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Abstract

Metric Algebraic Geometry

by

Madeleine Aster Weinstein

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Algebraic geometry is the study of algebraic varieties, zero sets of systems of polynomial equa-
tions. Metric algebraic geometry concerns properties of real algebraic varieties that depend on a
distance metric. Applications are seen in distance optimization and the geometry of data.

Algebraic geometry provides a useful perspective on distance optimization. We study variations
of the nearest point problem, which is stated as follows: given a subset S ⊂ Rn and point p /∈ S,
find a point in S of minimal distance to p. An inverse to the nearest point problem can be stated as
follows: Suppose now that p∈ S. Describe the subset of Rn consisting of points that are closer to p
than to any other point of S. This subset is called the Voronoi cell of p with respect to S. We study
its algebraic boundary. Voronoi cells enable us to create algorithms to approximate several metric
features of varieties S. Bottlenecks are pairs of points on an algebraic variety that are critical points
of the distance function between pairs of distinct points on the variety. We study the bottleneck
variety consisting of such points and prove a formula for its degree.

Algebraic geometry informs the computational study of data. We study the algebraic geometry of
the offset hypersurface, the locus of all points at some fixed distance from a given variety. The
offset hypersurface allows us to prove the algebraicity of two quantities central to the computation
of persistent homology, a method at the heart of topological data analysis. Conversely, numerical
and symbolic computational methods yield insight in the analysis of algebraic varieties. We use
numerical methods to show that the degree of the Zariski closure of the orbit of a general cubic
surface under the action of the projective linear group is 96120. We pair representation theory and
numerical algebraic geometry to investigate the real algebraic variety of real symmetric matrices
with eigenvalue multiplicities specified by a given partition.

Taken together, the results show the power of combining algebraic geometry and numerical meth-
ods to produce insights for problems related to distance and metrics.
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Chapter 1

Introduction

Metric algebraic geometry arose out of a desire to bring the perspective and tools of algebraic
geometry to the objects of differential geometry that arise in applications concerning the geometry
of data. The necessity of bringing together such tools can be understood through the story of the
reach of an algebraic variety.

First introduced by Federer in 1959, the reach is an invariant of a subset S ⊂ Rn that charac-
terizes the difficulty of performing calculations in computational geometry [97]. The reach of S is
the maximum distance from S such that every point of Rn within this distance has a unique nearest
point in S. Sets with nonzero reach are close to being differential.

In Section 4.2, we prove that the reach of an algebraic variety is a number algebraic over the
field of definition of the variety. With this knowledge comes the hope of finding an algebraic char-
acterization of the reach; that is, given an algebraic variety, can we find equations for the subvariety
of points critical to the computation of the reach? It can be shown that the reach of a variety is the
minimum of two quantities: the minimal radius of curvature of a geodesic of the variety and half
of the narrowest bottleneck distance on the variety. Thus, we set out to provide algebraic charac-
terizations of these two quantities. Finding an algebraic characterization of curvature is the subject
of Chapter 3. To obtain an algebraic characterization of bottlenecks, as we do in Section 2.2, we
follow the lead of the paper [86], which lays out a framework for finding critical points of distance
optimization problems on algebraic varieties by defining the Euclidean distance degree. This is
the subject of Section 1.1.

Once we have algebraic characterizations of curvature and bottlenecks, we ask for the degree
of the associated algebraic varieties. The degree is a measure of algebraic complexity, which is a
proxy for computational difficulty. The field of intersection theory provides methods for finding
the degree of an algebraic variety. This is the topic of Section 1.2.

Having found equations for these varieties and characterized the difficulty of computations, we
wish to perform these computations and find specific points on given algebraic varieties. For this,
we turn to the field of numerical algebraic geometry, the topic of Section 1.3.

Reach exemplifies the spirit of metric algebraic geometry because it plays an important role in
the geometry of data analysis. It determines the sampling density required for the method of per-
sistent homology to successfully characterize the topology of a manifold. We provide background
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information on persistent homology in Section 1.4.

1.1 Euclidean Distance Degree
Let X ⊂ Rn be a variety and u ∈ Rn. The nearest point problem asks what point or points of X are
closest to u. Algebraic conditions are unable to distinguish between types of critical points, so we
reformulate the problem as follows. Define a function du(x) : X R by

du(x) = (x1−u1)
2 + · · ·+(xn−un)

2.

Then du(x) is the square of the Euclidean distance from u to x. We seek to find the critical points
of the function du. We now describe the construction of the ideal whose variety consists of these
critical points. We follow [86].

Let IX = 〈 f1, . . . , fs〉 ⊂R[x1, . . . ,xn] and X =V (IX)⊂Cn. We denote by J( f ) the s×n Jacobian
matrix whose entry in row i and column j is the partial derivative ∂ fi/∂x j. Let c be the codimension
of X . The singular locus Xsing of X is defined by

IXsing = IX + 〈c× c−minors of J( f )〉.

We exclude the singular locus of X from our analysis.
To characterize the idea of criticality, we use Lagrange multipliers. Lagrange multipliers is a

method for finding optimal values of a function subject to constraints. Here, we wish to optimize
du given that x ∈ X \Xsing. The key insight of Lagrange multipliers is that at a critical point, the
gradient of du will be contained in the normal space of X . Up to scaling, the gradient of du is u−x.
So at a critical value of x, the vector u− x is in the span of the matrix J( f ). The critical ideal for
u ∈ Cn is the ideal obtained from the following saturation:(

IX +

〈
(c+1)× (c+1)−minors of

(
u− x
J( f )

)〉)
: (IXsing)

∞

In [86], it is proved that for general u ∈ Cn, the variety of the critical ideal contains a finite
number of complex solutions and that this number is independent of a choice of u∈Cn. It is called
the Euclidean distance degree of X .

So far, we have defined the Euclidean distance degree in affine space. However, in algebraic
geometry it is often preferable to work with projective varieties. The concept of Euclidean distance
does not translate well to projective space. See Section 4.1 for a discussion of metrics in projective
space. The Euclidean distance degree of a projective variety is defined as the Euclidean distance
degree of its affine cone.

1.2 Intersection Theory
Intersection theory is the study of how varieties intersect. In the case where two varieties intersect
in finitely many points, we may wish to know how many points. One of the first examples of inter-
section theory that students encounter is the Fundamental Theorem of Algebra, which states that
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a polynomial of degree d over an algebraically closed field has d roots, counted with multiplicity.
Later in our mathematical studies, we generalize this to Bézout’s Theorem, which states that curves
of degree d and degree e in general position in the projective plane over an algebraically closed
field intersect in de points, again counted with multiplicity.

In this section we will encounter a far-reaching generalization of Bézout. The Chow ring
will enable us to turn geometric questions about intersections into algebraic ones; in particular,
intersection will correspond to multiplication. Chern classes will generalize degree as a way to
encode the invariants of a variety relevant to its intersection properties. We apply the Chow ring
and Chern classes to present Porteous’ formula, which is used to obtain the degree of determinantal
varieties.

Chow ring
Let X be an algebraic variety over an algebraically closed field k of characteristic 0. We will now
define the Chow ring of X , following [92, Section 1.2].

The group of cycles on X , denoted Z(X), is the free abelian group generated by the set of
subvarieties of X . The group Z(X) is graded by dimension: we write Zk(X) for the group of
cycles that are formal linear combinations of subvarieties of dimension k (these are called k-cycles),
so that Z(X) =

⊕
k Zk(X). A cycle Z = ∑niYi, where the Yi are subvarieties, is effective if the

coefficients ni are all nonnegative. A divisor (sometimes called a Weil divisor) is an (n−1)-cycle
on a pure n-dimensional variety.

Let Rat(X)⊂ Z(X) be the group generated by differences of the form

〈Φ∩ (t0×X)〉−〈Φ∩ (t1×X)〉,

where t0, t1 ∈ P1 and Φ is a subvariety of P1×X not contained in any fiber {t}×X . We say that
two cycles are rationally equivalent if their difference is in Rat(X). The Chow group of X is the
quotient

A(X) = Z(X)/Rat(X),

the group of rational equivalence classes of cycles on X . If Y ∈ Z(X) is a cycle, we write [Y ]∈A(X)
for its equivalence class.

It can be shown that A(X) is graded by dimension; that is,

A(X) =⊕Ak(X),

where Ak(X) is the group of rational equivalence classes of k-cycles.
The subvarieties A,B of a variety X intersect transversely at a point p if A,B and X are all

smooth at p and
codim(TpA∩TpB) = codim(TpA)+ codim(TpB).

The subvarieties A,B ⊂ X are generically transverse, or intersect generically transversely, if they
meet transversely at a general point of each component C of A∩B. Two cycles A = ∑niAi and
B = ∑m jB j are generically transverse if each Ai is generically transverse to each B j.
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The following theorem enables us to define the Chow ring. It is a generalization of Bézout’s
theorem.

Theorem 1.2.1. If X is a smooth quasi-projective variety, then there is a unique product structure
on A(X) such that if two subvarieties A,B of X are generically transverse, then

[A][B] = [A∩B].

This structure makes

A(X) =

dim(X)⊕
c=0

Ac(X)

into an associative, commutative ring, graded by codimension, called the Chow ring of X.

The main idea in the proof is the Moving Lemma, which states the following: For every two
subvarieties A and B, we can find a subvariety A

′
that is rationally equivalent to A and intersects B

generically transversally. The class [A
′ ∩B] is independent of our choice of A

′
.

The Chow ring enables a new interpretation of Bézout’s theorem. Namely, Bézout’s theorem
computes the Chow ring of the projective plane: A(P2) = Z[h]/〈h3〉, where h = [P1] is the class of
a line. In other words, a curve of degree d is rationally equivalent to the cycle defined by a union
of d lines, and two curves of degree d and e intersect in de points, just as a union of d lines and a
union of e lines.

Chern classes
Let E be a vector bundle of rank r on a variety X of dimension n. In most of our examples, we
take E to be the tangent bundle on X . Corresponding to the vector bundle E are certain special
classes in the Chow ring of X : we now define the Chern classes ci(E ) ∈ An−i(X). Our exposition
follows [91][Section 5.2].

We first consider the case r = 1, that is E = L is a line bundle on X . We define

c1(L ) = [Div(τ)] ∈ An−1(X)

where τ is any rational section of L and ci(L ) = 0 for i≥ 2.
Now let r > 1. Let τ0, . . . ,τr−1 be general sections of E . For any i, consider the scheme where

r− i general sections of E fail to be dependent, defined by the vanishing of

τ0∧·· ·∧ τr−i ∈
r−i+1∧

E .

This is called the degeneracy locus of the sections τ0, . . . ,τr−i.
We now characterize the Chern classes ci(E ) ∈ Ai(X) for vector bundles E on smooth varieties

X and integers i≥ 0:

Theorem 1.2.2. There is a unique way of assigning to each vector bundle E on a smooth quasi-
projective variety X a class c(E ) = 1+ c1(E )+ c2(E )+ · · · ∈ A(X) such that:



CHAPTER 1. INTRODUCTION 5

(a) If L is a line bundle on X, then the Chern class of L is 1+ c1(L ), where c1(L ) ∈ A1(X)
is the class of the divisor of zeros minus the divisor of poles of any rational section of L .

(b) If τ0, . . . ,τr−i are global sections of E , and the degeneracy locus D where they are dependent
has codimension i, then ci(E ) = [D] ∈ Ai(X).

(c) If
0 E F G 0

is a short exact sequence of vector bundles on X, then

c(F ) = c(E )c(G ) ∈ A(X).

(d) If φ : Y X is a morphism of smooth varieties, then

φ
∗(c(E )) = c(φ∗(E )).

In future chapters, we make frequent use of Chow rings and Chern classes to determine formu-
las for the degrees of varieties.

Porteous’ formula
We now describe an application of intersection theory to find the degree of a determinantal variety.
We follow [91, Chapter 12].

As we just saw, when a vector bundle F of rank f on a smooth variety X is generated by global
section, the Chern class ci(F ) is the class of the scheme where e = f − i+ 1 general sections of
F become dependent. Specifically, if the locus where a map

φ : Oe
X F

fails to have maximal rank has the expected codimension i, then ci(F ) is the class of the scheme
that is locally defined by the e× e minors of a matrix representing φ . Let E be a vector bundle
of rank e. Let k ≤ min(e, f ). We now consider the more general case of the class of the scheme
Mk(φ) where a map of vector bundles φ : E F has rank ≤ k, locally defined by the ideal of the
(k+ 1)× (k+ 1) minors of a matrix representation. If X is an affine space of dimension e f and
φgen is the map defined by an f × e matrix of variables, the codimension of the locus Mk(φgen) is
(e− k)( f − k).

We first establish notation required to state the next theorem. For any sequence of elements
γ := (γ0,γ1, . . .) in a commutative ring and any natural numbers e, f , we set ∆e

f (γ) = detDe
f (γ),

where

De
f (γ) :=


γ f γ f+1 . . . . . . γe+ f−1

γ f−1 γ f . . . . . . γe+ f−2
...

... . . . ...
...

... . . . ...
γ f−e+1 γ f−e+2 . . . . . . γ f

 .
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Let a(t) = 1+ a1t + · · ·+ aete and b(t) = 1+ b1t + · · ·+ b f t f be polynomials with constant
coefficient 1. We denote by a(t)

b(t) the sequence of coefficients (1,c1,c2, . . .) of the formal power

series a(t)/b(t) = 1+ c1t + c2t2 + · · · .

Theorem 1.2.3. (Porteous’ formula). Let φ : E F be a map of vector bundles of ranks e and f
on a smooth variety X. If the scheme Mk(φ)⊂ X has codimension (e− k)( f − k), then its class is
given by

[Mk(φ)] = ∆
e−k
f−k

[
c(F )

c(E )

]
.

We use Theorem 1.2.3 to compute the degree of determinantal varieties. We are often able to
characterize geometric conditions in terms of linear dependence of forms, using Lagrange multi-
pliers as explained in Section 1.1 of this dissertation. Thus this formula is an important tool.

1.3 Numerical Algebraic Geometry
Numerical algebraic geometry concerns numerical computations of objects describing algebraic
sets defined over subfields of the complex numbers. The most basic of these objects are the solution
sets, a data structure for representing solutions to polynomial systems. The term “numerical” refers
to computations which are potentially inexact (e.g., floating-point arithmetic). However, this does
not necessarily mean that the results obtained are unreliable. The certification of solutions plays an
important role in the field. For a more in-depth definition and a brief history of numerical algebraic
geometry see [113]. A comprehensive introduction to the subject is available in [176]. This section
is adapted from [46] which is joint work with Laura Brustenga i Moncusí and Sascha Timme.

We now introduce tools from numerical algebraic geometry needed to compute and certify the
degree of an algebraic variety. We fix a system of polynomials F = (F1, . . . ,Fm) in n variables and
assume that it has l isolated solutions p1, . . . , pl ∈ Cn.

Homotopy continuation. Numerical homotopy continuation [176, Section 8.4.1] is a fundamen-
tal method that underlies most of numerical algebraic geometry. The general idea is as follows.
Suppose we want to compute the isolated solutions of F . We build a homotopy H(x, t) : Cn×C→
Cm which deforms a system of polynomials G(x) = H(x,0) whose isolated solutions are known
or easily computable into the system F(x) = H(x,1). A well-defined homotopy requires that G
has at least as many isolated solutions as F so that we are able to compute all isolated solutions
of F . Given a solution x0 of G, there is a solution path x(t) : C Cn, which is a curve implicitly
defined by the conditions x(0) = x0 and H(x(t), t) = 0 for t ∈ U ⊆ C where U is the flat locus
of the projection Cn×C C restricted to H = 0, which is dense in C by generic flatness. In
particular, a well-defined homotopy requires 0 ∈U . The solution path is usually tracked using a
predictor-corrector scheme. As t approaches 1 the solution path either diverges or converges to a
solution of F .
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A standard homotopy for the case m = n is the total degree homotopy. Bézout’s theorem
gives N = ∏

m
i=1 deg(Fi) as an upper bound for the the number of isolated solutions of F . A total

degree homotopy uses a start system G with N isolated solutions and the homotopy H(x, t) =
(1− t)G(x) + tF(x). As the Bézout bound may be very high, for large computations the total
degree homotopy is impractical and other methods are necessary.

Monodromy method. Monodromy (see [70, 89]) is an alternative method for finding isolated
solutions to parameterized polynomial systems which is advantageous if the number of solutions
is substantially lower than the Bézout bound. Embed our polynomial system F in a family of
polynomial systems FQ, parameterized by a connected open set Q ⊆ Ck. Let l be the number of
solutions of Fq ∈FQ for q ∈U , where U ⊆ Q is the flat locus of the family FQ.

Consider the incidence variety

Y :=
{
(x,q) ∈ Cn×Q | Fq(x) = 0

}
.

Let π be the projection from Cn×Q onto the second argument restricted to Y . For every q ∈Q\∆,
the fiber Yq = π−1(q) has exactly l points. Given a loop O in U based at q, the preimage π−1(O)
is a union of paths starting and ending at (possibly different) points of Yq. So, giving a direction
to the loop O, we may associate to each point y of Yq the endpoint of the path starting at y. This
defines an action, the monodromy action, of the fundamental group of U on the fiber Yq, which in
turn defines a map from the fundamental group of U to the symmetric group Sl . The monodromy
group of our family at q is the image of such a map. This action is transitive if and only if Y is
irreducible, which we assume.

Fix q0 ∈ U such that F = Fq0 ∈ FQ. Suppose a start pair (x0,q0) is given, that is, x0 is a
solution to the instance Fq0 . The start solution x0 is numerically tracked along a directed loop in
Q\∆, yielding a solution p′0 at the end. If p0 6= p′0, then p′0 is tracked along the same loop, possibly
yielding again a new solution. Then, all solutions are tracked along a new loop, and the process is
repeated until some stopping criterion is fulfilled.

We note that this method requires us to know one solution of our polynomial system to use as a
start pair. Various strategies exist to find such a solution. We will describe one strategy in Section
5.1.

Certifying solutions. The above methods yield numerical approximations of solutions of our
polynomial system F . How can we certify that the obtained approximations correspond to actual
solutions of F and that they are all distinct? For systems F with an equal number n of polynomials
and variables, Smale introduced the notion of an approximate zero, the α-number and the α-
theorem, see [175]. In short, an approximate zero of F is any point p ∈ Cn such that Newton’s
method, when applied to p, converges quadratically towards a zero of F . This means that the
number of correct significant digits roughly doubles with each iteration of Newton’s method.

Definition 1.3.1 (Approximate zero). Let JF be the n× n Jacobian matrix of F . A point p ∈ Cn

is an approximate zero of F if there exists a zero ζ ∈ Cn of F such that the sequence of Newton
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iterates
zk+1 = zk− JF(zk)

−1F(zk)

starting at z0 = p satisfies for all k ≥ 1 that

‖zk+1−ζ‖ ≤ 1
2
‖zk−ζ‖2.

If this holds, then we call ζ the associated zero of p. Here ‖x‖ is the standard Euclidean norm
in Cn, and the zero ζ is assumed to be nonsingular (that is, det(JF(ζ )) 6= 0 since F).

To check whether a point p ∈ Cn is an approximate zero of F from Definition 1.3.1 requires
infinitely many steps, one for each iteration of the Newton method. Nevertheless, when p is close
enough to its associated zero, it is possible to certify that p is an approximate zero with only finitely
many computations, as we now see. Smale’s α-theorem (see [28, Theorem 4 in Chapter 8]) is an
essential ingredient. The theorem uses the γ- and α-numbers

γ(F,x) = sup
k≥2

∥∥ 1
k!

JF(x)−1DkF(x)
∥∥ 1

k−1 and

α(F,x) = ‖JF(x)−1F(x)‖ · γ(F,x) ,

where DkF is the tensor of order-k derivatives of F and the tensor J−1
F DkF is understood as a

multilinear map A : (Cn)k Cn with norm ‖A‖ := max‖v‖=1 ‖A(v, . . . ,v)‖.

Theorem 1.3.2 (Smale’s α-theorem). If α(F,x)< 0.03, then x is an approximate zero of F. Fur-
thermore, if y ∈Cn is any point with ‖y−x‖ less than (20γ(F,x))−1, then y is also an approximate
zero of F with the same associated zero ζ as x.

Smale’s α-theorem is in fact more general than is stated above. The numbers 0.03 and 20 can
be replaced by any pair of positive numbers satisfying certain constraints.

To avoid the computation of the γ-number, Shub and Smale [174] derived an upper bound
for γ(F,x) which can be computed exactly and efficiently. Hence, one can decide algorithmically
whether x is an approximate zero using only the data of the point x itself and F . Hauenstein and
Sottile [114] implemented these ideas in an algorithm, called alphaCertified, which decides
both whether a point x ∈ Cn is an approximate zero and whether two approximate zeros have
distinct associated zeros. A new implementation of a method for certifying solutions called the
“interval-arithmetic method” was introduced by Breiding, Rose, and Timme in [41].

Trace test. The certification process explained above establishes a lower bound for the number
of isolated solutions of F . The trace test can be used for polynomial systems satisfying certain
conditions to show that all solutions have been found. See [141] for a more detailed explanation.

We first establish definitions of concepts used in the trace test. A pencil of linear spaces is a
family Mt for t ∈ C of linear spaces that depends affinely on the parameter t. Each Mt is the span
of a linear space L and a point t on a line l that is disjoint from L. Suppose that W ⊂ Cn is an
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irreducible variety of dimension m and that Mt for t ∈ C is a general pencil of linear subspaces of
codimension m such that W and M0 intersect transversally. Consider a fixed subset W ′ ⊆W ∩M0
and denote by W

′
t ⊆W ∩Mt the points obtained by tracking W ′ along the pencil. Denote by w(t)

the sum of the points of W ′t . If W ′t =W ∩Mt then w(t) is the trace of W ∩Mt . A C-valued function
w is called an affine linear function of t if there exist a,b ∈ C such that w(t) = a+ bt. A Cn-
valued function w is called an affine linear function of t if for a nonconstant path γ : [0,1] C with
γ(0) = 0, we have that w(γ(s)) is an affine linear function of γ(s). The trace is an affine linear
function of t [141, Prop. 3]. It can be shown that no proper subset of the points in W ∩Mt defines
an affine linear function of t.

This leads to the idea of the trace test: Let t1 ∈C\{0}, fix W ′ ⊆W ∩M0 and compute tr(t1) :=
(w(t1)−w(0))− (w(0)−w(−t1)). Note that tr(t1) is identically zero if and only if w is an affine
linear function of t, which is true if and only if the cardinality of W ′ corresponds to the degree of W .
Due to the generality assumption on Mt , it is sufficient to compute tr(t1) for only one t1 ∈ C\{0}.

1.4 Persistent Homology
Topological data analysis is a growing field that brings the mathematical structures of topology to
the analysis of data. Persistent homology, a method central to topological data analysis, adapts the
concept of homology to point clouds. We now provide an abbreviated introduction to persistent
homology. This section is adapted from [120], which is joint work with Emil Horobeţ. For further
background, we refer the reader to [52].

The persistent homology of a finite subset of Rn at parameter ε is defined as the homology
of a simplicial complex, called the Čech complex, associated to a covering of the point cloud by
hyperballs of radius ε . By the nerve theorem, the Čech complex has the same homology as the
covering.

Definition 1.4.1. Let X ⊂ Rn and ε > 0 a parameter. Let σ be a finite subset of X . The Čech
complex of X at radius ε is

CX(ε) =

{
σ ⊂ X s.t.

⋂
x∈σ

Bε(x) 6= 0

}
,

an abstract simplicial complex where the n-faces are the subsets of size n of X with nonempty
n-wise intersection.

From these simplicial complexes, we obtain a filtration for which we can define persistent
homology. Following [91], consider a simplicial complex, K, and a function f : K R. We
require that f be monotonic by which we mean it is non-decreasing along chains of faces, that
is, f (σ) ≤ f (τ) whenever σ is a face of τ . Monotonicity implies that the sublevel set, K(a) =
f−1(−∞,a], is a subcomplex of K for every a ∈ R. Letting m be the number of simplices in K, we
get n+1≤ m+1 different subcomplexes, which we arrange as an increasing sequence,

/0 = K0 ⊆ K1 ⊆ ·· · ⊆ Kn = K.



CHAPTER 1. INTRODUCTION 10

In other words, if a1 < a2 < · · · < an are the function values of the simplices in K and a0 = −∞

then Ki = K(ai) for each i. We call this sequence of complexes the filtration of f .
For every i ≤ j we have an inclusion map from the underlying space of Ki to that of K j and

therefore an induced homomorphism, f i, j
q : Hq(Ki) Hq(K j), for each dimension q.

Definition 1.4.2. The q-th persistent homology groups are the images of the homomorphisms in-
duced by inclusion, H i, j

q = im f i, j
q , for 0 ≤ i ≤ j ≤ n. The corresponding q-th persistent Betti

numbers are the ranks of these groups, β
i, j
q = rank H i, j

q .

As a consequence of the Structure Theorem for PIDs, the family of modules Hq(Ki) and ho-
momorphisms f i, j

q : Hq(Ki) Hq(K j) over a field F yields a decomposition

Hq(Ki;F)∼=
⊕

i

xti×F [x]
⊕(⊕

j

xr j · (F [x]/(xs j ·F [x]))

)
, (1.1)

where ti,r j, and s j are values of the persistence parameter ε [104].
The free portions of Equation 1.1 are in bijective correspondence with those homology genera-

tors which appear at parameter ti and persist for all ε > ti, while the torsional elements correspond
to those homology generators which appear at parameter r j and disappear at parameter r j + s j.

To encode the information given by this decomposition, we create a graphical representation of
the q-th persistent homology group called a barcode [104]. For each parameter interval [r j,r j + s j]
corresponding to a homology generator, there is a horizontal line segment (bar), arbitrarily ordered
along a vertical axis. The persistent Betti number β

i, j
q equals the number of intervals in the barcode

of Hq(Ki;F) spanning the parameter interval [i, j].
Persistent homology is defined using the Čech complex, but it is hard to compute using the

Čech complex because this requires storing simplices is many dimensions. In practice, persistent
homology is often computed using the Vietoris-Rips complex, a simplicial complex determined
entirely by its edge information. The Vietoris-Rips complex is defined as follows.

Definition 1.4.3. Let X ⊂ Rn and ε > 0 a parameter. Let σ be a finite subset of X . The Vietoris-
Rips complex of X at radius ε is

V RX(ε) = {σ ⊂ X s.t. Bε(x)∩Bε(y) 6= 0 for all pairs(x,y) ∈ σ} ,

an abstract simplicial complex where the n-faces are the subsets of size n of X such that every pair
of points in the subset has nonempty pairwise intersection.

Using Jung’s theorem, one can show that CX(ε)⊆V RX(
√

2ε)⊂CX(
√

2ε), so that the Vietoris-
Rips complex can indeed be used to approximate persistent homology [104].

We include here an example of the real variety defined by the Trott curve and a barcode repre-
senting its persistent homology, computed by taking a sample of points on the variety.

Example 1.4.4 (The barcodes of the Trott curve). In dimension 1, the first four bars correspond
to the cycles in each of the four components of the real variety. As epsilon increases, these cycles
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fill in, and then the components join together in one large circle. This demonstrates how persistent
homology can detect the global arrangement of the components of a variety. The barcodes were
computed using Ripser, which uses the Vietoris-Rips complex [22].

Figure 1.1: The Trott curve.

Figure 1.2: Barcodes for the Trott curve in homological dimensions 0 and 1.

1.5 Contributions in this Dissertation
This dissertation addresses several topics in metric algebraic geometry, starting with distance opti-
mization and curvature, then turning to data analysis and numerical methods.

In Chapter 2, I explore algebraic varieties underlying distance optimization. The original work
in this chapter comes from the following sources. Section 2.1 is based on the paper [60], joint
with Diego Cifuentes, Kristian Ranestad, and Bernd Sturmfels. It is published in the Journal of
Symbolic Computation. Section 2.2 is based on the paper [79], joint with David Eklund and Sandra
Di Rocco. It is published in the SIAM Journal on Applied Algebra and Geometry.
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Every finite subset X of Rn defines a Voronoi decomposition of the ambient space. The Voronoi
cell of a point y ∈ X consists of all points in Rn for which the closest point in X is y. In Section
2.1, we generalize these definitions to allow X to be any real algebraic variety. We compute and
prove formulas for the degree of the algebraic boundary of the Voronoi cell of a point on a variety.
We apply these results to low-rank matrix approximation.

A bottleneck of a smooth algebraic variety X ⊂ Rn is a pair (x,y) of distinct points x,y ∈ X
such that the line containing x and y is orthogonal to X at both x and y. Such a pair of points
gives a critical value of the distance function between pairs of distinct points on the variety. The
narrowness of bottlenecks is a fundamental complexity measure in the algebraic geometry of data.
For instance, it is one of two factors that determine the sampling density required for persistent
homology, a method central to topological data analysis, to obtain the desired results. The number
of bottlenecks, or the bottleneck degree, of a variety is a measure of the complexity of computing
all bottlenecks. In Section 2.2, we prove a formula for the bottleneck degree as a function of
classical invariants such as Chern classes and polar classes, providing the formula explicitly in low
dimension and giving an algorithm to compute it in the general case.

In Chapter 3, I explore the intersections of algebraic geometry and differential geometry. The
original work in this chapter comes from the paper [35], joint with Madeline Brandt, and the pa-
per [40], joint with Paul Breiding and Kristian Ranestad. We find systems of polynomial equations
such that their zeros are the points on a variety where the curvature exhibits a special property.
For example, we find points where one of the principal curvatures is critical and points where all
principal curvatures agree. By bringing the structure of an algebraic variety to features defined in
abstract differential geometric terms, we are able to use numerical algebraic geometry to compute
these features and intersection theory to analyze the complexity of the computations by determin-
ing the degrees of the relevant subvarieties.

In Chapter 4, I use algebro-geometric formulations to inform the computational study of data.
The original work in this chapter comes from three papers. Section 4.1 is based on [37], a joint
paper with Paul Breiding, Sara Kališnik, and Bernd Sturmfels published in Revista Mathematica
Complutense. Section 4.2 is based on the paper [120], joint with Emil Horobeţ and published in
Computer Aided Geometric Design. Section 4.3 is based on the paper [35], joint with Madeline
Brandt.

In Section 4.1, we model finite sets of points in Rn as real algebraic varieties, finding a defining
system of polynomial equations and estimates for the dimension and degree. We test our algorithms
on a range of data sets and implement them in Julia. We also analyze these data sets using persistent
homology. Persistent homology involves studying the homology of a simplicial complex obtained
from a set of points by noting the intersections of neighborhoods of the points. The homology of
the complex is studied for a range of neighborhood radii. Topological features that persist over a
large range of radii are deemed significant. We demonstrate how algebraic geometry can benefit
persistent homology. The neighborhoods traditionally used in persistent homology are spheres. We
propose a variant using elliptical neighborhoods with axis orientation determined by the tangent
space of the variety and axis length determined by a metric algebraic geometry feature called local
reach. In examples, this method improved the accuracy of persistent homology techniques.

Algebraic geometry can provide theoretical guarantees of the accuracy of data analysis meth-
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ods. In Section 4.2, we define a version of persistent homology for algebraic varieties using the
offset hypersurface, the locus of all points at some fixed distance from a given variety. This al-
gebraic formulation enables us to use Hardt’s theorem from real algebraic geometry to prove the
algebraicity of two quantities central to the computation of persistent homology.

We can also use algebraic geometry to guarantee estimation methods for metric features of
plane curves. Recall from above that a finite point set in Rn determines a Voronoi decomposition
of Rn into Voronoi cells defined by their nearest point in the set. In Section 2.1, we modify this
definition so that the finite point set is replaced with a real algebraic variety of any dimension. One
might ask whether the Voronoi decomposition of a finite point sample of a positive dimensional
variety converges to the Voronoi decomposition of the variety as the number of points sampled in-
creases. In Section 4.3, we prove that such convergence, as defined with respect to an appropriate
metric, does occur for plane curves. Using this result, we provide and implement algorithms to
approximate metric features of plane curves, including the medial axis, curvature, evolute, bottle-
necks, and reach.

In Chapter 5, I use numerical and symbolic computational methods to analyze algebraic va-
rieties. The original work in this chapter comes from two papers. Section 5.1 comes from the
paper [46], which is joint work with Laura Brustenga i Moncusí and Sascha Timme. It is pub-
lished in Le Matematiche. Section 5.2 comes from the paper [185].

The projective linear group PGL(C,4) acts on cubic surfaces, considered as points of P19
C via

the coefficients of their defining polynomials. In Section 5.1, we compute that the degree of the
15-dimensional projective variety defined by the Zariski closure of the orbit of a general cubic
surface is 96120. This computation demonstrates the power of numerical algebraic geometry to
find and certify solutions to systems of polynomial equations, producing numerical theorems for
degrees that are difficult to prove using intersection theory.

In Section 5.2, we study the real algebraic variety of real symmetric matrices with eigenvalue
multiplicities determined by a partition. We present formulas for the dimension and Euclidean
distance degree. We give a parametrization by rational functions. For small matrices, we provide
equations; for larger matrices, we explain how to use representation theory to find equations. We
describe the ring of invariants under the action of the special orthogonal group. For the subvariety
of diagonal matrices, we give the degree.
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Chapter 2

Optimizing Distances with Algebraic
Varieties

Given a variety X ⊂Rn and a point p∈Rn, a standard question is to ask for a point of X at minimal
distance to p. In Section 1.1, we saw how this question is studied algebraically in the context of
the Euclidean distance degree. In this chapter, we will explore two variations of this “nearest point
problem.” The first variation can be considered an inverse to the standard nearest point problem:
Given a point p∈ X , characterize the locus of Rn consisting of all points that are closer to p than to
any other point of X . This locus is called the Voronoi cell of p. In the second variation, we seek all
pairs of points on X that provide a critical value of the distance function between pairs of points.
These critical points are called bottlenecks of the variety.

