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Abstract

Rogue waves in unidirectional seas: statistics and prediction

by

Qiuchen Guo

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Associate Professor Mohammed-Reza Alam, Chair

The ability of accurately predicting the occurrence of rogue waves(i.e. time, location
and maximum height) in the open ocean is limited by sparsity of field measurements and
accuracy in numerical models. The difficulties with the latter arise primarily from the ability
of taking into higher order nonlinearity, as well as allowing various mechanisms in rogue wave
formations. In this dissertation, several steps on quantitative analysis toward understanding
the statistical properties of rogue waves are presented, followed by a pioneer study on rogue
wave prediction in two dimensional framework.

First, an approach to get averaged rogue wave profile was proposed to keep asymmetric
trough shape respect to the main crest. The averaged profile using this new approach(i.e.
approach II) and the blind averaging approach(i.e. approach I) were obtained in both space
and time. By comparing the averaged shape using both approaches, we concluded that rogue
wave is indeed asymmetric(i.e. the deeper trough can be as high as more than two times
the shallower trough on two sides of the main crest). The widely used approach I omits
this asymmetric feature in the averaged profile, thus rogue wave height can be strongly
underestimated using approach I. This is especially important in estimating rogue wave
height in space because we observed that rogue wave is generally more asymmetric in space
compared with that in time. For example, rogue wave height in space is underestimated
by 10% using approach I in sea state 5(i.e. Hs=3.25m, Tp=9.7s). Moreover, effect of
nonlinearity was also addressed by quantitatively comparing the averaged shape of rogue
waves with different order of nonlinearity in numerical simulations. Rogue wave formation
is dominated by second-order nonlinear interaction, and further enhanced by higher-order
nonlinearities.

The effect of stratification on the formation of rogue waves was evaluated by studying
rogue waves in both homogeneous fluid and stratified fluid(i.e. two-layer stratified fluid).
Through resonant interactions, energy can be exchanged from surface modes on the free
surface and interfacial modes on the interface. This effect was quantitatively analyzed by
comparing the rogue wave height in both models with identical initial conditions. In relatively
short term(i.e. 100Tp), we found that regular oceanic stratification(i.e. density variation is
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1% in upper and lower layer) does not play a crucial role in rogue wave formation. However,
in strongly stratified ocean(∼5% density difference in upper and lower layer), rogue wave
height can be strongly underestimated in relatively long term(500Tp).

Finally, we quantitatively predicted rogue wave formation in the homogeneous fluid model
for a short term(i.e. up to 100Tp) by tracking energy concentration in space. This is mo-
tivated by the observation that energy concentrates in space several periods before rogue
wave occurrence. We evaluated this energy concentration by calculating the energy flux,
which is defined as energy across a vertical plane from seabed to free surface. The height
of normalized net energy flux was found to be a good precursor in predicting rogue wave
occurrence. A relatively low false positive rate(i.e. ∼20%) was achieved with most of the
rogue waves being successfully predicted(i.e. more than 80% rogue waves are successfully
predicted in the numerical database).
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Chapter 1

Introduction and overview

For a long time in the past, it is hard to describe a rogue wave until you actually see one.
Rogue wave is that kind of phenomenon that “exists” in the seafarers’ stories. These waves
were described as one or more “walls of water” or “holes in the seas” that come from nowhere.
It was not until year 1995 that the first scientific measurement of rogue wave was gauged by
lasers mounted on the Draupner platform standing in the North Sea[3]. This quantitative
measurement is of significance to the scientific community proving that rogue wave does exist
and can indeed reach terrifying height. Followed by the availability and improvements in
accuracy of in-situ instrumentation(i.e. wave buoy, radar, laser, subsurface instruments such
as pressure gauges, etc.), active research arose on rogue waves. During the past two decades,
various mathematical models were proposed and many experimental works were conducted
on studying rogue waves. However, many mysterious aspects remain. For example, the
exact mechanism behind rogue wave occurrence is not clear yet, which also attributes to the
difficulty in predicting rogue wave quantitatively. This chapter presented the motivation for
this work on rogue wave statistics and prediction, followed by an overview of this research.

1.1 Motivation and background

Rogue waves, also called freak waves, extreme waves or monster waves, are large amplitude
waves surprisingly appearing on the free sea surface. They are usually identified by a steep
crest either followed or preceded by a deep trough. Extreme wave in the open ocean results
in loss of vehicles and offshore structures every year. Recent accidents to the cruise ship
Norwegian Dawn[4] and Louis Majesty [5] were caused by a sequence of large waves of more
than 20 meters height striking the hull in Georgia’s coast and Mediterranean sea respectively.
In early 2016, a huge wave as high as 30 meters hitting offshore drilling rig COSL Innovator
leaded to death of one crew member, several injuries and extensive damage of properties[6].
Not only causing tremendous losses on a global scale, rogue waves can also be threatening
to individual people.

The highest wave measured on record reached more than 30 meters in height, while
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most of the ships are designed for waves 10-15 meters high[7]. Moreover, rogue wave is an
unexpected event, thus precaution can hardly be taken to avoid or reduce potential damage.
Through statistical study of this phenomenon, rogue waves were found occurring much more
frequency than indicated by the linear theory[8]. Offshore structures are especially vulnerable
to rogue waves since the only thing they can do is to stand there withstanding the large wave.
The current design of ships and offshore structures starts to take into account withstanding
these extreme waves. For example, new offshore structures are designed with an larger air
gap to minimize on-deck wave loads. However, it is still questionable to define accurately how
strong we should build a structure or how large an air gap should be to withstand rogue wave
considering both safety and cost. We can not achieve this without the inherent understanding
of physical and statistical properties of rogue wave(i.e. cause of their occurrence, probability
of occurrence, maximum crest height and maximum height they can reach, etc.).

1.1.1 Experimental observations

In the past decades, a database of field measurements, mainly time series, are accumulated
with the employment of offshore instrumental devices. An examination of rogue waves in the
database can provide intuitive recognition on what kind of environmental conditions rogue
wave usually occur and the possible key parameters influencing rogue wave formation. It
was found that rogue waves can occur in any sea conditions(i.e. wind generated sea, swell,
current or a combination of them)[9], and in both linear and nonlinear circumferences[10].
By analyzing rogue waves in a large amount of wave data measured mainly in North Sea,
it is found there exists a high correlation between large kurtosis and normalized rogue wave
height in a sea state[11]. In addition, nonlinearity beyond second order is found important in
the formation of some rogue waves in the open open. By studying the Andrea wave measured
in a storm crossing the North Sea, Magnusson and Donelan[12] found the likelihood of very
high crests is considerably greater than that expected from second order wave theory(i.e.
Forristall distribution from second order Stokes wave) or linear wave theory(i.e. Rayleigh
distribution).

Most of the rogue waves in open ocean were measured by wave buoy, hence numerous
temporal series were accumulated but not the spatial ones. Spaceborne synthetic aper-
ture(SAR) is the only instrument that has the capacity of observing large spatial wave fields
with single wave resolution[13]. However, the SAR-based wave-height estimate is still far
from being validated. The current data analysis of field measurement database can detect
existence and some implications on rogue wave dynamics, but not able to provide a solid
conclusion in various sea conditions.

Laboratory experiments in wave tank provide a wider variety in viewing rogue waves
as a complement to field measurements. The laboratory experiment performed by Wu and
Yao[14] and Toffoli et al.[15] showed that dispersive focusing and wave-current interaction(i.e.
strong opposing current) may enhance rogue wave formation. Energy transfers to high fre-
quency region when a rogue wave occurs. This was demonstrated by Fourier transform and
wavelet transform analysis on laboratorial rogue wave time series[16]. An amplification of
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high frequency amplitudes was observed as the nonlinearity increases. In shallow and inter-
mediate water depth, experiments conducted by Baldock and Swan[17], Trulsen et al.[18],
Viotti and Dias[19] showed that nonlinear wave-wave and wave-bottom bathymetry inter-
action increases the intensity of extreme-wave activity. Local high kurtosis can be used to
quantify such high intensity. Moreover, wind effect can be taken into account directly in
laboratory experiments. For example, Touboul et al.[20] correlated the weak increase of the
rogue wave height and an asymmetry in the rogue wave height in space with the presence
of wind blowing on mechanically generated wave group. Toffoli et al.[21] also designed an
laboratory experiment in annular wave flume, where waves were forced naturally by wind.
They observed strong deviation from Gaussian statistics in this wind forced wave field.

1.1.2 Mathematical modeling on rogue waves

From observations in open field and laboratory experiments, several theoretical models were
developed in linear to weakly nonlinear framework. Rogue waves can be captured in lin-
ear model as a result of spatial wave focusing and dispersion enhancement, however, the
frequency of occurrence is strongly underestimated. Weakly nonlinear mathematical mod-
els(i.e. nonlinear Schrödinger type equations) introduced new mechanism in forming rogue
waves, such as modulational instability(i.e. Benjamin-Feir instability). Theoretical solutions
have been derived in nonlinear Schrödinger(NLS) equation under certain limits[22, 23, 24, 25].
NLS is modified and deduced to Davey-Stewartson equation[26, 27] in deep water. In shal-
low water region, (modified) Korteweg-de Varies(KdV) equation is used to describe long
wave dynamics[28, 29]. Kadometsev-Petviashvili(KP) equation is an extension from KdV
equation in the case of propagation in three dimensional framework. Soliton like solutions
are derived for KP solution[30, 25]. Explicit rogue wave solutions can help reveal conditions
behind rogue wave formation and facilitate their observations. All the theoretical models
discussed above are formulated in weakly nonlinear framework, which may be inadequate in
describing rogue wave dynamics because rogue wave is a large amplitude and highly non-
linear phenomenon. Accordingly, higher order nonlinear and dispersive model(i.e. Zakharov
equations) and even fully nonlinear wave equations(i.e. wave breaking effect) are required.

The fully linear dispersive and weakly nonlinear framework(i.e. Zakharov’s equation [31])
describe the nonlinear random wave field focusing event, which is close to in situ sea states.
Moreover, Zakharov equation accounts for the formation of rogue waves beyond modula-
tional instabilities. NLS, extended Dysthe and Zakharov equations have good agreement in
short term(i.e. t < O(T/ε2)) but not in long term[10]. This implies full nonlinearity plays a
crucial role in long-term wave evolution. Unlike some theoretical solutions to weakly nonlin-
ear models, solutions to these highly/fully nonlinear models can only be solved numerically.
Depending on the mathematical modeling, various numerical schemes are applied in differ-
ent scenarios, including boundary integral method[32, 33], pseudo-spectral method[34, 35],
volume of fluid method[36], etc.
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1.1.3 Research objectives

This dissertation mainly dealt with several unsolved problems, including statistics of rogue
wave and their prediction in 2-dimensional framework. Up to date, it is still under debate
whether second-order nonlinearity is sufficient to describe rogue wave dynamics in open
ocean. Good match had been obtained between second order theory(i.e. Tayfun distribution)
and some field measurements[37]. At the mean time, many other filed measurements can
not be described by such distribution. Hence higher order nonlinearities may still play an
important, if not dominant, role in the formation of rogue waves. In this dissertation, higher
order nonlinear effects were looked at in detail with the focus on morphology of averaged
rogue wave profiles.

In the past mathematical models, oceanic stratification has not been taken into account
in studying rogue wave formations. However, the ocean is known stratified, mainly due
to temperature and salinity difference across the water depth. In stratified ocean, surface
wave dynamics can change due to resonant interactions with internal waves[38, 39, 40].
For example, the triad resonance between surface mode and internal modes causes energy
transfer between surface waves and internal waves[41]. Thus, rogue waves occurring on the
free surface hence can be potentially altered if stratification is taken into account.

In addition, most of the research work on predicting rogue waves used weakly-nonlinear
equations[42] or gave qualitative rather than quantitative results [43, 44]. Predicting rogue
wave occurrence in highly-nonlinear framework is needed with the mechanism not limited to
modulational instability. Within 2D framework, rogue waves were predicted quantitatively
by directly tracking energy concentration in space.

1.2 Overview

Careful statistical analysis on a numerical rogue wave database was conducted to further
understand the physical mechanism of rogue wave formation. These can potentially provide
design guidance of offshore structures and ships, which need to withstand extreme environ-
mental loads(i.e. on-deck wave load). The goal of this dissertation is to understand rogue
wave dynamics and predict them quantitatively in two dimension framework, considering
the effect of nonlinearity, ocean stratification, stratification, bathymetry and etc.

In chapter 2, we generalized the understanding of rogue wave dynamics and formulated
the problem in two dimensional framework in Zakharov equation form. The problem setup
considers both wave-wave interaction and wave-bottom interaction. Nonlinearity up to arbi-
trary order can be taken in to account. The problem is formulated so that it can be solved by
high-order-spectral(HOS) method, where nonlinear wave evolution equations are solved in
space and time efficiently(i.e. in terms of running time) and accurately(i.e. ability of consid-
ering high nonlinearity). Wave spectrum(i.e. JONSWAP and Pierson-Moskowitz spectrum)
is used to describe the wind-generated wave field. Then the initial wave elevations and
velocity potentials were calculated, which serve as the initial conditions of wave evolution



CHAPTER 1. INTRODUCTION AND OVERVIEW 5

equations. With the increasing power of high performance computing resources, large wave
field datasets are simulated numerically, with numerous rogue wave database accumulated
based on definitions defined in chapter 2.

Chapter 3 described the statistical properties of rogue wave profile in both space and
time. Using wave data from highly-nonlinear numerical simulations, two approaches were
presented in analyzing rogue wave profile, one using blind averaging and the other one using
flip to preserve the asymmetry. In agreement with the averaged profile of field measurements
attained by Christou and Evans[9], it was shown that rogue waves are well captured in the
numerical data set. Moreover, rogue wave crest height, wave height and asymmetry between
troughs were discussed in different scenarios(i.e. severity of sea roughness, crossing sea
states, etc.). In addition, the effect of nonlinearity on rogue wave profile was quantified
on rogue wave morphology. Guidelines on describing rogue wave profile quantitatively were
then provided based on these statistical analysis.

Chapter 4 presented effect of oceanic stratification on predicting rogue wave height us-
ing direct numerical simulations. Ocean is usually stably stratified due to temperature and
salinity variations. A two layer model has been proposed by [45] as a simple model to repre-
sent this stratification in the ocean, with a lighter fluid on top and denser fluid on bottom.
Following the two layer set up by Alam[40, 38], the effects of stratification intensity(i.e.
density ratio varying from 0.9 to 0.99), water depth for upper and lower layer, existence of
internal modes were presented in detail. This serves as the first work considering effect of
stratification in the study of oceanic rogue waves to the authors knowledge.

In Chapter 5, we addressed the challenging problem of predicting rogue wave occurrence
quantitatively. Predicting rogue waves is one of the most important problem to solve in
this research field. Ideas of identifying triangular characteristics in spectrum[44] and wave
group detection[42] had been proposed in weakly nonlinear framework. Here, we looked at
this problem in highly-nonlinear scenario and tackled the prediction problem by tracking
energy concentration in space. It was found that energy concentrates periods of time ahead
the actual rogue wave occurrence, which can potentially trigger rogue wave event. Thus,
energy flux in space was used to predict rogue waves in time and relatively high prediction
accuracy had been achieved. In this chapter, we also pointed out the possibility of using
wavelet transform to improve prediction accuracy, because wavelet analysis provides energy
concentration not only in space, but also length scale.

Chapter 6 summarized the contributions of this work and provided recommendations on
future directions for studying rogue wave dynamics in the ocean. The appendices included
some detailed derivations as a supplement to the main chapters. Appropriate references to
sections in the appendices are given throughout.

1.3 Summary of contributions

In summary, the main contributions of this research are:
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1. A numerical database of rogue waves were accumulated and validated against field
measurements in open ocean.

2. Improved current understanding on rogue wave profile, especially the strong asymmetry
in space compared with that in time.

3. Effect of nonlinearity was quantitatively presented on rogue wave formation.

4. Evaluated the effect of oceanic stratification on rogue wave formation, which turned
out to have a small effect on quantifying rogue wave height.

5. Predicted rogue wave occurrence for a relatively mild sea state in the numerical database
and relatively high accuracy in prediction has been achieved.
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Chapter 2

Problem formulation and
methodology

This chapter aims at providing the problem formulation which rogue wave dynamics is based
on. We began with a simplified model of 2-dimensional non-breaking waves over rippled
bottom. The initial sea surface is characterized with a broadband wave field. The detailed
description and formulation of this model are discussed in this chapter. We also discussed
the High-Order-Spectral(HOS) method used to solve the highly nonlinear wave evolution
equations. Since significant efforts were made to accumulate a numerical database of rogue
waves, we covered various aspects on obtaining this numerical database.

