revisit Luna via the Artemis Program[497], many have echoed
Scott-Heron’s concerns that the costs associated with spacefaring could better spent by ad-
dressing problems on Earth[333, 327]. With the latest Artemis launch system projected to
cost $4.1 billion/launch[177] and estimates of a human exploration campaign to Mars ranging
from $150 billion to $1 trillion[54, 262, 217] (representing ∼5% of the U.S. GDP) – the need
for equitable allocation and efficient management of taxpayer money is critical. Because
this money could alternately be used to address political and sustainability challenges on
Earth, minimizing the financial cost of the mission and maximizing societal benefit is neces-
sary. Towards this end, space technologies developed via taxpayer dollars should offer both
cross-cutting cost solutions and dual-use applications towards addressing Earth-based sus-
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tainability. From among the myriad of engineering platforms, bioengineering[401, 372, 371]
and integrated biomanufacturing[44] technology paradigms have been shown to support hu-
man health, reduce costs, and increase operational resilience. Only recently codified, Space
Bioprocess Engineering (SBE)[43] presents exciting possibilities for the future of climate
change and sustainable development – with an emphasis on SBE innovations that potentiate
solutions to planetside problems, education and workforce training towards sustainable and
equitable economic futures, and the academic and economic co-benefits of a new promising
field of study.

“Sen’ these doctor bills – Airmail special.”

SBE is the multi-disciplinary approach to design, realize, and manage a biologically-driven
space mission as it relates to addressing the NASA’s grand challenges for advancing tech-
nologies to support the nutritional, medical, and incidental material requirements that will
sustain astronauts against the harsh conditions of interplanetary transit and habitation off-
world[43]. SBE combines synthetic biology and bioprocess engineering under extreme condi-
tions to enable and sustain a biological presence in space. In 2010, NASA’s Space Technol-
ogy Mission Directorate (STMD) released the Space Technology Grand Challenges, 13 calls
for new technologies to address need-gaps across human presence, management of space re-
sources, and scientific progress and exploration[514]. SBE grew in part from those needs, and
its main components have sought to address the challenges of space health and medicine[189,
439, 105], settlement[75, 510], and a space way station[236, 55, 553, 455] with SBE thrusts
towards biological in situ resource utilization (ISRU) and in-space manufacturing, food and
pharmaceutical synthesis, and loop closure all as measures to increase settlement health
and self-sufficiency[371, 44, 43]. But beyond space, NASA technologies have often found
terrestrial applications[400, 491, 278], and SBE principles of sustainability make for direct
extensibility towards climate and environmental challenges too[133]. The STMD exists as a
framework to precipitate, vet, and fund promising technologies, and its technology transfer
program works to secure funding for dual-use industry applications of promising technolo-
gies[157]. Engineered exoelectrogens for CH4 generation and wastewater treatment[66], yeast
that can turn CH4 into usable biomass for in-space manufacturing (ISM)[182], fungal biore-
mediation for targeted metal recapture[530], and more STMD biotechnologies have recently
found homes outside of human spaceflight[325]. Minimum viability for integrated space
biomanufacturing systems requires a degree of autonomy and adaptability that might offer
applications towards climate change adaptation and natural disaster response. A modular
biomanufactory on Earth could stay more independent from resource lines in case of disaster
— drought resistant crops in optimal controlled-growth environments could sustain better
against typical agricultural hazards, or molecular pharming, which allows astronauts[366]
and terrestrial citizens[393] to quickly respond to sudden changes in medical needs. SBE as
a field works to address end product recycling, loop closure, maximal utilization of available
resources, and optimization for mission sustainability and long-term settlement, traits that
will continue to dovetail well with environmental challenges. Technological maturation or ef-
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ficiency breakthroughs in bio-additive manufacturing[90, 189], engineered high-performance
crops[390], nutritional victuals[410], medicines[366], biological air purification[548], fuel man-
ufacturing[288, 123, 412], and electrical generation[4] may offer new dual-use futures for
Earthbound sustainability targets.

“No hot water, no toilets, no lights.”

In 2015, the same year the Paris Agreement on Climate Change was signed, all 193 members
of the United Nations adopted the Sustainable Development Goals (Fig. 10.1): 17 chal-
lenges across human, economic, and natural systems for the modern era[114, 306]. Within
this framework, both the technological deliverables and the ideas explored by SBE might
offer new avenues towards sustainable development. Preliminary NASA STMD technologies

The Haber-Bosch process which produces ammonia requires 
large energy inputs and releases carbon dioxide. Alternatives 
such as bacterial nitrogen fixation and urine ammonia 
extraction have been studied for use as low-energy in situ 
methods for ammonia production, and these provide industrial 
chemical synthesizers strategies for ammonia production with 
a much smaller carbon footprint.  

Microalgae can grow in extreme environments to 
produce essential consumables and biofuels, and 
can be used for efficient CO2 scrubbing. NASA’s 
Surface Adhering BioReactor provides a method for 
cultivating microalgae with low energy and water 
inputs on- and off-world.  

NASA has developed enzyme structures which could 
facilitate access to biomass and biofuels from 
cellulose, and on Earth, researchers are studying 
potentially carbon-negative biofuel production 
utilizing cellulosic feedstocks which could benefit 
from these enzymes.  

Polyhydroxyalkanoate (PHA) polymers produced by 
microorganisms can be used as biodegradable plastics and 
have been tapped by NASA for long-term extraterrestrial 
missions because they make production of materials possible 
in space. Because the requirements for production in space 
include producing minimal waste and meeting the high 
standards of a top-of-the-line lab, perfecting the technology 
for NASA would mean that terrestrially, citizens would have 
access to plastics that are degradable but still safe for use in 
laboratory or medical environments.  

NASA has funded experiments which showed that 
houseplants in conjunction with activated charcoal 
efficiently clean indoor air pollutants, and this 
research may be used to design space stations and 
terrestrial buildings which are conducive to the good 
health of their occupants.

One goal of MELiSSA is to create a closed-loop 
system in deep space which supplies astronauts with 
fresh air, water, and food using microbial recycling of 
human waste, and it offers a blueprint for human-
centered and sustainability-minded cities.  

The original purpose of Biosphere 2 (B2), a miniaturized 
version of Earth’s ecological environments, was to establish a 
baseline for structures for long-term human habituation in 
space. The B2 experiment informed other initiatives to 
simulate what life on the Moon and Mars could look like. 
Today, experiments in B2 focus on improving ecology and 
eco-technology on Earth.  

Long-term human settlement on Mars or the Moon will 
necessitate large amounts of concrete, but shipping tons of it 
is not feasible, and traditional methods of production are 
energy-intensive. To solve this, environmental engineers 
developed a method to harvest the binder needed for 
concrete from organisms that could be shipped to other 
planets relatively cheaply and used in place of boiled 
limestone on Earth, lowering carbon emissions from concrete 
production.  

NASA has studied closed-system applications of 
phytoremediation (i.e. the use of plants for 
remediation of contaminants) to create a healthy 
environment for astronauts off-world. This knowledge 
has been used to develop living walls, which have 
natural insulation and promote social and physical 
health using minimal inputs.

Advances in bio-crude oil manufacturing by pre-
treating microalgae with NaOH and urea would mean 
that astronauts on the ISS would be able to conserve 
the amount of propellant brought and resupplied. As 
the environment is destroyed to mine natural oil, this 
technology presents an alternative way to 
manufacture crude oil and make it closer to 
becoming a renewable resource.  

The Urea Biochemical Reactor unit (UBR) is being 
studied as a way to combine wastewater treatment to 
separate urea from urine and convert it into energy. 
The UBR would work in any wastewater treatment 
containing urine and/or ammonia, providing a non-
energy or -resource intensive method for producing 
energy on and off Earth.  

The algae studied in NASA’s OMEGA project cleaned 
wastewater and produced biomass that could be used as 
fuel. Coupled with advances made in using urine as a 
wastewater source for algae, this could provide a way for 
astronauts to produce in situ fuel. The project developed 
protocols for harvesting algae and demonstrated that 
NASA has the motivation and resources to study 
technology applicable both to rocketry and the search for 
renewable energy.  

Projections of a hypothetical urine-diversion system show 
that communities could lower their greenhouse gas 
emissions, energy consumption, and freshwater usage. 
On the ISS, a Urine Processor Assembly collects urine 
and processes it to potable standards while the remaining 
brine can be used as fertilizer, and in Europe, urine 
recovery systems are being implemented throughout 
wastewater systems.  

Aquaporin-based filtration, inspired by aquaporins 
found across organisms, is highly efficient and 
specific to filtering out water, and is included in the 
Extravehicular Mobility Unit space suit design. As 
clean freshwater resources are increasingly strained, 
aquaporins are eyed for their ability to filter water 
through non-energy intensive means.  

The Microbial Check Valve developed for the Space 
Shuttle passively kills viable microorganisms within 
water to prevent cross-contamination. Water tanks 
using this technology have been installed in cities 
with a scarcity of clean water.  

The Photobioreactor on the ISS cultivates microalgae 
to create hybrid life support systems which can grow 
nutrient-rich microalga. Advances in the chamber 
have made it feasible for use in advanced wastewater 
treatment and cultivation of nutrient-laden biomass 
over marine water.  

Space agriculture has led to advances in the practice 
of vertical farming, which minimizes the amount of 
inputs needed to grow crops. Vertical farming also 
allows crops to be grown anywhere a controlled 
environment can be established, including in densely 
populated urban areas.  

Molecular pharming views plants as chemical 
factories, efficiently synthesizing desirable 
compounds with minimal inputs. In space as 
terrestrially, it would allow people to quickly respond 
to unanticipated disease states.

MANAGE IN-SPACE 
RESOURCES

EXPAND HUMAN 
PRESENCE IN SPACE

NASA Space Technology 
Grand Challenges

United Nation Sustainability Development Goals 

ENABLE TRANSFORMATIONAL 
SPACE EXPLORATION 
AND SCIENTIFIC DISCOVERY

Figure 10.1: Space Bioprocess Engineering technologies in the context of NASA’s Space Technology Grand Challenges
(STGCs) and United Nations Sustainability Development Goals (SDGs). Specific exemplar technologies developed
in service to the STGCs (shades of grey) are described in relationship to corresponding SDGs (shades of pink). More
more information and references, see Table S1 in the SI.
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towards bioremediation and filtration could ameliorate water and air quality, helping towards
sustainable cities and communities (SDG 11), health and well-being (SDG 3), and clean water
and sanitation (SDG 6). Successful bio-additive manufacturing and bioprocesses to reduce
material footprints in the name of a sustainable mission would also be levers towards decent
work and economic growth (SDG 8), industry innovation and infrastructure (SDG 9), and
responsible consumption and production (SDG 12), as would bio-recapture of waste products
and loop closure. Space research and development has consistently generated returns, and
SBE is still fledgling as a body of research. Tight mission constraints and the push for opti-
mization and metrification in space architecture can establish more about key mechanisms,
best practices, and new concepts entirely. SBE developments in crop LED lighting[502, 65,
426], acetate production for bioplastics[88, 323, 89, 90], biomining and bioremediation[111,
468], all have potential to optimize existing processes and reduce reliance on fossil fuels.
Synthetic biology breakthroughs that have been democratized in the public forum through
the literature could breed other breakthroughs in environmental bioprocess engineering[178].
And because bioengineering and synthetic biology represent such a huge promise to the
problem of climate change[133]: crop modification for sequestration[252], rumen engineer-
ing[235], RuBisCO modification for CO2 fixation[81, 318], bio-geoengineering[498], and much
more – the greater we understand the solution sphere, the better we can meet our goals for
sustainable development (SDG 13)[498, 513].

“Was all that money I made las’ year?”

Figure 10.2: NASA-funded SBE Technology Return on
Investment. A contour plot is provided showing the finan-
cial return on investment (ROI) in $Billions as a function
of the NASA ROI $:$ and the SBE fraction of the NASA
budget of current $26B. The solid white line corresponds
sustainability budget of $44B and the dashed white line
corresponds the the ROI of sustainability investments at
13:1 [$:$].

Totaling $5.8 trillion, the recently released
U.S. 2023 Fiscal Budget by the Biden White
House allocates $44.9 billion (0.7%) in dis-
cretionary budget authority to address the
climate crisis[46]. Despite this increase of
$16.7 billion (59%) from 2022, some worry
that this is just not enough[454]. The In-
tergovernmental Panel on Climate Change
(IPCC) has reported that global model path-
ways limiting global warming to 1.5◦C are
projected to require an investment in just
energy sustainability amounting to $2.4 tril-
lion between 2016 and 2035 – representing
∼2.5% of the world GDP[524]. In the U.S.
this would amount to an additional $101 bil-
lion and some have argued that meeting this
financial target can be reach in part by raid-
ing the $26 billion slated for NASA. With
only an 8% yearly increase in its budget from
2022, 2023 NASA has directed primarily to-
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wards enabling missions on and around the Moon through Artemis while preparing for
Mars exploration to the tune of $7.6 billion for deep space exploration and $4.7 billion for
Common Exploration Systems Development to support lunar missions includes funding for
the Orion spacecraft and Space Launch System (SLS) – compared to the $2.4 billion for
Earth-observing satellites and related research will enhance NASA’s ability to improve our
understanding of climate change. NASA has recently allocated anywhere from ∼0.5-2.5% of
their yearly budget towards SBE and SBE-adjacent programs: $115.0 million to its Human
Research Program, $79.1 million towards biological and physical sciences, and a fraction of
the $145 million for early stage innovation and partnerships and $287 million for small busi-
ness innovation research and technology transfer[46]. If SBE technologies are considered as
sustainability technologies, then we can consider the return-on-investment (ROI) on NASA-
funded SBE as a contribution to the gap in funding towards sustainability. With estimates
of NASA ROIs ranging from 7-21:1[200, 223] (and in some cases 40:1[193]) $/$ compared to
the DOE’s ROI of 13:1 for something like its Clean Coal Technology Program $/$[134], we
estimate the total possible financial contribution to sustainability from NASA investment in
SBE as arbitrage between the SBE fraction of the NASA budget and the ROI (Fig. 10.2).

“How come there ain’t no money here?”

The primary factors predicted to govern the success of biomanufacturing are the availability
of in situ resources and the availability of logistic resupply of cargo in the form of feedstocks.
NASA’s Artemis mission aims to land the first woman and person of color on the lunar sur-
face, deepen the scientific understanding of the Moon, and test technologies that will prepare
for human exploration of Mars. Due to the lack of carbon (C) and nitrogen (N) on Luna[118],
the scale of any biomanufacturing-driven product will be constrained by cargo deployed from
Earth and the ability to recycle these elements at each phase in their life-cycle[191]. A crit-
ical source of C and N on Luna will be waste-stream recycling. This process will leverage
biological wastes produced by crews and the waste products of biomanufacturing itself are
recaptured and utilized in successive rounds of biomanufacturing. Reuse of waste streams
will thereby increase the sustainability of lunar missions and decrease the need for new raw
materials to be shipped from Earth. In the context of Artemis, specific SBE technologies
that contribute to recycling and reusing scarce cargo materials also serve as Earth-based
sustainability platforms which contribute to STG 6. For instance, aquaporin-based filtra-
tion and NASA’s Microbial Check Valve have been integrated in space missions already and
provide passive, efficient water filtration methods for use on Earth[224] (Fig. 10.1). More
broadly, closed-loop life support systems, like the Environmental Control and Life Support
System (ECLSS) and Micro-Ecological Life Support System Alternative (MELiSSA) provide
a blueprint for sustainably designed environments on Earth (Fig. 10.1).

As with Artemis, the specific technologies deployed as mission cargo are still the sub-
ject of much speculation and scrutiny[147]. Recent studies in mission architectures with
surface operations longer than 500 days have shown that biotechnology offers mass, power,
and volume advantages over traditional abiotic approaches – and the amalgamation of SBE
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BOX 1: “Hm! Whitey’s on the moon”

The technology for human colonization of space must operate so well that crews can
survive their missions safely both mentally and physically, and quickly recover from
unanticipated emergencies. The standards for astronaut life are high[460], but the same
has not been always true of the standards for ordinary civilians on Earth. A history
of scientific racism has led to mistrust of science and engineering within marginal-
ized communities[238, 354, 35, 22]. Meanwhile, climate change has been shown to
impact those same communities earlier and more seriously than in others[475]. While
technology is likely the path to mitigating climate change, it is important that that
technology is both effective and thoughtfully distributed, so it is able to reach those
most impacted by climate change. Focusing on sustainability in the context of space
exploration forces new technology to first be proven safe and effective for astronauts,
then used terrestrially. This change may begin repairing the divide between experts
and laypersons, increasing public support of and allowing technology to be adopted
more broadly, as well as provide useful tools in the battle of climate change. These
factors combined would pave the way for effectively minimizing the damage climate
change will otherwise cause, in the communities it affects the most.

elements in the form of an integration Martian biomanufactory has been proposed[44]. Un-
like Artemis, human exploration on Mars will be governed by poor logistic resupply and
more availability of useful in situ resources. As a result, biomanufacturing strategies will be
driven by more by ISRU and ISM – in particular, C and N fixation. Although the average
surface pressure on Mars is <1% compared to Earth, there exists sufficient CO2 (∼95%)
and N2(∼3%) to entertain a number of C and N fixation strategies. With many mission
architectures calling for in situ production of ascent propellant, the abiotic conversion of
CO2 to CH4 via the Sabatier reaction has been proposed and is being tested on board the
International Space Station. Requiring extreme pressure and heat, this process is energy
intensive. SBE alternatives such as cellulosic biofuel production[288], the Urea Biochemical
Reactor unit[409], or bio-crude oil harvested from pre-treated microalgae[245] require less
energy compared to traditional methods for propellant production and are potential dual-use
technologies for addressing climate action (STG 13) via greenhouse sequestration. The am-
ple CO2 inventory of Mars also serves as the primary feedstock for agriculture. SBE-driven
platforms for hydroponic crop cultivation have been shown to reduce mission costs for sus-
taining astronauts. Advances in space agriculture have already led to advances in terrestrial
agriculture (SDG 2), and advances in creatively using wastewater (e.g. efficient ammonia
extraction from urine) provide a means for safely supplying crops with needed nutrients by
recycling waste (Fig.10.1). The Urine Processor Assembly on the ISS collects urine and pro-
cesses it to potable standards[543], recovering much of the water available. However, urine
can theoretically supply over 60% of the crew’s water demand and the brine can be used
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as fertilizer, so researchers continue to study how this system can be improved[543]. Urine
recovery systems are being implemented throughout wastewater systems in Europe. Pro-
jections of a hypothetical urine-diversion system show that communities could lower their
greenhouse gas emissions by up to 47%, energy consumption by up to 41%, and approxi-
mately halve their freshwater usage[225]. The Haber-Bosch process produces ammonia for
use in fertilizers and pharmaceuticals but requires large energy inputs[78] and releases 1.2%
of global anthropogenic carbon emissions. Low-energy ammonia production or extraction
processes are being developed for use in space, and these alternatives (Fig. 10.1) provide
chemical synthesizers strategies for producing ammonia with a smaller carbon footprint.

“The man jus’ upped my rent las’ night.”

Beyond mission savings, SBE as a venture may offer co-benefits towards education, diversity
and a more inclusive economy. The United Nations identified science and technology as a
key lever in their 2019 Global Sustainable Development Report, and SBE could contribute
to that public sector research push with sustainable technology investment[588]. NASA,
and the burgeoning SBE field, train and employ high-skilled workers to stable civil servant,
engineering, and scientific careers[222]: over 312,000 strong. NASA induces $19.3 billion in
contracting activity[584]. To its workforce, space technology relies on significant outreach,
academic partnerships, and on-the-job training that both fill the ranks of the next genera-
tion and lower barriers to entry. SBE could enable more women, cultural minorities, and the
economically disadvantaged to enter the space sciences. SBE’s multi-disciplinary approach
could help bridge the gap between the scant 14.6% of aerospace engineering graduates that
are women and the 50.6%, 42.1%, and 35.4% of women graduating towards environmental,
biological and agricultural, and chemical engineering, respectively[463]. NASA’s $127.0 mil-
lion STEM engagement fund and a unified call for SBE workers would promote engagement
across cultural and scholarly backgrounds[46]. A young field with foundational work still to
be done offers early career scientists and engineers facing down other entrenched industries a
new set of opportunities. Across Space Technology Research Institutes (STRIs), individual
Early Stage Innovation (ESI) projects, NASA Innovative Advanced Concepts (NIAC), and
all of its solicitations, the STMD boasts more than 800 active projects — all containing
the necessary agency framework to promote the participation of women and underserved
communities and businesses, and of historically black colleges and minority serving insti-
tutions[518]. In fact, effectively prioritizing sustainability in space exploration necessitates
involving and uplifting marginalized communities. The most immediate and devastating
impacts of climate change will be felt primarily by marginalized communities[37, 330], so
input from underserved demographics will be crucial to fighting the looming ecological cri-
sis, including in space exploration efforts. Furthermore, NASA partners are beholden to the
extensive agency standards of diversity, equity, and workforce inclusion, which would push
the lever towards gender equality and quality education (SDGs 4 and 5).
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“Ten years from now I’ll be payin’ still.”