Section 2.1 is based on the paper [60], joint with Diego Cifuentes, Kristian Ranestad, and
Bernd Sturmfels. It is published in the Journal of Symbolic Computation. Section 2.2 is based on
the paper [79], joint with David Eklund and Sandra Di Rocco. It is published in the SIAM Journal
on Applied Algebra and Geometry.

2.1 Voronoi Cells
Every finite subset X of Rn defines a Voronoi decomposition of the ambient Euclidean space. The
Voronoi cell of a point y ∈ X consists of all points whose closest point in X is y, i.e.

VorX(y) :=
{

u ∈ Rn : y ∈ argmin
x∈X

‖x−u‖2}. (2.1)

This is a convex polyhedron with at most |X | − 1 facets. The study of these cells, and how they
depend on X , is ubiquitous in computational geometry and its numerous applications.

In what follows we assume that X is a real algebraic variety of codimension c and that y is a
smooth point on X . The ambient space is Rn with its Euclidean metric. The Voronoi cell VorX(y)
is a convex semialgebraic set of dimension c. It lives in the normal space

NX(y) =
{

u ∈ Rn : u− y is perpendicular to the tangent space of X at y
}
.
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The topological boundary of VorX(y) in NX(y) is denoted by ∂ VorX(y). It consists of the points
in X that have at least two closest points in X , including y. We study the algebraic boundary
∂algVorX(y). This is the hypersurface in the complex affine space NX(y)C ' Cc obtained as the
Zariski closure of ∂ VorX(y) over the field of definition of X . The degree of this hypersurface is
denoted δX(y) and called the Voronoi degree of X at y. If X is irreducible and y is a general point
on X , then this degree does not depend on y.

Example 2.1.1 (Surfaces in 3-space). Fix a general inhomogeneous polynomial f ∈Q[x1,x2,x3] of
degree d ≥ 2 and let X =V ( f ) be its surface in R3. The normal space at a general point y∈ X is the
line NX(y) = {y+λ (∇ f )(y) : λ ∈R}. The Voronoi cell VorX(y) is a line segment (or ray) in NX(y)
that contains the point y. The boundary ∂ VorX(y) consists of ≤ 2 points from among the zeros of
an irreducible polynomial in Q[λ ]. We shall see that this polynomial has degree d3 + d− 7. Its
complex zeros form the algebraic boundary ∂algVorX(y). Thus, the Voronoi degree of the surface X
is d3 +d−7. For example, let d = 2 and fix y = (0,0,0) and f = x2

1 + x2
2 + x2

3−3x1x2−5x1x3−
7x2x3 + x1 + x2 + x3. Then ∂algVorX(y) consists of the three zeros of

〈
u1− u3, u2− u3, 368u3

3 +

71u2
3− 6u3− 1

〉
. The Voronoi cell is the segment VorX(y) = {(λ ,λ ,λ ) ∈ R3 : −0.106526 . . . ≤

λ ≤ 0.12225 . . .}.

Figure 2.1: A quartic space curve, shown with the Voronoi cell in one of its normal planes.

Example 2.1.2 (Curves in 3-space). Let X be a general algebraic curve in R3. For y ∈ X , the
Voronoi cell VorX(y) is a convex set in the normal plane NX(y) ' R2. Its algebraic boundary
∂algVorX(y) is a plane curve of degree δX(y). This Voronoi degree can be expressed in terms of the
degree and genus of X . Specifically, if X is the intersection of two general quadrics in R3, then the
Voronoi degree is 12. Figure 2.1 shows one such quartic space curve X together with the normal
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plane at a point y ∈ X . The Voronoi cell VorX(y) is the planar convex region highlighted on the
right. Its boundary is an algebraic curve of degree δX(y) = 12.

This section is organized as follows. First, we describe the exact symbolic computation of the
Voronoi boundary at y from the equations that define X . We present a Gröbner-based algorithm
whose input is y and the ideal of X and whose output is the ideal defining ∂algVorX(y). Next we
consider the case when y is a low rank matrix and X is the variety of these matrices. Here, the
Eckart-Young Theorem yields an explicit description of VorX(y) in terms of the spectral norm. We
then consider inner approximations of the Voronoi cell VorX(y) by spectrahedral shadows. This is
derived from the Lasserre hierarchy in polynomial optimization. Next we present formulas for the
degree of the Voronoi boundary ∂algVorX(y) when X ,y are sufficiently general and dim(X) ≤ 2.
These formulas are proved at the end of this section using tools from intersection theory.

Computing with Ideals
We now describe Gröbner basis methods for finding the Voronoi boundaries of a given variety.
We start with an ideal I = 〈 f1, f2, . . . , fm〉 in Q[x1, . . . ,xn] whose real variety X = V (I) ⊂ Rn is
assumed to be nonempty. One often further assumes that I is real radical and prime, so that XC
is an irreducible variety in Cn whose real points are Zariski dense. Our aim is to compute the
Voronoi boundary of a given point y ∈ X . In our examples, the coordinates of the point y and the
coefficients of the polynomials fi are rational numbers. Under these assumptions, the following
computations are done in polynomial rings over Q.

Fix the polynomial ring R = Q[x1, . . . ,xn,u1, . . . ,un] where u = (u1, . . . ,un) is an additional
unknown point. The augmented Jacobian of X at x is the following matrix of size (m+1)×n with
entries in R. It contains the n partial derivatives of the m generators of I:

JI(x,u) :=


u− x

(∇ f1)(x)
...

(∇ fm)(x)


Let NI denote the ideal in R generated by I and the (c+ 1)× (c+ 1) minors of the augmented
Jacobian JI(x,u), where c is the codimension of the given variety X ⊂ Rn. The ideal NI in R
defines a subvariety of dimension n in R2n, namely the Euclidean normal bundle of X . Its points
are pairs (x,u) where x is a point in X and u lies in the normal space of X at x.

Example 2.1.3 (Cuspidal cubic). Let n = 2 and I = 〈x3
1− x2

2 〉, so X =V (I)⊂ R2 is a cubic curve
with a cusp at the origin. The ideal of the Euclidean normal bundle of X is

NI =
〈

x3
1− x2

2 , det
(

u1−x1 u2−x2
3x2

1 −2x2

)〉
.

Let NI(y) denote the linear ideal that is obtained from NI by replacing the unknown point x by
the given point y ∈ Rn. For instance, for y = (4,8) we obtain NI(y) = 〈u1 + 3u2− 28〉. We now
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define the critical ideal of the variety X at the point y as

CI(y) = I + NI + NI(y) + 〈‖x−u‖2−‖y−u‖2〉 ⊂ R.

The variety of CI(y) consists of pairs (u,x) such that x and y are equidistant from u and both are
critical points of the distance function from u to X . The Voronoi ideal is the following ideal in
Q[u1, . . . ,un]. It is obtained from the critical ideal by saturation and elimination:

VorI(y) =
(

CI(y) : 〈x− y〉∞
)
∩ Q[u1, . . . ,un]. (2.2)

The geometric interpretation of each step in our construction implies the following result:

Proposition 2.1.4. The affine variety in Cn defined by the Voronoi ideal VorI(y) contains the
algebraic Voronoi boundary ∂algVorX(y) of the given real variety X at its point y.

Example 2.1.5. For the point y= (4,8) on the cuspidal cubic X in Example 2.1.3, we have NI(y) =
〈u1 +3u2−28〉. Going through the steps above, we find that the Voronoi ideal is

VorI(y) = 〈u1−28,u2〉 ∩ 〈u1 +26,u2−18〉 ∩ 〈u1 +3u2−28, 27u2
2−486u2 +2197〉.

The third component has no real roots and is hence extraneous. The Voronoi boundary consists
of two points: ∂ VorX(y) = {(28,0),(−26,18)}. The Voronoi cell VorX(y) is the line segment
connecting these points. This segment is shown in green in Figure 2.2. Its right endpoint (28,0) is
equidistant from y and the point (4,−8). Its left endpoint (−26,18) is equidistant from y and the
point (0,0), whose Voronoi cell is discussed in Remark 2.1.6.

The cuspidal cubic X is very special. If we replace X by a general cubic (defined over Q) in the
affine plane, then VorI(y) is generated modulo NI(y) by an irreducible polynomial of degree eight
in Q[u2]. Thus, the expected Voronoi degree of (affine) plane cubics is δX(y) = 8.

Remark 2.1.6 (Singularities). Voronoi cells at singular points can be computed with the same
procedure as above. However, these Voronoi cells generally have higher dimensions. For an
illustration, consider the cuspidal cubic, and let y=(0,0) be the cusp. A Gröbner basis computation
yields the Voronoi boundary 27u4

2 + 128u3
1 + 72u1u2

2 + 32u2
1 + u2

2 + 2u1. The Voronoi cell is the
two-dimensional convex region bounded by this quartic, shown in blue in Figure 2.2. The Voronoi
cell might also be empty at a singularity. This happens for instance for V (x3

1 + x2
1− x2

2), which
has an ordinary double point at y= (0,0). In general, the cell dimension depends on both the
embedding dimension and the branches of the singularity.

In this work we restrict ourselves to Voronoi cells at points y that are nonsingular in the
given variety X = V (I). Proposition 2.1.4 gives an algorithm for computing the Voronoi ideal
VorI(y). We implemented it in Macaulay2 [107] and experimented with numerous examples. For
small enough instances, the computation terminates and we obtain the defining polynomial of the
Voronoi boundary ∂algVorX(y). This polynomial is unique modulo the linear ideal of the normal
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Figure 2.2: The cuspidal cubic is shown in red. The Voronoi cell of a smooth point is a green line
segment. The Voronoi cell of the cusp is the convex region bounded by the blue curve.

space NI(y). For larger instances, we can only compute the degree of ∂algVorX(y) but not its equa-
tion. This is done by working over a finite field and adding c− 1 random linear equations in
u1, . . . ,un in order to get a zero-dimensional polynomial system.

Our experiments were most extensive for the case of hypersurfaces (c = 1). We sampled
random polynomials f of degree d in Q[x1, . . . ,xn], both inhomogeneous and homogeneous. These
were chosen among those that vanish at a preselected point y in Qn. In each iteration, the resulting
Voronoi ideal VorI(y) from (2.2) was found to be zero-dimensional. In fact, VorI(y) is a maximal
ideal in Q[u1, . . . ,un], and δX(y) is the degree of the associated field extension. We summarize our
results in Tables 2.1 and 2.2, and we extract conjectural formulas.

n\d 2 3 4 5 6 7 8 δX(y) = degree(Vor〈 f 〉(y))

1 1 2 3 4 5 6 7 d−1
2 2 8 16 26 38 52 68 d2+d−4
3 3 23 61 123 215 343 d3+d−7
4 4 56 202 520 1112 d4−d3+d2+d−10
5 5 125 631 d5−2d4+2d3+d−13
6 6 266 1924 d6−3d5+4d4−2d3+d2+d−16
7 7 551 d7−4d6+7d5−6d4+3d3+d−19

Table 2.1: The Voronoi degree of an inhomogeneous polynomial f of degree d in Rn.

Conjecture 2.1.7. The Voronoi degree of a generic hypersurface of degree d in Rn equals

(d−1)n +3(d−1)n−1 + 4
d−2((d−1)n−1−1)−3n.
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n\d 2 3 4 5 6 7 8 δX(y) = degree(Vor〈 f 〉(y))

2 2 4 6 8 10 12 14 2d−2
3 3 13 27 45 67 93 123 2d2−5
4 4 34 96 202 2d3−2d2+2d−8
5 5 79 309 2d4−4d3+4d2−11
6 6 172 2d5−6d4 +8d3−4d2+2d−14
7 7 361 2d6−8d5+14d4−12d3+6d2−17

Table 2.2: The Voronoi degree of a homogeneous polynomial f of degree d in Rn.

The Voronoi degree of the cone of a generic homogeneous polynomial of degree d in Rn is

2(d−1)n−1 + 4
d−2((d−1)n−1−1)−3n+2.

We shall prove both parts of this conjecture for n ≤ 3 in Section 2.1, where we develop the
geometric theory of Voronoi degrees of low-dimensional varieties. The case d = 2 was analyzed
in [58, Proposition 5.8]. In general, for n≥ 4 and d ≥ 3, the problem is still open.

Low Rank Matrices
There are several natural norms on the space Rm×n of real m× n matrices. We focus on two of
these norms. First, we have the Frobenius norm ‖U‖F :=

√
∑i j U2

i j. And second, we have the
spectral norm ‖U‖2 := maxi σi(U) which extracts the largest singular value.

Let X denote the variety of real m×n matrices of rank≤ r. Fix a rank r matrix V in X . This is a
nonsingular point in X . We consider the Voronoi cell VorX(V ) with respect to the Frobenius norm.
This is consistent with the previous sections because the Frobenius norm agrees with Euclidean
norm on Rm×n. This identification will no longer be valid after Remark 2.1.10 when we restrict to
the subspace of symmetric matrices.

Let U ∈ VorX(V ), i.e. the closest point to U in the rank r variety X is the matrix V . By the
Eckart-Young Theorem, the matrix V is derived from U by computing the singular value decom-
position U = Σ1 DΣ2. Here Σ1 and Σ2 are orthogonal matrices of size m×m and n×n respectively,
and D is a nonnegative diagonal matrix whose entries are the singular values. Let D[r] be the matrix
that is obtained from D by replacing all singular values except for the r largest ones by zero. Then,
according to Eckart-Young, we have V = Σ1 ·D[r] ·Σ2.

Remark 2.1.8. The Eckart-Young Theorem works for both the Frobenius norm and the spectral
norm. This means that VorX(V ) is also the Voronoi cell for the spectral norm.

The following is the main result in this section.
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Theorem 2.1.9. Let V be an m×n-matrix of rank r. The Voronoi cell VorX(V ) is congruent up to
scaling to the unit ball in the spectral norm on the space of (m− r)× (n− r)-matrices.

Before we present the proof, let us first see why the statement makes sense. The determinantal
variety X has dimension rm+ rn− r2 in an ambient space of dimension mn. The dimension of
the normal space at a point is the difference of these two numbers, so it equals (m− r)(n− r).
Every Voronoi cell is a full-dimensional convex body in the normal space. Next consider the case
m = n and restrict to the space of diagonal matrices. Now X is the set of vectors in Rn having at
most r nonzero coordinates. This is a reducible variety with

(n
r

)
components, each a coordinate

subspace. For a general point y in such a subspace, the Voronoi cell VorX(y) is a convex polytope.
It is congruent to a regular cube of dimension n− r, which is the unit ball in the L∞-norm on Rn−r.
Theorem 2.1.9 describes the orbit of this picture under the action of the two orthogonal groups on
Rm×n. For example, consider the special case n = 3,r = 1. Here, X consists of the three coordinate
axes in R3. The Voronoi decomposition of this curve decomposes R3 into squares, each normal to a
different point on the three lines. The image of this picture under orthogonal transformations is the
Voronoi decomposition of R3×3 associated with the affine variety of rank 1 matrices. That variety
has dimension 5, and each Voronoi cell is a 4-dimensional convex body in the normal space.

Proof of Theorem 2.1.9. The Voronoi cell is invariant under orthogonal transformations. We may
therefore assume that the matrix V = (vi j) satisfies v11 ≥ v22 ≥ ·· · ≥ vrr = u > 0 and vi j = 0 for
all other entries. The Voronoi cell of the diagonal matrix V consists of matrices U whose block-
decomposition into r+(m− r) rows and r+(n− r) columns satisfies(

I 0
0 T1

)
·
(

U11 U12
U21 U22

)
·
(

I 0
0 T2

)
=

(
V11 0
0 V22

)
.

Here V11 = diag(v11, . . . ,vrr) agrees with the upper r× r-block of V , and V22 is a diagonal matrix
whose entries are bounded above by u in absolute value. This implies U11 =V11, U12 = 0, U21 = 0,
and U22 is an arbitrary (m− r)× (n− r) matrix with spectral norm at most u. Hence the Voronoi
cell of V is congruent to the set of all such matrices U22. This convex body equals u times the unit
ball in R(m−r)×(n−r) under the spectral norm.

Remark 2.1.10. It is instructive to compare the Voronoi degree with the Euclidean distance degree
(ED degree). Assume m≤ n in Theorem 2.1.9. According to [86, Example 2.3], the ED degree of
the determinantal variety X equals

(m
r

)
. On the other hand, the Voronoi degree of X is 2(m− r).

Indeed, we have shown that the Voronoi boundary is isomorphic to the hypersurface {det(WW T −
Im−r) = 0}, where W is an (m−r)× (n−r) matrix of unknowns.

Our problem becomes even more interesting when we restrict to matrices in a linear subspace.
To see this, let X denote the variety of symmetric n× n matrices of rank ≤ r. We can regard X
either as a variety in the ambient matrix space Rn×n or in the space R(

n+1
2 ) whose coordinates are

the upper triangular entries of a symmetric matrix. On the latter space we have both the Euclidean
norm and the Frobenius norm. These are now different!
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The Frobenius norm on R(
n+1

2 ) is the restriction of the Frobenius norm on Rn×n to the subspace
of symmetric matrices. For instance, if n = 2, we identify the vector (a,b,c) with the symmetric
matrix

(
a b
b c

)
. The Frobenius norm is

√
a2+2b2+c2, whereas the Euclidean norm is

√
a2+b2+c2.

The two norms have dramatically different properties with respect to low rank approximation. The
Eckart-Young Theorem remains valid for the Frobenius norm on R(

n+1
2 ), but this is not true for

the Euclidean norm (cf. [86, Example 3.2]). In what follows we elucidate this by comparing the
Voronoi cells with respect to the two norms.

Figure 2.3: The Voronoi cell of a symmetric 3×3 matrix of rank 1 is a convex body of dimension
3. It is shown for the Frobenius norm (left) and for the Euclidean norm (right).

Example 2.1.11. Let X be the variety of symmetric 3×3 matrices of rank ≤ 1. For the Euclidean
metric, X lives in R6. For the Frobenius metric, X lives in a 6-dimensional subspace of R3×3. Let
V be a regular point in X , i.e. a symmetric 3× 3 matrix of rank 1. The normal space to X at V
has dimension 3. Hence, in either norm, the Voronoi cell VorX(V ) is a 3-dimensional convex body.
Figure 2.3 illustrates these bodies for our two metrics.

For the Frobenius metric, the Voronoi cell is isomorphic to the set of matrices
(

a b
b c

)
with

eigenvalues between −1 and 1. This semialgebraic set is bounded by the surfaces defined by the
singular quadrics det

(a+1 b
b c+1

)
and det

(a−1 b
b c−1

)
. The Voronoi ideal is of degree 4, defined by the

product of these two determinants (modulo the normal space). The Voronoi cell is shown on the
left in Figure 2.3. It is the intersection of two quadratic cones. The cell is the convex hull of the
circle in which the two quadrics meet, together with the two vertices.

For the Euclidean metric, the Voronoi boundary at a generic point V in X is defined by an
irreducible polynomial of degree 18 in a,b,c. In some cases, the Voronoi degree can drop. For
instance, consider the special rank 1 matrix V =

(
1 0 0
0 0 0
0 0 0

)
. For this point, the degree of the Voronoi

boundary is only 12. This particular Voronoi cell is shown on the right in Figure 2.3. This cell is
the convex hull of two ellipses, which are shown in red in the diagram.
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Spectrahedral Approximations of Voronoi Cells
Computing Voronoi cells of varieties is computationally hard. In this section we introduce some
tractable approximations to the Voronoi cell based on semidefinite programming (SDP). More
precisely, for a point y ∈ X we will construct convex sets {Sd

X(y)}d≥1 such that

S1
X(y) ⊂ S2

X(y) ⊂ S3
X(y) ⊂ ·· · ⊂ VorX(y). (2.3)

Here each Sd
X(y) is a spectrahedral shadow. The construction is based on the sum-of-squares (SOS)

hierarchy, also known as Lasserre hierarchy, for polynomial optimization problems [26]. This
section is to be understood as a continuation of the studies undertaken in [57, 58].

Let S n denote the space of real symmetric n×n matrices. Given A,B∈S n, the notation A�B
means that the matrix B−A is positive semidefinite (PSD). A spectrahedron is the intersection of
the cone of PSD matrices with an affine-linear space. Spectrahedra are the feasible sets of SDP. In
symbols, a spectrahedron has the following form for some Ci ∈S n:

S := {y ∈ Rm : y1C1 + · · ·+ ymCm �C0 }.

A spectrahedral shadow is the image of an spectrahedron under an affine-linear map. Using SDP
one can efficiently maximize linear functions over a spectrahedral shadow.

Our goal is to describe inner spectrahedral approximations of the Voronoi cells. We first con-
sider the case of quadratically defined varieties. This is the setting of [58] which we now follow.
Let f = ( f1, . . . , fm) be a list of inhomogeneous quadratic polynomials in n variables. We fix
X =V (f)⊂ Rn and we assume that y is a nonsingular point in X . Let Ai ∈S n denote the Hessian
matrix of the quadric fi. Consider the following spectrahedron:

Sf :=
{

λ ∈ Rm : λ1A1 + · · ·+λmAm � In
}
.

This was called the master spectrahedron in [58]. Let Jacf be the Jacobian matrix of f. This is the
n×m matrix with entries ∂ f j/∂xi. The specialized Jacobian matrix Jacf(y) defines a linear map
Rm Rn whose range is the normal space of the variety at y. We define the set

S1
f (y) := y− 1

2 Jacf(y) ·Sf ⊂ Rn.

By construction, this is a spectrahedral shadow. The following result was established in [58].

Lemma 2.1.1. The spectrahedral shadow S1
f (y) is contained in the Voronoi cell VorX(y).

Proof. We include the proof to better explain the situation. Let u ∈ S1
f (y), so there exists λ ∈ Sf

with u = y− 1
2 Jac(y)λ . We need to show that y is the nearest point from u to the variety X .

Let L(x,λ ) = ‖x− u‖2−∑i λi fi(x) be the Lagrangian function, and let Lλ (x) be the quadratic
function obtained by fixing the value of λ . Observe that Lλ (x) is convex, and its minimum is
attained at y. Indeed, λ ∈ Sf means that the Hessian of this function is positive semidefinite, and
u = y− 1

2 Jacf(y)λ implies that ∇Lλ (y) = 0. Therefore,

‖y−u‖2 = Lλ (y) = min
x

Lλ (x) ≤ min
x∈X
‖x−u‖2 ≤ ‖y−u‖2.

We conclude that y is the minimizer of the squared distance function x 7→ ‖x−u‖2 on X .
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Example 2.1.12 ([58, Example 6.1]). Let X ⊂ R3 be the twisted cubic curve, defined by the two
equations x2=x2

1 and x3=x1x2. Both VorX(0) and S1
f (0) lie in the normal space at the origin,

which is the plane u1=0. The Voronoi cell is the planar convex set bounded by the quartic curve
27u4

3+128u3
2+72u2u2

3−160u2
2−35u2

3+66u2=9. The inner approximation S1
f (0) is bounded by the

parabola 2u2 = 1−u2
3. The two curves are tangent at the point (0, 1

2 ,0).

Example 2.1.13. Let X ⊂ R3 be the quartic curve in Figure 2.1. The Voronoi boundary is a
plane curve of degree 12. The master spectrahedron Sf is bounded by a cubic curve, as seen
in [58, Example 5.2]. The convex set S1

f (y) is affinely isomorphic to Sf, so it is also bounded by
a cubic curve. Figure 2.4 shows the Voronoi cell and its inner spectrahedral approximation. Note
that their boundaries are tangent.

Figure 2.4: The spectrahedral approximation S1
f (0) of the Voronoi cell VorX(0) shown in Fig-

ure 2.1. The boundaries of these two convex sets – curves of degree 3 and 12 – are tangent.

The above examples motivate the following open problem.

Problem 2.1.14. Fix a quadratically defined variety X =V (f) in Rn. Let ∂algVorX(y) be the alge-
braic boundary of the Voronoi cell at y∈X and let ∂algS1

f (y) be its first spectrahedral approximation.
Investigate the tangency behavior of these two hypersurfaces.

This problem was studied in [58] for complete intersections of n quadrics in Rn. Here, X is a
finite set, and it was proved in [58, Theorem 4.5] that the Voronoi walls are tangent to the spectra-
hedral approximations. It would be desirable to better understand this fact.

We now shift gears, by allowing f = ( f1, . . . , fm) to be an arbitrary tuple of polynomials in
x = (x1, . . . ,xn). Fix d ∈ N such that deg(() fi) ≤ 2d for all i. We will construct a spectrahedral
shadow Sd

f (y)⊂ Rn that is contained in VorX(y). The idea is to perform a change of variables that
makes the constraints f quadratic, and use the construction above.
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Let A := {α ∈Nn : 0<∑i αi≤ d}. This set consists of N :=
(n+d

d

)
−1 nonnegative integer

vectors. We consider the d-th Veronese embedding of affine n-space into affine N-space:

νd : Rn RN , x = (x1, . . . ,xn) 7→ z = (zα)α∈A , where zα := xα = xα1
1 · · ·x

αn
n .

Among the entries of z are the variables x1, . . . ,xn. We list these at the beginning in the vector z.
The image of νd is the Veronese variety. It is defined by the quadratic equations

zα1zα2 = zβ1zβ2 ∀α1,α2,β1,β2 such that α1 +α2 = β1 +β2. (2.4)

Since the polynomial fi(x) has degree ≤ 2d, there is a quadratic function qi(z) such that fi(x) =
qi(νd(x)). The Veronese image νd(X) is defined by the quadratic equations qi(z) = 0 together with
those in (2.4). We write q⊂ R[z] for the (finite) set of all of these quadrics.

Each q ∈ q is a quadratic polynomial in N variables. Let Aq ∈S N be its Hessian matrix. Let
C:=

( In 0
0 0

)
∈S N be the Hessian of the function z 7→ xT x. The master spectrahedron is

Sq := {λ ∈ R|q| : ∑
q∈q

λqAq �C}.

Let Jq(y) := Jacq(νd(y)) be the Jacobian matrix of q evaluated at the point νd(y)∈RN . This matrix
has N rows. Let Jn

q(y) be the submatrix of Jq(y) that is given by the n rows corresponding to the
variables xi, and let JN−n

q (y) be the submatrix given by the remaining N−n rows. We now consider
the spectrahedral shadow

Sd
f (y) := y − 1

2 Jn
q(y) · (Sq∩kerJN−n

q (y)) ⊂ Rn.

This is obtained by intersecting the spectrahedron Sq with a linear subspace and then taking the
image under an affine-linear map. One can show the inclusions in (2.3) using ideas similar to those
in Lemma 2.1.1. An alternative argument is given in the proof of Corollary 2.1.17.

Example 2.1.15. Consider the cardioid curve X =V ((x2
1+x2

2+x1)
2−x2

1−x2
2) in R2, shown in red in

Figure 2.5. See also [86, Figure 1]. We compare the Voronoi cells with the spectrahedral relaxation
of degree d = 2. The Voronoi cell at the origin, a singular point, is the interior of the circle
C : {u2

1+u2
2+u1=0}. The Voronoi cell at a smooth point y is contained in the normal line to X at y. It

is either a ray emanating from the circle C, or a line segment from C to the x-axis. The spectrahedral
shadow S2

f (y) is the subset of the Voronoi cell outside of the cardioid. For instance, the Voronoi
cell at y = (0,1) is the ray VorX(y) = {(t, t+1) : t ≥ −1

2}, and its spectrahedral approximation is
the strictly smaller ray S2

f (y) = {(t, t+1) : t ≥ 0}.

Fix u∈Rn, and let y be its nearest point on the variety X . Though computing this nearest point y
is hard in general, we can do it efficiently if u lies in the interior of the spectrahedral shadow Sd

f (y)
for some fixed d. Indeed, this is done by solving a certain SDP.

Proposition 2.1.16. Consider the d-th level of the SOS hierarchy for the optimization problem
minx∈V (f) ‖x− u‖2. A point u lies in the interior of the spectrahedral shadow Sd

f (y) if and only if
the d-th SOS relaxation exactly recovers y (i.e. the moment matrix has rank one).
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Figure 2.5: The red curve is the cardioid. The inner circle is the Voronoi cell of its singular point.
Other Voronoi cells are either rays or line segments. These emanate from the circle. As they exit
the cardioid, they enter the spectrahedral approximation to the Voronoi cell.

Proof. The d-th level of the relaxation is obtained by taking the Lagrangian dual of the quadratic
optimization problem given by the quadrics in the set q above; see [26]. The SDP-exact region in
quadratic programming was formally defined in [58, Definition 3.2]. It is straightforward to verify
that this definition agrees with our description of Sd

f (y).

Corollary 2.1.17. The inclusions Sd
f (y)⊂ Sd+1

f (y)⊂ VorX(y) hold.

Proof. If the SOS relaxation recovers a point u, then it must lie in the Voronoi cell VorX(y). And
if the d-th SOS relaxation is exact then the (d +1)-st relaxation is also exact.

Example 2.1.18. Consider the problem of finding the nearest point from a point u ∈ R2 to the
cardioid. By [86, Example 1.1], the ED degree is 3. Here we consider the second SOS relaxation
of the problem. We characterized the sets S2

f (y) above. It follows that the second SOS relaxation
solves the problem exactly if and only if u lies on the outside of the cardioid.

Formulas for Curves and Surfaces
The algebraic boundary of the Voronoi cell VorX(y) is a hypersurface in the normal space to a
variety X ⊂ Rn at a point y ∈ X . We study the degree of that hypersurface when X is a curve or a
surface. We denote this degree by δX(y) and refer to it as the Voronoi degree. We identify X and
∂algVorX(y) with their Zariski closures in complex projective space Pn.

Theorem 2.1.19. Let X ⊂ Pn be a curve of degree d and geometric genus g with at most ordinary
multiple points as singularities. The Voronoi degree at a general point y ∈ X equals

δX(y) = 4d +2g−6,
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provided X is in general position in Pn.

Example 2.1.20. If X is a smooth curve of degree d in the plane, then 2g−2 = d(d−3), so

δX(y) = d2 +d−4.

This confirms our experimental results in the row n = 2 of Table 2.1.

Example 2.1.21. If X is a rational curve of degree d, then g = 0 and hence δX(y) = 4d−6. If X
is an elliptic curve, so the genus is g = 1, then we have δX(y) = 4d−4. A space curve with d = 4
and g = 1 was studied in Example 2.1.2. Its Voronoi degree equals δX(y) = 12.

The proof of Theorem 2.1.19 appears in the next section. We will then see what general position
means. For example, let X be the twisted cubic curve in P3, with affine parameterization t 7→
(t, t2, t3). Here g = 0 and d = 3, so the expected Voronoi degree is 6. But in Example 2.1.12 we
saw δX(y) = 4. This is explained by the fact that the plane at infinity in P3 intersects the curve
X in a triple point. After a general linear change of coordinates in P3, which amounts to a linear
fractional transformation in R3, we correctly find δX(y) = 6.

We next present a formula for the Voronoi degree of a surface X which is smooth and irreducible
in Pn. Our formula is in terms of its degree d and two further invariants. The first, denoted
χ(X) := c2(X), is the topological Euler characteristic. This is equal to the degree of the second
Chern class of the tangent bundle. The second invariant, denoted g(X), is the genus of the curve
obtained by intersecting X with a general smooth quadratic hypersurface in Pn. Thus, g(X) is the
quadratic analogue to the usual sectional genus of the surface X .

Theorem 2.1.22. Let X ⊂ Pn be a smooth surface of degree d. Then its Voronoi degree equals

δX(y) = 3d +χ(X)+4g(X)−11,

provided the surface X is in general position in Pn and y is a general point on X.

The proof of Theorem 2.1.22 will also be presented in the next section. At present we do not
know how to generalize these formulas to the case when X is a variety of dimension ≥ 3.

Example 2.1.23. If X is a smooth surface in P3 of degree d, then χ(X) = d(d2−4d+6), by [101,
Example 3.2.12]. A smooth quadratic hypersurface section of X is an irreducible curve of degree
(d,d) in P1×P1. The genus of such a curve is g(X) = (d−1)2. We conclude that

δX(y) = 3d +d(d2−4d +6) + 4(d−1)2 − 11 = d3 +d−7.

This confirms our experimental results in the row n = 3 of Table 2.1.

Example 2.1.24. Let X be the Veronese surface of order e in P(
e+1

2 )−1, taken after a general linear
change of coordinates in that ambient space. The degree of X equals d = e2. We have χ(X) =
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χ(P2) = 3, and the general quadratic hypersurface section of X is a curve of genus g(X) =
(2e−1

2

)
.

We conclude that the Voronoi degree of X at a general point y equals

δX(y) = 3e2 + 3 + 2(2e−1)(2e−2) − 11 = 11e2−12e−4.

For instance, for the quadratic Veronese surface in P5 we have e = 2 and hence δX(y) = 16. This
is smaller than the number 18 found in Example 2.1.11, since back then we were dealing with the
cone over the Veronese surface in R6, and not with the Veronese surface in R5 ⊂ P5.

We finally consider affine surfaces defined by homogeneous polynomials. Namely, let X ⊂ Rn

be the affine cone over a general smooth curve of degree d and genus g in Pn−1.

Theorem 2.1.25. Let X ⊂ Rn be the cone over a smooth curve in Pn−1. Its Voronoi degree is

δX(y) = 6d +4g−9

provided that the curve is in general position and y is a general point.

The proof of Theorem 2.1.25 will be presented in the next section.

Example 2.1.26. If X ⊂ R3 is the cone over a smooth curve of degree d in P2, then 2g− 2 =
d(d−3). Hence the Voronoi degree of X is

δX(y) = 2d2−5.

This confirms our experimental results in the row n = 3 of Table 2.2.