2.1 Wave governing equations

Rogue wave is subjected to basic nonlinear wave dynamics, where surface waves are propagat-
ing over possibly non-uniform bottom topography. Of basic interests here are the conditions
involving the incident wave and bottom topography wavenumbers. For water waves, we
assume the fluid is inviscid, irrotational, incompressible and homogeneous. With surface
tension neglected, the wave dynamics can be described by the potential flow theory. The
general setup of the problem in shown in figure 2.1. A Cartesian coordinate system is defined
with x-axis as the horizontal axis on the mean surface and z-axis positive upward. The free
surface elevation is denoted as η, measured from mean free surface. h denotes the mean water
depth. The rippled bottom can be expressed as z = −h+ ηb, where ηb is the elevation of the
bottom undulation measured from mean water depth. The flow in the fluid domain can be
described by a velocity potential, φ(x, z, t). And the field velocity u(x, z, t) is expressed in
terms of the velocity potential φ(x, z, t) with the relation ∇φ = u. The nonlinear equations
governing the potential flow in this model are:

∇2φ = 0 at − h+ ηb < z < η(x, t) (2.1a)

ηt + ηxφx − φz = 0 at z = η(x, t) (2.1b)
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Figure 2.1: Definition sketch of waves over a rippled bottom in homogeneous fluid.

φt +
1

2
(φ2

x + φ2
z) + gη = 0 at z = η(x, t) (2.1c)

ηb,xφx − φz = 0 at z = −h+ ηb(x, t) (2.1d)

Equation (2.1a) is derived from mass conservation, which is valid in the whole fluid
domain. On the free surface, the kinetic surface boundary condition (2.1b) holds because
we assume that fluid particles on the free surface have to stay on the surface. As a result
of continuity of pressure and vertical velocity over this air-water interface, equation (2.1c) is
valid on the free surface. Due to no penetration boundary condition at solid boundary(i.e.
fluid particle can not go into the solid boundary), equation (2.1d) holds at the seabed.

We further define a velocity potential at the free surface φs(x, t) = φ(x, z = η, t), and
then rewrite the surface boundary conditions in the Zakharov form[31] (see equation (2.3)).
This can be derived from equation (2.1) using chain rule, as in (2.2).

∂φS
∂t

=
∂φ

∂t
+
∂η

∂t

∂φ

∂z

∣∣∣∣
z=η

(2.2a)

∂φS
∂x

=
∂φ

∂x
+
∂η

∂x

∂φ

∂z

∣∣∣∣
z=η

(2.2b)

ηt = φSz (1 + η2
x)− φSxηx at z = η(x, t) (2.3a)

φSt = −gη − 1/2(φSx)2 − 1/2φ2
z(1 + η2

x) at z = η(x, t) (2.3b)

This Zakharov’s equation can describe the evolution of a broadband surface waves on the
free surface. The essential benefit of this form is the ease of expanding the velocity potential
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into velocity potential in different orders and hence using HOS method to solve it efficiently.
For given initial condition η(x, 0) and φS(x, 0), this boundary-value problem can be solved
by integrating the right-hand-side of equation (2.3) given φz(x, η, t) can be obtained at each
time step. We assume that both φ(x, t) and η(x, t) are O(ε), where ε is a small parameter,
in our case, is the wave steepness. We expand velocity potential φ and surface elevation η
up to an arbitrary order M in ε. The expansions are as

φ = εφ(1) + ε2φ(2) +O(ε3) (2.4a)

η = εη(1) + ε2η(2) +O(ε3) (2.4b)

where φ(m) is the perturbation potential of order m. We expand φ(x, η, t) in Taylor series
with respect to the mean free surface z = 0 evaluated on z = η, so that φ(s) reads

φ(S)(x, t) = φ(x, η, t) =
M∑
m=1

M−m∑
k=0

ηk

k!

∂k

∂kz
φ(m)(x, 0, t) (2.5)

Then we collect φ(x, 0, t) at different order m = 1, 2, . . . ,M and obtain the Dirichlet
boundary condition on z = 0, as:

φ(1)(x, 0, t) = φS (2.6a)

φ(m)(x, 0, t) = −
m−1∑
`=1

η`

` !

∂`

∂z`
φ(m−`)

∣∣∣∣
z=0

m = 2, 3, . . . ,M ; (2.6b)

Similarly, substituting equation (2.4) into (2.1d), expanding the quantities on free surface
and bottom in Taylor series with respect to the mean water depth h. We then collect the
terms at each order m = 1, 2, . . . ,M and obtain equations for z derivative of φ:

φ(1)
z (x,−h, t) = 0 (2.7a)

φ(m)
z (x,−h, t) =

m−1∑
`=1

∂

∂x
(
η`b
` !

∂(`−1)

∂z(`−1)
)

∣∣∣∣
z=−h

m = 2, 3, . . . ,M ; (2.7b)

In addition, the perturbation velocity potential should also satisfy Laplace equation in
the mean fluid domain and −h < z < 0, as:

∇2φ(m) = 0 (2.8)

In summary, the velocity potential at each order φ(m) needs to satisfy mass conservation
equation (2.8), Dirichlet boundary condition (2.6) and Neumann boundary condition (2.7).
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2.1.1 Linear solution

Keeping only leading terms in the wave evolution equations(i.e. m = 1), the linear wave
solution can be written as

η = a cos(kx− ωt) (2.9a)

φ = A
cosh(k(z + h)

cosh kh
sin(kx− ωt) (2.9b)

where a is the wave amplitude for wave mode with frequency ω. A and a needs to satisfy
the relation:

A =
ga

ω
(2.10)

where ω is wave frequency and k is wavenumber. They need to satisfy the dispersion relation
in equation (2.11).

ω2 = gk tanh(kh) (2.11)

2.1.2 Nonlinear solution: High-order-spectral(HOS) method

Given the initial condition η(x, 0), φS(x, 0), the nonlinear governing equations 2.3 are solved
in space and marching by integration in time. The spatial derivatives are solved by high-
order-spectral method(HOS) method, which is originally developed by Dommermuth and
Yue[46, 47] for wave-wave and wave-bottom interactions. This method generally takes into
account of up to an arbitrary high order nonlinearity M in steepness as well as a large
number of wave modes N O(1000). The accuracy of this method has been validated ex-
tensively through comparison with fully nonlinear simulation results[14] as well as the field
measurements[35].

In a spectral approach, we represent φ(m) as a summation of αm and βm. These basis
functions satisfy the Laplacian equations in the mean fluid domain −h < z < 0 as well as
the surface/bottom boundary conditions. α(m) and β(m) can be written as

α(m) =

N/2∑
n=−N/2

α(m)
n

cosh[kn(z + h)]

cosh(|kn|h)
expikn·x (2.12a)

β(m) = β
(m)
0 z +

N/2∑
n=−N/2

sinh(knz)

|kn| cosh(knz)
expikn·x (2.12b)

Then we substitute (2.12) into boundary conditions (2.6) and (2.7), and obtain the fol-
lowing relations:
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α(1) = φS, at z = 0

β(1)
z =

∂ηb
∂t
, at z = −h

α(2) = −η(α(1) + β(1))z, at z = 0

β(2)
z = −ηb(α(1) + β(1))zz + ηb,x(α

(1) + β(1))x, at z = −h
. . .

(2.13)

Given any initial condition φS(x, 0) and η(x, 0), α(m) and β(m) can be solved from lower
order relations. Thus φ(m) = α(m) +β(m) is easy to calculate. Since we assumed that φ can be
expressed in perturbation series as φ =

∑M
m=1 φ

(m) with φ(m) ∼ O(εm), such that, regrouping
terms of same order results in a system of M forced linear partial differential equations.
The equations are then solved sequentially efficiently using a spectral decomposition of φS
and η in N Fourier modes. The results converge exponentially fast with N and M up
to wave steepness ε ≈ 0.35 [46], allowing to capture high-order nonlinearties, which are
essential to the rogue wave dynamics, at a relatively low computational cost (we typically
use N ∼ O(1000), M ∼ O(10)).

In order to use HOS method, the computational domain is assumed periodic in space.
In practice, the non-dimensional computational domain is chosen from [0, 2π) with space
step δx = 2π/NDX, and NDX= 2q. q is chosen to be 12 otherwise specified. Time step δt
is chosen as T/128, where T is the characteristic wave period. In most of the cases, Tp is
adopted here.

2.2 Characteristics of oceanic spectrum

The characteristic wave field can be represented only if the initial wave field are described
properly. Usually, the spectral form is recommended to describe the wind-generated surface
waves in the open ocean. Depending on significant wave height Hs and wave period T (i.e.
peak period, zero-up-crossing period, etc.), spectra show sea surface variance, proportional
to wave energy, as a function of wave frequency. The typical oceanic wave spectra include
the Pierson-Moskowitz Spectrum[48] for fully developed seas(i.e. a sea surface produced by
winds blowing steadily for long enough time over long distance) and JONSWAP(Joint North
Sea Wave Project) spectrum[49] for developing seas(i.e. the waves may continue to develop
due to non-linear wave-wave interactions), etc. These two spectra are single peaked, which
are in agreement with most of the spectra measured in the open wave field. The parameters
P-M and JONSWAP spectra depend on are defined in Table 2.1. Hs is calculated as 4 times
standard deviation of surface elevation in this dissertation, unless otherwise specified.

The JONSWAP spectrum was determined from observations in the North Sea of fetch-
limited waves. It is given by:

SJ(ω) =
αH2

sω
4
p

ω5
exp(β)γδ (2.14)
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Table 2.1: Definitions of physical parameters used in P-M/JONSWAP spectra.

Parameters Definition Formula
Hs significant wave height (m) 4std(η)
Tp peak period (s) 1/fp
fp frequency of the spectral peak (Hz) 1/Tp
ωp peak angular frequency(rad) 2πfp

Table 2.2: Values of significant wave height Hs and peak period Tp in sea state 4, 5 and 6.
The wave amplitude becomes higher and the peak period becomes longer from sea state 4
to 6.

Sea State Hs(m) Tp(s)
4 1.875 8.8
5 3.25 9.7
6 5.0 12.4

The JONSWAP spectrum has constant α = 1
16I0(γ)

, where In(r) is the n-th order moment
of the spectrum. The peak enhancement factor γ varies from 1 to 9. Nonlinearity becomes
more important and the probability of the formation of freak waves increases as α and γ
increase. γ usually has value in the range of 1-6. The typical value γ is 3.3 and we have

I0(3.3) = 0.3. The variables β = −1.25ωp

ω4 and δ = exp(− (ω−ωp)2

2ω2
pσ

2 ), where σ equals 0.07 and

0.09 for ω ≤ ωp and ω > ωp, respectively.
Pierson-Moskowitz spectrum was developed using Shipborne Wave Recorder traces ob-

tained at the North East Atlantic Ocean Weather Stations. P-M spectrum accounts for fully
developed seas generated by local winds. P-M spectrum can be expressed in the form of
JONSWAP spectrum with the peak enhancement factor γ = 1 which writes

SP−M(ω) =
αH2

sω
4
p

ω5
exp(β) (2.15)

Within the scope of this dissertation, the developing sea is of the most interest, where the
frequency of rogue wave occurrence is much higher compared with in developed seas. JON-
SWAP spectrum is also more commonly used in other similar research work. In figure.2.2,
we show the JONSWAP spectrum with γ = 3.3 as well as the P-M spectrum for same Hs

and Tp. In this dissertation, JONSWAP is generally used to account for developing sea
states. But P-M spectrum is also used in chapter 3 to look into rogue wave statistics in fully
developed seas.

Here, we compared the JONSWAP spectrum for three different sea state conditions,
namely sea state 4, 5 and 6. The physical values of Hs and Tp are given in Table 2.2. The
corresponding JONSWAP spectra for these three sea states are plotted in figure 2.3. Detailed
study on rogue waves in different sea states is covered in chapter 3.
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Figure 2.2: Comparison of JONSWAP spectrum and P-M spectrum given same physical
parameters, Hs = 3.75m and Tp = 9.7s. JONSWAP spectrum is similar to the P-M spec-
trum except that waves continue to grow with time(or distance) due to wave continuing
blowing. Thus the JONSWAP spectrum has a more pronounced peak, as specified by the
peak enhancement factor γ.

With a characteristic wave spectrum, the initial wave surface could be represented by a
summation of a large number of sin waves. The idea behind wave spectrum is that almost any
wave elevation η(t) can be well approximated by a summation of an infinite number of sine
and cosine functions with harmonic wave frequency. Their wave frequency and amplitude(i.e.
from spectral density) are defined by proper wave spectrum function. In order to perform a
large number of numerical simulations, we chose to initialize the wave field using wave modes
defined by JONSWAP spectrum with random phases. Unidirectional wave is considered
where the wave amplitude A can be expressed as an integral of spectrum and wave length:

A2 =

∫
S(ω)dω =

∫
S(k)dk (2.16)

S(k) is the spectrum density in wavenumber domain. S(k) and S(ω) has the relation:

S(k) = S(ω)Cg (2.17)

where Cg is the group velocity of surface waves, Cg = dω
dk

.
We expressed the wave amplitude in terms of the integral over wave number in stead of

wave frequency ω to achieve higher numerical integral accuracy. This is based on the fact
that we always have integer number of waves for any wave frequency in the computational
domain per request of applying FFT algorithm in HOS. Thus dk is a constant but not dω.
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Figure 2.3: JONSWAP spectra in sea state 4(red solid line), 5(blue dash line) and 6(black
dot-dash line). The same γ = 3.3 is used for all three sea states. Clearly, the peak of the
spectrum shifts to the left as the peak period becomes longer. As the significant wave height
increases, the spectrum also has a larger density.

The integration over constant step variable can be well calculated with higher accuracy. The
discrete version of equation (2.17) is:

An =
√
S(kn)δk (2.18)

where An is the wave amplitude of wave with wavenumber kn. Thus the initial wave field
(η(x, 0), φS(x, 0)) is characterized by a linear summation of waves with wavenumber kn and
random phases θn, given as:

η(x, 0) =
∑
n

An cos(knx+ θn) (2.19a)

φS(x, 0) =
∑
n

gAn sin(knx+ θn) (2.19b)

In practice, kn could vary from 1 to the cut-off wavenumber kc.

2.3 Definition of a rogue wave

Rogue waves are described as short-lived large amplitude waves in the ocean. But the
definition on how large a wave should be to be called a rogue wave is still of dispute. Two
types of rogue wave definition are commonly used in the past literature, one based on crest
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height and the other based on wave height. Definitions of crest height ηc and rogue wave
height Hr of rogue waves are illustrated in figure 2.4. The first one is stating that wave that
is 2∼3 times larger than the significant wave height is classified as rogue wave. Following
the convention, 2 is used and the definition writes:

Hr >= 2Hs (2.20)

The other one states that rogue wave should have maximum crest height ηc at least 1.2 1.3
times the significant wave height. The numerical database of rogue waves is mostly based
on definition in equation (2.20). The definition (2.21) is used in chapter 3 for validation
purpose.

ηc >= 1.25Hs (2.21)

There are other claims that more parameters other than ηc and Hr should be included in
order to well define a rogue wave. Ruban[50] proposed a definition including the parameter
,typical wavelength λ, where a wave with maximum wave height hmax ≥∼ 0.10λ among
surrounding waves having peak to trough amplitude about h0 ≤∼ 0.05λ and small steepness.
In addition, there are other researchers arguing that dynamic content need to be included for
a better definition. With more input on this topic, the definition may converge or we may
need to adopt different definitions for rogue waves in various scenarios(i.e. shallow water
rogue wave, current induced rogue wave etc.). Since we are mainly dealing with rogue waves
caused by nonlinear interactions, we stick with the two conventional definitions in operation
throughout the dissertation.