In our pursuit of a spacefaring future, we must also give pause and remember the words of
Scott-Heron. If “ten years from now I’ll be payin’ still,” we must ensure that the investment
offworld offers benefits on Earth. A central tenet of a more sustainable world is a sustainable
economy. Space Bioprocess Engineering promises the powerful returns of NASA work and
fundamental research as a whole, but also its own slew of sustainable development prospects.
Both as a field and an economic venture, SBE grapples with a crystallized set of the same
challenges that face most sustainable development. Returns are not immediate, upfront
investment is hefty and comes often from the taxpayer, and SBE is uniquely positioned to
meet them.
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11.1 SI: xESM

Case 0
xESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Transit to Mars 8616.32 28.23 9483.77 8440.16 143.92
Return Transit 5741.17 19.16 9476.05 8432.44 126.66
Total 14357.49 47.39 18959.82 16872.59 270.58
ESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Transit to Mars 5538.48 17.99 9458.54 8417.79 253.27
Return Transit 5538.48 17.99 9458.54 8417.79 253.27
Total 11076.96 35.97 18917.09 16835.59 506.53

Case 1
xESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Transit to Mars 15290.76 47.14 9515.68 8472.30 220.76
Mars Orbit 12415.60 42.03 9488.40 8445.03 551.54
Return Transit 5918.73 21.35 9489.58 8446.20 220.76
Total 28092.95 89.55 19018.57 16931.82 772.30
ESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Transit to Mars 5538.48 17.99 9458.54 8417.79 253.27
Mars Orbit 9370.25 31.09 9490.69 8446.62 603.02
Return Transit 5538.48 17.99 9458.54 8417.79 253.27
Total 15295.32 49.45 18963.73 16878.90 856.28

Case 2
xESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Transit to Mars 17898.72 60.15 16942.22 15198.38 220.76
Mars Orbit 8318.85 29.07 5454.67 5097.82 551.54
Descent 22884.79 22.66 7426.54 6726.08 0.00
Surface Ops 0.00 22.66 7426.54 6726.08 603.02
Acsent 8000.00 0.00 0.00 0.00 0.00
Return Transit 5918.73 21.35 9489.58 8446.20 220.76
Total 63021.09 155.89 46739.56 42194.54 1596.08
ESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Transit to Mars 5538.48 17.99 9458.54 8417.79 253.27
Mars Orbit 4402.39 14.23 5454.67 5097.82 603.02
Descent 8000.00 0.00 0.00 0.00 0.00
Surface Ops 6884.79 22.66 7426.54 6726.08 603.02
Ascent 8000.00 0.00 0.00 0.00 0.00
Return Transit 5538.48 17.99 9458.54 8417.79 253.27
Total 38364.14 72.86 31798.31 28659.48 1712.57
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Case 3
xESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Predeployment 14884.79 22.66 7426.54 6726.08 0.00
Transit to Mars 19194.01 38.13 9515.68 8472.30 220.76
Mars Orbit 8318.85 29.07 5454.67 5097.82 551.54
Descent 8000.00 0.00 0.00 0.00 0.00
Surface Ops 0.00 22.66 7426.54 6726.08 603.02
Ascent 8000.00 0.00 0.00 0.00 0.00
Return Transit 5918.73 21.35 9489.58 8446.20 220.76
Total 48316.37 133.87 39313.01 35468.47 1596.08
ESM M (kg) V (m^3) P (kW) C (kW) T (MMH/ Duration)
Predeployment 6884.79 22.66 7426.542163 6726.076876 0
Transit to Mars 5538.48 17.99 9458.54 8417.79 253.27
Mars Orbit 4402.39 14.23 5454.67 5097.82 603.02
Descent 8000.00 0.00 0.00 0.00 0.00
Surface Ops 0.00 22.66 7426.54 6726.08 603.02
Ascent 8000.00 0.00 0.00 0.00 0.00
Return Transit 5538.48 17.99 9458.54 8417.79 253.27
Total 22364.14 95.51 39224.85 35385.56 1712.57

Table S1: xESM Parameters
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11.2 SI: Case Study 1

Figure S1: (A) all parameters available for query in the MCD; (B.) example query to MCD; (C.) i. plot of surface
temperature vs areocentric longitude for local time t = 9:00; ii. plot of surface temperature vs local time for
LATITUDE = LONGITUDE = 0; iii. cylindrical projection of surface temperature; (D.) Plot of solar longitude
vs sol number, demonstrating the eccentricity of Mars’s orbit and the approximate season, with northern summer
solstice occurring when Ls = 90 and northern winter solstice when Ls = 270.
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A central question surrounding possible settlement of Mars is whether human life can
be supported by available technologies using in situ resources. Here we present a detailed
analysis showing that photovoltaic and photoelectrochemical devices would be adequate and
practical to sustain a crewed outpost for an extended period over a large fraction of the
planet’s surface. Climate data were integrated with a radiative transfer model to predict
spectrally-resolved solar flux across the Martian surface, which informed detailed balance
calculations for solar cell devices supporting power systems, agriculture, and manufacturing.
Optimal design and the corresponding production capacity over a Martian year revealed the
size and mass of a solar cell array required to support a six-person mission, which represents
less than 10% of the anticipated payload.

The following SI describes the redSun software created as an integration of available
software and custom code written in Python 3.6 with UNIX and Fortran backends. It can
be found at https://github.com/cubes-space/redSun.

Environmental Data Aggregation

Mars Climate Database

Downstream radiative transfer calculations require a number of input streams describing the
Martian environment. We make use of the Mars Climate Database (MCD) [48] developed
by Le Laboratoire de Meteorologie Dynamique (LMD) in Paris, queried via the mcd-python
package, to model most climate and environmental constraints, including photon flux and
power spectra over time and location. The software engineering processes for building and
using MCD somewhat efficiently are illustrated in Figure S1, along with input parameter
profiles and sample output plots.

Initial Geotemporalspatial Grid

We began by first initializing the geotemporalspatial grid from which all downstream radia-
tive transfer and PV/PEC calculations would be based. The grid was composed as a .netCDF
file with dimensions of 19 points of 10◦ latitude × 37 points of 10◦ longitude × 25 points of
15◦ areocentric longitude × 13 points of 2 (Martian) hours. Additionally, we included the
dimension of altitude above the Martian datum in 20 points ranging from 0 to 120 km. The
dimensions for the initial grid are shown in Table S2.

Atmospheric Variables

Through a combination of custom code in redSun and modifications to the Python-based
extension of MCD, we then looped through Lat, Lon, Hr, and Ls dimensions to initialize the
data variables in Table S3.

https://github.com/cubes-space/redSun
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Dimension Units Initial Final Step Number

Latitude degrees north -90 90 15 19
Longitude degrees east -180 180 15 37
Wavelength nm 300.5 4000 N/A 1340
Level km 0 120 6.32 20
Aerocentric Longitude deg 0 360 15 25
Hour hr 0 24 2 13

Table S2: Initial grid dimensions.

Variable Units Dimensions Dimension Number

Air Density cm−3 lat,lon,level,ls,hr 5
Datum Altitude km lat,lon,level 3
CO2 Partial Pressure cm−3 lat,lon,level,ls,hr 5
H2O Partial Pressure cm−3 lat,lon,level,ls,hr 5
O2 Partial Pressure cm−3 lat,lon,level,ls,hr 5
O3 Partial Pressure cm−3 lat,lon,level,ls,hr 5
NO2 Partial Pressure cm−3 lat,lon,level,ls,hr 5
Pressure hPa lat,lon,level,ls,hr 5
Temperature K lat,lon,level,ls,hr 5
Ice Content g/m3 lat,lon,level,ls,hr 5
Ice Effective Radius um lat,lon,level,ls,hr 5
Dust Content g/m3 lat,lon,level,ls,hr 5
Dust Effective Radius µm lat,lon,level,ls,hr 5
Long Wave Downward Flux W/m2 lat,lon,ls,hr 4
Short Wave Downward Flux W/m2 lat,lon,ls,hr 4
Long Wave Upward Flux W/m2 lat,lon,ls,hr 4
Short Wave Upward Flux W/m2 lat,lon,ls,hr 4
Top of Atmosphere Irradiance W/(nm.m2) lat,ls,hr,wl 5

Table S3: Initial atmospheric grid variables sourced from MCD.

i

Planetary Variables

While most of the required environmental variables could be sourced from MCD, additional
efforts were made to add data on the planetary albedo and zMOL as shown in Figure S2
and in Table S4.
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Figure S2: Albedo and zMOL (height above the Martian datum) maps.

Variable Units Dimensions Dimension Number

Albedo None lat,lon 2
zMOL None lat,lon 2

Table S4: Initial planetary grid variables sourced from MCD.

Solar Variables

In addition to atmospheric and planetary variables, our initial environmental data for down-
stream radioactive transfer required that we calculate the solar flux at the top of the at-
mosphere (TOA). Downstream radiative transfer calculations required as input the spectral
flux in W/(m2·nm) whereas MCD only provided an integrated solar flux in W/(m2). For a
given Lat, Lon, Hr, and Ls, we were able to calculate the spectral flux F0 via[424]

F0 = µF1.52

(
d2

r2

)
(11.1)

F0 = F1.52

(
sin θ sin ε sinLs + cos θ cos

(
2πt

P

)(
1− sin2 ε sin2 Ls

)1/2
)(

1 + e cos(Ls − Ls,p)
1− e2

)2

(11.2)

where r is the Sun-Mars distance along its orbit, d is the mean Sun-Mars distance of 1.52
AU, µ is the cosine of the solar zenith angle z, e is the Martian eccentricity (e = 0.0934),
Ls is the aerocentric longitude, Ls,p is the aerocentric longitude of perihelion (250◦), θ is the
latitude, ε is the Martian obliquity (25.2◦), P is the duration of the Martian solar day (88775
s), t is any time measured from local noon, and F1.52 is the flux at the average Sun-Mars
distance[Vicente-Retortillo2015ASurface].
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While the separation of the aerocentric longitude and hourly time dimensions was helpful
in indexing our grid, these two dimensions are related. For any aerocentric longitude index,
there are 13 time points, and as these times correspond to movement of Mars around the
sun, so does the aerocentric longitude. Therefore, when computing the TOA flux F0, we
updated Ls to correspond to the change in time t using the build in functions Ls2Sol and
Sol2Ls from the MCD package. These functions relate Ls and t through Kepler’s Problem via

Ls =

(
ν

180

π
+ Ls,p

)
(mod360) (11.3)

ν = 2 arctan

[√
1 + e

1− e
tan

(
E

2

)]
(11.4)

M = E − e sinE = 2π
Ds − tp
Ns

(11.5)

where Ds is the sol number, tperi is the time at perihelion, Ns is the number of sols in a
Martian year, ν is the true anomaly, E is the eccentric anomaly, M is the mean anomaly,
and Ns is the number of sols in a Martian year.

The data variables shown in Figure S3 were then added to the grid for downstream use
as shown in Table S5.

Figure S3: Left shows the calculated mu parameter as a scalar across geospace for Ls = 0. Right shows the spectral
flux for lat=0, t=12 noon, and Ls = 0.

As a sanity check, we calculated the integrated standard solar flux at TOA at 1.52 AU
(average Sun-Mars distance) at 576.92 W/m2. Given a solar constant for Mars is 490 W/m2,
the equatorial annual-mean flux at the top of the atmosphere (TOA) should be ∼156 W/m2.
Our calculated equatorial annual-mean TOA flux was found to be 159.43 W/m2 which differs
by ∼1.5% from the theoretical value. We extended this calculation across all latitudes as
shown in Figure S4 to confirm our methods.
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Variable Units Dimensions Dimension Number

Solar Zenith Angle deg lat,ls,hr 3
Solar Correction None lat,ls,hr 3
Top of Atmosphere Irradiance W/(nm.m2) lat,ls,hr,wl 5

Table S5: Initial solar grid variables.

Figure S4: Calculated Annual-Mean TOA Solar Flux distributed across Latitude

Radiative Transfer Calculations

libRadtran

The radiative transfer calculations were carried out using the libRadtran library (version
2.0.4)[358, 161]. libRadtran is a collection of C and Fortran functions and programs for
calculation of solar and thermal radiation in the Earth’s atmosphere and is freely available
under the GNU General Public License at http://www.libradtran.org/doku.php.

Mie Scattering Calculations

The presence of dust and cloud particles in the Martian atmosphere affect the propagation
of sunlight. The size of such dust and cloud particles falls within the Mie scattering range.

http://www.libradtran.org/doku.php
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The libRadtran package was used for Mie scattering calculations of the scattering phase
matrices and corresponding Legendre polynomials[568]. Input files for both dust and ice
were constructed (Listing 11.1) and fed to the MIEV0 tool.

1 mie_program MIEV0 # Select Mie code by Wiscombe
2 basename cloud.
3 refrac file MieCloudRefrac.DAT# Use refractive index file
4 r_eff 0.00322766 100.1 10.0 # Specify effective radius grid
5 distribution lognormal 1.8903 # Specify lognormal size distribution
6 nstokes 1 # Calculate all phase matrix elements
7 nmom 6000 # Number of Legendre terms to be computed
8 nthetamax 2000 # Maximum number of scattering angles to be
9 output_user netcdf # Write output to netcdf file

10 verbose # Print verbose output

Listing 11.1: Input file for Mie calculations of cloud aerosols

Refractive indices for dust and ice were sourced from NASA Ames Legacy Mars Global Cli-
mate Model[207] (available at https://github.com/nasa/legacy-mars-global-climate-model)
and fed as input (Figure S5).

Figure S5: Refractive Indices for Dust (top) and Clouds (Bottom).

https://github.com/nasa/legacy-mars-global-climate-model
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For clouds, an effective radius reff grid was set between 0.00322766 and 100.1 µm in steps
of 10 µm and with a lognormal distribution with standard deviation σ = 1.8903 described
as

n(r) =
a

r
exp

(
−1

2

(
ln(r) ln(r0)

lnσ

)2
)

(11.6)

where r0 is the logarithmic mode of the distribution, calculated from reff. Through a series
of trial-and-error attempts, we specified additional parameters for clouds such as the number
of phase matrix elements set at 1, the number of Legendre terms to be computed set at 6000,
the maximum number of scattering angles set to 2000. The resulting output from MIEV0 was
a .netCDF file of ∼100 MB.

For dust, an effective radius reff grid was set between 0.00310352 and 10.1 µm in steps
of 1.0 µm and with a lognormal distribution with standard deviation σ = 1.3616. Again,
through a series of trial-and-error attempts, we specified additional parameters for dust
such as the number of phase matrix elements set at 1, the number of Legendre terms to
be computed set at 2500, the maximum number of scattering angles set to 2000. The
dust calculations provided more computationally expensive than those for clouds due to the
smaller reff grid size. The resulting output from MIEV0 was a .netCDF file of ∼10 MB.

The output .netCDF files include the dimensions and variables in Table S6 and a sample
of the output variables are shown in Figure S6.

uvspec

The uvspec program was designed to calculate the radiation field of the atmosphere for Earth.
Modifications were carried out such that uvspec could be leveraged for similar calculations
of the Martian radiative transfer. Input to the model are the constituents of the atmosphere
including various molecules, aerosols and clouds. The absorption and scattering properties
of these constituents were calculated via the MIEV0 tool. Boundary conditions are the solar
spectrum at the top of the atmosphere and the reflecting surface at the bottom[359]. The
uvspec program was called for each point in the geotemporalspatial grid and provided with
a custom, programmatically generated input file – an example of which is shown in Listing
11.2.

1 # libRadtran Calc test
2 wavelength 300.5 4000 # choose wavelength range for computation
3 atmosphere_file __2WKSII17KGatmos.DAT # load atmosphere profile
4 mixing_ratio CH4 0.0 # update null mixing ratios
5 mixing_ratio N2O 0.0
6 mixing_ratio F11 0.0
7 mixing_ratio F12 0.0
8 mixing_ratio F22 0.0
9 altitude -0.48425 # specify altitude above datum

10 source solar __2WKSII17KGflux.DAT # load solar profile
11 # corrected for Sun -Mars Distance
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Name Description Dim/Var Unit

nlam Wavelength Number Dim -
nmommax Legendre Polynomial Number Dim -
nphamat Phase Matrix Element Number Dim -
nreff Refractive Index Number Dim -
nthetamax Theta Max Number Dim -
nrho Density Number Dim -
wavelen Wavelength Var micrometer
reff Effective radius Var micrometer
ntheta Number of scattering angles Var -
theta Theta Max Number Var degrees
phase phase Var -
nmom number of Legendre polynomials Var -
pmom Legendre polynomials Var including factor 2*l+1
ext extinction coefficient Var km^-1/(g/m^3)
ssa single scattering albedo Var -
gg Asymmetry factor Var -
refre refractive index (real) Var -
refim refractive index (imaginary) Var -
rho density of medium Var g/cm^3

Table S6: Dimensions and variables in .netCDF Mie output file.

12 # corrected for geometry
13 ic_file 1D __2WKSII17KGcloud.DAT # setup cloud profile (assuming water/ice

clouds)
14 ic_properties MieCalc/cloud.mie.cdf interpolate
15 profile_file dust 1D __2WKSII17KGdust.DAT # setup dust profile (using

aerosol type)
16 profile_properties dust MieCalc/dust.mie.cdf interpolate
17 earth_radius 3389.5 # reset earth_radius to Martian radius in [km]
18 rte_solver disort pseudospherical # choose radiative transfer solver
19 pseudospherical
20 number_of_streams 6 # choose number of streams
21 output_user lambda edir eglo edn eup enet esum # define output
22 albedo 0.3073502629995346 # choose albedo

Listing 11.2: Sample input file for uvspec calculation

Due to the peculiar way uvspec must be called, input for atmosphere, solar flux, dust condi-
tions, and cloud conditions are required in the form of text-based .DAT files. Because multiple
uvspec calls were carried out in parallel, a random string was generated (“2WKSII17KG” in
the case of Listing 11.2) and used to identify specific .DAT files. For each point of the grid, an
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Figure S6: Sample Visualization of variables in .netCDF Mie output file for dust.

input .INP file was created along with correspond .DAT files for atmosphere, solar flux, dust
conditions, and cloud conditions. The atmosphere file contained the altitude above sea level
in km, pressure in hPa, temperature in K, air density in cm−3, ozone density in cm−3, Oxy-
gen density in cm−3, water vapor density in cm−3, CO2 density in cm−3, and NO2 density in
cm−3. The dust and cloud aerosol files contained altitude above sea level in km, dust/cloud
content in kg/kg, and effective radius in µm. The solar flux file contains the wavelength in
nm and the spectral flux for that wavelength in mW/(m2nm). Data for each of these files
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was sourced from the MCD data organized in the Stupidgrid.nc file and converted to the
appropriate units using functions in the redSun codebase.

The wavelength range was set from 300.5 to 4000 nm. This range was selected to match
available data for solar flux and significance to downstream photovoltaic calculations. Wave-
lengths outside these bounds were found to have negligible impact on bandgap calculations
or to require substantial computational efforts, and were thus ignored. The mixing ratios
for atmospheric CH4, N2O, and greenhouse gases (GHG) F11, F12, and F22 were set to 0.0
to reflect the change from Earth to Mars conditions. The altitude for the location was also
programmatically added to the input file to specify the exact position of the surface in rela-
tionship to the Martian datum. The filenames from the Mie scattering calculations for dust
and cloud aerosols were passed as well. The radius of the planet was changed to the Martian
value of 3389.5 km. The albedo of the grid-point was also provided programmatically.