To conclude, we comment on the assumptions made in our theorems. We assumed that the
variety X is in general position in Pn. If this is not satisfied, then the Voronoi degree may drop.
Nonetheless, the technique introduced in the next section can be adapted to determine the correct
value. As an illustration, we consider the affine Veronese surface (Example 2.1.24).

Example 2.1.27. Let X ⊂P5 be the Veronese surface with affine parametrization (s, t) 7→ (s, t,s2,st, t2).
The hyperplane at infinity intersects X in a double conic, so X is not in general position. In the
next section, we will show that the true Voronoi degree is δX(y) = 10. For the Frobenius norm, the
Voronoi degree drops further. For this, we shall derive δX(y) = 4.

Euler Characteristic of a Fibration
We now develop the geometry and the proofs for the degree formulas. Let X ⊂ Pn be a smooth
projective variety defined over R. We assume that y ∈ X is a general point, and that we fixed an
affine space Rn ⊂ Pn containing y such that the hyperplane at infinity Pn\Rn is in general position
with respect to X . We use the Euclidean metric in this Rn to define the normal space to X at y.
This can be expressed equivalently as follows. After a projective transformation in Pn, we can
assume that Rn = {x0 = 1}, that y = [1 : 0 : · · · : 0] is a point in X , and that the tangent space
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to X at y is contained in the hyperplane {xn = 0}. The normal space to X at y contains the line
{x1 = . . .= xn−1 = 0}.

The sphere through y with center [1 : 0 : · · · : 0 : u ] on this normal line is

Qu = {x2
1 + · · ·+ x2

n−1 +(xn−u)2−u2 = 0} ⊂ Rn.

As u varies, this is a linear pencil that extends to a P1 family of quadric hypersurfaces

Q(t :u) = { t(x2
1 + · · ·+ x2

n−1 + x2
n)−2ux0xn = 0} ⊂ Pn.

Note that Q(t :u) is tangent to X at y. Assuming the normal line to be general, we observe:

Remark 2.1.28. The Voronoi degree δX(y) is the number of quadratic hypersurfaces Q(t :u) with
t 6= 0 that are tangent to X at a point in the affine space {x0 = 1} distinct from y.

We shall compute this number by counting tangency points of all quadrics in the pencil. In
particular we need to consider the special quadric Q(0:1) = {x0xn = 0}. This quadric is reducible:
it consists of the tangent hyperplane {xn = 0} and the hyperplane at infinity {x0 = 0}. It is singular
along a codimension two linear space {x0 = xn = 0} at infinity. Any point of X on this linear space
is therefore also a point of tangency between X and Q(0:1).

To count the tangent quadrics, we consider the map X 99K P1, x 7→ (t : u) whose fibers are
the intersections X(t:u) = Q(t:u)∩X . By Remark 2.1.28, we need to count its ramification points.
However, this map is not a morphism. Its base locus is X ∩Q(1:0)∩Q(0:1). We blow up that base
locus to get a morphism which has the intersections X(t:u) for its fibers:

q : X̃ P1.

The topological Euler characteristic (called Euler number) of the fibers of q depends on the sin-
gularities. We shall count the tangencies indirectly, by computing the Euler number χ(X̃) of the
blow-up X̃ in two ways, first directly as a variety, and secondly as a fibration over P1.

Euler numbers have the following two fundamental properties. The first property is multiplica-
tivity. It is found in topology books, e.g. [177, Chapter 9.3]. Namely, if W Z is a surjection of
topological spaces, Z is connected and all fibers are homeomorphic to a topological space Y , then
χ(W ) = χ(Y ) · χ(Z). The second property is additivity. It applies to complex varieties, as seen
in [100, Section 4.5]. To be precise, if Z is a closed algebraic subset of a complex variety W with
complement Y , then χ(W ) = χ(Y )+χ(Z).

For the fibration q : X̃ P1, the first property may be applied to the set of fibers that are smooth,
hence homeomorphic, while the second may be used when adding the singular fibers. Assuming
that singular fibers (except the special one) have a quadratic node as its singular point, the Voronoi
degree v := δX(y) satisfies the equation

χ(X̃) = (1− v)χ(Xgen) + χ(X(0:1)) + v χ(Xs). (2.5)

Here Xgen is a smooth fiber of the fibration, X(0:1) is the special fiber over (0 : 1), and Xs is a fiber
with one quadratic node as singular point. The factor 1−v is the Euler number of P1 \{v+1 points}.
We will use (2.5) to derive the degree formulas from Section 5, and refer to [101, Examples 3.2.12-
13] for Euler numbers of smooth curves, surfaces and hypersurfaces.
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Proof of Theorem 2.1.19. Let X̄ X be a resolution of singularities. As above, we assume that y
is a smooth point on X and that {xn = x0 = 0}∩X = /0. We may pull back the pencil of quadrics
Q(t:u) to X̄ . This gives a map q̄ : X̄ 99K P1. All quadrics in the pencil have multiplicity at least 2
at y, so we remove the divisor 2[y] from each divisor in the linear system {X(t:u)}(u:t)∈P1 . Thus we
obtain a pencil of divisors of degree 2d− 2 on X that defines a morphism q : X̄ P1. The Euler
number of X̄ is χ(X̄) = 2− 2g. The Euler number of a fiber is now simply the number of points
in the fiber, i.e. χ(Xgen) = 2d−2 and χ(Xs) = 2d−3 for the singular fibers, the fibers where one
point appear with multiplicity two. Also χ(X(0:1)) = 2d−2, since X(0:1) consists of 2d−2 points.
Plugging into (2.5) we get:

2−2g = (1− v)(2d−2)+(2d−2)+ v(2d−3) = 4d−4− v.

We now obtain Theorem 2.1.19 by solving for v.

The above derivation can also be seen as an application of the Riemann-Hurwitz formula.

Proof of Theorem 2.1.22. The curves {X(t:u)}(u:t)∈P1 have a common intersection. This is our base
locus X(1:0)∩X(0:1). By Bézout’s Theorem, the number of intersection points is at most 2 ·2 ·d = 4d.
All curves are singular at y, the general one a simple node, so this point counts with multiplicity
4 in the intersection. We assume that all other base points are simple. We thus have 4d − 4
simple points. We blow up all the base points, π : X̃ X , with exceptional curve E0 over y and
E1, . . . ,E4d−4 over the remaining base points. The strict transforms of the curves X(t:u) on X̃ are
then the fibers of a morphism q : X̃ P1 for which we apply (2.5).

The Euler number χ(X) equals the degree of the Chern class c2(X) of the tangent bundle of X .
Since π blows up 4d−3 points, there are 4d−3 points on X that are replaced by P1s on X̃ . Since
χ(P1) = 2, we get χ(X̃) = χ(X)+4d−3. If the genus of a smooth hyperquadric intersection with
X is g, the general fiber of q is a smooth curve of genus g− 1, since it is the strict transform of a
curve that is singular at y. We conclude that χ(Xgen) = 4−2g.

To compute χ(Xs) we remove first the singular point of Xs and obtain a smooth curve of genus
g−2 with two points removed. This curve has Euler number−2(g−2). Adding the singular point,
the additivity of the Euler number yields

χ(Xs) = −2(g−2)+1 = 5−2g.

The special curve X(0:1) has two components, one in the tangent plane that is singular at the point
of tangency, and one in the hyperplane at infinity. Assume that the two components are smooth
outside the point of tangency and that they meet transversally, i.e., in d points. We then compute
χ(X(0:1)), as above, by first removing the d points of intersection to get a smooth curve of genus
g−1−d with 2d points removed, and we next use the addition property to add the d points back.
Thus

χ(X(0:1)) = 2 − 2(g−d−1) − 2d + d = d +4−2g.

Substituting into the formula (2.5) gives

χ(X)+4d−3 = (1− v)(4−2g) + d +4−2g + v(5−2g).
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From this we obtain the desired formula v = 3d +χ(X)+4g−11.

Details for Example 2.1.27. The given Veronese surface X intersects the hyperplane at infinity in
a double conic instead of a smooth curve. We explain how to compute the Voronoi degree in this
case. For the Euclidean metric, the general curve X(t:u) = Q(t:u)∩X is transverse at four points on
this conic. Then X(0:1) has seven components, χ(X(0:1)) = 8 and δX(y) = 10.

For the Frobenius metric, the curves X(t:u) are all singular at two distinct points on this conic.
The three common singularities of the curves X(t:u) are part of the base locus of the pencil. Out-
side these three points, the pencil has 4 additional basepoints, so the map X̃ X blows up 7
points. Hence χ(X̃) = 10. The curve Xgen is now rational, so χ(Xgen) = 2 and χ(Xs) = 1. The
reducible curve X(0:1) has two components from the tangent hyperplane, and only the conic from
the hyperplane at infinity. Therefore X(0:1) has three components, all P1s, two that are disjoint
and one that meets the other two in one point each, and so χ(X(0:1)) = 4. Equation (2.5) gives
10 = (1− v) ·2+4+ v ·1, and hence v = δX(y) = 4.

Proof of Theorem 2.1.25. The closure of the affine cone X in Pn is a projective surface as above.
We need to blow up also the vertex of the cone to get a morphism from a smooth surface q : X̃ P1.
The Euler number of the blown up cone is χ(C) ·χ(P1) = 2(2−2g), so

χ(X̃) = 2(2−2g)+4d−3 = 1+4d−4g.

The genus of a smooth quadratic hypersurface section X ∩Q is then g(X ∩Q) = 2g−1+d. Hence
the strict transform of each one nodal quadratic hypersurface section Xgen has genus 2g− 2+ d.
The Euler number equals χ(Xgen) = 4−2d−4g, while χ(Xs) = 3−2d−4g.

The tangent hyperplane at y is tangent to the line L0 in the cone through y, and it intersects the
surface X in d−2 further lines L1, . . . ,Ld−2. Therefore,

X(0:1) = C0 +L0 +L1 + · · ·+Ld−2 +C∞,

where C0 is the exceptional curve over the vertex of the cone, C∞ is the strict transform of the curve
at infinity, and the Li are the strict transforms of the lines through y. We conclude

χ(X(0:1)) = χ(C0\(d−1) points)+χ(C∞\(d−1) points) + (d−1) ·χ(P1)

= 2(2−2g− (d−1))+2(d−1) = 4−4g.

From (2.5) we get

χ(X̃) = (1− v)χ(Xgen)+χ(X(0:1))+ v ·χ(Xs),

1+4d−4g = (1−v) · (4−2d−4g)+4−4g+ v · (3−2d−4g)) = v−8g−2d +10.

This means that the Voronoi degree is δX(y) = v = 4g+6d−9.
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2.2 Bottlenecks
In this section, we compute and count bottlenecks of an algebraic variety X ⊂Rn. This is the study
of lines in Rn orthogonal to X at two or more points. Such lines contribute to the computation of
the reach and may be found by solving a polynomial system (2.8). To be able to use the appropriate
tools from algebraic geometry we often have to move from the real numbers to the algebraically
closed field of complex numbers C, as we illustrate below. We will see that classical invariants such
as polar classes appear naturally and turn out to be essential to obtaining a closed formula for the
number of bottlenecks. In our opinion, the following results provide yet one more illustration that
classical algebraic geometry and in particular intersection theory are useful and often necessary in
applications such as data science.

Bottlenecks and Optimization
Finding lines orthogonal at two or more points is an optimization problem with algebraic con-
straints. The focus of this section is to determine, or bound, the number of critical points for this
optimization problem.

Example 2.2.1. Consider the ellipse C ⊂ R2 defined by f = x2 + y2/2− 1 = 0. A bottleneck on
C is a pair of points p,q ∈C that span a line orthogonal to C at both points. The only such lines
are the x-axis and the y-axis, that is the principal axes of the ellipse, see Figure 2.6. A line l is

TpC
C

TqC

p q

Figure 2.6: An ellipse with tangent lines and principal axes.

orthogonal to C at a point p ∈C if l is orthogonal to the tangent line TpC at p. In other words l is
the normal line NpX at p. The direction of the normal line is given by the gradient ∇ f = (2x,y).
Consider a pair of points p = (x,y) ∈C and q = (z,w) ∈C. The claim that (p,q) is a bottleneck
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may then be expressed as
x− z = 2λx,
y−w = λy,
x− z = 2µz,
y−w = µw,

for some λ ,µ ∈ R. These equations, together with x2 + y2/2 = 1 and z2 +w2/2 = 1, constitute a
polynomial system for computing bottlenecks on the curve C. Note that this is also the system we
get if we apply the Lagrange multiplier method to the problem of optimizing the squared distance
function (x− z)2 +(y−w)2 subject to the constraints x2 + y2/2− 1 = z2 +w2/2− 1 = 0. This is
thus a polynomial optimization problem and we are asking for the critical points of the distance
between pairs of points on C.

Consider again an arbitrary variety X ⊂Rn. For convenience, we will restrict to the case where
X is smooth, that is every point of X is a manifold point. A line is orthogonal to X if it is orthogonal
to the tangent space TxX ⊂ Rn at x.

Definition 2.2.2. Let X ⊂ Rn be a smooth variety. The bottlenecks of X are pairs (x,y) of distinct
points x,y ∈ X such that the line spanned by x and y is normal to X at both points.

Equivalently one can define bottlenecks as the critical points of the squared distance function

Rn×Rn : (x,y) 7→ ||x− y||2, (2.6)

subject to the constraints x,y ∈ X as well as the non-triviality condition x 6= y.

(a) (b)

Figure 2.7: Two curves and their bottlenecks.

Example 2.2.3. Figure 2.7a shows a quartic curve in R2 and its 22 bottleneck lines. The curve is
defined by x4 + y4 +1−4y− x2y2−4x2− x−2y2 = 0. The figure was produced by Paul Breiding
and Sascha Timme using the Julia package HomotopyContinuation.jl [44].

As another example consider the space curve in R3 defined by

x3−3xy2− z = 0,
x2 + y2 +3z2−1 = 0.
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(a) Connected components (b) Sampling of a torus

Figure 2.8

Figure 2.7b shows this curve and its 24 bottleneck lines.

Equations for Bottlenecks
We will now formulate a system of equations for bottlenecks that does not introduce auxiliary
variables as in the Lagrange multiplier method. Both of these formulations are useful and the latter
will be developed further in Remark 2.2.24.

Let X ⊂ Rn be a smooth m-dimensional variety defined by polynomials f1, . . . , fk. Note that
for x ∈ X , dim(TxX) = dim(X) = m. Here we are considering the embedded tangent space which
passes through the point x. The corresponding linear space through the origin is (TxX)0 = TxX−x.
The orthogonal complement NxX = {z∈Rn : (z−x)⊥ (TxX)0} is the normal space at x and has the
complementary dimension n−m. As in the case of the ellipse in Example 2.2.1, the normal space
is the span of the gradients 〈∇ f1, . . . ,∇ fk〉. More precisely NxX = x+ 〈∇ f1(x), . . . ,∇ fk(x)〉. Now,
if x,y ∈ X are distinct then (x,y) is a bottleneck precisely when (y−x) ∈ 〈∇ f1(x), . . . ,∇ fk(x)〉 and
(y− x) ∈ 〈∇ f1(y), . . . ,∇ fk(y)〉. To formulate the equations we define the augmented Jacobian to
be the following matrix of size (k+1)×n:

J(x,y) =


y− x

∇ f1(x)
...

∇ fk(x)

 , (2.7)

where y−x is viewed as a row vector. The condition that y−x is in the span of ∇ f1(x), . . . ,∇ fk(x)
is equivalent to saying that the matrix J(x,y) has rank less than or equal to n−m, or in other words
that all (n−m+1)× (n−m+1)-minors of J(x,y) vanish. There is a similar rank condition given
by the (n−m+1)× (n−m+1)-minors of the augmented Jacobian J(y,x) with x and y reversed.
In summary, the bottlenecks of X are the non-trivial (x 6= y) solutions to the following system of
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equations:
(n−m+1)× (n−m+1)-minors of J(x,y) = 0,
(n−m+1)× (n−m+1)-minors of J(y,x) = 0,
f1(x) = · · ·= fk(x) = 0,
f1(y) = · · ·= fk(y) = 0.

(2.8)

Counting Roots, Complex Numbers and Projective Space
In this subsection we will motivate the study of complex and projective bottlenecks. Let f1, . . . , fk ∈
R[x1, . . . ,xn] with corresponding variety XR. The system of equations f1(x) = · · ·= fk(x) = 0 may
have non-real solutions x ∈ Cn. The complex solutions are very relevant for solving polynomial
systems. We can define a complex variety XC ⊂Cn given by XC = {x ∈Cn : f1(x) = · · ·= fk(x) =
0}. Note that XC contains the real solutions XR ⊆ XC.

As practitioners we need tools to numerically approximate solutions to polynomial systems. A
useful approach we would like to mention here is numerical homotopy methods, as introduced in
Section 1.3. These are predictor/corrector routines based on Newton’s method but with probabilis-
tic guarantees that all complex isolated solutions will be found. If a system has only finitely many
solutions then the number of complex roots is an upper bound on the number of real roots. A naive
approach to finding the real roots is of course to compute all complex roots and filter out the real
ones. We stress this point because it illustrates how the number of complex bottlenecks (if finite)
provides upper bounds on the computational complexity of real bottlenecks. It is therefore natural
to explore the concept of bottlenecks in the complex setting even if one is only interested in real
solutions.

An alternative approach to homotopy methods is symbolic computations via Gröbner bases,
see for example [178]. Whether homotopy methods or Gröbner bases is appropriate depends on
the particular system of equations at hand. See [18] for a comparison of numerical and symbolic
methods for equation solving.

Let X ⊂ Cn be a smooth variety, defined by f1, . . . , fk ∈ C[x1, . . .xn], with dim(X) = m > 0.
A bottleneck of X is defined to be a pair of distinct points x,y ∈ X such that the line xy joining x
and y is normal to X at both x and y. The orthogonality relation a ⊥ b involved in the definition
of bottlenecks is given by ∑

n
i=1 aibi = 0 for a = (a1, . . . ,an) ∈ Cn and b = (b1, . . . ,bn) ∈ Cn. For

a point x ∈ X , let (TxX)0 denote the embedded tangent space of X translated to the origin. Then
the Euclidean normal space of X at x is defined as NxX = {z ∈ Cn : (z− x) ⊥ (TxX)0}. A pair of
distinct points (x,y)∈X×X is thus a bottleneck exactly when xy⊆NxX∩NyX . Note that this is the
case if and only if y ∈ NxX and x ∈ NyX . The bottleneck variety in C2n consists of the bottlenecks
of X together with the diagonal {(x,y) ∈ X ×X : x = y} ⊂ Cn×Cn. Just as for real varieties, the
augmented Jacobian is defined by (2.7) and the system (2.8) defines the bottleneck variety of X .

In a similar manner we will define bottlenecks for projective varieties in complex projective
space Pn. Recall that projective space Pn is obtained by gluing a hyperplane at infinity to the affine
space Cn. For example, the projective plane P2 is the complex plane C2 with an added line at
infinity.
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Counting the number of roots to a system of polynomials is a highly challenging problem.
The simplest case is counting roots in Pn. Counting roots in Cn is harder and even harder is to
count real roots. Consider for example a univariate polynomial f ∈ R[x] of degree d. In this
case there are always d complex roots counted with multiplicity while the number of real roots
depends on the coefficients of f . Consider now the next step of two equations f1, f2 ∈ R[x1,x2]
of degrees d1 and d2 and the corresponding intersection of two curves in C2. If the intersection
is finite there can be at most d1d2 complex solutions. This is also the number of roots for almost
all f1 and f2 of degrees d1 and d2. In the case of real curves in R2 there is no such generic root
count. Also, the number of complex intersection points may be smaller than d1d2 as illustrated
by the example of two disjoint lines defined by x1 = 0 and x1 = 1. In contrast, the intersection
of two curves in P2 of degrees d1 and d2 with finite intersection always consists of d1d2 points
counted with multiplicity. This fact is known as Bézout’s theorem and it can be generalized to a
system of n equations in n variables [101, Proposition 8.4]. This might seem to solve the problem,
at least in Pn. However, the system we want to solve might be overdetermined and have excess
components of higher dimension. Both of these complications are present in the system (2.8). The
excess component in this case consists of the discarded trivial solutions on the diagonal {(x,y) ∈
Cn×Cn : x = y}. Amazingly, intersection theory provides tools to deal with these issues under
certain circumstances. These tools are however often confined to the complex projective setting.

Bottlenecks for projective varieties turn out to be essential for counting bottlenecks on affine
varieties. In fact, in Proposition 2.2.21 we reduce the affine case to the projective case by consid-
ering bottlenecks at infinity.

Polar Geometry
Consider the ellipse C defined by x2 + y2/2 = 1 in Example 2.2.1. For a point p ∈ R2 outside the
region bounded by C there are exactly two lines through p tangent to C. The two tangent points
x,y ∈C define what we call the first polar locus P1(X , p) = {x,y}, see Figure 2.9. The polar locus
depends on the choice of p but two polar loci P1(X , p) and P1(X , p′) can be seen as deformations
of each other by letting p′ approach p along a curve. In this sense, the polar loci all represent the
same polar class p1 on C.

Polar loci, also known as polar varieties, can be generalized to varieties of higher dimension
and play an important role in applications of non-linear algebra. Examples include real equation
solving [15], computational complexity [49], computing invariants [19, 76, 77, 94], Euclidean dis-
tance degree [86] and optimization [165].

Here we use polar varieties to count bottlenecks. This is done in the complex projective setting.
For a smooth projective variety X ⊂ Pn polar loci are defined using the projective tangent space
TxX ⊂ Pn at points x ∈ X . Consider first the case where X is a smooth hypersurface defined by a
homogeneous polynomial f ∈C[x0, . . . ,xn] and let x∈X . Then the hyperplane TxX ⊂Pn is defined
by the equation ∑

n
i=0 xi

∂ f
∂xi

(x) = 0. In general, if X is a smooth variety defined by an ideal generated
by homogeneous polynomials f1, . . . , fk ∈ C[x0, . . . ,xn], then TxX ⊆ Pn is the subspace defined by
the kernel of the Jacobian matrix { ∂ fi

∂x j
(x)}i, j.
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C

x

TxC

TyC

y

p

Figure 2.9: Polar locus of an ellipse.

For a smooth surface X ⊂ P3 we have two polar varieties. Let p ∈ P3 be a general point and
l ⊂ P3 a general line. Then P1(X , p) is the set of points x such that the projective tangent plane
TxX ⊂ P3 contains p. This is a curve on X . Similarly, P2(X , l) = {x ∈ X : l ⊆ TxX}, which is
finite. We also let P0(X) = X . More generally, an m-dimensional variety has m+1 polar varieties
defined by exceptional tangent loci as follows. Let X ⊂ Pn be a smooth variety of dimension m.
For j = 0, . . . ,m and a general linear space V ⊆ Pn of dimension n−m−2+ j we define the polar
locus

Pj(X ,V ) = {x ∈ X : dim(TxX ∩V )≥ j−1}.

If X has codimension 1 and j = 0, then V is the empty set using the convention dim( /0) = −1.
By [101, Example 14.4.15] , Pj(X ,V ) is either empty or of pure codimension j.

In order to link bottlenecks and polar varieties we employ the tools of intersection theory and
pass from polar varieties to polar classes. For each polar variety Pj(X ,V ) there is a corresponding
polar class [Pj(X ,V )] = p j which represents Pj(X ,V ) up to rational equivalence. For example,
Pj(X ,V ) represents the same polar class p j, independently of the general choice of linear space V .
In a similar manner, any subvariety Z ⊂ Pn has a corresponding rational equivalence class [Z]. We
refer to Section 1.2 for background on intersection theory. For more details on polar classes see for
example [161, 162] and [101, Example 14.4.15]. An important point is that there is a well defined
multiplication of polar classes corresponding to intersection of polar varieties. This means that
pi p j = [Pi(X ,V )∩Pj(X ,W )] for 0 ≤ i, j ≤ m. Here V ⊂ Pn and W ⊂ Pn are general linear spaces
of dimension n−m−2+ i and n−m−2+ j, respectively. To express the number of bottlenecks
of a variety in terms of polar classes we also need the notion of degree of a class. If Z ⊂ Pn is
a subvariety, deg(Z) is the number of points of Z ∩L, where L ⊂ Pn is a general linear space of
dimension n−dim(Z). For the class [Z] we let deg([Z]) = deg(Z).
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Results
Let X ⊂ Cn be a smooth variety and consider the closure X̄ ⊂ Pn in projective space. For the
purpose of counting bottlenecks we introduce the bottleneck degree of an algebraic variety. Under
suitable genericity assumptions (see Definition 2.2.9), the bottleneck degree coincides with the
number of bottlenecks.

The orthogonality relation on Pn is defined via the isotropic quadric Q⊂ Pn given in homoge-
neous coordinates by ∑

n
0 x2

i = 0. Varieties which are tangent to Q are to be considered degenerate
in this context and we say that a smooth projective variety is in general position if it intersects Q
transversely.

Our main result, Theorem 2.2.13, is a proof that the bottleneck degree of a smooth variety
X̄ ⊂ Pn in general position can be computed via the polar classes p0, . . . , pm. The arguments in the
proof directly give an algorithm for expressing the bottleneck degree in terms of polar classes. We
have implemented this algorithm in Macaulay2 [107] and the script is available at [78]. We give
the formula for projective curves, surfaces and threefolds, with the following notation: h denotes
the hyperplane class in the intersection ring of X̄ , d = deg(X̄) and εi = ∑

m−i
j=0 deg(p j). We also use

BND(X̄) to denote the bottleneck degree of X̄ .

Curves in P2:
BND(X̄) = d4−4d2 +3d.

Curves in P3:
BND(X̄) = ε

2
0 +d2−deg(2h+5p1).

Surfaces in P5:

BND(X̄) = ε
2
0 + ε

2
1 +d2−deg(3h2 +6hp1 +12p2

1 + p2).

Threefolds in P7:

BND(X̄) = ε
2
0 +ε

2
1 +ε

2
2 +d2−deg(4h3+11h2 p1+4hp2

1+24p3
1+2hp2−12p1 p2+17p3).

Notice that ε0 = deg(p0)+ · · ·+deg(pm) is equal to the Euclidean Distance Degree of the variety.
Now consider the smooth affine variety X ⊂ Cn ⊂ Pn and let H∞ = Pn \Cn be the hyperplane

at infinity. The formulas for projective varieties above have to be modified to yield the bottleneck
degree BND(X) of the affine variety X . Namely, there is a contribution to BND(X̄) from the
hyperplane section X ∩H∞ at infinity. More precisely, we show in Proposition 2.2.21 that

BND(X) = BND(X̄)−BND(X̄ ∩H∞).

Here we have assumed that X ⊂ Cn is in general position in the following sense: X̄ and X ∩H∞

are smooth and in general position. In the case of a plane curve X ⊂ C2 in general position the
hyperplane section X̄ ∩H∞ consists of d points on the line at infinity. This results in

BND(X) = d4−4d2 +3d−d(d−1) = d4−5d2 +4d. (2.9)
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We end this introduction with an example illustrating the above formula for affine curves X ⊂
C2. Before looking at a concrete example it is worth pointing out that by convention bottlenecks
are counted as ordered pairs (x,y) ∈ X×X . Since (y,x) is also a bottleneck if (x,y) is a bottleneck,
each unordered bottleneck pair contributes twice to the bottleneck degree.

Example. Consider the Trott curve X ⊂ C2 defined by the equation

144(x4
1 + x4

2)−225(x2
1 + x2

2)+350x2
1x2

2 +81.

This nonsingular quartic curve is notable because all 28 bitangents are real.

Figure 2.10: The quartic Trott curve depicted with two bottleneck pairs and their corresponding
normal lines.

The bottleneck pairs {(x1,x2),(y1,y2)} are the off-diagonal solutions to the following set of
four equations, which are the equations of the bottleneck ideal described in (2.8). The first two
imply that each point is on the curve and the second two imply that each point is on the normal
line to the curve at the other point:

144(x4
1 + x4

2)−225(x2
1 + x2

2)+350x2
1x2

2 +81 = 0

144(y4
1 + y4

2)−225(y2
1 + y2

2)+350y2
1y2

2 +81 = 0

x1(−576x2
1−700x2

2 +450)(y2− x2) = x2(576x2
2 +700x2

1−450)(x1− y1)

y1(−576y2
1−700y2

2 +450)(x2− y2) = y2(576y2
2 +700y2

1−450)(y1− x1).

For a general enough affine plane curve of degree 4, (2.9) gives a bottleneck degree of 192. This is
in fact the number of bottlenecks of the Trott curve. It was verified in Macaulay2 by creating the
ideal of the four equations above and then saturating to remove the diagonal.

In this example, the 192 bottlenecks correspond to 192/2=96 bottleneck pairs. In particular, the
real part of the Trott curve intersects the x- and y-axis each 4 times and in each case the relevant
axis is the normal line to the curve at the intersection, leading to six bottleneck pairs on each axis.
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Notation and Background in Intersection Theory
Below we introduce the Chow group of a subscheme of complex projective space Pn and present
the double point formula from intersection theory. The reason for considering schemes and not
only algebraic varieties is that isolated bottlenecks are counted with multiplicity and similar con-
siderations should be made for higher dimensional bottleneck components. Specifically, the double
point class defined below is a push forward of the double point scheme and the latter carries mul-
tiplicity information. In the end we only study bottlenecks on algebraic varieties and little is lost if
the reader wishes to think of varieties in place of schemes.

The notation used here will closely follow that of Fulton’s book [101]. Let X ⊆ Pn be a closed
m-dimensional subscheme. We use Ak(X) to denote the group of k-cycles on X up to rational
equivalence and A∗(X) =

⊕m
k=0 Ak(X) denotes the Chow group of X . For a subscheme Z ⊆ X we

have an associated cycle class [Z] ∈ A∗(X). Also, for a zero cycle class α ∈ A0(X) we have the
notion of degree, denoted deg(α), which counts the number of points with multiplicity of a 0-cycle
representing α .

Suppose now that X ⊆ Pn is a smooth variety of dimension m. In this case we will also consider
the intersection product on A∗(X) which makes it into a ring. For α,β ∈ A∗(X) we denote their
intersection product by αβ or α ·β . Now let α ∈ Ak(X) with k > 0 and consider the hyperplane
class h ∈ Am−1(X) induced by the embedding X ⊆ Pn. Here, we define deg(α) = deg(hkα). This
means that if α is represented by a subvariety Z ⊆ X , then deg(α) is the degree of Z. For a cycle
class α ∈ A∗(X), we will use (α)k to denote the homogeneous piece of α of codimension k, that
is (α)k is the projection of α to Am−k(X). Finally, for i = 0, . . . ,m, ci(TX) denotes the i-th Chern
class of the tangent bundle of X and c(TX) = c0(TX)+ · · ·+ cm(TX) denotes the total Chern class.

Now let X and Y be subschemes of projective space. A map f : X Y gives rise to a push
forward group homomorphism f∗ : A∗(X) A∗(Y ) and if X and Y are smooth varieties we also
have a pull-back ring homomorphism f ∗ : A∗(Y ) A∗(X).

Let f : X Y be a morphism of smooth projective varieties. Let x ∈ Ak(X), y ∈ Al(Y ) satisfy
k+ l = dim(Y ). By the projection formula [101, Proposition 8.3 (c)], f∗( f ∗(y) · x) = y · f∗(x). In
particular deg(y · f∗(x)) = deg( f∗( f ∗(y) · x)) = deg( f ∗(y) · x). This relation is used many times in
the sequel.

Now let f : X Y be a map of smooth projective varieties with dim(X) = k and dim(Y ) = 2k.
Let f × f : X×X Y ×Y be the induced map, let Bl∆X (X×X) be the blow-up of X×X along the
diagonal ∆X ⊂ X ×X and let bl : Bl∆X (X ×X) X ×X be the blow-up map. Consider the map
h = ( f × f ) ◦ bl : Bl∆X (X ×X) Y ×Y and the inverse image scheme h−1(∆Y ) of the diagonal
∆Y ⊂ Y ×Y . Then the exceptional divisor bl−1(∆X) is a subscheme of h−1(∆Y ) and its residual
scheme in h−1(∆Y ) is called the double point scheme of f and is denoted D̃( f ). The exceptional
divisor bl−1(∆X) may be interpreted as the projectivized tangent bundle P(TX). The support of the
double point scheme D̃( f ) consists of the pairs of distinct points (x,y) ∈ X ×X ⊂ Bl∆X (X ×X) \
bl−1(∆X) such that f (x) = f (y) together with the tangent directions in P(TX) where the differential
d f : TX → TY vanishes, see [132, Remark 14]. There is also an associated residual intersection
class D̄( f ) ∈ A0(D̃( f )) defined in [101, Theorem 9.2]. If D̃( f ) has dimension 0, as expected, then
D̄( f ) = [D̃( f )]. Let η : D̃( f ) X be the map induced by bl and the projection X ×X X onto
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the first factor. Then the double point class D( f ) ∈ A0(X) is defined by D( f ) = η∗(D̄( f )). By the
double point formula, [101, Theorem 9.3],

D( f ) = f ∗ f∗[X ]− (c( f ∗TY )c(TX)
−1)k. (2.10)

The Conormal Variety
Let X ⊂ Pn be a smooth variety of dimension m. Recall that H0(X ,OX(1)) ∼= Cn+1 is the vec-
tor space parameterizing the hyperplane sections of the embedding X ⊆ Pn ∼= P(H0(X ,OX(1))).
Consider the surjective linear map:

jetx : H0(X ,OX(1)) H0(OX(1)⊗OX/m2
x)
∼= Cm+1,

where mx is the maximal ideal at x. Roughly speaking this map assigns to a global section s the
(m+1)-tuple (s(x), . . . , ∂ s

∂xi
(x), . . .), where (x1, . . . ,xm) is a system of coordinates around x. We also

have that
TxX = P(im(jetx))∼= Pm.