2.4 Notes on accumulation of rogue wave database

A computational domain of the 9×103 meter is considered. Waves propagating to positive x
axis direction unless specified. With a given initial condition, we run the simulation for long
enough time so that higher order nonlinear effects come into place. Then for a certain time
window, we search for rogue waves throughout the spatial domain. If a rogue wave occurs, we
record the initial condition and entire time/space series. Otherwise, we use another random
seed to initialize the free surface repeat the entire process until we accumulate enough rogue
waves. A sample wave field in space and time is shown in figure 2.5. We basically have
many such wave fields in our database, within which one or more rogue wave events are
detected after long time evolution. The high performance computational resources provided
by National Energy Research Scientific Computing Center(NERSC) and Research IT (RIT)
make it possible to accumulate a large number of rogue wave efficiently. The simulations are
parallelized in terms of different random phases as well as sea states.
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Figure 2.4: Diagram showing the definition of wave crest height, trough height and wave
height. Crest height ηc is defined as the height from the positive zero-crossing peak to the
mean free surface(see the height pointed by red arrow). Similarly, trough height is defined as
the height from negative zero-crossing peak to the mean free surface(see the height pointed
by yellow arrow). For each crest, there are two troughs either preceding or succeeding it.
The shallower trough has trough height ηts and the deeper trough has trough height ηth.
Rogue wave height account both the upward and downward zero-crossing height(see the
height pointed by black arrows), as Hr = max(Hup, Hdown). If the maximum wave height
Hr satisfies the definition in (2.20), a rogue wave is detected and Hr becomes rogue wave
height.
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Figure 2.5: A wave field in space evolving in time. In this wave field, yellow means positive
wave elevation and blue mean negative wave elevation. In the region marked by red dash
line, we observed a rogue wave event, where the maximum wave height satisfies equation
(2.20).
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Chapter 3

Morphology of rogue waves

Here, we show through a statistical analysis that rogue waves in broadband non-breaking seas
are spatially asymmetric for most realistic oceanic conditions. In addition to the top-down
asymmetry due to nonlinear effects, we show that the two troughs adjacent to the rogue wave
crest are generally of different depths, which is unlike the conventional picture of rogue waves
with symmetric fore and aft troughs often obtained from model equations. The rogue-wave
trough asymmetry is demonstrated for sea states 4 to 6 on Douglas Sea Scale. Considering
the deepest trough leads to approximately 10% increase in the calculation of the mean rogue-
wave height compared to previous results for rogue waves reported with symmetric troughs.
This implies that estimates of rogue-wave trough-crest amplitudes based on model equations
should be re-assessed upward for most realistic oceanic conditions.

3.1 Background

As discussed in chapter 1, rogue waves are usually defined as waves with peak to trough
height larger than two times the significant wave height, which, in relatively common rough
sea state 6 on Douglas Sea Scale, correspond to 25m or larger waves. Observations of
extreme waves by the oil and shipping industry across the world’s oceans [9] have revealed
the unexpectedness of rogue waves: rogue waves have a much higher rate of occurrence than
predicted by classical sea state spectra without the information of phases [51], and thus defy
Gaussian statistics. Our understanding of the unexpected nature of rogue waves has yet
significantly improved over the past few decades, and the high occurrence rate can now be
explained in part by nonlinear mechanisms, such as the Benjamin-Feir instability [see e.g.
13].

In addition to the occurrence rate of rogue waves and to the predictability horizon [52],
which provides information on how much in advance and how accurately we can predict
the formation of rogue waves for a given sea state, the morphology of rogue waves is of
fundamental importance and of growing interest in maritime design [53, 54]. A popular
theoretical model for rogue wave dynamics is the nonlinear Schrödinger equation (NLS), for
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which analytical solution exist. Self-focusing solutions of NLS that can potentially represent
rogue waves include the first-order Peregrine Breathers [55], and the higher-order rogue wave
triplets [56], triangular and polygon wave patterns [57], and circular rogue wave clusters [58].
The averaged rogue wave profile in the framework of higher-order NLS-type equations gives
similar symmetric shape[8]. First-order and higher-order NLS solutions always exhibit a high
level of symmetry in the horizontal-temporal (x, t) plane with respect to the main crest, hence
suggesting that rogue waves have symmetric fore and aft troughs, a characteristic shared by
averaged rogue wave profiles from higher-order NLS-type equations [8]. NLS-type equations
are, however, limited to narrow-banded wave spectra. Therefore, a natural and important
question can be formulated: should we expect rogue waves predicted by general wave models,
i.e. valid for broadband spectra, to have symmetric troughs?

For a broadband wave spectrum, existing results on the morphology of rogue waves [e.g.
1] have suggested that the troughs next to the main crest have similar shape and depths.
The auto-correlation function of sea surface in Gaussian sea states is also shown to exhibit
symmetric averaged profile of rogue waves[59]. However, observations of rogue waves in the
oceans show a different picture. For instance, while the New Year Wave measured near the
Draupner platform [60] has preceding and succeeding troughs of almost the same depth, the
Andrea wave measured in a storm crossing the North Sea [12] has troughs of substantially
different depths. Furthermore, the rogue wave measured in the North Cormorant field [53]
shows a much deeper trough prior to the main crest compared to the one trailing behind
[see also 61, 62, 63, 64, for other observations of rogue waves]. Differences in trough depths
have also been reported for the case of broadband long-crested seas (i.e. amenable to two-
dimensional studies), as shown by wave basin experiments [65], few numerical simulations
[20], and field measurements [66].

Here we demonstrate that rogue waves are asymmetric with respect to the main crest
for broadband nonbreaking seas, which can lead to underestimation of rogue wave trough-
to-crest height. This strong asymmetry (referred to as trough asymmetry) of rogue waves
emerging from broadband sea states has not been obtained by previous averaging methods
based on proper orthogonal diagonization (POD) [1] and auto-correlation function [59]. We
will demonstrate that the trough asymmetry is more pronounced in space domain than in
time domain, hence is difficult to capture with fixed buoy measurements. This may explain
why the trough asymmetry has not yet been reported as a recurring feature of rogue waves
in the field, since field observations are more often based on time series of wave elevation at
fixed locations with buoys than on spatial profiles based on e.g. Synthetic Aperture Radar
(SAR) images. Nevertheless, the reproduction of the New Year Wave in a wavetank that
did yield a rogue wave with strong trough asymmetry [cf. second rogue-wave occurrence in
figure 3 of 67] and a SAR image-based reconstruction of a rogue-wave spatial profile with
the right trough more than three times deeper than the left trough [cf. figure 6 in 68] are
evidence supporting the existence of trough asymmetry for rogue waves in the oceans.
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3.2 Numerical simulations of nonlinear rogue wave

profile

3.2.1 Problem formulation

Recall the Zakharov’s equation from chapter 1, as

ηt = φSz (1 + η2
x)− φSxηx, at z = η(x, t), (3.1a)

φSt = −gη − 1/2(φSx)2 − 1/2φ2
z(1 + η2

x), at z = η(x, t), (3.1b)

We solve equations (3.1) with a phase resolved high-order spectral method (HOS), as dis-
cussed in chapter 2.

The initial free-surface at t = 0 is given by

η = η(1) =
N∑
n=1

√
2Sdis(kn)δkn expi(knx+θn), (3.2)

where Sdis(k) is a discretized version of the JONSWAP spectral density respect to wave
number(see JONSWAP spectrum in chapter 2 for additional details). Note that both Tp
and Hs change with the sea state. The initial phase distribution θn ∈ (0, 2π) in (3.2) is
random with uniform distribution, allowing for different initial conditions for each sea state
considered. Note that in order to avoid spurious modes known to contaminate numerical
solutions [14], we introduce nonlinear effects gradually, i.e. we multiply nonlinear terms by
Ŵ where Ŵ increases from 0 to 1 in 5Tp.

For each sea state, we run O(1000) simulations so that O(100) rogue waves are obtained
under the criterion Hr(t) > 2Hs(t), where Hr(t) is the maximum peak to adjacent trough
height and Hs(t) = 4ση(t) is the significant wave height. With O(100) rogue waves, the
standard error of the mean rogue-wave profile is maximum (2%) at the peak, hence the
averaged profile is statistically converged. In the simulations, we search for rogue waves in
the time window 100Tp < t < 130Tp in order to allow high-order nonlinearities to develop
(nonlinear effects beyond second-order develop in t ∼ O(1/ε2) ≈ 45 for ε ≤ 0.15).

3.2.2 Validation against measurements

Comparing the time-average profile of rogue waves from our simulations in sea state 5 with
the time-average profile of more than three thousand rogue waves observed in multiple lo-
cations worldwide, we find that the averaged and normalized rogue wave profile from our
numerical simulations match well with the one from field measured rogue waves in multiple
locations(i.e. North Sea, Gulf of Mexico, the South China Sea and the North West shelf of
Australia)[9], see Fig.3.1. The definition of rogue waves used in the field[9] is ηc/Hs ≥ 1.25,
where ηc is the rogue wave crest. Either the crest or wave height criteria by themselves are
sufficient for the definition of a rogue wave[69]. To compare with this field measured rogue
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Table 3.1: Sea states considered here with relevant physical and simulation parameters, along
with key results regarding rogue wave asymmetry. The peak wavenumber kp is obtained from
Tp using the linear dispersion relation for surface waves in deep water. RWs is the number
of rogues waves obtained from O(1000) simulations and Succ gives the number of times the
deepest trough succeeds the rogue wave crest such that the profile is flipped when averaging
according to equation (3.4). η̄D/η̄S is the mean ratio of the deepest to shallowest trough,
and H̄r = η̄C + η̄D is the deepest trough to crest height of averaged rogue wave profile.

Sea
State

Hs (m) Tp (s) εp h (m) kph M δx
λp

δt
Tp

RWs Succ η̄D
η̄S

H̄r

4 1.875 8.8 5
102

300 15.6 4 18
103

1
128

48 26 2.04 2.09
5 3.25 9.7 7.8

102
300 12.8 1-5 15

103
1

128
72 39 1.95 2.28

6 5 12.4 6.5
102

300 7.9 4 9
103

1
128

57 30 2.02 2.14

wave profile, same definition is used in our numerical simulations to get the database of rogue
waves. The agreement between these two indicates that rogue waves in our database from
numerical simulations are likely to represent the rogue wave profile in the field in multiple
locations. Moreover, the field measured averaged rogue wave profile does have a slightly
shallower trough and a smaller peak, but still falls into the region bounded by the averaged
profile plus/minus the standard deviation(i.e. blue dash line in Fig. 3.1). These differences
can be explained by three reasons. Firstly, the averaged rogue wave profile is calculated
based on field measured rogue waves collected in different regions, and hence with differ-
ent Hs(i.e. from 0.12-15.4m), Tp(i.e. from 1-24.7s), and water depth(i.e. from 7.7-1311m).
However, the numerical simulations focuses on one specific sea state(i.e. sea state 5 with
Hs = 3.25m, Tp = 9.7s) and same water depth(i.e. 300m). These three sea states considered
have relatively narrow range of significant wave height and peak period. Also, to limit the
number of parameters considered, we only considered deep water case with flat seabed. Sec-
ondly, all the field measurements are associated with instrument error, which will increase
dramatically when the wave is large. Thirdly, the real sea state is never perfectly unidirec-
tional as considered in the numerical simulations. Directional spreading could potentially
change the statistical properties of rogue wave profile.

3.3 Results of rogue wave profiles

3.3.1 Spatial profile

Table 3.1 summarizes the three different sea states (4, 5, 6 on Douglas scale) considered as
well as key physical and numerical parameters. εp = kpHs/2 is peak wave steepness, which
is less than 0.35, the upper bound of HOS method.

The main result of the paper is the average rogue wave profile η̄ obtained from two
different methods and shown in figures 3.2a-b for sea state 5. The first method (method
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Figure 3.1: Averaged temporal rogue wave profile from field measurements(red line) v.s. our
numerical simulations(blue solid line). We also plot the standard deviation plus/minus the
averaged value of the numerical simulations(blue dash line). The averaged profile is calcu-
lated using approach definied in Equation (3.3) and definition of rogue waves as ηc/Hs ≥ 1.25.
The time of the occurrence of troughs and crests match very well bewteen the numeri-
cal simulations and the field measurements, where the maximum discrepancy is less than
6% and occurs close to the rogue wave crest. This agreement emonstrates that the rogue
waves database generated numerically constitutes an appropriate representation of rogue-
wave profiles in real seas. The averaged rogue wave profile from field measurements does
have a slightly smaller crest height. The possible causes of the discrepency are detailed
discuessed in the main text.

i-) is based on direct averaging of the crest-centered rogue wave profiles normalized by the
instantaneous significant wave height Hs(t), i.e.

η̄ =
1

R
∑
r

ηr(
x−xr
λp

)

Hs(t)
(3.3)

at the time of rogue wave occurrence (R the total number of rogue waves in database, xr
the location of rogue wave crest, λp(t) the instantaneous peak wavelength), and results in
the mean rogue wave profile shown in figure 3.2a. The second method (method ii-) consists
in averaging the rogue wave profiles with flipping, i.e. calculating

η̄ =
1

R
∑
r

ηr(pr
x−xr
λp

)

Hs(t)
(3.4)
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Figure 3.2: Are rogue waves spatially symmetric? From the 72 rogues waves obtained for sea
state 5 and for M = 4 (see table 3.1), we compute the mean rogue wave profile η̄ based on
(a) equation (3.3) (method i-), and (b) equation (3.4) (method ii-). Method i- is commonly
used in rogue wave research [1] and results in fore and aft troughs that are symmetric of each
other with respect to the rogue wave crest. Method ii-, which involves flipping the troughs
so as to keep the shallow troughs on the left hand-side of the crest, however, reveals the
trough asymmetry of rogue waves. The standard deviation for each case is shown in figures
(a)-(b) on top of the mean rogue wave profile (dashed lines) and in (c). The distribution of
deep trough depth to shallow trough depth η̄D/η̄S is shown in the form of two superposed
histograms in (d). The bars with blue or red color are the histograms of rogue waves with
trough preceding or succeeding the main crest.
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where pr = 1 (resp. -1) when the deepest trough precedes (resp. succeeds) the highest
crest, and results in the mean rogue wave profile shown in figure 3.2b. The key point is that
method -ii preserves the asymmetry of the trough depths surrounding the main crest, as
can be seen from figure 3.2b, whereas method -i, which is often used in rogue wave research
[e.g. 1], loses this information (see figure 3.2a). The standard deviation of the rogue wave
profiles is plotted in figure 3.2c for each approach. The standard deviation is high close to
both trough locations when using method i-, suggesting that the trough depths distribution
is widespread on both sides of the main crest. The standard deviation using method ii- is
20% and 50% less than that of method i- at succeeding and preceding trough, respectively.
Figure 3.2d shows the distribution of the deep-to-shallow trough depth ratio in the form
of two superposed histograms; the histogram filled with blue (resp. red) color highlights
the number of times the deepest trough is succeeding (resp. preceding) the main crest.
redBecause the histograms show about the same number of events(i.e. 54% of succeeding
troughs and 46% of preceding troughs), the deepest trough occurs on average before the main
crest as often as behind the main crest. This explains why method i- loses the information
on the rogue wave asymmetry: the deeper trough can occur on either side of the rogue
wave, such that direct averaging gives the same mean fore and aft trough depth. We find
that more than half the rogue waves have a deep trough more than twice as deep as the
shallow trough. On average, the deep-to-shallow trough depth ratio is η̄D/η̄S = 1.95, and
the deepest trough-to-crest height H̄r = η̄C + η̄D calculated from method ii- is 2.14, which,
compared to 1.96 for method i-, is approximately 10% larger (see table 3.1). It is important
to note that, although not shown, normalized spatial profiles calculated using method ii-
look similar qualitatively and quantitatively for all sea states (i.e. 4, 5 and 6). In particular,
the normalized crest-to-trough height in sea state 4 and 6 is only 2% and 0.16% less than
that in sea state 5, and the deep-to-shallow trough depth ratio changes by less than 4% both
in sea state 4 and 6.

Comparable numbers of rogue waves with deeper rear/front troughs are identified for all
sea states 4, 5 and 6, where the portions of deep rear/front trough are 54%/46%, 54%/46%
and 53%/47% respectively. This is consistent with the observations in [70] in a similar sea
state as sea state 5(see Fig. 10(a) where Hs=3.5 m, Tp=10s). As the steepness of sea
states increases, rogue waves with deep rear trough become more dominant due to enhanced
nonlinear effect(see Fig. 10(b) in [70] and Fig. 24(a) in [1]).