We selected the DIScrete ORdinate Radiative Transfer solvers (pseudospherical disort)
radiative transfer solver for our calculations using 6 streams. The discrete ordinate method
was first developed in 1960 with significant updates in 1988 and 2000 and offer 1D calculations
of radiance, irradiance, and actinic flux. We opted for pseudo-spherical methods to offset any
spherical effects associated with using the smaller Martian geometry. In pseudo-spherical
calculations, the monochromatic radiative transfer equation in 1D can be formulated as

µ
dI(τ, µ, φ)

βextdτ
= I(τ, µ, φ)− ω(r)

4π

ˆ 2π

0

dφ′
ˆ 1

−1

dµ′p(τ, µ, φ;µ′, φ′)I(τ, µ′, φ′)− (1− ω(r))B[T (r)]− ω(τ)I0

4π
p(τ, µ, φ, µ0, φ0)efch(τ,µ0)

(11.7)

where B[T (r)] is the Planck function, β is an extinction coefficient, µ0 is the solar zenith
angle, φ0 is the azimuth angle, p is the phase function, and the single scattering albedo ω(r)
is

ω(r) = ω(r, ν) =
βsca(r, ν)

βext(r, ν)
(11.8)

Additionally, fch is the Chapman function[451, 131] for describing the extinction path in a
spherical atmosphere and is formulated as

fch(r0, µ0) =

ˆ ∞
r0

βext(r, ν)dr√
1−

(
R+r0
R+r

)2
(1− µ2

0)
(11.9)

where R is the planet radius and r0 is the distance above the atmosphere.
The output of each uvspec call was a text-like file that was indexed with a matching

random string identifier. Each file consisted of the direct, global, diffuse downward, diffuse
upward, net and sum irradiance in mW/(m2nm) for each nm in the input flux file. The
output file was then read back with additional functions from redSun for use in downstream
calculations.
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Photovoltaic Power and Photoelectrochemical Commodity Calculations

We use the detailed balance model to calculate the energy efficiency of one-, two-, and three-
bandgap photovoltaic solar cells and one- and two-bandgap photoelectrochemical devices.
This model has been used to calculate the limiting efficiency of ideal photovoltaic and pho-
toelectrochemical devices for single and multiple bandgap architectures previously[211, 146,
239].

The current density (J)-voltage (V) dependence J (V,Eg) for a single bandgap is given
by

J (V,Eg) = JG(Eg) + JR(V,Eg) (11.10)

where JG is the photogeneration current, JR is the recombination current due to radiative
recombination, and Eg is the bandgap of the absorber material. The generation current JG
is calculated according to

JG(Eg) = q

ˆ Emax

Eg

Γ(E)dE (11.11)

where q is the electronic charge, Γ(E) is the photon flux at a given photon energy E, and
Emax is maximum photon energy in the solar spectrum. We used a minimum wavelength of
300 nm in our calculations, corresponding to a maximum photon energy of ∼4.14 eV because
photons above 4 eV contribute negligibly to the photon flux[211]. The recombination current
density JR is calculated according to

JR(V,Eg) =
2πq

c2h3

ˆ ∞
Eg

E2

exp
(
E−qV
kT

)
− 1

dE (11.12)

where c is the speed of light in vacuum, h is Planck’s constant, k is Boltzmann’s constant,
and T is the temperature of the device (we assume the local surface temperature in these
calculations).

The photovoltaic energy efficiency ηPV at a given operating voltage is written as

ηPV(V,Eg) =
V

F
J(V,Eg) (11.13)

where F is the calculated total power flux at the Martian surface. The operating voltage
can then be selected to maximize the efficiency for a given bandgap. In technoeconomic
calculations (see below), we assume the device efficiency is 80% of the calculated detailed
balance limit to account for absorber material and device inefficiencies (i.e., nonradiative
recombination losses not captured by the detailed balance limit).

The photoelectrochemical device energy efficiency ηPEC is given by

ηPEC(V,Eg) =
E0

F
J(V,Eg) (11.14)
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where E0 is the minimum thermodynamic potential required to drive the electrochemical
reaction (1.23 V for H2 generation from water splitting). In practical devices, the operating
voltage of the photoelectrochemical device will be larger than E0 to account for anode and
cathode overpotentials and resistive potential drop in the electrolyte and electrodes. Hence,
for these devices the operating voltage is

V = E0 + Vo (11.15)

where Vo is the overpotential associated with the above-mentioned losses. In all technoe-
conomic calculations (see below) we assume the overvoltage is 700 mV, corresponding to a
practical minimum that also accounts for absorber material inefficiencies (i.e., nonradiative
recombination losses not captured by the detailed balance limit)[146].

For two- and three-bandgap tandem devices, we assume the absorber layers are connected
optically and electronically in series. Generation and recombination currents are calculated
as described above, with the modification that Emax is substituted with Eg,n−1 for absorber
n (counted sequentially starting with the top absorber) to reflect the assumption that each
absorber layer is optically thick (i.e, absorbs all the above-bandgap light incident on its
surface). In tandem devices, the total current density must be equal in each absorber layer,
while the total operating voltage is given by the sum of the voltages developed across each
cell. For example, for a three-absorber photovoltaic device

J(V ) = J1(V1, Eg,1) = J2(V2, Eg,2) = J3(V3, Eg,3) (11.16)
V = V1 + V2 + V3 (11.17)

For tandem devices, the efficiency is calculated analogously to the single-junction devices
but as a function of each absorber bandgap.

Grid Calculations via Parallel Computing

SinglePoint Calculation

The calculation of a single gridpoint’s spectral flux (via libRadtran) and the corresponding
photovoltaic and photoelectrochemical production quantities ran for ∼5 minutes. Given the
grid of 228475 geotemporalspatial points composed of 19 points of 10◦ latitude × 37 points
of 10◦ longitude × 25 points of 15◦ areocentric longitude × 13 points of 2 (Martian) hours,
a serial calculation would require 2.17 years. Wanting to avoid that lengthy calculation, we
opted for an “embarrassingly parallel” computing method shown in Figure S7. Since our
computations require some initial or final communication (generally in the distribution and
collection of data, then we call it nearly embarrassingly parallel. In parallel computing, an
embarrassingly parallel workload or problem is one where little or no effort is needed to
separate the problem into a number of parallel tasks. This is often the case where there
is little or no dependency or need for communication between those parallel tasks, or for
results between them. In the ideal case, all the sub-problems or tasks are defined before
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Figure S7: Initial (problem) and final (solution) configurations for the RedSun software on the UC Berkeley cluster.

the computations begin and all the sub-solutions are stored in independent memory loca-
tions (variables, array elements). Thus, the computation of the sub-solutions is completely
independent1.

Files were not constructed for grid-points that did not receive sunlight, and so the result
was the storage of ∼150k .netCDF files, each with a size of ∼4-5 MB.

Stitching

The ∼150k singlepoint .netCDF files were initially stitched across time dimensions of hours
and areocentric longitude to produce ∼700 time series .netCDF files, each for a different pair
of latitudes and longitudes using the tcsh scripts provided in Listing 11.3 and 11.4.

1 #!/bin/tcsh -f
2 if ($#argv != 1) then
3 echo "--> usage: csh " $0 " netcdf_file"
4 exit
5 endif
6 set link = ‘ncdump -v ls,hr,lat ,lon $argv [1] | sed -n ’/^data:/,$p’ | sort

| paste -s -d" " - | awk ’{printf ("%s%03d%02d%s%02d%s%02d%s\n","
ttlrecall_",$15 ,$3 ,"_",$11 ,"_",$7 ,".nc");}’‘

7 ln -sv $argv [1] $link

Listing 11.3: Stitching Algorithm Part 1: Create Dynamic Links

1https://www.cs.iusb.edu/~danav/teach/b424/b424_23_embpar.html

https://www.cs.iusb.edu/~danav/teach/b424/b424_23_embpar.html
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1 #!/bin/tcsh -f
2 set lat = minimum_lat_value
3 set lon = minimum_lon_value
4 while ($lat <= maximum_lat_value)
5 set latv = ‘echo $lat | awk ’{printf ("%02d\n",$1)}’‘
6 while ($lon <= maximum_lon_value)
7 set lonv = ‘echo $lon | awk ’{printf ("%02d\n",$1)}’‘
8 ncecat ttlrecall_*_{$lonv}_{$latv}.nc redsun_timeseries_{$lonv}

_{$latv}.nc
9 echo "Done: " $lonv $latv

10 @ lon++
11 end
12 @ lat++
13 end

Listing 11.4: Stitching Algorithm Part 2: Assemble into Time Series

Production Mapping

The resultant timeseries .netCDF files were then used for constructing the final maps of PV
and PEC production. For each time series .netCDF file, we began by calculating PV power
P and PEC production rate ṁ via

P = Γηpv (11.18)

ṁc = εcΓηpec =
Zc

ncVcF
Γηpec (11.19)

where Γ is the solar flux in W/m2 sourced from the MCD data in StupidGrid.nc, ε is the
electrochemical equivalency factor, η is the calculated PV/PEC efficiency, Z is the molar
mass, n is the number of moles of electrons required to make one mole of the product, F
is the Faraday constant, and V is the voltage. The c term corresponds to the chemical of
interest in the set of H2, NH3, and AA. The values used to produce the ε for each chemical
is given in Table S7.

Chemical n Z V

H2 2 2.016 1.23
NH3 6 17.031 1.17
AA 8 60.052 1.09

Table S7: Electrochemical equivalency factor parameters.

We calculated the optimal sol-averaged 3-junction PV Popt and 2-junction PEC ṁcopt
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across all bandgap combinations given the form

Popt = max

(
1

N

ˆ
t2

ˆ
t1

Pijkdt1dt2 : ∀i, j, k ∈ B1, B2, B3

)
(11.20)

ṁc,opt = max

(
1

N

ˆ
t2

ˆ
t1

ṁc,ijdt1dt2 : ∀i, j ∈ B1, B2

)
(11.21)

where i, j, k are indices of bandgaps B1, B2, B3, t1 is the time variable across a sol (∼24.616
hrs/sol), and t2 is the time variable across a Martian year given as N = 688 sols/year.

Computationally, we began by converting our Ls values to the sol number using an
inverted Kepler problem with a function ls2sol shown in Listing 11.5.

1 def ls2sol(ls):
2 N_s = 668.6
3 ls_peri = 250.99
4 t_peri = 485.35
5 a = 1.52368
6 e = 0.09340
7 epsilon = 25.1919
8 if (ls == 0).any():
9 ls = .01

10 nu = np.radians(ls) + 1.90258
11 E = np.arctan ((np.tan(nu/2))/(np.sqrt ((1+e)/(1-e))))*2
12 M = E - e*np.sin(E)
13 Ds = (M/(2*np.pi))*N_s + t_peri
14 if (Ds < 0).any():
15 Ds = Ds + N_s
16 if (Ds > N_s).any():
17 Ds = Ds - N_s
18 return(Ds)

Listing 11.5: Function for converting Ls to sol number

The computational instance of calculations for 2J H2 production is provided in Listing
11.6.

1 def point_loop(file):
2 sg = xr.open_dataset(’StupidGridFull.nc’, group=’flux’)
3 ds = xr.open_dataset(file)
4 lat = ds[’lat’][0]
5 lon = ds[’lon’][0]
6 G = np.zeros(len(ds[’lon’]))
7 for ri in range(0,len(ds[’lon’])):
8 ls = ds[’ls’][ri]
9 hr = ds[’hr’][ri]

10 G[ri] = sg[’flux_dw_sw ’][lat ,lon ,ls,hr]
11 lss = np.unique(ds[’ls’])
12 Z = 2.016
13 n = 2
14 F = 96485.33212
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15 V = 1.23
16 sg = 0
17 sols = np.zeros(len(lss))
18 for i in range(0,len(lss)):
19 sols[i] = ls2sol(lss[i]*15)
20 hrs = np.arange (0,25,2)
21 vals = np.zeros (13)
22 try:
23 P = G[:, np.newaxis , np.newaxis] * ds[’j2_etaPEC_H2_2bg ’] * 0.01 *

Z/(n*F*V)
24 zz = np.zeros((len(lss),len(ds[’j2 -bg1’]),len(ds[’j2-bg2’])))
25 for i in range(0,len(lss)):
26 hr_int = np.where(ds[’ls’]==lss[i])
27 inds = np.array(ds[’hr’][ hr_int ])
28 for j in range(0,len(ds[’j2-bg1’])):
29 for k in range(0,len(ds[’j2-bg2’])):
30 y = P[:,j,k][ hr_int]
31 for m in range(0,len(inds)):
32 vals[inds[m]] = y[m]
33 z = np.trapz(vals *60*60 ,x=hrs *1.02569)
34 zz[i,j,k] = z
35 z = np.zeros ((len(ds[’j2 -bg1’]),len(ds[’j2 -bg2’])))
36 for j in range(0,len(ds[’j2-bg1’])):
37 for k in range(0,len(ds[’j2-bg2’])):
38 y = zz[:,j,k]
39 z[j,k] = np.trapz(y,x=sols)
40 j2h2 = np.max(z)
41 j2h2i = np.unravel_index(np.argmax(z),np.shape(z), order=’C’)
42 h2 = j2h2 * (1/688)
43 bg1 = ds[’j2-bg1’][ j2h2i [0]]
44 bg2 = ds[’j2-bg2’][ j2h2i [1]]
45 return ([[lat ,lon ,0],[h2 ,bg1 ,bg2]])

Listing 11.6: Function for calculating the optimal H2 production rate

The results from the calculation of the optimal sol-averaged 3-junction PV Popt and
2-junction PEC ṁcopt and their corresponding bandgap combination were again saved as
.netCDF files with dimensions of latitude and longitude.

The resulting PV power and PEC production for H2 is provided in Figure S8-S10 with the
corresponding Bandgaps distributions over the Martian grid. The distribution of bandgaps
are provided in Figure S11.

Missing Location Values

We were able to complete the calculations for ∼97% of the 228475 geospatial points across
the Martian grid. We found that ∼6000 of these points could not be completed due to
a number of issues our method of using libRadtran for Mars-based calculations. Upon
inspection, we found that the missing values were generally concentrated in areas with very
low elevation below the Martian datum. Further inspection confirmed that the issues in
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Commodity Best efficiency at
averaged solar noon

Best production
over a year

Power (PV, 3-junction)
Top: 1.77 eV Top: 1.83 eV

Middle: 1.16 eV Middle: 1.16 eV

Bottom: 0.72 eV Bottom: 0. 67 eV

H2 (PEC, 2-junction) Top: 1.64 eV Top: 1.77 eV

Bottom: 0.95 eV Bottom: 0.83 eV

Table S8: Comparison of optimal bandgaps for different optimization strategies

resolving the radiative transfer were caused by errors in interpolation by the solver for the
gas concentrations below the datum. However, these ∼2% of missing values do not prevent
us from offering a meaningful analysis.
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Figure S8: Two Junction Photovoltaic Power Production and Optimal Bandgaps distributed over the Martian Grid
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Figure S9: Three Junction Photovoltaic Power Production and Optimal Bandgaps distributed over the Martian Grid



CHAPTER 11. APPENDIX 152

Figure S10: Two Junction Photoelectrochemical H2 Production and Optimal Bandgaps distributed over the Martian
Grid
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Figure S11: Optimal Bandgap Distributions.

Technoeconomic Calculations

Primary Power and Energy Demands

We consider four different power production and energy storage scenarios for comparison
(Fig. S12): (1) Nuclear power generation with the Kilopower system; (2) Photovoltaic power
generation with battery energy storage; (3) Photovoltaic power generation with compressed
H2 energy storage, and (4) Photoelectrochemical H2 generation with compressed H2 energy
storage.

In all cases, power and/or energy demand is driven by continuous power required for
habitat operations, including lighting, heating/cooling, pressurization, power draw for ISRU
processes, and power draw for rover travel, and by materials demand for ISRUmanufacturing.
We assume that ammonia, methane, and plastics are produced using H2 as the starting
material (along with N2 and CO2 sourced from the atmosphere), which we use to calculate
power demands based on water electrolysis to produce H2. We note that methane could be
diverted for bioprocess production (dashed lines in Fig. S12), although we don’t explicitly
consider this scenario here since it would not change the relative mass requirements of the
four systems we consider.

To compare the carry-along mass necessary for each system, we include the mass of
elements unique to or uniquely sized for a given energy supply scenario. For example, we
consider the mass of photovoltaic cells because the area of cells necessary to power the
habitat and ISRU manufacturing will be different depending on the strategy for energy
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storage. However, we don’t include the mass of the Sabatier reactor for methane production,
since this mass will be equivalent regardless of the upstream processes producing H2 and

Figure S12: Power generation systems options. Habitat power systems and ammonia, propellant, and bioplastics
production can be powered by nuclear power generation (KRUSTY), photovoltaics with battery storage (PV+B),
photovoltaics with H2 energy storage from hydrolysis (PV+E), or photoelectrochemical H2 generation and storage
(PEC).
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Figure S13: Carry-along mass for different power generation scenarios. Carry-along mass across the Martian surface
for PV+B, PV+E, and PEC power generation systems. PV+B and PEC systems cannot reach parity with nuclear
power generation in terms of carry along mass (no locations at which the projected mass of the PV+B or PEC
systems is less than the projected mass of the nuclear system).

collecting CO2 from the atmosphere. In this way, we can determine the mass contributions
only of the uniquely necessary components for each energy supply scenario. The carry along
masses are provided in Figure S13.
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Nuclear Power

Power derived from the Kilopower nuclear reactor system is fed directly to habitat power
systems and to an electrolyzer producing H2 for ISRU manufacturing. Hence, the power
draw is given by:

PK = PHab + αE

(
ṄαHB + ṀαS + ḂαHB

)
(11.22)

PK = PHab + αEΛ (11.23)

where PK is the total power draw for Kilopower nuclear reactor system, PHab is the power
draw for the habitat, αE is the energy demand per unit of H2 produced for the electrolyzer,
Ṅ is the ammonia demand rate, Ṁ is the methane demand rate, Ḃ is the bioplastic demand
rate, and αi is the conversion factor between, e.g., the ammonia demand rate and the H2

demand rate for the Haber-Bosch process. We also define Λ = ṄαHB + ṀαS + ḂαHB.
The carry-along mass requirements for this scenario is given by

MK =
PK

pK
+

Λ

pE
(11.24)

where pK is the specific power of the Kilopower reactor (6.25 W/kg) and pE is the specific
productivity of the electrolyzer (kg H2/h/kg).

Photovoltaic power with battery energy storage (PV+B)

Power generated by photovoltaic cells can be transferred either directly to power-drawing
systems (habitat systems, water electrolysis) or diverted to battery stacks for storage to
enable continuous operation either at night or during low-sunlight days (due to high dust
conditions). We define the fraction of power supplied directly to power systems as χ, which,
for photovoltaic systems, can be thought of as the fraction of the day that solar cells produce
equal or more power than what is consumed by power-drawing systems. Unless otherwise
stated, we assume in our calculations χ = 1/3. Hence, the total power draw for the PV+B
system is given by:

PPV+B = χPHab +
1− χ
ηB

PHab + χαEΛ +
1− χ
ηB

αEΛ (11.25)

where PPV+B is the total power draw for the PV+B system and ηB is the energy efficiency
of the battery storage system. More compactly,

PPV+B =

(
χ+

1− χ
ηB

)
(PHab + αEΛ) (11.26)

The carry-along mass required for the PV+B scenario is given by

MPV+B =
PPV+B

pPV
+

(PHab + αEΛ)

eB
tstore +

Λ

pE
(11.27)
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where pPV is the specific power of photovoltaic cells, tstore is the desired back-up power
availability time, and eB is the specific energy of the battery stack (units of energy per
mass).

Parameter Value Unit Reference

Power and Material Demands

PHab 40 kW Note 11.2
Ṅ 8.33×10−3 kg h−1 Note 11.2
Ṁ 0.61 kg h−1 Note 11.2
Ḃ 0.1 kg h−1 Note 11.2

Conversion Factors

αHB 0.196 kgH2 kgNH−1
3 Note 11.2

αS 0.554 kgH2 kgCH−1
4 Note 11.2

αBP 0.155 kgH2 kgAA−1 Note 11.2
αE 54.13 kWh kgH−1

2 Note 11.2
αFC 0.064 kgH2 kWh−1 Note 11.2
αHS 3.39 kWh kgH−1

2 Note 11.2

Power[212] and Energy Density[159]

pK 6.25×10−3 kW kg−1 Note 11.2
ηB 80 % Note 11.2
pE 1.14×10−2 kgH2 h−1 kg−1 Note 11.2
eB 0.16 kWh kg−1 Note 11.2
pFC 0.365 kW kg−1 Note 11.2
eHS 7.18×10−2 kgH2 kg−1 Note 11.2

Solar Cell Array Mess

MPV 2 kg m−2 Note 11.2
MPEC 2.4 kg m−2 Note 11.2

Other Parameters

χ 0.33 – Assumed
tstore 24.6 h Assumed

Table S9: Additional PV/Power Parameters and Conversion Factors.
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Photovoltaic power with H2 energy storage

In this scenario, power generated by photovoltaic cells can either be directly fed to habitat
systems or to an electrolyzer, which produces H2 for consumption in ISRU manufacturing
and for consumption by fuel cells the supply power to the habitat and other demands when
direct power cannot (e.g., at night). Here, the total power demand for the system is given
by

PPV+E = χPHab + αEṁH2 (11.28)

where PPV+E is the total power draw for the PV+E system and ṁH2 is the flow rate of H2

necessary to support the remaining system requirements. This flow rate is written as

ṁH2 =
(1− χ)PHabαFC + Λ

1− αHSαFC
(11.29)

where αFC is the H2 consumed per unit of energy produced by the fuel cell and αHS is the
energy consumed per unit of H2 stored by the H2 storage tanks (driven by compression of
H2).

