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Density matrix model for polarons in a terahertz quantum dot cascade laser
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A density matrix based method is introduced for computation of steady-state dynamics in quantum cascade
systems of arbitrary size, which incorporates an optical field coherently. The method is applied to a model terahertz
quantum dot cascade laser system, where a means of treating coherent electron-optical-phonon coupling is also
introduced. Results predict a strong increase in the upper state lifetime and operating temperature as compared
to traditional well-based terahertz quantum cascade lasers. However, new complications also arise, including
multiple peaks in the gain spectrum due to strong electron-phonon coupling, and strong parasitic subthreshold
current channels that arise due to reduced dephasing. It is anticipated that novel design schemes will be necessary
for such lasers to become a reality.
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I. INTRODUCTION

Quantum cascade (QC) lasers based on intersubband
transitions now cover large segments of the mid-infrared and
terahertz spectral ranges [1–3]. However, because the quantum
confinement is in only one dimension, electrons are free to
move in-plane, and hence each subband supports a continuum
of states above its minimum energy. This has a major impact on
the electron dynamics, as it allows fast relaxation of electrons
between subbands via the emission of longitudinal optical
(LO) phonons, even when the intersubband energy separation
is different from the LO phonon energy (ELO ≈ 36 meV in
GaAs). This is particularly damaging for terahertz (THz) QC
lasers, which have radiative energies less than ELO (�ω ∼
5–20 meV), and are still limited to cryogenic temperatures
(Tmax = 200 K) [4]. At low temperature, electrons reside near
the upper subband minimum, and have insufficient energy to
emit an LO- phonon. However, as the device warms, electrons
gain sufficient in-plane energy to emit an LO phonon, which
leads to an exponential decrease in the upper state lifetime to
far subpicosecond levels at 300 K. This leads to a concomitant
decrease in the population inversion with temperature, and
is believed to be the primary inhibitor to room temperature
operation [3,5].

It has been proposed by several authors that room tempera-
ture could be reached in THz QC lasers by introducing lateral
quantum confinement so that the electronic density of states
becomes fully discrete, i.e., sublevels instead of subbands
[6–8]. In this way, it may be possible to greatly increase
the upper radiative state lifetime if LO-phonon scattering
can be suppressed across the radiative transition by inten-
tional misalignment of all associated transitions from ELO,
utilizing an effect known as “phonon bottleneck.” Candidate
schemes include self-assembled quantum dots [9,10], quantum
posts [11], and nanopillars etched from the top down into
planar quantum-cascade material [12–14]. The concept of
a phonon bottleneck for carrier relaxation has been shown
to be of limited validity for interband devices (such as
QD diode lasers), unless multiphonon, electron-electron, and
electron-hole scattering processes are carefully prevented [15].
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However, dramatic increases in intersublevel relaxation times
have been observed experimentally where the relevant condi-
tions are met; for unipolar self-assembled quantum dots with
intersublevel energy separation less than ELO, relaxation times
as long as 1 ns were measured at 10 K, and many tens of
picoseconds at room temperature [16].

A series of theoretical and experimental investigations on
the electron-LO-phonon interaction in quantum dots has con-
vincingly shown that the usual Fermi’s “golden rule” approach
is not appropriate given that there is not a continuum of final
states. This suppresses decoherence so that the degenerate LO-
phonon modes can form a strongly coupled system with the
intersublevel excitation, leading to sustained Rabi oscillations
and the formation of intersublevel polarons [17–21]. In isolated
quantum dots, this persists until interruption by another inter-
action, likely the anharmonic decay of the LO phonon [22,23].
This picture dramatically modifies the energy-selectivity of
the LO-phonon interaction, and introduces a complex series
of anticrossed energy levels, leading to stark new features
in transport characteristics and gain spectra which must be
properly modeled if quantum-dot QC lasers are to be realized.

Candidate models must incorporate coherent electron-
phonon interaction as well as coherent response to the optical
field. The most detailed approach involves nonequilibrium
Green’s function (NEGF) methods, which provide motivation
for the lateral confinement approach, but are extremely
computationally intensive and also tedious for the nonexpert
[24–29]. Density matrix models are attractive since they
allow intuitive use of quantum-cascade wave functions as a
basis and have been shown to capture signatures of coherent
electron tunneling as well as coherent response to the optical
field [30–34]. However, such models have not yet been
applied to a quantum-dot QC laser where electron-phonon
coupling is strong. Moreover, most density matrix methods
use a fully derived algebraic solution, which quickly becomes
cumbersome when considering more than three to four states.
One exception is Ref. [35], which accommodates an arbitrarily
large basis, although it stopped short of including coherent op-
tical response. The latter point was accounted for in Ref. [36],
in which the coherent gain and transport characteristics were
calculated in a proposed silicon-based terahertz QCL.

In this paper, we present a density matrix approach suitable
for steady-state modeling of transport and optical properties
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in QC systems of arbitrary size. While typical models for QC
lasers use a Hilbert space of electronic states only, we apply the
concept more generally where the density matrix represents
a combined system of electronic (sublevel) and bosonic
(LO phonon) degrees of freedom. This allows simultaneous
consideration of coherent electron-LO-phonon interaction,
electron tunneling, and the optical field, alongside incoherent
transition and dephasing mechanisms. A nanopillar geometry
is used as a model for quantum confinement, although our
treatment is generally applicable to any cascaded quantum dot
based structure. Results predict a complicated multipeaked
gain spectrum, and highlight the importance of dephasing on
both transport and gain characteristics. Overall, quantum dot
QC lasers will exhibit transport and gain features that are
qualitatively different from conventional QC lasers.