Let NX/Pn be the normal bundle of X in Pn and let N∨X/Pn be its dual. The fibers of the dual
normal bundle at x are given by the kernel of the map jetx : ker(jetx) ∼= N∨X/Pnx

⊗OX(1)x. The
projective tangent spaces at points x ∈ X glue together to form the first jet bundle J with fiber
Jx = H0(OX(1)⊗OX/m2

x), inducing the exact sequence of vector bundles:

0 N∨X/Pn⊗OX(1) X×H0(OX(1)) J 0 (2.11)

The projectivized bundle of the conormal bundle is called the conormal variety:

CX = P(N∨X/Pn)∼= P(N∨X/Pn⊗OX(1))⊂ Pn× (Pn)∗

where P(N∨X/Pn) denotes the projectivized conormal bundle of X in Pn, see [101, Example 3.2.21]
for more details. From the exact sequence (2.11) it follows that the conormal variety consists of
pairs of points x ∈ X and hyperplanes in Pn that contain the projective tangent space TxX .

Bottleneck Degree
Let X ⊂ Pn be a smooth variety of dimension m < n and consider the conormal variety CX =
P(N∨X/Pn)⊂ Pn× (Pn)∗ introduced above. We use O(1) to denote the dual of the tautological line
bundle on CX , see [101, Appendix B.5.1 and B.5.5], and ξ = c1(O(1)) denotes the first Chern
class of O(1). Also, let π : CX → X be the projection. Note that dim(CX) = n−1.

Remark 2.2.4. In the sequel we will compute the degrees of zero cycle classes in A0(P(N∨X/Pn)).
By [101, Theorem 3.3 (b)], A0(X)∼= A0(P(N∨X/Pn)) via the map α 7→ ξ n−m−1π∗α . This means that
every element of A0(P(N∨X/Pn)) can be written uniquely in the form ξ n−m−1π∗α where α ∈ A0(X),

leading to a degree formula:
deg(ξ n−m−1

π
∗
α) = deg(α).
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Also, by [101, Remark 3.2.4]

ξ
n−m + c1(π

∗N∨X/Pn)ξ
n−m−1 + · · ·+ cn−m(π

∗N∨X/Pn) = 0. (2.12)

Hence, given a zero cycle class Z ∈ A0(P(N∨X/Pn)) of the form Z = ξ iπ∗β where i > n−m− 1
and β ∈ Ai−(n−m−1)(X) we may use (2.12) to write Z as ξ n−m−1π∗α for some α ∈ A0(X). More
generally, consider a 0-cycle class Z ∈ A0(P(N∨X/Pn)) which is a polynomial in ξ and pull-backs

of classes on X , Z = ∑
l
i=0 ξ iπ∗βi. Then ξ iπ∗βi = 0 for i < n−m−1 and βi ∈ Ai−(n−m−1)(X) for

i≥ n−m−1. Again we can use the relation (2.12) to write Z as ξ n−m−1π∗α for some α ∈ A0(X).
This may be done in practice by applying the function pseudoRemainder in Macaulay2 [107] to
Z and the left hand side of (2.12). We will make use of this to compute bottleneck degrees in
Algorithm 1.

We will consider CX as a subvariety of Pn×Pn as follows. Fix coordinates on Pn induced
by the standard basis of Cn+1. Then identify Pn with (Pn)∗ via the isomorphism L : Pn (Pn)∗

which sends a point (a0, . . . ,an) ∈ Pn to the hyperplane {(x0, . . . ,xn) ∈ Pn : a0x0 + · · ·+anxn = 0}.
Define a ⊥ b by ∑

n
i=0 aibi = 0 for a = (a0, . . . ,an),b = (b0, . . . ,bn) ∈ Pn. For a point p ∈ X we

denote by (TpX)⊥ the orthogonal complement of the projective tangent space of X at p. The span
〈p,(TpX)⊥〉 of p and (TpX)⊥ is called the Euclidean normal space of X at p and is denoted NpX .
The Euclidean normal space is intrinsically related to the conormal variety as:

CX = {(p,q) ∈ Pn×Pn : p ∈ X ,q ∈ (TpX)⊥}.

Definition 2.2.5. We say that a smooth variety X ⊂ Pn is in general position if CX is disjoint from
the diagonal ∆⊂ Pn×Pn.

Let Q⊂ Pn be the isotropic quadric, which is defined by ∑
n
i=0 x2

i = 0. If p ∈ X ∩Q is that such
that TpX ⊆TpQ, then (p, p)∈CX . Conversely, if (p, p)∈CX , then p ∈ X ∩Q and TpX ⊆TpQ. In
other words, X is in general position if and only if X intersects the isotropic quadric transversely.

Suppose that X is in general position. We then have a map

f : CX → Gr(2,n+1) : (p,q) 7→ 〈p,q〉, (2.13)

from CX to the Grassmannian of lines in Pn. The map sends a pair (p,q) to the line spanned by p
and q. For the remainder of this section, f will be used to denote this map associated to a variety
X . To simplify notation we will also let G = Gr(2,n+1).

Note that for p ∈ X , the map f restricted to the fiber {(p′,q′) ∈ CX : p′ = p} parameterizes
lines in the Euclidean normal space NpX passing through p.

Example 2.2.6. In the case where X ⊂ Pn is a smooth hypersurface, CX ∼= X via the projection on
the first factor of Pn×(Pn)∗. Consider a general curve X ⊂ P2 of degree d defined by a polynomial
F ∈ C[x,y,z]. For u ∈ {x,y,z}, let Fu = ∂F

∂u . In this case G = (P2)∗ and the map f : X (P2)∗

defined above is given by (x,y,z) 7→ (yFz− zFy,zFx− xFz,xFy− yFx). Note that f (p) = NpX is the
Euclidean normal line to X at p.
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Returning to a smooth m-dimensional variety X ⊂ Pn in general position, consider the projec-
tion η : CX ×CX X×X and the incidence correspondence

I(X) = η({(u,v) ∈ CX ×CX : f (u) = f (v)}).

Pairs (x,y) ∈ I(X) ⊂ X ×X with x 6= y are called bottlenecks of X . The following lemma relates
this definition of bottlenecks to the one given for affine varieties in the introduction. For x ∈ X ,
recall the definition of the Euclidean normal space NxX = 〈x,(TxX)⊥〉, where TxX denotes the
projective tangent space of X at x.

Lemma 2.2.7. Let X ⊂ Pn be a smooth variety in general position. For a pair of distinct points
x,y ∈ X, (x,y) is a bottleneck if and only if y ∈ NxX and x ∈ NyX.

Proof. By definition (x,q)∈CX ⊂ Pn×Pn if and only if x∈ X and q∈ (TxX)⊥. Hence, for (x,q)∈
CX , the line 〈x,q〉 is contained in NxX . Now, if (x,y)∈X×X is a bottleneck, then (x,q),(y,q′)∈CX
for some q,q′ ∈ Pn with 〈x,q〉 = 〈y,q′〉. Hence y ∈ 〈x,q〉 ⊆ NxX . In the same way x ∈ NyX . To
see the converse let x,y ∈ X be distinct points such that y ∈ NxX and x ∈ NyX . Since y ∈ NxX ,
y ∈ 〈x,q〉 for some q ∈ (TxX)⊥. Then (x,q) ∈ CX and q 6= x since X is in general position. This
implies that 〈x,y〉 = 〈x,q〉. In the same way, x ∈ NyX implies that (y,q′) ∈ CX for some q′ ∈ Pn

with 〈x,y〉= 〈y,q′〉. Since 〈x,q〉= 〈y,q′〉, (x,y) is a bottleneck.

Applying the double point formula (2.10) to the map f we obtain

D( f ) = f ∗ f∗[CX ]− (c( f ∗TG)c(TCX )
−1)n−1,

where D( f ) is the double point class of f .

Definition 2.2.8. Let X ⊂ Pn be a smooth variety in general position. We call deg(D( f )) the
bottleneck degree of X and denote it by BND(X).

The bottleneck degree is introduced to count bottlenecks on X but there are some issues that
need to be considered. The first issue is that there might be higher dimensional components worth
of bottlenecks. In this case the bottleneck degree assigns multiplicities to these components which
contribute to the bottleneck degree. We will not pursue this aspect of bottlenecks even though it is
an interesting topic. Consider now a smooth variety X ⊂ Pn in general position with only finitely
many bottlenecks. As mentioned above, the double point scheme of f contains not only bottlenecks
but also the tangent directions in P(TCX ) where the differential of f vanishes. This motivates the
following definition of bottleneck regular varieties. As we shall see in Proposition 2.2.11, the
bottleneck degree is equal to the number of bottlenecks counted with multiplicity in this case.

Definition 2.2.9. We will call a smooth variety X ⊂ Pn bottleneck regular (BN-regular) if

1. X is in general position,

2. X has only finitely many bottlenecks and
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3. the differential d fp : TpCX Tf (p)G of the map f has full rank for all p ∈ CX .

Proposition 2.2.10. Assume X is BN-regular. Let X ⊂ Pa ⊆ Pb be a smooth variety where Pa ⊆ Pb

is a coordinate subspace. If X is in general position with respect to Pa then X is in general position
with respect to Pb and the bottleneck degree is independent of the choice of ambient space.

Proof. For c = a,b, let C c denote the conormal variety with respect to the embedding X ⊂ Pc.
The embedding Pa ⊆ Pb induces an embedding C a ⊆ C b. Similarly for c = a,b, let fc : C c

Gr(2,c+1) be the map given by (p,q) 7→ 〈p,q〉 and let ∆c ⊂ Pc×Pc be the diagonal. Suppose that
(p,q) ∈ C b∩∆b. Since p ∈ X ⊂ Pa, we have that q = p ∈ Pa and (p,q) ∈ C a∩∆a = /0. Hence X
is in general position with respect to Pb.

We will consider D( fa) as a cycle class on C b via the inclusion C a ⊆ C b. We will show that
D̃( fa) = D̃( fb). Since X is BN-regular [D̃( fc)] =D( fc) for c = a,b. It follows that D( fa) =D( fb),
which in turn implies that the bottleneck degree is independent of the choice of ambient space.
Note that D̃( fa)⊆ D̃( fb).

We will first show that the differential d fb : TC b TG has full rank outside TC a . This implies
that D̃( fb)\D̃( fa) consists of pairs x,y∈C b with x 6= y and fb(x)= fb(y). Suppose that x=(p,q)∈
C b and v ∈ TxC b is a non-zero tangent vector such that (d fb)x(v) = 0. Let D⊂ C be the unit disk
and let P,Q : D Cb+1 \{0} be smooth analytic curves such that the induced curve D Pn×Pn is
contained in C b, passes through x = (p,q) at 0 ∈ D and has tangent vector v there. In other words
P(0) ∈ p and Q(0) ∈ q are representatives of p and q. We need to show that Q(0),Q′(0) ∈ Ca+1.
Since (d fb)x(v) = 0, we have by [111, Example 16.1] that P′(0),Q′(0) ∈ 〈P(0),Q(0)〉. Suppose
first that P′(0) and P(0) are independent. Then Q(0),Q′(0) ∈ 〈P(0),P′(0)〉 and 〈P(0),P′(0)〉 ⊆
Ca+1 since X ⊂ Pa. Now suppose that P′(0) is a multiple of P(0). Since v 6= 0, Q(0) and Q′(0) are
independent and Q′(0) corresponds to a point q′ ∈ Pn. That P(0) and P′(0) are dependent implies
that (p,q′) ∈ C b. Moreover, P(0) ∈ 〈Q(0),Q′(0)〉 by above and hence p ∈ 〈q,q′〉. It follows that
(p, p) ∈ C b, which contradicts that X is in general position.

Now let (x,y) ∈ D̃( fb) with x 6= y and fb(x) = fb(y). If x,y ∈ C a then (x,y) ∈ D̃( fa) so assume
that x /∈ C a. Let x = (p1,q1) and y = (p2,q2) with (pi,qi) ∈ X×Pb. Since 〈p1,q1〉= 〈p2,q2〉 and
because this line intersects Pa in exactly one point p ∈ Pa, we have that p1 = p2 = p. Moreover,
p ∈ 〈q1,q2〉 and hence (p, p) ∈ C a contradicting that X is in general position. This means that
D̃( fb)⊆ D̃( fa) and hence D̃( fa) = D̃( fb).

If X ⊂ Pn is BN-regular, then the double point scheme D̃( f ) is finite and in one-to-one cor-
respondence with the bottlenecks of X through the projection η : CX ×CX X ×X . Using the
scheme-structure of D̃( f ) we assign a multiplicity to each bottleneck. With notation as above,
[D̃( f )] = D̄( f ) and we therefore have the following.

Proposition 2.2.11. If X ⊂ Pn is BN-regular, then BND(X) is equal to the number of bottlenecks
of X counted with multiplicity.

Remark 2.2.12. Recalling the notation from above, O(1) denotes the dual of the tautological line
bundle on the conormal variety CX , π : CX X is the projection and ξ = c1(O(1)). The bottle-
neck degree depends on the Chern classes of CX and below we shall relate these to the Chern
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classes of X , the hyperplane class and ξ . By [101, Example 3.2.11] we have that c(TCX ) =
c(π∗TX)c(π∗N∨X/Pn ⊗O(1)). Since the rank of N∨X/Pn is n−m we have by [101, Remark 3.2.3]
that

c(π∗N∨X/Pn⊗O(1)) = ∑
n−m
i=0 ci(π

∗N∨X/Pn)(1+ξ )n−m−i

= ∑
n−m
i=0 (−1)iπ∗ci(NX/Pn)(1+ξ )n−m−i.

Note also that ci(NX/Pn) = 0 for i > m = dim(X). Moreover, the normal bundle NX/Pn is related to
the tangent bundles TX and TPn by the exact sequence

0 TX i∗TPn NX/Pn 0,

where i : X Pn is the inclusion. It follows that c(NX/Pn) = c(i∗TPn)c(TX)
−1. Also, c(TPn) =

(1+H)n+1 where H ∈ An−1(Pn) is the hyperplane class.

For n−1 ≥ a ≥ b ≥ 0, define the Schubert class σa,b ∈ A∗(G) as the class of the locus Σa,b =
{l ∈G : l∩A 6= /0, l ⊂ B}where A⊂ B⊆ Pn is a general flag of linear spaces with codim(A) = a+1
and codim(B) = b. In the case b = 0 we use the notation σa,0 = σa. See [92] for basic properties
of Schubert classes. In particular we will make use of the relations σ2

1 = σ1,1 +σ2 if n ≥ 3 and
σa+c,b+c = σc,cσa,b for n−1≥ a≥ b≥ 0 and 0≤ a+ c≤ n−1. Also, σn−1−i,i ·σn−1− j, j = 0 for
0≤ i, j ≤

⌊n−1
2

⌋
if i 6= j and σ2

n−1−i,i is the class of a point. In Algorithm 1 below we will need to
express the total Chern class c(TG) of the Grassmannian as a polynomial in Schubert classes. To
do this we apply the routine chern from the Macaulay2 package Schubert2 [106].

We will recall the definition of the polar classes p0, . . . , pm ∈ A∗(X) of X . For a general linear
space V ⊆ Pn of dimension n−m−2+ j we have that p j is the class represented by the polar locus

Pj(X ,V ) = {x ∈ X : dim(TxX ∩V )≥ j−1}.

If X has codimension 1 and j = 0, then V is the empty set using the convention dim( /0) = −1.
By [101, Example 14.4.15], Pj(X ,V ) is either empty or of pure codimension j and

p j =
j

∑
i=0

(−1)i
(

m− i+1
j− i

)
h j−ici(TX), (2.14)

where h ∈ An−1(X) is the hyperplane class. Moreover, the polar loci Pj(X ,V ) are reduced, see
[161]. Inverting the relationship between polar classes and Chern classes we get

c j(TX) =
j

∑
i=0

(−1)i
(

m− i+1
j− i

)
h j−i pi. (2.15)

We will examine an alternative interpretation of polar classes via the conormal variety CX . This
will help us to determine the class of CX in A∗(Pn×Pn). Recall that the polar loci Pj(X ,V ) are
either empty or of codimension j. It follows that for a generic point x ∈ Pj(X ,V ), TxX intersects V
in exactly dimension j−1, that is dim(TxX∩V )= j−1. Let 0≤ i≤m and let V̂ ,W ⊆Pn be general
linear spaces with dim(V̂ ) = i+1 and dim(W ) = n− i. Recall the fixed isomorphism L :Pn (Pn)∗
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and let V ⊂ Pn be the intersection of all hyperplanes in L(V̂ ). Note that dim(V ) = n− 2− i.
Now consider the intersection J = CX ∩ (W × V̂ ) ⊆ Pn×Pn. Then J is finite and we have the
projection map π|J : J Pm−i(X ,V )∩W . Now, π|J is bijective onto Pm−i(X ,V )∩W because given
x ∈ Pm−i(X ,V )∩W , dim(TxX ∩V ) = m− i−1 and therefore the span of TxX and V is the unique
hyperplane containing TxX and V . Let α,β ∈ A2n−1(Pn×Pn) be the pullbacks of the hyperplane
class of Pn under the two projections and consider [CX ] as an element of A∗(Pn× Pn). Then
[W × V̂ ] = α iβ n−1−i and deg([CX ] ·α iβ n−1−i) = deg(J) = deg(pm−i). Note that [CX ] ·α i = 0 if
i > m since α is the pullback of a divisor on Pn.

Theorem 2.2.13. Let X ⊂ Pn be a smooth m-dimensional variety in general position. Let h =
π∗(hX) ∈ A∗(CX) where hX ∈ A∗(X) is the hyperplane class and π : CX X is the projection.
We use O(1) to denote the dual of the tautological line bundle on CX and ξ to denote its first
Chern class. Also α,β ∈ A2n−1(Pn×Pn) denote the pullbacks of the hyperplane class of Pn under
the two projections. Let k = min{

⌊n−1
2

⌋
,m} and for i = 0, . . . ,k, put εi = ∑

m−i
j=ri

deg(p j) where
ri = max{0,m−n+1+ i}. Then the following holds:

[CX ] =
m

∑
i=0

deg(pm−i)α
n−i

β
1+i, (2.16)

f ∗(σa,b) =
a−b

∑
i=0

hb+i(ξ −h)a−i, (2.17)

f∗[CX ] =
k

∑
i=0

εiσn−1−i,i, (2.18)

deg( f ∗ f∗[CX ]) =
k

∑
i=0

ε
2
i . (2.19)

Hence

BND(X) =
k

∑
i=0

ε
2
i −deg(Bm,n),

for some polynomial Bm,n in the polar classes and the hyperplane class of X .

Proof. To show (2.16), note that codim(CX)= 2n−(n−1)= n+1 and write [CX ] =∑
n−1
i=0 diα

n−iβ 1+i

for some di ∈ Z. Let 0≤ i≤ n−1. Because di = deg([CX ] ·α iβ n−1−i), it follows that:

di = deg(pm−i) if 0≤ i≤ m and di = 0 if i > m.

Let bl : Bl∆(Pn×Pn) Pn×Pn be the blow-up of Pn×Pn along the diagonal ∆⊂ Pn×Pn and
let E = bl−1(∆), the exceptional divisor. The map Pn×Pn \∆ Gr(2,n+1), which sends a pair
of points (p,q) to the line spanned by p and q, extends to a map γ : Bl∆(Pn×Pn) Gr(2,n+1),
see [125]. The theorem in the third paragraph of [125, Appendix B], with X = PN in the notation
used there, states that

γ
∗(σa) =

a

∑
i=0

bl∗α ibl∗β a−i +
a−1

∑
i=0

(−1)i+1
(

a+1
i+2

)
bl∗αa−1−i[E]i+1.
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Consider CX as a subvariety of Bl∆(Pn×Pn) and let i : CX Bl∆(Pn×Pn) be the embedding.
Then i∗bl∗α = h and by [101, Example 3.2.21], ξ − h = i∗bl∗β . Moreover, since X is in gen-
eral position, i∗[E] = 0. Using f = γ ◦ i, we get that f ∗(σa) = i∗γ∗(σa) = ∑

a
i=0 hi(ξ − h)a−i.

In particular, f ∗(σ1) = ξ , which proves (2.17) in the case n = 2. If n ≥ 3, we have by above
that f ∗(σ2) = ξ 2− hξ + h2. Moreover σ1,1 = σ2

1 −σ2, and hence f ∗(σ1,1) = h(ξ − h). Since
σb,b = σb

1,1 we get f ∗(σb,b) = hb(ξ − h)b. Finally, using σa,b = σb,bσa−b we get that f ∗(σa,b) =

hb(ξ −h)b
∑

a−b
i=0 hi(ξ −h)a−b−i, which gives (2.17).

For (2.18), note first that

γ
∗(σa,b) = γ

∗(σb,b)γ
∗(σa−b) =

a−b

∑
i=0

bl∗αb+ibl∗β a−i +R, (2.20)

where R = [E] · δ for some δ ∈ A∗(Bl∆(Pn× Pn)). Also, f∗[CX ] = ∑
s
i=0 eiσn−1−i,i where ei =

deg( f∗[CX ] · σn−1−i,i) and s =
⌊n−1

2

⌋
. Since γ restricts to f on CX , f∗[CX ] = γ∗[CX ] and ei =

deg(γ∗[CX ] ·σn−1−i,i) = deg([CX ] · γ∗σn−1−i,i) by the projection formula. Here [CX ] denotes the
class of CX on Bl∆(Pn×Pn) and [CX ] ·R = 0 since X is in general position. Moreover, by (2.16)
we have that [CX ] = bl∗(∑m

l=0 deg(pm−l)α
n−lβ l+1). Using (2.20) we get

[CX ] · γ∗σn−1−i,i = bl∗(
m

∑
l=0

deg(pm−l)α
n−l

β
l+1) ·bl∗(

n−1−2i

∑
j=0

α
i+ j

β
n−1−i− j).

It follows that [CX ] · γ∗σn−1−i,i = 0 if i > m. For i≤ m, we get

[CX ] · γ∗σn−1−i,i = bl∗(αn
β

n)
t

∑
j=0

deg(pm−(i+ j)),

where t = min{m− i,n−1−2i}. Hence ei = 0 for i > m and ei = εi otherwise, which gives (2.18).
To show (2.19), let 0≤ i≤ k and note that by the projection formula

εi = deg( f∗[CX ] ·σn−1−i,i) = deg([CX ] · f ∗σn−1−i,i) = deg( f ∗σn−1−i,i).

Hence applying f ∗ to (2.18) gives (2.19).
Since the intersection ring of Gr(2,n+ 1) is generated by σa,b as a group, we may express

c( f ∗TG) as a polynomial in ξ and h by (2.17). Moreover, c(TCX ) is a polynomial in pullbacks of
polar classes, h and ξ by (2.15) and Remark 2.2.12. It follows from Remark 2.2.4 that
(c( f ∗TG)c(TCX )

−1)n−1 = ξ n−m−1π∗Bm,n for some polynomial Bm,n in polar classes and the hyper-
plane class of X . Also by Remark 2.2.4, deg(ξ n−m−1π∗Bm,n) = deg(Bm,n).

Note that the polynomials Bm,n in Theorem 2.2.13 only depend on n and m. Combining The-
orem 2.2.13, Remark 2.2.12 and Remark 2.2.4 gives an algorithm to compute polynomials Bm,n
as in Theorem 2.2.13. We will now give a high level description of this algorithm. It has been
implemented in Macaulay2 [107] and is available at [78].
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We will use the notation in Theorem 2.2.13. In addition, we use p1, . . . , pm to denote the polar
classes of X and c1, . . . ,cm to denote the Chern classes of X . Also i : X Pn denotes the inclusion
and hX is the hyperplane class on X . The algorithm makes use of the routines pseudoRemainder
from [107] and chern from [106].

The input to the algorithm are integers 0 < m < n and the output is a polynomial Bm,n in
p1, . . . , pm,hX such that (c( f ∗TG)c(TCX )

−1)n−1 = ξ n−m−1π∗Bm,n.

Algorithm 1 Algorithm to compute polynomial Bm,n in p1, . . . , pm,hX as in Theorem 2.2.13

Input: Integers 0 < m < n.
Output: Polynomial Bm,n.

Invert c(TX): c(TX)
−1 = 1−δ +δ 2 + · · ·+(−1)mδ m where δ = c(TX)−1.

Let c(i∗TPn) = (1+hX)
n+1.

Compute c(NX/Pn) = c(i∗TPn)c(TX)
−1.

Compute c(π∗N∨X/Pn⊗O(1)) = ∑
n−m
j=0 (−1) jπ∗c j(NX/Pn)(1+ξ )n−m− j.

Compute c(TCX ) = c(π∗TX)c(π∗N∨X/Pn⊗O(1)).
Invert c(TCX ): c(TCX )

−1 = 1−δ +δ 2 + · · ·+(−1)n−1δ n−1 where δ = c(TCX )−1.
Apply chern to express c(TG) as a polynomial in Schubert classes σa,b.
Apply the substitution (2.17) to express c( f ∗TG) = f ∗c(TG) as a polynomial in ξ and π∗hX .
Compute (c( f ∗TG)c(TCX )

−1)n−1.
Let R = ξ n−m− c1(π

∗NX/Pn)ξ n−m−1 + · · ·+(−1)n−mcn−m(π
∗NX/Pn).

Let P be the output of pseudoRemainder applied to (c( f ∗TG)c(TCX )
−1)n−1 and R.

Let B̂m,n be P divided by ξ n−m−1 and with π∗c1, . . . ,π
∗cm,π

∗hX replaced by c1, . . . ,cm,hX .
Replace c1, . . . ,cm by p1, . . . , pm using (2.15) on B̂m,n to acquire Bm,n.

Corollary 2.2.14. Let X ⊂ Pn be a smooth variety in general position. Let d = deg(X) = deg(p0),
εi = ∑

m−i
j=0 deg(p j) with m = dim(X) and h ∈ Am−1(X) the hyperplane class. The following holds:

1. If X is a curve in P2 then
BND(X) = d4−4d2 +3d.

2. If X is a curve in P3 then

BND(X) = ε
2
0 +d2−5deg(p1)−2d,

where ε0 = d +deg(p1) is the Euclidean distance degree of X.

3. If X is a surface in P5 then

BND(X) = ε
2
0 + ε

2
1 +d2−deg(3h2 +6hp1 +12p2

1 + p2).

4. If X is a threefold in P7 then

BND(X) = ε
2
0 +ε

2
1 +ε

2
2 +d2−deg(4h3+11h2 p1+4hp2

1+24p3
1+2hp2−12p1 p2+17p3).
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Proof. The formulas are acquired by applying Algorithm 1, which has been implemented in
Macaulay2 [107] and is available at [78].

For illustrative purposes we will carry out the computation for curves in P3. By the double
point formula

D( f ) = f ∗ f∗[CX ]− (c( f ∗TG)c(TCX )
−1)2,

and using Theorem 2.2.13 we get that deg( f ∗ f∗[CX ]) = ε2
0 + ε2

1 = ε2
0 +d2. Moreover, c( f ∗TG) =

f ∗c(TG) = 1 + 4 f ∗σ1 + 7( f ∗σ2 + f ∗σ1,1) and f ∗σ1 = ξ , f ∗σ2 = ξ 2− ξ h + h2 = ξ 2− ξ h and
f ∗σ1,1 = hξ by Theorem 2.2.13.

Let c1 denote the first Chern class of X . To compute c(TCX ) we follow the steps of Re-
mark 2.2.12. First of all π∗c(N∨X/Pn) = 1− 4h+π∗c1. Hence we get that c(π∗N∨X/Pn ⊗O(1)) =
(1+ξ )2 +(1+ξ )(−4h+π∗c1). Moreover, by (2.12), ξ 2 =−π∗c1(N∨X/Pn)ξ = (4h−π∗c1)ξ and
hence c(π∗N∨X/Pn⊗O(1)) = 1+2ξ +(−4h+π∗c1). This means that

c(TCX ) = c(π∗N∨X/Pn⊗O(1))c(π∗TX) = (1+2ξ −4h+π∗c1)(1+π∗c1)

= 1+2ξ −4h+2π∗c1 +2ξ π∗c1.

Hence c(TCX )
−1 = 1−2ξ +4h−2π∗c1 +2ξ π∗c1. It follows that:

(c( f ∗TG)c(TCX )
−1)2 = ((1+4 f ∗σ1 +7( f ∗σ2 + f ∗σ1,1))(1−2ξ +4h−2π

∗c1 +2ξ π
∗c1))2.

Multiplying out and using the expressions for f ∗σ2 and f ∗σ1,1 above we get

(c( f ∗TG)c(TCX )
−1)2 = 7 f ∗σ2 +7 f ∗σ1,1 +4 f ∗σ1(−2ξ +4h−2π∗c1)+2ξ π∗c1

= 7(ξ 2−ξ h)+7hξ +4ξ (−2ξ +4h−2π∗c1)+2ξ π∗c1.

Simplifying the last expression results in the following formulas:

(c( f ∗TG)c(TCX )
−1)2 = −ξ 2 +16ξ h−6ξ π∗c1

= −(4h−π∗c1)ξ +16ξ h−6ξ π∗c1
= ξ (12h−5π∗c1).

Finally, using Remark 2.2.4, we get deg((c( f ∗TG)c(TCX )
−1)2) = 12d−5deg(c1) = 2d+5deg(p1),

since deg(p1) = 2d−deg(c1). This shows the claim about BND(X) for a smooth curve X ⊂ P3 in
general position.

In the case of a general plane curve X ⊂ P2 we have that deg(c1) = 2− 2g where g = (d−
1)(d − 2)/2 is the genus of X . It follows that deg(p1) = d2− d and ε0 = d2 and BND(X) =
d4−4d2 +3d.

Remark 2.2.15. The formulas in Corollary 2.2.14 are given for specific ambient dimensions n. For
example, Corollary 2.2.14 (2) is for curves in P3 and one may ask if the same formula is valid for
curves in P4. For the formulas given in Corollary 2.2.14 we have checked that they are valid for
any ambient dimension n ≤ 30 (excluding the case X = Pn). This was done using the Macaulay2
implementation [78].
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Consider now the general case of a smooth m-dimensional variety X ⊂ Pn. Combining Al-
gorithm 1 and Theorem 2.2.13 we get an algorithm that, for any given m and n, computes the
bottleneck degree of a smooth m-dimensional variety X ⊂ Pn in general position. The result is
a formula that expresses the bottleneck degree in terms of polar classes of X . Now, if we let
n = 2m+1 we get a formula for each m. It is our belief that through projection arguments one can
show that this formula is in fact valid in any ambient dimension n > m. Thus we conjecture that
the formula in terms of polar classes only depends on the dimension m.

The Affine Case
We now define bottlenecks for affine varieties and show how they may be counted using the bot-
tleneck degrees of projective varieties.

Let X ⊂Cn be a smooth affine variety of dimension m. Consider coordinates x0, . . . ,xn−1 given
by the standard basis on Cn and the usual embedding Cn ⊂ Pn with coordinates x0, . . . ,xn on Pn.
Let H∞ = Pn \Cn be the hyperplane at infinity defined by xn = 0. Also consider the closure X̄ ⊂ Pn

and the intersection X̄∞ = X̄ ∩H∞. We consider X̄∞ a subvariety of Pn−1 ∼= H∞.

Definition 2.2.16. A smooth affine variety X ⊂ Cn is in general position if X̄∞ is smooth and both
X̄ and X̄∞ are in general position.

Assume that X is in general position. Let ν : Pn \ {o} H∞ be the projection from the point
o = (0, . . . ,0,1). If (p,q) ∈ CX̄ then q 6= o since X̄∞ is smooth. Also, p 6= ν(q) since X̄∞ is in
general position. Therefore we can define a map

g : CX̄ → Gr(2,n+1) : (p,q) 7→ 〈p,ν(q)〉,

mapping a pair (p,q) ∈ CX̄ to the line spanned by p and ν(q). For the remainder of this section
we will use g to denote this map associated to a variety X . In the following lemma we show that
for x ∈ X the fiber Fx = {(x′,q) ∈ CX̄ : x′ = x} together with the map g parameterize lines in the
Euclidean normal space NxX passing through x. Recall that for x ∈ X ⊂ Cn, (TxX)0 denotes the
embedded tangent space translated to the origin and the Euclidean normal space at x is given by
NxX = {z ∈ Cn : (z− x) ∈ (TxX)⊥0 }.

Lemma 2.2.17. Let X ⊂Cn be a smooth variety in general position. As above we consider Cn⊂Pn

and X ⊂ X̄ ⊂ Pn. Let x ∈ X and Fx = {(x′,q) ∈ CX̄ : x′ = x}. Then the map u 7→ g(u)∩Cn on Fx
defines a one-to-one correspondence between Fx and the set of lines in NxX passing through x.