The carry-along mass required for the PV+E scenario is given by

MPV+E =
PPV+E

pPV
+
ṁH2

pE
+
PHab + αHSṁH2

pFC
+

(PHabαFC + Λ)tstore
eHS

(11.30)

where pFC is the specific power of the fuel cell and eHS is the specific mass of the H2 storage
tanks (in units kgH2/kgtank).

Photoelectrochemical (PEC) H2 generation with H2 energy storage

This scenario uses an H2 demand as opposed to a power demand to size the PEC array. The
total H2 demand rate is given by

ṁH2 =
PHabαFC + Λ

1− αHSαFC
(11.31)

The carry-along mass required for the PEC scenario is given by

MPEC =
ṁH2

mPEC
+
PHab + αHSṁH2

pFC
+

(PHabαFC + Λ)tstore
eHS

(11.32)

where mPEC is the specific productivity (kgH2/h/kg) of PEC cells. All parameters for these
calculations are compiled in Table S9.
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Secondary Power and Energy Demands

Habitat Power Demand

Continuous power demand estimates for a Martian habitat range between 4 and ∼100 kW.
We use 40 kW as a baseline value following the NASA Baseline Values and Assumptions
Document (BVAD)[16]. This value includes ISRU power demands, including for crop growth,
so we only calculated additional power demands for H2 production for the ISRU processes
considered.

Ammonia Demand

To calculate an upper-bound ammonia demand, we followed the optimization strategy by
Do et al. assuming no recycling of nitrogen via urea recovery[143]. Briefly, we assumed that
the metabolic demands for six crew members would be met entirely by food crops grown in
hydroponic chambers. We used values from the BVAD and related literature to calculate
nitrogen demand per nutrient availability for a given crop[16, 562]. The optimization function
was defined to balance minimization of area necessary for crop growth with maximization of
crop variability for human morale as

f = w1

∑
i

Ai + w2σ(A) (11.33)

s.t. :
∑
i

Airixi,j > Xj (11.34)

where f is the optimization function, Ai is the growth area for crop i, σ is the standard
deviation of the vector of crop areas (A), ri is the static growth rate, xi,j is the nutritional
content of crop i for nutrient j, and Xj is the crew member demand for nutrient j. The
relative weights w1 and w2 are related by

w2 = 1− w1 (11.35)

and w1 was varied between 0 and 1. Using w1 = 0.25, all 5 crops we considered (soybeans,
wheat, lettuce, potatoes, peanuts) were included, resulting in a total crop growth area of
∼421 m2 and an ammonia demand of ∼205 g/sol, which we converted to 8.33 g/h for
consistent units in Table S9. The nitrogen demand ranged between ∼285 g/sol and ∼194
g/sol for 0 < w1 < 1.

We assume ammonia is produced via the Haber-Bosch process with the characteristic
reaction

N2 + 3H2 → 2NH3 (11.36)

Hence, the H2:NH3 conversion factor is 0.196 kgH2/kgNH3 assuming 90% conversion of H2.
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Methane Demand

Resupply and crew member return to Earth fromMars will require that interplanetary transit
vehicles can be refueled on Mars. We use the estimate by Kleinhenz and Paz[291] that such
refueling requires 6978 kgCH4 produced every 480 sols, corresponding to a CH4 production
rate of 0.61 kg/h. We assume this methane is produced via the Sabatier reaction:

CO2 + 4H2 → CH4 + 2H2O (11.37)

resulting in an H2:CH4 conversion factor of 0.554 kg H2/kgCH4 assuming 90% conversion
efficiency.

Bioplastics and Biopharmaceutical Demand

Bioplastics and pharmaceutical demands for a Martian habitat are not well-defined in the
literature. For a system where 50% of spare parts necessary for a habitat are generated via
additive manufacturing based on ISRU, Owens et al. estimated that 9800 kg of spare parts
mass would be necessary over 260 months (an extremely long duration with multiple resup-
plies and crew member exchanges)[418] Assuming these spares are generated from bioplastics,
which are in turn produced from acetic acid at 50% yield by C2 feedstock-utilizing microor-
ganisms[44], this corresponds to ∼0.1 kg/h acetic acid demand. We assume acetic acid is
produced by acetogens with a molar ratio of 4.2:1 (corresponding to 95% of H2 reducing
power diversion to acetic acid production, a common value for acetogens), this corresponds
to an H2:CH3COOH ratio of 0.155 kgH2/kg CH3COOH assuming 90% conversion.

Pharmaceutical demand is not expected to exceed 1 g/sol, so we neglect this amount for
the purposes of our calculations here.

Water electrolyzer, H2 fuel cell, and H2 storage systems

Water electrolysis and H2 fuel cell power demands are based on commercially available,
low-weight fuel cell systems designed for transportation vehicles2. The electrolyzer requires
54.13 kWh/kgH2, while the fuel cell requires 0.064 kgH2/kWh. We assume H2 storage is
accomplished with Type IV compression chambers at 350 bar, which stores H2 at 20.77
kgH2/m3 with a tank mass of 289.23 kg/m3, corresponding to a H2 storage density of 0.0718
kgH2/kg[141, 34]. For these systems, 3.39 kWh/kgH2 is required to compress H2 to 350 bar,
which we account for in the total power demand[141].

Solar Cell Array Mass

Commercial low-weight, flexible solar cell arrays have an installed mass of 2.0 kg/m23. We
are not aware of similarly commercial PEC arrays, so we assume that the installed mass is

2G-HFCS-6kW Hydrogen Fuel Cell Power Generator (Fuel Cell Store, Product Code: 1035012)
3MiaSolé Flex-03W Series Module with adhesive
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driven primarily by the absorber material as opposed to the catalyst layers or ion exchange
membrane. We therefore estimate an installed mass of 2.4 kg/m2 by assuming the absorber
and housing components comprise 80% of the installed mass.
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11.3 SI: Case Study 3

Figure S14: Schematic of deterministic unit procedure model construction grouped by operation, cost category, and
equivalent system mass (ESM) constituent.

mAb Indication Dose Need Basis

Erenumab-aooe (FDA La-
bel)

Migraine headache
prevention

70 mg (or 140 mg) 1 dose/month

Romosozumab (FDA La-
bel)

Bone regeneration 210 mg 1 dose/month

Gemtuzumab ozogamicin* Acute myeloid
leukemia

6 mg/m2; 3 mg/m2; 2
mg/m2

day 1/day 8/every 4
weeks; 1 course/year

Table S10: Example commercially approved monoclonal antibody (mAb) therapies of relevance to human health in
space that have been considered in the determination of the reference mission pharmaceutical demand. Need basis
is defined per the listed indication and FDA label. Demand estimates are derived by multiplying the FDA-approved
need basis by the crew size and the duration of the demand. Asterisk (*) denotes an antibody drug conjugate.
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Unit Procedure Code mAb Binding Capac-
ity

Maximal Feed Stream
Volume

Pre-packed chromatogra-
phy

CHM 30 mg/mL resin N/A

Spin column SPN 1 mg/column 0.6 mL
Magnetic bead MAG 27 mg/mL bead slurry 0.3 mL
Plant virus-based nanopar-
ticle

VIN 4 mg/mL stock solu-
tion

2 mL*

Elastin-like polypeptide ELP 0.42 mg/mL stock
solution

0.8 mL∗,α

Oilbody-oleosin OLE 6.74 mg/mL stock
solution

0.1 mL∗,γ

Table S11: Unit procedure assumptions for maximal feed stream volume and monoclonal antibody (mAb) binding
capacity. * based on 2 mL unit volume; actual feed stream volume added is based on the amount of stock solution
required and thus mAb quantity in the feed stream. α reduced from 2 mL maximal to account for volume needed
for salt solution addition (0.4 mL) and required 1:1 volume ratio of ELP:mAb. γ reduced from 2 mL maximal to
account for required 1:20 volume ratio of OLE:mAb.

Operation Value Unit

Monitoring 0.05 labor hour/hour
Preparation (incubation + centrifugation) 1 min/effective batch

Pipetting liquid 0.5 min/solution type
0.1 min/additional unit/effective batch

Resuspending pellet 1 min/unit

Table S12: Labor time standardizations applied to common operations across unit procedures.

Segment Leq
(kg/kg)

Meq
(kg/kg)

Veq
(kg/m3)

Peq
(kg/kW)

Ceq
(kg/kW)

Teq
(kg/CM-
h)

Pre-deployment (Pd) 2.77 1 9.16 237 40 0.7
Transit to Mars (Tr1) 10 1 133.8 136 50 0.7
Surface Operation
(Su)

1 1 9.16 228 145 0.7

Return Transit (Tr2) 10 1 133.8 136 50 0.7

Table S13: Equivalency factor values used to generate equivalent system mass values from constituents of mass,
volume, power, cooling, and labor.
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Unit procedure Optimal number of batches per mission

CHM 342
SPN 948
MAG 5670
VIN 360
ELP 2058
OLE 846

Table S14: Optimal number of batches per mission in the base case scenario for each unit procedure, as determined
via minimization of equivalent system mass.

Segment Meq (kg/kg) Veq (kg/m3) Peq (kg/kW) Ceq (kg/kW) Teq (kg/CM-
h)

Surface Operation
(Su)

1 215.5 87 146 0.465

Table S15: Mars surface mission equivalency factor values used by Zabel[581] of a space greenhouse.

mg/mL 0.1 0.2 0.35 0.5 75 1 1.5 2 5
CHM 342 342 342 342 342 342 342 342 342
SPN 9450 4728 2700 1896 1260 948 630 568 568
MAG 56694 28350 16200 11340 7560 5670 3780 2838 1134
VIN 2910 1494 882 639 450 360 264 216 132
ELP 7092 3546 2058 2058 2058 2058 2058 2058 2058
OLE 2988 1494 854 846 846 846 846 846 846

Table S16: Optimal number of effective batches per mission in the mAb stream composition scenario analysis condi-
tions for each unit procedure, as determined via minimization of equivalent system mass.

Demand ×103

(mg mAb/mission) 1 2 3.5 5 7.5 10 15 20 30

CHM 36 70 120 172 257 342 512 682 1022
SPN 96 192 336 474 714 948 1422 1890 2844
MAG 568 1134 1988 2838 4260 5670 8508 11340 17010
VIN 36 72 126 180 270 360 533 714 1068
ELP 210 414 726 1032 1548 2058 3090 4116 6174
OLE 86 170 300 422 632 846 1264 1692 2532

Table S17: Optimal number of batches per mission in the mAb demand scenario analysis conditions for each unit
procedure, as determined via minimization of equivalent system mass.
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Model Vendor Capacity Mass
(kg)

Dimensions
(cm)

Power
(kW)

MiniSpin Eppendorf 12 3.7 22.5×23.0×13.0 0.085
5418R Eppendorf 18 22 0.0345 0.32
5427R Eppendorf 48 30 31.9×54.0×25.4 0.55

Table S18: List of centrifuge models used in the alternative centrifuge scenario.

Centrifuge model MiniSpin 5418R 5427R

SPN 1422 948 360
VIN 533 360 137
ELP 3090 2058 774
OLE 1264 846 317

Table S19: Optimal number of effective batches per mission in the centrifuge model alternative scenario conditions
for each analyzed unit procedure, as determined via minimization of equivalent system mass.
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11.4 SI: Space Biomanufacturing

Assumptions and Methodology of Inventory Analysis
In order to construct a set of comparable mission profile scenarios for preliminary techno-
economic analysis, we leveraged the NASA ‘Advanced Life Support Sizing Analysis Tool’
(ALSSAT)[317]; an analysis of cargo inventory broken down for each scenario and compared
by means of Equivalent Systems Mass (ESM)[314] was conducted. In its current form[312],
the total ESM M is defined only for the operations at a specific location as the sum over the
set of all systems as:

M = Leq

A∑
i=1

[(Mi ·Meq) + (Vi · Veq) + (Pi · Peq) + (Ci · Ceq)︸ ︷︷ ︸
MNCT

+ (CTi ·D · CTeq)︸ ︷︷ ︸
MCT

] (11.38)

for subsystem i ∈ A of the ESM excluding crew-timeMNCT and the ESM including crew-time
MCT where Mi, Vi, Pi, Ci are the initial mass [kg], volume [m3], power requirement [kWe],
and cooling requirement [kg/kWth], D is the duration of the mission segment [sol], Ti is the
crew-time requirement based on an astronaut crew-member (CM) [CM-h/sol], Meq is the
stowage factor accounting for additional structural masses for a subsystem such as shelving
[kg/kg], Veq is the mass equivalency factor for the pressurized volume support infrastructure
[kg/m3], Peq is the mass equivalency factor for the power generation support infrastructure
[kg/kWe], Ceq is the mass equivalency factor for the cooling infrastructure [kg/kWth], CTeq
is the mass equivalency factor for the crew-time [kg/CM-h], and Leq is the location factor for
the mission segment [kg/kg] which accounts for the cost to transport mass from one location
in space to another (such as Earth-orbit to Mars-orbit). Mass equivalency factors (Veq, Peq,
Ceq, CTeq) are used to convert the non-mass parameters to mass.

Inventory Analysis by Equivalent Systems Mass

Using values sourced from literature, the ALSSAT, and the NASA ‘Baseline Values and
Assumptions Documentation’[17], we constructed our scenario definitions and parameters as
outlined in Table S20. Table 1 includes the Scenario Identifier (A-E), duration of surface
mission operations in days, primary surface operation destination (Moon or Mars), and sortie
number Snum. The sortie number corresponds to the number of “trips” for a given scenario.
Also included are the equivalency factors (Meq, Veq, Peq, Ceq, CTeq) and location factor Leq,
which allow for the comparable calculation of ESM M .

The ALSSAT was then used to generate an exemplar set of inventory elements for all
systems and subsystems (i ∈ A) as shown in Table S21. Table S21 includes a uniformized
breakdown for all inventory elements by system, subsystem, and item name – as well as
the ESM terms (M , V , P , C, CT ) for each element in each scenario. Using the data
from Tables S20 and S21, we calculated the total ESM Mt for each scenario using the form
Mt = SnumMSnum=1.
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Table S20: Parameter description of exemplar scenarios—scenarios ‘A’ and ‘B’ correspond to single sorties (N = 1)
to Moon and Mars respectively using standard surface operation duration[17], while scenarios ‘C’ and ‘D’ correspond
to multi-sortie campaigns with the same 5,400 days of surface operation as the single-sortie scenario ‘E’. All scenarios
consider a crew-strength of four astronauts. These parameters can be used to calculate the ESM cost and include
equivalency factors for volume (Veq), power (Peq), cooling (Ceq), crew-time (CTeq), and location (Leq).

Scenario Duration Destination Snum Veq Peq Ceq CTeq Leq

A 180 Moon 1 126 136 55.4 0.7 7.2
B 540 Mars 1 117.7 162 96 0.7 30
C 180 Moon 30 126 136 55.4 0.7 7.2
D 540 Mars 10 117.7 162 96 0.7 30
E 5,400 Mars 1 117.7 162 96 0.7 30

Inventory Analysis by Elemental Composition

The inventory element composition analysis was carried out by first creating a set of com-
position classes: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics,
Gas, Biomass, Water, Other. These classes were created as prima facie estimates. Next,
we estimated the fractional composition for each inventory element as shown in Table S22.
We note that these estimates were carried out as approximations and based on a number of
factors such as literature and other official NASA resources. However, we acknowledge that
often our estimates amount to assumptions and educated guestimations, due to the lack of
exact data. That being said, we argue that exact values are not required in these calcula-
tions which should be considered an important first step in defining the order of magnitude
envelope for a mission inventory’s elemental composition.
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air APC Vent/Relief Valve
5.40 0.01 0.00 0.00 0.00 5.40 0.01 0.00 0.00 0.00 5.40 0.01 0.00 0.00 0.00 5.40 0.01 0.00 0.00 0.00 5.40 0.01 0.00 0.00 0.00

Air APC Pressure Control Panel
11.200.03 18.0018.000.00 11.200.03 18.0018.000.00 11.200.03 18.0018.000.00 11.200.03 18.0018.000.00 11.200.03 18.0018.000.00

Air APC Manual Pressure Equal-
ization Valve 9.60 0.01 0.00 0.00 0.00 9.60 0.01 0.00 0.00 0.00 9.60 0.01 0.00 0.00 0.00 9.60 0.01 0.00 0.00 0.00 9.60 0.01 0.00 0.00 0.00

Air APC Positive Pressure Relief
Valve 1.80 0.00 0.00 0.00 0.00 1.80 0.00 0.00 0.00 0.00 1.80 0.00 0.00 0.00 0.00 1.80 0.00 0.00 0.00 0.00 1.80 0.00 0.00 0.00 0.00

Air APC Negative Pressure Relief
Valve 3.00 0.01 0.00 0.00 0.00 3.00 0.01 0.00 0.00 0.00 3.00 0.01 0.00 0.00 0.00 3.00 0.01 0.00 0.00 0.00 3.00 0.01 0.00 0.00 0.00

Air APC Nitrogen Interface As-
sembly 7.50 0.01 5.50 5.50 0.00 7.50 0.01 5.50 5.50 0.00 7.50 0.01 5.50 5.50 0.00 7.50 0.01 5.50 5.50 0.00 7.50 0.01 5.50 5.50 0.00

Air APC Vacuum Access Jumper
5-ft 0.70 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00

Air APC Vacuum Access Jumper
35-ft 3.20 0.00 0.00 0.00 0.00 3.20 0.00 0.00 0.00 0.00 3.20 0.00 0.00 0.00 0.00 3.20 0.00 0.00 0.00 0.00 3.20 0.00 0.00 0.00 0.00

Air ACMA Verification Gas Assem-
bly 5.40 0.01 0.10 0.10 0.00 5.40 0.01 0.10 0.10 0.00 5.40 0.01 0.10 0.10 0.00 5.40 0.01 0.10 0.10 0.00 5.40 0.01 0.10 0.10 0.00

Air ACMA Mass Spectrometer
13.900.02 31.8031.800.00 13.900.02 31.8031.800.00 13.900.02 31.8031.800.00 13.900.02 31.8031.800.00 13.900.02 31.8031.800.00

Air ACMA Sample Pump
3.40 0.00 4.00 4.00 0.00 3.40 0.00 4.00 4.00 0.00 3.40 0.00 4.00 4.00 0.00 3.40 0.00 4.00 4.00 0.00 3.40 0.00 4.00 4.00 0.00

Air ACMA Sample Distributor
2.10 0.00 0.10 0.10 0.00 2.10 0.00 0.10 0.10 0.00 2.10 0.00 0.10 0.10 0.00 2.10 0.00 0.10 0.10 0.00 2.10 0.00 0.10 0.10 0.00

Air ACMA Data + Control
8.00 0.01 34.9034.900.00 8.00 0.01 34.9034.900.00 8.00 0.01 34.9034.900.00 8.00 0.01 34.9034.900.00 8.00 0.01 34.9034.900.00

Air ACMA Low Voltage Power
Supply 5.70 0.01 30.8030.800.00 5.70 0.01 30.8030.800.00 5.70 0.01 30.8030.800.00 5.70 0.01 30.8030.800.00 5.70 0.01 30.8030.800.00

Air ACMA Chassis
15.800.02 0.00 0.00 0.00 15.800.02 0.00 0.00 0.00 15.800.02 0.00 0.00 0.00 15.800.02 0.00 0.00 0.00 15.800.02 0.00 0.00 0.00

Air ACMA Inlet Valve Assembly
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air ACMA EMI Filter
0.00 0.00 1.80 1.80 0.00 0.00 0.00 1.80 1.80 0.00 0.00 0.00 1.80 1.80 0.00 0.00 0.00 1.80 1.80 0.00 0.00 0.00 1.80 1.80 0.00

Air SDS 3-way Solenoid Valves
31.500.03 0.00 0.00 0.00 31.500.03 0.00 0.00 0.00 31.500.03 0.00 0.00 0.00 31.500.03 0.00 0.00 0.00 31.500.03 0.00 0.00 0.00

Air SDS Manual Valves
2.53 0.01 0.00 0.00 0.00 2.53 0.01 0.00 0.00 0.00 2.53 0.01 0.00 0.00 0.00 2.53 0.01 0.00 0.00 0.00 2.53 0.01 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air SDS Sample probes
1.08 0.00 0.00 0.00 0.00 1.08 0.00 0.00 0.00 0.00 1.08 0.00 0.00 0.00 0.00 1.08 0.00 0.00 0.00 0.00 1.08 0.00 0.00 0.00 0.00