II. METHOD

A. Steady-state solution

The unit cell of a QC system is a multiwell module, which
contains a finite number of states. The module is repeated
a large number of times with a successive energy difference
imposed by the electrical bias, as conceptually illustrated in
Fig. 1. These states might represent subbands such as in a
conventional QC laser, discrete sublevels as in a quantum-dot
system, or even product states of a combined system such as the
electron/LO-phonon tensor product Hilbert space used in this
work. The states are coupled together by a variety of coherent
processes (such as resonant tunneling, LO-phonon interaction,
and optical-field dipole coupling) and incoherent processes
(such as acoustic phonon scattering and pure dephasing) that
result in charge transport and optical gain. Reflecting this, we
will assume that the system Hamiltonian is known, and allow
that the time evolution of the representative density matrix
(ρ) consists of a coherent Liouville-von Neumann component
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FIG. 1. (Color online) Conceptual schematic of a representative
three-level quantum-cascade system, which is periodic in both
position and energy. Interactive processes will be incorporated as
static couplings (empty double arrows), an optical field (green),
and irreversible transition processes (solid single arrows). The lower
part depicts an example energy structure, where the black lines are
the conduction band profile and the probability densities for each
subband/level are shown.

alongside an incoherent component due to transitions and
dephasing [37,38]:

d

dt
ρ = d

dt
ρ

∣∣∣∣
coh

+ d

dt
ρ

∣∣∣∣
inc

= − i

�
LH ρ + d

dt
ρ

∣∣∣∣
inc

. (1)

LH ≡ [H, . . . ] is known as the Liouville superoperator.
Through its tetradic form, it can be understood as relating the
elements of ρ to the coherent part of its own time evolution,
where

d

dt
ρab

∣∣∣∣
coh

= − i

�

∑
cd

LH
abcdρcd

= − i

�

∑
cd

(δbdHac − δacHdb) ρcd . (2)

The periodicity of the cascaded modules allows us to
express H and ρ in block matrix form as

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
... . .

.

(H0 − �) (H1) (H2)

· · · (H−1) (H0) (H1) · · ·
(H−2) (H−1) (H0 + �)

. .
. ...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
... . .

.

(ρ0) (ρ1) (ρ2)

· · · (ρ−1) (ρ0) (ρ1) · · ·
(ρ−2) (ρ−1) (ρ0)

. .
. ...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Each submatrix depicted in Eqs. (3) and (4) is of size
N × N , where N is the number of levels in each repetitive
module. H0 and ρ0 represent the intramodule Hamiltonian
and density matrix, while H±p and and ρ±p represent the
intermodule Hamiltonian and coherences for modules spaced
p apart. The matrix � = Emod1N accounts for the applied bias,
where Emod is the difference in energy per module. Applying
block matrix multiplication in (1) with these matrices, we
obtain the equations for the coherent time evolution of all
submatrices, which collectively describe the entire system:

d

dt
ρp

∣∣∣∣
coh

= − i

�

( ∑
q

[Hp−q,ρq] − pEmodρp

)
. (5)

In order to consider interactions with a harmonic electro-
magnetic field, we expand at steady-state each submatrix of H
and ρ into harmonics of order α at frequency ω:

Hp =
∑

α

H (α)
p eiαωt , ρp =

∑
α

ρ(α)
p eiαωt , (6)

where the sums could in principle run over all integers
(−∞,∞). Substituting (6) into (5), and selecting a particular
harmonic m, we obtain with incoherent effects omitted:

imωρ(m)
p = − i

�

( ∑
qα

[
H

(α)
p−q,ρ

(m−α)
q

] − p�ρ(m)
p

)
. (7)
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An equation can be obtained at each element in (7) by invoking
the Liouville superoperator and a change of variables:

imωρ
(m)
p,ab = − i

�

⎛
⎝∑

qncd

(
LH

(m−n)
p−q

abcd ρ
(n)
q,cd

) − pEmodρ
(m)
p,ab

⎞
⎠ . (8)

Terms outside the quadruple sum can then be brought inside
using Kronecker δ functions, yielding a system of equations
providing the relation

∑
qncd M(ab)np,(cd)nq ρ

(n)
q,cd = 0, where

M(ab)mp ,(cd)nq = − i

�
LH

(m−n)
p−q

abcd + iδpqδmnδacδbd

(
p

Emod

�
− mω

)

+ S(ab)mp ,(cd)nq . (9)

The incoherent contribution S(ab)pm,(cd)qn is addressed in
Appendix. Once a population sum condition is substituted at
a single row in M , the entire steady-state solution is attainable
by the matrix equation M × A = B, where A is a list of the
unknowns and B is a matching vector of zeros with the single
exception of a 1 in the sum row.

For a module consisting of N states, and considering up
to P nearest-module couplings and harmonics up to e±iQωt ,
the number of unknowns is N2(2P + 1)(2Q + 1). Although
the method as formulated can, in principle, accommodate
arbitrarily higher N , P , and Q, in this work, we restrict
our analysis to only nearest-module coupling and single
harmonics, such that the number of unknowns is 9N2.

B. Optical gain

Gain is computed through the induced harmonic polariza-
tion in response to an optical field Eopt = |E|eiωt + c.c. If
the position operator z is known, the harmonic Hamiltonian
is then H (±1) = q|E|z, and the polarization is found using
P = Ndq〈z〉 = NdqTr(ρz). We assume that by some choice
of basis, z has only diagonal submatrices:

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
... . .

.

(z0 − �z) 0 0

. . . 0 z0 0 . . .