3.3.2 Effect of nonlinearity

Nonlinear effects are of significant importance in rogue wave research, and as a result here we
carefully look at the effect of changing the order of nonlinearity on the rogue wave asymmetry.
The results are shown in figure 3.3 and can be summarized as follows: (1) the rogue wave
trough asymmetry is captured for all orders of nonlinearity, with only +4% (+12%,+7%
and +0.9%) discrepancy in η̄D/η̄S for M=1 (M=2, 3 and 4) compared with M=5, (2) the
linear model (M=1) strongly underestimate the mean rogue wave height and crest height
(i.e. -8% and -19% compared to M = 5), (3) the averaged rogue wave profile is overestimated



CHAPTER 3. MORPHOLOGY OF ROGUE WAVES 25

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

-0.1 -0.05 0 0.05 0.1

1

1.25

1.5

M=1

M=2

M=3
M=4

M=5

Figure 3.3: Effect of nonlinearity on the average rogue wave profile in sea state 5 for M =
1−5. The trough asymmetry is obtained for all M using method ii-, with η̄D/η̄S (deepest to
shallowest trough ratio) changing by less than 4% between M = 1 and M = 5. In agreement
with previous works [2], the crest height is affected by higher nonlinearities M = 3, 4 and 5
(c.f. inset figure).

for M = 2 (+7% and +14%) and (4) the results for M = 3, 4 and 5 are in quantitative
agreement (4.3% and ¡1% discrepancy in rogue wave heights for M = 3, 4 compared to
5). The convergence of the rogue wave profile with M ≥ 3 confirms that cubic nonlinearity
play a dominant role not only in the generation mechanism and occurrence rate of rogue
waves [71, 72], but also in shaping the rogue wave crests and troughs. That the rogue wave
trough asymmetry is qualitatively obtained for all M suggests that the primary mechanism
responsible is the dispersive dynamics of ocean waves. This result is in agreement with the
fact that the distribution of trough depths around the main crest is mostly random, and
that the distribution will be wide spread in all realistic oceanic cases. We would like to note
that the effect of the trough asymmetry can also be observed from the relatively small ratio
of η̄C/η̄D = 1.69 (M = 4), which we obtain when considering the deep trough η̄D using
method ii-. This is much smaller compared with η̄C/η̄D = 2.21 if we use method -i (for
which η̄D ≈ η̄S), as well as the value obtained using the third order simulations of MNLS
equations, which gives the ratio η̄C/η̄D = 2.2 [8].

Thus, the nonlinearity strongly influence the relative depth between crest and deep trough
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η̄C
η̄D

but not the trough symmetry. Even though the profile symmetry respect to the main
peak is not a nonlinear property, we still use M = 4 for all the result presented since we
want to correctly predict the rogue wave height.

3.3.3 Temporal profile

In figure 3.4, we finally show the mean rogue wave profile averaged in time for sea state
5, following methods i- and ii– but with spatial variables in equations (3.3)-(3.4) replaced
by temporal variables. The temporal wave signal used for averaging is obtained from the
simulations using the recorded free-surface elevation at the midpoint between the highest
peak and deepest trough of the rogue wave, which is the location that is most likely to
capture the high crest and low trough in time. Compared to the mean rogue wave profile
in space, the temporal average with flipping displays a relatively small asymmetry. The
standard deviation using method ii- is yet still smaller than using method i- (see figure 3.4c),
confirming that the rogue wave profile in figure 3.4b is in better agreement with individual
rogue waves than in figure 3.4a. Similar to figure 3.2d, two superposed histograms of the
deep-to-shallow trough depth ratio in time domain are shown in 3.4d. Again, deeper troughs
can travel either preceding or succeeding the main crest. On average, the deep-to-shallow
trough depth ratio η̄D/η̄S is 1.33 for method ii-, and 1.00 for method i-. The largest trough-
to-crest height η̄C + η̄D calculated from method ii- is 2.28, which, compared to 2.18 for
method ii-, is 4.9% larger.

3.3.4 Other effects on spatial profile

In this section, we further investigate other effects on spatial profile using approach in Equa-
tion (3.4), including sea roughness, water depth and the crossing sea state.

The previous results are obtained only in sea state 5. Now we evaluated how sea state
roughness could potentially affect the rogue wave profile. Averaged wave elevation for sea
state 4, 5 and 6 are plotted in Fig. 3.5. 48, 72 and 57 rogue waves are screened out
respectively in sea state 4, 5 and 6. The normalized rogue wave η/Hs shows identical shape
across the sea states considered. We carefully derived the similarity in the normalized linear
wave profiles with given sea state parameters across these sea states, as in Appendix A. Note
that the similarity exists not only in linear case, but also for the nonlinear case considered
here(i.e. ε <∼ 0.1.) This similarity could break if we consider wave field with high steepness.

The possible application of this observation could be in the design of ships and offshore
structures. For example, in the scenario where extreme wave loads need to be taken into ac-
count, the identical rogue wave height Hr and characteristic wave length λr can be calculated
based on the background sea state data and used in design criterion.

Rogue wave profiles in deep water has been analyzed carefully so far. Now we consider
the scenario where water depth is intermediate(i.e. h = 50m). The parameters used in the
simulation and the comparison of averaged rogue wave profile are presented in figure 3.6.
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Figure 3.4: Mean temporal rogue wave profile based on (a) method i-, and (b) method ii-
for averaging (corresponding to equation (3.3) and (3.4) with spatial variables substituted
with time variables). The trough asymmetry in time is much less pronounced than in space
(see figure 3.2). The standard deviation for each case is shown in figures (a)-(b) on top of
the mean rogue wave profile (dashed lines) and in (c). η̄D to η̄S distribution is shown in the
form of two superposed histograms. The bars with blue or red color are the histograms of
rogue waves with trough preceding or succeeding the main crest.

Various sea conditions need to be considered to in order to further quantify the statistics of
shallow water rogue waves.

It has been recognized that rogue waves occurs more frequently in crossing seas, which
is two wave groups propagating in opposite direction in 2 dimensional framework. Here we
consider waves, still represented by JONSWAP spectrum, can travel in either positive or
negative x direction. The averaged profile is then compared with that in unidirectional seas,
as in figure 3.7.

3.4 Summary

The trough asymmetry of rogue waves reported in this Letter is a new step toward careful
characterization of the most extreme waves in the oceans, which deserve special attention
owing to their destructive power. Indeed, the morphology of rogue waves is of significant
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Figure 3.5: The average profile of normalized peak-centered rogue waves in sea state 4(blue
dash line), 5(green solid line) and 6(orange dash line). It is important to note that, although
not shown, spatial profiles calculated using method ii- are found almost identical for all sea
states (i.e. 4, 5 and 6). The rogue wave crest is smaller in sea state 4 than that in sea
state 5 and 6. This discrepancy is around 5%. In particular, the normalized crest-to-trough
height in sea state 4 and 6 is only 2% and 0.16% less than that in sea state 5, and the
deep-to-shallow trough depth ratio changes by less than 4% both in sea state 4 and 6.

importance for naval architects and man-made offshore structures, because rogue wave shapes
directly influence structural loads, survivability and hence the safety of seamen. We find
that the deepest trough extends on average twice as deep as the shallowest one for all sea
states 4, 5, and 6 on Douglas scale, which implies an enhancement of the average trough-
to-crest height from 1.96 to 2.14 times the significant wave height when considering the
deepest trough instead of the trough depth average. The randomness of the trough depths
distribution (including preceding/succeeding) is a result of the main mechanism for the
asymmetry, which is the linear dispersion of waves. Averages of rogue wave profiles in
space thus lose the information on the trough asymmetry when performing direct averaging
techniques that remove the preceding/trailing trough depth difference [1].

The asymmetry of rogue waves in unidirectional seas has not been the focus of previous
studies, to the best of our knowledge, potentially because rogue waves reported from the
field are often based on buoys’ motion in time, for which the signal is much less asymmetric
than in space (compare figures 3.2 and 3.4). It may be also because most of our theoretical
understanding has come from NLS models, for which solutions exhibit high levels of trough
symmetry. NLS-type equations are limited to narrow-band seas, where the dispersion is weak
because waves are assumed quasi-monochromatic. This may explain the higher symmetric
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Figure 3.6: Averaged profile of rogue wave with water depth 300 meter and 50 meter,
representing deep water and intermediate water depth case. Sea state 5 is considered for
both cases. The corresponding kph = 12.8 and 2.2 respectively. The peak wave length is
slighter longer in deep water than than in intermediate water depth. We observed that the
averaged rogue wave has slightly deeper troughs and smaller crest in shallower water.
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Figure 3.7: Comparison of statistically averaged rogue wave profiles using equation (3.4)
(method ii-) in sea unidirectional(green solid line) and crossing seas(orange dash line). We
observed that averaged rogue wave in unidirection seas have a slightly narrow crest.
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rogue wave profile of solutions of NLS. It is thus not surprising that solutions to Zakharov
equations can show high trough asymmetry.

We expect our results to be relevant to rogue waves in three dimensions, because the
mechanism responsible for trough asymmetry is wave dispersion, which dominates wavefield
rearrangement in most oceanic conditions. The trough asymmetry of rogue waves in three-
dimensions is, however, expected to be more complicated as a result of directional spreading
and three-dimensional hydrodynamic instability. For instance, it has long been known that
rogue waves can exhibit a fore/aft asymmetry, with the trough following the rogue wave crest
bigger than the one preceding (the so-called horseshoe shape), as a result of three-dimensional
(class II) modulational instability [73]. Which one of dispersion or modulational instability
is the primary responsible for the formation of rogue waves with asymmetric troughs in the
real ocean emerges as a question that would be worth answering.
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Chapter 4

Effect of oceanic stratification

4.1 Background

In spite of their inherent unpredictability, the prediction of rogue waves using direct simu-
lation is becoming more promising ever since[43]. Hence, efforts have been intensified very
recently to seek the possibility of predicting rogue waves. For example, using the Peregrine
soliton as a prototype of rogue waves, Akhmediev[44] observed that solitons have a triangular
spectrum during their evolution stage which may serve as an early warning of the formation
of rogue waves. Latifah[74] explored the predictability of extreme waves by investigating the
phase coherence using the power spectrum and the phase information, and found that the
extreme waves can be predicted well by minimizing the variance of the total wave phase.
Chalikov[75] investigates some properties of rogue waves by directly analysing O(1000) nu-
merical results and calculates the probability of their occurrence. Xiao et al.[1] used direct
simulation based on high-order spectral method, originally developed by Dommermuth[46]
to study the occurrence and dynamics of rogue waves in 3-dimensional deep water. In ad-
dition, Alam[52] has implemented heavily computational experiments on the predictability
horizon for rogue waves in the homogeneous fluid for various sea states using the high-order
spectral method, where sea state is a general representation of the wave elevation statistics.

Most efforts for predicting waves in the ocean have focused on homogeneous flows [76, 77,
78]. On the other side, the real ocean is usually stably stratified due to the vertical variation
of the salinity and/or temperature[79, 80]. The density stratification effect on small, linear
oceanic surface waves is commonly very negligible. This is mainly attributed to the fact that
the upper part of the ocean known as the mixed layer is homogenized due to the forcing and
active turbulence from wind stress at the ocean free-surface. However, this is not the case for
large amplitude highly nonlinear rogue waves whose substantial effects can be extended into
the deep ocean and also be impacted by internal waves which are caused by buoyancy forces
arising from the density stratification in the ocean. In this condition, energy is exchanged
between the surface wave and internal wave which also alters the surface wave dynamics,
i.e. in the form of triad resonance[45, 41] and the modulation and master mechanism[81].
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Theoretical analysis of two dimensional Korteweg-de-Vries (KdV) equation has been used to
represent abnormal wave surface with the stratification effect[39]. On the other hand, the
effect of stratification on highly nonlinear waves (i.e. rogue waves) has not been investigated
to date. Hence, it is crucial to explore this effect as using the homogeneous fluid model may
lead to errors such as over- or underestimation of the rogue wave height. Underestimation in
the wave height can be economically and humanly dangerous because the erroneous warning
system fails to alert people to take proper actions in advance to reduce the disaster risk.
Overestimation is conservative, however, can cause a waste of time and money. Hence, with
the advancement of our knowledge on rogue waves and the increase in the computational
power, it is critical to consider the density stratification effect in these scenarios for rogue
waves predictability.

The stable stratification can be continuous where the density continuously increases in
the fluid depth. Also, it can be composed of two homogeneous layers of water with distinct
densities where the lighter fluid overlies a heavier fluid, separated by a surface known as the
thermocline. The thermocline has a very sharp density gradient and is the location for the
formation and propagation of internal waves. In the real ocean, density profile is continuous
over the depth. However, field observations demonstrate that the stratified deep ocean can be
estimated as a two-layer fluid system where the homogeneous mixed layer overlies the heavier
fluid, which approximately has a constant density (e.g. Sigman, Jaccard, Haug 2004). The
most important feature of the stratified ocean is retained in the two-layer fluid model where
both barotropic and baroclinic modes are taken into account[82]. Also, in the two-layer fluid
system, the interaction of surface waves and internal waves can be calculated significantly
easier. Overall, the two-layer fluid model is more accurate and realistic than the homogeneous
fluid model, and hence has been widely used for modeling ocean waves dynamics[83, 84, 85].
In this study, we employ the two-layer fluid model in order to investigate incorporation
of density stratification and its efficacy for better and more realistic modeling of oceanic
rogue waves. Also, the predictability error due to employing homogeneous fluid models for
predicting ocean rogue waves in different sea states will be investigated.

In this chapter, rogue waves prediction is fulfilled by solving the wave evolution equation
while the current sea state is obtained using the radar satellite data. The adoption of
synthetic aperture radar (SAR) together with the advanced inversion technique give accurate
information about the wave elevation over a large spatial domain. Radar scattering of
surface ocean waves has been extensively studied and validated, thus many wave prediction
models are based on the data from SAR images[86]. The SAR data can also be used for
the prediction of rogue waves[13] which helps obtain the ocean stratification parameters
including the upper layer depth and the density ratio[87][88] (i.e. the ratio of the upper layer
density to the lower layer density) which are shown to be in good agreement with the cruise
measurements[88][89]. However, given the fact that the computational cost of the two-layer
fluid model is significantly higher than that of the homogeneous fluid model, it is imperative
to investigate the efficacy of employing two-layer fluid model to predict rogue waves. This
implies that stratification effects on the rogue wave prediction have to be accounted for by
comparing the heights of predicted rogue waves in the homogeneous fluid model with the
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actual rogue waves in the stratified fluid. To this end, we solve the fully nonlinear Euler
equation to quantify the predictability of rogue waves in two-layer stratified ocean. The
important statistical results are extracted through analysis of enormous results obtained
from numerical simulations implemented for a large number of different initial conditions.

4.2 Problem formulation

In order to predict the wave field, Euler equations need to be solved numerically for the
homogeneous and two-layer fluid where the initial conditions are similar for both models
at the free-surface. Also, in order to only examine the stratification induced effect on the
prediction of rogue waves and hence to avoid any other unwanted effects (i.e. interaction of
surface waves and bottom undulations), the bottom is chosen uniform and without slope.
Recall the problem formulation in chapter 2 where surface wave evolution is governed by
the fully nonlinear Euler equations and a velocity potential φ can be to describe such wave
dynamics. The two-dimensional governing equation together with the boundary conditions
in the homogeneous fluid read:

∇2φ = 0 −h < z < η (4.1a)

φtt + gφz + [∂t + 1/2(∇φ · ∇)](∇φ · ∇φ) = 0 z = η (4.1b)

φz = 0 z = −h (4.1c)

(4.1a) is the governing equation which is valid over the whole fluid domain. (4.1b) is the
combined free surface boundary condition and (4.1c) is the no penetration bottom boundary
condition. The wave elevation and velocity potential can be solved up to an arbitrary time
T for a given initial condition.