Air CO2 Air Selector Valve
12.810.01 0.70 0.70 0.99 12.810.01 0.70 0.70 0.99 12.750.01 0.70 0.70 0.99 12.650.01 0.68 0.68 2.74 12.600.01 0.68 0.68 29.59

Air CO2 Desiccant Bed
24.290.25 0.00 0.00 0.24 24.290.25 0.00 0.00 0.24 24.070.25 0.00 0.00 0.24 23.690.24 0.00 0.00 0.66 23.500.24 0.00 0.00 7.10

Air CO2 Adsorbent Bed
33.130.00 578.43578.430.00 33.130.00 578.43578.430.00 32.830.00 573.16573.160.00 32.320.00 564.28564.280.00 32.060.00 559.74559.740.00

Air CO2 Air Check Valve
0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

Air CO2 Heater Controller
6.60 0.00 38.0038.000.01 6.60 0.00 38.0038.000.01 6.60 0.00 38.0038.000.01 6.60 0.00 38.0038.000.03 6.60 0.00 38.0038.000.30

Air CO2 Air Blower
0.82 0.02 40.7140.710.06 0.82 0.02 40.7140.710.06 0.82 0.02 40.3440.340.06 0.81 0.02 39.7239.720.18 0.81 0.02 39.4039.401.92

Air CO2 Pre-cooler
2.22 0.00 0.00 0.00 0.00 2.22 0.00 0.00 0.00 0.00 2.21 0.00 0.00 0.00 0.00 2.19 0.00 0.00 0.00 0.00 2.18 0.00 0.00 0.00 0.00

Air CO2 Blower/Pre-cooler Motor
Controller 1.30 0.00 5.00 5.00 0.00 1.30 0.00 5.00 5.00 0.00 1.30 0.00 5.00 5.00 0.00 1.30 0.00 5.00 5.00 0.00 1.30 0.00 5.00 5.00 0.00

Air CO2 CO2 Pump
6.73 0.00 13.3413.340.04 6.73 0.00 13.3413.340.04 6.70 0.00 13.2213.220.04 6.65 0.00 13.0113.010.11 6.62 0.00 12.9112.911.18

Air CO2 CO2 Pump Motor Con-
troller 1.30 0.01 2.00 2.00 0.00 1.30 0.01 2.00 2.00 0.00 1.30 0.01 2.00 2.00 0.00 1.30 0.01 2.00 2.00 0.01 1.30 0.01 2.00 2.00 0.15

Air CO2 Temperature Sensor
0.40 0.00 1.00 1.00 0.00 0.40 0.00 1.00 1.00 0.00 0.40 0.00 1.00 1.00 0.00 0.40 0.00 1.00 1.00 0.00 0.40 0.00 1.00 1.00 0.00

Air CO2 Differential Pressure
Sensor 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00

Air CO2 Absolute Pressure Sen-
sor 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00 0.20 0.00 1.00 1.00 0.00

Air CO2 Electrical Harness
4.50 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00

Air CO2 Plumbing
4.85 0.00 0.00 0.00 0.00 4.85 0.00 0.00 0.00 0.00 4.82 0.00 0.00 0.00 0.00 4.78 0.00 0.00 0.00 0.00 4.76 0.00 0.00 0.00 0.00

Air CO2 Support Structure
29.640.00 0.00 0.00 0.00 29.640.00 0.00 0.00 0.00 29.510.00 0.00 0.00 0.00 29.270.00 0.00 0.00 0.00 29.150.00 0.00 0.00 0.00

Air CO2 Fluid Disconnects
1.97 0.00 0.00 0.00 0.00 1.97 0.00 0.00 0.00 0.00 1.96 0.00 0.00 0.00 0.00 1.95 0.00 0.00 0.00 0.00 1.94 0.00 0.00 0.00 0.00

Air CO2 Electronics Cold-Plate
2.71 0.00 0.00 0.00 0.00 2.71 0.00 0.00 0.00 0.00 2.70 0.00 0.00 0.00 0.00 2.68 0.00 0.00 0.00 0.00 2.67 0.00 0.00 0.00 0.00

Air CO2 Electronics Interface
Plate 1.60 0.00 0.00 0.00 0.00 1.60 0.00 0.00 0.00 0.00 1.60 0.00 0.00 0.00 0.00 1.60 0.00 0.00 0.00 0.00 1.60 0.00 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air N2 MD Shield Instl
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air N2 Multilayer Insulation
Assembly-T #1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air N2 Multilayer Insulation
Assembly-T #2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air N2 Primary Structure
Assembly-HPG ORU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air N2 Tank ORU Assembly
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air N2 Utilities Installation -
O2/N2 Tank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air N2 N2 Bare Tank
80.370.00 0.00 0.00 0.00 80.370.00 0.00 0.00 0.00 80.430.00 0.00 0.00 0.00 163.980.00 0.00 0.00 0.00 1443.260.00 0.00 0.00 0.00

Air N2 HPGA Fluid
81.740.00 0.00 0.00 0.00 81.740.00 0.00 0.00 0.00 81.830.00 0.00 0.00 0.00 144.730.00 0.00 0.00 0.00 1107.910.00 0.00 0.00 0.00

Air N2 Handhold, top mounted
0.22 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 2.92 0.00 0.00 0.00 0.00

Air N2 Handrail 21.941 in cus-
tom 0.38 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 0.00 0.67 0.00 0.00 0.00 0.00 5.12 0.00 0.00 0.00 0.00

Air N2 Handrail, top mounted
0.40 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 5.36 0.00 0.00 0.00 0.00

Air N2 Grapple Fixture, flt
releasable 11.110.00 0.00 0.00 0.00 11.110.00 0.00 0.00 0.00 11.130.00 0.00 0.00 0.00 19.680.00 0.00 0.00 0.00 150.630.00 0.00 0.00 0.00

Air N2 Accessories
4.02 0.00 0.00 0.00 0.00 4.02 0.00 0.00 0.00 0.00 4.03 0.00 0.00 0.00 0.00 8.21 0.00 0.00 0.00 0.00 72.240.00 0.00 0.00 0.00

Air O2 MD Shield Instl
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air O2 Multilayer Insulation
Assembly-T #1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air O2 Multilayer Insulation
Assembly-T #2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air O2 Primary Structure
Assembly-HPG ORU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air O2 Tank ORU Assembly
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air O2 Utilities Installation -
O2/N2 Tank 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Air O2 O2 Bare Tank
56.080.00 0.00 0.00 0.00 56.080.00 0.00 0.00 0.00 53.530.00 0.00 0.00 0.00 112.190.00 0.00 0.00 0.00 1010.350.00 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air O2 HPGA Fluid
48.000.00 0.00 0.00 0.00 48.000.00 0.00 0.00 0.00 44.470.00 0.00 0.00 0.00 72.800.00 0.00 0.00 0.00 506.640.00 0.00 0.00 0.00

Air O2 Handhold, top mounted
0.13 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 1.34 0.00 0.00 0.00 0.00

Air O2 Handrail 21.941 in cus-
tom 0.22 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 2.34 0.00 0.00 0.00 0.00

Air O2 Handrail, top mounted
0.23 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.35 0.00 0.00 0.00 0.00 2.45 0.00 0.00 0.00 0.00

Air O2 Grapple Fixture, flt
releasable 6.53 0.00 0.00 0.00 0.00 6.53 0.00 0.00 0.00 0.00 6.05 0.00 0.00 0.00 0.00 9.90 0.00 0.00 0.00 0.00 68.880.00 0.00 0.00 0.00

Air O2 Accessories
2.81 0.00 0.00 0.00 0.00 2.81 0.00 0.00 0.00 0.00 2.68 0.00 0.00 0.00 0.00 5.62 0.00 0.00 0.00 0.00 50.570.00 0.00 0.00 0.00

Air
Sabatier

Condensing Heat Ex-
changer 1.47 0.00 0.00 0.00 0.00 1.47 0.00 0.00 0.00 0.00 1.49 0.00 0.00 0.00 0.00 1.48 0.00 0.00 0.00 0.00 1.48 0.00 0.00 0.00 0.00

Air
Sabatier

AAA Heat Exchanger
2.47 0.00 0.00 0.00 0.00 2.47 0.00 0.00 0.00 0.00 2.50 0.00 0.00 0.00 0.00 2.49 0.00 0.00 0.00 0.00 2.49 0.00 0.00 0.00 0.00

Air
Sabatier

ITCS Coolant Water
Inlet QD 0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00

Air
Sabatier

ITCS Coolant Water
Outlet QD 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00

Air
Sabatier

Heat Exchanger Inlet
Temp 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00

Air
Sabatier

Heat Exchanger Outlet
Temp 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00

Air
Sabatier

Manifold, CO2

4.72 0.00 0.00 0.00 0.00 4.72 0.00 0.00 0.00 0.00 4.80 0.00 0.00 0.00 0.00 4.77 0.00 0.00 0.00 0.00 4.76 0.00 0.00 0.00 0.00
Air

Sabatier
CO2 Inlet Check Valve

0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00
Air

Sabatier
CO2 Inlet Filter

0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
Air

Sabatier
Pressure Sensor, CO2

Inlet 0.41 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00
Air

Sabatier
CO2 Inlet QD

0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00
Air

Sabatier
CO2 Inlet Regulator

0.92 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00
Air

Sabatier
CO2 Inlet NC Solenoid

0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00
Air

Sabatier
CO2 Inlet Flow Control

2.15 0.00 0.00 0.00 0.00 2.15 0.00 0.00 0.00 0.00 2.18 0.00 0.00 0.00 0.00 2.17 0.00 0.00 0.00 0.00 2.17 0.00 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air
Sabatier

CO2 Flow Control Ori-
fice 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

Air
Sabatier

Delta P Sensor, Flow
Sensor CO2 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00

Air
Sabatier

CO2 Flow Meter Orifice
0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

Air
Sabatier

Manifold, Hydrogen
4.38 0.00 0.00 0.00 0.00 4.38 0.00 0.00 0.00 0.00 4.45 0.00 0.00 0.00 0.00 4.43 0.00 0.00 0.00 0.00 4.42 0.00 0.00 0.00 0.00

Air
Sabatier

Water Outlet Quick
Disconnect 0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00

Air
Sabatier

Hydrogen Inlet Check
Valve 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

Air
Sabatier

Hydrogen Inlet Filter
0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00

Air
Sabatier

H2O Outlet Pressure
Sensor 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00

Air
Sabatier

Hydrogen Inlet Quick
Disconnect 0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00

Air
Sabatier

Hydrogen Inlet NC
Solenoid 0.94 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00

Air
Sabatier

Delta P Sensor, Flow
Sensor H2 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00

Air
Sabatier

H2 Flow Meter Orifice
0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00

Air
Sabatier

Manifold, Vent
5.06 0.00 0.00 0.00 0.00 5.06 0.00 0.00 0.00 0.00 5.14 0.00 0.00 0.00 0.00 5.12 0.00 0.00 0.00 0.00 5.10 0.00 0.00 0.00 0.00

Air
Sabatier

Liquid Sensor
1.09 0.00 0.00 0.00 0.00 1.09 0.00 0.00 0.00 0.00 1.09 0.00 0.00 0.00 0.00 1.09 0.00 0.00 0.00 0.00 1.09 0.00 0.00 0.00 0.00

Air
Sabatier

Vent Pressure Sensor
0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00

Air
Sabatier

Vent Outlet Quick Dis-
connect 0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00

Air
Sabatier

Vent Regulator
0.92 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00

Air
Sabatier

Vent Relief/Check #1
0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

Air
Sabatier

Vent Relief/Check #2
0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

Air
Sabatier

Vent Outlet NO
Solenoid 0.94 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air
Sabatier

Water Pressure Sensor
0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.00

Air
Sabatier

Water Relief
0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00

Air
Sabatier

Water Outlet NC
Solenoid 0.47 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00

Air
Sabatier

Rotary Water Separator
Assembly 4.04 0.00 22.6622.660.00 4.04 0.00 22.6622.660.00 4.10 0.00 22.9322.930.00 4.08 0.00 22.8422.840.00 4.07 0.00 22.8022.800.00

Air
Sabatier

Sabatier Reactor Assem-
bly 2.52 0.00 3.24 3.24 0.00 2.52 0.00 3.24 3.24 0.00 2.56 0.00 3.28 3.28 0.00 2.55 0.00 3.26 3.26 0.00 2.54 0.00 3.26 3.26 0.00

Air
Sabatier

Structure (A/R)
9.15 0.00 0.00 0.00 0.00 9.15 0.00 0.00 0.00 0.00 9.30 0.00 0.00 0.00 0.00 9.25 0.00 0.00 0.00 0.00 9.23 0.00 0.00 0.00 0.00

Air
Sabatier

Miscellaneous Hardware
(clamps, bolts, etc.)
(A/R)

1.77 0.00 0.00 0.00 0.00 1.77 0.00 0.00 0.00 0.00 1.77 0.00 0.00 0.00 0.00 1.77 0.00 0.00 0.00 0.00 1.77 0.00 0.00 0.00 0.00

Air
Sabatier

Air Cooling NC Solenoid
0.63 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00

Air
Sabatier

Air Inlet Filter
0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

Air
Sabatier

Air Sabatier Orifice
0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00

Air
Sabatier

Heat Exchanger Inlet
Duct 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

Air
Sabatier

Heat Exchanger Outlet
Duct 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

Air
Sabatier

Reactor Inlet Duct
0.21 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00

Air
Sabatier

Reactor Outlet Duct
0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

Air
Sabatier

Tubing (A/R)
0.68 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00

Air
Sabatier

Harnesses
11.450.00 0.00 0.00 0.00 11.450.00 0.00 0.00 0.00 11.450.00 0.00 0.00 0.00 11.450.00 0.00 0.00 0.00 11.450.00 0.00 0.00 0.00

Air
Sabatier

Valves + Sensors’ total
power 0.00 0.00 7.37 7.37 0.00 0.00 0.00 7.37 7.37 0.00 0.00 0.00 7.76 7.76 0.00 0.00 0.00 7.63 7.63 0.00 0.00 0.00 7.57 7.57 0.00

Air
Sabatier

Mechanical Compressor
ORU 18.880.00 45.3245.320.00 18.880.00 45.3245.320.00 19.180.00 45.8645.860.00 19.090.00 45.6945.690.00 19.040.00 45.6045.600.00

Air
Sabatier

Compressor Manifold
Assembly 4.62 0.00 0.00 0.00 0.00 4.62 0.00 0.00 0.00 0.00 4.69 0.00 0.00 0.00 0.00 4.67 0.00 0.00 0.00 0.00 4.65 0.00 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air
Sabatier

Controller Assembly
28.590.00 55.0055.000.00 28.590.00 55.0055.000.00 28.590.00 55.0055.000.00 28.590.00 55.0055.000.00 28.590.00 55.0055.000.00

Air
Sabatier

CO2 Accumulator
10.030.01 0.00 0.00 0.00 10.030.01 0.00 0.00 0.00 10.190.01 0.00 0.00 0.00 10.140.01 0.00 0.00 0.00 10.110.01 0.00 0.00 0.00

Air O2-gen Deionizing Bed ORU
(Inlet) 7.79 0.01 0.00 0.00 0.00 7.79 0.01 0.00 0.00 0.00 8.19 0.01 0.00 0.00 0.00 8.07 0.01 0.00 0.00 0.00 8.00 0.01 0.00 0.00 0.00

Air O2-gen Deionizing Bed ORU
(Recirculating) 7.79 0.01 0.00 0.00 0.00 7.79 0.01 0.00 0.00 0.00 8.19 0.01 0.00 0.00 0.00 8.07 0.01 0.00 0.00 0.00 8.00 0.01 0.00 0.00 0.00

Air O2-gen Oxygen/Water ORU
36.400.02 0.00 0.00 0.00 36.400.02 0.00 0.00 0.00 37.010.03 0.00 0.00 0.00 36.820.03 0.00 0.00 0.00 36.720.02 0.00 0.00 0.00

Air O2-gen Pump ORU
6.46 0.01 23.3323.330.00 6.46 0.01 23.3323.330.00 6.56 0.01 24.5324.530.00 6.53 0.01 24.1524.150.00 6.51 0.01 23.9623.960.00

Air O2-gen Oxygen Phase Separator
ORU 21.830.01 0.00 0.00 0.00 21.830.01 0.00 0.00 0.00 22.200.01 0.00 0.00 0.00 22.080.01 0.00 0.00 0.00 22.020.01 0.00 0.00 0.00

Air O2-gen Hydrogen ORU
95.460.05 30.7830.780.00 95.460.05 30.7830.780.00 97.070.05 32.3732.370.00 96.560.05 31.8731.870.00 96.300.05 31.6131.610.00

Air O2-gen Hydrogen Sensor ORU
4.59 0.00 0.00 0.00 0.00 4.59 0.00 0.00 0.00 0.00 4.59 0.00 0.00 0.00 0.00 4.59 0.00 0.00 0.00 0.00 4.59 0.00 0.00 0.00 0.00

Air O2-gen Process Controller
40.090.14 148.00148.000.00 40.090.14 148.00148.000.00 40.090.14 148.00148.000.00 40.090.14 148.00148.000.00 40.090.14 148.00148.000.00

Air O2-gen Power Supply Module
(PSM) 13.450.02 1069.250.00 0.00 13.450.02 1069.250.00 0.00 14.140.02 1124.36562.180.00 13.920.02 1106.94553.470.00 13.810.02 1098.05549.020.00

Air Fire-
det-sup

Fire Detection Assembly
1.50 0.00 1.48 1.48 0.03 1.50 0.00 1.48 1.48 0.03 1.50 0.00 1.48 1.48 0.03 1.50 0.00 1.48 1.48 0.08 1.50 0.00 1.48 1.48 0.89

Air Fire-
det-sup

Portable Fire Extin-
guisher 6.80 0.04 0.00 0.00 0.00 6.80 0.04 0.00 0.00 0.00 6.80 0.04 0.00 0.00 0.00 6.80 0.04 0.00 0.00 0.00 6.80 0.04 0.00 0.00 0.00

Air
ACO2R

Regenerator 1
45.300.17 397.00397.000.00 45.300.17 397.00397.000.00 45.300.17 397.00397.000.00 45.300.17 397.00397.000.00 45.300.17 397.00397.000.00

Air
ACO2R

Metox Canisters
136.000.06 0.00 0.00 0.00 136.000.06 0.00 0.00 0.00 136.000.06 0.00 0.00 0.00 136.000.06 0.00 0.00 0.00 136.000.06 0.00 0.00 0.00

Air TCCS-
ISS

Activated Charcoal Bed
4.63 0.01 0.00 0.00 0.00 4.63 0.01 0.00 0.00 0.00 4.63 0.01 0.00 0.00 0.00 12.870.03 0.00 0.00 0.00 139.020.29 0.00 0.00 0.00

Air TCCS-
ISS

Blower Assembly
2.49 0.00 30.3930.390.00 2.49 0.00 30.3930.390.00 2.49 0.00 30.3930.390.00 2.49 0.00 30.3930.390.00 2.49 0.00 30.3930.390.00

Air TCCS-
ISS

Flow Meter Assembly
1.10 0.00 11.5011.500.00 1.10 0.00 11.5011.500.00 1.10 0.00 11.5011.500.00 1.10 0.00 11.5011.500.00 1.10 0.00 11.5011.500.00

Air TCCS-
ISS

Catalytic Oxidizer As-
sembly 8.46 0.02 92.1992.190.00 8.46 0.02 92.1992.190.00 8.46 0.02 92.1992.190.00 8.46 0.02 92.1992.190.00 8.46 0.02 92.1992.190.00

Air TCCS-
ISS

LiOH Sorbent Bed As-
sembly 0.31 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 9.43 0.02 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Air TCCS-
ISS

Electrical Interface
Assembly 4.50 0.00 7.60 7.60 0.00 4.50 0.00 7.60 7.60 0.00 4.50 0.00 7.60 7.60 0.00 4.50 0.00 7.60 7.60 0.00 4.50 0.00 7.60 7.60 0.00

Waste PMWC
Aluminum Compaction
Cylinder 9.40 0.02 0.00 0.00 180.009.40 0.02 0.00 0.00 180.009.41 0.02 0.00 0.00 180.009.41 0.02 0.00 0.00 500.009.41 0.02 0.00 0.00 5400.00

Waste PMWC
Band-type Heating Unit

0.00 0.00 136.340.00 0.00 0.00 0.00 136.340.00 0.00 0.00 0.00 162.580.00 0.00 0.00 0.00 162.390.00 0.00 0.00 0.00 162.290.00 0.00