0 0 (z0 + �z)

. .
. ...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where �z = Lmod1N accounts for the spatial separation
between modules. Since the population sum is normalized
to a single module, the trace over one diagonal submatrix is
effectively a trace over the entire problem. Taking only the
harmonic component, the optical susceptibility is then

χopt(ω) = Ndq

ε0|E|Tr
(
ρ

(1)
0 z0

)
, (11)

from which the material gain per unit length can be calculated
as g = 2Im(

√
εs + χoptω/c), εs being the background dielec-

tric constant. In this way, the gain material is treated as an
effective medium.

By carrying out the trace in (11), it is seen that there
are susceptibilities associated with each transition, which add

directly:

χopt(ω) =
∑
αβ

χαβ(ω) = Ndq

ε0|E|
∑
αβ

ρ
(1)
αβ zβα, (12)

so that contributions can be examined for different transitions
independently.

C. Current

Current is computed from the expectation value of velocity.
However, since the time evolution includes both coherent and
incoherent components, the velocity will have contributions
from both as well:

J = NdqTr(ρvcoh) + J inc. (13)

Using vcoh = i
�

[H,z], and assuming that H has the form of
(3) with only a single harmonic and z has the form of (10), the
static component of current due to coherent velocity is found
to be

J coh = iNdq

�
Tr

∑
p

ρ(0)
p

([
H

(0)
−p,z0

] − pLmodH
(0)
−p

)

+ ρ(1)
p

([
H

(−1)
−p ,z0

] − pLmodH
(−1)
−p

)
+ ρ(−1)

p

([
H

(1)
−p,z0

] − pLmodH
(1)
−p

)
. (14)

The second and third terms are optically induced currents
(stimulated emission and absorption). If vanishing optical
intensity is assumed, we are left with the expression for
coherent current density below threshold:

J coh = iNdq

�
Tr

∑
p

ρ(0)
p

([
H

(0)
−p,z0

] − pLmodH
(0)
−p

)
. (15)

The incoherent contribution J inc accounts for the semiclassical
“hopping” velocity due to incoherent transitions between
spatially localized basis states. It is described in more detail in
Appendix.

III. ELECTRON-LO-PHONON COUPLING

Interaction of a discrete electronic density of states with
a manifold of nearly degenerate LO-phonon modes is a
particularly distinct problem in that dephasing is weakened
due to the lack of a continuum of states. In this way, it
is similar to an atom strongly coupled to a single optical
cavity mode, where higher-order coherent quantum effects
become possible and so the electron-boson interaction cannot
be treated using Fermi’s “golden rule.” The simplest example
is in a two-state electronic system, where electrons do not relax
irreversibly from the higher energy state to the lower one, but
rather undergo a sustained Rabi oscillation which continues
until interrupted by another process such as the decay of the
emitted phonon or interaction of the electron with the outside
[17–20,22,23,39,40].

The excitations of a phonon coupled to an electronic
transition are quasiparticles known as polarons. However,
rather than use the polaron states as our basis, we choose a basis
formed by a tensor product of the electronic sublevel Hilbert
space with LO-phonon number states; these are then coupled
together by the electron-phonon (Fröhlich) Hamiltonian. This
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choice is important, as it determines that in the limit of
weak dephasing the system will form coherent polarons, but
will relax into a separable state as the dephasing becomes
strong in comparison to the polaron splitting. In addition, this
allows for both electron and phonon distributions to reach a
nonequilibrium steady state, and also simplifies the inclusion
of electron tunneling, phonon decay and generation, and the
optical field. Our particular application allows consideration
of coherent polarons comprising multiple phonon modes
and multiple electronic intersublevel transitions, each of
which may have (in principle) their own dephasing rates.
Furthermore, unlike the case of an isolated quantum dot, where
decay of the phonon component dominates polaron decay, we
can also include decay of the electronic component, through
tunneling, or some other incoherent scattering mechanism.

A comparison can be made between our treatment of
polaron effects and that employed in the NEGF simula-
tions of Refs. [26–29]. In these works, the electron-phonon
interaction is accounted for by a phonon Greens function
which enters into the electron self-energy; it is therefore
represented as an average field which is assumed to remain
at thermal equilibrium. The phonon decay, which broadens
the interaction, is treated by introducing an anharmonicity in
the phonon Greens function. Our work, on the other hand,
treats the electron-phonon interaction in a similar manner to
the Jaynes-Cummings model in quantum optics, where the LO
phonons themselves become as much a part of the system as the
electrons, decaying towards equilibrium by their interaction
with acoustic phonons. In this way, it is the acoustic, rather
than LO phonons that play the role of the system bath.

A. Single transition

The electron-LO-phonon interaction is described by the
Fröhlich Hamiltonian Ĥf , which includes all modes simulta-
neously. Assuming bulk plane-wave LO-phonons with wave
vectors 	k, Ĥf = ∑

	k F̂	k , where F̂	k is the Fröhlich Hamiltonian
for single mode 	k, expressed as

F̂	k = A

k
√

V
(ei	k·	rb	k + e−i	k·	rb†	k), (16)

where the constant A =
√

ELOq2

2 ( 1
ε∞

− 1
εdc

). V is the crystal
volume, b	k and b

†
	k are annihilation and creation operators, and

ε∞ and εdc are the high- and low-frequency bulk permittivities.
For a particular transition which involves electronic states ψ1

and ψ2, we form product states with LO-phonon modes 	k and
define the matrix elements