Proof. Let (x,q) ∈ CX̄ with q = (q1, . . . ,qn+1) and x = (x1, . . . ,xn,1) where (x1, . . . ,xn) ∈ X ⊂Cn.
The line 〈x,ν(q)〉 ∩Cn expressed in coordinates on Cn is given by {(x1, . . . ,xn)+ a(q1, . . . ,qn) :
a∈C}. To show that this line is normal to X at x we need to show that (q1, . . . ,qn)∈ (TxX)⊥0 ⊂Cn.
Let (v1, . . . ,vn) ∈ (TxX)0. Then (x1 + v1, . . . ,xn + vn) ∈ TxX where TxX ⊂ Cn is the embedded
tangent space of X at x. This means that (x1 + v1, . . . ,xn + vn,1) ∈ TxX̄ ⊂ Pn and hence ∑

n
i=1(xi +

vi)qi + qn+1 = 0. Since (x1, . . . ,xn,1) ∈ TxX̄ we have that ∑
n
i=1 xiqi + qn+1 = 0. It follows that

∑
n
i=1 viqi = 0 and we have shown (q1 . . . ,qn) ∈ (TxX)⊥0 .
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Now let x ∈ X ⊂ X̄ with x = (x1, . . . ,xn,1) and consider a line in NxX through x. In coordi-
nates on Cn the line is given by {(x1, . . . ,xn)+ a(q1, . . . ,qn) : a ∈ C} for some 0 6= (q1, . . . ,qn) ∈
(TxX)⊥0 ⊆ Cn. Note that (q1, . . . ,qn) is unique up to scaling. We need to show that there is a
unique qn+1 ∈ C such that (x,q) ∈ CX̄ where q = (q1, . . . ,qn,qn+1). Since x ∈ TxX̄ , a necessary
condition on qn+1 ∈ C is that ∑

n
i=1 xiqi + qn+1 = 0. Accordingly we let qn+1 = −∑

n
i=1 xiqi. It

remains to show (x,q) ∈ CX̄ . Since {(v1, . . . ,vn,vn+1) ∈ TxX̄ : vn+1 6= 0} ⊂ TxX̄ is a dense subset,
it is enough to show that for all (v1, . . . ,vn,1) ∈ TxX̄ we have that ∑

n
i=1 viqi +qn+1 = 0. Note that

(v1, . . . ,vn) ∈ TxX ⊂ Cn and (v1− x1, . . . ,vn− xn) ∈ (TxX)0. Hence ∑
n
i=1(vi− xi)qi = 0. It follows

that ∑
n
i=1 viqi +qn+1 = ∑

n
i=1 xiqi +qn+1 = 0.

Consider the projection p : CX̄ X̄ . A bottleneck of the affine variety X is a pair of distinct
points x,y∈X ⊂ X̄ such that there exists u,v∈CX̄ with p(u) = x, p(v) = y and g(u) = g(v). We will
now show that this definition of bottlenecks is equivalent to the definition given in the introduction
in terms of Euclidean normal spaces.

Lemma 2.2.18. Let X ⊂ Cn be a smooth variety in general position. A pair of distinct points
(x,y)∈ X×X is a bottleneck if and only if the line in Cn joining x and y is contained in NxX ∩NyX.

Proof. If (x,y) ∈ X ×X is a bottleneck, then there are u,v ∈ CX̄ with g(u) = g(v), p(u) = x and
p(v) = y. The line g(u)∩Cn in Cn thus contains x and y and it is contained in NxX ∩NyX by
Lemma 2.2.17. For the converse, let x,y ∈ X be distinct such that the line l ⊂Cn joining x and y is
contained in NxX ∩NyX . By Lemma 2.2.17 there are u,v ∈ CX̄ with l = g(u)∩Cn, l = g(v)∩Cn,
p(u) = x and p(v) = y. It follows that g(u) = g(v) and (x,y) is a bottleneck.

The map g can have double points that do not correspond to actual bottlenecks of X since
we require that x,y ∈ X lie in the affine part. Note however that if u,v ∈ CX̄ with g(u) = g(v)
and p(u) ∈ X̄∞, then p(v) ∈ X̄∞ as well. Therefore the extraneous double point pairs of g are in
one-to-one correspondence with double point pairs of the map

g∞ : CX̄∞
→ Gr(2,n) : (p,q) 7→ 〈p,q〉.

Here CX̄∞
is defined with respect to the embedding X̄∞⊂ Pn−1. This leads us to consider the double

point classes D(g), D(g∞) of g and g∞ and define the bottleneck degree of X as the difference of
the degrees of these classes.

Definition 2.2.19. Let X ⊂ Cn be a smooth variety in general position. The bottleneck degree of
X is deg(D(g))−deg(D(g∞)) and is denoted by BND(X).

Example 2.2.20. Consider a general plane curve X ⊂ C2 of degree d defined by a polynomial
F ∈C[x,y]. Then X̄ ⊂ P2 is defined by the homogenization F̄ ∈C[x,y,z] of F with respect to z. We
may assume that X̄ is smooth. The map g : X̄ (P2)∗ is given by (x,y,z) 7→ (−zF̄y,zF̄x,xF̄y−yF̄x).
It maps a point p ∈ X to the closure of the normal line NpX ⊂ C2 in P2. The bottlenecks of X are
the pairs (p,q) ∈ X×X with p 6= q and NpX = NqX . We shall now consider the other double point
pairs of g, that is distinct points p,q ∈ X̄ such that g(p) = g(q) and p or q lies on the line at infinity
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H∞. The latter corresponds to the point (0,0,1) ∈ (P2)∗. If p = (x,y,z) ∈ H∞ ∩ X̄ , that is z = 0,
then g(p) = (0,0,1). Conversely, if q ∈ X̄ and g(q) = (0,0,1) then q ∈H∞ since q is a point on the
line g(q). The extraneous double points of g are thus exactly the d points X̄∞, the intersection of X̄
with the line at infinity. This gives rise to d(d−1) extraneous double point pairs at infinity.

Proposition 2.2.21. For a smooth affine variety X ⊂ Cn in general position,

BND(X) = BND(X̄)−BND(X̄∞).

Proof. By definition BND(X̄∞)= deg(D(g∞)) and so it remains to prove that BND(X̄)= deg(D(g)).
In other words we need to show that deg(D( f )) = deg(D(g)) where f is the map

f : CX̄ → Gr(2,n+1) : (p,q) 7→ 〈p,q〉.

By the double point formula it is enough to show that f ∗ f∗[CX̄ ] = g∗g∗[CX̄ ] and c( f ∗TG) = c(g∗TG)
where G = Gr(2,n + 1). Since the Schubert classes generate A∗(G) as a group the equality
c( f ∗TG) = c(g∗TG) would follow after showing that f ∗σa,b = g∗σa,b. We will do this first. As
in the proof of Theorem 2.2.13, let bl : Bl∆(Pn×Pn) Pn×Pn be the blow-up of Pn×Pn along
the diagonal ∆ ⊂ Pn×Pn and let E = bl−1(∆). Let α,β ∈ A∗(Pn×Pn) be the pullbacks of the
hyperplane class of Pn under the two projections and let γ be as in Theorem 2.2.13. By (2.20)

γ
∗(σa,b) =

a−b

∑
i=0

bl∗αb+ibl∗β a−i +R,

where R = [E] ·δ for some δ ∈ A∗(Bl∆(Pn×Pn)). Let i : CX̄ Bl∆(Pn×Pn) be the map induced
by the inclusion CX̄ ⊂ Pn×Pn and let j : CX̄ Bl∆(Pn×Pn) be induced by the map CX̄ Pn×Pn :
(p,q) 7→ (p,ν(q)), where ν :Pn\{o} H∞ is the linear projection. Note that f = γ ◦ i and g= γ ◦ j.
The map bl ◦ i is the identity on CX̄ and bl ◦ j : CX̄ Pn× Pn is the map (p,q) 7→ (p,ν(q)).
It follows that i∗bl∗α = j∗bl∗α and i∗bl∗β = j∗bl∗β . Since X̄ and X̄∞ are in general position,
i∗R = j∗R = 0, and we conclude that f ∗σa,b = g∗σa,b.

Now write f∗[CX̄ ] = ∑i eiσn−1−i,i and g∗[CX̄ ] = ∑i e′iσn−1−i,i where ei,e′i ∈ Z. Note that ei =
deg( f∗[CX̄ ] ·σn−1−i,i) = deg([CX̄ ] · f ∗σn−1−i,i) and the same way e′i = deg([CX̄ ] ·g∗σn−1−i,i). Since
f ∗σn−1−i,i = g∗σn−1−i,i, we have that ei = e′i for all i. It follows that

f ∗ f∗[CX̄ ] = ∑
i

ei f ∗σn−1−i,i = ∑
i

e′ig
∗
σn−1−i,i = g∗g∗[CX̄ ].

Example 2.2.22. For a general curve X ⊂ C2 of degree d we have

BND(X) = d4−5d2 +4d.

Namely, the bottleneck degree of X̄ is given in Corollary 2.2.14 and putting this together with
Proposition 2.2.21 and Example 2.2.20 we get BND(X) = d4−4d2 +3d−d(d−1) = d4−5d2 +
4d.
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Hence a general line in C2 has no bottlenecks, as one might expect. For d = 2 we get that
a general conic has 4 bottlenecks, which corresponds to 2 pairs of points with coinciding normal
lines. These lines can be real: Consider the case of a general real ellipse and its two principal axes,
see Figure 2.11.

Figure 2.11: Ellipse with principal axes.

Remark 2.2.23. Let X be a smooth affine variety in general position. As we have seen, the bottle-
neck degrees of X̄ and X̄∞ are functions of the polar numbers of these varieties. If i : X̄∞ X̄ is the
inclusion then the relation between the polar classes of X̄ and those of its hyperplane section X̄∞ is
p j(X̄∞) = i∗p j(X̄). This is straightforward to verify using for example the adjunction formula [101,
Example 3.2.12] and the relation between polar classes and Chern classes (2.14). This means that
the polar numbers of X̄ and X̄∞ are the same in the sense that deg(p1(X̄∞)

a1 . . . pm−1(X̄∞)
am−1) =

deg(p1(X̄)a1 . . . pm−1(X̄)am−1) for any a1, . . . ,am−1 ∈ N such that ∑
m−1
j=1 j ·a j ≤ m−1. As a conse-

quence, Proposition 2.2.21 may be used to express the bottleneck degree of X ⊂Cn in terms of the
polar numbers of its closure X̄ ⊂ Pn.

Remark 2.2.24. Let g1, . . . ,gk ∈ C[x1, . . . ,xn] be a system of polynomials of degrees d1, . . . ,dk
which define a complete intersection X ⊂Cn. Suppose that the bottlenecks of X are known. If X is
general enough to have the maximal number of bottlenecks, we may compute the isolated bottle-
necks of any other complete intersection Y ⊂ Cn defined by polynomials f1, . . . , fk ∈ C[x1, . . . ,xn]
of the same degrees d1, . . . ,dk. We propose to do this by a parameter homotopy from X to Y . For
background on homotopy methods, see Section 1.3. Suppose that both X and Y are smooth. Let
hi(x) = (1− t) fi(x)+ γtgi(x) where γ ∈ C is random and t is the homotopy parameter. The homo-
topy paths are tracked from the bottlenecks of X at t = 1 to the bottlenecks at Y at t = 0. Introduce
new variables y1, . . . ,yn and λ1, . . . ,λk,µ1, . . . ,µk. The parameter homotopy is then the following
square system of equations in 2(n+ k) variables:

h1(x) = · · ·= hk(x) = 0,
h1(y) = · · ·= hk(y) = 0,
y− x = ∑

k
i=1 λi∇hi(x),

y− x = ∑
k
i=1 µi∇hi(y).

For the starting points of the homotopy we need the bottleneck pairs (x,y) of X . To find the
λ1, . . . ,λk and µ1, . . . ,µk corresponding to a bottleneck pair (x,y) one would need to solve the
linear systems y− x = ∑

k
i=1 λi∇gi(x) and y− x = ∑

k
i=1 µi∇gi(y) = 0.
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Along similar lines, [93] presents an efficient homotopy to compute bottlenecks of affine vari-
eties.

Examples
Example 2.2.25. Consider the space curve in C3 given by the intersection of these two hypersur-
faces:

x3−3xy2− z = 0

x2 + y2 +3z2−1 = 0.

Figure 2.12: A space curve of degree 6 shown with one of its bottleneck lines joining the points
(0,−1,0) and (0,1,0).

As computed in Macaulay2, the ideal of the bottleneck variety (with the diagonal removed) as-
sociated to this affine curve has dimension 0 and degree 480. The curve is the complete intersection
of two surfaces of degrees d1 = 2 and d2 = 3.

Now consider a smooth complete intersection curve X ⊂ C3 cut out by surfaces of degree d1
and d2. Assume that X is in general position. By Corollary 2.2.14 the bottleneck degree of X̄
is given by ε2

0 + d2− 5deg(p1)− 2d, where ε0 = d + deg(p1) and d = d1d2. Using for example
the adjunction formula, [101, Example 3.2.12], one can see that c1(TX) = (4− d1− d2)h, where
h ∈ A0(X) is the hyperplane class. Also, by (2.14) we have p1 = 2h− c1(TX) = (d1 + d2− 2)h.
Thus deg(p1) = (d1 + d2− 2)d1d2. By Proposition 2.2.21, to obtain the bottleneck degree of the
affine variety X we subtract BND(X̄∞) from BND(X̄). In this case, we have

BND(X̄∞) = d1d2(d1d2−1).

We obtain the following formula for the bottleneck degree of a smooth complete intersection curve
X ⊂ C3 in general position:

BND(X) = d4
1d2

2 +2d3
1d3

2 +d2
1d4

2−2d3
1d2

2−2d2
1d3

2 +d2
1d2

2−5d2
1d2−5d1d2

2 +9d1d2.

Substituting d1 = 2 and d2 = 3, we obtain BND(X) = 480, in agreement with the Macaulay2
computation for the sextic curve above.
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Example 2.2.26. Let X ⊂ C3 be a general surface of degree d. Then

BND(X) = d6−2d5 +3d4−15d3 +26d2−13d.

To see this use Proposition 2.2.21. Apply Corollary 2.2.14 to get BND(X̄) and the bottleneck
degree of the planar curve X̄∞.

Example 2.2.27. Consider the quartic surface X ⊂ C3 defined by the equation

(0.3x2 +0.5z+0.3x+1.2y2−1.1)2 +(0.7(y−0.5x)2 + y+1.2z2−1)2 = 0.3.

For a general quartic surface in C3, the bottleneck degree is 2220 by Example 2.2.26. In this case,
BND(X) = 1390 was found using the Julia package HomotopyContinuation.jl [44]. Among the
1390 solutions are 49 distinct real bottleneck pairs. The quartic with its bottlenecks is shown in
Figure 2.13.

Figure 2.13: The quartic surface of Example 2.2.27 shown with its real bottleneck lines. The
shortest bottleneck line is shown in red. The figure was produced by Sascha Timme using the Julia
package HomotopyContinuation.jl [44].

Example 2.2.28. Consider the ellipsoid X ⊂ C3 defined by the equation

36x2 +9y2 +4z2 = 36.

For a general quadric surface in C3, the bottleneck degree is 6 by Example 2.2.26. In this case,
there are indeed three bottleneck pairs, all with real coordinates. The pairs occur on each of the
coordinate axes, at {(−1,0,0),(1,0,0)}, {(0,−2,0),(0,2,0)} and {(0,0,−3),(0,0,3)}.

If we set two axes to be the same length, as in the equation of the spheroid

4x2 + y2 + z2 = 4,

then there is only one isolated bottleneck pair: {(−1,0,0),(1,0,0)}. The rest of the bottlenecks
are part of an infinite locus. Intersecting with the plane {x = 0} which is normal to the spheroid,
we obtain the circle {y2 + z2 = 4} and every antipodal pair of points of the circle is a bottleneck.
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Conclusion
In this chapter, we gave algebraic formulations of the algebraic boundary of the Voronoi cell of
a point on a variety and the bottleneck locus of a variety. Both of these objects are algebraic
varieties that can be used to answer a distance optimization question about an underlying variety.
In each case, we provided formulas for the algebraic degree of these varieties, characterizing the
complexity of solving the corresponding distance optimization problems. In the next chapter, we
shift our focus from distance to curvature but address similar questions.
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Chapter 3

Algebraic Geometry of Curvature

Curvature is one of the most significant objects of study in differential geometry. This chapter takes
an unusual approach to curvature in that we study its algebraic geometry and the algebraic varieties
relevant to curvature. For each such variety, we study its defining equations and its degree. As
discussed in the Introduction, this has applications to the computation of the reach of an algebraic
variety.

Section 3.1 addresses critical curvature in the case of plane curves, providing a formula for
the degree. This is adapted from the paper [35], which is joint work with Madeline Brandt. In
Section 3.2, we seek to generalize this result to hypersurfaces in spaces of higher dimension. This
is adapted from the manuscript [40], which is joint with Paul Breiding and Kristian Ranestad.

3.1 Curvature and the Evolute of a Plane Curve
Curvature of plane curves, osculating circles and evolutes have interested mathematicians since
antiquity. As early as 200 BCE, Apollonius mentioned evolutes in Book V of Conics [69]. We
refer readers to works of Salmon in the 19th century [166, 167] and to modern lectures by Fuchs
and Tabachnikov outlining this history [99, Chapter 3].

We now discuss the minimal radius of curvature of a plane curve. This is one of the two
quantities which determines the reach, see Equation (4.28). There are many ways to define the
radius of curvature of a plane curve. We use the definition of Cauchy [54, 91].

Definition 3.1.1. Let X ⊂ R2 be an algebraic curve and p ∈ X be a smooth point. The center of
curvature at p is the intersection of the normal line to X at p and the normal line to X at a point
infinitely close to p. The radius of curvature at p is the distance from p to its center of curvature.
The (unsigned) curvature is the reciprocal of the radius of curvature. The osculating circle at p is
the circle tangent to X at p centered at the center of curvature with radius equal to the radius of
curvature.

Modern mathematicians may feel uncomfortable with the language of “infinitely close points.”
An alternative definition of center and radius of curvature can be given using envelopes.
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Definition 3.1.2. The envelope of a one-parameter family of plane algebraic curves given implicitly
by F(x,y, t) = 0 is a curve that touches every member of the family tangentially. The envelope is
the variety defined by the ideal 〈

∂F
∂ t

, F(x,y, t)
〉
∩R[x,y].

The envelope of the family of normal lines parametrized by the points of the curve is called
its evolute. A generalization of the evolute to all dimensions is called the ED discriminant, and
is studied in [86]. They show that for general smooth plane algebraic curves, the degree of the
evolute is 3d(d−1) [86, Example 7.4].

We now derive a formula for the center and radius of curvature of a plane curve at a point. Our
derivation follows Salmon [167]. This can be taken as an equivalent definition of center and radius
of curvature. The evolute is then the locus of the centers of curvature.

Proposition 3.1.3. [167] Let X = V (F(x,y)) ∈ R2 be a smooth curve of degree d. The radius
of curvature at a point (x0,y0) ∈V (F) is given by evaluating the following expression in terms of
partial derivatives of F at (x0,y0):

R =
(F2

x +F2
y )

3
2

FxxF2
y −2FxyFxFy +FyyF2

x
. (3.1)

Proof. The equation of a normal line to X at a point (x,y) ∈ X in the variables (α,β ) is

Fy(α− x)−Fx(β − y) = 0. (3.2)

The total derivative of the equation for the normal line is(
Fxy +Fyy

dy
dx

)
(α− x0)−

(
Fxx +Fxy

dy
dx

)
(β − y)−Fy +Fx

dy
dx

= 0. (3.3)

The total derivative of F(x,y) is

Fx(x0,y0)+Fy
dy
dx

= 0. (3.4)

The equations (3.2), (3.3) are a system of two linear equations in the unknowns {α,β}. We
solve this system to obtain expressions for α and β in terms of x, y, and dy

dx . We substitute in for
dy
dx the expression given by (3.4). The center of curvature of X at a point (x,y) ∈ X is given by the
coordinates (α,β ), which are now expressions in x and y.

The radius of curvature R at a point (x,y) is its distance to its center of curvature (α,β ), so we
have R =

√
(α− x)2 +(β − y)2. Substituting in the equations for α and β , we obtain the stated

expression (3.1).

For curves in projective space, there is a modified formula for the radius of curvature.
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Corollary 3.1.4. [167] Let X = V (F(x,y,z)) ⊂ P2
R be a smooth curve of degree d defined by

a homogeneous polynomial F. The radius of curvature at a point (x0,y0,z0) ∈ X is given by
evaluating the following expression in terms of partial derivatives of F at (x0,y0,z0):

R =
(d−1)2(F2

x +F2
y )

3
2

z2(FxxFyyFzz−FxxF2
yz−FyyF2

xz−FzzF2
xy +2FyzFxzFxy)

. (3.5)

Proof. For any homogeneous function F(x,y,z) of degree d we have xFx+yFy+zFz = dF . We use
this equation to obtain expressions for Fx and Fy. Similarly, we find relations among the second
derivatives. We substitute these expressions in to (3.1) to obtain our new formula.

We now analyze the critical points of curvature of a smooth algebraic curve X ⊂ R2. If X is a
line, then for all p ∈ X the radius of curvature is infinite and the curvature is 0. If X is a circle, then
all points p ∈ X have the same radius of curvature, equal to the radius of the circle. Thus the total
derivative of the equation for the radius of curvature is identically 0. We exclude such curves from
our analysis by requiring that X be irreducible of degree greater than or equal to 3.

Definition 3.1.5. The degree of critical curvature of a smooth algebraic curve X ⊂R2 is the degree
of the variety obtained by intersecting the Zariski closure X ⊂ P2

C with the variety of the total
derivative of the equation for the radius of curvature. If X ⊂ R2 is a smooth, irreducible algebraic
curve of degree greater than or equal to 3, then the intersection consists of finitely many points, the
points of critical curvature. Thus the degree of critical curvature of X gives an upper bound for the
number of real points of critical curvature of X .

Theorem 3.1.6. Let X ⊂ R2 be a smooth, irreducible algebraic curve of degree d ≥ 3. Then the
degree of critical curvature of X is 6d2−10d.

Proof. To simplify notation, let H = FxxFyyFzz− FxxF2
yz− FyyF2

xz− FzzF2
xy + 2FyzFxzFxy. We have

assumed that the radius of curvature is finite, so H is nonzero. Dehomogenize Equation (3.5) by
setting z = 1. Then take the total derivative and set the total derivative equal to 0. Then divide

both sides of the equation by
(d−1)2(F2

x +F2
y )

1
2

2z2H . We have already shown that the denominator of this
fraction is nonzero. The numerator is nonzero as well because H is nonzero implies that Fx and Fy
cannot both be zero. We obtain

(F2
x +F2

y )(FyHx−FxHy) = 3H[(Fxx−Fyy)FxFy +Fxy(F2
y −F2

x )]. (3.6)

The degree of F is d. So the degree of Equation (3.6) is 6d− 10. We intersect the projective
variety defined by the homogenization of Equation (3.6) (which has the same degree as the affine
variety) with the projectivization of X . By Bézout’s Theorem, the degree of critical curvature of
the complex projectivization of X is 6d2−10d.

We remark that the critical points of curvature of X give cusps on the evolute [99, Lemma
10.1]. That is, if a normal line is drawn through a point of critical curvature on a curve, then the



CHAPTER 3. ALGEBRAIC GEOMETRY OF CURVATURE 59

normal line will pass through a cusp of the evolute. In addition, the evolute of a curve of degree d
has d cusps at infinity. Thus the evolute of a plane curve of degree d has 6d2−10d+d = 6d2−9d
cusps [167]. In Figure 3.1, we depict the quartic butterfly curve (4.29), its evolute, and pairs of
critical curvature points on the butterfly curve with their corresponding cusps on the evolute.

Figure 3.1: The eleven real points of critical curvature on the butterfly curve, computed in Example
3.1.7, joined by green line segments to their centers of curvature. These give cusps on the evolute,
which is pictured here in light blue.

Example 3.1.7. Consider the butterfly curve (4.29). Using the above description, we can compute
the 56 points of critical curvature using JuliaHomotopyContinuation [44]. Twelve of these
points are real, and they are plotted in Figure 3.1. The maximal curvature is approximately 9.65.
This is achieved at the lower left wing of the butterfly.

3.2 Algebraic Geometry of Curvature
In the previous section, we investigated the critical curvature locus of a plane curve. We now
explore the same question for varieties of other dimensions. The definition of curvature for a plane
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curve does not generalize easily to higher dimensions; there are several conceptions of curvature
for varieties of higher dimension that coincide for plane curves. Thus we begin with the nuanced
process of defining the notion of curvature relevant to the computation of the reach of an algebraic
variety. While this definition is basic to differential geometry, effort is required to convert it to the
language of algebraic geometry and polynomial systems.

The critical curvature degree of an algebraic variety was also discussed in [119]. In Section 3.1
of this dissertation, we describe a correspondence between the critical curvature points on a plane
curve and the cusps on its evolute. The paper [119] generalizes this idea to varieties of higher
dimension. It also provides Macaulay2 code for an ideal that contains the critical curvature locus
of a hypersurface as a component.

Differential Geometry Formulation of Curvature
We now provide the background information on differential geometry necessary for a reader to
understand the definitions we use for concepts related to curvature. We summarize the relevant
parts of [82, Chapters 0-4] and [136, Chapters 5 and 8].

A differentiable manifold of dimension m is a set M and a family of injective mappings
ϕα : Uα ⊂ Rm M of open sets Uα of Rm into M such that:

• ∪αϕα(Uα) = M.

• For any pair α,β with ϕα(Uα)∩ϕβ (Uβ ) =W 6= /0, the sets ϕ−1
α (W ) and ϕ

−1
β

(W ) are open

sets in Rm and the mappings ϕ
−1
β
◦ϕα are differentiable.

• The family {(Uα ,ϕα)} is maximal relative to the first two conditions.

Our setting is a special type of differentiable manifold called an algebraic manifold, which we
now define.

Proposition 3.2.1. Let V = {x ∈ Cn | f1(x) = · · · = fr(x) = 0} be a smooth algebraic variety,
where f1, . . . , fr are polynomials in n variables with real coefficients. We assume that M :=V ∩Rn

is nonempty. Then M is an embedded differentiable submanifold of Rn. We call such an M an
algebraic manifold, and V is called the complexification of M.

Proof. This follows from [82, Chapter 0, Example 4.3], which uses the inverse function theorem
to show that the inverse image of a differentiable mapping between Euclidean spaces is a differen-
tiable manifold. The differentiable mapping is F : Cn Cr given by F(x) = ( f1(x), . . . , fr(x)) and
we take the inverse image of the regular value (0, . . . ,0).

In the following, we let M be an algebraic manifold. We write F = ( f1, . . . , fr) and denote the
Jacobian of F by

JF(x) =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fr
∂x1

· · · ∂ fr
∂xn

 ∈ Rr×n.
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A differentiable function α : (−ε,ε) M is called a (differentiable) curve in M. Suppose that
α(0) = p ∈M. The tangent vector to the curve α at t = 0 is the derivative α

′
(0) = d

dt α(t)|t=0. A
tangent vector at p is the tangent vector at t = 0 of some curve α : (−ε,ε) M with α(0) = p.
The set of all tangent vectors to M at p constitute the tangent space TpM. We note that TpM =
kerJF(p)T .

We can view TpM as a subspace of Rn. The Euclidean metric on Rn induces a metric on
each tangent space TpM, making M a Riemannian manifold. We also define the normal space
NpM := (TpM)⊥.

A vector field X is a map X : Rn Rn. We also interpret X as a differential operator as follows:
X(g)(p) := 〈( ∂g

∂xi
(p))n

i=1,X(p)〉, where g : Rn R is C∞. We denote by X the set of all vector
fields of class C∞ on Rn. We say that a vector field X ∈X is tangent to M if for all p ∈M we have
X(p) ∈ TpM. We have the following characterization of tangential vector fields.

Lemma 3.2.1. Let X ∈X . Then, for all p ∈M we have X(p) ∈ TpM if and only if X( fi) = 0 for
1≤ i≤ r.

Proof. Since TpM = kerJF(p)T , we have that X(p) is tangent to M at p if and only if JF(p)X(p)=
0. This is equivalent to X( fi)(p) = 0 for all i.

The Euclidean connection ∇ on Rn is a map ∇ : X ×X X ,(X ,Y ) 7→ ∇XY defined as
follows:

(∇XY )(p) =
n

∑
i=1

Xi(p)
∂Y
∂xi

(p). (3.7)

In other words, ∇XY is the directional derivative of Y in the direction X . The Euclidean connection
is the Levi-Civita connection for the manifold Rn; see, e.g., [136, Chapter 5]. As such it is sym-
metric, which means that for all X ,Y ∈X we have ∇XY −∇Y X = [X ,Y ], where the Lie bracket
[X ,Y ] of two vector fields X ,Y is defined to be the vector field [X ,Y ](g) = X(Y (g))−Y (X(g)).
The Euclidean connection is also compatible with the inner product on Euclidean space, meaning
that X(〈Y,Z〉) = 〈∇XY,Z〉+ 〈Y,∇X Z〉, for X ,Y,Z ∈X .

The Gauss formula [136, Theorem 8.2] implies that the Levi-Civita connection ∇ on M is the
tangential component of the Euclidean connection. Let X ,Y be vector fields on Rn that are tangent
to M. Then,

(∇XY )(p) = PTpM (∇XY )(p),

where PTpM is the orthogonal projection onto the tangent space TpM. The second fundamental
form of M at p ∈ M, on the other hand, is the vector field given by the normal component of ∇.
That is, IIp(X ,Y ) := PNpM (∇XY )(p). The following is an important lemma for our study.

Lemma 3.2.2. The second fundamental form IIp is symmetric in X and Y and is independent of
the values of X and Y at points other than p.

Proof. We recall the proof of [136, Lemma 8.1]. Let X ,Y be vector fields on Rn that are tangent to
M. By symmetry of the connection, we have ∇XY −∇Y X = [X ,Y ]. And for all 1≤ i≤ r, we have
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[X ,Y ]( fi) = X(Y ( fi))−Y (X( fi)) = X(0)−Y (0) = 0 by Lemma 3.2.1. The lemma then implies
that for all p ∈M, the vector field [X ,Y ] is tangent to M, so that PNpM[X ,Y ] = 0. This shows that
IIp is symmetric in X and Y . From (3.7) it follows immediately that (∇XY )(p) only depends on
X(p), which implies that IIp(X ,Y ) only depends on X(p). By symmetry it also only depends on
Y (p).

The second fundamental form defines a quadratic form. We call it the shape operator in the
normal direction η ∈ NpM:

Sp,η : TpM R, v 7→ 〈(∇X X)(p),η〉, (3.8)

where X is a vector field on Rn tangent to M with X(p) = v. The shape operator allows us to define
the main object of study in this article: curvature of unit-speed geodesics in M. A curve α(t) in M
is called a unit-speed curve if ‖α ′(t)‖= 1 for all t. It is called a geodesic if α ′′(t) ∈ NpM for all t.
The curvature of such a curve at p = α(0) is ‖α ′′(0)‖.

Lemma 3.2.3. Let α(t) be a unit-speed geodesic. Let v = α ′(0) and η = α ′′(0)
‖α ′′(0)‖ . Then the

curvature of α(t) is at p = α(0) is Sp,η(v).

Proof. Let X be a vector field tangent to M with X(p) = v. Following (3.7), we have (∇X X)(p) =
α ′′(0). This implies Sp,η(v) = 〈α ′′(0),η〉= ‖α ′′(0)‖.

The lemma implies that the critical curvatures of geodesics orthogonal to η ∈ NpM are the
eigenvalues of the shape operator Sp, η

‖η‖
. These eigenvalues are called the principal curvatures in

the direction η .

Corollary 3.2.2. The maximal curvature of a unit-speed geodesic passing through p ∈M is

max
v∈TpM,η∈NpM,

‖v‖=‖η‖=1

Sp,η(v).

From a different perspective, we can see the shape operator as a tensor in TpM⊗TpM⊗NpM.
The corollary says that the maximal curvature of a unit-speed geodesic passing through p ∈M is
equal to the spectral norm of this tensor.

We say that a vector field N ∈X is normal to M if for all p ∈M we have N(p) ∈ NpM. The
next lemma introduces the Weingarten equation, a useful alternative characterization of the shape
tensor.

Lemma 3.2.4. Let (v,η)∈ TpM×NpM. Let X ,N ∈X such that X is tangent to M and N is normal
to M, and such that X(p) = v and N(p) = η . Then we have Sp,η(v) =−〈(∇X N)(p),v〉.

Proof. We recall the proof of [136, Lemma 8.1]. Consider g : Rn R, p 7→ 〈X(p),N(p)〉. By
definition, g vanishes on M and so by Lemma 3.2.1, X(g) = 0. By the compatibility of the Eu-
clidean connection, we have X(g) = 〈∇X X ,N〉+ 〈X ,∇X N〉. Since Sp,η(v) = 〈(∇X X)(p),N(p)〉,
we therefore have that Sp,η(v) =−〈X(p),(∇X N)(p)〉. This proves the assertion.
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Algebraic Geometry Formulation of Curvature
We will now give an algebraic expression for the shape operator (3.8) of an algebraic manifold M.
Recall that we denote by V the complexification of M.

We consider a vector of polynomials

µ(x) :=


∑

r
j=1 λ j

∂ f j
∂x1...

∑
r
j=1 λ j

∂ f j
∂xn

 ∈ rowspan(JF(x)) (3.9)

for some fixed vector of coefficients λ ∈Rr. Then µ(x) is a normal field. Let Jµ(x) be the Jacobian
matrix of µ(x). By definition,

Jµ(x) =
r

∑
j=1

λ jH f j(x), where H f j(x) =


∂ 2 f j(x)
∂x1∂x1

· · · ∂ 2 f j(x)
∂x1∂xn

...
...

∂ 2 f j(x)
∂x1∂xn

· · · ∂ 2 f j(x)
∂xn∂xn


is the Hessian of f j(x). Let us denote the corresponding complex quadratic form as

Sp,λ : Cn C, v 7→ −
r

∑
j=1

λ jvT H f j(x)v. (3.10)

Let v ∈ TpM be a tangent vector and X be a vector field tangent to M with X(p) = v. By (3.7), we
have (∇X µ)(p) = Jµ(p)v. The Weingarten equation from Lemma 3.2.4 implies that

Sp,η(v) = Sp,λ (v), (3.11)

where η := µ(p).
That is, we have an equality of the shape operator Sp,η applied to v with the complex quadratic

form Sp,λ applied to v.

Remark 3.2.3. A special case is when r = 1; that is, when M is a hypersurface defined by a single
polynomial f (x) = 0. In this case, we have Jµ(p) = λ H f (p), where H f (x) is the Hessian of f at
x. Equation (3.11) becomes Sp,η(v) = λ vT H f (x)v.