Waste PMWC
Lightweight, Oil-Less,
Compressor/Vacuum
Pump

0.00 0.00 2.71 0.00 0.00 0.00 0.00 2.71 0.00 0.00 0.00 0.00 3.23 0.00 0.00 0.00 0.00 3.22 0.00 0.00 0.00 0.00 3.22 0.00 0.00

Waste PMWC
Temperature Sensor

0.22 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00 0.00

Waste PMWC
Pressure Sensor

0.30 0.00 0.33 0.00 0.00 0.30 0.00 0.33 0.00 0.00 0.30 0.00 0.33 0.00 0.00 0.30 0.00 0.33 0.00 0.00 0.30 0.00 0.33 0.00 0.00

Waste PMWC
Housing + Mounting
Equipment 23.860.48 0.00 0.00 0.00 23.860.48 0.00 0.00 0.00 23.890.48 0.00 0.00 0.00 23.890.48 0.00 0.00 0.00 23.890.48 0.00 0.00 0.00

Waste PMWC
Condensing Heat Ex-
changer 1.91 0.00 0.00 0.00 0.00 1.91 0.00 0.00 0.00 0.00 2.86 0.01 0.00 0.00 0.00 2.86 0.01 0.00 0.00 0.00 2.85 0.01 0.00 0.00 0.00

Waste PMWC
Cooling system

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 145.14145.140.00 0.00 0.00 144.97144.970.00 0.00 0.00 144.89144.890.00

Waste
Waste-
storage

Low Density PolyEthy-
lene Box 17.700.49 0.00 0.00 0.00 17.700.49 0.00 0.00 0.00 17.700.49 0.00 0.00 0.00 49.181.37 0.00 0.00 0.00 531.1514.750.00 0.00 0.00

Waste
Waste-
col

Commode/Urinal
58.400.30 0.00 0.00 29.5958.400.30 0.00 0.00 29.5958.400.30 0.00 0.00 29.5958.400.30 0.00 0.00 82.1958.400.30 0.00 0.00 887.67

Waste
Waste-
col

Fan
0.00 0.00 102.00102.000.00 0.00 0.00 102.00102.000.00 0.00 0.00 102.00102.000.00 0.00 0.00 102.00102.000.00 0.00 0.00 102.00102.000.00

Waste
Waste-
col

Urine Separator
0.00 0.00 125.00125.000.00 0.00 0.00 125.00125.000.00 0.00 0.00 125.00125.000.00 0.00 0.00 125.00125.000.00 0.00 0.00 125.00125.000.00

Waste
Waste-
col

Urine Vent Heater
0.00 0.00 14.0014.000.00 0.00 0.00 14.0014.000.00 0.00 0.00 14.0014.000.00 0.00 0.00 14.0014.000.00 0.00 0.00 14.0014.000.00

Waste
Waste-
col

Fecal Bags
19.640.22 0.00 0.00 0.00 19.640.22 0.00 0.00 0.00 19.640.22 0.00 0.00 0.00 54.550.61 0.00 0.00 0.00 589.096.58 0.00 0.00 0.00

Waste
Waste-
col

Wipes, Dry
6.55 0.09 0.00 0.00 0.00 6.55 0.09 0.00 0.00 0.00 6.55 0.09 0.00 0.00 0.00 18.180.25 0.00 0.00 0.00 196.362.65 0.00 0.00 0.00

Waste
Waste-
col

Wipes, Wet
10.230.05 0.00 0.00 0.00 10.230.05 0.00 0.00 0.00 10.230.05 0.00 0.00 0.00 28.410.15 0.00 0.00 0.00 306.821.59 0.00 0.00 0.00

Waste
Waste-
col

Wipes, Toilet Tissue
3.53 0.04 0.00 0.00 0.00 3.53 0.04 0.00 0.00 0.00 3.53 0.04 0.00 0.00 0.00 9.82 0.12 0.00 0.00 0.00 106.041.29 0.00 0.00 0.00

Waste
Waste-
col

Gloves
5.60 0.03 0.00 0.00 0.00 5.60 0.03 0.00 0.00 0.00 5.60 0.03 0.00 0.00 0.00 15.550.07 0.00 0.00 0.00 167.890.76 0.00 0.00 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Waste
Waste-
col

Fecal Bags Odor Lids
29.450.28 0.00 0.00 0.00 29.450.28 0.00 0.00 0.00 29.450.28 0.00 0.00 0.00 81.820.77 0.00 0.00 0.00 883.648.26 0.00 0.00 0.00

Waste
Waste-
col

Fecal Collection Canis-
ters 35.060.46 0.00 0.00 0.00 35.060.46 0.00 0.00 0.00 35.060.46 0.00 0.00 0.00 97.401.28 0.00 0.00 0.00 1051.9513.770.00 0.00 0.00

Waste
Waste-
col

Fecal collection Canis-
ters lids 17.530.07 0.00 0.00 0.00 17.530.07 0.00 0.00 0.00 17.530.07 0.00 0.00 0.00 48.700.20 0.00 0.00 0.00 525.972.15 0.00 0.00 0.00

Waste
Waste-
col

Urine Prefilters
30.680.17 0.00 0.00 0.00 30.680.17 0.00 0.00 0.00 30.680.17 0.00 0.00 0.00 85.230.46 0.00 0.00 0.00 920.455.01 0.00 0.00 0.00

Waste
Waste-
col

Urine Filters
4.38 0.04 0.00 0.00 0.00 4.38 0.04 0.00 0.00 0.00 4.38 0.04 0.00 0.00 0.00 12.180.10 0.00 0.00 0.00 131.491.06 0.00 0.00 0.00

Waste
Waste-
col

Urine Funnels
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.16 0.01 0.00 0.00 0.00 1.16 0.01 0.00 0.00 0.00 1.16 0.01 0.00 0.00 0.00

Waste
Waste-
col

Flush Water Transfer
Bags 5.61 0.08 0.00 0.00 0.00 5.61 0.08 0.00 0.00 0.00 5.61 0.08 0.00 0.00 0.00 15.580.22 0.00 0.00 0.00 168.312.35 0.00 0.00 0.00

Waste
TCCS-
ISS-x3

Activated charcoal bed
9.27 0.02 0.00 0.00 0.00 9.27 0.02 0.00 0.00 0.00 9.27 0.02 0.00 0.00 0.00 25.740.05 0.00 0.00 0.00 278.040.57 0.00 0.00 0.00

Waste
TCCS-
ISS-x4

Blower Assembly
4.97 0.01 60.7960.790.00 4.97 0.01 60.7960.790.00 4.97 0.01 60.7960.790.00 4.97 0.01 60.7960.790.00 4.97 0.01 60.7960.790.00

Waste
TCCS-
ISS-x5

Flow Meter Assembly
2.20 0.00 23.0023.000.00 2.20 0.00 23.0023.000.00 2.20 0.00 23.0023.000.00 2.20 0.00 23.0023.000.00 2.20 0.00 23.0023.000.00

Waste
TCCS-
ISS-x6

Catalytic Oxidizer As-
sembly 16.910.04 184.38184.380.00 16.910.04 184.38184.380.00 16.910.04 184.38184.380.00 16.910.04 184.38184.380.00 16.910.04 184.38184.380.00

Waste
TCCS-
ISS-x7

LiOH Sorbent Bed As-
sembly 0.63 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 1.75 0.00 0.00 0.00 0.00 18.860.04 0.00 0.00 0.00

Waste
TCCS-
ISS-x8

Electrical Interface
Assembly 9.00 0.01 15.2015.200.00 9.00 0.01 15.2015.200.00 9.00 0.01 15.2015.200.00 9.00 0.01 15.2015.200.00 9.00 0.01 15.2015.200.00

Wa-
ter

H2O-
rec

MLS Filter ORU
3.32 0.00 0.00 0.00 0.00 3.32 0.00 0.00 0.00 0.00 3.96 0.01 0.00 0.00 0.00 10.970.02 0.00 0.00 0.00 118.210.17 0.00 0.00 0.00

Wa-
ter

H2O-
rec

Particulate Filter ORU
17.220.04 0.00 0.00 0.00 17.220.04 0.00 0.00 0.00 20.540.05 0.00 0.00 0.00 56.830.14 0.00 0.00 0.00 612.481.56 0.00 0.00 0.00

Wa-
ter

H2O-
rec

Multifiltration Bed #1
+ #2 ORUs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 167.740.22 0.00 0.00 0.00 464.080.60 0.00 0.00 0.00 5001.866.51 0.00 0.00 0.00

Wa-
ter

H2O-
rec

Sensor ORU
3.64 0.01 2.13 2.13 0.00 3.64 0.01 2.13 2.13 0.00 3.64 0.01 2.13 2.13 0.00 3.64 0.01 2.13 2.13 0.00 3.64 0.01 2.13 2.13 0.00

Wa-
ter

H2O-
rec

Piping
5.37 0.01 0.00 0.00 0.00 5.37 0.01 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00

Wa-
ter

H2O-
rec

Pump/MLS ORU
30.280.09 51.1751.170.00 30.280.09 51.1751.170.00 18.420.06 19.6219.620.00 18.400.06 19.5419.540.00 18.380.06 19.5019.500.00

Wa-
ter

H2O-
rec

Catalytic Reactor +
Preheeater ORU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 107.90107.900.00 0.00 0.00 107.47107.470.00 0.00 0.00 107.25107.250.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Wa-
ter

H2O-
rec

Oxygen Filter
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wa-
ter

H2O-
rec

Microbial Check Valve
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.16 0.01 0.00 0.00 0.00 5.13 0.01 0.00 0.00 0.00 5.12 0.01 0.00 0.00 0.00

Wa-
ter

H2O-
rec

Gas Separator ORU
43.110.09 132.33132.330.00 43.110.09 132.33132.330.00 26.240.06 50.7350.730.00 26.200.06 50.5350.530.00 26.170.06 50.4350.430.00

Wa-
ter

H2O-
rec

Hygiene H2O Tank
95.900.18 7.05 7.05 0.00 95.900.18 7.05 7.05 0.00 58.360.11 4.72 4.72 0.00 58.270.11 4.71 4.71 0.00 58.220.11 4.71 4.71 0.00

Wa-
ter

H2O-
rec

Product H2O Tank
53.970.19 7.85 7.85 0.00 53.970.19 7.85 7.85 0.00 32.840.12 5.25 5.25 0.00 32.790.12 5.24 5.24 0.00 32.760.12 5.24 5.24 0.00

Wa-
ter

H2O-
rec

Process Controller
36.910.08 156.18156.180.00 36.910.08 156.18156.180.00 36.910.08 156.18156.180.00 36.910.08 156.18156.180.00 36.910.08 156.18156.180.00

Wa-
ter

H2O-
rec

Reactor Health Sensor
8.64 0.04 4.72 4.72 0.00 8.64 0.04 4.72 4.72 0.00 8.64 0.04 4.72 4.72 0.00 8.64 0.04 4.72 4.72 0.00 8.64 0.04 4.72 4.72 0.00

Wa-
ter

H2O-
rec

H2O Delivery System
42.970.11 2.88 2.88 0.00 42.970.11 2.88 2.88 0.00 26.150.06 1.93 1.93 0.00 26.110.06 1.93 1.93 0.00 26.090.06 1.92 1.92 0.00

Wa-
ter

WRS Ion Exchange Bed
2.78 0.00 0.00 0.00 0.00 2.78 0.00 0.00 0.00 0.00 2.78 0.00 0.00 0.00 0.00 7.70 0.01 0.00 0.00 0.00 83.020.11 0.00 0.00 0.00

Wa-
ter

Urine-
proc

Pressure Control +
Pump (PCPA) 27.140.04 5.73 5.73 0.00 27.140.04 5.73 5.73 0.00 33.730.05 9.83 9.83 0.00 33.640.05 9.77 9.77 0.00 33.600.05 9.75 9.75 0.00

Wa-
ter

Urine-
proc

Fluid Control + Pump
(FCPA) 27.630.04 8.30 8.30 0.00 27.630.04 8.30 8.30 0.00 34.350.05 14.2614.260.00 34.260.05 14.1814.180.00 34.210.05 14.1414.140.00

Wa-
ter

Urine-
proc

Recycle Filter Tank
(RFTA) 11.550.06 0.00 0.00 0.00 11.550.06 0.00 0.00 0.00 14.350.08 0.00 0.00 0.00 14.320.08 0.00 0.00 0.00 14.300.08 0.00 0.00 0.00

Wa-
ter

Urine-
proc

Wastewater Storage
Tank Assembly (WSTA) 28.950.02 0.08 0.08 0.00 28.950.02 0.08 0.08 0.00 35.980.03 0.14 0.14 0.00 35.890.03 0.14 0.14 0.00 35.840.03 0.14 0.14 0.00

Wa-
ter

Urine-
proc

Distillation Assembly
(DA) 45.810.09 79.3579.350.00 45.810.09 79.3579.350.00 56.940.11 136.22136.220.00 56.790.11 135.46135.460.00 56.720.11 135.08135.080.00

Wa-
ter

Urine-
proc

Separator Plumbing
Assembly (SPA) 9.87 0.02 0.00 0.00 0.00 9.87 0.02 0.00 0.00 0.00 12.270.02 0.00 0.00 0.00 12.240.02 0.00 0.00 0.00 12.220.02 0.00 0.00 0.00

Wa-
ter

Urine-
proc

Power Module (Included
in FCA) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wa-
ter

Urine-
proc

Firmware Controller
Assembly (Data Module,
Power Module)

24.090.03 150.09150.090.00 24.090.03 150.09150.090.00 24.090.03 150.09150.090.00 24.090.03 150.09150.090.00 24.090.03 150.09150.090.00

Wa-
ter

Urine-
proc

Piping
7.55 0.01 0.00 0.00 0.00 7.55 0.01 0.00 0.00 0.00 9.38 0.02 0.00 0.00 0.00 9.36 0.02 0.00 0.00 0.00 9.34 0.02 0.00 0.00 0.00

Wa-
ter Volatile-

rem

Catalytic Reactor +
Preheater ORU 0.00 0.00 90.4890.480.00 0.00 0.00 90.4890.480.00 0.00 0.00 90.4890.480.00 0.00 0.00 90.4890.480.00 0.00 0.00 90.4890.480.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Wa-
ter Volatile-

rem

Gas Separator ORU
24.540.05 42.5442.540.00 24.540.05 42.5442.540.00 24.540.05 42.5442.540.00 24.540.05 42.5442.540.00 24.540.05 42.5442.540.00

Wa-
ter Volatile-

rem

Oxygen Filter
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wa-
ter Volatile-

rem

Piping
1.26 0.00 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00

Wa-
ter

Tank Product H2O Tank
101.120.36 13.6513.650.00 101.120.36 13.6513.650.00 84.820.30 11.6411.640.00 137.090.49 18.0718.070.00 937.433.33 116.48116.480.00

Wa-
ter

Tank H2O Stored
256.990.00 0.00 0.00 0.00 256.990.00 0.00 0.00 0.00 205.560.00 0.00 0.00 0.00 370.550.00 0.00 0.00 0.00 2897.030.00 0.00 0.00 0.00

Food Food-
storage

Packaging
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 990.000.00 0.00 0.00 0.00 2707.390.00 0.00 0.00 0.00 29004.850.00 0.00 0.00 0.00

Food Food-
storage

Lockers/Storage
218.863.05 0.00 0.00 0.00 218.863.05 0.00 0.00 0.00 242.763.39 0.00 0.00 0.00 663.889.26 0.00 0.00 0.00 7112.3399.240.00 0.00 0.00

Food Food-
processing

Rehydration Unit and
Conduction Oven 36.300.09 960.00960.000.00 36.300.09 960.00960.000.00 36.300.09 10.0010.000.00 36.300.09 10.0010.000.00 36.300.09 10.0010.000.00

Ther-
mal

CCAA Inlet ORU
0.00 0.00 312.64312.640.00 0.00 0.00 312.64312.640.00 0.00 0.00 299.23299.230.00 0.00 0.00 299.08299.080.00 0.00 0.00 299.00299.000.00

Ther-
mal

CCAA Condensing Heat Ex-
changer 37.690.07 0.00 0.00 0.00 37.690.07 0.00 0.00 0.00 34.910.07 0.00 0.00 0.00 34.900.07 0.00 0.00 0.00 34.890.07 0.00 0.00 0.00

Ther-
mal

CCAA Water Separator
6.41 0.04 10.1910.190.00 6.41 0.04 10.1910.190.00 5.31 0.04 3.38 3.38 0.00 5.30 0.04 3.35 3.35 0.00 5.30 0.04 3.34 3.34 0.00

Ther-
mal

CCAA Temp. Control + Check
Valve 4.09 0.03 0.06 0.06 0.00 4.09 0.03 0.06 0.06 0.00 3.89 0.03 0.06 0.06 0.00 3.89 0.03 0.06 0.06 0.00 3.89 0.03 0.06 0.06 0.00

Ther-
mal

CCAA Electrical Interface Box
(EIB) 4.10 0.01 8.00 8.00 0.00 4.10 0.01 8.00 8.00 0.00 4.10 0.01 8.00 8.00 0.00 4.10 0.01 8.00 8.00 0.00 4.10 0.01 8.00 8.00 0.00

Ther-
mal

CCAA Temp. Sensor
0.24 0.00 0.01 0.01 0.00 0.24 0.00 0.01 0.01 0.00 0.24 0.00 0.01 0.01 0.00 0.24 0.00 0.01 0.01 0.00 0.24 0.00 0.01 0.01 0.00

Ther-
mal

CCAA Liquid Sensor
0.47 0.00 0.01 0.01 0.00 0.47 0.00 0.01 0.01 0.00 0.47 0.00 0.01 0.01 0.00 0.47 0.00 0.01 0.01 0.00 0.47 0.00 0.01 0.01 0.00
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Table S21: ESM parameters for all inventory items broken down by system and subsystem for each scenario described in Table S20. Parameters
included are mass M [kg], V [m3], power P [kW], cooling C [kW], and crew-time CT [hr][17, 317]. The ESM values correspond to a single sortie
Snum = 1. (ORU = Orbital Replacement Unit)

A B C D E

Sys-
tem

Sub-
system

Item
M V P C CT M V P C CT M V P C CT M V P C CT M V P C CT

Ther-
mal

CCAA Fan Delta P Sensor
0.40 0.00 0.20 0.20 0.00 0.40 0.00 0.20 0.20 0.00 0.40 0.00 0.20 0.20 0.00 0.40 0.00 0.20 0.20 0.00 0.40 0.00 0.20 0.20 0.00

Ther-
mal

CCAA Pressure Sensor
0.30 0.00 0.20 0.20 0.00 0.30 0.00 0.20 0.20 0.00 0.30 0.00 0.20 0.20 0.00 0.30 0.00 0.20 0.20 0.00 0.30 0.00 0.20 0.20 0.00

Ther-
mal

Atmos-
cont

HEPA Filter Element
49.220.19 0.00 0.00 0.99 49.220.19 0.00 0.00 0.99 49.220.19 0.00 0.00 0.99 49.220.19 0.00 0.00 2.74 49.220.19 0.00 0.00 29.59

Ther-
mal

Atmos-
cont

Catalytic Filter Element
54.000.08 0.00 0.00 0.00 54.000.08 0.00 0.00 0.00 54.000.08 0.00 0.00 0.00 54.000.08 0.00 0.00 0.00 54.000.08 0.00 0.00 0.00

Ther-
mal

Atmosphere-
circ

IMV Fan
4.77 0.01 55.0055.000.00 4.77 0.01 55.0055.000.00 4.77 0.01 55.0055.000.00 4.77 0.01 55.0055.000.00 4.77 0.01 55.0055.000.00

Ther-
mal

Atmosphere-
circ

IMV Valve
5.10 0.01 6.00 6.00 0.00 5.10 0.01 6.00 6.00 0.00 5.10 0.01 6.00 6.00 0.00 5.10 0.01 6.00 6.00 0.00 5.10 0.01 6.00 6.00 0.00

Ther-
mal

AAA Avionics Air Assembly
12.400.03 175.00175.000.00 12.400.03 175.00175.000.00 12.400.03 175.00175.000.00 12.400.03 175.00175.000.00 12.400.03 175.00175.000.00

Ther-
mal

ITCS ITCS
211.830.36 2585.102585.100.00 211.830.36 2585.102585.100.00 211.830.36 2585.102585.100.00 212.490.36 2595.442595.440.00 217.230.36 2669.942669.940.00

Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Air APC Vent/Relief Valve 1 0 0 0 0 0 0 0 0 0 0
Air APC Pressure Control Panel 0.2 0.1 0.7 0 0 0 0 0 0 0 0
Air APC Manual Pressure Equalization Valve 1 0 0 0 0 0 0 0 0 0 0
Air APC Positive Pressure Relief Valve 1 0 0 0 0 0 0 0 0 0 0
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Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Air APC Negative Pressure Relief Valve 1 0 0 0 0 0 0 0 0 0 0
Air APC Nitrogen Interface Assembly 1 0 0 0 0 0 0 0 0 0 0
Air APC Vacuum Access Jumper 5-ft 0 0 1 0 0 0 0 0 0 0 0
Air APC Vacuum Access Jumper 35-ft 0 0 1 0 0 0 0 0 0 0 0
Air ACMA Verification Gas Assembly 0.5 0 0 0 0 0 0 0.5 0 0 0
Air ACMA Mass Spectrometer 0.5 0 0.5 0 0 0 0 0 0 0 0
Air ACMA Sample Pump 1 0 0 0 0 0 0 0 0 0 0
Air ACMA Sample Distributor 0.95 0 0 0.05 0 0 0 0 0 0 0
Air ACMA Data + Control 0.5 0 0.5 0 0 0 0 0 0 0 0
Air ACMA Low Volt. Power supply 0.7 0 0 0 0 0.1 0.1 0 0 0 0.1
Air ACMA Chassis 1 0 0 0 0 0 0 0 0 0 0
Air ACMA Inlet Valve Assembly 0.9 0 0 0.01 0 0 0 0 0 0.09 0
Air ACMA EMI Filter 0.98 0.02 0 0 0 0 0 0 0 0 0
Air SDS 3-way Solenoid Valves 1 0 0 0 0 0 0 0 0 0 0
Air SDS Manual Valves 1 0 0 0 0 0 0 0 0 0 0
Air SDS Sample Probes 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Air Selector Valve 0.9 0 0 0 0 0 0 0.1 0 0 0
Air CO2-rem Desiccant Bed 0.4 0 0 0 0 0 0.6 0 0 0 0
Air CO2-rem Adsorbent Bed 0.5 0 0 0.2 0 0 0.3 0 0 0 0
Air CO2-rem Air Check Valve 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Heater Controller 0.8 0 0.2 0 0 0 0 0 0 0 0
Air CO2-rem Air Blower 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Pre-cooler 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Blower/Pre-cooler Motor Controller 0.6 0 0.4 0 0 0 0 0 0 0 0
Air CO2-rem CO2 Pump 0.99 0 0 0 0 0 0 0 0 0 0.01
Air CO2-rem CO2 Pump Motor Controller 0.3 0 0.7 0 0 0 0 0 0 0 0
Air CO2-rem Temperature Sensor 0 0 0.6 0 0.4 0 0 0 0 0 0
Air CO2-rem Differential Pressure Sensor 0.1 0.25 0.65 0 0 0 0 0 0 0 0
Air CO2-rem Absolute Pressure Sensor 0.75 0 0 0 0 0 0.25 0 0 0 0
Air CO2-rem Electrical Harness 0.9 0.05 0 0.05 0 0 0 0 0 0 0
Air CO2-rem Plumbing 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Support Structure 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Fluid Disconnects 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Electronics Cold-Plate 1 0 0 0 0 0 0 0 0 0 0
Air CO2-rem Electronics Interface Plate 1 0 0 0 0 0 0 0 0 0 0
Air N2 MD Shield Instl 1 0 0 0 0 0 0 0 0 0 0
Air N2 Multilayer Insulation Assembly-T #1 1 0 0 0 0 0 0 0 0 0 0
Air N2 Multilayer Insulation Assembly-T #2 1 0 0 0 0 0 0 0 0 0 0
Air N2 Primary Structure Assembly-HPG

ORU
0.5 0 0 0 0 0 0 0.5 0 0 0
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Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Air N2 Tank ORU Assembly 1 0 0 0 0 0 0 0 0 0 0
Air N2 Utilities Installation - O2/N2 Tank 0.5 0 0 0 0 0 0 0.5 0 0 0
Air N2 N2 Bare Tank 0.9 0 0 0 0 0.05 0 0.05 0 0 0
Air N2 HPGA Fluid 0 0 0 0 0 0 0 0 0 1 0
Air N2 Handhold, top mounted 0 1 0 0 0 0 0 0 0 0 0
Air N2 Handrail 21.941 in custom 0 1 0 0 0 0 0 0 0 0 0
Air N2 Handrail, top mounted 0 1 0 0 0 0 0 0 0 0 0
Air N2 Grapple Fixture, flt releasable 0.5 0 0.5 0 0 0 0 0 0 0 0
Air N2 Accessories 0 0 0 0 0 0 0 0 0 0 0
Air O2 MD Shield Instl 1 0 0 0 0 0 0 0 0 0 0
Air O2 Multilayer Insulation Assembly-T #1 1 0 0 0 0 0 0 0 0 0 0
Air O2 Multilayer Insulation Assembly-T #2 1 0 0 0 0 0 0 0 0 0 0
Air O2 Primary Structure Assembly-HPG

ORU
0.5 0 0 0 0 0 0 0.5 0 0 0

Air O2 Tank ORU Assembly 1 0 0 0 0 0 0 0 0 0 0
Air O2 Utilities Installation - O2/N2 Tank 0.5 0 0 0 0 0 0 0.5 0 0 0
Air O2 O2 Bare Tank 0.95 0 0 0 0 0 0 0.05 0 0 0
Air O2 HPGA Fluid 0 0 0 0 0 0 0 0 0 1 0
Air O2 Handhold, top mounted 0 1 0 0 0 0 0 0 0 0 0
Air O2 Handrail 21.941 in custom 0 1 0 0 0 0 0 0 0 0 0
Air O2 Handrail, top mounted 0 1 0 0 0 0 0 0 0 0 0
Air O2 Grapple Fixture, flt releasable 0.5 0 0.5 0 0 0 0 0 0 0 0
Air O2 Accessories 0 0 0 0 0 0 0 0 0 0 0
Air Sabatier Condensing Heat Exchanger 0.9 0 0.1 0 0 0 0 0 0 0 0
Air Sabatier AAA Heat Exchanger 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier ITCS Coolant Water Inlet QD 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier ITCS Coolant Water Outlet QD 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Heat Exchanger Inlet Temp 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Heat Exchanger Outlet Temp 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Manifold, CO2 0.95 0.05 0 0 0 0 0 0 0 0 0
Air Sabatier CO2 Inlet Check Valve 0.9 0.1 0 0 0 0 0 0 0 0 0
Air Sabatier CO2 Inlet Filter 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Pressure Sensor, CO2 Inlet 0 0 0.6 0 0.4 0 0 0 0 0 0
Air Sabatier CO2 Inlet QD 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier CO2 Inlet Regulator 0.9 0.05 0 0 0.05 0 0 0 0 0 0
Air Sabatier CO2 Inlet NC Solenoid 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier CO2 Inlet Flow Control 0.85 0.05 0 0 0.1 0 0 0 0 0 0
Air Sabatier CO2 Flow Control Orifice 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Delta P Sensor, Flow Sensor CO2 0 0 0.6 0 0.4 0 0 0 0 0 0
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Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Air Sabatier CO2 Flow Meter Orifice 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Manifold, Hydrogen 0.95 0.05 0 0 0 0 0 0 0 0 0
Air Sabatier Water Outlet Quick Disconnect 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Hydrogen Inlet Check Valve 0.9 0.1 0 0 0 0 0 0 0 0 0
Air Sabatier Hydrogen Inlet Filter 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier H2O Outlet Pressure Sensor 0 0 0.6 0 0.4 0 0 0 0 0 0
Air Sabatier Hydrogen Inlet Quick Disconnect 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Hydrogen Inlet NC Solenoid 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Delta P Sensor, Flow Sensor H2 0 0 0.6 0 0.4 0 0 0 0 0 0
Air Sabatier H2 Flow Meter Orifice 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Manifold, Vent 0.95 0.05 0 0 0 0 0 0 0 0 0
Air Sabatier Liquid Sensor 0 0.5 0.5 0 0 0 0 0 0 0 0
Air Sabatier Vent Pressure Sensor 0 0 0.6 0 0.4 0 0 0 0 0 0
Air Sabatier Vent Outlet Quick Disconnect 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Vent Regulator 0.9 0.05 0 0 0.05 0 0 0 0 0 0
Air Sabatier Vent Relief/Check #1 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Vent Relief/Check #2 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Vent Outlet NO Solenoid 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Water Pressure Sensor 0 0 0.6 0 0.4 0 0 0 0 0 0
Air Sabatier Water Relief 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Water Outlet NC Solenoid 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Rotary Water Separator Assembly 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Sabatier Reactor Assembly 0.9 0 0.1 0 0 0 0 0 0 0 0
Air Sabatier Structure (A/R) 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Miscellaneous Hardware (clamps,

bolts, etc.) (A/R)
1 0 0 0 0 0 0 0 0 0 0

Air Sabatier Air Cooling NC Solenoid 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Air Inlet Filter 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Air Sabatier Orifice 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Heat Exchanger Inlet Duct 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Heat Exchanger Outlet Duct 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Reactor Inlet Duct 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Reactor Outlet Duct 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Tubing (A/R) 1 0 0 0 0 0 0 0 0 0 0
Air Sabatier Harnesses 0.9 0.05 0 0.05 0 0 0 0 0 0 0
Air Sabatier Valves + Sensors’ Total Power 0 0 1 0 0 0 0 0 0 0 0
Air Sabatier Mechanical Compressor ORU 0.9 0.1 0 0 0 0 0 0 0 0

0.001
Air Sabatier Compressor Manifold Assembly 0.95 0.05 0 0 0 0 0 0 0 0 0
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Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Air Sabatier Controller Assembly 0 0.2 0.8 0 0 0 0 0 0 0 0
Air Sabatier CO2 Accumulator 1 0 0 0 0 0 0 0 0 0 0
Air O2-gen Deionizing Bed ORU (Inlet) 0.05 0.15 0 0 0 0 0 0 0 0 0.8
Air O2-gen Deionizing Bed ORU (Recirculating) 0.05 0.15 0 0 0 0 0 0 0 0 0.8
Air O2-gen Oxygen/Water ORU 0.33 0 0 0 0 0 0 0.33 0 0.33 0
Air O2-gen Pump ORU 1 0 0 0 0 0 0 0 0 0 0
Air O2-gen Oxygen Phase Separator ORU 1 0 0 0 0 0 0 0 0 0 0
Air O2-gen Hydrogen ORU 1 0 0 0 0 0 0 0 0 0 0
Air O2-gen Hydrogen Sensor ORU 1 0 0 0 0 0 0 0 0 0 0
Air O2-gen Process Controller 0.3

0.001
0.7 0 0 0 0 0 0 0 0

Air O2-gen Power Supply Module (PSM) 0.7 0 0 0 0 0.1 0.1 0 0 0 0.1
Air Fire-det-

sup
Fire Detection Assembly 0.05 0.9 0.05 0 0 0 0 0 0 0 0

Air Fire-det-
sup

Portable Fire Extinguisher 0.6 0 0 0 0 0 0 0.2 0 0 0.2

Air ACO2R Regenerator 1 0.98 0.01 0 0 0.01 0 0 0 0 0 0
Air ACO2R Metox Canisters 1 0 0 0 0 0 0 0 0 0 0
Air TCCS-

ISS
Activated Charcoal Bed 0 0.5 0 0 0 0 0.5 0 0 0 0

Air TCCS-
ISS

Blower Assembly 0.8 0 0.2 0 0 0 0 0 0 0 0

Air TCCS-
ISS

Flow Meter Assembly 0.7 0.1 0.1 0 0.1 0 0 0 0 0 0

Air TCCS-
ISS

Catalytic Oxidizer Assembly 1 0 0 0 0 0 0 0 0 0 0

Air TCCS-
ISS

LiOH Sorbent Bed Assembly 0.07 0.03 0 0 0 0 0.9 0 0 0 0

Air TCCS-
ISS

Electrical interface assembly 0 0 1 0 0 0 0 0 0 0 0

Waste PMWC Aluminum Compaction cylinder 1 0 0 0 0 0 0 0 0 0 0
Waste PMWC Band-type heating unit 0.9 0 0 0 0 0 0.1 0 0 0 0
Waste PMWC Lightweight, Oil-Less, Compressor/-

Vacuum Pump
0.9 0 0.1 0 0 0 0 0 0 0 0

Waste PMWC Temperature Sensor 0 0 0.6 0 0.4 0 0 0 0 0 0
Waste PMWC Pressure Sensor 0.1 0.25 0.65 0 0 0 0 0 0 0 0
Waste PMWC Housing + Mounting Equipment 1 0 0 0 0 0 0 0 0 0 0
Waste PMWC Condensing Heat Exchanger 1 0 0 0 0 0 0 0 0 0 0
Waste PMWC Cooling system 1 0 0 0 0 0 0 0 0 0 0
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Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Waste Waste-
storage

Low Density PolyEthylene Box 0 1 0 0 0 0 0 0 0 0 0

Waste Waste-col Commode/Urinal 0 1 0 0 0 0 0 0 0 0 0
Waste Waste-col Fan 1 0 0 0 0 0 0 0 0 0 0
Waste Waste-col Urine Separator 0.9 0 0.09 0.01 0 0 0 0 0 0 0
Waste Waste-col Urine Vent Heater 1 0 0 0 0 0 0 0 0 0 0
Waste Waste-col Fecal Bags 0 0 0 1 0 0 0 0 0 0 0
Waste Waste-col Wipes, Dry 0 0 0 1 0 0 0 0 0 0 0
Waste Waste-col Wipes, Wet 0 0 0 0.6 0 0 0 0 0 0.4 0
Waste Waste-col Wipes, Toilet Tissue 0 0 0 0 0 0 0 0 0 0 1
Waste Waste-col Gloves 0 1 0 0 0 0 0 0 0 0 0
Waste Waste-col Fecal Bags Odor Lids 0 1 0 0 0 0 0 0 0 0 0
Waste Waste-col Fecal collection Canisters 0 0.9 0 0.1 0 0 0 0 0 0 0
Waste Waste-col Fecal collection Canisters lids 0 1 0 0 0 0 0 0 0 0 0
Waste Waste-col Urine Prefilters 1 0 0 0 0 0 0 0 0 0 0
Waste Waste-col Urine Filters 0 0 0 1 0 0 0 0 0 0 0
Waste Waste-col Urine Funnels 1 0 0 0 0 0 0 0 0 0 0
Waste Waste-col Flush Water Transfer Bags 0 0.3 0 0.7 0 0 0 0 0 0 0
Waste TCCS-

ISS-x3
Activated Charcoal Bed 0 0.5 0 0 0 0 0 0 0 0 0.5

Waste TCCS-
ISS-x4

Blower Assembly 0.8 0 0.2 0 0 0 0 0 0 0 0

Waste TCCS-
ISS-x5

Flow Meter Assembly 0.7 0.1 0.1 0 0.1 0 0 0 0 0 0

Waste TCCS-
ISS-x6

Catalytic Oxidizer Assembly 1 0 0 0 0 0 0 0 0 0 0

Waste TCCS-
ISS-x7

LiOH Sorbent Bed Assembly 0.07 0.03 0 0 0 0 0.9 0 0 0 0

Waste TCCS-
ISS-x8

Electrical Interface Assembly 0 0 1 0 0 0 0 0 0 0 0

Water Water-rec MLS Filter ORU 0.5 0 0.5 0 0 0 0 0 0 0 0
Water Water-rec Particulate Filter ORU 0.9 0 0 0 0 0 0 0 0 0 0.1
Water Water-rec Multifiltration Bed #1 + #2 ORUs 0.07 0.03 0 0 0 0 0 0 0 0.9 0
Water Water-rec Sensor ORU 0 0.6 0.2 0 0.2 0 0 0 0 0 0
Water Water-rec Piping 1 0 0 0 0 0 0 0 0 0 0
Water Water-rec Pump/MLS ORU 0.5 0 0.5 0 0 0 0 0 0 0 0
Water Water-rec Catalytic Reactor + Preheater ORU 1 0 0 0 0 0 0 0 0 0 0
Water Water-rec Oxygen Filter 0.5 0.5 0 0 0 0 0 0 0 0 0
Water Water-rec Microbial Check Valve 0.99 0 0 0 0 0 0 0 0 0 0.01
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Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Water Water-rec Gas Separator ORU 0.9 0.1 0 0 0 0 0 0 0 0
0.001

Water Water-rec Hygiene H2O Tank 0 1 0 0 0 0 0 0 0 0 0
Water Water-rec Product H2O Tank 0 1 0 0 0 0 0 0 0 0 0
Water Water-rec Process Controller 0.3

0.001
0.7 0 0 0 0 0 0 0 0

Water Water-rec Reactor Health Sensor 0.1 0.2 0.6 0 0 0 0.1 0 0 0 0
Water Water-rec H2O Delivery System 0.9 0 0 0 0 0.1 0 0 0 0 0
Water Urine-

proc
Pressure Control + Pump (PCPA) 0.7 0.2 0.1 0 0 0 0 0 0 0 0

Water Urine-
proc

Fluid Control + Pump (FCPA) 0.7 0.2 0.1 0 0 0 0 0 0 0 0

Water Urine-
proc

Recycle Filter Tank (RFTA) 0 1 0 0 0 0 0 0 0 0 0

Water Urine-
proc

Wastewater Storage Tank Assembly
(WSTA)

1 0 0 0 0 0 0 0 0 0 0

Water Urine-
proc

Distillation Assembly (DA) 0.6 0 0.1 0 0.3 0 0 0 0 0 0

Water Urine-
proc

Separator Plumbing Assembly (SPA) 0.99 0.01 0 0 0 0 0 0 0 0 0

Water Urine-
proc

Power Module (Included in FCA) 0 0 0 0 0 0 0 0 0 0 0

Water Urine-
proc

Firmware Controller Assembly (Data
Module, Power Module)

0.8 0 0.2 0 0 0 0 0 0 0 0

Water Urine-
proc

Piping 1 0 0 0 0 0 0 0 0 0 0

Water Volatile-
rem

Catalytic Reactor + Preheater ORU 1 0 0 0 0 0 0 0 0 0 0

Water Volatile-
rem

Gas Separator ORU 0.9 0.1 0 0 0 0 0 0 0 0
0.001

Water Volatile-
rem

Oxygen Filter 0.5 0.5 0 0 0 0 0 0 0 0 0

Water Volatile-
rem

Piping 1 0 0 0 0 0 0 0 0 0 0

Water Tank Product H2O Tank 0 1 0 0 0 0 0 0 0 0 0
Water Tank H2O Stored 0 0 0 0 0 0 0 0 0 1 0
Food Food-stor Lockers 0.25 0.25 0 0 0 0 0 0 0.5 0 0
Food Food-

proc
Rehydration Unit and Conduction
Oven

0.7 0.05 0.25 0 0 0 0 0 0 0 0
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Table S22: Estimation of inventory items into exemplar classes broken down by system and subsystem for each scenario described in Table S20. Classes
include: Structural Metal, Plastic, Electronics, Fabric, Glass, Rubber, Ceramics, Gas, Biomass, Water, Other. (ORU = Orbital Replacement Unit)

System Subsys-
tem

Item
Struc-
tural
Metal

Plas-
tic

Elec-
tron-
ics

Fab-
ric Glass

Rub-
ber

Ce-
ram-
ics

Gas
Biomass

Wa-
ter Other

Thermal CCAA Inlet ORU 1 0 0 0 0 0 0 0 0 0 0
Thermal CCAA Condensing Heat Exchanger 1 0 0 0 0 0 0 0 0 0 0
Thermal CCAA Water Separator 0.99 0 0 0 0 0 0 0 0 0 0.01
Thermal CCAA Temp Control + Check Valve 0.8 0.15 0 0.05 0 0 0 0 0 0 0
Thermal CCAA Electrical Interface Box (EIB) 0.9 0 0.1 0 0 0 0 0 0 0 0
Thermal CCAA Temp Sensor 0 0 0.6 0 0.4 0 0 0 0 0 0
Thermal CCAA Liquid Sensor 0 0.5 0.5 0 0 0 0 0 0 0 0
Thermal CCAA Fan Delta P Sensor 0.9 0 0.1 0 0 0 0 0 0 0 0
Thermal CCAA Pressure Sensor 0.1 0.25 0.65 0 0 0 0 0 0 0 0
Thermal Atmos-

con
HEPA Filter Element 0.7 0 0 0 0.3 0 0 0 0 0 0

Thermal Atmos-
con

Catalytic Filter Element 0 0.7 0 0.3 0 0 0 0 0 0 0

Thermal Atmos-
circ

IMV Fan 0.9 0.05 0 0.05 0 0 0 0 0 0 0

Thermal Atmos-
circ

IMV Valve 1 0 0 0 0 0 0 0 0 0 0

Thermal AAA Avionics Air Assembly 0.8 0.1 0 0.1 0 0 0 0 0 0 0



CHAPTER 11. APPENDIX 187

Opportunities for Biomanufacturing-based 3D- and bio-printing
in Space

Bioprinting for Medical Applications

Advancing manufacturing and application concepts now aim to enable non-terran medical
therapeutics beyond conventional pharmacological and medical device design, production,
and treatment strategies translated from Earth deployment[387]. Among these developments
are in vitro biofabrication models being prepared and tested in Space for the reduction to
practice of bioficial tissue and organ manufacturing capable of supporting on-demand per-
sonalized medicine through autologous organs and systems repair or replacement. Nearly
two-decades of Earth-based demonstrations show that 3D bio-printing of live cells provides
feasible physical healthcare solutions in nonsurgical and surgical settings[509, 571, 353]. The
constraints of Space and extraterrestrial environments, however, demand specialized stan-
dards for bio-printing, bio-product utilization, and medical/surgical procedures that cur-
rently restrict the near-term state-of-art to high positive-outcome healthcare interventions,
such as bone and skin repair, which are more easily performed by suitably trained spaceflight
surgeons and assistive medical staff using portable biomedical technologies and additional
infrastructure in microgravity[462, 566, 189].