F	k,T ≡ 〈ψ1; 0|Ĥf |ψ2; 1	k〉 = 〈ψ1; 0|F̂	k|ψ2; 1	k〉. (17)

We now follow previous works and introduce a particular
LO-phonon mode T , which is a superposition of plane-wave
modes, defined through any number state |nT 〉 [39,40]:

|nT 〉 ≡ 1√∑
	k |F	k,T |2

∑
	k

F ∗
	k,T

|n	k〉. (18)

Under assumption of LO-phonon degeneracy, this mode
remains an energy eigenmode. This is valid given that the
interaction strength falls off rapidly for phonon wave vectors

not much larger than the inverse dot size (∼20 nm), so that
the relevant phonon modes comprise only a small part of the
Brillouin zone close to the � point. The coupling strength to
mode T is then

〈ψ1; 0|Ĥf |ψ2; 1T 〉 =
√∑

	k
|F	k,T |2 ≡ �pol,T , (19)

while it can be shown that the matrix element involving any
orthogonal mode is zero. Therefore the problem reduces to
one involving only a single mode.

In the form of an integral over 	k, the expression for �pol,T

becomes

�pol,T = A2

(2π )3

∫
	k
d3	k|F (T )(	k)|2/k2, (20)

where we have defined the form-factor for the transition

F (T )(	k) ≡ 〈ψ1|ei	k·	r |ψ2〉. (21)

The displacement field for such a mode can be constructed
using (18). To obtain a more physical understanding of this
mode, we consider the lowest energy intersublevel transition
in a simple cylindrical quantum dot with a height of 30 nm and
a diameter of 20 nm, with an infinite confinement potential on
all sides. The wave functions are thus products of the infinite
square well ground and first excited states in the axial direction
with the circular well ground state in the cross-sectional plane.
A plot of upward and radial displacements for the associated
phonon mode are depicted in Fig. 2. This helps to justify our
use of an unbounded plane wave basis—the results are not
very different than if confined modes were used.
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•
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(a) (b)

FIG. 2. (Color online) (a) The particular phonon mode interact-
ing with a cylindrical QD lowest-lying transition: (left) upward and
(right) radial displacements. Both are in separate arbitrary units.
Dashed lines denote the dot boundary (h = 30 nm, d= 20 nm).
Red and blue areas are maxima opposite in sign, and the radial
displacement is shown at a phase π/2 relative to that of the upward. (b)
Generation and decay processes represented as transitions between
number states of a single phonon mode.
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B. Extension to two transitions

We next consider a system with two intersublevel transi-
tions, both of which interact coherently with LO phonons.
These will later be identified as the nonradiative depopula-
tion (ψL → ψI ) and radiative lasing (ψU → ψL) transitions,
respectively.

In considering more than one transition, it is found that we
can define a particular mode associated with each. However,
the problem arises that these modes are not generally the same
nor orthogonal to one another. The transitions of our concern
would couple to phonon modes N and R, respectively, but we
can choose instead basis modes N and α, where α is a mode
in the NR plane of the mode space, but orthogonal to N . This
amounts to an orthonormalization within the basis of modes
N and R, which could be performed on a larger number of
modes using a Gram-Schmidt process.

The matrix element for any electronic transition coupling
to any arbitrary phonon mode Q is

〈ψ1; 0|Ĥf |ψ2; 1Q〉 = �pol,T 〈T · Q〉, (22)

where 〈T · Q〉 is the normalized inner product of mode
Q with the mode associated with the transition. Therefore
the important matrix elements governing the problem when
considering phonon modes N and α are given for the N

transition as

〈ψL; 0|Ĥf |ψI ; 1N 〉 = �pol,N ,
(23)

〈ψL; 0|Ĥf |ψI ; 1α〉 = 0,

and for the R transition as

〈ψU ; 0|Ĥf |ψL; 1N 〉 = �pol,R〈R · N〉,
(24)

〈ψU ; 0|Ĥf |ψL; 1α〉 = �pol,R〈R · α〉.
The inner product 〈R · N〉 can be computed by a sum over
phonon modes as

〈R · N〉 = 1

�pol,R�pol,N

∑
	k

F	k,RF ∗
	k,N

, (25)

or as an integral by

〈R · N〉 = A2

(2π )3

1

�pol,R�pol,N

∫
	k
d3	kF (N)∗(	k)F (R)(	k)/k2.

(26)
For simplicity, we choose an overall phase for α such that
〈R · α〉 is positive real. Then, since α lies in the plane defined
by R and N , we have that

〈R · α〉 =
√

1 − |〈R · N〉|2. (27)

C. Phonon decay and generation

LO phonons have a finite lifetime due to anharmonic decay,
typically into pairs of acoustic phonons [41]. A rigorous
computation of the relaxation time τr for the LO-phonon
distribution towards equilibrium in spherical quantum dots
was performed by Li and Arakawa [42]. It was found to be
only weakly size-dependent for GaAs dots of diameters greater
than 15 nm, and results were nearly identical for the two modes
considered. In our model, we use the approximate fit to their

results for all modes:

τr (T ) =
[

8 − T

54.5 K

]
ps. (28)

τr involves both the competing decay and generation pro-
cesses, where by detailed balance the two are equal and
opposite at thermal equilibrium. Specifically, it is defined as

1

τr

≡ −�+ − �−

δN
, (29)

where �± are the generation and decay rates and δN is the
deviation from equilibrium. We are interested in the bare decay
and generation rates �±

n , which are the transition rates between
number states n as depicted in Fig. 2(b). From the form of
the interaction Hamiltonian governing the LO-phonon decay
[42–44], it is found that �+

n = (n + 1)�+
0 and that �−

n = n�−
1 .