Umbilics
On our way to a discussion of the critical curvature locus, we take a detour to study points where
some or all of the principal curvatures are equal. For the principal curvatures c1(x), . . . ,cm(x) to be
smooth functions of x, we must avoid these points, called umbilics. In addition to being relevant
to critical curvature, umbilics are geometrically interesting in their own right.

George Salmon studied umbilics of a surface, points where the two principal curvatures are
equal and thus the best second-order approximation of the surface is a sphere. In 1865, he published
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a formula for the degree of the variety of umbilics of a general surface of degree d in R3 [168]. We
present his formula along with our own proof using complex projective geometry.

Definition 3.2.4. A point p ∈M is called an umbilic if there exists a normal direction η such that
Sp,η has one eigenvalue of multiplicity m (i.e. Sp,η is a multiple of the identity). A point p ∈M is
called an umbilic of order k, for 1 < k ≤ m, if there exists a normal direction η such that Sp,η has
an eigenvalue of order k.

Theorem 3.2.5 (Salmon). The degree of the variety of umbilics of a general surface of degree d in
R3 is 10d3−28d2 +22d.

Proof. Let S ∈ P3 be the projective closure of the surface Saffine of degree d in R3. Let HS ∈ P3 be
the Hessian of S. Then HS has degree 4(d−2) and defines a 3-dimensional subspace HQ in the P9

of quadrics in P3, one for each point in the P3 of S. For each point p on S, consider the 4-space Yp
of quadrics spanned by the Hessian quadric at the point and the reducible quadrics that have the
tangent plane to S at p as a component. The union

Y = ∪pYp

is a 6-dimensional scroll in P9, a birational image of the projective bundle

Ỹ = P(OS(d−2)⊕4OS(d−1)).

We consider the subring of the intersection ring on Ỹ generated by H, the pullback of a hyperplane
class from P9, and F , the pullback of a hyperplane class on S. The canonical class on Ỹ is then

KỸ =−5H +(5d−6+d−4)F =−5H +(6d−10)F.

Consider the 4-dimensional space L of spheres in P9 and in it the 3-dimensional subspace L0 of
reducible spheres, consisting of pairs of planes with the plane at infinity as a factor. Let P⊃ L be
a general 5-dimensional space containing L. Then the pullback to Ỹ of the intersection P∩Y is
reducible and contains two surface components: one component S0 contained in L0, and another
component XN which is a scroll of lines. The image of S0 in Y is the dual surface to S, of degree
(d− 1)2d. The canonical divisor on S0 is the restriction of (d− 4)F , while the canonical divisor
KS0∪XN , by adjunction, is the restriction of−H+(5d−6+d−4)F =−H+(6d−10)F. Restricted
to S0, the divisor KS0∪XN is the sum of the canonical divisor on S0 and the class of the curve of
intersection C0 = S0∩XN , so the class of C0 on S0 is C0 =−H+(5d−6)F = (5d−6−(d−1))F =
(4d−5)F . The degree of the image of this curve in Y is degC0 = (4d−5)(d−1)d. The degree of
Y and hence also of S0∪XN is

degY = H6 = ((5d−6)2− (d−1)(4d−8+6d−6))d = 15d3−36d2 +22d.

So XN has degree

degXN = 15d3−36d2 +22d− (d−1)2d = 14d3−34d2 +21d.
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The intersection of XN with L is now a hyperplane section HN of XN . It contains the intersection
curve CN = L0∩XN . The curve CN is the union of C0 and the lines in XN that are contained in L0.
The latter lines are in one-to-one correspondence with inflection points on the curve at infinity on
S, so their number is 3(d−2)d. The residual HN −CN is a set of lines that all meet C0 but do not
lie in L0; they correspond one to one to the umbilical points on S. Thus the number of umbilics is

14d3−34d2 +21d− (4d−5)(d−1)d−3(d−2)d = 10d3−28d2 +22d.

The expected codimension of umbilics on a smooth m-dimensional variety equals the codi-
mension of real symmetric m×m-matrices with an eigenvalue of order k. In fact,the expected
codimension is independent of m.

Lemma 3.2.5. The variety of real symmetric matrices with an eigenvalue of order at least k has
codimension

(k+1
2

)
−1.

Proof. The variety of corank k symmetric matrices has codimension
(k+1

2

)
. Any symmetric matrix

which is a linear combination of a corank k matrix and the identity matrix has an eigenvalue of
order k, and vice versa, any matrix with an eigenvalue of order k is a linear combination of a
corank k matrix and the identity matrix. Therefore the set of matrices with an eigenvalue of order
at least k is the join of the variety of matrices of corank at least k and the identity matrix, so the
lemma follows.

We note that Section 5.2 contains further discussion of varieties of real symmetric matrices
with repeated eigenvalues.

Critical Curvature
We now define the critical curvature locus outside of the locus of umbilics.

Definition 3.2.6. A point p ∈M is called a point of critical curvature if p is not an order-2 umbilic
and if there exists a principal curvature c = c(x,λ ) such that the gradient of c vanishes in the
tangent direction of the unit normal bundle {(x,λ ) ∈M×Rr | λ T JF(x)JF(x)T λ = 1}.

Let M = Z( f ) ⊂ Rn be a hypersurface. We now describe a system of polynomial equations
for the critical curvature locus of M in the 2n+ 3 variables {x1, . . . ,xn,u1, . . . ,un,λ ,y1,y2}. The
variables {x1, . . . ,xn} are used for points of M, the variables {u1, . . . ,un} are used for points in
TpM, the variable λ is used to control the length of normal vectors, and the variables {y1,y2}
are used to specify a decomposition of a vector into components in TpM and NpM. Consider the
following set of n+4 equations:

f = f (x1, . . . ,xn) = 0,

α = ∇ f ·u = 0,
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v =
n

∑
i=1

u2
i −1 = 0,

β = λ
2(∇ f ·∇ f )−1 = 0,

w = H f ·u+ y1u+ y2∇ f = 0.

The equations α and v establish that u is a unit tangent vector. The equation β allows us to
normalize the gradient. The equation w states that u is a principal curvature vector of M: it is an
eigenvalue of the Hessian in the tangent space, with an arbitrary component in the normal space.
Let K ⊂ R2n+3 be the zero set of the equations. It projects onto the set of principal vectors of
length 1 at a point on the hypersurface M. The curvature is then given by g(x,u,λ ) = λut ·H f ·u,
so the critical curvature locus is the projection of the critical points of g on K into M.

By the principle of Lagrange multipliers, the critical locus of g on K is the locus where the
following (2n+3)× (n+5)-matrix A of partial derivatives has rank at most n+4:

A =



fx1 αx1 0 βx1 w1,x1 ... wn,x1 gx1
...

...
...

...
...

...
...

...
fxn αxn 0 βxn w1,xn ... wn,xn gxn

0 αu1 u1 0 w1,u1 ... wn,u1 gu1
...

...
...

...
...

...
...

...
0 αun un 0 w1,un ... wn,un gun

0 0 0 βλ 0 ... 0 gλ

0 0 0 0 w1,y1 ... wn,y1 0
0 0 0 0 w1,y2 ... wn,y2 0


.

As explained in the discussion of Porteous’ formula in Section 1.2 of this dissertation, this
locus has codimension n−1. Thus the critical curvature locus has expected dimension 0.

In the fourth column, we may divide by the common factor λ , since it is nonzero on the critical
locus. We use this system of polynomial equations to obtain an upper bound for the degree of the
critical curvature locus.

Theorem 3.2.7. Let M ⊂ R3 be a smooth surface of degree d. An upper bound for the degree of
the critical curvature locus is 2796d3−6444d2 +3696d.

Proof. We homogenize the above system of n+4 equations to obtain the projective closure

K̄ ⊂ Pn×Pn×P1×P2.

When we homogenize the entries of A, the multidegrees are given by the following matrix:

(d−1,0,0,0) (d−2,1,0,0) 0 (2d−3,0,1,0) (d−2,1,0,1) ... (d−2,1,0,1) (d−3,2,1,0)

(d−1,0,0,0) (d−2,1,0,0) 0 (2d−3,0,1,0) (d−2,1,0,1) ... (d−2,1,0,1) (d−3,2,1,0)
0 (d−1,0,0,0) (0,1,0,0) 0 (d−1,0,0,1) ... (d−1,0,0,1) (d−2,1,1,0)
...

...
...

...
...

...
...

...
0 (d−1,0,0,0) (0,1,0,0) 0 (d−1,0,0,1) ... (d−1,0,0,1) (d−2,1,1,0)
0 0 0 (2d−2,0,0,0) 0 ... 0 (d−2,2,0,0)
0 0 0 0 (d−1,1,0,0) ... (d−1,1,0,0) 0
0 0 0 0 (d−1,1,0,0) ... (d−1,1,0,0) 0


.
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Thus A is the matrix of the following map of vector bundles:

nO(1,0,0,0)⊕nO(0,1,0,0)⊕O(0,0,1,0)⊕2O(0,0,0,1) O(d,0,0,0)⊕O(d−1,1,0,0)

⊕O(0,2,0,0)⊕O(2d−2,0,1,0)⊕nO(d−1,1,0,1)⊕O(d−2,2,1,0).

We apply Porteous’ formula (Theorem 1.2.3) to obtain the class of the locus where the matrix
A has rank at most n+ 4. Applying Bézout’s formula for the intersection of this locus with the
projective closure K̄ of the zero locus of the above set of n+ 4 equations, we obtain the stated
upper bound.

Theorem 3.2.7 provides an upper bound for the degree of the critical curvature locus rather than
an exact formula due to the presence of solutions to the homogenized system of equations that do
not correspond to solutions of the original system of equations as well as other false solutions,
including those where λ = ∇ f ·∇ f = 0. The formula is stated in the case n = 3, but can be
computed for any n ≥ 3 using the same process. In future work, we hope to count and remove
these false solutions so that we can provide an exact formula for the critical curvature degree.

Conclusion
In this chapter, we have investigated the critical curvature degree of an algebraic variety. This
problem shows the necessity of building a bridge between differential geometry and algebraic
geometry. The main difficulty of this chapter lies in reinterpreting the differential-geometric defi-
nition of curvature in a way that lends itself to a system of polynomial equations. Once we obtain
this system of polynomial equations, we are able to use the tools of numerical algebraic geom-
etry to compute these differential-geometric features. In future work, we hope to translate more
concepts from differential geometry into the language of polynomial systems.
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Chapter 4

Geometry of Data

A fundamental problem in data science is the following: Given a set of points in Rn, find a model
to describe these points. The standard technique used by many scientists is to fit a linear space or
union of linear spaces to the points. However, data is often nonlinear. Here we will explore the
idea of fitting algebraic varieties to data.

The original work in this chapter comes from three papers. Section 4.1 is based on [37], a joint
paper with Paul Breiding, Sara Kališnik, and Bernd Sturmfels published in Revista Mathematica
Complutense. Section 4.2 is based on the paper [120], joint with Emil Horobeţ and published in
Computer Aided Geometric Design. Section 4.3 is based on the paper [35], joint with Madeline
Brandt.

4.1 Modeling Point Clouds with Varieties
This section addresses a fundamental problem at the interface of data science and algebraic geom-
etry. Given a sample of points Ω = {u(1),u(2), . . . ,u(m)} from an unknown variety V in Rn, our
task is to learn as much information about V as possible. No assumptions on the variety V , the
sampling, or the distribution on V are made. There can be noise due to rounding, so the points u(i)

do not necessarily lie exactly on the variety from which they have been sampled. The variety V is
allowed to be singular or reducible. We also consider the case where V lives in the projective space
Pn−1
R . We are interested in questions such as:

1. What is the dimension of V ?

2. Which polynomials vanish on V ?

3. What is the degree of V ?

4. What are the irreducible components of V ?

5. What are the homology groups of V ?
Figure 4.1: Sample of 27 points
from an unknown plane curve.
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Let us consider these five questions for the dataset with m = 27 and n = 2 shown in Figure 4.1.
Here the answers are easy to see, but what to do if n≥ 4 and no picture is available?

1. The dimension of the unknown variety V is one.

2. The ideal of V is generated by one polynomial of the form (x−α)2 +(y−β )2− γ .

3. The degree of V is two. A generic line meets V in two (possibly complex) points.

4. The circle V is irreducible because it admits a parametrization by rational functions.

5. The homology groups are H0(V,Z) = H1(V,Z) = Z1 and Hi(V,Z) = 0 for i≥ 2.

There is a considerable body of literature on such questions in statistics and computer science.
The general context is known as manifold learning. One often assumes that V is smooth, i.e. a
manifold, in order to apply local methods based on approximation by tangent spaces. Learning
the true nature of the manifold V is not a concern for most authors. Their principal aim is dimen-
sionality reduction, and V only serves in an auxiliary role. Manifolds act as a scaffolding to frame
question 1. This makes sense when the parameters m and n are large. Nevertheless, the existing
literature often draws its inspiration from figures in 3-space with many well-spaced sample points.
For instance, the textbook by Lee and Verleysen [137] employs the “Swiss roll” and the “open
box” for its running examples (cf. [137, Section 1.5]).

One notable exception is the work by Ma et al. [142]. Their Generalized Principal Component
Analysis solves problems 1-4 under the assumption that V is a finite union of linear subspaces.
Question 5 falls under the umbrella of topological data analysis (TDA). Foundational work by
Niyogi, Smale and Weinberger [155] concerns the number m of samples needed to compute the
homology groups of V , provided V is smooth and its reach is known.

Our perspective is that of computational algebraic geometry. We care deeply about the un-
known variety V . Our motivation is the riddle: what is V ? For instance, we may be given m = 800
samples in R9, drawn secretly from the group SO(3) of 3×3 rotation matrices. Our goal is to learn
the true dimension, which is three, to find the 20 quadratic polynomials that vanish on V , and to
conclude with the guess that V equals SO(3).

Our writing is organized as follows. First, we present basics of algebraic geometry from a data
perspective. Building on [64], we explain some relevant concepts and offer a catalogue of varieties
V frequently seen in applications. This includes our three running examples: the Trott curve, the
rotation group SO(3), and varieties of low rank matrices.

Next we address the problem of estimating the dimension of V from the sample Ω. We study
nonlinear PCA, box counting dimension, persistent homology curve dimension, correlation dimen-
sion and the methods of Levina-Bickel [139] and Diaz-Quiroz-Velasco [81]. Each of these notions
depends on a parameter ε between 0 and 1. This determines the scale from local to global at which
we consider Ω. Our empirical dimensions are functions of ε . We aggregate their graphs in the
dimension diagram of Ω, as seen in Figure 4.2.

Then we link algebraic geometry to topological data analysis. To learn homological informa-
tion about V from Ω, one wishes to know the reach of the variety V . This algebraic number is
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used to assess the quality of a sample [1, 155]. We propose a variant of persistent homology that
incorporates information about the tangent spaces of V at points in Ω.

A key feature of our setting is the existence of polynomials that vanish on the model V , ex-
tracted from polynomials that vanish on the sample Ω. Linear polynomials are found by Principal
Component Analysis (PCA). However, many relevant varieties V are defined by quadratic or cubic
equations. Below we discuss the computation of these polynomials.

Next we utilize the polynomials found earlier. These cut out a variety V ′ that contains V . We do
not know whether V ′ =V holds, but we would like to test this and certify it, using both numerical
and symbolic algorithms. The geography of Ω inside V ′ is studied by computing dimension,
degree, irreducible decomposition, real degree, and volume.

We then introduce our software package LearningAlgebraicVarieties. This is written in
Julia [23], and implements all algorithms described in this section. It is available at

https://github.com/PBrdng/LearningAlgebraicVarieties.git.

To compute persistent homology, we use Henselman’s package Eirene [117]. For numerical
algebraic geometry we use Bertini [20] and HomotopyContinuation.jl [44]. We conclude
with a detailed case study for the dataset in [3, Section 6.3]. Here, Ω consists of 6040 points
in R24, representing conformations of the molecule cyclooctane C8H16, shown in Figure 4.10.

Many important aspects of learning varieties from samples are not addressed in this work. One
is the issue of noise. Clearly, already the slightest noise in one of the points in Figure 4.1 will let
no equation of the form (x−α)2 +(y−β )2− γ vanish on Ω. But some will almost vanish, and
these are the equations we are looking for. Based on our experiments, the methods we present for
answering questions 1-5 can handle data that is approximate to some extent. However, we leave
a qualitative stability analysis for future work. We also assume that there are no outliers in our
data. Another aspect of learning varieties is optimization. We might be interested in minimizing
a polynomial function f over the unknown variety V by only looking at the samples in Ω. This
problem was studied by Cifuentes and Parrilo in [59], using the sum of squares (SOS) paradigm
[26].

Varieties and Data
The mathematics of data science is concerned with finding low-dimensional needles in high-
dimensional haystacks. The needle is the model which harbors the actual data, whereas the
haystack is some ambient space. The paradigms of models are the d-dimensional linear subspaces
V of Rn, where d is small and n is large. Most of the points in Rn are very far from any sample Ω

one might ever draw from V , even in the presence of noise and outliers.
The data scientist seeks to learn the unknown model V from the sample Ω that is available. If

V is suspected to be a linear space, then she uses linear algebra. The first tool that comes to mind is
Principal Component Analysis (PCA). Numerical algorithms for linear algebra are well-developed
and fast. They are at the heart of scientific computing and its numerous applications. However,
many models V occurring in science and engineering are not linear spaces. Attempts to replace V
with a linear approximation are likely to fail.

https://github.com/PBrdng/LearningAlgebraicVarieties.git
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This is the point where new mathematics comes in. Many branches of mathematics can help
with the needles of data science. One can think of V as a topological space, a differential manifold,
a metric space, a Lie group, a hypergraph, a category, a semi-algebraic set, and lots of other things.
All of these structures are useful in representing and analyzing models.

In this work we focus on the constraints that describe V inside the ambient Rn (or Pn−1
R ). The

paradigm says that these are linear equations, revealed numerically by feeding Ω to PCA. But, if
the constraints are not all linear, then we look for equations of higher degree.

Algebraic Geometry Basics
Our models V are algebraic varieties over the field R of real numbers. A variety is the set of
common zeros of a system of polynomials in n variables. A priori, a variety lives in Euclidean
space Rn. In many applications two points are identified if they agree up to scaling. In such cases,
one replaces Rn with the real projective space Pn−1

R , whose points are lines through the origin in
Rn. The resulting model V is a real projective variety, defined by homogeneous polynomials in n
unknowns. In this section, we use the term variety to mean any zero set of polynomials in Rn or
Pn−1
R . The following three varieties serve as our running examples.

Example 4.1.1 (Trott Curve). The Trott curve is the plane curve of degree four defined by

122(x4 + y4) − 152(x2 + y2) + 350x2y2 + 81 = 0. (4.1)

This curve is compact in R2 and has four connected components (see Figure 4.3). The equation of
the corresponding projective curve is obtained by homogenizing the polynomial (4.1). The curve
is nonsingular. The Trott curve is quite special because all of its bitangent lines are all fully real.
Plücker showed in 1839 that every plane quartic has 28 complex bitangents, Zeuthen argued in
1873 that the number of real bitangents is 28, 16, 8 or 4; see [163, Table 1].

Example 4.1.2 (Rotation Matrices). The group SO(3) consists of all 3×3-matrices X = (xi j) with
det(X) = 1 and XT X = Id3. The last constraint translates into 9 quadratic equations:

x2
11 + x2

21 + x2
31−1 x11x12 + x21x22 + x31x32 x11x13 + x21x23 + x31x33

x11x12 + x21x22 + x31x32 x2
12 + x2

22 + x2
32−1 x12x13 + x22x23 + x32x33

x11x13 + x21x23 + x31x33 x12x13 + x22x23 + x32x33 x2
13 + x2

23 + x2
33−1

(4.2)

These quadrics say that X is an orthogonal matrix. Adding the cubic det(X)− 1 gives 10 poly-
nomials that define SO(3) as a variety in R9. Their ideal I is prime. In total, there are 20 linearly
independent quadrics in I: the nine listed in (4.2), two from the diagonal of XXT − Id3, and nine
that express the right-hand rule for orientation, like x22x33− x23x32− x11.

Example 4.1.3 (Low Rank Matrices). Consider the set of m×n-matrices of rank ≤ r. This is the
zero set of

( m
r+1

)( n
r+1

)
polynomials, namely the (r+1)-minors. These equations are homogeneous

of degree r+1. Hence this variety lives naturally in the projective space Pmn−1
R .
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A variety V is irreducible if it is not a union of two proper subvarieties. The above varieties are
irreducible. A sufficient condition for a variety to be irreducible is that it has a parametrization by
rational functions. This holds in Example 4.1.3 where V consists of the matrices UT

1 U2 where U1
and U2 have r rows. It also holds for the rotation matrices

X =
1

1−a2−b2−c2−d2

(
1−2b2−2c2 2ab−2cd 2ac+2bd
2ab+2cd 1−2a2−2c2 2bc−2ad
2ac−2bd 2bc+2ad 1−2a2−2b2

)
. (4.3)

However, smooth quartic curves in P2
R admit no such rational parametrization.

The two most basic invariants of a variety V are its dimension and its degree. The former is
the length d of the longest proper chain of irreducible varieties V1 ⊂V2 ⊂ ·· · ⊂Vd ⊂V . A general
system of d linear equations has a finite number of solutions on V . That number is well-defined
if we work over C. It is the degree of V , denoted deg(V ). The Trott curve has dimension 1 and
degree 4. The group SO(3) has dimension 3 and degree 8. In Example 4.1.3, if m = 3,n = 4 and
r = 2, then the projective variety has dimension 9 and degree 6.

There are several alternative definitions of dimension and degree in algebraic geometry. For
instance, they are read off from the Hilbert polynomial, which can be computed by way of Gröbner
bases. We refer to Chapter 9, titled Dimension Theory, in the textbook [64].

A variety that admits a rational parametrization is called unirational. Smooth plane curves
of degree ≥ 3 are not unirational. However, the varieties V that arise in applications are often
unirational. The reason is that V often models a generative process. This happens in statistics,
where V represents some kind of (conditional) independence structure. Examples include graphical
models, hidden Markov models and phylogenetic models.

If V is a unirational variety with given rational parametrization, then it is easy to create a finite
subset Ω of V . One selects parameter values at random and plugs these into the parametrization.
For instance, one creates rank one matrices by simply multiplying a random column vector with a
random row vector. A naive approach to sampling from the rotation group SO(3) is plugging four
random real numbers a,b,c,d into the parametrization (4.3). Another method for sampling from
SO(3) will be discussed in Section 4.1.

Given a dataset Ω⊂Rn that comes from an applied context, it is reasonable to surmise that the
underlying unknown variety V admits a rational parametrization. However, from the vantage point
of a pure geometer, such unirational varieties are rare. To sample from a general variety V , we
start from its defining equations, and we solve dim(V ) many linear equations on V . The algebraic
complexity of carrying this out is measured by deg(V ). See Dufresne et al. [90] for recent work
on sampling by way of numerical algebraic geometry.

Example 4.1.4. One might sample from the Trott curve V in Example 4.1.1 by intersecting it
with a random line. Algebraically, one solves dim(V ) = 1 linear equation on the curve. That line
intersects V in deg(V ) = 4 points. Computing the intersection points can be done numerically,
but also symbolically by using Cardano’s formula for the quartic. In either case, the coordinates
computed by these methods may be complex numbers. Such points are simply discarded if real
samples are desired. This can be a rather wasteful process.
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At this point, optimization and real algebraic geometry enter the scene. Suppose that upper and
lower bounds are known for the values of a linear function ` on V . In that case, the equations to
solve have the form `(x) = α , where α is chosen between these bounds.

For the Trott curve, we might know that no real points exist unless |x| ≤ 1. We choose x at
random between −1 and +1, plug it into the equation (4.1), and then solve the resulting quartic
in y. The solutions y thus obtained are likely to be real, thus giving us lots of real samples on the
curve. Of course, for arbitrary real varieties, it is a hard problem to identify a priori constraints
that play the role of |x| ≤ 1. However, recent advances in polynomial optimization, notably in
sum-of-squares programming [26], should be quite helpful.

At this point, let us recap and focus on a concrete instance of the riddles we seek to solve.

Example 4.1.5. Let n = 6, m = 40 and consider the following forty sample points in R6:

(0,−2,6,0,−1,12) (−4,5,−15,−12,−5,15) (−4,2,−3,2,6,−1) (0,0,−1,−6,0,4)
(12,3,−8,8,−12,2) (20,24,−30,−25,24,−30) (9,3,5,3,15,1) (12,9,−25,20,−15,15)
(0,−10,−12,0,8,15) (15,−6,−4,5,−12,−2) (3,2,6,6,3,4) (12,−8,9,9,12,−6)
(2,−10,15,−5,−6,25) (5,−5,0,−3,0,3) (−12,18,6,−8,9,12) (12,10,−12,−18,8,−15)

(1,0,−4,−2,2,0) (4,−5,0,0,−3,0) (12,−2,1,6,2,−1) (−5,0,−2,5,2,0)
(3,−2,−8,−6,4,4) (−3,−1,−9,−9,−3,−3) (0,1,−2,0,1,−2) (5,6,8,10,4,12)
(2,0,−1,−1,2,0) (12,−9,−1,4,−3,−3) (5,−6,16,−20,−4,24) (0,0,1,−3,0,1)

(15,−10,−12,12,−15,−8) (15,−5,6,6,15,−2) (−2,1,6,−12,1,6) (3,2,0,0,−2,0)
(24,−20,−6,−18,8,15) (−3,3,−1,−3,−1,3) (−10,0,6,−12,5,0) (2,−2,10,5,4,−5)
(4,−6,1,−2,−2,3) (3,−5,−6,3,−6,−5) (0,0,−2,3,0,1) (−6,−4,−30,15,12,10)

Where do these samples come from? Do the zero entries or the sign patterns offer any clue?
To reveal the answer we label the coordinates as (x22,x21,x13,x12,x23,x11). The relations

x11x22− x12x21 = x11x23− x13x21 = x12x23− x22x13 = 0

hold for all 40 data points. Hence V is the variety of 2× 3-matrices (xi j) of rank ≤ 1. Following
Example 4.1.3, we view this as a projective variety in P5

R. In that ambient projective space, the
determinantal variety V is a manifold of dimension 3 and degree 3. Note that V is homeomorphic
to P1

R×P2
R, so we can write its homology groups using the Künneth formula.

In data analysis, proximity between sample points plays a crucial role. There are many ways
to measure distances. In this section we restrict ourselves to two metrics. For data in Rn we use
the Euclidean metric, which is induced by the standard inner product 〈u,v〉= ∑

n
i=1 uivi. For data in

Pn−1
R we use the Fubini-Study metric. Points u and v in Pn−1

R are represented by their homogeneous
coordinate vectors. The Fubini-Study distance from u to v is the angle between the lines spanned
by representative vectors u and v in Rn:

distFS(u,v) = arccos
|〈u,v〉|
‖u‖‖v‖

. (4.4)

This formula defines the unique Riemannian metric on Pn−1
R that is orthogonally invariant.
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A Variety of Varieties
In what follows we present some “model organisms” seen in applied algebraic geometry. Famil-
iarity with a repertoire of interesting varieties is an essential prerequisite for those who are serious
about learning algebraic structure from the datasets Ω they might encounter.

Rank Constraints. Consider m×n-matrices with linear entries having rank≤ r. We saw the r = 1
case in Example 4.1.3. A rank variety is the set of all tensors of fixed size and rank that satisfy
some linear constraints. The constraints often take the simple form that two entries are equal. This
includes symmetric matrices, Hankel matrices, Toeplitz matrices, Sylvester matrices, etc. Many
classes of structured matrices generalize naturally to tensors.

Example 4.1.6. Let n =
(s

2

)
and identify Rn with the space of skew-symmetric s× s-matrices

P = (pi j). These satisfy PT =−P. Let V be the variety of rank 2 matrices P in Pn−1
R . A parametric

representation is given by pi j = aib j−a jbi, so the pi j are the 2×2-minors of a 2× s-matrix. The
ideal of V is generated by the 4×4 pfaffians pi j pkl− pik p jl + pil p jk. These

(s
4

)
quadrics are also

known as the Plücker relations, and V is the Grassmannian of 2-dimensional linear subspaces in
Rs. The r-secants of V are represented by the variety of skew-symmetric matrices of rank ≤ 2r.
Its equations are the (2r+2)× (2r+2) pfaffians of P. We refer to [111, Lectures 6 and 9] for an
introduction to these classical varieties.

Example 4.1.7. The space of 3×3×3×3 tensors (xi jkl)1≤i, j,k,l≤3 has dimension 81. Suppose we
sample from its subspace of symmetric tensors m = (mrst)0≤r≤s≤t≤3. This has dimension n = 20.
We use the convention mrst = xi jkl where r is the number of indices 1 in (i, j,k, l), s is the number
of indices 2, and t is the number of indices 3. This identifies tensors m with cubic polynomials
m = ∑i+ j+k≤3 mi jkxiy jzk, and hence with cubic surfaces in 3-space. Fix r ∈ {1,2,3} and take V to
be the variety of tensors m of rank ≤ r. The equations that define the tensor rank variety V are the
(r+1)× (r+1)-minors of the 4×10 Hankel matrixm000 m100 m010 m001 m200 m110 m101 m020 m011 m002

m100 m200 m110 m101 m300 m210 m201 m120 m111 m102
m010 m110 m020 m011 m210 m120 m111 m030 m021 m012
m001 m101 m011 m002 m201 m111 m102 m021 m012 m003

 .
See Landsberg’s book [133] for an introduction to the geometry of tensors and their rank.

Example 4.1.8. In distance geometry, one encodes finite metric spaces with p points in the Schön-
berg matrix D =

(
dip + d jp− di j

)
where di j is the squared distance between points i and j. The

symmetric (p−1)× (p−1) matrix D is positive semidefinite if and only if the metric space is Eu-
clidean, and its embedding dimension is the rank r of D. See [75, Section 6.2.1] for a textbook
introduction and derivation of Schönberg’s esults. Hence the rank varieties of the Schönberg ma-
trix D encode the finite Euclidean metric spaces with p points. A prominent dataset corresponding
to the case p = 8 and r = 3 will be studied in Section 4.1.

Matrices and tensors with rank constraints are ubiquitous in data science. Make sure to search
for such low rank structures when facing vectorized samples, as in Example 4.1.5.
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Hypersurfaces. The most basic varieties are defined by just one polynomial. When given a sample
Ω, one might begin by asking for hypersurfaces that contain Ω and that are especially nice, simple
and informative. Here are some examples of special structures worth looking for.

Example 4.1.9. For s = 6,r = 2 in Example 4.1.6, V is the hypersurface of the 6×6-pfaffian:

p16 p25 p34− p15 p26 p34− p16 p24 p35 + p14 p26 p35 + p15 p24 p36
−p14 p25 p36 + p16 p23 p45− p13 p26 p45 + p12 p36 p45− p15 p23 p46
+p13 p25 p46− p12 p35 p46 + p14 p23 p56− p13 p24 p56 + p12 p34 p56.

(4.5)

The 15 monomials correspond to the matchings of the complete graph with six vertices.

Example 4.1.10. The hyperdeterminant of format 2×2×2 is a polynomial of degree four in n = 8
unknowns, namely the entries of a 2×2×2-tensor X = (xi jk). Its expansion equals

x2
110x2

001+x2
100x2

011+x2
010x2

101+x2
000x2

111 +4x000x110x011x101+4x010x100x001x111−2x100x110x001x011
−2x010x110x001x101−2x010x100x011x101−2x000x110x001x111−2x000x100x011x111−2x000x010x101x111.

This hypersurface is rational and it admits several nice parameterizations, useful for sampling
points. For instance, up to scaling, we can take the eight principal minors of a symmetric 3× 3-
matrix, with x000 = 1 as the 0×0-minor, x100,x010,x001 for the 1×1-minors (i.e. diagonal entries),
x110,x101,x011 for the 2×2-minors, and x111 for the 3×3-determinant.

Example 4.1.11. Let n = 10, with coordinates for R10 given by the off-diagonal entries of a sym-
metric 5×5-matrix (xi j). There is a unique quintic polynomial in these variables that vanishes on
symmetric 5× 5-matrices of rank ≤ 2. This polynomial, known as the pentad, plays a historical
role in the statistical theory of factor analysis [87, Example 4.2.8]. It equals

x14x15x23x25x34− x13x15x24x25x34− x14x15x23x24x35 + x13x14x24x25x35
+x12x15x24x34x35− x12x14x25x34x35 + x13x15x23x24x45− x13x14x23x25x45
−x12x15x23x34x45 + x12x13x25x34x45 + x12x14x23x35x45− x12x13x24x35x45.

We can sample from the pentad using the parametrization xi j = aib j + cid j for 1≤ i < j ≤ 5.

Example 4.1.12. The determinant of the (p−1)× (p−1) matrix in Example 4.1.8 equals the
squared volume of the simplex spanned by p points in Rp−1. If p = 3 then we get Heron’s formula
for the area of a triangle in terms of its side lengths. The hypersurface in R(

p
2) defined by this

polynomial represents configurations of p points in Rp−1 that are degenerate.

One problem with interesting hypersurfaces is that they often have a very high degree and it
would be impossible to find that equation by our methods in Section 4.1. For instance, the Lüroth
hypersurface [17] in the space of ternary quartics has degree 54, and the restricted Boltzmann
machine [65] on four binary random variables has degree 110. These hypersurfaces are easy to
sample from, but there is little hope to learn their equations from those samples.

Secret Linear Spaces. This refers to varieties that become linear spaces after a simple change of
coordinates. Linear spaces V are easy to recognize from samples Ω using PCA.



CHAPTER 4. GEOMETRY OF DATA 76

Toric varieties become linear spaces after taking logarithms, so they can be learned by taking
the coordinatewise logarithm of the sample points. Formally, a toric variety is the image of a
monomial map. Equivalently, it is an irreducible variety defined by binomials.

