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ABSTRACT OF THE DISSERTATION 

 

Integration of Sensory and Temporal Information in CA3 

by 

Stephanie Karyun Cheung 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2022 

Professor Peyman Golshani, Chair 

 

Memories are temporally organized. When recalling an event, we also recall the relative timing it 

was experienced. How does the brain compute and store this temporal representation of memory? 

The hippocampus is important to the temporal organization of memories. Hippocampal CA1 or 

CA3 lesions cause impaired coding of sequential events separated by time. The hippocampus 

bridges stimuli-free gaps between sequential events through neural ensembles that fire sequentially 

during the delay. These “time cells” fire sequentially encoding successive moments during the 

delay. Recent work has found that the CA1 region of the hippocampus contains neurons that 

display stimulus-specific sequential firing patterns during the delay period of a working memory 

task. CA1 largely lacks recurrent connectivity, so it is unlikely that it generates these sequential 

firing patterns on its own. CA3 is an upstream region with direct connections through the Schaffer 

collaterals to CA1. CA3 has extensive recurrent connections and is a likely candidate that 

generates these stimulus-specific sequential firing patterns. The recurrent connections in CA3 are 

well-suited for storing and processing temporal information because they allow for rapid 

associations. CA3 also receives input from the lateral entorhinal cortex, which processes 

nonspatial sensory information and receives direct connects from the olfactory bulb. To date, it is 
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unknown where and how sensory and temporal information is integrated. Given the unique 

attributes of CA3, we propose that CA3 is where sensory and temporal information is integrated 

and that this code is then passed onto CA1. To test this hypothesis, we used cutting-edge chronic 

in vivo two-photon calcium imaging to monitor CA3 neuronal populations during a working 

memory task. We demonstrate that CA3 contains populations of cells that hold time and odor 

information. These cells fired in a stimuli-specific sequential manner during a working memory task. 

Though these odor-specific sequence cells were found to have low odor selectivity, we were able 

to decode odor and time from their firing activity. The odor-specific time cells in CA3 did not 

increase in numbers across days. These experiments help shed light on how elements of a 

memory are unified and coded within CA3.  
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Chapter 1 

Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“All memory, therefore, implies a time elapsed; consequently only those animals which 

perceive time remember, and the organ whereby they perceive time is also that where by 

they remember”  

- Aristotle, On Memory and Reminiscence 
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1.1 HIPPOCAMPUS AND TIME 

Memories are experienced and encoded along the axis of time (Tulving, 1984). We 

remember not only what experiences we have had in the past, but the sequential order 

and relative timing in which they were experienced. How and where temporal information 

is represented and paired with corresponding external stimuli is still incompletely 

understood.  

 

The first step to answering this question is identifying the brain region essential to memory 

formation. This question was famously addressed in the 1950s with patient H.M. Patient 

H.M., who suffered from severe epileptic seizures and underwent bilateral hippocampi 

lesions. This experimental treatment left him with anterograde amnesia, unable to form 

new memories (Scoville and Milner, 1957). Thus, the hippocampus became known as a 

region important to memory. Only recently has it been understood that the hippocampus 

also processes temporal information.  

 

The hippocampus has been proposed to carry information on the positions of elements in 

sequences (Eichenbaum, 2013). A study on a patient with selective bilateral hippocampal 

lesions found disruptions in temporal order memory. The patient performed worse 

compared to controls when identifying the correct order of word-pairs in a list (Mayes et 

al., 2001). Lesions in the hippocampal subregions CA1 and CA3 impair memory of the 

sequential order of events (Fortin et al., 2002; Farovik et al., 2014). Imaging studies of the 

hippocampus using fMRI found that hippocampal activity patterns reflected the temporal 
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position of objects in a sequence (Hsieh et al., 2014). These studies along with others gave 

rise to the theory that the hippocampus plays a critical role in the organization of memories 

in time (Eichenbaum, 2014; Eichenbaum, 2013; Kraus et al., 2013).  

 

How does the hippocampus represent these temporally organized sequential events? 

Early studies in the prefrontal cortex of monkeys showed persistent firing in the period 

between events (Fuster and Alexander, 1971). It was thought that this persistent activity 

was how information was maintained without an external cue (Constantinidis et al., 2018). 

Later theories postulated that information was maintained through a temporally dynamic 

code rather than a stable persistently firing population (Sreenivasan et al., 2014). This 

reasoning carried over to how the neural representations of sequential events were 

thought of in the hippocampus. The hippocampal neural representation of sequential 

memories is thought to occur through either (1) a neuronal ensemble that creates a 

temporally organized firing chain, in which each neuron represents a temporally distinct 

event or (2) a neuronal ensemble that gradually evolves to fit the temporal context 

(Eichenbaum, 2013). It is still unknown precisely how these representations emerge and 

are maintained in the hippocampus.  
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1.2 SEQUENTIAL FIRING PATTERNS IN THE HIPPOCAMPUS  

Further studies have shown that the hippocampus bridges temporal gaps between serial 

stimuli in the absence of external cues through neural ensembles that fire sequentially during 

the delay period (Eichenbaum, 2013; Itskov et al., 2011; Naya et al., 2011; MacDonald et 

al., 2011; Modi et al., 2014). These “time cells” encode successive moments during the 

delay period (Lundqvist et al., 2018; Pastalkova et al., 2008; MacDonald et al., 2011). Yet, 

the mechanisms that create these temporal representations, and the role of the specific 

Hippocampal subfields in establishing and remapping these stimulus-specific time fields is 

still not known.  

 

Within the subregions of the hippocampus, stimulus-specific sequential firing patterns have 

been found in hippocampal CA1 during the delay period of working memory tasks (Fig. 1.1) 

(Pastalkova et al., 2008; MacDonald et al., 2011). These sequentially firing cells can be split 

into two subsets of cells that emerge from the pyramidal neurons: stimuli-specific cells and 

stimuli-specific time cells. The stimuli-specific cells are active during the presentation of an 

external stimuli, encoding stimuli-related cues such as odor or object identity (MacDonald et 

al., 2011). These stimuli-specific cells were reliably activated across nearly all trials of the 

task and their numbers remained stable through learning and across days (Taxidis et al., 

2020). Stimuli-specific time cells were active during the delay period and encoded stimuli-

specific time points. Each unique stimuli triggered a specific sequence of time cell firing that 

tiled the delay (Fig. 1.1). Stimuli-specific time cells were found to be unstable across trials 

and increased in number during learning and across days (Taxidis et al., 2020). 
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While the hippocampus is known to be a sequence generator (Pastalkova et al., 2008), it is 

unclear how these stimulus-specific firing patterns emerge in CA1. CA1 is mainly connected 

through feedforward connections that lack the recurrent connectivity that would allow for 

sequence generation. The unstable odor-specific time cells also do not hold a stable code 

that can reliably pass temporal information. Where are stable, stimulus-specific sequences 

which hold temporal information generated and integrated with sensory information?  
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Figure 1.1. 

 

Figure 1.1. Hippocampal neurons fire sequentially across the delay. Normalized firing rate of 
30 simultaneously recorded neurons during wheel running, ordered by peak firing rate 
latency. Each row represents the activity of one neuron. Figure adapted from Pastalkova et 
al. 2008. 
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1.3 CA3 CONNECTIVITY 

The hippocampus is split into five main subregions: subiculum, CA1, CA2, CA3, and the 

dentate gyrus (DG). CA1 is considered the main output of the hippocampus. As such, CA1 

receives many inputs from within and outside of the hippocampus. Two important inputs to 

CA1 originate from the entorhinal cortex. The first input, the monosynaptic pathway, comes 

directly from entorhinal cortex layer III to CA1. The second input is called the trisynaptic loop. 

The trisynaptic loop begins in entorhinal cortex layer II and travels to DG through the 

perforant path (Fig. 1.2). From the dentate gyrus, it projects to CA3 through the mossy fibers. 

Finally, CA3 sends axons through the Schaffer collaterals to CA1 pyramidal neurons (Deng 

et al., 2010).  

 

CA3 is positioned directly upstream of CA1 in the trisynaptic pathway and likely relays 

important information to CA1. Compared to all other major extrinsic inputs to CA1, CA3 

sends the strongest excitatory connections to CA1 via the Schaffer collaterals and 

commissural input (Sun et al., 2014). A single CA1 pyramidal neuron receives input from 

approximately 5,500 CA3 cells (Amaral et al., 1990). Intact CA3 to CA1 connection in the 

trisynaptic pathway is necessary for rapid one-trial learning, pattern completion-based 

memory recall, and spatial tuning of CA1 cells (Nakashiba et al., 2008; Nakashiba et al. 

2009).  

 

The CA3 to CA1 pathway could carry stimuli-specific time-delay information such as odor. 

The lateral entorhinal cortex (LEC) receives direct input from the olfactory bulb and has been 
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implicated in odor-specific olfactory coding (Xu et al., 2012; Leitner et al., 2016). Since this 

indirect pathway originates in the LEC, it contains odor-specific information and passes 

through CA3. Odor-specific information can be further encoded with time delay information 

in CA3. CA3 could then pass the integrated information to CA1 through the Schaffer 

collaterals. In fact, inhibiting CA3 has been found to abolish temporal coding in CA1 

(Middleton et al., 2016). 

 

There are approximately 303,930 CA3 pyramidal cells (Amaral et al., 1990). CA3 pyramidal 

cells receive two distinct excitatory inputs. One input is the mossy fibers from the DG. These 

mossy fibers contact CA3 apical dendrites close to the soma. Activation of these fibers can 

trigger fast, strong responses in the CA3 soma. The second input comes from recurrent 

connections. CA3 has a unique architecture of extensive recurrent connections: 30-70% of 

synapses on CA3 dendrites originate internally from other CA3 cells (Li et al, 1994). These 

recurrent connections contact the CA3 dendrites more distally compared to the mossy 

fibers. It has been suggested that this results in weaker, slower responses in the CA3 soma 

(Le Duigou et al., 2014). Though they may be weaker, recurrent connections contact many 

more CA3 dendrites than mossy fibers. A single DG granule cell makes 10-20 synapses on 

approximately 14 CA3 pyramidal cells through mossy fibers (Clairbourne et al., 1986; Amaral 

et al., 1990). Each CA3 cell is innervated by approximately 46 DG granule cells (Amaral et 

al., 1990). Recurrent connections can make several thousand synapses on a much larger 

population of CA3 pyramidal cells; a single CA3 pyramidal cells is innervated by 

approximately 6000 other CA3 pyramidal cells (Amaral et al., 1990). This is 1.9% of the 



 9 

whole CA3 pyramidal cell population (Amaral et al., 1990). One DG cell can cause a CA3 

pyramidal cell to fire through one mossy fiber input (Henze et al., 2002). Multiple active 

recurrent synapse inputs are required to cause a CA3 pyramidal cell to fire (Miles and Wong, 

1987).  

 

CA3 has access to sensory information from the LEC through the trisynaptic pathway. 

Through its recurrent connections it has the means to generate an internal temporal signal.  

CA3 could potentially generate a stable sequence integrating sensory and temporal 

information and pass this sequence onto CA1 through the trisynaptic pathway. 
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Figure 1.2. 

Figure 1.2. Neural Circuitry in the Hippocampus. Figure adapted from Deng et al. 2010. 
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1.4 CA3 AS AN ATTRACTOR NETWORK  

Axons of CA3 pyramidal cells make excitatory synapses with other CA3 pyramidal cells, 

forming a recurrent network. The recurrent network in CA3 acts as an attractor network 

(Treves and Rolls, 1992). An attractor network is a neural network that has one or more 

stable states of neuronal firing patterns (Hopfield, 1982). The stability of these states is 

determined by the strength of recurrent connections between the neurons in the network. 

Synaptic links are strengthened between CA3 neurons that represent different components 

of a memory through Hebbian long-term potentiation dependent on presynaptic and 

postsynaptic activity (Liseman, 1999). Incoming activity “attracts” the network into one of 

the stable states (Rolls, 2013). Importantly, activation of a few neurons can reactivate an 

entire stable state (Liseman, 1999; Guzman et al., 2016; Rebola et al., 2017) consisting of 

stimulus-specific sequences that help to maintain information. Therefore, the attractor 

network allows for generation of intrinsic sequences (Pastalkova et al., 2008).  