Combining this result with (29) and enforcing thermodynamic
equilibrium, the decay and generation rates can be expressed
in terms of the relaxation rate as

�−
n = 1

τr

n

1 − e−ELO/kBT
,

(30)

�+
n = 1

τr

n + 1

eELO/kBT − 1
= 1

τr

(n + 1)nLO,

where nLO is the Bose-Einstein factor evaluated at the
LO-phonon energy. At low temperature, the generation is
extremely slow such that relaxation is dominated by the decay,
but at temperatures approaching 300 K, the generation does
become significant.

IV. APPLICATION

We are now in the position to compute the steady-state
transport and gain characteristics of a model quantum dot
QC laser. We choose perhaps the simplest possible system—a
two dot module containing three electronic states. We treat
the lateral quantum confinement as an infinite cylindrical
potential, which allows separation of variables between the
axial and lateral dimensions. This could approximate for
example the confinement of etched nanopillars [13,14], or
nanowires grown with a core-shell heterostructure [45,46].
In order to keep the problem tractable, we only consider the
case where the lateral quantum confinement is sufficient so
that only the lowest lateral energy state is relevant. In practice,
this would require lateral confinement which is strong enough
that the s-p energy separation is significantly above ELO. In
GaAs and approximating the lateral confinement as circular,
we obtain a value of 50 meV for the energy separation in a
confinement diameter of 20 nm.

A. Model system

The band structure in the growth direction for our model
system in GaAs/Al0.2Ga0.8As, adapted from Refs. [47,48],
is shown in Fig. 3. The design features a tunnel injection,
followed by a diagonal radiative transition, and resonant
phonon depopulation. The diagonality is intended to reduce the
strength of the phonon interaction with the lasing transition.
Fully discrete electronic states are formed by products of the
pictured axial states with the infinite circular well ground
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FIG. 3. (Color online) Band structure in the growth direction
for the model system, computed from a two-well tight-binding
standpoint. The layer thicknesses in angstroms starting from the
injector barrier are 37/82/38/168. The lasing transition at injection
anticrossing is 10.6 meV (2.56 THz), the phonon depopulation
transition is 36.7 meV, and the injection anticrossing gap is 3.8 meV.
The dipole matrix element for the optical transition is 4.7 nm.

(s) state in the lateral directions: ψ(z,ρ,θ ) = ψz(z)J0(k‖ρ),
where ψz is the axial wave function, J0 is the zero order
Bessel function, and k‖ is an in-plane wave vector, which
matches the pillar wall boundary condition at the first Bessel
zero. A diagram of the relevant tunneling and electron-phonon
interactions is given in Fig. 4. To begin, tunneling will
be considered only through the intended channel between
the injector and upper radiative states; a parasitic tunneling
mechanism coupling the injector to the lower radiative state

(0,0)

(1,0)
(0,1)

(2,0)
(1,1)
(0,2)

(n ,n )N α

FIG. 4. (Color online) Relevant tunneling and electron-phonon
interactions. Arrows represent: red is a coupling with N phonons,
green is a coupling with α phonons, and blue are the tunneling
processes. Not shown is a parasitic tunnel coupling between ψ ′

I

and ψL, which will be neglected until Sec. IV F. The vertical axis
represents energy, although states grouped together are degenerate.
Dashed arrows represent couplings between phonon numbers 1 and 2,
which have a strength of

√
2 times those between 0 and 1. The module

boundary is defined at the tunnel coupling, between the injector and
upper electronic states.

will be accounted for and studied in Sec. IV F. We find that
the most important of the electron-phonon couplings occur
across the depopulation (ψL → ψI ) transition and the radiative
(ψU → ψL) transition.

At design biases, we can safely neglect coupling to the
higher energy parasitic state ψP , and so it is not considered as
part of our calculation. Basis states for the combined electron-
phonon system are constructed as tensor products of the three
electronic states ψI , ψL, and ψU with phonon number states in
modes N and α, where these modes are defined in the manner
described in the previous section. We allow the total number
of phonons in both modes to reach up to two, and the decay
and generation rates pertaining to both are assumed to follow
the results from Ref. [42] and the previous section. The optical
Hamiltonian is constructed from the dipole operator z0, which
is expanded appropriately into the tensor product basis.

It must be noted that each module in reality contains its own
pair of phonon modes N and α, and so by constructing our
schematic of interactions as shown in Fig. 4, we are implicitly
enforcing that the occupations in all modules are perfectly
correlated. This is of course not the case in a real system;
however, this approximation is necessary in order to make the
problem tractable. With faster dephasing, coherences spanning
the entire module are reduced, making the approximation
closer to exact.

The values relevant to the electron-phonon interaction were
computed as �pol,R = 2.5 meV, �pol,N = 3.3 meV, and 〈R ·
N〉 = 0.176. These calculations were greatly simplified by the
assumption of a cylindrical cross-section.

B. Results

A critical parameter is the pure dephasing time T ∗
2 , which

encompasses all processes that decohere the various interac-
tions without changing level populations. It contributes to the
linewidth broadening for various transitions (for example, for
a two level system, the transition linewidth is increased by
2�/T ∗

2 ), and also determines the coherence of the various
interactions (for example, between states tunnel coupled by
� if �/T ∗

2 � �, the interaction will be incoherent, whereas
if �/T ∗

2 � �, it will be coherent, exhibiting strong coupling
where the two states form an anticrossed doublet).