Example 4.1.13. Let n = 6,m = 40 and consider the following dataset in R6:

(91,130,169,70,91,130) (4,2,1,8,4,2) (6,33,36,11,12,66) (24,20,44,30,66,55)
(8,5,10,40,80,50) (11,11,22,2,4,4) (88,24,72,33,99,27) (14,77,56,11,8,44)

(70,60,45,84,63,54) (143,13,78,11,66,6) (182,91,156,98,168,84) (21,98,91,42,39,182)
(5,12,3,20,5,12) (80,24,8,30,10,3) (3,5,5,15,15,25) (10,10,11,10,11,11)

(121,66,88,66,88,48) (45,81,63,45,35,63) (48,52,12,156,36,39) (45,50,60,45,54,60)
(143,52,117,44,99,36) (56,63,7,72,8,9) (10,55,20,11,4,22) (91,56,7,104,13,8)

(24,6,42,4,28,7) (18,10,18,45,81,45) (36,27,117,12,52,39) (3,2,2,3,3,2)
(40,10,35,8,28,7) (22,10,26,55,143,65) (132,36,60,33,55,15) (98,154,154,77,77,121)

(55,20,55,44,121,44) (24,30,39,40,52,65) (22,22,28,121,154,154) (6,3,6,4,8,4)
(77,99,44,63,28,36) (30,20,90,6,27,18) (1,5,2,5,2,10) (26,8,28,26,91,28)

Replace each of these forty vectors by its coordinate-wise logarithm. Applying PCA to the result-
ing vectors, we learn that our sample comes from a 4-dimensional subspace of R6. This is the row
space of a 4×6-matrix whose columns are the vertices of a regular octahedron:

A =

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .

Our original samples came from the toric variety XA associated with this matrix. This means each
sample has the form (ab,ac,ad,bc,bd,cd), where a,b,c,d are positive real numbers.

Toric varieties are important in applications. For instance, in statistics they correspond to expo-
nential families for discrete random variables. Overlap with rank varieties arises for matrices and
tensors of rank 1. Those smallest rank varieties are known in geometry as the Segre varieties (for
arbitrary tensors) and the Veronese varieties (for symmetric tensors). These special varieties are
toric, so they are represented by an integer matrix A as above.

Example 4.1.14. Let n = 6 and take Ω to be a sample of points of the form(
(2a+b)−1,(a+2b)−1,(2a+ c)−1,(a+2c)−1,(2b+ c)−1,(b+2c)−1 ).

The corresponding variety V ⊂ P5
R is a reciprocal linear space V ; see [131]. In projective geome-

try, such a variety arises as the image of a linear space under the classical Cremona transformation.
From the sample we can learn the variety V by replacing each data point by its coordinate-wise
inverse. Applying PCA to these reciprocalized data, we learn that V is a surface in P5

R, cut out by
ten cubics like 2x3x4x5− x3x4x6−2x3x5x6 + x4x5x6.

Algebraic Statistics and Computer Vision. Model selection is a standard task in statistics. The
models considered in algebraic statistics [87] are typically semi-algebraic sets, and it is customary
to identify them with their Zariski closures, which are algebraic varieties.
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Example 4.1.15. Bayesian networks are also known as directed graphical models. The corre-
sponding varieties are parametrized by monomial maps from products of simplices. Here are the
equations for a Bayesian network on 4 binary random variables [87, Example 3.3.11]:

(x0000 + x0001)(x0110 + x0111)− (x0010 + x0011)(x0100 + x0101),
(x1000 + x1001)(x1110 + x1111)− (x1010 + x1011)(x1100 + x1101),

x0000x1001− x0001x1000, x0010x1011− x0011x1010, x0100x1101− x0101x1100, x0110x1111− x0111x1110.

The coordinates xi jkl represent the probabilities of observing the 16 states under this model.

Computational biology is an excellent source of statistical models with interesting geometric
and combinatorial properties. These include hidden variable tree models for phylogenetics, and
hidden Markov models for gene annotation and sequence alignment.

In the social sciences and economics, statistical models for permutations are widely used:

Example 4.1.16. Let n= 6 and consider the Plackett-Luce model for rankings of three items [179].
Each item has a model parameter θi, and we write xi jk for the probability of observing the permu-
tation i jk. The model is the surface in P5

R given by the parametrization

x123 = θ2θ3(θ1+θ3)(θ2+θ3), x132 = θ2θ3(θ1+θ2)(θ2+θ3), x213 = θ1θ3(θ1+θ3)(θ2+θ3),
x231 = θ1θ3(θ1+θ2)(θ1+θ3), x312 = θ1θ2(θ1+θ2)(θ2+θ3), x321 = θ1θ2(θ1+θ2)(θ1+θ3).

The prime ideal of this model is generated by three quadrics and one cubic:

x123(x321 + x231)− x213(x132 + x312) , x312(x123 + x213)− x132(x231 + x321),
x231(x132 + x312)− x321(x123 + x213), x123x231x312− x132x321x213.

When dealing with continuous distributions, we can represent certain statistical models as va-
rieties in moment coordinates. This applies to Gaussians and their mixtures.

Example 4.1.17. Consider the projective variety in P6
R given parametrically by m0 = 1 and

m1 = λ µ +(1−λ )ν
m2 = λ (µ2 +σ2)+(1−λ )(ν2 + τ2)
m3 = λ (µ3 +3µσ2)+(1−λ )(ν3 +3ντ2)
m4 = λ (µ4 +6µ2σ2 +3σ4)+(1−λ )(ν4 +6ν2τ2 +3τ4)
m5 = λ (µ5 +10µ3σ2 +15µσ4)+(1−λ )(ν5 +10ν3τ2 +15ντ4)
m6 = λ (µ6 +15µ4σ2 +45µ2σ4 +15σ6)+(1−λ )(ν6 +15ν4τ2 +45ν2τ4 +15τ6).

These are the moments of order ≤ 6 of the mixture of two Gaussian random variables on the line.
Here µ and ν are the means, σ and τ are the variances, and λ is the mixture parameter. It was
shown in [9, Theorem 1] that this is a hypersurface of degree 39 in P6. For µ = 0 we get the
Gaussian moment surface which is defined by the 3×3-minors of the 3×6-matrix(

0 m0 2m1 3m2 4m3 5m4
m0 m1 m2 m3 m4 m5
m1 m2 m3 m4 m5 m6

)
.
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Example 4.1.18. Let n = 9 and fix the space of 3×3-matrices. An essential matrix is the product
of a rotation matrix times a skew-symmetric matrix. In computer vision, these matrices represent
the relative position of two calibrated cameras in 3-space. Their entries xi j serve as invariant
coordinates for pairs of such cameras. The variety of essential matrices is defined by ten cubics.
These are known as the Démazure cubics [127, Example 2.2].

The article [127] studies camera models in the presence of distortion. For example, the model
described in [127, Example 2.3] concerns essential matrices plus one focal length unknown. This
is the codimension two variety defined by the 3×3-minors of the 3×4-matrix(

x11 x12 x13 x21x31 + x22x32 + x23x33
x21 x22 x23 −x11x31− x12x32− x13x33
x31 x32 x33 0

)
.

Learning such models is important for image reconstruction in computer vision.

Estimating the Dimension
The first question one asks about a variety V is “What is the dimension?”. In what follows, we
discuss methods for estimating dim(V ) from the finite sample Ω, taken from V . We present six
dimension estimates. They are motivated and justified by geometric considerations. For a mani-
fold, dimension is defined in terms of local charts. This is consistent with the notion of dimension
in algebraic geometry [64, Chapter 9]. The dimension estimates in this section are based on Ω

alone. Later sections will address the computation of equations that vanish on V . These can be
employed to find upper bounds on dim(V ); see (4.23). In what follows, however, we do not have
that information. All we are given is the input Ω = {u(1), . . . ,u(m)}.

Dimension Diagrams
There is an extensive literature (see e.g. [50,51]) on computing an intrinsic dimension of the sample
Ω from a manifold V . The intrinsic dimension of Ω is a positive real number that approximates
the Hausdorff dimension of V , a quantity that measures the local dimension of a space using the
distances between nearby points. It is a priori not clear that the algebraic definition of dim(V )
agrees with the topological definition of Hausdorff dimension that is commonly used in manifold
learning. However, this will be true under the following natural hypotheses. We assume that
V is a variety in Rn or Pn−1

R such that the set of real points is Zariski dense in each irreducible
component of V . If V is irreducible, then its singular locus Sing(V ) is a proper subvariety, so it
has measure zero. The regular locus V\Sing(V ) is a real manifold. Each connected component is
a real manifold of dimension d = dim(V ).

The definitions of intrinsic dimension can be grouped into two categories: local methods and
global methods [51, 124]. Definitions involving information about sample neighborhoods fit into
the local category, while those that use the whole dataset are called global.

Instead of making such a strict distinction between local and global, we introduce a parameter
0≤ ε ≤ 1. The idea behind this is that ε should determine the range of information that is used to
compute the dimension from the local scale (ε = 0) to the global scale (ε = 1).
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To be precise, for each of the dimension estimates, locality is determined by a notion of dis-
tance: the point sample Ω is a finite metric space. In our context we restrict extrinsic metrics to
the sample. For samples Ω⊂ Rn we work with the scaled Euclidean distance

distRn(u,v) :=
‖u− v‖

maxx,y∈Ω ‖x− y‖
. (4.6)

For samples Ω taken in projective space Pn−1
R we use the scaled Fubini-Study distance

distPn−1
R

(u,v) :=
distFS(u,v)

maxx,y∈Ω distFS(x,y)
. (4.7)

Two points u(i) and u( j) in Ω are considered ε-close with respect to the parameter ε if distRn(u,v)≤
ε or distPn−1

R
(u,v) ≤ ε , respectively. Given ε we divide the sample Ω into clusters Ωε

1, . . . ,Ω
ε
l ,

which are defined in terms of ε-closeness, and apply the methods to each cluster separately, thus
obtaining dimension estimates whose definition of being local depends on ε . In particular, for
ε = 0 we consider each sample point individually, while for ε = 1 we consider the whole sample.
Intermediate values of ε interpolate between the two.

Many of the definitions of intrinsic dimension are consistent. This means that it is possible
to compute a scale ε from Ω for which the intrinsic dimension of each cluster converges to the
dimension of V if m is sufficiently large and Ω is sampled sufficiently densely. By contrast, our
paradigm is that m is fixed. For us, m does not tend to infinity. Our standing assumption is that
we are given one fixed sample Ω. The goal is to compute a meaningful dimension from that
fixed sample of m points. For this reason, we cannot unreservedly employ results on appropriate
parameters ε in our methods. The sample Ω will almost never satisfy the assumptions that are
needed. Our approach to circumvent this problem is to create a dimension diagram. Such diagrams
are shown in Figures 4.2, 4.6, 4.8 and 4.11.

Definition 4.1.19. Let dim(Ω,ε) be one of the subsequent dimension estimates. The dimension
diagram of the sample Ω is the graph of the function (0,1] R≥0, ε 7→ dim(Ω,ε).

Remark 4.1.20. The idea of using dimension diagrams is inspired by persistent homology. Our
dimension diagrams and our persistent homology barcodes of Section 4.1 both use ε in the interval
[0,1] for the horizontal axis. This uniform scale for all samples Ω makes comparisons across
different datasets easier.

The true dimension of a variety is an integer. However, we defined the dimension diagram to
be the graph of a function whose range is a subset of the real numbers. The reason is that the subse-
quent estimates do not return integers. A noninteger dimension can be meaningful mathematically,
such as in the case of a fractal curve which fills space densely enough that its dimension could be
considered closer to 2 than 1. By plotting these diagrams, we hope to gain information about the
true dimension d of the variety V from which Ω was sampled.

One might be tempted to use the same dimension estimate for Rn and Pn−1
R , possibly via the

Euclidean distance on an affine patch of Pn−1
R . However, the Theorema Egregium by Gauss implies
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Figure 4.2: Dimension diagrams for 600 points on the variety of 3× 4 matrices of rank 2. This
is a projective variety of dimension 9. Its affine cone has dimension 10. The left picture shows
dimension diagrams for the estimates in Euclidean space R12. The right picture shows those for
projective space P11

R . The projective diagrams yield better estimates. The 600 data points were
obtained by independently sampling pairs of 4× 2 and 2× 3 matrices, each with independent
entries from the normal distribution, and then multiplying them.

that any projection from Pn−1
R to Rn−1 must distort lengths. Hence, because we gave the parameter

ε a metric meaning, we must be careful and treat real Euclidean space and real projective space
separately.

Each of the curves seen in Figure 4.2 is a dimension diagram. We used six different methods
for estimating the dimension on a fixed sample of 600 points. For the horizontal axis on the left
we took the distance (4.6) in R12. For the diagram on the right we took (4.7) in P11

R .

Six Dimension Estimates
In this section, we introduce six dimension estimates. They are adapted from the existing litera-
ture. Figures 4.2, 4.6, 4.8 and 4.11 show dimension diagrams generated by our implementation.
Judging from those figures, the estimators CorrSum, PHCurve, MLE and ANOVA all perform
well on each of the examples. By contrast, NPCA and BoxCounting frequently overestimate the
dimension. In general, we found it useful to allow for a “majority vote" for the dimension. That
is, we choose as dimension estimate the number which is closest to most of the estimators for a
significant (i.e. “persistent”) range of ε-values in [0,1].

NPCA Dimension. The gold standard of dimension estimation is PCA. Assuming that V is a
linear subspace of Rn, we perform the following steps for the input Ω. First, we record the
mean u := 1

m ∑
m
i=1 u(i). Let M be the m× n-matrix with rows u(i)− u. We compute σ1 ≥ ·· · ≥

σmin{m,n}, the singular values of M. The PCA dimension is the number of σi above a certain
threshold. For instance, this threshold could be the same as in the definition of the numerical
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rank in (4.21) below. Following [137, 30], another idea is to set the threshold as σk, where
k = argmax1≤i≤min{m,n}−1| log10(σi+1)− log10(σi)|. In our experiments we found that this im-
proved the dimension estimates. In some situations it is helpful to further divide each column of
M by its standard deviation. This approach is explained in [137, 26].

Using PCA on a local scale is known as Nonlinear Principal Component Analysis (NPCA).
Here we partition the sample Ω into l clusters Ωε

1, . . . ,Ω
ε
l ⊂ Ω depending on ε . For each Ωε

i we
apply the usual PCA and obtain the estimate dimpca(Ω

ε
i ). The idea behind this is that the man-

ifold V\Sing(V ) is approximately linear locally. We take the average of these local dimensions,
weighted by the size of each cluster. The result is the nonlinear PCA dimension

dimnpca(Ω,ε) :=
1

∑
l
i=1 |Ωε

i |

l

∑
i=1
|Ωε

i | ·dimpca(Ω
ε
i ). (4.8)

Data scientists have many clustering methods. For our study we use single linkage clustering.
This works as follows. The clusters are the connected components in the graph with vertex set Ω

whose edges are the pairs of points having distance at most ε . We do this either in Euclidean space
with metric (4.6), or in projective space with metric (4.7). In the latter case, the points come from
the cone over the true variety V . To make Ω less scattered, we sample a random linear function
l and scale each data point u(i) such that l(u(i)) = 1. Then we use those affine coordinates for
NPCA. We chose this procedure because NPCA detects linear spaces and the proposed scaling
maps projective linear spaces to affine-linear spaces.

We next introduce the notions of box counting dimension, persistent homology curve dimen-
sion and correlation dimension. All three of these belong to the class of fractal-based methods,
since they rest on the idea of using the fractal dimension as a proxy for dim(V ).

Box Counting Dimension. Here is the geometric idea in R2. Consider a square of side length 1
which we cover by miniature squares. We could cover it with 4 squares of side length 1

2 , or 9
squares of side length 1

3 , etc. What remains constant is the log ratio of the number of pieces over
the magnification factor. For the square: log(4)

log(2) =
log(9)
log(3) = 2. If Ω only intersects 3 out of 4 smaller

squares, then we estimate the dimension to be between 1 and 2.
In Rn we choose as a box the parallelopiped with lower vertex u− = min(u(1), . . . ,u(m)) and

upper vertex u+ = max(u(1), . . . ,u(m)), where “min” and “max” are coordinatewise minimum and
maximum. Thus the box is {x ∈ Rn : u− ≤ x ≤ u+}. For j = 1, . . . ,n, the interval [u−j ,u

+
j ] is

divided into R(ε) equally sized intervals, whose length depends on ε . A d-dimensional object is
expected to capture R(ε)d boxes. We determine the number ν of boxes that contain a point in Ω.
Then the box counting dimension estimate is

dimbox(Ω,ε) :=
log(ν)

log(R(ε))
. (4.9)

How to define the function R(ε)? Since the number of small boxes is very large, we cannot iterate
through all boxes. It is desirable to decide from a data point u ∈ Ω in which box it lies. To this
end, we set R(ε) = bλ

ε
c+1, where λ := max1≤ j≤n |u+j −u−j |. Then, for u ∈Ω and k = 1, . . . ,n we
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compute the largest qk such that qk
R(ε) |u

+
k − u−k | ≤ |uk−u−k |. The n numbers q1, . . . ,qn completely

determine the box that contains the sample u.
For the box counting dimension in real projective space, we represent the points in Ω on an

affine patch of Pn−1
R . On this patch we do the same construction as above, the only exception being

that “equally sized intervals” is measured in terms of scaled Fubini-Study distance (4.7).

Persistent Homology Curve Dimension. The underlying idea was proposed by the Pattern Anal-
ysis Lab at Colorado State University [160]. First we partition Ω into l clusters Ωε

1, . . . ,Ω
ε
l using

single linkage clustering with ε . On each subsample Ωi we construct a minimal spanning tree.
Suppose that the cluster Ωi has mi points. Let li( j) be the length of the j-th longest edge in a
minimal spanning tree for Ωi. For each Ωi we compute

dimPHcurve(Ωi,ε) =

∣∣∣∣∣ log(mi)

log( 1
mi−1 ∑

mi−1
j=1 li( j))

∣∣∣∣∣ .
The persistent homology curve dimension estimate dim()PHCurve(Ω,ε) is the average of the local
dimensions, weighted by the size of each cluster:

dimPHcurve(Ω,ε) :=
1

∑
l
i=1 |Ωε

i |

m

∑
i=1
|Ωi|dimPHcurve(Ωi,ε).

In the clustering step we take the distance (4.6) if the variety is affine and (4.7) if it is projective.

Correlation Dimension. This is motivated as follows. Suppose that Ω is uniformly distributed
in the unit ball. For pairs u,v ∈ Ω, we have Prob{distRn(u,v) < ε} = εd , where d = dim(V ). We
set C(ε) := (1/

(m
2

)
) ·∑1≤i< j≤m 1(distRn(u(i),u( j)) < ε) , where 1 is the indicator function. Since

we expect the empirical distribution C(ε) to be approximately εd , this suggests using log(C(ε))
log(ε)

as dimension estimate. In [137, Section 3.2.6] it is mentioned that a more practical estimate is
obtained from C(ε) by selecting some small h > 0 and putting

dimcor(Ω,ε) :=
∣∣∣∣ logC(ε)− logC(ε +h)

log(ε)− log(ε +h)

∣∣∣∣ . (4.10)

In practice, we compute the dimension estimates for a finite subset of parameters ε1, . . . ,εk and put
h=mini 6= j |εi−ε j|. The ball in Pn−1

R defined by the scaled Fubini-Study distance (4.7) is a spherical
cap of radius ε . Its volume relative to a cap of radius 1 is

∫
ε

0 (sinα)d−1dα/
∫ 1

0 (sinα)d−1dα , which
we approximate by

( sin(ε)
sin(1)

)d . Hence, the projective correlation dimension estimate is

dimcor(Ω,ε) :=
∣∣∣∣ logC(ε)− logC(ε +h)
log(sin(ε))− log(sin(ε +h))

∣∣∣∣ ,
with the same h as above and where C(ε) is now computed using the Fubini-Study distance.

We next describe two more methods. They differ from the aforementioned in that they derive
from estimating the dimension of the variety V locally at a distinguished point u(?).
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MLE Dimension. Levina and Bickel [139] introduced a maximum likelihood estimator for the
dimension of an unknown variety V . Their estimate is derived for samples in Euclidean space Rn.
Let k be the number of samples u( j) in Ω that are within distance ε to u(?). We write Ti(u(?)) for
the distance from u(?) to its i-th nearest neighbor in Ω. Note that Tk(u(?)) ≤ ε < Tk+1(u(?)). The
Levina-Bickel formula around the point u(?) is

dimMLE(Ω,ε,u(?)) :=

(
1
k

k

∑
i=1

log
ε

Ti(u(?))

)−1

. (4.11)

This expression is derived from the hypothesis that k = k(ε) obeys a Poisson process on the ε-
neighborhood {u ∈Ω : distRn(u,u(?))≤ ε}, in which u is uniformly distributed. The formula (4.11)
is obtained by solving the likelihood equations for this Poisson process.

In projective space, we model k(ε) as a Poisson process on {u ∈ Ω : distPn−1
R

(u,u(?)) ≤ ε}.
However, instead of assuming that u is uniformly distributed in that neighborhood, we assume
that the orthogonal projection of u onto the tangent space Tu(?)P

n−1
R is uniformly distributed in the

associated ball of radius sinε . Then, we derive the formula

dimMLE(Ω,ε,u(?)) :=

(
1
k

k

∑
i=1

log
sin(ε)

sin(T̂i(u(?)))

)−1

,

where T̂i(u(?)) is the distance from u(?) to its i-th nearest neighbor in Ω measured for (4.7).
It is not clear how to choose u(?) from the given Ω. We chose the following method. Fix

the sample neighborhood Ωε
i := {u ∈ Ω : distRn(u,u(i)) ≤ ε}. For each i we evaluate the formula

(4.11) for Ωε
i with distinguished point u(i). With this, the MLE dimension estimate is

dimMLE(Ω,ε) :=
1

∑
m
i=1 |Ωε

i |

m

∑
i=1
|Ωε

i | ·dimMLE(Ω
ε
i ,ε,u

(i)).

ANOVA Dimension. Diaz, Quiroz and Velasco [81] derived an analysis of variance estimate for
the dimension of V . In their approach, the following expressions are important:

β2s−1 =
π2

4
−2

s

∑
j=0

1
(2 j+1)2 and β2s =

π2

12
−2

s

∑
j=0

1
(2 j)2 for s ∈ N. (4.12)

The quantity βd is the variance of the random variable Θd , defined as the angle between two
uniformly chosen random points on the (d−1)-sphere. We again fix ε > 0, and we relabel so that
u(1), . . . ,u(k) are the points in Ω with distance at most ε from u(?). Let θi j ∈ [0,π] denote the angle
between u(i)−u(?) and u( j)−u(?). Then, the sample covariance of the θi j is

S =
1(k
2

) ∑
1≤i< j≤k

(
θi j−

π

2

)2
. (4.13)
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The analysis in [81] shows that, for small ε and Ω sampled from a d-dimensional manifold, the
angles θi j are approximately Θd-distributed. Hence, S is expected to be close to βdim(V ). The
ANOVA dimension estimate of Ω is the index d such that βd is closest to S:

dimANOVA(Ω,ε,u(?)) := argmind |βd−S|. (4.14)

As for the MLE estimate, we average (4.14) over all u ∈Ω being the distinguished point.
To transfer the definition to projective space, we revisit the idea behind the ANOVA estimate.

For u close to u(?), the secant through u and u(?) is approximately parallel to the tangent space of V
at u(?). Hence, the unit vector (u(?)−u)/‖u(?)−u‖ is close to being in the tangent space Tu(?)(V ).
The sphere in Tu(?)(V ) has dimension dimV −1 and we know the variances of the random angles
Θd . To mimic this construction in Pn−1

R we use the angles between geodesics meeting at u(?). In
our implementation, we orthogonally project Ω to the tangent space Tu(?)P

n−1
R and compute (4.13)

using coordinates on that space.
We have defined all the mathematical ingredients inherent in our dimension diagrams. Fig-

ure 4.2 now makes sense. Our software and its applications will be discussed in Section 4.1.

Persistent Homology
This section connects algebraic geometry and topological data analysis. It concerns the computa-
tion and analysis of the persistent homology (see Section 1.4) of our sample Ω. Persistent homol-
ogy of Ω contains information about the shape of the unknown variety V from which Ω originates.

Barcodes
Let us briefly review the idea. Given Ω, we associate a simplicial complex with each value of a
parameter ε ∈ [0,1]. Just like in the case of the dimension diagrams in the previous section, ε

determines the scale at which we consider Ω from local (ε = 0) to global (ε = 1). The complex
at ε = 0 consists of only the vertices and at ε = 1 it is the full simplex on Ω.

Persistent homology identifies and keeps track of the changes in the homology of those com-
plexes as ε varies. The output is a barcode, i.e. a collection of intervals. Each interval in the
barcode corresponds to a topological feature which appears at the value of a parameter given by
the left hand endpoint of the interval and disappears at the value given by the right hand endpoint.
These barcodes play the same role as a histogram does in summarizing the shape of the data, with
long intervals corresponding to strong topological signals and short ones to noise. By plotting the
intervals, we obtain a barcode, such as the one in Figure 4.3.

The most straightforward way to associate a simplicial complex to Ω at ε is by covering Ω

with open sets U(ε) =
⋃m

i=1Ui(ε) and then building the associated nerve complex. This is the
simplicial complex with vertex set [m] = {1,2, . . . ,m}, where a subset σ of [m] is a face if and only
if
⋂

i∈σ Ui(ε) 6= /0. If all nonempty finite intersections of Ui(ε) are contractible topological spaces,
then the Nerve Lemma guarantees that the homology groups of U(ε) agree with those of its nerve
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Figure 4.3: Persistent homology barcodes for the Trott curve.

complex. When Ui(ε) are ε-balls around the data points, i.e.

Ui(ε) := {v ∈ Rn : distRn(u(i),v)< ε} or Ui(ε) := {v ∈ Pn−1
R : distPn−1

R
(u(i),v)< ε}, (4.15)

the nerve complex is called the Čech complex at ε . Here distRn and distPn
R

are the distances
from (4.6) and (4.7), respectively. Theorem 4.2.22 gives a precise statement for a sufficient condi-
tion under which the Čech complex of U(ε) built on Ω yields the correct topology of V . However,
in practice the hypotheses of the theorem will rarely be satisfied.

Čech complexes are computationally demanding as they require storing simplices in different
dimensions. For this reason, applied topologists prefer to work with the Vietoris-Rips complex,
which is the flag simplicial complex determined by the edges of the Čech complex. This means
that a subset σ ⊂ [m] is a face of the Vietoris-Rips complex if and only if Ui(ε)

⋂
U j(ε) 6= /0 for

all i, j ∈ σ . With the definition in (4.15), the balls Ui(ε) and U j(ε) intersect if and only if their
centers u(i) and u( j) are less than 2ε apart.

Consider the sample from the Trott curve in Figure 4.3. Following Example 4.1.4, we sampled
by selecting random x-coordinates between −1 and 1, and solving for y, or vice versa. The picture
on the right shows the barcode. This was computed via the Vietoris-Rips complex. For dimensions
0 and 1 the six longest bars are displayed. The sixth bar in dimension 1 is so tiny that we cannot
see it. In the range where ε lies between 0 and 0.2, we see four components. The barcode for
dimension 1 identifies four persisting features for ε between 0.01 and 0.12. Each of these indicates
an oval. Once these disappear, another loop appears. This corresponds to the fact that the four
ovals are arranged to form a circle. So persistent homology picks up on both intrinsic and extrinsic
topological features of the Trott curve.

The repertoire of algebraic geometry offers a fertile testing ground for practitioners of per-
sistent homology. For many classes of algebraic varieties, both over R and C, one has a priori
information about their topology. For instance, the determinantal variety in Example 4.1.5 is the
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3-manifold P1
R× P2

R. Using Henselman’s software Eirene for persistent homology [117], we
computed barcodes for several samples Ω drawn from varieties with known topology.

Tangent Spaces and Ellipsoids
We underscore the benefits of an algebro-geometric perspective by proposing a variant of persistent
homology that performed well in the examples we tested. Suppose that, in addition to knowing Ω

as a finite metric space, we also have information on the tangent spaces of the unknown variety V
at the points u(i). This will be the case after we have learned some polynomial equations for V . In
such circumstances, we suggest replacing the ε-balls in (4.15) with ellipsoids that are aligned to
the tangent spaces.

The motivation is that in a variety with a bottleneck (see Section 2.2), for example in the shape
of a dog bone, the balls around points on the bottleneck may intersect for ε smaller than that which
is necessary for the full cycle to appear. When V is a manifold, we design a covering of Ω that
exploits the locally linear structure. Let 0 < λ < 1. We take Ui(ε) to be an ellipsoid around u(i)

with principal axes of length ε in the tangent direction of V at u(i) and principal axes of length λε

in the normal direction. In this way, we allow ellipsoids to intersect with their neighbors and thus
reveal the true homology of the variety before ellipsoids intersect with other ellipsoids across the
medial axis. The parameter λ can be chosen by the user. We believe that λ should be proportional
to the reach of V . This metric invariant is defined in the next subsection.

In practice, we perform the following procedure. Let f =( f1, . . . , fk) be a vector of polynomials
that vanish on V , derived from the sample Ω⊂Rn as described above. An estimator for the tangent
space Tu(i)V is the kernel of the Jacobian matrix of f at u(i). In symbols,

T̂u(i)V := kerJ f (u(i)). (4.16)

Let qi denote the quadratic form on Rn that takes value 1 on T̂u(i)V ∩ Sn−1 and value λ on the
orthogonal complement of T̂u(i)V in the sphere Sn−1. Then, the qi specify the ellipsoids

Ei :=
{√

qi(x)x ∈ Rn : ‖x‖ ≤ 1
}
.

The role of the ε-ball enclosing the ith sample point is now played by Ui(ε) := u(i)+εEi. These el-
lipsoids determine the covering U(ε) =

⋃m
i=1Ui(ε) of the given point cloud Ω. From this covering

we construct the associated Čech complex or Vietoris-Rips complex.
While using ellipsoids is appealing, it has practical drawbacks. Relating the smallest ε for

which Ui(ε) and U j(ε) intersect to distRn(u(i),u( j)) is not easy. For this reason we implemented
the following variant of ellipsoid-driven barcodes. We use the simplicial complex on [m] where

σ is a face iff
distRn(u(i),u( j))

1
2(
√

qi(h)+
√

q j(h))
< 2ε for all i, j ∈ σ , where h =

u(i)−u( j)

‖u(i)−u( j)‖
. (4.17)

In (4.17) we weight the distance between u(i) and u( j) by the arithmetic mean of the radii of the
two ellipsoids Ei and E j in the direction u(i)−u( j). If all quadratic forms qi were equal to ∑

n
j=1 x2

j ,
then the simplicial complex of (4.17) equals the Vietoris-Rips complex from (4.15).
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Figure 4.4: The left picture shows the barcode constructed from the ellipsoid-driven simplicial
complex (4.17) with λ = 0.01, for the sample from the Trott curve used in Figure 4.3. For compar-
ison we display the barcode from Figure 4.3 in the right picture. All relevant topological features
persist longer in the left plot.

Figure 4.4 compares the barcodes for the classical Vietoris-Rips complex with those obtained
from ellipsoids. It seems promising to further develop variants of persistent homology that take
some of the defining polynomial equations for (Ω,V ) into consideration.

Reaching the Reach
The Čech complex of a covering U =

⋃m
i=1Ui has the homology of the union of balls U . But, can

we give conditions on the sample Ω⊂V under which a covering reveals the true homology of V ?
A result due to Niyogi, Smale and Weinberger (Theorem 4.2.22 below) offers an answer in some
circumstances. These involve the concept of the reach, which is an important metric invariant of a
variety V . We here focus on varieties V in the Euclidean space Rn.

Definition 4.1.21. The medial axis of V is the set MV of all points u ∈ Rn such that the minimum
distance from V to u is attained by two distinct points. The reach τ(V ) is the infimum of all
distances from points on the variety V to any point in its medial axis MV . In formulas: τ(V ) :=
infu∈V,w∈MV ‖u−w‖. If MV = /0, we define τ(V ) = +∞.

Note that τ(V ) = +∞, if and only if V is an affine-linear subspace. Otherwise, the reach is
a non-negative real number. In particular, there exist varieties V with τ(V ) = 0. For instance,
consider the union of two lines V = {(x,y) ∈R2 : xy = 0}. All points in the diagonal D = {(x,y) ∈
R2 : x = y,x 6= 0} have two closest points on V . Hence, D is a subset of the medial axis MV , and we
conclude that 0≤ τ(V )≤ infu∈V,w∈D ‖u−w‖= 0. In general, any singular variety with an “edge”
has zero reach.

To illustrate the concept of the reach, let V be a smooth curve in the plane, and draw the normal
line at each point of V . The collection of these lines is the normal bundle. At a short distance from
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the curve, the normal bundle is a product: each point u near V has a unique closest point u∗ on V ,
and u lies on the normal line through u∗. At a certain distance, however, some of the normal lines
cross. If u is a crossing point of minimal distance to V , then u has no unique closest point u∗ on V .
Instead, there are at least two points on V that are closest to u and the distance from u to each of
them is the reach τ(V ). Aamari et al. [1] picture this by writing that “one can roll freely a ball of
radius τ(V ) around V ".

Niyogi, Smale and Weinberger refer to τ(V )−1 as the “condition number of V ”. Bürgisser
et al. [47] relate τ(V )−1 to the condition number of a semialgebraic set. For the purposes of
our survey it suffices to understand how the reach effects the quality of the covering U(ε). The
following result is a simplified version of [155, Theorem 3.1], suitable for low dimensions. Note
that Theorem 4.2.22 only covers those varieties V ⊂ Rn that are smooth and compact.