 

Due to the robust auto-associative network, rapid one-trial associative learning can occur 

over seconds (Remaud et al., 2014) and this encoding of information can be efficiently done 

through small CA3 neuronal ensembles (Guzman et al., 2016). Thus, CA3 can generate 

intrinsic stable sequences through its attractor network within a rapid timeframe. But does 

CA3 process temporal information?  
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1.5 TIME CELLS IN CA3 

Most studies to date have focused on CA1 and CA2 for temporal processing, but a recent 

study using implanted electrodes in rats completing a working memory task found cells in 

CA3 that exhibit robust temporal modulation similar to those found in CA1(Salz et al., 2016). 

These CA3 time cells displayed a sequential firing pattern during the delay of the working 

memory task, mirroring CA1 cell activity. More CA3 time cells were active in the early delay. 

A similar proportion of CA3 time cells were identified compared to CA1 time cells (Salz et 

al., 2016). These CA3 time cells seem to be more stable than CA1 cells over time (Dong and 

Sheffield, 2021). Though CA3 seems to process sensory and temporal information, it is not 

known if CA3 is where integration of these two occurs.  
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1.6 SUMMARY 

Memories are experienced, encoded, and stored in a sequential manner along the axis of 

time. How and where this temporally dynamic information is represented and paired with 

external stimuli is still incompletely understood. The hippocampus is critical to temporal 

organization of memories (Eichenbaum, 2013; Eichenbaum, 2014; Kraus et al., 2013). It 

bridges gaps between sequential events through neural ensembles that fire sequentially in 

the delay between stimuli (Eichenbaum, 2014; Itskov et al., 2011; Naya et al., 2011; Modi 

et al., 2014). These “time cells” can encode both the item remembered and the time elapsed 

after the stimulus (Lundqvist et al., 2018; Pastalkova et al., 2008; Macdonald et al., 2011). 

The neurobiological mechanisms that create these temporal representations, the specific 

hippocampal subfield in which they originate, and the rules governing their remapping and 

usage are unknown.  

 

The CA1 region of the hippocampus contains neurons that fire selectively to stimuli and 

other groups of neurons that fire at specific times after the delay duration during a working 

memory task (Pastalkova et al., 2008; MacDonald et al., 2011). A downstream region, 

reading out the population activity patterns, can decode both the identity of the stimulus and 

the elapsed time after the first stimulus was encountered. These sequences arise after 

training on the task, while sensory responses are present even before training (Taxidis et al., 

2020). 

 



 14 

Yet, it is still unclear how these stimulus-specific sequences arise in hippocampal CA1. As 

CA1 largely lacks recurrent connectivity, it is unlikely that it can generate sequential firing on 

its own. One candidate region that could generate stimulus-specific sequences is CA3. CA3 

axon collaterals called the Schaffer collaterals communicate with CA1 pyramidal neurons 

(Deng et al., 2010). CA3 has a unique architecture of extensive recurrent connections (Treves 

and Rolls, 1992). These recurrent connections allow for rapid associations, such as between 

time and an object or reward (Fuster and Alexander, 1971). This system is inherently suited 

for storing and working with temporary information (Rolls, 2013). These attributes point to 

CA3 potentially playing an important role in encoding time. CA3 also receives input from the 

lateral entorhinal cortex, which processes nonspatial sensory information and receives direct 

connections from the olfactory bulb (Xu and Wilson, 2012; Leitner et al., 2016). The 

overarching hypothesis of this thesis project is that sensory information and time is 

integrated as a stable code in CA3 and then passed to CA1. 
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1.7 RATIONALE FOR THESIS PROJECT 

While there have been time cells identified in CA3, the tasks used in these studies are all 

spatially based. It is not yet known if CA3 holds nonspatial temporal information. This is 

important because historically, it has been hard to disentangle spatial cues, such as 

distance, from timing cues. It is possible that the hippocampus acts as a path integrator, 

regardless of whether the path is along distance or time. Using a nonspatial task helps to 

better isolate and measure temporal signals. It would also expand the CA3 field of study, 

which has focused on CA3 as mainly a region for processing spatial information.  

 

The studies done in CA3 have mainly been done through electrode recordings. This method 

did not allow cells to be followed across days. This study would be the first to use two-

photon calcium imaging to image and follow CA3 time cells across days. Dong and Sheffield 

et al. 2021 also used two-photon calcium imaging, but they used a spatial task and imaged 

place cells.  

 

This study used a novel method in combining two-photon calcium imaging with an 

intersectional approach to targeting CA3. I utilized transgenic mice that expressed Cre in 

CA3 combined with a FLEXed virally expressed calcium indicator. This way, the calcium 

indicator only expressed in CA3. This is important and novel because previous studies 

injected a non-flexed calcium indicator into the CA3 region. Since CA2 neighbors CA3, 

unintended infection of CA2 cells was likely. When imaging this mixed population of 
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CA2/CA3 cells it was impossible to distinguish between the two. Thus, it was hard to make 

specific claims regarding CA3 based on the previous imaging findings.   

 

This thesis project helps shed light on how the brain processes time and melds it to external 

stimuli to create a memory tagged within a moment in time.  
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Chapter 2 

Sequential activity in CA3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 22 

2.1 INTRODUCTION 

Two subsets of cells emerge from CA1 pyramidal neurons during an olfactory-modified 

working memory task: odor cells and odor-specific time cells (Taxidis et al., 2020). Odor 

cells are active at the presentation of odors, encoding olfactory cues. Odor cells are reliably 

activated across nearly all trials of the task. Odor-specific time cells are active during the 

delay period and encode odor-specific time points.  Each odor triggers a specific sequence 

of time cell firing that tiles the delay (Taxidis et al., 2020). 

 

It is not known if odor cells and odor-specific time cells exist in CA3 during an olfactory 

modified working memory task; these cells have never before been imaged during this task. 

Confirming the existence of odor and odor-specific time cells that fire sequentially would 

prove that CA3 contains populations of cells that respond selectively to a sensory stimulus 

and others that fire in a stimulus-specific sequence in the delay following the stimulus. This 

would indicate that CA3 neurons process sensory and temporal information.  
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2.2 CA3 CELLS ENCODE TIME AND ODOR INFORMATION 

To understand how CA3 works, we must selectively express calcium indicators in CA3 

neurons. This is an especially difficult problem for CA3 due to its anatomy. CA3 lies along 

the curve of hippocampus. CA2 is a small subregion next to, and slightly on top of, CA3. 

Previous CA3 imaging studies also likely imaged CA2 neurons as the virus likely spread to 

CA2. since the imaging window lies above both CA2 and CA3. Given these circumstances, 

is impossible to distinguish between CA2 and CA3 cells. To solve this problem, we used the 

Tg(Grik4-cre)G32-4Stl line (Jackson strain stock #006474). In this transgenic line, the 

transcriptional regulatory region of the KA-1 gene drives expression of the Cre transgene. 

KA-1 is robustly expressed in the CA3 pyramidal layer. Transgene expression (Cre activity) 

is detectable at 14 days old in CA3, and at 8 weeks recombination is observed in nearly 

100% of pyramidal cells in CA3 (Nakazawa et al., 2002). Therefore, only excitatory cells in 

CA3 will express Cre. The Girk4Cre mice received a unilateral CA3 injection of AAV1-syn-

FLEX-jGCaMP7f-WPE, to express GCAMP7f, a green-fluorescent calcium indicator (Fig. 

2.1). Since the expression of GCaMP7f is Cre-dependent, GCaMP7f will only express in CA3 

cells. Using this intersectional method, we can know with certainty that the cells we are 

imaging are CA3 excitatory neurons.  

 

We performed in vivo two-photon calcium imaging as a proxy for recording action potential 

firing from large populations of CA3 neurons. A 3-mm diameter cranial window was 

implanted over CA3. Following surgery, mice were trained to perform a modified odor-based 

delayed non-match-to-sample (DNMS) working memory task (Zhang et al., 2019; Lui et al., 
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2014) In this task, mice were presented two odors with a five-second delay between odors. 

Mice were taught to lick when the odors differ and withhold licking when the odors were the 

same. Mice must hold the memory of the first odor for five seconds and compare it with the 

second odor to give the correct response (Fig. 2.2). Mice received a water reward for correct 

responses. Training was split into three shaping steps: (1) Day 7-9: habituation to the 

behavioral rig. (2) Day 10-13: Lick shaping, in which mice learned to lick after the 

presentation of two odors separated by a 5 second delay. (3) Day 14-24: non-match-to-

sample shaping, in which mice learned to correctly reject match odor trials and lick for non-

match odor trials (Fig. 2.3) (Expanded surgical and behavioral training procedures can be 

found in the 2.7 Methods section.). Water deprivation began with the first day of habituation 

(day 7), the first shaping step of the DNMS task training.  

 

Two-photon calcium imaging began on the first day of the third shaping step (day 14), non-

match-to-sample shaping. Blood vessel patterns and precise alignment of the animal were 

utilized to image the same set of neurons each day. The odors presented and licking 

responses of the animals, synchronized to the calcium imaging data, were recorded. Mice 

underwent 8-12 sessions of 20 trials each per day. During the first few days of imaging, mice 

learned to only lick during non-match odor trials. Mice learned quickly and soon consistently 

performed above 80% accuracy (Fig. 2.4). There was a small dip in performance during day 

seven. This dip could have been caused by slight changes in the environment that affected 

mice performance. In our analysis, we delineated sessions according to performance, with 

sessions above 85% labeled as well-trained sessions.  
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A schema of the experimental set-up for two-photon calcium imaging during the DNMS task 

can be seen in Fig. 2.5.  An example of the imaging plane can be seen in Fig. 2.6A. CA3 

cells was seen as a strip of cells. The cranial window was centered on CA3 (Fig. 2.5). Since 

the image was viewed from the dorsal side of the hippocampus, the curve of CA3 was cut 

into stripes in the imaging plane (Fig. 2.6A). We imaged with a resonant two-photon 

Scientifica microscope and 16x 0.8 NA Nikon objective at 920 nm. We recorded at 30.9 Hz, 

512 x 512 pixel frames, and an average power of 118.5 mW. This produced a 500x500 µm 

field of view.  

 

The calcium imaging data analysis pipeline Suite2p (Pachitariu et al., 2017) was first used 

for alignment, motion correction, and ROI detection (Fig. 2.6B). The fluorescence of the 

neuropil was subtracted from the fluorescence of the cell for better signal detection. Then 

the trace was then passed through a 3 Hz low-pass filter script that we custom wrote 

(Supplementary Fig. 2.1). The data was then passed through Suite 2P’s deconvolution 

script. Each trace was deconvolved to remove the slow decay of calcium transients and 

used to calculate estimated cell activity. Deconvolution was based on the OASIS algorithm 

(Friedrich et al., 2017) (Fig. 2.7) and run with only a non-negativity constraint. Deconvolution 

of calcium transients is only an estimate of cell activity, not a true measure of cell firing, but 

was used here as a proxy for cell activity.  
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Responses of CA3 neurons during the task were highly diverse.  Some CA3 neurons  were 

active during either odor presentation or at specific time points in the delay. Other CA3 

neurons were active only after presentation of one odor and not the other and were therefore 

odor-specific (Fig. 2.8A. top graphs). Other CA3 neurons fired during the delay period only 

after a specific odor and could be classified as CA3 odor-specific time cells. These cells 

were active during most trials that began with a specific odor and were only active during a 

consistent time window during the delay period (Fig. 2.9A. top graphs).  To test if the cells 

were encoding odor and temporal information, we used Monte-Carlo simulations to 

determine whether the peak activity of neurons was greater than chance. Chance levels of 

activity were determined by circularly shuffling the cell activity in each trial 500 times. We 

took the max of the mean activity across trials in each of the 500 shuffles and created a 

distribution. Activity that exceeded the 99th percentile of this distribution was deemed 

significant. An odor cell was defined as a cell that had its maximal mean activity above this 

threshold during the one second odor 1 presentation window (Fig. 2.8. bottom graphs).  An 

odor-specific time cell was defined as a cell that had its maximal mean activity above the 

threshold during the five second delay period following odor 1 presentation (Fig. 2.9. bottom 

graphs). A cell with maximal mean activity above threshold during odor A presentation was 

called an ‘odor A cell’. A cell with maximal mean activity above threshold during the delay 

period following odor A presentation was called a ‘time A cell’. This was similarly defined for 

cells specific to odor B. With these definitions, we found both CA3 odor-specific cells and 

CA3 odor-specific time cells (Fig. 2.8 and Fig. 2.9) within the CA3 cell population. This finding 

shows that CA3 does indeed encode odor and temporal information.  
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Figure 2.1. 
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Figure 2.1. CA3 viral targeting in Girk4Cre mice. GCaMP7f is in green. DAPI is in blue. (A) 
10x image of the hippocampus showing viral injection targeting of CA3. (B) 5x image of a 
coronal brain slice showing viral injection targeting of CA3 and placement of the cranial 
window above CA3.  
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Figure 2.2. 