Theoretical and experimental works suggest that deco-
herence in quantum dots occurs primarily due to both real
and virtual acoustic phonon processes [49,50]. In Ref. [49],
T ∗

2 was measured in InAs self-assembled quantum dots via
four-wave mixing; values ranged from 90 ps at 10 K to 9 ps at
120 K. Dephasing was observed to be strongly temperature
dependent (more so than the sublevel lifetimes) but also
connected to the detailed energy structure of the system.
As expected however, these times are much longer than in
conventional quantum-well QC lasers, where T ∗

2 ∼ 300 fs
[31,51]. To simplify this intricate problem, we use a single
phenomenological T ∗

2 parameter throughout our simulations.
Unless otherwise specified, we assume T ∗

2 = 5 ps at 300 K,
which is a reasonably conservative value and consistent with
the computed values of Ref. [50].

Results for the steady-state gain profile and population
inversion at 100 and 300 K are shown in Fig. 5 for vanishing
optical intensity. The electron density was taken to be
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FIG. 5. (Color online) Computed gain profiles at the injection
anticrossing bias for pure dephasing times T ∗

2 of 1 ps, 5 ps, and ∞ at
100 and 300 K, with vanishing optical intensity. Colored numbers on
the left give the inverted population fractions.

Nd = 1016 cm−3, which corresponds to an active medium
made up of a nanopillar array spaced on an 80 nm grid and
doped with one electron per well. Pure dephasing times T ∗

2
of 1 ps, 5 ps, and ∞ were applied to all coherences. T ∗

2
is especially crucial for the peak gain and linewidth at low
temperature, where the lifetimes of the (nN,nα) = (0,0) states
are extremely long due to the slow generation rate. At both
temperatures, it is also noted that reduction in peak gain due to
dephasing is attributed mainly to broadening rather than actual
loss of population inversion.

Figure 6 shows gain profiles computed from each phonon
occupation state separately at a temperature of 300 K and
without pure dephasing for clarity. Even at 300 K, the large
majority of the gain comes from the (0,0) states, which justifies
our truncation at a total of two phonons. This is due to both their
larger populations and longer lifetimes resulting in narrower
linewidths. By separating the gain into occupation numbers
we also note that while the total gain appears to exhibit five
peaks, there are in fact more as well as resonance shifts which
occur in the higher phonon occupation states.

C. Tunnel coupling dependence

The exact locations of the resonance peaks exhibit a com-
plicated dependence on the coupling parameters and energy
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FIG. 6. (Color online) Gain profile separated into phonon occu-
pations for T = 300 K and T ∗

2 = ∞.
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FIG. 7. Zero-phonon gain at 300 K and T ∗
2 = ∞ as the tunnel

coupling is turned on. Curves are offset by 200 cm−1 for clarity. Thin
lines denote the anticipated resonances based on diagonalization of
the Hamiltonian for the subspace around the zero-phonon radiative
transition not including the phonon coupling across the radiative
transition. These energies are given by Erad ± �tun ±

√
�2

tun + �2
pol,N

and Erad ± �tun.

structure due to the complex nature of the chain-coupled
problem, and also experience other shifts due to the damping
mechanisms. In Fig. 7, we provide some insight by examining
the evolution of the zero-phonon gain profile without pure
dephasing as the injection tunnel coupling (one half of the
anticrossing gap) is turned on. In practice, this is equivalent to
varying the thickness of the injection barrier.

The peak locations can be partially interpreted by diagonal-
izing H only within the subspaces of states directly coupled to
the zero-phonon radiative states, ignoring the phonon coupling
across the radiative transition itself. The upper radiative state is
split into a doublet by the tunnel coupling back to the injector,
while the lower radiative state is split into a triplet by the
phonon coupling to the next injector followed by the tunnel
coupling to the next radiative state. This model is sufficient
at low tunnel coupling, where at �tun = 0 only the polaronic
splitting exists, and the peak at the central frequency is absent
due to its vanishing coupling strength to radiation. As the
tunnel coupling strength is increased, the peak near center
frequency begins to emerge and eventually dominates the gain
profile. We attribute the emergence of this peak to the onset
of the phonon coupling across the radiative transition, which
highly expands the Hilbert space relevant even to only the
zero-phonon gain. This polaronic splitting represents a major
difference compared to a conventional quantum-well QC laser,
and must be properly accounted for in any design.

D. Current versus voltage characteristic

Figure 8 shows the transport characteristic at 100 and 300 K,
alongside the gain profiles at 300 K for various bias points.
The current is significantly higher at 300 K due to the faster
phonon decay which results in overall faster transport. The
profiles demonstrate noticeable shifts in peak position and
amplitude as the voltage is tuned, varying the alignment of
the injector states. While this highlights the complexity of the
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FIG. 8. (Left) Transport characteristic for T ∗
2 = 5 ps. The anti-

crossing bias is marked by the dashed vertical line. (Right) Gain
profile at 300 K for various bias points, labeled by bias/module in
millivolts (offset for clarity).

problem, it also suggests that such a device may be a candidate
for wide bias-tunability.

A noticeable feature absent from Fig. 8 is the negative
differential resistance (NDR) anticipated for biases above the
injection resonance (design) bias. This is explained by the
phonon bottleneck effect itself, which suppresses transport
through the device but is eased by increasing bias as the
radiative transition is tuned closer to ELO. In Fig. 9, it is shown
that the NDR does in fact emerge if an additional scattering
mechanism is included across the radiative transition. The
scatterer is considered to be a spontaneous boson emission
rate τsp, which is accompanied by stimulated emission and
absorption rates τst = τabs = τsp/nr , where nr is the Bose-
Einstein occupation at the radiative energy. In an actual device,
this might represent acoustic phonon scattering, for example.
While for a rate τsp = 100 ps, a very large increase is seen in the
current, the gain remains relatively unaffected for τsp > 10 ps.