In the two-layer fluid flow, we assume two homogeneous, inviscid, irrotational and incom-
pressible fluids with different densities where each layer can be identified with the potential
theory as shown in equations (4.2a) and (4.2b) in the following. In this case, in addition to
separate governing equations for each layer, extra boundary conditions which describe the
interface (i.e. same vertical position and vertical velocity for each layer at the interface)
need to be taken into account. The two-dimensional governing equations together with the
boundary conditions in the two-layer fluid model read:

∇2φu = 0, −hu + η` < z < ηu (4.2a)

∇2φ` = 0, −hu + h` < z < −hu + η` (4.2b)

φu,tt + gφu,z + [∂t + 1/2(∇φu · ∇)]

(∇φu · ∇φu) = 0, z = ηu (4.2c)

gηu + φu,t + 1/2(∇φu · ∇φu) = 0, z = ηu (4.2d)
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R{φu,tt + gφu,z + 1/2(∇φu · ∇φu),t+
η`,t[φu,t + 1/2(∇φu · ∇φu)],z
− gη`,xφu,x} − {φl,tt + gφ`,z

+ 1/2(∇φ` · ∇φ`),t + η`,t[φ`,t

+ 1/2(∇φ` · ∇φ`)],z − gη`,xφ`,x} = 0, z = −hu + η` (4.2e)

η`,t + η`,xφu,x − φu,z = 0, z = −hu + η` (4.2f)

η`,t + η`,xφ`,x − φ`,z = 0, z = −hu + η` (4.2g)

φ`,z = 0, z = −hu − h` (4.2h)

(4.2c) is the combined free surface boundary condition and (4.2d) is the dynamic free
surface boundary condition. (4.2e) is the combined interfacial boundary condition. (4.2f)
and (4.2g) are the interfacial kinematic boundary conditions for the upper layer and the
lower layer, respectively and (4.2h) is the bottom boundary condition. The subscripts u and
l refer to the upper layer and the lower layer, respectively. The density ratio R = ρu/ρl is
always less than 1 for the stably stratified ocean. Both (4.1) and (4.2) are solved numerically
using the phase revolved high-order spectral (HOS) method.

In reality, the initial condition is based on the wave field reconstructed from SAR im-
ages or ship-born radars. However, to conduct numerous computational tests, the initial
computational surface wave elevation is characterized by the JONSWAP spectrum. Indeed,
many of the rogue wave predictive models also rely on waves initially defined by JONSWAP
spectrum[90, 91, 75]. The intensity of the power spectral density is controlled by several
parameters αp, β and γ, as given in (4.3). The definition on these parameters are stated in
chapter 2.

S(ω) =
αpg

2

ω5
exp(β)γδ, (4.3)

For a given spectrum density function S(ω), the wave field data is initialized by the linear
superposition of waves with amplitude defined as a =

√
2S(k)dk. In this equation the power

spectrum is changed from a function of the frequency to that of the wavenumber using the
relation S(k) = S(ω)Cg, where Cg = dω/dk is the group velocity. Each frequency component
has a phase randomly generated from 0 to 2π. The initial wave elevation ηi and velocity
potential φi are calculated using linear wave theory either in the homogeneous fluid or the
two-layer fluid model. When the linear solutions are used as the initial conditions to solve
the nonlinear wave evolution equations, i.e. (4.1) and (4.2), spurious wave modes develop.
To avoid this issue, the nonlinear terms are introduced gradually from t = 0 to tpre = 5Tp,
where Tp = 2π/ωp is the peak period. This is achieved by multiplying the nonlinear terms

by a factor Ŵ , which increases smoothly from 0 to 1 within time [0, tpre][14].
Since the directly measured wave field is barely linear, the nonlinear initial conditions

need to be extracted from the linear initial conditions. One specific feature of the set of
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equations introduced in (4.1) and (4.2), which helps resolve this challenge and reach appro-
priate nonlinear initial conditions, is their reversibility in time. This means that if (ηf , φf ) is
a solution for forward time (i.e. t = +T ) with (ηi, φi) as the initial conditions, then (ηi, φi)
is the solution of this set of equations when t = −T with the initial conditions (ηf ,−φf ). To
benefit from this feature, if for a given linear initial condition the rogue wave is detected at
Ti, then the simulation will continue until tf = Ti +Ts and the elevation and velocity poten-
tial (ηf , φf ) will be recorded at tf . Due to reversibility, using the nonlinear initial conditions
as ηni = ηf and φni = −φf , should result in the same rogue wave at t = Ts.

In order to filter the linear initial conditions that result in a rogue wave at t = Ti, it is
necessary to have an appropriate mathematical definition for rogue waves. There are several
definitions for such abnormal waves. The most commonly used approach for defining rogue
waves is the criterion of the wave height. In this approach if the maximum trough to peak
height Hr is larger than twice of the significant wave height Hs (i.e. Hr > 2Hs), the wave
is considered as a rogue wave. Hs = 4σ, where σ is the standard deviation of the wave
elevation η. In this study, we employ this method for defining the rogue waves.

While the approach for detecting rogue waves might look simple and straightforward, it
would never be possible without recourse to prohibitively expensive numerical simulations.
The most challenging part in the computation process is filtering the desired initial condi-
tions. Since the occurrence of the rogue waves is a rare event, enormous cases need to be
simulated before we can reach a statistical converged result.

4.3 Results

4.3.1 Approach I

Firstly, the nonlinear initial conditions are obtained from the two-layer fluid model with
different R and thermocline depth (i.e. different hu). Then we use these selected initial
conditions (i.e. the nonlinear surface wave initial conditions ηsi, φsi) in the homogeneous
fluid model. This approach is illustrated in Figure 4.1. This is a realistic approach because
the predicted rogue waves in the two-layer fluid are the actual rogue waves occurring in the
stratified fluid. If the homogeneous fluid model is used for the prediction of rogue waves for
stratified ocean, the error without taking into account the stratification can be quantified by
comparing the predicted rogue wave in the homogeneous fluid model with the actual rogue
wave height obtained from the two-layer fluid model with R < 1.

To evaluate the suitability of using the homogeneous fluid model for the prediction of
rogue waves in the stratified fluid, three parameters in the two-layer fluid can be altered and
the sensitivity of the homogeneous model prediction accuracy to these parameters should
be investigated. These influential parameters are: 1) Density ratio R , 2) Prediction time
Tp and 3) Thermocline to overall water depth ratio hu/h. We will discuss these parameters
briefly here. 1) The density ratio R = ρu/ρl is a measure of the strength of stratification
in the ocean. R varies due to heating and salinity in different parts of the ocean. In this
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Figure 4.1: Diagram of the procedure in comparing rogue waves in two-layer stratified fluid
and homogeneous fluid. Internal waves may be generated as a result of the interaction of
surface waves, hence using model based on homogeneous fluid model may not be adequate
in estimating rogue wave event in the stratified fluid. We quantify the feasibility of using ho-
mogeneous fluid model by comparing the predicted rogue wave height of using homogeneous
fluid model with the actual height in 2-layer stratified fluid.

study, we use four different density ratios as R = 1, 0.99, 0.95, 0.9. For R = 1, as shown in
Figure 4.2, we compare the predicted rogue wave in one specific initial condition with the
actual rogue wave in the two-layer stratified fluid. The predicted wave is in great agreement
with the actual wave with negligible difference. It is an expected result as R = 1 means no
density difference between two layers, which is similar to the homogeneous model.

However, these two are intrinsically different as in the two-layer model, unlike the vertical
velocity, the horizontal velocity at the interface in each layer may be different. R=0.99
represents the typical stratification in the ocean[79]. In some strongly stratified cases, R can
reach as low as 0.95[92]. R = 0.9 which is never possible in the ocean is considered in this
dissertation to show the general effect of stratification. 2) Prediction time Tp is the time
before the occurrence of the rogue wave for which we use the initial conditions in order to
perform the prediction. The predictive error obviously depends on how advanced in time
we need to predict. 3) Thermocline to overall water depth ratio hu/h is another influential
parameter since the baroclinic modes are developed through nonlinear interactions between
the surface waves and internal waves. The depth ratio is altered to ensure khu varies from
shallow water to deep water. Evaluating all these parameters causes the computational
efforts are extremely heavy as numerous initial conditions need to be screened out if one
parameter is changed.

In order to evaluate the efficacy of the introduced approach, we compare the predicted
rogue waves with the actual rogue waves heights. To do so, we detect the maximum rogue
waves with a trough to peak height Hr. The significant wave height at the time of rogue
wave occurrence is Hs. Then the normalized rogue wave height can be defined as the height
ratio Hrs = Hr/Hs in the homogeneous fluid system. Similarly, H

(2)
rs = H

(2)
r /H

(2)
s is defined

as normalized height of the rogue wave in the two-layer fluid model. The rogue waves are



CHAPTER 4. EFFECT OF OCEANIC STRATIFICATION 37

3 3.2 3.4 3.6 3.8 4

−4

−2

0

2

4

6

x (km)

η
(m

)

 

 

Homogeneous
R=1

Figure 4.2: Comparison of the predicted rogue wave in homogeneous fluid and the actual
rogue wave in the two-layer stratified fluid with R=1 for a specific initial condition in sea
state 5. The original rogue wave (i.e. red dash line) has height Hr = 2.976Hs, and the
predicted rogue wave (i.e. blue solid line) height is Hr = 2.954Hs. The error in predicted
wave height is less than 1%. This observation serves as the base of quantifying effect of
stratification by comparing rogue waves in two-layer stratified fluid and homogeneous fluid.

detected in the two-layer fluid model with the height ratio H
(2)
rs . Then the predicted rogue

waves in homogeneous fluid have the height ratio Hrs. Then the prediction accuracy is
defined as in in (4.4).

In order to guarantee a well predictability, in addition to small difference in Hrs, the
models need to show good agreement in the time and location that the rogue waves occur.
So rogue waves are sought within the time window Ts−5Tp < t < Ts+5Tp and space window
xr − 5λp < x < xr + 5λp, where λp is the wave length of the wave with peak period and xr
is the peal location of the rogue waves.

A =
Hrs

H
(2)
rs

× 100% (4.4)

We implement the simulations for a given sea state by using equation (4.3) for defining the
initial amplitudes and frequencies. Although the computational effort required for approach
2 is considerably lower than that of approach 1, we mainly focus on the predictability of
approach 1 due to its suitability and realistic nature. In approach 1, three sea states 4,
5 and 6 are considered, which represent the moderate, rough and very rough sea states,
respectively. We only consider sea state 5 for approach 2. Sea states 4, 5 and 6 have
Hs=1.875 m, 3.25 m and 5 m with Tp=8.8 s, 9.7 s and 12.4 s, respectively. Although most
frequent sea states have characteristic Hs less than 0.5 m and Tp ∼4 s[93], we use considerably
higher sea states in our study as rogue waves with larger heights tend to develop in these sea
states and hence their consequences are more perilous to properties and lives. For each of
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the considered sea states with a given set of parameters (i.e. R, Tp and hu/h), order of 1000
random phases are altered through numerous numerical simulations and 48 qualified initial
conditions are selected. For each of these initial conditions, a comparison is made between
the predicted rogue waves and the original waves to assess the prediction efficiency. For both
the homogeneous and two-layer fluid model, parameters used in numerical simulation are:
spatial resolution N = 212, time step dt = Tp/128 and nonlinearity in wave steepness M = 4.

In the following we present the results using approach I. We quantify the predictability
in each approach by plotting the prediction accuracy as shown in equations 4.4 versus Hrs

in the two-layer fluid. Three criteria are used to assess the prediction accuracy. Firstly,
if the predicted Hrs is within 10% change of the actual one, the prediction is defined ac-
curate. Leonard & Williams [94] showed that 10% change in Hs results in waves with a
longer/shorter return period (i.e. order of years). Secondly, although the predicted Hrs

might be very different from the actual one, the predictions are acceptable if the occurrence
of the rogue waves is successfully captured. Thirdly, the prediction of extreme waves with
height larger than the design load of offshore structures is of our interest. As recommended
by NORSOK[95], H10000, which has an annual exceedance probability of 10−4, is taken as
2.375Hs for the conservative design wave height. Thus, the prediction accuracy of rogue
waves with Hrs > 2.375 will be inspected.

The predictability of rogue waves are discussed for different sea states (i.e. 4, 5 and 6), as
shown in Figure 4.3 and 4.4. Each marker represents the accuracy of predicted rogue waves
using the homogeneous fluid model. The linear interpolation is also calculated to show the
statistical properties. It is natural that larger waves develop more easily in a rougher sea
state while the largest Hrs in a specific sea state is bounded by a limit. This has been shown
by Alam[52] in the homogeneous fluid. In the two layer fluid, the maximum Hrs ratio is 2.56
in sea state 4, 2.63 in sea state 5 and 2.7 in sea state 6 for the 48 cases analyzed.

First, we consider the effect of density ratio for R=0.99, 0.95 and 0.9. The prediction
accuracy decreases dramatically as R decreases (i.e. the linear interpolation of the accuracy
drops as R decreases in Figure 4.3). For example, for predictions in short time (i.e. 100Tp)
in sea state 4 , as shown in Figure 4.3a, the error for typically stratified ocean (i.e. R=0.99)
is extremely small (i.e. all the blue markers have error less than 5%). When density ratio
decreases to 0.95, the prediction error increases slightly but still within 10%. The predictions
becomes worse when the density drops to the unrealistic case (i.e. R=0.9). Similar trend is
also observed for sea states 5 and 6 shown in Figures 4.3c and 4.3e.

Now in order to assess the effect of prediction time on the prediction accuracy, we consider
a case when the predictions are made for 500Tp. For long time prediction (i.e. 500Tp), the
prediction accuracy significantly drops compared with short time (100TP ) predictions. For
the same density ratio, the linear interpolation of the accuracy in 500Tp is significantly
lower than that in 100Tp. For example, in sea state 4 for strongly stratified ocean (i.e.
R = 0.95), the linear interpolation of prediction accuracy (i.e. red line) decreases notably as
the prediction time increases from 100Tp to 500Tp. It can be noticed that the data points are
more scattered in Figure 4.3b compared with Figure 4.3a. In addition, the red line in Figure
4.3b has a steeper slope compared with 100Tp in Figure 4.3a, which indicates that not only
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the prediction error is larger, but also the prediction error is increasing with a larger rate as
Hrs increases for a longer prediction time. This is also the case for sea state 5 (Figures 4.3c
and 4.3d) and sea state 6 (Figures 4.3e and 4.3f).

Then we extend our analysis on the prediction accuracy in various sea states. In sea state
4, the predictions can be made accurately up to 500Tp for R=0.99 and 0.95 (i.e. all the blue
markers are within 10% error in both Figures 4.3a and 4.3b, and all the red markers are
within 10% error in Figure 4.3a and only 6 red markers are outside 10% but still within 20%
error in Figure 4.3b). The predictions for R =0.9 is not satisfactory for both Tp =100 and
500. In sea state 5, the predictions are accurate up to 500Tp for R=0.99 but not 0.95. Only
one red marker has error larger than 10% in Figure 4.3c but the red markers are scattered
and many of them have error greater than 10% in Figure 4.3d. Similar patterns are observed
in sea state 6 as in sea state 5. All the results above suggest the appropriateness of using
the homogeneous fluid model to predict the rogue waves height for strongly stratified fluid
(i.e. R as low as 0.95) up to 500Tp ahead in sea state 4, and up to 100Tp ahead in sea states
5 and 6.

Besides the rogue wave height, correct prediction of the time and space domain that
waves occur is of importance. Markers in the gray regions in Figure 4.3 and 4.4 represent
the dangerous cases that the predicted waves have Hrs < 2 (i.e. not predicted not rogue

waves) while they are actual rogue waves (i.e. H
(2)
rs > 2). As shown in Figures 4.3a, 4.3c and

4.3e, all of the markers fall outside the gray region for typically stratified ocean (i.e. R=0.99)
in 100Tp. While several markers fall into gray region in 500Tp, shown in Figure 4.3b, 4.3d and
4.3f. But these markers are localized in the region with low Hrs ratio (i.e. Hrs < 2.1), and
thus are less harmful. In the case of strongly stratified ocean (i.e. R=0.95), only 4-5 localized
markers (i.e. Hrs < 2.1) out of 48 initial conditions fall into the gray region for R=0.95 in
100Tp. However, if the prediction needs to be made in long time (i.e. 500Tp), the prediction
of rogue waves occurrence is not accurate (i.e. many of the red markers fall into the gray
regions in Figure 4.3b, 4.3d and 4.3f). In addition, for the unrealistic stratified fluid (i.e.
R = 0.9), the predictions are not acceptable even for 100Tp (i.e. many of the red circles fall
into the gray regions in Figure 4.3a, 4.3c and 4.3e). Thus, generally, the homogeneous fluid
model can be used in rogue waves prediction up to 100Tp ahead for typically and strongly
stratified fluid (i.e. R as low as 0.95).