Despite these constraints, existing in-Space manufacturing technologies and methods
outpace the readiness to practice sophisticated Earth medical and surgical procedures in
off-Earth scenarios. For example, the Russian Space Agency and partners printed the first
live tissue, a mouse thyroid, aboard the ISS using self-assembly magnetic manipulation,
eliminating the need for traditional bio-compatible scaffolding techniques to organize and
support cell structure, proliferation, differentiation, and extracellular matrix production[101,
421]. Alternate scaffold-free preparations, such as those employing hydrogels and metallic
needles or electrostatic, acoustic, and gravitational forces, also offer practical solutions for
implementing tissue and organ bio-printing in Space. NASA’s Centennial Vascular Tissue
Challenge will evaluate two of these methods, gel- and gravity-directed organ assembly, using
the ISS BioFabrication Facility (BFF). The BFF is a collaboration between private industry
and NASA that was launched to study and perfect the printing of human cells and organ-like
tissues in microgravity.

Although human joint menisci with simple vascular zones have been already constructed
on the ISS, technical obstacles remain for the bio-printing of sustainably viable complex
organs believed necessary to replace astronaut anatomy, which may become damaged or dis-
eased from long-duration space-travel and habitation. Th winners of the Centennial Vascular
Tissue Challenge will, for instance, focus on improving organotypic vascular engineering of
artificial liver -– the building of vascular networks that perfuse cells with nutrients and oxy-
gen while removing metabolic waste and other biological toxins and debris[210]. Achieving
naturalistic blood supplies for artificial organ systems continues to be a major limitation
for both Earth and Space science and such manufacturing endeavors will help realize cell-

https://www.nasa.gov/directorates/spacetech/centennial_challenges/vascular_tissue.html
https://www.nasa.gov/directorates/spacetech/centennial_challenges/vascular_tissue.html
https://www.issnationallab.org/iss360/3d-printer-for-human-tissue-now-available-for-research-onboard-the-iss-national-laboratory/
https://www.nasa.gov/directorates/spacetech/centennial_challenges/vascular_tissue.html
https://www.nasa.gov/directorates/spacetech/centennial_challenges/vascular_tissue.html
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differentiated organ bio-printing for Space regenerative medicine, complementing a range of
other envisioned off-Earth cell and tissue medical bio-printing applications, including the re-
cent European Space Agency demonstration of skin-wound patching and accelerated healing
with use of the hand-held Bioprint First Aid. Importantly, because 3D bio-printing pre-
sumably benefits from a near weightless manufacturing environment with atomic-level low
mechanical stresses and viscosity[484], orbital facilities similar to the BFF may become signif-
icant supply-chain contributors to the Earth-based regenerative medicine industry, improv-
ing the health, wellness, and longevity of millions or more patients worldwide by catalyzing
technology innovation and application [185].

Fabricating Finished Goods

In 2014, the first three-dimensional (3-D) printed object in space was produced on the ISS
Additive Manufacturing Facility (AMF). Since then, additive manufacturing is actively be-
ing explored and developed in LEO as proving-ground for various off-world scenarios, as
also exemplified by fused filament fabrication (FFF) of ABS (acrylnitril-butadien-styrol),
conducted on the ISS in 2016[438]. The tests showed that 3D-printing of synthetic poly-
mers in microgravity is reliable, because of automation, which privileges new material ex-
ploration: public and private sector alike have 3D-printed hundreds of parts aboard the
ISS made from polymers of various classes[589]. Also the Space-based additive manufac-
turing of non-polymeric materials is being explored: flight-demo technology has featured
flexible electronics, including laser-sintering of copper, printed ceramic sensors, batteries,
and antennas[127]. A build-to-print RF antenna was successfully produced through additive
manufacturing, reducing up-mass and enabling in-Space design customization[187]. Private
companies provide hardware and printing solutions for conductors and dielectrics through
stand-alone R&D printers as well as OEM print-heads that can be integrated with other
additive manufacturing tools and robotic arms, even enabling plasma jet printing.

Potential applications and benefits are manifold and range from ISM to commercializa-
tion of on-Orbit manufacturing techniques. The Redwire Regolith Print study, for example,
optimized on-orbit construction of civil infrastructure with an adoption plan for the Artemis
Program. Material sources are a hybrid of locally (on the Moon) available regolith and
Earth-made binder whose performance holds promise to be matched by biologically-produced
adhesives of macromolecular nature[163]. While theoretically an abundant resource for con-
struction at destination Moon, Lunar regolith is characteristically unlike any Earth material.
Without wind and rain, Lunar regolith particles stay sharp, instead of eroding smooth [422].
This unique topology in combination with small size not only poses significant respiratory
risk to astronauts, as observed during the Apollo missions, but also causes frictional damage
of mechanical equipment[74], which must be accounted for in hardware development.

Aside from applications in ISM, the partial gravity of Space is being explored as a po-
tentially advantageous environment for additive manufacturing of premium goods, because
of suspected benefits in crystallographic consistency, and therefore enhanced performance
of certain products. The first step is to “space-optimize” material processing windows to

https://www.esa.int/ESA_Multimedia/Images/2021/12/Bioprint_First_Aid_handheld_bioprinter
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=1934
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=8429
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account for gravity-mediated changes in sedimentation, rheology, crystallographic organiza-
tion, and thermodynamics [544]. If successful, microgravity theoretically promotes the more
uniform solidification of materials, which transforms the microstructure-dependent perfor-
mance of space forged materials. However, the fabrication of high-fidelity optical ZBLAN
fibers in 2017 [108], for example, found less crystallization, resulting in reduced optical per-
formance of the microgravity-manufactured product [526]. Nevertheless, platforms like the
Turbine Ceramics Manufacturing Module (Turbine CMM) and the Turbine Superalloy Cast-
ing Module (Turbine SCM) for microgravity-based production of ceramics and metal alloys
build on this work and explore microgravity similarly, as means to increase the microhard-
ness of Space-made parts. Overall, the exploration of material processing in Space does not
only serve the advancement of ISM, but translates discoveries back to improve terrestrial
applications[520].

https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7867
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7859
https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7859
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Table S23: Qualitative comparison of biotic vs. abiotic in situ (bio)manufacturing approaches across different des-
tinations in the Solar-system (excluding cis-Lunar, which can be considered as an in-between of Earth Orbit and
destination Moon).

Destinations abiotic biological

Earth Orbit[191]

advantage in certain cases manufacturing in
microgravity may yield a premium
product

bioprinting without structural sta-
bilization and scaffold-free tissue
engineering

re-use/-purposing of infrastructure
on-orbit for strategic reduction of
up-mass

more extensive recycling allows for
tighter loop-closure

drawback
no in situ resource utilization possi-
ble

no in situ resource utilization possi-
ble

in many cases ability to re-supply
outweighs infrastructure-investment

in many cases ability to re-supply
outweighs infrastructure-investment

microgravity makes certain pro-
cesses more difficult

microgravity makes aqueous pro-
cesses challenging

Lunar[495]
advantage

strategic outpost for infrastructure
as stepping stone to the solar sys-
tem

allows resources to be exploit that
are not accessible otherwise

gravity, may allow certain processes
to be adopted more readily

gravity, allows gas/liquid separation
→ operation of aqueous processes

may in some cases save mass/cost
of re-supply

may in some cases expand mission
capabilities

drawback limited portfolio and amount/den-
sity of available resources

resources are limited and processes
are largely dependent on abiotic
ISRU

ability to re-supply and delivery
may often outweigh infrastructure
investment

ability to re-supply and delivery
may outweigh infrastructure invest-
ment

Interplanetary[558]
advantage re-supply not feasible → recycling

and loop-closure compulsory
increased redundancy through flex-
ibility: can allow ad hoc solution of
complex incidental problems

systems proven in LEO are readily
transferable/adaptable

may allow more complete loop-
closure and recycling

drawback no in situ resources available (only
recycling/production from stock)

no in situ resources available (only
recycling/production from stock)

microgravity makes certain pro-
cesses more difficult

microgravity makes aqueous pro-
cesses challenging

Martian[151]
advantage

no supply-chain, just-in-time re-
sponse not feasible → ISRU, LC
and ISM compulsory

especially suited to leverage the
available in situ resources to ex-
pand capabilities

allows resources to be exploit that
are not accessible otherwise

gravity, may allow certain processes
to be adopted more readily

gravity, allows gas/liquid separation
→ operation of aqueous processes

drawback high infrastructure investment high maintenance

not as resilient more susceptible to drift
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Figure S15: Alternate visualization of scenario-dependent inventory-breakdown. The parameter description of ex-
emplar mission-design scenarios is given in panel a: scenarios ‘A’ and ‘B’ correspond to single sorties (N) to the
Moon and Mars respectively using standard surface-operation duration[17], while scenarios ‘C’ and ‘D’ correspond
to multi-sortie campaigns with the same (total) 5,400 days of surface operation as for scenario ‘E’. These parameters
can be used to calculate the ESM cost and include equivalency factors for Volume (Veq), Power (Peq), Cooling (Ceq),
Crew-Time (CTeq), and Location (Leq).
A comparison of ESM and carry-along mass (both in kg) is presented in the scatter-plot b; the dotted line represents a
1:1 correspondence between ESM and carry-along mass to show the trade-offs in systems grouped by element in terms
of non-standard mass components (volume, power, etc.) contributing to cost as compared to only mass. Color-coding
of b corresponds to the bar-charts in c, where the carry-along and ESM are broken down by material-composition.
Note that the carry-along and/or ESM for each scenario are plotted on a log scale. The maximum visible edge of
each bar in a stack represents the corresponding component’s carry-along or ESM value.
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11.5 SI: Sustainability

UN
SDGs

NASA STGC: Expand Human
Presence In Space

NASA STGC: Manage In-space
Resources

NASA STGC: Enable Transfor-
mational Space Exploration And
Scientific Discovery

2,3 Molecular pharming is a perspec-
tive wherein plants are viewed as
chemical factories, synthesizing
desirable compounds with min-
imal inputs. In space, it would
be used to allow astronauts to
quickly respond to unantici-
pated disease states and decrease
the need to bring or resupply
large stockpiles of medication
for longer missions[366]. Terres-
trially, advances in molecular
pharming can create healthier
communities with more robust
responses to sudden changes in
medical needs[393].

Space agriculture has led to
advances in the practice of ver-
tical farming, a system which
minimizes the amount of water,
fertilizer, and pesticides needed
to grow crops[483]. Besides the
efficient use of resources, ver-
tical farming allows crops to
grow anywhere a controlled en-
vironment can be established,
meaning that using vertical farm-
ing would allow densely popu-
lated urban areas to have readier
access to locally grown fresh
produce[45].

The Photobioreactor chamber
on the ISS cultivates microal-
gae in order to create hybrid
life support systems, combining
biological and physicochemical
processes to, for instance, grow
Chlorella vulgaris[410], a mi-
croalgae rich in folate, iron, and
vitamins D and B12, the latter
of which are notably absent from
many traditional plant-based
foods[50] . Advances in the Pho-
tobioreactor chamber have made
it feasible to use it for advanced
wastewater treatment and to
cultivate nutrient-laden biomass
over marine water instead of
land[379].

6 The Microbial Check Valve de-
veloped for the Space Shuttle
passively kills viable microor-
ganisms within water to pre-
vent cross-contamination[27]. In
2012, a water tank based on the
ECLSS Water Recovery System
was installed in Kendala, Iraq, a
city whose population dropped
85% due to a deep-water well
failure, and this tank uses the
Microbial Check Valve to keep
the water clean[274].

The Urine Processor Assembly
on the ISS collects urine and
processes it to potable stan-
dards[543], recovering much of
the water available, but because
urine can theoretically supply
over 60% of the crew’s water de-
mand and the brine can be used
as fertilizer, researchers continue
to study how this system can
be improved[543] Meanwhile on
Earth, urine recovery systems are
being implemented throughout
wastewater systems in Europe,
including by the European Space
Agency[547], for use as fertilizer.
Projections of a hypothetical
urine-diversion system show that
communities could lower their
greenhouse gas emissions by up
to 47%, energy consumption by
up to 41%, and approximately
halve their freshwater usage[225].

The ability to make ultra-pure
water is extremely important
for scientific research as well
as for cooling the Extravehicu-
lar Mobility Unit (EMU) space
suit. Aquaporin-based filtra-
tion, inspired by the aquaporin
proteins found in almost every
organism, is incredibly efficient
and highly specific to filtering
out water[224], and including
it in the EMU design increases
astronaut mobility. As clean
freshwater resources are increas-
ingly strained, there is a pressing
need to improve filtration meth-
ods through non-energy intensive
means, and aquaporins are eyed
for their ability to fulfill this
need[196].
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7 81.4% of human wastewater in
space is urine, and transporting
fresh water to space is expen-
sive. Thus, the Urea Biochemical
Reactor unit (UBR) is being
studied as a way to combine
wastewater treatment to sepa-
rate urea from urine via forward
osmosis, convert urea into am-
monia in a bioreactor, and finally
to convert that ammonia into
energy, for use in space coloniza-
tion. Results from studying the
UBR show that it would work
in any wastewater treatment
containing urine and/or ammo-
nia[409], potentially providing
a new, non-energy or -resource
intensive method for producing
energy on Earth.

Using nutrients from wastewater,
CO2, and solar power, the algae
studied in the NASA OMEGA
project cleaned the wastewater
and produced biomass that could
be used for aviation fuel[586].
Coupled with advances made
in using urine as a wastewa-
ter source for algae[245], with
increased efficiency, this could
provide a way for astronauts to
produce in situ fuel rather than
rely on resupply. The project
renewed interest in using biomass
as a fuel source, developed pro-
tocols for harvesting algae, and
demonstrated that NASA has
the motivation and the resources
to study technological systems
that are applicable both to
rocket science and the search
for efficient, affordable, and re-
newable energy.

At an optimal altitude for fuel
conservation, the ISS expends
about 8000 pounds of propel-
lant a year[281]. Advances in
bio-crude oil manufacturing by
pre-treating microalgae with
NaOH and urea[240] would mean
that astronauts on the ISS would
be able to conserve the amount
of propellant brought and re-
supplied. As the environment is
destroyed to mine natural oil,
this technology presents an al-
ternative way to manufacture
crude oil and make it closer to
becoming a renewable resource.

8,9 Phytoremediation is defined as
the use of plants for remedia-
tion of contaminants[93]. In the
1980s, NASA studied closed-
system applications of phytore-
mediation to create a healthy
environment for astronauts off-
world, and studies afterwards
validated the idea that phytore-
mediation can effectively re-
move particulate matter, volatile
organic compounds, and inor-
ganic pollutants with minimal
inputs[206]. This knowledge has
been used to develop living walls,
which have increased insulation
and promote social and physical
health using fewer inputs than
traditional methods of urban
construction[490].

Concrete production, especially
making the boiled limestone that
acts as a binding agent, accounts
for 5% of anthropogenic carbon
emissions[378]. Due to radia-
tion and micrometeorites on the
Moon and Mars, long-term hu-
man settlement on either will
necessitate high amounts of con-
crete[405], but shipping tons of
concrete to either location is not
feasible, and traditional meth-
ods of making concrete are too
energy-intensive, at least ini-
tially, to use off-world. To solve
this issue, environmental engi-
neers developed a method to
harvest the binder from organ-
isms[14] that could be shipped to
other planets relatively cheaply
and used in place of boiled lime-
stone on Earth, lowering carbon
emissions from concrete produc-
tion.

The original purpose of Bio-
sphere 2 (B2), a miniaturized
version of Earth’s ecological en-
vironments, was to establish a
baseline for designing structures
for long-term human habituation
in space[14]. The B2 experiment
informed other initiatives to sim-
ulate what life on the Moon and
Mars would look like, such as HI-
SEAS or PISCES[459]. Today,
experiments in B2 are focused
on improving ecology and eco-
technology on Earth[408].
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11,12
One goal of MELiSSA is to cre-
ate a closed-loop system in deep
space which supplies astronauts
with fresh air, water, and food
using microbial recycling of hu-
man waste[548]. As the pop-
ulation grows and real estate
becomes more limited, human-
centered and sustainability-
minded design philosophies are
being used in cities. MELiSSA
offers a potential blueprint for
such design, by internalizing the
complex relationships between
humans and their environment
while prioritizing sustainability.

Polyhydroxyalkanoate (PHA)
polymers produced by bacteria
and archaea are able to be used
as biodegradable thermoplas-
tics[432, 525], and have already
tapped by NASA for use in long-
term extraterrestrial missions
precisely because they make
production of needed materials
possible even in space[90]. They
have been studied for their use
as a potential replacement for
polyolefins in single-use plas-
tics, in the hopes that in areas
where single-use plastic is un-
avoidable (e.g. in medicine or
research), PHAs would create
less non-degradable waste[432].
Considering that the require-
ments for plastic production in
space include producing minimal
useless waste and that the plas-
tics would have to meet the high
standards of a top-of-the-line
lab, perfecting the technology for
NASA would mean that terres-
trially, citizens would have access
to plastics that are degradable
but still safe enough for use in
laboratory or medical environ-
ments.

So-called ‘sick building syn-
drome’ is a phenomenon wherein
workers, especially if there are
many of them, experience vari-
ous health problems as a result
of staying in a poorly ventilated
building[450]. NASA has funded
experiments which showed that
houseplants in conjunction with
activated charcoal efficiently
cleaned indoor air pollutants[569,
570], and this research may be
used to design space stations and
terrestrial buildings which are
conducive to the good health of
their occupants.

13 Biofuels derived from cellulosic
feedstocks (e.g. switchgrass,
wood residues, etc.) have lower
lifetime greenhouse gas emis-
sions than those of petroleum
fuels[288]. NASA has studied cel-
lulosic biofuels for their potential
as an in situ way of manufac-
turing fuel off-world[496] and
developed enzyme structures
which could facilitate access to
biomass and biofuels[382]. On
Earth, researchers are study-
ing potentially carbon-negative
biofuel production utilizing cel-
lulosic feedstocks[288], which
would require highly efficient
processes potentially aided by
NASA’s research in enzymes to
improve biomass production.

The Haber-Bosch process, which
produces ammonia to be used
in fertilizers and pharmaceuti-
cals, requires large energy in-
puts[78] and releases 1.2% of
global anthropogenic CO2 emis-
sions[494]. For space exploration,
which thrusts astronauts into
incredibly resource-limited en-
vironments, alternatives such
as bacterial nitrogen fixation
and urine ammonia extraction
have been studied[302]. Meth-
ods which efficiently produce the
ammonia astronauts need, us-
ing minimal energy inputs and
recycled materials as feedstock,
provides industrial chemical syn-
thesizers strategies for ammonia
production with a much smaller
carbon footprint.

NASA’s Surface Adhering BioRe-
actor has a low energy and water
input for cultivating microalgae.
Microalgae can grow in extreme
environments including micro-
gravity[550], high temperature,
solar radiation[423], and high
salinity[8], to produce essential
consumables and biofuels[533],
making cultivation even on Earth
relatively simple. Microalgae can
be used for efficient CO2 scrub-
bing, which would make signif-
icant progress towards cleaning
the roughly 75% of greenhouse
gas emissions that is CO2[500,
413].

Table S24: Space Bioprocess Engineering technologies in the context of NASA’s Space Technology Grand Challenges
(STGCs) and United Nations Sustainability Development Goals (SDGs). Extended Version.
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