E. Gain saturation

A particular advantage to our method is the ability to
automatically account for effects of increasing optical intensity
directly onto the gain profile, allowing us to study gain satu-
ration without needing to extract a stimulated emission rate.
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FIG. 9. (Color online) (Left) Transport characteristic as a scatter-
ing mechanism is introduced, for T ∗

2 = 5 ps. Blue denotes 100 K and
red 300 K. Rates τsp are ∞, 1 ns, and 100 ps in order of increasing
current. (Right) Gain at anticrossing bias, 300 K, for various scattering
times τsp.
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FIG. 10. (Color online) Gain saturation as optical intensity is
increased, for T = 300 K and T ∗

2 = 5 ps.

Figure 10 shows the change in gain profile as the circulating
optical intensity is increased (I = 2ε0nc|E|2). Reduction in
peak gain is evident due to loss of overall population inversion,
redistribution of population among various states, and effective
lifetime broadening. In this way, the steady-state optical
intensity could be estimated in a laser system by clamping
the peak gain to the total cavity losses.

F. Parasitic tunneling

To this point, we have focused on somewhat of an ideal case,
where only tunnel coupling from the injector to upper radiative
state is considered. However, it is well known that a major issue
for THz QC lasers is the existence of a parasitic current channel
that occurs for voltage biases below the injection resonance
[5,31,52]. While the details vary between designs, this current
channel is associated with tunnel coupling from the injector
to the lower radiative state or the excited state in the wide
depopulation well. The presence of this parasitic current sets
a floor on the threshold current density, and if it is too strong,
creates a premature NDR, which prevents reaching the design
bias. In conventional QC lasers, since this coupling is typically
�p ∼ 0.2–0.5 meV, the relatively fast dephasing (T ∗

2 ∼ 0.3 ps)
helps to suppress this current. Since the dephasing times in
a quantum dot QC laser are expected to be 1–2 orders of
magnitude longer, a concern naturally arises that this parasitic
channel will be too strong.

To account for this effect, we now introduce a tunnel
coupling from the injector to the lower radiative state,
having a value computed from the level anticrossing as
�p = 0.875 meV. Although this channel is well detuned at
the injection resonance, it is, however, important at lower bias.
Figure 11 demonstrates the effect of the parasitic coupling on
the transport characteristic for T ∗

2 = 5 ps and 1 ps, and the
gain at various bias points for T ∗

2 = 5 ps. Very large current
flow is found at biases over a wide range around the parasitic
resonance, leading to a considerable NDR. As expected, the
gain is significantly modified at lower bias points while at
higher bias the parasitic tunneling becomes unimportant as it
is further detuned.
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FIG. 11. (Color online) Effects of a parasitic tunneling channel
at T = 300 K. (Left) Modified transport characteristic for T ∗

2 = 5
and 1 ps. (Right) Modified gain at various bias points for T ∗
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(labelled in mV/module and offset by 200 cm−1 for clarity).

A similar current instability was predicted in Ref. [28],
where the possibility of doubling all barrier thicknesses was
explored. In our two-well design, where the radiative transition
is diagonal, it is clearly disadvantageous to increase the radia-
tive barrier, but, for example, doubling only the injector barrier
thickness from 3.7 to 7.4 nm reduces the injection coupling
from 1.9 to 0.3 meV and the parasitic coupling from 0.875
to 0.2 meV. However, this reduction in the injection coupling
introduces other complications, importantly a large splitting
in the gain spectrum as shown in Fig. 7. Furthermore, in order
to appreciably reduce the parasitic current level, one requires
the coupling to be �p � �/T ∗

2 (0.13 meV for T ∗
2 = 5 ps),

which is difficult to achieve in this simple two-well design. It
is likely that more sophisticated designs will be required that
selectively reduce the parasitic tunnel coupling, although this
will be at the cost of device and material complexity.

V. CONCLUSIONS

A density matrix formulation has been derived for com-
puting the steady-state gain and current in quantum cascade
systems of arbitrary size driven by a classical light field.
Gain is calculated coherently from the optical susceptibility
which arises from the induced harmonic coherences. The
method is also useful for other quantum-cascade systems, and
could readily be generalized for the study of nonlinear effects
such as harmonic, sum frequency, and difference frequency
generation.

The method was applied to a nanopillar-based quantum
dot QC laser, where coherent interaction of the discrete
electronic density of states with quantized LO-phonon modes
was accounted for alongside phonon decay processes, electron
tunneling, and the light field. Results predict a complex
dependence on coupling parameters, energy structure, and
damping parameters, and forecast high temperature operation,
wide bias tunability, and considerable robustness to added
scattering mechanisms. A simple way to account for gain
saturation was demonstrated, and finally the effect of parasitic
tunnel coupling was isolated, leading to predictions of possible
electrical instability.

This work addresses the feasibility of an idealized quantum
dot QC laser, where certain practical concerns such as dot
inhomogeneity or interface roughness are not accounted for. A
further limitation is the inclusion of only two phonon-coupled
transitions, restricting our treatment to the regime of small
pillar diameter (∼20 nm in GaAs). As the pillar diameter
becomes wider, the higher lateral (p) states become important,
thus greatly expanding the necessary Hilbert space and cou-
pling parameters. Such a problem is tractable by this method,
although it would require an algorithm for automatically
enumerating the basis states and computing matrix elements.