Besides the occurrence of rogue waves (i.e. Hrs > 2), it is of great interest to find the rogue
waves which exceed the design load of offshore structures. Most of the offshore structures
are designed based on design load of waves with 10000 years return period. Markers in
the red region in Figures 4.3 and 4.4 represent the predicted waves with height less than
H10000 = 2.375Hs (i.e. predicted as safe waves for offshore structures) while the actual height
of the rogue waves is greater than H10000 (i.e. dangerous waves). Thus necessary actions
can not be taken to avoid or reduce the damages to offshore structures. The long time (i.e.
500Tp) predictions are accurate for typically stratified ocean (i.e. R=0.99) in all sea states
as all the blue markers are outside the red region in Figure 4.3a-4.3f. For predictions in
strongly stratified ocean (i.e. R=0.95) in 100Tp, only one case falls into the red region in sea
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state 4, as shown in Figure 4.3a. While four and two cases fall into the red region in sea state
5 and 6, as shown in Figures 4.3c and 4.3e, respectively. For R=0.95 and Ts = 500Tp, two
cases fall into the red region in sea state 4 while most of the cases fall into the red region for
Hrs > H10000 in sea states 5 and 6. These results suggest that, with the purpose of predicting
waves in oceans where offshore structures might be influenced, the homogeneous fluid model
is suitable for rogue wave prediction in strongly stratified ocean (R=0.95) in sea state 4 up
to 500Tp ahead. However, if the prediction needs to be made in rougher sea states (i.e. 5
and 6), the prediction of rogue waves using the homogeneous fluid model is not satisfactorily
accurate even for 100Tp ahead. When the fluid reach an unrealistic case (i.e. R=0.9), the
predictions are not acceptable even in short time (i.e. 100Tp) for all the sea states as many
of the green markers fall into the red region in Figure 4.3a-4.3f. Under-prediction of rogue
waves is perilous as stated above, while over-prediction can also cause the waste of resources
(i.e. investment of unnecessary time and money for protecting the offshore structures). On
the contrary to the red region, markers in the yellow region represent predicted waves with
Hrs > 2.375 (i.e. waves exceeding the design load) for safe waves with Hrs < 2.375. From
Figure 4.3, only 1 to 2 cases fall into the yellow regions for all sea states and for both short
and long time predictions. Thus over-prediction is not a major concern when using the
homogeneous fluid model.

Now, we further investigate the model by considering the effect of the thermocline depth
on the rogue waves prediction as shown in Figure 4.4. In this analysis, R=0.95 is taken for
strongly stratified ocean and the overall depth is fixed at 300 m. hu is taken 15 m, 45 m and
100 m, which correspond to the non-dimensional parameter kphu=0.7749, 2.32 and 5.17 for
sea state 4, kphu=0.64, 1.92 and 4.26 for sea state 5, kphu=0.39, 1.16 and 2.58 for sea state 6.
The upper layer depth effect can be concluded through comparing the prediction accuracy
in Figure 4.4a-4.4e. For example, for 100Tp prediction time in sea sate 4, as in Figure 4.4a,
the linear interpolation of the prediction error for hu/h=0.05 has a larger slope than that
for hu/h=0.15 and 0.34 although all the errors are very small. However, for longer time
predictions, the linear interpolation for hu/h=0.34 has the largest error, as in Figure 4.4b.
For 100Tp in sea state 5, as in 4.4c, the linear interpolation of the prediction accuracy for
hu/h=0.15 has the largest error. When the predictions are in 500Tp, prediction accuracy for
hu/h=0.15 is still maximum, as in Figure 4.4d. Similarly, no clear dependence is observed
on the thermocline depth in sea state 6, as in Figures 4.4e and 4.4f. Thus we find that the
upper layer depth does not have an obvious effect on the prediction of the surface rogue
waves for a fixed overall depth, which is likely a result of the assumption that interfacial
modes are absent in the initial conditions.

4.3.1.1 Internal modes

The above result is based on the assumption that the initial free surface wave field only
have contribution from surface modes. In reality, they may have contribution from surface
modes, internal modes or usually both. Note that internal waves should have small wave
amplitude on the free surface compared to that from the surface modes. So we randomly
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Figure 4.3: Prediction accuracy for density ratio R=0.99, 0.95 and 0.9 using approach 1 in
(a) sea state 4 for Ts=100Tp (b) sea state 4 for Ts=500Tp (c) sea state 5 for Ts=100Tp (d) sea
state 5 for Ts=500Tp (e) sea state 6 for Ts=100Tp (f) sea state 6 for Ts=500Tp The horizontal
axis is Hrs = Hr/Hs in the two-layer fluid model. All the markers in the figure represent
the result for one distinct initial condition. The blue (red, green) markers represent the
prediction accuracy for R=0.99 (0.95, 0.9) and the blue (red, green) solid line is the linear
interpolation of the prediction accuracy for R=0.99 (0.95, 0.9).
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(e)
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Figure 4.4: Prediction accuracy for hu/h=0.05, 0.15 and 0.34 using approach 1 in (a) sea
state 4 for Ts=100Tp (b) sea state 4 for Ts=500Tp (c) sea state 5 for Ts=100Tp (d) sea state 5
for Ts=500Tp (e) sea state 6 for Ts=100Tp (f) sea state 6 for Ts=500Tp. The horizontal axis is
Hrs = Hr/Hs in the two-layer fluid. All the markers in the figure represent the result for one
distinct initial condition. The blue (red, green) markers represent the prediction accuracy
for hu/h=0.05 (0.15, 0.34). and the blue (red, green) solid line is the linear interpolation of
the prediction accuracy for hu/h=0.05 (0.15, 0.34).
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Figure 4.5: Prediction accuracy with internal modes in (a) 100Tp and (b) 500Tp. The cutoff
frequency of surface wave is < ωcutoff = 0.4025rad/s, and the corresponding interfacial wave
frequency is 0.0253 and 0.0571 for R =0.99 and 0.95. With the presence of internal modes
in initial conditions, the prediction accuracy significantly drops. Even in short term(i.e.
100TP ), the error can be more than 10%. Longer term(i.e. 500Tp) prediction becomes even
worse with error more than 30%.

select a portion of some waves with low frequency(i.e. < ωcutoff ) to come from internal
modes. Assume the stratified ocean can be represented by the two-layer stratified fluid, we
quantify the prediction accuracy of using homogeneous fluid model rather than stratified
model, as in Figure 4.5. It can be concluded that with the presence of internal modes,
rogue wave formation can be significantly affected. Hence we may strongly underestimate
the rogue wave height if the homogeneous fluid assumption is made.

4.3.2 Approach II

The second approach is the complement of approach I. The nonlinear initial conditions
which lead to rogue waves are obtained from the homogeneous fluid model and then they
are employed as the initial conditions on the free surface for predicting rogue waves in the
two-layer fluid model. Then the initial conditions on the interface ηli and φli are obtained
using the linear wave theory if the necessary information on the interface is missing. We
assume that initially there is no baroclinic mode in the two-layer fluid model, but baroclinic
modes will later develop through nonlinear interactions.

We only use sea state 5 to analyze the prediction accuracy using approach II. First we
focus on the effect of the density ratio on the rogue wave prediction, as shown in Figure 4.6,
where the hu/h ratio is 0.15 and h=300 m. Then we analyze the effect of thermocline depth,
as shown in Figure 4.7, where R = 0.95. To this end, we use three density ratios R=0.99,
0.95 and 0.9 and two prediction times Ts=100Tp and 500Tp. As it is shown in Figure 4.6a, the
error for 100Tp R=0.99 is small (< 10%) for most of the initial conditions, while only for two
cases the error is slightly greater than 10%. This is a very interesting and promising result
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when we notice that the density stratification in the real ocean isR ≈ 0.99, which implies the
suitability of this homogeneous fluid model for predicting rogue waves in the real scenario.
However, in order to more deeply investigate the stratification effect in the framework of this
approach, we further increase the strength of stratification to unreal cases. As the density
ratio decreases to 0.95 which is a very highly stratified flow that is very scarce in nature,
most rogue waves are still well predicted within 10% error in the two-layer fluid system. For
this density ratio, only five cases which have small Hrs < 2.2 ratios show prediction errors
greater than 10%, while the error is still less than 20%. However, for a highly stratified and
impossible case with R=0.9, the number of cases with prediction error greater than 10%
increases to 9. These results show the possibility of using the homogeneous fluid model for
the rogue waves prediction for even highly stratified flow (i.e. R =0.95) in 100Tp. The linear
interpolation of the data is also plotted to show the statistical trend. They show that the
error increases as Hrs ratio increases and as the R deceases (i.e. stronger stratification).

Now in order to assess the effect of prediction time on the prediction accuracy, we consider
a case when the predictions are made for 500Tp. The prediction accuracy for this case is
shown in Figure 4.6b. While this figure in the first glance shows scattered data, but careful
inspections show that for R = 0.99 only 4 points are predicted with error greater than 10%
while they still lie below 20% error. This extends the suitability of the homogeneous fluid
model for making long time prediction of rogue waves with promising accuracy when the
stratification is real. However, for the very highly stratified case of R=0.95, large prediction
errors are observed more (i.e. 16 points have error greater than 10%.) This becomes worse
for R=0.90 for which more points lie beyond the 10% error zone compared to the other two
stratification ratios. This means that this model could be dangerous for the very strong
stratification resulting in erroneous estimations of the wave height prediction.

If the rogue waves occurrence is successfully predicted, even with different Hrs, necessary
precautions can be taken to avoid or reduce the potential damages. Markers in the gray
regions in Figure 4.6 represent the dangerous cases that the predicted waves have Hrs < 2
(i.e. not predicted as rogue waves) while they are actual rogue waves (i.e. Hrs > 2). For
typically stratified ocean (i.e. R=0.99), the occurrence of the rogue waves are accurately
predicted up to 500Tp (i.e. only squares with Hrs < 2.1 fall into the gray region in Figure
4.6b). While for highly stratified fluid with R=0.95, the occurrence of rogue waves are only
captured accurately up to 100Tp (i.e. almost all of the diamonds are outside the gray region
in Figure 4.6a but not in Figure 4.6b). If the density ratio drops to R = 0.9, the prediction
of the rogue wave occurrence based on the homogeneous fluid model is not reliable even in
100Tp (i.e. many of the circles are in the gray region in Figure 4.6a).

Now, we extend our discussion by studying the effect of the thermocline depth on the
rogue waves prediction in approach 2 as shown in Figure 4.7. Three thermocline depths
hu are considered, such that the depth ratios are hu/h=0.05, 0.15 and 0.34, while the total
depth is kept constant at h = 300 m. We only use density ratio R=0.95 and consider two
prediction times 100Tp and 500Tp for this case. Interestingly, the comparison of the results
for hu/h=0.05, 0.15 and 0.34 for 100Tp as presented in Figure 4.7a shows that the rogue
waves are predicted well and there is no meaningful difference in the results for different
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Figure 4.6: Prediction accuracy using approach 2 with respect to Hrs ratio in the homoge-
neous fluid model for density ratio R=0.99, 0.95 and 0.9. (a) is for Ts=100Tp and (b) is for
Ts=500Tp The horizontal axis is calculated as Hrs = Hr/Hs in the homogeneous fluid model.
All the markers in the figure represent the result for one initial condition. The green (blue,
red) markers represent the prediction accuracy for R=0.99 (0.95, 0.9) and the green (blue,
red) solid line is the linear interpolation of the prediction accuracy for R=0.99 (0.95, 0.9).

Figure 4.7: Prediction accuracy using approach 2 with respect to Hrs ratio in the homoge-
neous fluid model for hu/h=0.05, 0.15 and 0.34. (a) is for Ts=100Tp and (b) is for Ts=500Tp.
The horizontal axis is calculated as Hrs = Hr/Hs in the homogeneous fluid model. All the
markers in the figure represent the result for one initial condition. The red (blue, green)
markers represent the prediction accuracy for hu/h=0.05 (0.15, 0.34). and the red (blue,
green) solid line is the linear interpolation of the prediction accuracy for hu/h=0.05 (0.15,
0.34).
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depth ratios implying the insensitivity of the model to thermocline depth. This is also
shown by plotting the linear interpolations of the prediction accuracy and as it can be seen
they closely follow each other. Almost, the same result can be deduced for 500TP shown
in figure 4.7b. For this case the results are much more scattered compared to 100Tp and
no clear correlation between the thermocline depth and the accuracy of prediction can be
observed. This is confirmed by drawing the linear interpolation lines for each case which
show that the prediction for the shallowest case hu/h = 0.05 is only slightly better compared
to deeper cases when Hrs . 2.45. Also, the deepest case hu/h = 0.34 results in better
prediction compared to hu/h = 0.15 for all Hrs values. While this may seem counterintuitive
since the effect of the interfacial waves on the surface wave dynamics is expected to be larger
for shallower upper layer. However, this invariance is likely a result of the assumption of
absence of the interfacial mode initially.

4.4 Summary

In this chapter, we performed extensive computational simulations to quantify the effect of
stratification on the prediction of rogue waves in a two-dimensional unidirectional broadband
sea. Both short time (i.e. 100Tp) and long time (i.e. 500Tp) predictions are considered in
different sea states together with varying stratification parameters, including density ratio
and thermocline depth. 48 initial conditions in the two-layer fluid model that can lead to
rogue waves in the future time are filtered out, and then are applied to the homogeneous
fluid model to predict the rogue waves. The highest predicted waves in homogeneous fluid
model are compared with the actual rogue waves to quantify the prediction error.

Firstly, by examining the accuracy in predicted height of rogue waves as well as in the
occurrence of rogue waves (i.e. check if predicted waves have Hrs > 2) we find that the
homogeneous fluid model is suitable for both short and long times predictions (i.e. 100Tp
and 500Tp) for typical density stratification in the ocean (i.e. R=0.99). It is shown that the
prediction accuracy drops significantly as the fluid density stratification increases and thus
the homogeneous fluid model is no longer applicable for long time predictions (i.e. 500Tp).
This model is still applicable for short time (i.e. 100Tp) predictions for strongly stratified
ocean (i.e. R=0.95) but for unrealistic stratifications (i.e. R=0.9), even the short time (i.e.
100Tp) predictions are not acceptable. Moreover, remarks are made on the application of
the homogeneous fluid model in predicting the dangerous waves exceeding the design load of
offshore structures (i.e. to check if the predicted waves have Hrs > 2.375). We suggest that
the homogeneous fluid model is suitable for predictions in typically or strongly stratified
ocean (i.e. R as low as 0.95) up to 500Tp in sea state 4. In rougher sea states (i.e. sea
states 5 and 6), the predictions for normal stratifications can still be made accurately up to
500Tp, but the predictions are accurate only up to 100Tp for strongly stratified ocean. For
unrealistic stratifications (i.e. R=0.9), the predictions are not accurate even for 100Tp.

In addition, we assessed the thermocline depth and observed that the predicted rogue
waves are not sensitive to the thermocline depth change. This may be explained by the
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assumption we made that baroclinic modes are absent in the initial conditions. Although this
is not always true in a realistic scenario, it seems to be an ideal starting point for introducing
the effect of stratification effect due to the lack of realistic information about internal waves
in the ocean. Under this assumption, the non-resonant interactions may dominate and hence
do not significantly affect the surface wave field evolution[96]. An interesting and immediate
follow-up of the current research is to include the baroclinic modes in the initial conditions,
which is expected to notably change the predicted rogue waves.
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Chapter 5

Prediction of rogue wave occurrence

5.1 Background

Predicting rogue waves is an outstanding challenge in ocean engineering[43] not only because
they lead to catastrophic disasters on ships and offshore structures every year, but also
because the exact physical mechanism of rogue waves is yet not well understood[10]. Unlike
tsunamis or storms, which can be predicted hours in advance[97], the inherent complexity of
oceanic waves interactions makes prediction of rogue waves appear far-reaching and motivates
statements such as these waves “appear from nowhere”[7]. Predictions of rogue waves, even
a short time in advance, can significantly increase the safety of operations in the ocean.