 

Figure 2.2. Odor-based Delayed Non-Match-to-Sample task. Mice were presented two 
odors (odor A in yellow or odor B in blue) with a five-second delay in between. Mice were 
rewarded for licking in response to non-match odor trials.  
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Figure 2.3.  

  

Figure 2.3. Behavioral training timeline.  DNMS task training (red boxes) was split into (1) 
habituation, (2) lick shaping, and (3) non-match-to-sample shaping. Two-photon imaging 
began in the third step of the DNMS task training. Water deprivation began at the first step 
of the DNMS task training.  
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Figure 2.4. 

DNMS performance over days 

 
Figure 2.4. DNMS performance over days. Performance in the DNMS task over days, 
starting with day 1 of the non-match-to-sample shaping (step 3 of the DNMS training). Two-
photon calcium imaging began on day 1. Each grey line represents the performance of one 
mouse (n = 5). The blue line is the averaged performance over all mice (r = 0.53). The shaded 
blue region is the standard error. *** p <0.01. 
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Figure 2.5. 

 

Figure 2.5. Experimental schema. Mouse performing the DNMS task during in vivo two-
photon calcium imaging. A 16x, NA 0.8 water-immersion objective was utilized. The cranial 
window sat over CA3. Water droplets were delivered through a lick port. Odors were 
delivered through a separate port. The mouse was freely running on a Styrofoam ball.  
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Figure 2.6.  
 

  

Figure 2.6. CA3 two-photon imaging plane. (A) Averaged raw two-photon image of CA3. 
(B) ROIs detected through Suite2p. 
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Figure 2.7.  

 

Figure 2.7. Examples of deconvolution. Each graph is the activity of one cell over one trial. 
The fluorescence of the cell subtracted by the fluorescence of the neuropil is in green. The 
deconvolved estimated cell activity is in black. The dotted lines denote the 1 second odor 
presentations.  
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Figure 2.8. 

 
Figure 2.8. Examples of CA3 odor cells. (A) Example of a CA3 odor A cell. The odor A cell 
was mostly active during odor 1 presentation in trials that began with odor A (AA, AB). The 
top graph is a heatmap of the normalized estimated activity of one cell across 160 trials. 
Each row is one trial. The trials are split into the four possible odor presentation combinations 
(AA, AB, BA, BB). The solid white horizontal line separate trials that began with odor A from 
trials that began with odor B. The solid white vertical lines denote the 1-second odor 1 
presentation. The dotted white vertical line marks the max mean activity of the cell across 
all trials. The bottom graph is the mean estimated normalized cell activity across all trials. 
Odor A is in yellow. Odor B is in blue. The red horizontal line is the threshold for significant 
activity. The shaded grey region denotes the 1-second odor 1 presentation. (B) Example of 
a CA3 odor B cell. The odor B cell was mostly active during odor 1 presentation in trials that 
begin with odor B (BA, BB). The top and bottom graph are as described in (A). 
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Figure 2.9.  
 

 

Figure 2.9. Examples of CA3 odor-specific time cells. (A) Example of a CA3 time A cell. The 
time A cell was mostly active around second 3 of the delay in trials that began with odor A 
(AA, AB). The top graph is a heatmap of the normalized estimated activity of one cell across 
160 trials. Each row is one trial. The trials are split into the four possible odor presentation 
combinations (AA, AB, BA, BB). The solid white horizontal line separate trials that began 
with odor A from trials that began with odor B. The solid white vertical lines denote the 1-
second odor 1 presentation. The dotted white vertical line marks the max mean activity of 
the cell across all trials. The bottom graph is the mean estimated normalized cell activity 
across all trials. Odor A is in yellow. Odor B is in blue. The red horizontal line is threshold for 
significant activity. The shaded grey region denotes the 1-second odor 1 presentation. (B) 
Example of a CA3 odor B time cell. The time B cell was mostly active around second 4 of 
the delay in trials that began with odor B (BA, BB). The top and bottom graph are as 
described in (A).  
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2.3 SEQUENTIAL ACTIVITY IN CA3 

We have shown that CA3 encodes odor and temporal on an individual cell level. What does 

the activity of the CA3 cell population look like as whole? Does CA3 display the same 

sequential activity that has been found in CA1? We took the mean estimated activity of each 

significant cell, as defined in the previous section, and sorted the cells by the time-bin of 

their maximal mean activity. We saw sequential activity for both odor-A and odor-B specific 

significant cells. Odor-specific cells fired sequentially beginning at first odor presentation and 

tiled the entire delay (Fig. 2.10). Sequences were odor specific. When odor A sequence cells 

activity was plotted during odor B trials, sequential activity was abolished, though many odor 

cells and time cells can be seen to fire to both odors.  (Fig. 2.11B) This was similarly true for 

odor B sequences cells plotted during odor A trials (Fig. 2.11F) A larger percent of the odor 

cell population was active during the early odor presentation time-bins compared to later 

odor presentation time-bins (Fig. 2.10C). A larger percent of the time cell population was 

active within the first second of the delay compared to later delay time-bins (Fig.2.10C). Each 

animal (n = 5) had on average 3000 cells pooled across all days. Odor A cells represented 

4.15% ± 0.59 of the cell population, time A cells represented 2.53% ± 0.36 of the cell 

population, odor B cells represented 4.76% ± 0.67 of the cell population, time B cells 

represented 1.53% ± 0.23 of the cell population (Fig. 2.10D).  

 

Since sorting of randomly generated traces will appear to show sequential activity, we used 

cross-validation methods to ensure that the sequential activity we demonstrated was not an 

artifact of the sorting method. To validate the sequential activity, we took the odd trials and 
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sorted by the time-bin of each cell’s maximal mean activity. This created the sequential 

activity that was seen when all trials were sorted. We then took the order of the odor trials 

and implemented it on the even trials. We saw that the sequential activity was still present 

in the even trials that had been sorted by odd trials (Fig. 2.11 C, G). This was true for both 

odor A and odor B sequence cells. We also compared the correlation of even and odd trials 

to a shuffled baseline. For odor A sequence cells and odor B sequence cells, there was a 

significant difference from the shuffled baseline (odor A: p = 4.02e-221, odor B: p = 7.9312e-

101) (Fig. 2.11 D, H). This meant that the odd and even trials were more similar to each other 

than compared to chance. These results show that the CA3 sequential activity is not an 

artifact of sorting. Though CA3 sequential activity was found and validated as described 

above in each mouse, there was variability in how the sequential activity looked 

(Supplementary Fig. 2.2,  2.3) and how many time cells there were.  
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Figure 2.10.  

Figure 2.10. CA3 sequential activity. (A) Activity heatmap of CA3 odor A cells and odor A 
time cells sorted by the time-bin of maximal mean activity. Cells are pooled across all animals 
(n = 5) and all days (n = 50). (B) Activity heatmap of CA3 odor B cells and odor B time cells 
sorted by the time-bin of maximal mean activity. Cells are pool across all animals (n = 5) and 
all days (n = 50). Each row represents the normalized mean activity across trials of one cell. 
The red lines denote the one second odor 1 presentation time-bin. (C) Time-bin of maximal 
firing of significant cells. Yellow line is for odor A specific cells. Blue line is for odor B specific 
cells. Black line for all significant cells. The shaded grey area denotes the odor presentation 
window. The power exponent is -3.252. (D) Breakdown of CA3 significant cells (n = 2443 ± 
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498.47): Odor A cells (4.15% ± 0.59), odor A-specific time A cells (2.53% ± 0.36), odor B 
cells (4.76% ± 0.67), odor B-specific time B cells (1.53% ± 0.23). ***r <0.001. 
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Figure 2.11.  

 
Figure 2.11. CA3 sequential activity validation. Cells are pooled across all animals and days 
(n = 2443 ± 498.47). (A) Odor A cells during odor A trials, sorted by each cell’s maximal 
average activity. Sequential activity is present. (B) Odor A cells during odor B trials. 
Sequential activity is absent. (C) Odor A cells during even odor A trials, sorted by odd odor 
A trials. Sequential activity is still present. (D) Correlation between even and odd odor A trials 
(p = 4.02e-221). (E) Odor B cells during odor B trials. Sequential activity is present. (F) Odor 
B cells during odor A trials. Sequential activity is absent. (G) Odor B cells during even odor 
B trials, sorted by odd odor B trials. Sequential activity is still present. (H) Correlation between 
even and odd odor B trials (p = 7.93e-101).  
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2.4 LOW SELECTIVITY IN CA3 CELL POPULATION 

After confirming that CA3 cells encode sensory and temporal information and fire in a 

sequential manner, we wanted to further investigate the unique properties of these cells. 

Since the sequence cells fire to specific odors, we tested the strength of this odor 

preference. To do this, we calculated the odor selectivity index (SI) for each cell with 

significant activity, as defined in previous sections. Odor selectivity index was calculated as 

the ratio of (Rpref – Rnonpref)/(Rpref + Rnonpref). Rpref is the estimated mean activity at the single 

time-bin of the cell’s maximal mean activity during preferred odor trials. Rnonpref is the 

estimated mean activity at that same time-bin, but in the non-preferred odor trials. The odor 

SI is a ratio that describes how much one odor is preferred over the other. The stronger the 

preference is, the closer the ratio is to one. The weaker the preference is, the closer the ratio 

is to zero.  

 

The CA3 cells have low selectivity indexes across all cell subgroups (Odor A cells: mean SI 

0.28; Time A cells: mean SI 0.36; Odor B cells: mean SI 0.28; Time B cells: mean SI 0.36) 

(Fig. 2.12). This means that while the majority of CA3 cells display odor preference, that 

preference was very small, since the odor SI were close to zero. This finding was surprising, 

so re-examined all CA3 cells to confirm the presence of non-selective cells. We were able 

to identify both non-selective CA3 odor and time cells (Fig. 2.13). CA3 cell low odor 

selectivity contrasts with the high odor selectivity recorded in CA1 (Taxidis et al., 2020).  
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We were curious if CA3 odor selectivity stayed consistent across time. Was there stronger 

odor preference at the beginning of the trial during the odor presentation and this preference 

weakened towards the end of the delay? We graphed the odor SI of CA3 significant cells 

according to the time-bin of their average maximal activity. We found that the odor SI stayed 

relatively constant across time (Pearson correlation, r = 0.17; p = 0.65) (Fig. 2.14A). Mean 

odor SI for odor cells was 0.402 ± 0.010. Mean odor SI for time cells was 0.396 ± 0.008. 

There was no significant difference between the mean odor SI of odor cells and time cells 

(p = 0.63) (Fig. 2.14B), meaning that there was no significant difference in the strength of 

odor preference between cells that were significantly active during odor presentation and 

those significantly active during the delay. CA1 cell odor SI was also stayed constant across 

time (Taxidis et al., 2020).  
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Figure 2.12 

 

Figure 2.12. Low selectivity across all CA3 cells. Distribution of selectivity index (SI) in (A) 
Odor A cells (mean = 0.28), (B) Time A cells (mean = 0.36), (C) Odor B cells (mean = 0.28), 
(D) Time B cells (mean = 0.36).  
 

 

 

 

A 
 

B 
 

C 
 

D 
 



 45 

Figure 2.13. 