Even in this idealized system, several key conclusions
emerge. First, as expected, the formation of intersublevel-LO-
phonon polarons is beneficial in the long upper state relaxation
times, which leads to significant population inversion levels
even at room temperature. This leads to peak gain on the
order of 100 cm−1 at 300 K, which is sufficient for lasing
in a low-loss metal-metal waveguide where the losses are
∼15–30 cm−1 [53]. The exact peak values depend upon the
pure dephasing parameters, which will require further exper-
imental and theoretical consideration. Second, the coherent
polaron formation also leads to a series of level splittings on
the order of several meV. This produces a complicated gain
spectrum with multiple peaks that depend strongly on bias, the
electron-phonon interaction strength, and the tunnel coupling.
Third, in our model system the longer dephasing times of
several ps lead to a strong parasitic current channel which may
cause electrical instabilities. While the simple two-well design
presented here has few degrees of freedom, it is possible that
new design strategies could minimize this effect.

In summary, future quantum dot QC lasers are predicted to
have sufficient gain for room-temperature operation. However,
they are likely to encounter fundamentally new transport
physics not present in conventional QC lasers, which must
be properly accounted for during the design and modeling
process. Our results suggest that naively scaling existing
terahertz QC-laser designs to the quantum dot limit may meet
some difficulty.
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APPENDIX: DERIVATION OF INCOHERENT
CONTRIBUTION TO M

The incoherent evolution is separated into that due to each
transition and pure dephasing:

d

dt
ρ

∣∣∣∣
inc

=
∑
X

LXρ + Dρ. (A1)

LX is the Lindblad superoperator for transition X, which is
constructed in the form [38,54]

LXρ = CXρCX† − 1
2 (CX†CXρ + ρCX†CX), (A2)

where CX is the jump operator which induces the transition.
For a simple transition ψi → ψf having rate �i→f , the
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associated jump operator is C = √
�i→f |ψf 〉〈ψi |. In this case,

C will have only one nonzero element, but in a combined
Hilbert space this may not be true; C itself must be expanded
as a tensor product and thus can acquire more than one nonzero
element, in which case transfers of coherence can occur.

For example, we can examine the collapse operator which
is due to the transition of phonon mode N from nN = 1
to nN = 0. Given the allowed mode occupations, the col-
lapse operator in the space of {|nN,nα〉} is then C1N →0N =√

�−
1 (|00〉〈10| + |01〉〈11|). If Nel electron degrees of freedom

are included, C1N →0N is further expanded to
√

�−
1 1Nel ⊗

(|00〉〈10| + |01〉〈11|). We will neglect correlations in the
different transition processes between number states of a
given phonon mode by including separate jump operators for
each.

Once the jump operators are obtained, we need to use them
to fill out elements of S(ab)mp ,(cd)nq in the chain-coupled system.
These are defined as

[LXρ](m)
p,ab ≡

∑
qncd

SX
(ab)mp ,(cd)nq

ρ
(n)
q,cd , (A3)

or in other words the coefficients relating variable ρ
(n)
q,cd

to the evolution of ρ
(m)
p,ab due to transition X. Importantly,

we first distinguish between transitions which are correlated
between modules and those that are not. In the former, the
jump operator itself assumes a chain-coupled form which
forms a single Lindblad superoperator [shown in Eq. (A4)],
whereas in the latter there exists a series of jump operators
which form separate Lindblad superoperators, which are then
superimposed [shown in Eq. (A5)]:

L

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

. . .

(C̄)
(C̄)

. . .

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ (A4)

· · · + L

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

. . .

(C̄)
(0)

. . .

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ + L

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

. . .

(0)
(C̄)

. . .

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ + . . . . (A5)

In the first case, we find that the elements in SX are

SX
(ab)mp ,(cd)nq

= δpqδmn

[
C̄acC̄

†
db − 1

2 (δbd [C̄†C̄]ac

+ δac[C̄†C̄]db)
]
, (A6)

assuming that C̄ resides in the diagonal submatrices, and for
the second we find that

SX
(ab)mp ,(cd)nq

= δpqδmn

[
δp0C̄acC̄

†
db

− 1
2 (δbd [C̄†C̄]ac + δac[C̄†C̄]db)

]
, (A7)

independent of any displacement of C̄ from the diagonal.
Since the collapse operator C̄ is always positive, we no-
tice in the solution for SX that correlated transitions can
transfer intermodule coherence while uncorrelated transitions
do not.

The pure dephasing contribution D is trivial. For a pure
dephasing time T ∗

2 applied to all coherences, it is

D(ab)mp ,(cd)nq = − 1

T ∗
2

δpqδmnδacδbd (1 − δp0δab), (A8)

but can also easily be generalized to incorporate different
dephasing times.

Finally, we must derive the expression for the incoherent
contribution to velocity, and thus J inc. We are interested in the
expectation value of velocity due to incoherent processes, and
so we equate

〈vinc〉 ≡ d

d
Tr(ρz)

∣∣∣∣
inc

= Tr

[ ∑
X

LXρz + Dρz

]
. (A9)

By the assumed form of z in (10), we have for both types of
transitions that

Tr(LXρz) = Tr[L(C̄X)ρ0z0], (A10)

although this will only truly hold for transitions that do not
cross the module boundary. It is possible, however, to extend
so as to include those that do. The pure dephasing part is

Tr(Dρz) = − 1

T ∗
2

Tr
[(

ρ
(0)
0 − diagρ

(0)
0

)
z0

]
, (A11)

leading to the incoherent contribution to the current:
J inc = Ndq〈vinc〉.
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