One major question in rogue waves study is to predict whether rogue waves will occur
or not, and if yes then when and where they will occur. Recent advancements in radar
technology can now provide a high-resolution spatial and temporal distribution of wave.
This, together with the calibrated in situ or remotely sensed data, enable us to predict
wave evolutions in the near future[98, 99]. Rogue waves are possible to be predicted using
direct wave simulations, but such predictions are relatively sensitive to the measurement
errors[52] as well as the stratification in ocean[100]. Moreover, the direct simulations can
be very expensive. Many rogue wave prediction models are based on numerical predictions
in the framework of weakly nonlinear governing equations(i.e. Nonlinear Schrödinger Equa-
tion(NLS) or Modified Nonlinear Schrödinger Equation(MNLS)). The particular triangular
shape of wave spectra is detected at early stage of the rogue wave development[101], and
hence continuously detection of the wave spectra can possibly help detect the dangerous
peak before it occurs. It is also shown that minimizing the variance of the total wave phase
can be used as an indication of the location and time of rogue wave occurrence [74]. Still
within the framework of MNLS, the modulation instability analysis on localized wave groups
allows the detection of such instabilities at the early stage and hence serves as precursors
for rogue waves[42]. Quantitative assessment on this precursor has been evaluated and this
precursor achieves relatively high successful prediction rate with low false prediction rate.
However, these methods proposed above are limited only to NLS or MNLS systems, which
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does not consider wave dissipation in long term evolution(t/Tp ≥ O(ε−2))[1] and hence does
not represent the strongly non-Gaussian statistics of wave events in long term. The main
goal of our work is to identify and develop a robust precursor for rogue wave occurrence in
the high-order nonlinear system(i.e. Zakharov Equation).

A number of mechanisms have been proposed to explain the unexpectedness of rogue
waves[102], at the mean time there is an increasing consensus that energy focusing as a
result of energy exchange between different wave modes plays an important role in the rogue
wave formation[103, 104]. The superposition of sinusoidal waves with different modes is
the simplest mechanism that explains the occurrence of rogue waves in small amplitude
background environment. In weakly nonlinear systems, such as NLS system, the Davey-
Stewartson system, the Kortewegde Vries equation and the Kadomtsev-Petviashvili equation,
modulational instability(i.e. Benjamin-Feir instability) is suggested as one mechanism of
rogue wave formation[105] in deep water. In shallow waters, wave focusing is suggested
as the main mechanism of rogue wave formation[106]. Other mechanisms, like the wave-
current interaction and wind-driven waves, can also trigger the extreme events. In reality, the
extreme events(e.g. rogue waves) are mostly likely a result of several combined mechanisms.
Thus we propose to directly look at the energy focusing and scattering of surface waves
without worrying about the exact mechanism behind them. Staring with 2-dimensional
wave propagation problem in deep water with flat seabed, we derived a precursor based on
energy flux over a vertical plane from seabed to free surface to predict rogue wave events
in future time. In this way, the precursor we proposed can be easily extended to a broader
application(e.g. 3-dimensional rogue waves, current induced rogue waves).

By simply tracking how energy focuses in both space and time, we can define a criterion
on energy flux focusing that serves as a robust precursor for rogue wave occurrence. We
focus on 2D non-breaking sea states because predictions on rogue wave probability based
on 2D models represent an upper limit of what can happen in more realistic ocean wave
conditions[50]. We further test this precursor using statistical approach in a larger nu-
merically generated database. Moreover, the prediction based on energy flux is very cost
effective since it does not require the simulation of the whole time window [0, T ] if we need
to predict whether rogue waves will occur up to t = T . We reached a relatively high predic-
tion accuracy(i.e. more than 80%) in terms of rogue wave occurrence with a relatively low
false prediction rate(i.e. ∼20%). Predictions can be usually O(10)Tp ahead of rogue wave
occurrence, which is about several minutes ahead.

5.2 Governing equations

The surface water wave dynamics, under the assumption of inviscid, irrotational, incompress-
ible and homogeneous fluid, can be described by the potential flow theory. Here we solve the
two-dimensional weakly nonlinear wave evolution equations in the Zakharov form[31] (see
equation (5.1)), which can be solved through a phase resolved high-order spectral (HOS)
method. This method has been used widely in solving many problems, such as wave bottom
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and wave-wave interactions[47, 40, 38, 107, 41]. It has also been extended to the scenario
of rogue waves [34, 108, 109]. Note that the governing equations are constructed in the
Cartesian coordinate system located at the mean free surface with x as the horizontal 0 and
z as the vertical axis. The free surface elevation is denoted as η. The field velocity u(x, z, t)
is expressed in terms of the velocity potential φ(x, z, t) with the relation ∇φ = u. In terms
of the velocity potential evaluated at the free surface φs(x, t) = φ(x, z = η, t), the governing
equations read

ηt = φSz (1 + η2
x)− φSxηx at z = η(x, t) (5.1a)

φSt = −gη − 1/2(φSx)2 − 1/2φ2
z(1 + η2

x) at z = η(x, t) (5.1b)

As a primary consideration, we do not consider any effects from seabed topography, and
hence the bottom boundary condition is φz = 0 at the uniform water depth z = −h. The
effect of bottom topography can be easily taken into account by simply modifying the bottom
boundary condition.

In reality, the surface elevation η is initialized with the reconstructed wave field from
the SAR images or ship-borne photographs[110]. To test the accuracy of our precursor,
we numerically generate a database of waves from initial wave field characterized by the
JONSWAP spectrum. The JONSWAP spectrum is defined by the sea state parameters,
which is a general description of the sea roughness. For a given sea state, the JONSWAP
spectrum can be calculated as in Equation (2.15) in chapter 2:

S(ω) =
αpg

2

ω5
exp(β)γδ (5.2)

The power spectrum can be expressed in terms of wavenumber by using the relation
S(k) = S(ω)Cg, where Cg is the group velocity. The wave amplitude can be calculated as

a(k) =
√

2S(k)dk. The initial random sea states characterized by the spectral density S(ω)
can thus be generated by assigning a uniformly distributed random phase θ ∈ (0, 2π) to each
wave in the domain. Here we adopt the conventional definition of rogue wave in terms of
wave height Hr > 2Hs, where Hr is the maximum height of rogue waves and Hs = 4σ(σ is
the standard deviation of the surface wave elevation) is the significant wave height. In this
chapter, sea states 4 is considered, which represents the mild sea state. It has significant
wave height Hs = 1.875 meter, and the peak period Tp = 8.8 second.

5.2.1 Energy flux

In a particular sea state, we are interested in how energy focus and scatters in space and
time, that can serve as a precursor of rogue wave event in the future time. Starting from a
general problem in the whole fluid domain bound by control volume

A

, the total energy in
this control volume reads

E(t) = ρ

∫∫∫
Ω

(1/2|v|2 + gz)d

A

(5.3)
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Thus the energy flux across a control surface S bounding the control volume

A

reads

p(t) =
dE

dt

=
d

dt
ρ

∫∫∫
Ω

(1/2|v|2 + gz)d

A

=

∫∫∫
Ω

∂E
∂t
d

A

+

∫∫
S

EUndS (5.4)

Where E = ρ(1/2|v|2 + gz). In particularly, the control surface S for 2D wave evolution
problem is chosen as a vertical plane from flat seabed to free surface. Hence after some
mathematical manipulations, energy flux can be written as

p(t) = −ρ
∫ η

−h

∂φ

∂t
φxdz (5.5)

The complete derivation to Equation (5.5) is covered in Appendix B.
Energy flux varies with time and space, and is calculated numerically together with the

wave elevation using the HOS method. φt is obtained using the backward one-step finite
different method. And the integration part is also calculated numerically. The result of
energy flux has been tested to converge with nonlinear modes M , current spatial and time
resolution. A good match has been reached between the energy flux using numerical method
with M = 1 and the theoretical energy flux from linear theory.

To eliminate unstructured pattern, we average the energy flux over the spatial window
[−aλp,+aλp] to get processed energy flux P̄ . a is chosen to be 1 such that both unwanted
oscillations are avoided and basic patterns of energy flux are preserved. Furthermore, we
subtract the mean energy flux Pave from the energy flux P̄ and reach processed energy flux
P̂ . Energy flux P stays positive for unidirectional (i.e. left to right propagating) 2D wave.
Meanwhile, the mean value of energy flux in the whole fluid domain remains almost constant
in time. Hence the processed energy flux P̂ has positive and negative values, as in Figure 5.1.
Positive P̂ indicates energy travels faster than the average level, while negative P̂ indicates
slower than average level. If we observe a large positive energy flux crest on the left of a
negative energy flux trough, energy is likely to accumulate between the crest and trough
which obviously is inclined to trigger rogue wave events.

The central problem is whether this pattern of energy flux can be used as a precursor
of extreme event and how much in advance can we predict an extreme event. We define
a simple parameter He, which is the maximum height of highest crest to the tough on its
right of the processed energy flux P̂ (see Figure 5.1). The detailed precursor based on this
parameter will be presented in next section.
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He ave/P

(a)

(b)

Figure 5.1: Surface wave elevation (a) and the corresponding processed energy flux over the
mean energy flux (b). The energy flux is averaged over the spatial window [−λp,+λp] and
the mean energy flux is subtracted from the averaged energy flux. The maximum height of
normalized energy flux is shown as He in (b), which is used to define the metric in rogue
wave prediction later. The location with large He indicates wave groups here are most likely
to develop into rogue waves. Other locations with energy focusing(i.e. smaller crests and
troughs of energy flux) may also result in rogue waves.

5.3 Predictions of extreme events

For a given sea state, we may determine how much net energy flux is needed to “trigger” an
extreme event in the future. We present our main results in this section where a straightfor-
ward scheme to predict extreme events in advance is developed and tested. The prediction
based on energy flux has very low computational cost since we only need to run the simula-
tion for one time step given the current sea surface. There is no need to run the simulation
for the whole time domain t = Tf if we want to know whether rogue waves will be expected
in the time window t = [0, Tf ].

For each given sea state, we first run many simulations and screened out those result
in rogue waves in future time. Then we conduct analysis on these cases and summarize a
criterion on rogue wave prediction. Furthermore, the robustness of the criterion is tested on
many other random cases and other sea states. In sea state 4, we concluded that He/Pave >
3.5 gives good accuracy of rogue wave prediction as well as relatively low false prediction
rate(i.e. rogue waves are predicted but not occurred in reality). One case of rogue wave
formation and the corresponding energy flux as prediction mechanism is shown in Fig. 5.2.
The rogue wave occurs at t = 66.6Tp and reaches maximum wave height at t = 68Tp. We
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observe energy focuses at the location of rogue wave occurrence. In fact, energy focuses before
the rogue wave occurs(i.e. usually O(10) peak periods). As observed in Fig. 5.2(b), energy
focuses and He/Pave reaches 3.5 several peak periods ahead of the rogue wave occurrence.
This indicates that rogue wave will occur in the future time for this particular case.

To test the accuracy using energy flux as the precursor of rogue wave event, we form
a database of O(100) wave evolution with random initial conditions, where the cases used
to develop this criterion are not included For each case, we search for rogue waves in time
window [50Tp,130Tp]. In total N cases, rogue wave occurs in r cases, and we successfully
predict s of them. This result in successful rate of s/r. On the other hand, we falsely predict
f waves as rogue waves which are indeed not. This result in false rate of f/(N-r).

We further analyze how the successful and false rate vary with the constant β in the
criterion He/Pave ≥ β, see Fig.5.3. Within the same database of 160 random realizations in
sea state 4, we change the constant β and find out how many rogue waves are successfully
predicted and how many normal waves are falsely predicted as rogue waves. Both the
successful and false rate decease as β increase. But the false rate decreases at a larger rate.
For sea state 4, β = 3.5 gives a relatively good prediction of rogue waves (i.e. we successfully
predict 52 out of 64 rogue waves) and low false prediction rate(i.e. among 94 cases with no
rogue wave occurrence, we falsely predict 21 of them). Hence we have successful prediction
rate s/r=81.25% and false prediction rate f/(N-r)=21.88%. On average, we can predict the
occurrence of rogue wave event 32Tp ahead of time. This is about 4 minutes and 40 seconds
ahead.

5.4 Energy concentration through wavelet analysis

Wavelet transform has localized information not only in space, but also in scale, which renders
them suitable for the study of measured data of non-stationary, transient phenomenon in
dispersive medium, such as rogue waves. In the past decades, wavelet analysis has been
successfully applied to ocean engineering fields[111, 112, 113]. Wavelet transform represents
the space series in terms of a combination of many localized functions of different scale,
named wavelet function. Wavelet transform is similar to the Fourier transform in the sense
of decomposing signal into a summation of series. Thee inherent difference is that Fourier
transform uses basis function of sines and cosines, while wavelet transform uses basis function
that is localized in both space and scale. Here, we used continuous wavelet transform on
rogue wave series, which can be expressed by the following equation:

Wi(s) =
N−1∑
j=0

fjφ(
xj − xi
s

) (5.6)

φi(η) is wavelet functions, where we use Morlet wavelet, consisting of a plane wave mod-
ulated by a Gaussian:
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Figure 5.2: Surface wave elevation and the corresponding normalized processed energy flux
P̂ /Pave at t = 7Tp(see (a) and (b)), t = 66.6Tp(see (c) and (d)) and t = 68Tp(see (e)
and (f)). The maximum normalized wave height is defined as Hms = Hm/Hs, where Hm

is the maximum wave height. Rogue wave occurs at t = 66.6Tp with Hms = 2.001(see
the orange rectranguler in(c)). After evolving for 1.4Tp the rogue waves reaches maximum
height Hms = 2.124 at t = 68Tp(see the orange rectranguler in (e)). Rogue wave occurs as
a result of energy focusing(i.e. a large hump of energy flux at the location of rogue wave
occurrence) as in (d) and (e). This energy focusing has been observed about 60Tp before the
rogue wave occurs, as in (b). At t = 7Tp, the normalized maximum processed energy flux is
He/Pave = 3.503, which satisfy the criterion predicting rogue waves. This is consistent with
what has been observed in (c) and (e).
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Figure 5.3: Successful(blue line) and false(orange line) prediction ratio for sea state 4. As
the criterion becomes more “strict”, or as β increases in the criterion He/Pave ≥ β, both the
successful and false rate decrease. The total number of random cases is N=160.

φ(η) = π−1/4 exp(iω0η) exp(−η2/2) (5.7)

We use Morlet wavelet, which allows high scale resolution as such a wavelet is very
well localized in length scales. ω0 is the non-dimensional frequency. By translating along
localized space index i and the wavelet scale s, we construct a picture showing both the
amplitude of any features versus the scale and how this amplitude varies in space. The
detailed introduction on wavelet transform on spatial series of ocean wave series is covered
in Appendix C.

Because the wavelet function φ(η) is generally complex, the wavelet transform Wi(s) is
complex as well. So we have real and imaginary parts of Wi(s). A larger positive amplitude
in wavelet coefficients implies a higher positive correlation, while a large negative amplitude
implies a high negative correlation. So the wavelet power spectrum(WPS) is defined to
determine the distribution of energy within the data array, which is |W (s)|2. By identifying
large energy concentration in WPS, one can determine which features of the signal are
important.

Here we showed one rogue wave event and how does the wavelet power spectrum distribute
in both space and length scale, as in Figure 5.4. The results show that rogue waves can be
potentially be well predicted from wavelet power spectrum. We observed a high energy
density associated with a wave group O(10Tp) before the rogue wave occurs. This energy is
more dense associated with a certain scale factor, in this case 0.9λp. We observed this high
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Figure 5.4: An example of a rogue wave occurrence(in (c)) and the wavefield 20Tp before
that(in (a)). In addition, the corresponding wavelet power spectrum is showed in (b) and
(d). This rogue wave has normalized wave height Hr/Hs = 2.48. We observe that energy
concentrates at the location of the rogue wave, with highest scale close to 0.9λp. Looking
at the wave field 20Tp before the rogue wave occurs, we observed that the highest wave has
normalized height H/Hs = 1.75. From the surface elevation, it is hard to tell whether a rogue
wave will occur or not. However, energy is also concentrated with a certain wave group and
this group later evolves into a rogue wave.
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energy density pattern for most of the rogue waves in our data set. More detailed analysis
is needed for quantitative results to be presented. But wavelet analysis can potentially be
the ideal tool for such study.

5.5 Summary

We study and derive a robust precursor in predicting extreme events(i.e. rogue waves) in
highly nonlinear waves. We track the time and locations that energy focuses and find that
energy focuses several peak periods before the rogue wave occurrence and can exceed a certain
level. Based on this observation, we developed the criterion on the maximum net energy
flux that can potentially “trigger” rogue wave events. We concluded that He/Pave = 3.5 is a
robust precursor in sea state 4. We managed to achieve a high successful rate in rogue wave
prediction(>80%) with a relatively low false prediction rate(∼20%). The constant β in the
criterion He/Pave = β that gives optimal prediction may vary slightly for different sea states,
but within same order. The performance of this precursor converges with a larger number
of random cases considered.