 
Figure 2.13. CA3 non-selective cells. (A) Example of a CA3 non-selective odor cell. (B) 
Example of a CA3 non-selective time cell. The top graph is a heatmap of the normalized 
estimated activity of one cell across 160 trials. Each row is one trial. The trials are split up 
into the four possible odor presentation combinations (AA, AB, BA, BB). The solid white 
horizontal line separate trials that began with odor A from trials that began with odor B. The 
solid white vertical lines denote the 1-second odor 1 presentation. The dotted white vertical 
line marks the max mean activity of the cell across all trials. The bottom graph is the mean 
estimated normalized cell activity across all trials. Odor A is in yellow. Odor B is in blue. The 
red horizontal line is threshold for significant activity. 
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Figure 2.14. 
 

Figure 2.14. CA3 selectivity index is constant across time. (A) Mean CA3 selectivity index 
across all cells across time (Pearson correlation, r = -0.02; p = 0.65) (n = 2443 ± 498.47 
cells).  Grey shaded region around the line is the standard error. Shaded region from second 
one to two denotes odor 1 presentation. (B) Comparision of the mean selectivity index 
between odor and time cells. Mean SI for odor cells was 0.402 ± 0.011. Mean SI for time 
cells was 0.396 ± 0.008. There was no sigificant difference found between the mean SI for 
odor and time cells (p = 0.63). Purple denotes odor cells, green denotes time cells.  
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2.5 DECODING ODOR FROM THE CA3 CELL POPULATION 

The low odor selectivity in the CA3 cell population made us wonder if CA3 cells truly held 

odor or time information. To test this, we tried decoding odor and time from the CA3 cell 

population.  

 

To decode odor, we used Support Vector Machines (SVM) decoding. SVM decoding is 

optimal for classifying data between binary classes. Since we are decoding between two 

odors (odor A and odor B), this SVM decoding is the best choice. We separated sessions 

into expert sessions, defined as sessions with above 85% accuracy, and novice sessions, 

defined as session with below 85% accuracy. A SVM decoder was built for each day. The 

SVM decoder was only trained on correct trials, but was tested on correct and incorrect 

trials. Using expert sessions, odor was able to be decoded during (1) the odor presentation 

(p < 0.05) and (2) the entire delay period (p < 0.05 delay second 1-4) (Fig. 2.15). Odor 

decoding accuracy was highest during odor presentation and dropped as the trial 

progressed, though staying above the shuffled baseline. Using novice sessions, odor was 

more accurately decoded during the odor presentation (p = 0.06) and the early delay period 

(Fig 2.15). During the latter delay period, accuracy dropped to similar accuracies as the 

shuffled baseline (Fig 2.15). Decoding during expert sessions was significantly better when 

compared to novice sessions during the majority of the trial (p<0.05: odor presentation, 

delay seconds 1-4). 
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These findings could be biased because the number of trials used for training the decoder 

in expert sessions did not match the number of trials used for novice sessions. We 

accounted for this by subsampling the data. We wanted to create the most stringent 

measure for subsampling. To do so, we matched the number of correct trials used for 

training between the expert and novice sessions. We also only used days that had at 

minimum 66 correct trials for expert and novice sessions. This ensured that the SVM 

decoder was trained in the same number of trials in expert and novice sessions and that 

there were sufficient trials being fed into decoder for training. The subsampled SVM 

decoding resulted in slightly higher accuracy, but the trends in the data were similar to those 

found in the original SVM decoding results. Using expert sessions, odor was decoded at all 

time points (p < 0.5: odor presentation, delay second 1-4) (Supplementary Fig. 2.4). Using 

novice sessions, odor was more accurately decoded during the odor presentation and the 

early delay period (p < 0.05: delay second 1) compared to the late delay period. Decoding 

for novice sessions dropped close to the shuffled baseline during the late delay period 

(Supplementary Fig. 2.4).  

 

Since odor identity can be decoded from CA3 cells, this population does indeed hold odor 

information. Odor identity can be decoded at all time points from the first odor presentation 

to the end of the delay. This implies that mice are retaining information about odor 1 identity 

in CA3 throughout the delay to compare with odor 2 in order to complete the DNMS task. 

This is confirmed when comparing SVM odor decoding performance in expert and novice 

sessions. In expert sessions, mice have learned how to perform the DNMS task correctly. 
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To do so, mice must retain information on odor 1 identity throughout the delay to compare 

with odor 2. Only then can mice identify and respond correctly to non-match trials. 

Therefore, decoding accuracy is high throughout the odor presentation and the delay period. 

In novice sessions, mice have not yet learned that they must retain information on odor 1 

identity to correctly compare it to odor 2.  
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Figure 2.15. 

 
Figure 2.15. CA3 SVM odor decoding across time. Purple line represents mean performance 
of the SVM decoder during expert sessions. Shaded purple region represents standard 
error. Cyan line represents the mean performance of the SVM decoder during novice 
sessions. Shaded cyan region represents standard error. Black line represents the mean 
performance of the SVM decoder at baseline. Shaded black region represents standard 
error. Purple asterisks denote p <0.05 for expert sessions compared to baseline. Green 
squares denote p<0.05 for expert sessions compared to novice sessions. (n = 5 mice) 
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2.6 DECODING TIME FROM THE CA3 CELL POPULATION  

To decode time, we chose to use Bayesian decoding. Bayesian decoding is optimal for 

continuous data and allows for the incorporation of prior information on the stimulus through 

a posterior probability. This makes it a good choice when decoding temporal information 

since time exists on a continuous scale, rather than in distinct classes, and the probability 

of being at one point in time heavily depends on what the previous point in time was.  

 

A Bayesian decoder was built for each day using the same methods described in the SVM 

decoding. We measured the accuracy of the Bayesian decoder by comparing the amount 

of error found to that present in the shuffled baseline.  

 

Using expert sessions, we were able to decode time at levels better than chance during: (1) 

odor presentation, (2) early delay, (3) late delay (p < 0.05) (Fig. 2.16). Time decoding was 

most accurate during the odor presentation and early delay. Using novice sessions, we were 

able to decode time during: (1) odor presentation and (2) early delay (p < 0.05) (Fig. 2.16). 

We were able to decode time more accurately using expert sessions compared to novice 

sessions during: (1) odor presentation and (2) early delay (p < 0.05) (Fig. 2.16). Time 

decoding was the most accurate during the odor presentation and early delay.  

 

Since temporal information can be decoded from CA3 cells, this population does indeed 

hold temporal information. Using expert sessions, we were able to decode time from the 

odor presentation, early delay, and late delay.  
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This is further demonstrated when comparing our results in the well-trained and novice 

sessions. We see that in novice sessions, time was able to be decoded during the odor 

presentation and the early delay, but not during the rest of the delay. This signifies the implicit 

timing of the task is recognized; mice hold timing information on the beginning of the delay. 

This information decays as the trial goes on and does not improve before the second odor 

presentation.  

 

While we were able to decode time in the odor presentation and early delay in both well-

trained and novice sessions, we were able to decode time significantly better in well-trained 

sessions (p<0.05) (Fig. 2.16). CA3 cells held better temporal information during well-trained 

sessions.  
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Figure 2.16. 

Figure 2.16. CA3 Bayesian time decoding across time. Purple line represents mean 
performance of the Bayesian decoder during expert sessions. Shaded purple region 
represents standard error. Cyan line represents the mean performance of the Bayesian 
decoder during novice sessions. Shaded cyan region represents standard error. Black line 
represents the mean performance of the Bayesian decoder at baseline. Shaded black region 
represents standard error. Purple asterisks denote p<0.05 for expert sessions compared to 
shuffled baseline. Cyan asterisks denote p<0.05 for expert sessions compared to novice 
session. Green squares denote p<0.05 for expert sessions compared to novice sessions. 
(n = 5 mice). 
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2.7 DISCUSSION 

In summary, here we report the findings that (1) CA3 cells fire in a sequential manner during 

a working memory task, (2) CA3 cells process sensory and temporal information, and (3) 

CA3 cells have low odor selectivity.  Our finding of sequential firing in the CA3 cell population 

is novel as CA3 has never been imaged during an olfactory modified working memory task. 

This finding helps shed light on the role that CA3 cells play in non-spatial memory. We found 

that CA3 cells encode odor and time information in odor cells and odor-specific time cells. 

We also found that time and odor information can be decoded from CA3 cells. This proves 

that CA3 cells do indeed process sensory and temporal information. Finally, we found that 

CA3 cells interestingly have low odor selectivity. This is despite being able to accurately 

decode specific odor information from population.  

 

These findings together indicated a small subpopulation of CA3 cells held enough 

information to drive decoding. The remaining majority were low odor selectivity cells. The SI 

index distribution supported this conclusion. While the mean SI index for all cell groups was 

low, there were cells that had high SI and were very selective for a particular odor. When a 

cell population is fed into the decoder, the decoder does not weigh each cell equally. If 

certain cells help the decoder guess the correct answer better, those cells are weighted 

more. This explains why we were able to decode odor accurately from a population of mostly 

low odor selectivity cells.  
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How does CA3 compare to CA1? Our findings were that (1) CA3 has similar sequential firing 

patterns as those found in CA1, (2) CA3 processes sensory and temporal information and 

CA1 was found to as well, (3) CA3 has lower selectivity than CA1 cells.  

 

We were able to compare grossly the sequential firing patterns in CA1 and CA3. Both cells 

that fire during the odor presentation and cells that tile the delay. This is also consistent with 

the literature on CA1 and CA3 within the field, as discussed in Chapter 1.  

 

Both CA1 and CA3 process sensory and temporal information. While we found fewer 

percentage of odor cells and odor-specific time cells in CA3 as compared to those found in 

CA1, this is due to the difference in stringency in the defining of these groups. We only 

categorized cells as odor cells or odor-specific time cells if their activity was above the 99th 

percentile of the shuffled activity distribution. Taxidis et al. used a threshold the 95th 

percentile of the shuffled activity distribution. Given this, it makes sense that we would 

identify fewer odor cells and odor-specific time cells. Due to anatomy, we also were not able 

to image the same number of CA3 cells as can be imaged in CA1. When imaging CA1, the 

objective lens is parallel to the surface of CA1. Thus, the CA1 cells populate the entire field 

of view. Whereas for CA3, the objective is parallel to the curve of CA3. This means the field 

of view is constrained to a strip of cells, since the objective is viewing sections of the CA3 

curve. The sheer number of cells that are possible to image in a single field of view is lower 

for CA3 compared to CA1.  
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Using CA3 cell activity, we were able to decode odor during odor presentation and the 

following time delay during both expert and novice sessions. During the odor presentation, 

the mouse is acutely experiencing the odor, so the odor identity is known. This is why odor 

is still able to be decoded during the odor presentation in novice sessions. As the mouse 

enters the delay period, and the experience of the odor becomes further in the past, the 

mouse “forgets” the odor identity.  This is why the SVM decoding accuracy, which reflects 

the information held in the CA3 cell population, drops during the delay in novice sessions. 

This phenomenon is seen in expert sessions as well, but the overall accuracy of the SVM 

odor decoding is higher in expert sessions compared to novice sessions. Mice in expert 

sessions had learned the salience of the odor, and therefore learned to store more 

information regarding odor identity.  

 

Using CA3 cell activity, we were able to decode time during the odor presentation, early 

delay, and late delay in expert sessions. This is in line with the timing demands of the DNMS 

task. The task itself does not require explicit timing. That is, the task does not require mice 

to attend to the temporal dimension of the task by responding to a specific time interval. The 

DNMS task does include implicit timing. Though there was no explicit instruction to process 

time, timing was still inherent in the set five second delay between odor presentations. This 

timing affected behavior and cognition. Well-trained mice may not count each second during 

the delay, but may perceive that following the first odor presentation there will be a delay of 

some length and that, towards the end of the day, a second odor will be presented. This 

was evident when examining the lick patterns in mice as they learn the DNMS task. During 
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the lick shaping step of DNMS training, untrained mice start off by licking through the entire 

trial. Because they have not learned the temporal structure of the DNMS task yet, they do 

not know to withhold their licking to the response window following odor two presentation. 

Towards the end of the lick shaping step, mice have learned the temporal structure of the 

DNMS task. They no longer lick throughout the trial. Instead, they withhold their licking to 

the response window. This demonstrated understanding of the temporal structure of the 

DNMS task and that mice were utilizing some temporal processing while performing the 

task.  

 

Our results in expert and novice sessions reflected this understanding of the temporal 

structure of DNMS. Mice in expert sessions were more attuned to timing at the beginning of 

the delay because they recognized that a delay was beginning. Timing was less important 

in the middle of the delay, as that information was not needed for behavior, anticipation, or 

decisions. Towards the end of the delay, timing became salient again as the mouse 

anticipated the presentation of the second odor. Thus, time can be decoded during the odor 

presentation, early delay, and late delay, but not during the middle (delay second 3-4) delay 

in expert sessions. Mice in novice sessions do not fully understanding the importance of the 

second odor and therefore not being attuned to its timing. The second odor is not salient to 

them because they have not learned that it is tied to a possible reward. Thus, time cannot 

be decoded from the late delay in novice sessions. Overall, the SVM odor decoding was 

higher in expert sessions compared to novice sessions. This shows that while the temporal 

structure of the DNMS task was learned in both expert and novice sessions, temporal 
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information was more salient in expert sessions. During expert sessions, the mice were more 

attuned to the timing of the task. Perhaps this temporal information held in the CA3 cells 

helped them to accurately anticipate and respond more accurately than in novice sessions.   

 

In comparing CA1 and CA3 decoding, we found that while CA1 and CA3 can both decode 

odor, CA3 was better at decoding time than CA1. In CA1, decoding of temporal information 

was found to decay significantly towards the end of the delay during the DNMS task (Taxidis 

et al., 2020). Using CA3 cells, time was decoded from the late delay of the DNMS task. This 

implies that CA3 holds and processes more temporal information than CA1 does. It is 

unclear how comparable time decoding in CA1 is to CA3 though, as the shape of the 

shuffled baseline in the CA1 study differs from our CA3 study. This could indicate a difference 

in methodology used to obtain the shuffled baseline, differences in the calcium analysis 

pipeline, or an inherent difference in how temporal information is processed in CA1. 

Regardless, these results could point to CA3 being the region temporal information is 

processed, as more temporal information regarding the DNMS task seems to be processed 

there. Since the DNMS task only has implicit timing, CA3 could process the task temporal 

information and then only pass the portion deemed relevant to CA1.    

 

Finally, we found that CA3 cells have lower odor selectivity than CA1 cells. CA3 cells on 

average have a lower odor SI than CA1 cells. This is interesting because it speaks to the 

differences in the role of CA3 and CA. CA1 is the output of the hippocampus and does not 

necessarily have to produce its own code. This could mean that it does not need the flexibility 



 59 

of a large population of low selective cells, since it is mainly reading information from inputs. 

CA3 has a large population of non-selective cells that have the flexibility to hold multimodal 

information. If CA3 is indeed integrating sensory and temporal information, it requires this 

population of cells that can easily adapt and learn fast in order to quickly produce a stable 

rule that can be passed on.  
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2.8 METHODS 

CA3 Viral Injection and Cranial Window Implantation Surgery  

Adult (10-15 week old) male or female Girk4-cre mice were anesthetized with 5% isoflurane 

to induct and then given 1.3-1.5% isoflurane to maintain general anesthesia. Prior to surgery, 

lack of eye blink and withdrawal to foot pinch reflexes were confirmed to ensure that animals 

were under the effect of the general anesthesia. Ophthalmic ointment was applied to the 

animal’s eyes to prevent drying and discomfort during the surgery. The animal was placed 

in a stereotaxic frame and body temperature was controlled using a Harvard Apparatus body 

temperature regulator and heating pad. The fur on the skull was shaved with an electric 

razor followed by a chemical depilatory (Nair). The animal was prepped and draped in a 

sterile manner. Carprofen (an analgesic), dexamethasone (an anti-inflammatory drug), and 

saline, to replace fluids lost during surgery, were injected subcutaneously. The scalp was 

infiltrated with lidocaine, a local analgesic. The scalp was sanitized with betadine and 70% 

ethyl alcohol. The scalp and underlying tissue were incised with a scalpel blade. The skull 

was scraped using the scalpel blade to facilitate effective bonding between the skull and 

head-bar. A small (3 mm diameter) craniotomy was made on the right hemisphere above 

CA3 using an air-powered precision dental drill, with great care taken to not disrupt the dural 

sinuses. The site was flushed with chilled cortex buffer until bleeding subsided. Mice then 

received a 500nL viral injection of a 1:10 dilution of filtered phosphate buffer solution (PBS) 

and AAV1-syn-FLEX-jGCaMP7f-WPE (1012 viral particle dilution) at a rate of 1 nL/second 

into CA3. Nanoject viral injectors and Zeiss STEMI-100 surgical scopes were used. After 

viral injection is complete, the glass needle was left in brain for 30 minutes to allow for viral 
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spread. The glass needle was then slowly removed from the injection site. Cortex above the 

hippocampus was removed through vacuum suction. A cannula with 3mm diameter, 1.5 

mm height, and a #1-thickness cover-glass window was implanted in the craniotomy above 

CA3. The cannula was bonded to the skull with a thin layer of VetBond tissue adhesive 

followed by a layer of cyanoacrylate glue. A customized omega-shaped head-bar was fixed 

on the skull using dental cement. The dental cement layer covered the exposed skull and 

bonded to the cannula. The cannula was filled with Kwik-Sil to protect against debris and 

dust entering the cannula. Animals were provided amoxicillin, an antibiotic, treated water 

over 14 days.  

 

Two-photon calcium imaging of CA3 

Animals recovered for 14 days after surgery and then were water-deprived to 85%-90% 

their initial body weight. They then were acclimated to head-restraint and imaged while 

learning or stably performing the olfactory modified delayed-non-match-to-sample (DNMS) 

task. Animals were trained every day and received all their daily water requirements as they 

performed the task. If mice do not drink 1 mL of water during the task, their water dose was 

supplemented after task performance. Animals were weighed every day to ensure that body 

weight did not drop below 85% of original body weight. All behavioral training and testing 

were done in high throughput, automated animal behavioral setups.  

 

The animals were imaged using a Scientifica microscope that uses a high-power Ti-Sapphire 

Coherent Ultra 2 laser. This laser had a max power at 800nm 3.7 Watts, which is sufficient 
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for powering two separate two-photon microscopes. The laser was routed to a Sutter MOM 

in vivo two-photon microscope equipped with 2 PMTs (Hamamatsu) and galvanometric 

mirrors (CambridgeTech) for fast scanning, and 5X,16X, 20X, and 40X Olympus objectives 

for imaging, and a rotatable objective head that allowed for varied imaging angles, 

perpendicular to the brain surface. It was also routed to a Scientifica resonant scanning 

microscope (32 Hz full frame imaging, 2 channels), equipped with a Gallium-Arsenide PMTS, 

and filters for green and red channel imaging. Proprietary Scientifica software drove 

acquisition through high-rate data acquisition devices. A custom Scientifica computer was 

equipped with the appropriate NIDAQ cards for digitizing the PMT signal after amplification 

through Stanford preamplifiers. An in vivo rig was attached to the microscope for head-fixed 

behavioral assays. The chamber was built identical to those described in the “Behavioral 

Training” section, but in addition were equipped with custom-made motion detectors for 

quantification of the spherical treadmill velocity and direction. Blood vessel patterns and 

precise alignment of the animal were utilized to image the same set of neurons each day. 

We recorded at 920 nm, 30 Hz, 512 x 512 pixel frames, and an average power of 118.5 

mW. This gave us a field of view of 500x500 µm. 

 

Behavioral Training – Olfactory Modified Delayed Non-Match-to-Sample Task  

Mice were presented with two odors with a five second delay between presentations. Mice 

were taught to lick when the odors are not the same. Mice must remember the first odor, 

hold the memory for five seconds, and compare it to the second odor to give the correct 

response. Following surgery, mice were gradually habituated to the behavioral set-up. The 
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lick-shaping stage consisted of only non-match trials to encourage mice to lick following the 

second odor. In first few days of the lick-shaping stage, a water droplet was presented to 

the mouse through the lickport after odor 2 presentation, regardless if the mouse licked in 

the response window or not. This taught the mouse to receive water through the lickport 

following odor 2. In the latter days of the lick-shaping stage, the mouse must lick the lickport 

following odor 2 for a water droplet to be dispensed. This taught the mouse they must lick 

the lickport after odor 2 to receive water. By day 14, matched trials were introduced, and 

mice learned to differentiate between matched and nonmatched trials. Mice underwent 8-

12 sessions of 20 trials each per day. By day 20, mice were generally well-trained and 

performed consistently above 80%.  

 

The mice were trained in two self-contained behavioral rigs. Each setup included the 

following components: (1) a ventilated sound-proof box containing a spherical treadmill, (2) 

custom posts and headbars to head-fix animals onto the spherical treadmill, (3) Island 

Motion Lick detection equipment for measuring licking of water from the lick-tube, (4) infra-

red camera for recording mouse behavior, and (5) silent fans for ventilation. A multichannel 

olfactometer outside of the box delivered odors to each of the boxes through connecting 

tubes. Each olfactometer served two behavioral boxes. A computer running custom 

software in MATLAB using NIDAQ digital/analog devices controlled reward delivery and kept 

track of mouse performance. Another setup that included a motion detector to track the 

velocity and direction of the spherical treadmill was integrated with the two-photon set-up. 
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Quantification and Statistical Analysis 

Analysis of Calcium Imaging Data  

Preprocessing: Preprocessing of image data was carried out with custom scripts written in 

MATLAB (Mathworks, Natick, MA, USA) and the calcium imaging analysis package, Suite 

2P (Pachitariu et al., 2017). To denoise the signal, the raw image data was first passed 

through a 3Hz low-pass filter using a custom MATLAB script. Then, the signal was 

deconvolved using the deconvolution script from Suite2P (Friedrich et al., 2017; Patchitariu 

et al., 2018). The image was then put through the entire Suite2P package for motion 

correction and ROI extraction. Following this, the signal was normalized per trial according 

to the max signal, based on the 6 second time period beginning at the presentation of odor 

1 to the end of the 5 second delay (Supplementary Fig. 2.1). A baseline was created based 

on the mean activity during the one second before presentation of odor 1. A threshold of 

two standard deviations above this baseline was set. Signal that fell below this threshold 

was set to 0 (Supplementary Fig. 2.1).   

 

Defining Significant Cells:  

Mean activity over all trials was computed for each cell. The time-bin in which the maximum 

average activity occurs was considered the firing field of that cell. The cell activity trace for 

each trial was then flipped and circularly shifted by a random interval in either the positive or 

negative direction. Maximum mean cell activity over the shifted trials was computed. This 

was repeated 500 times to generate a baseline distribution of maximal mean cell activity. If 

a cell had a maximum average estimated cell activity larger than the 99th percentile of the 
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shuffled distribution, it was considered to have a significant field. An odor cell was defined 

as having a significant firing field in the time-bin of the odor presentation. Cells that had 

significant firing fields in the delay period following the first odor presentation were 

considered time cells. 

 

Odd vs. Even validation: 

Odd trials during the sequence cells’ preferred odor trials were sorted by the time-bin of 

each cell’s maximal mean activity. This created the sequential activity that was seen when 

all trials were sorted together. We then took then took the index of these cells and sorted 

the even trials by this order.  

 

We compared the correlation of even and odd trials to a shuffled baseline. We calculated 

the correlation between each row of the even trials to the corresponding row of the odd 

trials. We created a shuffled baseline by flipping and circularly shifting the cell activity for 

each trial by a random interval in either the positive or negative direction. We then calculated 

the correlation between even and odd trials in the shuffled data in the same manner as in 

the original data. The two distributions were compared through a Wilcoxon rank-sum test.  

 

Odor Selectivity Index:  

Odor selectivity index was calculated as the ratio of (Rpref – Rnonpref)/(Rpref + Rnonpref). Each cell’s 

activity was averaged across all trials. Rpref is the estimated activity at the single time-bin of 
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the cell’s maximal mean activity during preferred odor trials. Rnonpref is the estimated mean 

activity at that same time-bin, but in the non-preferred odor trials.  