Although the current set up is limited to unidirectional waves with uniform depth, there
is no limitation to apply the criterion He/Pave = β to other set-ups that involves disturbances
such as wind and current, or even 3D wave evolution. This proposed approach introduces
a new understanding in predicting rogue waves in nonlinear system. Unlike previous ap-
proaches that focus on specific forms of equations and use analytic tools, we derived the
precursor by directly tracking the net energy transfer based on statistical approach on a
large database. This approach is inexpensive in terms of the time and storage cost.

Since the exact mechanism of rogue wave formation is understandably diverse, this pre-
cursor on energy concentration needs to be tested carefully on many other scenarios. It
will night be surprising of different freak waves can be predicted the best using different
technique.

In the future, we would like to expand this precursor on the rogue wave prediction to
problems with bottom corrugations, current, wind and more sea states. We plan to conclude
with a robust, consistent scheme for rogue wave prediction in fully nonlinear waves, which
can benefit on guiding the offshore installation or operation activities.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

In this dissertation, we first formulated the mathematical model in the application of rogue
waves in homogeneous fluid with small seabed corrugations. We derived the governing equa-
tions in expansion of ε and solved the mathematical model using HOS method.

Statistical properties(i.e. averaged shape, asymmetry, standard deviations) were obtained
in various sea states, considering both linear and nonlinear mechanisms. A new approach was
proposed to retrieve the averaged profile of rogue waves, through which the asymmetry in the
preceding and succeeding troughs is well preserved. The averaged spatial profile is observed
having high asymmetry compared with temporal profile, where the deeper trough can be
more than twice in height compared to the shallower trough. Thus using the traditional
approach I in chapter 3 can strongly underestimate the rogue wave height(i.e. by more than
10% for sea state 4, 5 and 6). Nonlinear effect was quantitatively evaluated and a great
impact from second-order nonlinearity on rogue wave formation has been observed. Higher-
order nonlieanrities beyond second order play an important, though not dominant, role
in forming rogue waves. Other effects(i.e. sea state roughness, water depth) are found less
important. Rogue waves show an identical shape in crossing seas in 2-dimensional framework,
but the probability of occurrence is much higher compared with that in unidirectional seas.

In chapter 4, we showed that oceanic stratification alters rogue wave dynamics in rela-
tively long term, but not short term. A two-layer stratified fluid model is adopted and the
mathematical model is formulated in representing surface wave dynamics in stratified fluid.
For the typical density stratification scenario(i.e. two-layer model with density ratio 0.99),
rogue wave height is not significantly altered in time up to 500Tp. The prediction accuracy
on rogue wave height significantly drops as the fluid becomes more stratified. For extremely
strongly stratified ocean(i.e. density ratio 0.95), rogue wave height can only be relatively
well captured up to 100Tp if the homogeneous fluid assumption is made. Furthermore, the
effect of thermocline depth is found playing a less important role in predicting rogue wave
height. However, rogue wave dynamics can be modified significantly in the presence of inter-



CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 59

nal modes on the thermocline. The prediction of rogue wave height even is not acceptable
even in short-term(i.e. 100Tp) for typical stratified ocean.

In chapter 5, we addressed the problem of predicting rogue wave occurrence in homo-
geneous ocean by tracking energy accumulation in space. A precursor based on the net
height of energy flux(i.e. quantifying energy concentration in space) was proposed to predict
whether rogue wave will occur or not in short term(i.e. ∼ 100Tp). This precursor was tested
in a numerical wave dataset. We successfully predicted more than 80% of the rogue waves
with a relatively low false predicting rate(i.e. ∼ 20%). This precursor was motivated by
the observation of high correlation between high energy concentration with large rogue wave
height. Further investigation on energy concentration using wavelet analysis was discussed
in Appendix C.

6.2 Recommendations on future work

Several extensions of the results presented in this dissertation may be worth further investi-
gations because they could be of significant interest for oceanographers as well as engineering
practice. Here, we briefly discuss some of them below.

1. Rogue wave morphology for wave field with high characteristic wave steepness. The
averaged morphology of rogue wave in sea state 4, 5 and 6 are considered in this
dissertation, where all wave fields considered here all have steepness < 0.1. Although
identical averaged profile has been observed as in in figure 3.5, the averaged rogue wave
profile can be deviated from that if very steep wave field is considered(i.e. ε > 0.15).
In order to consider such extremely rough wave field, energy in high frequency need to
be dissipated at each time step to avoid numerical explosion.

2. Effect of topography on shallow water rogue waves. Bragg resonance exist for surface
waves over a wavy bottom, which can cause energy shifting to other frequencies. This
resonant effect on the rogue wave formation is worth looking at. In addition, it has
been observed that strong depth variation can potentially trigger rogue wave[19]. So
the statistical analysis and quantitative prediction on rogue waves over such bottom
corrugations can be interesting.

3. Extend current work from 2D to 3D framework. A full 2D+1 numerical computation of
the primitive equation of motion, including a realistic forcing and (some parametriza-
tion of) dissipation, is surely needed in order to establish more realistic modeling on
the probability of formation of extreme waves in different sea state conditions.[50]. In
3D framework, the temporal rogue wave profile should still be similar to figure 3.4.
The spatial profile needs to be carefully defined and may be different from figure 3.2.
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Appendix A

Derivation of similarity in rogue wave
profiles

A.1 Similarity of rogue wave profiles in several sea

states

Here we showed that the linear wave governing equations has self-similar solutions given the
normalized wind-wave spectra(i.e. JONSWAP spectrum) are identical. An important basis
of this similarity solution is the self-similarity features of the JONSWAP parameterization.
Actually, this self-similarity of the wind-wave spectra has been found in experiments[114]
before the theoretical explain[49]. We proved that the linear wave solutions are self-similar
given the initial self similar JONSWAP spectra through dimensional analysis. The detailed
derivation is shown here.

Recall the fully nonlinear governing equations of free surface wave, as Equation (2.1).
Assuming that both surface elevation η and velocity potential φ are in the order of a small
parameter ε. Then we express φ and η in series of ε, as

η = εη(1) + ε2η(2) +O(ε3) (A.1a)

φ = εφ1 + ε2φ(2) +O(ε3) (A.1b)

By substituting Equation (A.1) into (2.1) and collecting only the leading order(i.e.O(ε))
terms, the governing equations of linear surface wave are obtained as follows:

∇2φ(1) = 0, for − h < z < 0

η
(1)
t = φ

(1)
z , at z = 0

φ
(1)
t = −gη(1), at z = 0

(A.2)

For convenience, we drop the leading order notation (1) for all variables. We further
non-dimensionalize the variables by the following relations:
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η̃ = η/Hs

t̃ = t/Tp
z̃ = z/(gT 2

p )

φ̃ = φ/(gTpHs)
x̃ = x/λp
k̃ = kλp
ω̃ = ω/ωp
h̃ = h/λp

(A.3)

where the parameters with ˜ are non-dimensional, and Hs, Tp, ωp, λp are parameters
representing different sea states. Hs is the significant wave height, Tp is the peak period,
ωp = 2π/Tp is the peak period. λp is the wavelength for the wave with peak frequency. g
is the gravitational acceleration. Then we substitute (A.3) into (A.2) and non-dimensional
governing equations for linear wave write:

∇2φ̃ = 0, for − h < z̃ < 0 (A.4a)

η̃t̃ = φ̃z̃, at z̃ = 0 (A.4b)

φ̃t̃ = −η̃, at z̃ = 0 (A.4c)

Equation (A.4a) is automatically satisfied if φ is assumed to be a sinusoid function in space
and time. Then the solutions of non-dimensional wave elevation η̃ and velocity potential φ̃
on the free surface are calculated by direct integrating (A.4b) and (A.4c) respect to time t.
The solutions write

η̃ = η̃0 +
∫
φ̃z̃dt̃, at z̃ = 0

φ̃ = φ̃0 −
∫
η̃dt̃, at z̃ = 0

(A.5)

where η̃0 and φ̃0 are initial conditions of right propagating waves to (A.5). These initial
conditions write

η̃0 =
∑

n
An

Hs
cos(k̃x̃+ θn) at z̃ = 0

φ̃0 = 1
2π

∑
n
An

Hs

1
ω̃

sin(k̃x̃+ θn) at z̃ = 0
(A.6)

From the continuity equation the z-dependence of the initial velocity potential φ̃0 is
obtained as

φ̃0 =
1

2π

∑
n

An
Hs

1

ω̃

cosh(k̃(C1z̃ + h̃))

cosh(k̃h̃)
sin(k̃x̃+ θn) (A.7)

where C1 = gT 2
p /λp is constant. Then φ̃z̃ writes

φ̃0z̃ =
1

2π

∑
n

An
Hs

C1k̃

ω̃

sinh(k̃(C1z̃ + h̃))

cosh(k̃h̃)
sin(k̃x̃+ θn) (A.8)
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where An the θn are the amplitude and random phase shift of the n-th wave mode. By
substituting equation (A.6) into (A.5), then (A.8) can be written as

η̃ = η̃0 +

∫
φ̃z̃dt̃

=
∑
n

An
Hs

cos(k̃x̃+ θn) +

∫
1

2π

∑
n

An
Hs

C1k̃

ω̃

sinh(k̃h̃)

cosh(k̃h̃)
sin(k̃x̃− 2πω̃t̃+ θn)dt̃

=
∑
n

An
Hs

cos(k̃x̃+ θn) +
1

2π

∑
n

An
Hs

C1k̃

ω̃

sinh(k̃h̃)

cosh(k̃h̃)
(− 1

2πω̃
)cos(k̃x̃− 2πω̃t̃+ θn)

=
∑
n

An
Hs

cos(k̃x̃+ θn) − 1

4π2

∑
n

An
Hs

C1k̃

ω̃2
tanh(k̃h̃) cos(k̃x̃− 2πω̃t̃+ θn)

(A.9)

φ̃ = φ̃0 −
∫
η̃dt̃

=
1

2π

∑
n

An
Hs

1

ω̃
sin(k̃x̃+ θn) −

∫ ∑
n

An
Hs

cos(k̃x̃− 2πω̃t̃+ θn)dt̃

=
1

2π

∑
n

An
Hs

1

ω̃
sin(k̃x̃+ θn) −

∑
n

An
Hs

(− 1
˜2πω

) sin(k̃x̃− 2πω̃t̃+ θn)

=
1

2π

∑
n

An
Hs

1

ω̃
sin(k̃x̃+ θn) +

1

2π

∑
n

An
Hs

1

ω̃
sin(k̃x̃− 2πω̃t̃+ θn)

(A.10)

From (A.9) and (A.10) we find that η̃ and φ̃ can have the same normalized wave ampli-

tudes across different sea states provided that An

Hs
and An

Hs

C1k̃
ω̃2 tanh(k̃h̃) are identical for the

sea states considered. From a given spectrum S(ω), the wave amplitude An is calculated as

An =
√

2S(ω)δω (A.11)

We substitute (A.3) into (A.11), then we get the expression for normalized wave ampli-
tude for the n-th wave mode:

An/Hs =
√

2S(ω)/H2
s δω̃ωp

=
√

2S(ω)/(H2
s/ωp)δω̃

=
√

2S̃δω̃

(A.12)

From (A.1), we found that the non-dimensional wave amplitude depends on the integral
of wave spectrum . Here, we considered JONSWAP spectrum in most of the simulations.
In this dissertation, we considered three sea states(i.e. 4, 5 and 6) as stated in Table 2.2.
Further more, we plot the normalized spectral density function S̃ = S/(H2

s/ωp) respect to
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the normalized angular frequency ω̃ = ω/ωp for sea states 4, 5 and 6. An identical normalized
spectrum shape has been observed across the sea states considered.
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Figure A.1: Dimensional and non-dimensional JONSWAP spectrum in sea state 4, 5 and 6,
as in (a) and (b) respectively. The non-dimensional JONSWAP spectra across these three
sea states have identical shape across the sea states considered. This is equivalent of showing
that the right hand side of equation (A.1) are identical for these three sea states. Hence the
normalized wave amplitude should be the same.

Given linear wave governing equations (A.4), the non-dimensional dispersion relation can
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be derived as

ω̃ =

√
k̃g

λpω2
p

tanh(k̃h̃) (A.13)

We substitute C1 and (A.1) into the other term C1k̃
ω̃2 tanh(k̃h̃). We obtained the normalized

term to be:

C1k̃

ω̃2
tanh(k̃h̃) =

gT 2
p k̃

λpω̃2
tanh(k̃h̃)

=
gT 2

p k̃

λp
k̃g
λpω2

p
tanh(k̃h̃)

tanh(k̃h̃)

= T 2
pω

2
p

= 4π2

(A.14)

Up to now, we have shown that the linear wave solutions η and φ are identical across
all three sea states considered in this dissertation. The nonlinear mechanism becomes much
more complicated due to the wave-wave resonant interactions.
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Appendix B

Derivation of energy flux across a
vertical plane

The total energy in the fluid domain can be expressed as:

E(t) = ρ

∫∫∫
Ω

(1/2|v|2 + gz)dV (B.1)

Then the energy flux is as:

p(t) =
dE

dt
=

d

dt
ρ

∫∫∫
Ω

(1/2|v|2 + gz)dV

=

∫∫∫
Ω

∂E
∂t
dV +

∫∫
S

EUndS (B.2a)

Where E = ρ(1/2|v|2 + gz). Then we calculate the equation term by term.

∂E
∂t

=
∂

∂t
(1/2ρ|v|2 + ρgz)

=
∂

∂t
(1/2ρ|∇φ|2 + ρgz)

=
∂

∂t
(1/2ρ(∇φ · ∇φ))

=
1

2
ρ∇ · (∂φ

∂t
∇φ)− 1

2
ρ
∂φ

∂t
∇2φ

=
1

2
ρ∇ · (∂φ

∂t
∇φ)

Thus if we consider the case for gravity surface waves, the energy flux across a fixed
vertical plane can be calculated as:

p(t) = ρ

∫∫∫
Ω

∇ · (∂φ
∂t
∇φ)dV + ρ

∫∫
S

(1/2|v|2 + gz)UndS
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= ρ

∫∫∫
Ω

∇ · (∂φ
∂t
∇φ)dV

= ρ

∫∫
S

∂φ

∂t
∇φ · ndS

= ρ

∫∫
S

∂φ

∂t
φndS

For 2-dimensional problem with water depth h, the energy flux is as:

p(t) = −ρ
∫ η

−h

∂φ

∂t
φxdz (B.5)
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Appendix C

Wavelet analysis in space

The wave elevation is a function of time and space η(x, t). We would like to select the scale
and energy intensity of wave elevations, hence we do wavelet analysis on wave elevations at
each time step.

C.1 Continuous wavelet transformation

The wavelet transformation Wi(s) at location ti = iδx on a scale s of a discrete spatial series
fj = f(xj) of length N with a sampling interval ∆x can be interpreted as an extension of
discrete Fourier transformation F (k) =

∑
j fjexp(ikxj). Wavelet transformation replaces

the periodic exponential exp(ikxj) with a localized wavelet Ψ(xj − xi, s), which is located
around the location xi and stretched according to the investigated scale s. Thus the spatial
series can be decomposed scale- and space-dependent:

Wi(s) =
N−1∑
j=0

fjΨ((j − i)δx, s) (C.1)

If one considers arbitrary scales between the sampling interval and the length of the time
series, one speaks of continuous wavelet transformation(CWT). The wavelet Ψ(xj − xi, s) is
a stretched and translated version of a chosen mother wavelet, normalized with a factor c(s).

Ψ(xj − xi, s) = c(s)Ψ0(
tj − ti
s

) (C.2)

In the following, we always consider the Morlet mother wavelet

Ψ0(θ) = π−1/4 expiω0θ exp−θ2/2 (C.3)

Where θ =
xj−xi
s

and ω0 are unit-less. The Gaussian envelope exp(−θ2/2) localizes the
wavelet in space. The space/scale resolution is adjusted by ω0. For higher values of ω0, the
scale resolution increases, whereas space resolution decreases and vice versa. Wave number
k and wavelet scale s are not directly related.
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Figure C.1: Morlet wavelet

C.2 Wave power spectrum

A wavelet power spectrum(WPS) can be defined as the wavelet transformation of the auto-
correlation function, which is defined as

WPSi(s) = |Wi(s)|2 (C.4)

WPSi(s) describes the power of the signal f(x) at a certain location xi on a scale s, where
s is actual wavelet scale/λp. So scale value 1 means the scale of the wavelet is 1 times λp.