 

Odor SI across time correlation was calculated through a Pearson’s correlation.  

 

SVM odor decoding: 

SVM decoding was carried out through custom scripts written in Python (Rossum, 1995). 

We have a cohort of 5 mice. There were 50 days of experimentation total across all mice. 

During each day, there were 8 - 13 sessions. Each session consisted of 20 trials of the 

DNMS task. Analysis was limited to the time period from the beginning of odor 1 

presentation to the end of the five second delay. We separated sessions into either expert 

or novice sessions. Expert sessions were defined as sessions with above 85% accuracy (at 

minimum 17/20 trials correct). Novice sessions were defined as sessions with below 85% 

accuracy. We then took either the expert sessions or novice sessions and concatenated all 

the trials from the sessions into one matrix. We labeled the correct and incorrect trials in this 

matrix. Then, 80% of the trials were randomly selected. Out of this selection, only the correct 

trials were used to train the decoder. If there were less than 20 correct trials in this selection, 

the session was excluded due to insufficient data. The remaining 20% of the data was using 

for testing. Both incorrect and correct trials were used for training. The baseline was created 

using the data from the one second before odor 1 presentation. This data was run through 

the SVM decoder in the same way as stated above. The result was the concatenated across 
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all time-bins to create a baseline. Significance was determined through a Wilcoxon rank-

sum test. 

 

SVM odor decoding, subsampling:  

The number of correct trials used for SVM decoder training were matched between expert 

and novice sessions. Only days with a minimum of 66 correct trials for expert and novice 

sessions were used. The rest of the SVM decoding was performed as in the non-

subsampled SVM decoding.  

 

Bayesian time decoding:  

Bayesian decoding was carried out through custom scripts written in Matlab (Mathworks, 

Natick, MA, USA). We have a cohort of 5 mice. There were 50 days of experimentation total 

across all mice. During each day, there were 8-13 sessions. Each session consisted of 20 

trials of the DNMS task. Analysis was limited to the time period from the beginning of odor 

1 presentation to the end of the five second delay. We used 31 time bins across the seven 

seconds included in the analysis (0.23 seconds per time bin). We parsed the sessions into 

expert and novice sessions using the same definition and methods as described in the SVM 

odor decoding methods. We trained and tested the Bayesian decoder using the same 

methods as described in the SVM odor decoding methods. The error in seconds was 

graphed. Significance was determined through a Wilcoxon rank-sum test. 
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The shuffled baseline was created using the data from the well-trained sessions, as this 

would create a more stringent baseline than if the novice sessions were used. Each trial was 

flipped then and circularly shifted by a random interval in either the positive or negative 

direction. The data was then run through the Bayesian decoder in the same way as stated 

above. The error in seconds was graphed to represent the shuffled baseline.  

 

Confocal Images 

Images were obtained using a Zeiss LSM 800 confocal microscope or Zeiss apotome 2. Fiji 

(Image J) was used for figure preparation.  
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2.9 SUPPLEMENTARY FIGURES 

Supplementary Figure 2.1. 

 
Supplementary Figure 2.1. Example of pre-processing steps. Left: The top graph is a 
heatmap of the normalized estimated activity of one cell across 160 trials. Each row is one 
trial. The trials are split up into the four possible odor presentation combinations (AA, AB, 
BA, BB). The solid white horizontal line separate trials that began with odor A from trials that 
began with odor B. The solid white vertical lines denote the 1-second odor 1 presentation. 
The dotted white vertical line marks the max mean activity of the cell across all trials. The 
bottom graph is the mean estimated normalized cell activity across all trials. Odor A is in 
yellow. Odor B is in blue. The red horizontal line is threshold for significant activity. Right: 
Graphs in order from top to bottom, according to the flow of pre-processing steps. Black 
line indicates baseline, as calculated from the activity one second before odor 1 
presentation. See methods for detailed description.  
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Supplementary Figure 2.2. 
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Supplementary Figure 2.2. CA3 Odor A cells sequential activity, mouse variability. (A)-(E) 
CA3 Odor A cells sequential activity in odor A trials (left graph), odor B trials (middle trials), 
and in odor A even trials sorted by odor A odd trials (right graph). Each set of three graphs 
represents data from one mouse (SKC16NS, SKC16RS, SKC18BS, SKC21LS, SKC22NS) 
(n = 5 mice). Red vertical lines denote the time-bin of odor presentation.  
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Supplementary Figure 2.3. 
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Supplementary Figure 2.3. CA3 Odor B cell sequential activity, mouse variability. (A)-(E) CA3 
Odor B cells sequential activity in odor B trials (left graph), odor A trials (middle trials), and in 
odor B even trials sorted by odor B odd trials (right graph). Each set of three graphs 
represents data from one mouse (SKC16NS, SKC16RS, SKC18BS, SKC21LS, SKC22NS) 
(n = 5 mice). Red vertical lines denote the time-bin of odor presentation. 
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Supplementary Figure 2.4. 

 

Supplementary Figure 2.4. SVM odor decoding across time, data subsampled. Purple line 
represents mean performance of the SVM decoder during expert sessions. Shaded purple 
region represents standard error. Cyan line represents the mean performance of the SVM 
decoder during novice sessions. Shaded cyan region represents standard error. Black line 
represents the mean performance of the SVM decoder at baseline. Shaded black region 
represents standard error. Purple asterisks denote p < 0.05 for expert sessions compared 
to baseline. Cyan asterisks denote p < 0.05 for expert sessions compared to novice 
sessions. (n = 5 mice) 
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Chapter 3 

CA3 stability 
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3.1 INTRODUCTION 

Both CA1 and CA3 process temporal and sensory information. But where does the 

temporal signal originate? While CA1 odor cells are reliably activated across DNMS trials 

and retain stable fields over days and extended delays, CA1 odor-specific time cells have 

unreliable activation and unstable fields over days, with different groups of neurons 

representing time elapsed after each odor after each day. In addition, the number of CA1 

odor-specific time cells increases over days of learning and performing the DNMS task 

(Taxidis et al., 2020). These characteristics indicate dynamic temporal encoding that 

remaps day-to-day. However, a stable code would be advantageous for maintaining and 

reliably re-accessing a memory. CA3 has a recurrent network that can quickly create and 

store such a code (Rolls, 2013). As an attractor network, CA3 may be able to form quick 

and strong associations between stimuli and time and re-activation of these associations 

can occur easily.  

 

Here, I will investigate the stability of the CA3 cells during the DNMS task and compare the 

results with those found in CA1. We expect to find that CA3 cells are more stable than 

CA1 cells. We hypothesize that CA3 provides a stable, easily re-accessible association of 

odor and time that can be passed onto CA1.  
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3.2 CA3 RELIABILITY 

We began to investigate CA3 stability by first looking at the reliability of CA3 cells. We 

measured reliability by how often a cell fired during its firing field. We found the time point 

at which a cell had its maximum mean activity across all preferred odor trials in one day. 

We set narrow bounds for a cell firing field around this time point. Then, we counted the 

number of individual preferred odor trials in which the cell had activity during in the cell 

firing field. We divided this number by the total number of preferred odor trials to calculate 

the cell reliability.  

 

CA3 cell reliability dropped during odor 1 presentation, then was fairly stable over time 

(Pearson correlation for delay, r = 0.01; p = 0.65) (Fig. 3.1A). The mean odor cell reliability 

was 37.81% ± 0.38. The mean time cell reliability was 29.67% ± 0.26 (Fig. 3.1B). There 

was a significant difference between the mean reliabilities of odor cells and odor-specific 

time cells (p = 2.09x 10-53) (Fig. 3.1B).  

 

Reliability was calculated in a similar way for CA1 in Taxidis et al 2020. In CA1, reliability, or 

activation probability, began around 30% at the first odor presentation and dropped to 

close to 10% by the end of the trial.  
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Figure 3.1. 

 
Figure 3.1. CA3 cell reliability. (A) Mean cell reliability across time (Pearson correlation, r = 
0.01; p = 0.65). All cells pooled across all mice (n = 2443 ± 498.47 cells). Grey shaded 
region around the line is the standard error. Shaded region from second one to two 
denotes odor 1 presentation. (B) Comparision of the mean cell reliability (cell firing 
probability) between odor (37.81% ± 0.38) and time cells (29.67% ± 0.26). There was a 
significant difference (p = 2.09x 10-53). ***p < 0.001 
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3.3 CA3 ODOR CELL NUMBERS DO NOT INCREASE ACROSS DAYS 

We wanted to look at another measure of stability, so we determined if the number of odor 

cells or odor-specific time cells increased across days. If the number of odor or odor-

specific time cells increased, it could mean that the neural representation of odor or time is 

changing as the mouse learns and solidifies the memory of the DNMS task. The mouse 

could be integrating more olfactory or temporal information that is relevant to the task. If 

the number of odor or odor-specific time cells do not increase, it could mean that the 

mouse has already created a stable representation of odor and time in the DNMS task.  

 

We calculated the percent of odor cells out of all identified cells. This percentage was 

calculated for each animal on each day of the DNMS task. Since total cell numbers varied 

across mice and across days, we chose to use a percentage instead of the raw number of 

cells so that we could accurately combine the data from each mouse. Overall, we found 

that the odor cells numbers do not increase across days (Pearson correlation, r = 0.11; p 

= 0.24) (Fig. 3.2). This held true even when breaking the odor cells into odor A cells 

(Pearson correlation, r = 0.16; p = 0.31) and odor B cells (Pearson correlation, r = 0.19; p 

= 0.24) (Supplementary Fig. 3.1).  
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Figure 3.2. 

 

Figure 3.2. CA3 odor cells numbers do not increase across days. (A) Mean percent of 
odor cells across days (Pearson correlation, r = 0.11; p = 0.24). Cells pooled per animal (n 
= 5 mice). Shaded grey region denotes the variance across animals.  
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3.4 CA3 ODOR-SPECIFIC TIME CELL NUMBERS DO NOT INCREASE ACROSS DAYS 

We next looked to see if the odor-specific time cell population increased across days. We 

calculated the percent of odor-specific time cells out of all identified cells. This percentage 

was calculated for each animal on each day of the DNMS task. Since total cell numbers 

varied across mice and across days, we chose to use a percentage instead of the raw 

number of cells so that we could accurately combine the data from each mouse. Overall, 

we found that the odor-specific time cells numbers do not increase across days (Pearson 

correlation, r = -0.08; p = 0.96) (Fig. 3.3). This held true even when breaking the odor-

specific time cells into odor-specific time A cells (Pearson correlation, r = 0.08; p = 0.61).  

and odor-specific time B cells (Pearson correlation, r = 0.01; p = 0.94).  (Supplementary 

Fig. 3.2).  
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Figure 3.3. 

 

Figure 3.3. CA3 odor-specific time cells numbers do not increase across days. Mean 
percent of odor-specific time cells across days (Pearson correlation, r = -0.08; p = 0.96). 
Cells pooled per animal (n = 5 mice). Shaded grey region denotes the variance across 
animals.  
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3.5 DISCUSSION 

In summary, here we report the findings that (1) CA3 cells have comparable reliability to 

CA1 cells, (2) CA3 odor cells do not increase in numbers across days, similar to CA1 odor 

cells, and (3) CA3 odor-specific time cells do not increase in numbers across days, in 

contrast to CA1 odor-specific time cells.  

 

We found that CA3 cells have comparable reliability to CA1 cells, but that there may be a 

less steep drop in reliability between CA3 odor cells and CA3 odor-specific time cells 

compared to the drop in reliability between CA1 odor cells and CA3 odor-specific time 

cells. This may indicate a greater stability in the CA3 cell population. To note, we cannot 

directly compare these findings with those in CA3. Unlike the SI, reliability is not a ratio. 

Therefore, we cannot discount the differences in methodologies and tools used in that 

study compared the ones used in this study. Among these differences are that the CA1 

study used GCaMP6f, whereas this study utilized GCaMP7f. There is an improvement in 

the sensitivity and brightness of the newer calcium indicators that could affect reliability 

calculations. The methodologies differ slightly as well. The CA1 study had a slightly 

different way to define a cell’s firing field and baseline activity. These can also affect the 

reliability calculations. Given this, what we can conclude is that both CA3 and CA1 have 

comparable cell reliabilities that drop over time during a DNMS trial. They also share a 

trend in that the odor cells have higher mean reliabilities compared to mean odor-specific 

time cell reliability. What is interesting is that while both have this difference between 

reliabilities in odor and odor-specific time cell mean reliabilities, CA3 seems to have less of 
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a drop in reliability between odor and odor-specific time cell than CA1 does; In CA3 the 

difference is around 8%, whereas for CA1 it is around 20%. Again, we can’t draw hard 

conclusions due to the differences in methodologies and tools used in the two studies, but 

this difference between the two cell groups is large enough that it warrants comment. We 

can compare the differences in reliability between the two cell groups in CA1 and CA3 with 

less concern, because we are now comparing trends rather than specific numbers. If this 

trend is true, then CA3 cells could be more reliable than CA1 cells because their reliability 

is more stable and consistent across time. 

 

We found that CA3 odor cells do not increase in numbers across days. Similarly, CA1 odor 

cell population did not increase across days (Taxidis et al., 2020).  

 

We found that CA3 odor-specific time cells do not increase in numbers across days and 

are not affected by learning. In contrast, the CA1 odor-specific time cell population was 

found to increase over days (Taxidis et al., 2020). CA1 odor-specific time cells were found 

to increase in number as the DNMS performance accuracy increased (Taxidis et al., 2020). 

Bayesian time decoding error in CA1 significantly decreased across days, inversely 

correlating with odor-specific time cell population increase (Taxisdis et al., 2020). Odor 

decoding in CA1 did not change across day (Taxidis et al., 2020). Taxidis et al. postulated 

that CA1 odor-specific time cells increased because more information was being stored 

within the time cells. This contrasts with our findings that CA3 odor-specific time cells do 

not increase in numbers across days. We believe this is the case because the implicit 
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timing structure of the DNMS task was learned early in the training, mostly likely during the 

lick shaping step. The odor-specific time cells that hold this information were mostly set 

before the non-match-to-sample shaping. The temporal structure of the DNMS task is 

unchanged throughout training. We expect memory consolidation of timing during further 

steps, but we do not expect the odor-specific time cells to encode additional temporal 

information. In addition, the mice are not required to learn any new explicit timing rules 

during the non-match-to-sample shaping. We postulate that the increase in CA1 odor-

specific time cell numbers is due to the population encoding temporal signals for 

anticipation and day-to-day novelty in the environment. CA1 has been found to be more 

attuned to environmental novelty than CA3 (Leutgeb et al, 2004; Larkin et al., 2014). The 

anticipation signal could be present in CA1 too. The time decoding error decreases close 

to end of the trial, as also seen in CA3. This attention to those temporal signals could allow 

for better time decoding across days. The role of CA3 may be to hold the stable code that 

give the mouse information on the implicit timing structure of the DNMS task. This 

information does not change across days, as the delay is fixed. Since the temporal 

information does not change, it is not surprising that the number of odor-specific time cells 

does not change across days. In this way, CA3 is more stable than CA1, since it holds this 

stable temporal code. In summary, we believe the CA3 odor-specific time cells hold stable 

code regarding the fixed implicit timing of the DNMS task. When this information is passed 

onto CA1, information on novelty and other information on the day-to-day changes in the 

environment is added, leading to an increase in odor-specific time cells. 
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These results taken together point towards CA3 having more stability than CA1; CA3 has 

more stable reliability across time and a more stable odor-specific time cell population. 

These findings are in line with the literature in the field. CA3 has been found to have more 

stable trial-to-trial and day-to-day dynamics compared to CA1 when processing spatial 

memory (Dong et al., 2021). Our results are novel because they explore the role CA3 in 

nonspatial memory.  
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3.6 METHODS 

Quantification and Statistical Analysis  

Analysis of Calcium Imaging Data 

Calculating reliability:  

Reliability was calculated through custom scripts written in MATLAB (Mathworks, Natick, 

MA, USA). Reliability was calculated by first averaging estimated activity across all trials in 

the preferred odor for a cell within a day. We then located the time point of the maximum 

averaged trial activity. We defined the bounds of the cell firing field as two frames to either 

side of this time point. Each frame is 1/31 of a second; the firing field is therefore 5/31 

seconds, or approximately 0.16 seconds. After defining the cell firing field, we looked at 

the cell activity in each trial in the preferred odor. A baseline was created based on the 

mean activity during the one second before presentation of odor 1. A threshold of two 

standard deviations above this baseline was set. Signal that falls below this threshold are 

set to 0. We counted all the trials in which there was activity above this threshold within the 

cell firing field. We calculated cell reliability by dividing the number of trials with activity 

above threshold in the cell firing field by the total number of trials.  

	

Reliability = !!
!"

         

 

𝑇" = Number of trials with activity above the threshold in the cell firing field 

 𝑇# = Number of total trials 
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Calculating percent of cells across days: 

We calculated the percent of cells across days through custom scripts written in MATLAB 

(Mathworks, Natick, MA, USA). We found the percent of odor or odor-specific time cells 

out of all detected cells. The percentage was calculated for each animal on each day of 

the DNMS task. We graphed this percentage across all days of experimentation.  
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3.7 SUPPLEMENTARY FIGURES 

Supplementary Figure 3.1. 

 

Supplementary Figure 3.1. CA3 odor A and odor B cells do not increase in numbers 
across days. (A) Mean percent of odor A cells across days (Pearson correlation, r = 0.16; 
p = 0.31) Cells pooled per animal (n = 5 mice). Shaded grey region denotes the variance 
across animals. (B) Mean percent of odor B cells across days (Pearson correlation, r = 
0.19; p = 0.24). Cells pooled per animal (n = 5 mice). Shaded grey region denotes the 
variance across animals.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
 

 B 
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Supplementary Figure 3.2.  
 

 
Supplmentary Figure 3.2. CA3 odor-specific time A and odor-specific time B cells do not 
increase in numbers across days. (A) Mean percent of odor-specific time A cells across 
days (Pearson correlation, r = 0. 08; p = 0.61). Cells pooled per animal (n = 5 mice). 
Shaded grey region denotes the variance across animals. (B) Mean percent of odor-
specific time B cells across days (Pearson correlation, r = 0.01; p = 0.94). Cells pooled 
per animal (n = 5 mice). Shaded grey region denotes the variance across animals.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 
 

 B 
 



 92 

3.8 REFERENCES 
Dong, C., Madar, A.D. & Sheffield, M.E.J. Distinct place cell dynamics in CA1 and CA3 
encode experience in new environments. Nat Commun 12, 2977 (2021). 
https://doi.org/10.1038/s41467-021-23260-3 
 
Larkin MC, Lykken C, Tye LD, Wickelgren JG, Frank LM. Hippocampal output area CA1 
broadcasts a generalized novelty signal during an object-place recognition task. 
Hippocampus. 2014 Jul;24(7):773-83. doi: 10.1002/hipo.22268. Epub 2014 Mar 21. 
PMID: 24596296; PMCID: PMC4065199. 

Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M.-B., & Moser, E. I. (2004). Distinct 
ensemble codes in hippocampal areas CA3 and CA1. Science, 305(5688), 1295–1298.  

Rolls ET. A quantitative theory of the functions of the hippocampal CA3 network in 
memory. Front Cell Neurosci. 2013 Jun 25;7:98. doi: 10.3389/fncel.2013.00098. PMID: 
23805074; PMCID: PMC3691555. 
 
Taxidis J, Pnevmatikakis EA, Dorian CC, Mylavarapu AL, Arora JS, Samadian KD, 
Hoffberg EA, Golshani P. Differential Emergence and Stability of Sensory and Temporal 
Representations in Context-Specific Hippocampal Sequences. Neuron. 2020 Dec 
9;108(5):984-998.e9. doi: 10.1016/j.neuron.2020.08.028. Epub 2020 Sep 18. PMID: 
32949502; PMCID: PMC7736335. 

 

 
 

 

 

 

 

 

 

 

 



 93 

Chapter 4 

Discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 94 

4.1 SUMMARY OF RESULTS 

An open question within neuroscience is: how does the brain process time? In this study, 

we have tried to narrow down where and how temporal representations are encoded and 

processed. We hypothesized that sensory and temporal information is integrated in CA3, 

where a stable code is created and then passed onto CA1.  

 

We began by establishing that CA3 processes sensory and temporal information. We 

showed that CA3 encodes sensory and temporal information, and that sensory and 

temporal information can be decoded from CA3 cells.  

 

We characterized how sensory and temporal information is processed in CA3. We found 

that during a working memory task, CA3 cells fired in a sequential manner. There were 

cells that were active during the stimuli presentation and then another population of cells 

that were sequentially active in the delay that followed. Hippocampal sequential activity 

that tiles a delay is thought to be how the brain carries information in the gaps between 

stimuli and organizes sequences of events (MacDonald et al., 2011). These “time cells” 

encode sequential moments in the delay and carry stimuli-specific information (MacDonald 

et al., 2011; Taxidis et al., 2020). We were able to identify both stimuli-specific cells and 

stimuli-specific time cells in CA3 during a working memory task. Thus, CA3 uses 

sequential activity to encode sensory and temporal information.  
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We further elucidated the properties of the CA3 cells that participated in sequential firing. 

CA3 sequence cells were found to have low odor selectivity; CA3 odor and odor-specific 

time cells had low odor selectivity. CA3 therefore has a large population of non-selective 

sequence cells that hold information on different stimuli. There is a smaller sub-population 

of sequence cells that are highly selective for odor. These cells have strong odor 

information and likely hold the odor identity information that is passed onto CA1.  

 

We found that CA3 cells have properties that demonstrate stability. CA3 cells have 

comparable cell reliability with CA1 cells, and they appear to have a less of a decrease in 

cell reliability across trial. CA3 odor and odor-specific time cells also do not increase in 

numbers across days. This contrasts with CA1 odor-specific time cells, which increase in 

numbers across days and with learning. These measures of stability point at CA3 as a 

region that can hold a stable code.  

 

How does CA3 and CA1 differ and what roles does each region play in working memory?  

CA3 is important for one-trial association and rapid recall (Remaud et al., 2014). CA3 has a 

unique architecture of recurrent connections that make it a likely region for sequence 

generation (Treves and Rolls, 1992). CA3 has been postulated to be more stable than 

CA1. Indeed, it has been found that CA3 cells have more stable properties compared to 

CA1 cells when processing spatial information (Mizuseki et al., 2012; Dong et al, 2021). 

CA3 is also important for temporal information. When CA3 is silenced, CA1 temporal 

coding is disrupted (Middleton and McHuge, 2016). Given this, CA3 is a likely creates a 
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stable code representing external sensory information and temporal information is 

integrated and created. This is in line with our results.  

 

CA3 passes a stable sensory and temporal code to CA1. CA1 is important to representing 

both time (Pastalkova et al., 2008; MacDonald et al., 2011; Kraus et al., 2013) and 

sequences of ordered stimuli (Manns et al., 2007; Farovik et al., 2010). Crucially, it has also 

been found that CA1 is critical for distinguishing similar episodic contexts (Kesner and 

Rolls, 2014). These findings were replicated in human studies (Dimsdale-Zucker et al., 

2018). CA1 mainly has feed-forward connections.CA1 receives inputs from other 

subregions within the hippocampus and other cortical areas. It acts as the main output of 

the hippocampus. Given these properties, we believe CA1 takes the stable sensory and 

temporal code from CA3 and incorporates day-to-day and trial-to-trial differences. This is 

why the CA1 odor-specific time cells were found to be more unstable (Taxidis et al., 2020). 

CA1 acts as a novelty detector. It can receive other salient information from its inputs, 

which include the entorhinal cortex, perirhinal cortex, and amygdala, and integrate this with 

the stable code that is provided by CA3. 
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4.2 A MODEL FOR CA3 

How is time represented in the brain? If time cells encode temporal information, how do 

their firing patterns represent the temporal context of a memory? There have been three 

models proposed: (1) Temporal context model, (2) Chaining model, (3) Combined model.  

 

The (1) temporal context model suggests that temporal context signals are sent to the 

hippocampus from cortical areas. The hippocampus then parses this temporal information 

into discrete units, which are the time cells (Howard et al., 2014). The time cells organize 

the information into sequential events through their firing patterns. Each time cell holds 

unique information that corresponds what information was being processed in the cortex 

at that moment in time. This model takes into account that many different brain regions 

have been shown to be involved processing temporal information (Bunhusi and Meck, 

2005; Mauk and Buonomano, 2004). This model is unlikely because firing sequences are 

found to exist in the hippocampus prior to learning (Gragoi and Tonegawa, 2014), meaning 

they exist in the hippocampus before cortical processing of information. The (2) chaining 

model suggests that the sequential activity of time cells reflect a chain of firing activity that 

is generated locally (Mehta et al., 2000). Time cells in this model arise from repeat 

experiences that increase the strength of sequential connections between cells. This 

model is less likely. When the timing of a task is extended, instead of adding time cells 

onto the end of the firing chain, the time cells “re-time,” creating a completely new 

temporal representation of the context (Kraus et al., 2013). The (3) combined model 

suggests that the hippocampus generates an internal sequential firing chain to represent 
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the temporal organization of events (Eichenbaum, 2014). The firing chain may be 

generated at each step and strengthened if the temporal context is salient. This firing chain 

can be modified by cortical inputs to account for evolving temporal information. The 

combined model is the most likely model given our current understanding of temporal 

representations. Time is both an internal and external stimulus. It would make sense that 

there is both an internally generated sequence and a way for external information to modify 

this internal code. Where this internally sequence is generated is yet to be elucidated.  

 

This combined model provides a good general framework to think about how the 

hippocampus encodes time. Expanding on this framework, we believe that while each 

subregion of the hippocampus receives inputs from the cortex, these inputs are not equal 

in strength and number. We believe that this is where CA1 and CA3 differ. CA3 receives 

inputs from the DG and EC. It is most known for its recurrent connections (Witter, 2007). 

CA1 receives inputs from CA3, CA3, DG, EC, and the thalamus. These inputs each carry 

unique information that is integrated into memory at CA1. Silencing each input effects 

different aspects of memory (Nakashiba et al, 2008; Bruin et al., 2008; Suh et al., 2011; Xu 

and Sudhof, 2013; Hitti and Siegelbaum, 2014). Through its many inputs, CA1 is 

positioned to receive evolving information and modify the firing chain with the relevant 

information. We postulate CA3 generates a stable internal code that is not as easily 

modified by external inputs. Not only does CA3 have less inputs than CA1, CA3 also 

uniquely has the recurrent connects that allow for sequence generation. There must be a 

hippocampal subregion that produces a stable firing chain that later can be modified. As 
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mentioned before, hippocampal firing sequences are found prior to cortical information 

modification (Gragoi and Tonegawa, 2014). The region that produces this firing sequence 

would benefit from less cortical inputs. CA3 is one such region.   

 

How does CA3 generate a stable firing sequence? The two main excitatory inputs to CA3 

pyramidal neurons are from the DG and recurrent CA3 connections. CA3 receives inputs 

from the DG through the mossy fibers. A single mossy fiber can make upwards of 37 

synaptic connections with the dendrites of a single CA3 pyramidal neuron. Each CA3 

pyramidal neuron can receive as many as 72 convergent inputs from DG granule cells 

(Amaral and Lavenex, 2006). This is in contrast to recurrent CA3 connections. Recurrent 

connections make several thousand contacts with many more CA3 cells. These 

connections make up the largest number of synapses on the CA3 pyramidal cell dendrites. 

This diluted connectivity allows for a higher memory capacity (Rolls, 2013). It allows for the 

storage of many unique memories and for each memory to be recalled from any one part 

of itself. Mossy fibers synapse at CA3 apical dendrites near the soma. Recurrent synapses 

synapse at the distal dendrites. Because of this, a single DG cell can induce CA3 

pyramidal firing (Henze et al., 2002), whereas multiple spikes are needed from the 

recurrent connections (Miles and Wong, 1987) in order to induce CA3 cell firing. While the 

DG input through the mossy fibers is strong, DG cell firing is sparse (Jung and 

McNaughton, 1993; Leutgeb et al., 2007).  
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CA3 performs pattern completion. DG performs pattern separation. The sparse DG firing 

and small number of mossy fiber connections allows for random cells in CA3 to be 

activated through DG inputs (Rolls, 2013). This creates different, unique representations to 

be created in CA3 through DG activation. This allows for many, different representations to 

be created in CA3 and for the representations to be non-overlapping and non-interfering. 

These representations then be associated through the abundant recurrent connections, 

such that any one part of the representation can rapidly recall the whole representation 

(Rolls, 2013). This is pattern completion. Crucial to this is that CA3 has (1) many recurrent 

connections, (2) a sparse distributed representation that is enhanced by these recurrent 

connections. Learning through the recurrent connections can help strengthen or weaken 

these representations.  

 

Our findings report that CA3 has a small, sparse population of cells that hold information 

about the sensory and temporal context during a working memory task. This population is 

largely made of up of non-selective or low selective cells. These cells are active during two 

distinctive sensory stimuli (two different odors) and over time. There is a small sub-

population of cells that are highly selective and hold strong sensory stimuli specific 

information. This is in line with the previously discussed model of a sparsely active CA3. 

We propose that smaller, highly selective population correspond to the cells that are 

activated by the DG inputs. These cells hold the core elements of the representation being 

passed to CA3. The larger population of low and non-selective cells are quickly associated 

with the smaller, highly selective population through the CA3 recurrent connections. This 
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population also allows for the representation to be recalled from any feature of the stimuli. 

Low selectivity cells can simultaneously hold different aspects of a stimuli. As such, they 

can be activated by more than a singular stimulus. This allows for efficient recall. We 

believe that through learning, the selectivity in the small, selective population is increased. 

Indeed, we found that odor decoding improves after learning, yet the number of odor and 

odor-specific time cells did not increase. This increase in selectively comes from learning 

that occurs in the recurrent connections. We postulate it is the smaller, more selective 

population of CA3 cells that send a stable code to CA1.  
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4.3. FUTURE DIRECTIONS 

CA3 stability across days 

It would be interesting to further investigate the stability of CA3. Do the odor and odor-

specific time cells keep their identities across days? Or do odor cells re-map into odor-

specific time cells and vice versa? We hypothesize that the small, highly selective 

population of odor and odor-specific time cells do not re-map across days. The larger 

population of non and low selective cells may re-map to better capture the pieces of 

information that best help to recall the core, stable memory. 

 

We have already built decoders for time and odor for each experimental day. It would be 

interesting to test the decoders built on one day with the data from a different day. If 

decoders from different days can accurately decode odor or time, this would be another 

indicator of CA3 stability. We would predict that the different day decoders would at least 

be able to decode odor across days. Decoding time would be less likely, though possible. 

While CA3 does process temporal information, the DNMS task, as aforementioned, only 

uses implicit timing, not explicit timing. As such, the temporal context of this task is less 

salient. Though time can be decoded each day, there may be differences between the 

encoded temporal context across days. The rule of the DNMS tasks requires a stable, 

consistent memory of odor, not necessarily time.   

 

 

 



 103 

Inhibition of CA3 

Though CA3 encodes odor and time and may do so in stable manner, it is still not known if 

information regarding either is processed separately or integrated at CA3. Specifically, it is 

not known if odor cells firing in CA3 directly drive the sequential firing of odor-specific time 

cells in CA3 through CA3 recurrent connectivity. An alternate hypothesis could be that 

CA3 neurons receive inputs from neurons in other brain regions that are already firing 

sequentially. Furthermore, it is not known whether this activity is required for behavioral 

performance. It would be interesting to test if time and odor are integrated in CA3 by 

modulating odor cells and observing if there is an effect on the odor-specific time cells. If 

there an effect, then odor cell firing will causally drive odor-specific time cell firing, as 

change in one should cause change in the other. Inhibiting CA3 odor cells evaluates the 

necessity of CA3 odor cells for accurate behavioral performance and activation of odor-

specific sequences. Activating CA3 odor cells tests sufficiency of these cells for accurate 

behavioral performance and the activation of odor-specific sequences. There is a 

distinction between inhibition and activation experiments: the former tests necessity, the 

latter sufficiency. CA3 may be sufficient, but not necessary for processing temporal 

information. There might be alternative pathways for integrating sensory and temporal 

information, but activation of CA3 cells might be enough to elicit integration.  

 

We predict that inhibiting CA3 odor cells in well-trained mice during the DNMS task would 

cause performance accuracy to decrease. Lesioning CA3 has been shown to disrupt 

performance in a sequential nonspatial memory task (Farovik et al., 2009). Thus, inhibiting 
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the CA3 odor cells should disrupt performance in the DNMS task. Though, we predict that 

silencing CA3 odor-specific time cells in well-trained mice during the DNMS task would not 

have a strong behavioral effect. The salient information that is necessary to accurately 

complete the DNMS task is mainly odor identity information. Mice must be able to hold the 

identity of odor 1 and compare it to odor 2. Since timing is not necessary to complete the 

task, silencing odor-specific time cells may not have a strong behavioral effect. There 

should still be an effect on the temporal code in CA1. Indeed, silencing CA3 has been 

shown to disrupt temporal coding in CA1 during linear track recordings (Middleton and 

McHugh, 2016). It would be interesting to see if we could replicate this in our non-spatial 

task. Our assay also requires learning and working memory, which could help tease apart 

the role CA3 has in learning temporal context. Inhibiting CA3 and understanding its effects 

on CA1 would help us understand how information flows from CA3 to CA1.  

 

Where one might see a behavioral effect is in silencing CA3 odor-specific time cells during 

learning of the DNMS task. Specifically, silencing CA3 odor-specific time cells during the 

lick shaping step of learning. In this step, mice are learning the temporal structure of the 

DNMS task. We would predict that mice with inhibited CA3 odor-specific time cells would 

still be able to learn the structure of the DNMS task due to cues such as odor and 

auditory, but we predict that these mice would learn at a slower pace than control mice. 

The inhibited mice would have to rely on these other cues, delaying their learning.  
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Reward and feedback signal 

We restricted our analysis to the time period starting from odor 1 presentation to the end 

of the five second delay. In looking at our data, CA3 cells appear to have strong activity 

following the second odor presentation. This activity could represent a reward or feedback 

signal. This is especially interesting for CA3 cells because this signal could originate from 

recurrent connections. It would be interesting to see if the low selectivity or high selectivity 

cells display more of this activity. The activity after may be recurrent connections 

strengthening and reinforcing the activity of high selectivity cells or priming new low 

selectivity cells to be created.  

 

We could also image the recurrent connections simultaneously with the CA3 soma to see 

if the recurrent connections are a source for this activity following the second odor 

presentation. We could achieve this by imaging the CA3 soma and the CA3 distal 

dendrites, where CA3 recurrent connections synapse. 

 

CA3 subarea variability 

One of the challenges of this study was that we were unable to precisely mark which 

subarea of CA3 we were imaging. It is postulated that the different CA3 subareas could 

have different functional roles. Proximal and distal CA3 receive mossy fiber projections 

from different positions along the transverse axis of the DG (Cairborne et al., 1986). 

Functional differences have been found along the DG transverse axis (Hara et al. 1990; 

Jaarsma et al., 1992; Scharfman et al., 2002; Choi et al., 2003; Witter, 2007). Studies 
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have also found that dorsal and ventral CA3 have different roles in fear conditioning 

(Hunsaker and Kesner, 2008; Besnard and Sahay, 2020).   

 

Given this, in the future we would like to mark the region in which we are imaging. This 

would help us understand what CA3 subarea we are in and to elucidate possible 

functional differences for CA3 subregions in nonspatial working memory. We could also 

image a larger region of CA3 using a large field-of-view two-photon mesoscope. This 

would help overcome the current anatomical challenges of imaging large populations of 

cells in CA3 and overcome possible variability in CA3 subareas.  
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