Theorem 4.1.22 (Niyogi, Smale, Weinberger 2006). Let V ⊂ Rn be a compact manifold of di-
mension d ≤ 17, with reach τ = τ(V ) and d-dimensional Euclidean volume ν = vol(V ). Let
Ω = {u(1), . . . ,u(m)} be i.i.d. samples drawn from the uniform probability measure on V . Fix ε = τ

4
and β = 16dτ−dν . For any desired δ > 0, fix the sample size at

m > β ·
(
log(β )+d + log(

1
δ
)
)
. (4.18)

With probability ≥ 1−δ , the homology groups of the following set coincide with those of V :

U(ε) =
m⋃

i=1

{
x ∈ Rn : ‖x−u(i)‖< ε

}
.

A few remarks are in order. First of all, the theorem is stated using the Euclidean distance and
not the scaled Euclidean distance (4.6). However, scaling the distance by a factor t means scaling
the volume by td , so the definition of β in the theorem is invariant under scaling. Moreover, the
theorem has been rephrased in a manner that makes it easier to evaluate the right hand side of
(4.18) in cases of interest. The assumption d ≤ 17 is not important: it ensures that the volume of
the unit ball in Rd can be bounded below by 1. Furthermore, in [155, Theorem 3.1], the tolerance
ε can be any real number between 0 and τ/2, but then β depends in a complicated manner on ε .
For simplicity, we took ε = τ/4.

Theorem 4.1.22 gives the asymptotics of a sample size m that suffices to reveal all topological
features of V . For concrete parameter values it is less useful, though. For example, suppose that
V has dimension 4, reach τ = 1, and volume ν = 1000. If we desire a 90% guarantee that U(ε)
has the same homology as V , so δ = 1/10, then m must exceed 1,592,570,365. In addition to
that, the theorem assumes that the sample was drawn from the uniform distribution on V . But in
practice one will rarely meet data that obeys such a distribution. In fact, drawing from the uniform
distribution on a curved object is a non-trivial affair [80].

In spite of its theoretical nature, the Niyogi-Smale-Weinberger formula is useful in that it high-
lights the importance of the reach τ(V ) for analyzing point samples. Indeed, the dominant quantity
in (4.18) is β , and this grows to the power of d in τ(V )−1. It is therefore of interest to better
understand τ(V ) and to develop tools for estimating it.
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We found the following formula by Federer [97, Theorem 4.18] to be useful. It expresses the
reach of a manifold V in terms of points and their tangent spaces:

τ(V ) = inf
v6=u∈V

||u− v||2

2δ
, where δ = min

x∈TvV
‖(u− v)− x‖. (4.19)

This formula relies upon knowing the tangent spaces at each point of u ∈V .
Suppose we are given the finite sample Ω from V . If some equations for V are also known,

then we can use the estimator T̂u(i)V for the tangent space that was derived in (4.16). From this we
get the following formula for the empirical reach of our sample:

τ̂(V ) = min
u,v∈Ω

u 6=v

||u− v||2

2δ̂

, where δ̂ = min
x∈T̂vV

‖(u− v)− x‖.

A similar approach for estimating the reach was proposed by Aamari et al. [1, eqn. (6.1)].

Algebraicity of Persistent Homology
It is impossible to compute in the field of real numbers R. Numerical computations employ floating
point approximations. These are actually rational numbers. Computing in algebraic geometry
has traditionally been centered around exact symbolic methods. In that context, computing with
algebraic numbers makes sense as well. In this subsection we argue that, in the setting of this
work, most numerical quantities in persistent homology, like the barcodes and the reach, have an
algebraic nature. Here we assume that the variety V is defined over Q.

We discuss the content of Section 4.2 of this dissertation which concerns metric properties of
a given variety V ⊂ Rn that are relevant for its true persistent homology. Here, the true persistent
homology of V , at parameter value ε , refers to the homology of the ε-neighborhood of V . Intu-
itively, the true persistent homology of the Trott curve is the limit of barcodes as in Figure 4.3,
where more and more points are taken, eventually filling up the entire curve.

An important player is the offset hypersurface Oε(V ). This is the algebraic boundary of the
ε-neighborhood of V . More precisely, for any positive value of ε , the offset hypersurface is the
Zariski closure of the set of all points in Rn whose distance to V equals ε . If n = 2 and V is a plane
curve, then the offset curve Oε(V ) is drawn by tracing circles along V .

Example 4.1.23. In Figure 4.5 we examine a conic V , shown in black. The light blue curve is its
evolute. This is an astroid of degree 6. The evolute serves as the ED discriminant of V , in the
context seen in [86, Figure 3]. The blue curves in Figure 4.5 are the offset curves Oε(V ). These
have degree 8 and are smooth (over R) for small values of ε . However, for larger values of ε , the
offset curves are singular. The transition point occurs at the cusp of the evolute.

It is shown in Theorem 4.2.19 that the endpoints of bars in the true persistent homology of a
variety V occur at numbers that are algebraic over Q. The proof relies on results in real algebraic
geometry that characterize the family of fibers in a map of semialgebraic sets.
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Figure 4.5: Offset curves (blue) and the evolute (light blue) of a conic (black).

Example 4.1.24. The bars of the barcode in Figure 4.3 begin and end near the numbers

1
8
= 0.125 ,

√
24025−217

√
9889

248
= 0.19941426... ,

3
4
= 0.75.

These algebraic numbers delineate the true persistent homology of the Trott curve V .

The reach τ(V ) of any real variety V ⊂ Rn is also an algebraic number. This follows from
Federer’s formula (4.19) which expresses τ(V ) as the optimal value of a polynomial optimization
problem. In principle, the reach can be computed in exact arithmetic from the polynomials that
define V . It remains an open problem how to do this effectively in practice.

Finding Equations
Every polynomial in the ideal IV of the unknown variety V vanishes on the sample Ω. The converse
is not true, but it is reasonable to surmise that it holds among polynomials of low degree. The ideal
IΩ of the finite set Ω ⊂ Rn can be computed using linear algebra. All our polynomials and ideals
in this section lie in the ring R = R[x1,x2, . . . ,xn].

Vandermonde Matrices
Let M be a finite linearly independent subset of R. We write RM for the R-vector space with
basis M and generally assume that M is ordered, so that polynomials in RM can be identified
with vectors in R|M |. Two primary examples for M are the set of monomials xe = xe1

1 xe2
2 · · ·xen

n of
degree d and the set of monomials of degree at most d. We use the notation Rd and R≤d for the
corresponding subspaces of R. Their dimensions |M | are

dim(Rd) =

(
n+d−1

d

)
and dim(R≤d) =

(
n+d

d

)
.

We write UM (Ω) for the m× |M | matrix whose i-th row consists of the evaluations of the
polynomials in M at the point u(i). Instead of UM (Ω) we write Ud(Ω) when M contains all
monomials of degree d and U≤d(Ω) when M contains monomials of degree ≤ d.
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For example, if n = 1, m = 3, and Ω = {u,v,w} then U≤3(Ω) is the Vandermonde matrix

U≤3(Ω) =

 u3 u2 u 1
v3 v2 v 1
w3 w2 w 1

 . (4.20)

For n≥ 2, we call UM (Ω) a multivariate Vandermonde matrix. It has the following property:

Remark 4.1.25. The kernel of the multivariate Vandermonde matrix UM (Ω) equals the vector
space IΩ∩RM of all polynomials that are linear combinations of M and that vanish on Ω.

The strategy for learning the variety V is as follows. We hope to learn the ideal IV by making
an educated guess for the set M . The two desirable properties for M are:

(a) The ideal IV of the unknown variety V is generated by its subspace IV ∩RM .

(b) The inclusion of IV ∩RM in its superspace IΩ∩RM = ker(UM (Ω)) is an equality.

There is a fundamental tension between these two desiderata: if M is too small then (a) will fail,
and if M is too large then (b) will fail. But, of course, suitable sets M do always exist, since
Hilbert’s Basis Theorem ensures that all ideals in R are finitely generated.

The requirement (b) imposes a lower bound on the size m of the sample. Indeed, m is an upper
bound on the rank of UM (Ω), since that matrix has m rows. The rank of any matrix is equal to the
number of columns minus the dimension of the kernel. This implies:

Lemma 4.1.1. If (b) holds, then m≥ |M |−dim(IV ∩RM ).

In practice, however, the sample Ω is given and fixed. Thus, we know m and it cannot be in-
creased. The question is how to choose the set M . This leads to some interesting geometric combi-
natorics. For instance, if we believe that V is homogeneous with respect to some Zr-grading, then
it makes sense to choose a set M that consists of all monomials in a given Zr-degree. Moreover,
if we assume that V has a parametrization by sparse polynomials then we would use a specialized
combinatorial analysis to predict a set M that works. A suitable choice of M can improve the
numerical accuracy of the computations dramatically.

In addition to choosing the set of monomials M , we face another problem: how to represent
IΩ∩RM ? Computing a basis for the kernel of UM (Ω) yields a set of generators for IΩ∩RM . But
which basis to use and how to compute it? For instance, the right-singular vectors of UM (Ω) with
singular value zero yield an orthonormal basis of IΩ ∩RM . But in applications one often meets
ideals I that have sparse generators.

Example 4.1.26. Suppose that we obtain a list of 20 quadrics in nine variables as the result of
computing the kernel of a Vandermonde matrix and each quadric looks something like this:

−0.037x2
1−0.043x1x2−0.011x1x3 +0.041x1x4−0.192x1x5 +0.034x1x6 +0.031x1x7 +0.027x1x8 +0.271x1x9 +0.089x2

2−0.009x2x3

+0.192x2x4 +0.041x2x5 +0.044x2x6−0.027x2x7 +0.031x2x8−0.048x2x9−0.056x2
3−0.034x3x4−0.044x3x5 +0.041x3x6

−0.271x3x7 +0.048x3x8 +0.031x3x9−0.183x2
4−0.043x4x5−0.011x4x6 +0.039x4x7 +0.004x4x8 +0.019x4x9−0.057x2

5
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−0.009x5x6−0.004x5x7 +0.039x5x8−0.35x5x9−0.202x2
6−0.019x6x7 +0.35x6x8 +0.039x6x9−0.188x2

7−0.043x7x8−0.011x7x9

−0.062x2
8−0.009x8x9−0.207x2

9 +0.35x1 +0.019x2−0.004x3−0.048x4−0.271x5 +0.027x6−0.044x7 +0.034x8 +0.192x9 +0.302

This is the first element in an orthonormal basis for IΩ∩R≤2, where Ω is a sample drawn from a
certain variety V in R9. From such a basis, it is very hard to guess what V might be.

It turns out that V is SO(3), the group of rotations in 3-space. After renaming the nine variables,
we find the 20-dimensional space of quadrics mentioned in Example 4.1.2. However, the quadrics
seen in (4.2) are much nicer. They are sparse and easy to interpret.

For this reason we aim to compute sparse bases of multivariate Vandermonde matrices. There
is a trade-off between obtaining sparse basis vectors and stability of the computations. We shall
discuss this issue in the next subsection. See Table 4.1 for a brief summary.

Numerical Linear Algebra
Computing kernels of matrices of type UM (Ω) is a problem in numerical linear algebra. One
scenario where the methodology has been developed and proven to work well is the Generalized
Principal Component Analysis of Ma et al. [142], where V is a finite union of linear subspaces in
Rn. For classical Vandermonde matrices, the Bjoerck-Pereyra algorithm [25] accurately computes
a LU-decomposition of the Vandermonde matrix; see [118, Section 22]. This decomposition may
then be used to compute the kernel. A generalization of this for multivariate Vandermonde matrices
of the form U≤d(Ω) is given in [156, Theorem 4.4]. To date such a decomposition for UM (Ω)
is missing for other subsets of monomials M . Furthermore, [156, Theorem 4.4] assumes that the
multivariate Vandermonde matrix is square and invertible, but this is never the case in our situation.

In the literature on numerical algebraic geometry, it is standard to represent varieties by point
samples, and there are several approaches for learning varieties, and even schemes, from such
numerical data. See e.g. [67,108] and the references therein. From the perspective of commutative
algebra, our interpolation problem was studied in e.g. [152, 153].

We developed and implemented three methods based on classical numerical linear algebra:

1. via the R from a QR-decomposition,
2. via a singular value decomposition (SVD), or
3. via the reduced row echelon form (RREF) of UM (Ω).

The goal is to compute a (preferably sparse) basis for the kernel of UM (Ω), with N = |M |. All
three methods are implemented in our software. Their descriptions are given below.

QR slightly less accurate and fast than SVD, yields some sparse basis vectors.
SVD accurate, fast, but returns orthonormal and hence dense basis.
RREF no accuracy guarantees, not as fast as the others, gives a sparse basis.

Table 4.1: The three methods for computing the kernel of the Vandermonde matrix UM (Ω).
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Algorithm 1 with_qr

Input: A multivariate Vandermonde matrix U ∈ Rm×N and a tolerance value τ ≥ 0.
Output: A basis for the kernel of U .

Compute the QR-decomposition U = QR, where Q is orthogonal and R is upper triangular;
Put I = {i : 1≤ i≤ N, |Rii|< τ}, J = [N]\I, R′ = R[m]×J and B = /0;
for i ∈ I do

Initialize a ∈ RN , a = (a1, . . . ,aN) and put ai = 1;
Solve R′y = Ri for y, where Ri is the i-th column of R;
Put (a1, . . . ,ai−1,ai+1, . . . ,aN) = y;
Update B←B∪{a};

end for
Return B.

Algorithm 2 with_svd

Input: A multivariate Vandermonde matrix U ∈ Rm×N and a tolerance value τ ≥ 0.
Output: A basis for the kernel of U .

Compute the singular value decomposition U = XΣY , where Σ = diag(σ1, . . . ,σN);
Let k := #{1≤ i≤ N : σi < τ};
Return the last k columns of Y .

Algorithm 3 with_rref

Input: A multivariate Vandermonde matrix U ∈ Rm×N and a tolerance value τ ≥ 0.
Output: A basis for the kernel of U .

Compute the reduced row-echelon form A of U ;
Put I = {i : 1≤ i≤ m,‖Ai‖>

√
Nτ}, where Ai is the i-th row of A;

Put B := AI×[N], k := #I and initialize B = /0;
For 1 ≤ i ≤ k let ji be the position of the first entry in the i-th row of B that has absolute value
larger than τ and put J := [N]\{ j1, . . . , jk};
for j ∈ J do

Put J′ := {1≤ i≤ N : i < j};
Initialize a ∈ RN , a = (a1, . . . ,aN) and put a j = 1 and ai = 0 for i 6= j;
for i ∈ J′ do

ai =−Bi, j;
Update B←B∪{a};

end for
end for
Return B.
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Each of these three methods has its upsides and downsides. These are summarized in Table 4.1.
The algorithms require a tolerance τ ≥ 0 as input. This tolerance value determines the numerical
rank of the matrix. Let σ1 ≥ ·· · ≥ σmin{m,N} be the ordered singular values of the m×N matrix U .
As above, the numerical rank of U is

r(U,τ) := #
{

i | σi ≥ τ
}
. (4.21)

Using the criterion in [72, Section 3.5.1], we can set τ = ε σ1 max{m,N}, where ε is the machine
precision. The rationale behind this choice is [72, Corollary 5.1], which says that the round-
off error in the σi is bounded by ‖E‖, where ‖ · ‖ is the spectral norm and U +E is the matrix
whose singular values were computed. For backward stable algorithms we may use the bound
‖E‖ = O(ε)σ1. On the other hand, our experiments suggest that an appropriate value for τ is
given by 1

2(σi +σi+1), for which the jump from log10(σi) to log10(σi+1) is significantly large.
This choice is particularly useful for noisy data. In case of noise the first definition of τ will likely
fail to detect the true rank of U≤d(Ω). The reason for this lies in the numerics of Vandermonde
matrices, discussed below.

We apply all of the aforementioned to the multivariate Vandermonde matrix UM (Ω), for any
finite set M in R that is linearly independent. We thus arrive at the following algorithm.

Algorithm 4 FindEquations

Input: A sample of points Ω = {u(1),u(2), . . . ,u(m)} ⊂ Rn, a finite set M of monomials in n
variables, and a tolerance value τ > 0.

Output: A basis B for the kernel of UM (Ω);
Construct the multivariate Vandermonde matrix UM (Ω);
Compute a basis B for the kernel of UM (Ω) using Algorithm 1, 2 or 3;
Return B.

Remark 4.1.27. Different sets of quadrics can be obtained by applying Algorithm 4 to a set Ω of
200 points sampled uniformly from the group SO(3). The dense equations in Example 4.1.26 are
obtained using Algorithm 2 (SVD) in Step 4. The more desirable sparse equations from (4.2) are
found when using Algorithm 1 (with QR). In both cases the tolerance was set to be τ ≈ 4 ·10−14 σ1 ,
where σ1 is the largest singular value of the Vandermonde matrix U≤2(Ω).

Running Algorithm 4 for a few good choices of M often leads to an initial list of non-zero
polynomials that lie in IΩ and also in IV . Those polynomials can then be used to infer an upper
bound on the dimension and other information about V . Of course, if we are lucky, we obtain a
generating set for IV after a few iterations.

If m is not too large and the coordinates of the points u(i) are rational, then it can be preferable
to compute the kernel of UM (Ω) symbolically. Gröbner-based interpolation methods, such as the
Buchberger-Möller algorithm [152], have the flexibility to select M dynamically. With this, they
directly compute the generators for the ideal IΩ, rather than the user having to worry about the
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matrices U≤d(Ω) for a sequence of degrees d. In short, users should keep symbolic methods in the
back of their minds when contemplating Algorithm 4.

In the remainder of this section, we discuss numerical issues associated with Algorithm 4. The
key step is computing the kernel of the multivariate Vandermonde matrix UM (Ω). As illustrated
in (4.20) for samples Ω on the line (n = 1), and M being all monomials up to a fixed degree,
this matrix is a Vandermonde matrix. It is conventional wisdom that Vandermonde matrices are
severely ill-conditioned [158]. Consequently, numerical linear algebra solvers are expected to
perform poorly when attempting to compute the kernel of Ud(Ω).

One way to circumvent this problem is to use a set of orthogonal polynomials for M . Then, for
large sample sizes m, two distinct columns of UM (Ω) are approximately orthogonal, implying that
UM (Ω) is well-conditioned. This is because the inner product between the columns associated to
f1, f2 ∈M is approximately the integral of f1 · f2 over Rn. However, a sparse representation in
orthogonal polynomials does not yield a sparse representation in the monomial basis. Hence, to
get sparse polynomials in the monomials basis from UM (Ω), we must employ other methods than
the ones presented here. For instance, techniques from compressed sensing may help to compute
sparse representations in the monomial basis.

We are optimistic that a numerically-reliable algorithm for computing the kernel of matrices
U≤d(Ω) exists. The Bjoerck-Pereyra algorithm [25] solves linear equations Ua = b for an n× n
Vandermonde matrix U . There is a theoretical guarantee that the computed solution â satisfies
|a− â| ≤ 7n5ε +O(n4ε2); see [118, Corollary 22.5]. Hence, â is highly accurate – despite U being
ill-conditioned. This is confirmed by the experiment mentioned in the beginning of [118, Section
22.3], where a linear system with κ(U) ∼ 109 is solved with a relative error of 5ε . We suspect
that a Bjoerck-Pereyra-like algorithm together with a thorough structured-perturbation analysis
for multivariate Vandermonde matrices would equip us with an accurate algorithm for finding
equations. Here, we stick with the three methods above, while bearing in mind the difficulties that
ill-posedness can cause.

Learning from Equations
At this point we assume that the methods in the previous two sections have been applied. This
means that we have an estimate d of what the dimension of V might be, and we know a set P of
polynomials that vanish on the finite sample Ω ⊂ Rn. We assume that the sample size m is large
enough so that the polynomials in P do in fact vanish on V . We now use P as our input.

Computational Algebraic Geometry
A finite set of polynomials P in Q[x1, . . . ,xn] is the typical input for algebraic geometry software.
Traditionally, symbolic packages like Macaulay2, Singular and CoCoA were used to study P .
Buchberger’s Gröbner basis algorithm is the workhorse underlying this approach. More recently,
numerical algebraic geometry has emerged, offering lots of promise for innovative and accurate
methods in data analysis. We refer to the textbook [20], which centers around the excellent soft-
ware Bertini. Next to using Bertini, we also employ the Julia package
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HomotopyContinuation.jl [44]. Both symbolic and numerical methods are valuable for data
analysis. The questions we ask in this subsection can be answered with either.

In what follows we assume that the unknown variety V is equal to the zero set of the input
polynomials P . We seek to answer the following questions over the complex numbers:

1. What is the dimension of V ?
2. What is the degree of V ?
3. Find the irreducible components of V and determine their dimensions and degrees.

Here is an example that illustrates the workflow we imagine for analyzing samples Ω.

Example 4.1.28. The variety of Hankel matrices of size 4×4 and rank 2 has the parametrizationa b c x
b c x d
c x d e
x d e f

 =

 s3
1 s3

2
s2

1t1 s2
2t2

s1t2
1 s2t2

2
t3
1 t3

2

[s3
1 s2

1t1 s1t2
1 t3

1
s3

2 s2
2t2 s2t2

2 t3
2

]
.

Suppose that an adversary constructs a dataset Ω of size m = 500 by the following process. He
picks random integers si and t j, computes the 4× 4-Hankel matrix, and then deletes the antidi-
agonal coordinate x. For the remaining six coordinates he fixes some random ordering, such as
(c, f ,b,e,a,d). Using this ordering, he lists the 500 points. This is our input Ω⊂ R6.

We now run Algorithm 4 for the m× 210-matrix U≤4(Ω). The output of this computation is
the following pair of quartics which vanishes on the variety V ⊂ R6 that is described above:

P =
{

ac f 2 +ad2 f −2ade2−b2 f 2 +2bd2e− c2d f + c2e2− cd3,
a2d f −a2e2 +ac2 f −acd2−2b2c f +b2d2 +2bc2e− c3d

}
.

(4.22)

Not knowing the true variety, we optimistically believe that the zero set of P is equal to V . This
would mean that V is a complete intersection, so it has codimension 2 and degree 16.

At this point, we may decide to compute a primary decomposition of 〈P〉. We then find that
there are two components of codimension 2, one of degree 3 and the other of degree 10. Since
3+10 6= 16, we learn that 〈P〉 is not a radical ideal. In fact, the degree 3 component appears with
multiplicity 2. Being intrigued, we now return to computing equations from Ω.

From the kernel of the m× 252-matrix U5(Ω), we find two new quintics in IΩ. These only
reduce the degree to 3+ 10 = 13. Finally, the kernel of the m× 452-matrix U6(Ω) suffices. The
ideal IV is generated by 2 quartics, 2 quintics and 4 sextics. The mystery variety V ⊂ R6 has the
same dimension and degree as the rank 2 Hankel variety in R7 whose projection it is.

Our three questions boil down to solving a system P of polynomial equations. Both symbolic
and numerical techniques can be used for that task. Samples Ω seen in applications are often large,
are represented by floating numbers, and have errors and outliers. In those cases, we use numerical
algebraic geometry (see Section 1.3). For instance, in Example 4.1.28 we intersect (4.22) with a
linear space of dimension 2. This results in 16 isolated solutions. Further numerical analysis in
step 3 reveals the desired irreducible component of degree 10.

In the numerical approach to answering the three questions, one proceeds as follows:
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1. We add s random (affine-)linear equations to P and we solve the resulting system in Cn. If
there are no solutions, then dim(V ) < s. If the solutions are not isolated, then dim(V ) > s.
Otherwise, there are finitely many solutions, and dim(V ) = s.

2. The degree of V is the finite number of solutions found in step 1.

3. Using monodromy loops (cf. [20]), we can identify the intersection of a linear space L with
any irreducible component of VC whose codimension equals dim(L).

The dimension diagrams can be used to guess a suitable range of values for the parameter s in
step 1. However, if we have equations at hand, it is better to determine the dimension s as follows.
Let P = { f1, . . . , fk} and u be any data point in Ω. Then, we choose the s from step 1 as the corank
of the Jacobian matrix of f = ( f1, . . . , fk) at u; i.e,

s := dimkerJ f (u). (4.23)

Note that s = dimV (P) as long as u is not a singular point of V (P). In this case, s provides
an upper bound for the true dimension of V . That is why it is important in step 3 to use higher-
dimensional linear spaces L to detect lower-dimensional components of V (P).

Example 4.1.29. Take m = n = 3 in Example 4.1.3. Let P consist of the four 2× 2-minors
that contain the upper-left matrix entry x11. The ideal 〈P〉 has codimension 3 and degree 2. Its
top-dimensional components are 〈x11,x12,x13〉 and 〈x11,x21,x31〉. However, our true model V has
codimension 4 and degree 6: it is defined by all nine 2×2-minors. Note that 〈P〉 is not radical. It
also has an embedded prime of codimension 5, namely 〈x11,x12,x13,x21,x31〉.

Real Degree and Volume
The discussion in the previous subsection was about the complex points of the variety V . The
geometric quantity deg(V ) records a measurement over C. It is insensitive to the geometry of
the real points of V . That perspective does not distinguish between P = {x2 + y2−1} and P =
{x2 + y2 +1}. That distinction is seen through the lens of real algebraic geometry.

In this subsection we study metric properties of a real projective variety V ⊂ Pn
R. We explain

how to estimate the volume of V . Up to a constant depending on d = dimV , this volume equals
the real degree degR(V ), by which we mean the expected number of real intersection points with
a linear subspace of codimension dim(V ); see Theorem 4.1.30 below.

To derive these quantities, we use Poincaré’s kinematic formula [121, Theorem 3.8]. For this
we need some notation. By [138] there is a unique orthogonally invariant measure µ on Pn

R up to
scaling. We choose the scaling in a way compatible with the unit sphere Sn:

µ(Pn
R) =

1
2

vol(Sn) =
π

n+1
2

Γ(n+1
2 )

.
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This makes sense because Pn
R is doubly covered by Sn. The n-dimensional volume µ induces a d-

dimensional measure of volume on Pn
R for any d = 1,2, . . . ,n− 1. We use that measure for d =

dim(V ) to define the volume of our real projective variety as vol(V ) := µ(V ).
Let Gr(k,Pn

R) denote the Grassmannian of k-dimensional linear spaces in Pn
R. This is a real

manifold of dimension (n− k)(k+ 1). Because of the Plücker embedding it is also a projective
variety. We saw this for k = 1 in Example 4.1.6, but we will not use it here. Again by [138],
there is a unique orthogonally invariant measure ν on Gr(k,Pn

R) up to scaling. We choose the
scaling ν(Gr(k,Pn

R)) = 1. This defines the uniform probability distribution on the Grassmannian.
Poincaré’s Formula [121, Theorem 3.8] states:

Theorem 4.1.30 (Kinematic formula in projective space). Let V be a smooth projective variety of
codimension k = n−d in Pn

R. Then its volume is the volume of Pd
R times the real degree:

vol(V ) =
π

d+1
2

Γ(d+1
2 )
·degR(V ) where degR(V ) =

∫
L∈Gr(k,Pn

R)
#(L∩V )dν .

Note that in case of V being a linear space of dimension d, we have #(L∩V ) = 1 for all
L ∈ Gr(n−d,Pn

R). Hence, vol(V ) = vol(Pd
R), which verifies the theorem in this instance.

The theorem suggests an algorithm. Namely, we sample linear spaces L1,L2, . . . ,LN indepen-
dently and uniformly at random, and compute the number r(i) of real points in V ∩Li for each i.
This can be done symbolically (using Gröbner bases) or numerically (using homotopy continua-
tion). We obtain the following estimator for vol(V ):

v̂ol(V ) =
π

d+1
2

Γ(d+1
2 )
· 1

N

N

∑
i=1

r(i).

We can sample uniformly from Gr(k,Pn
R) by using the following lemma:

Lemma 4.1.2. Let A be a random (k+1)× (n+1) matrix with independent standard Gaussian
entries. The row span of A follows the uniform distribution on the Grassmannian Gr(k,Pn

R).

Proof. The distribution of the row space of A is orthogonally invariant. Since the orthogonally
invariant probability measure on Gr(k,Pn

R) is unique, the two distributions agree.

Example 4.1.31. Let n = 2, k = 1, and let V be the Trott curve in P2
R. The area of the projective

plane P2
R is half of the surface area of the unit circle: µ(P1

R) =
1
2 · vol(S1) = π . The real degree

of V is computed with the method suggested in Lemma 4.1.2: degR(V ) = 1.88364. We estimate
the length of the Trott curve to be the product of these two numbers: 5.91763. Note that 5.91763
does not estimate the length of the affine curve depicted in Figure 4.3, but it is the length of the
projective curve defined by the homogenization of the polynomial (4.1).

Remark 4.1.32. Our discussion in this subsection focused on real projective varieties. For affine
varieties V ⊂ Rn there is a formula similar to Theorem 4.1.30. By [172, (14.70)],

vol(V ) =
On−d · · ·O1

On · · ·Od+1
·
∫

L∩V 6= /0
#(V ∩L)dL, d = dimV,
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where dL is the density of affine (n−d)-planes in Rn from [172, Section 12.2], vol(·) is Lebesgue
measure in Rn and Om := vol(Sm). The problem with using this formula is that in general we do
not know how to sample from the density dL given L∩V 6= /0. The reason is that this distribution
depends on vol(V )–which we were trying to compute in the first place.

Suppose that the variety V is the image of a parameter space over which integration is easy.
This holds for V = SO(3), by (4.3). For such cases, here is an alternative approach for computing
the volume: pull back the volume form on V to the parameter space and integrate it there. This
can be done either numerically or –if possible– symbolically. Note that this method is not only
applicable to smooth varieties, but to any differentiable manifold.

Software and Experiments
Here, we demonstrate how the methods described previously work in practice. The implementa-
tions are available in our Julia package LearningAlgebraicVarieties. We offer a step-by-step
tutorial. To install our software, start a Julia session and type

Pkg.clone("https://github.com/PBrdng/LearningAlgebraicVarieties.git")

After the installation, the next command is

using LearningAlgebraicVarieties

This command loads all the functions into the current session. Our package accepts a dataset Ω as
a matrix whose columns are the data points u(1),u(2), . . . ,u(m) in Rn.

To use the numerical algebraic geometry software Bertini, we must first download it from
https://bertini.nd.edu/download.html. The Julia wrapper for Bertini is installed by

Pkg.clone("https://github.com/PBrdng/Bertini.jl.git")

The code HomotopyContinuation.jl accepts input from the polynomial algebra package
MultivariatePolynomials.jl1. The former is described in [44] and it is installed using

Pkg.add("HomotopyContinuation")

We apply our package to three datasets. The first comes from the group SO(3), the second
from the projective variety V of 2×3-matrices (xi j) of rank 1, and the third from the conformation
space of cyclooctane.

In the first two cases, we draw the samples ourselves. The introduction of [80] mentions al-
gorithms to sample from compact groups. However, for the sake of simplicity we use the fol-
lowing algorithm for sampling from SO(3). We use Julia’s qr()-command to compute the QR-
decomposition of a random real 3×3 matrix with independent standard Gaussian entries and take
the Q of that decomposition. If the computation is such that the diagonal entries of R are all pos-
itive then, by [149, Theorem 1], the matrix Q is uniformly distributed in O(3). However, in our
case, Q ∈ SO(3) and we do not know its distribution.

1https://github.com/JuliaAlgebra/MultivariatePolynomials.jl

https://bertini.nd.edu/download.html
https://github.com/JuliaAlgebra/MultivariatePolynomials.jl
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Our sample from the Segre variety V = P1
R×P2

R in P5
R is drawn by independently sampling two

standard Gaussian matrices of format 2×1 and 1×3 and multiplying them. This procedure yields
the uniform distribution on V because the Segre embedding is an isometry under the Fubini-Study
metrics on P1

R,P
2
R and P5

R. The third sample, which is 6040 points from the conformation space of
cyclooctane, is taken from Adams et al. [3, Section 6.3].

We provide the samples used in the subsequent experiments in the JLD2 data format. After
having installed the JLD package in Julia (Pkg.add("JLD")), load the datasets by typing

import JLD: load
s = string(Pkg.dir("LearningAlgebraicVarieties"),"/datasets.jld")
datasets = load(s)

Dataset 1: A Sample from the Rotation Group SO(3)

The group SO(3) is a variety in the space of 3× 3-matrices. It is defined by the polynomial
equations in Example 4.1.2. A dataset containing 887 points from SO(3) is loaded by typing

data = datasets["SO(3)"]

Now the current session should contain a variable data that is a 9× 887 matrix. We produce the
dimension diagrams by typing

DimensionDiagrams(data, false, methods=[:CorrSum,:PHCurve])

In this command, data is our dataset, the Boolean value is true if we suspect our variety is
projective and false otherwise, and methods is any of the dimension estimates :CorrSum, :
BoxCounting :PHCurve, :NPCA, :MLE, and :ANOVA. We can leave this unspecified and type

DimensionDiagrams(data, false)

This command plots all six dimension diagrams. Both outputs are shown in Figure 4.6.
Three estimates are close to 3, so we correctly guess the true dimension of SO(3). In our

experiments we found that NPCA and Box Counting Dimension often overestimate.
We proceed by finding polynomials that vanish on the sample. The command we use is

FindEquations(data, method, d, homogeneous_equations)

where method is one of :with_svd, :with_qr, :with_rref. The degree d refers to the poly-
nomials in R we are looking for. If homogeneous_equations is set to false, then we search in
R≤d . If we look for a projective variety then we set it to true, and Rd is used. For our sample from
SO(3) we use the false option. Our sample size m = 887 is large enough to determine equations
up to d = 4. The following results are found by the various methods:

2https://github.com/JuliaIO/JLD.jl

https://github.com/JuliaIO/JLD.jl
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Figure 4.6: Dimension diagrams for 887 points in SO(3). The right picture shows all six diagrams
described in Subsection 4.1. The left picture shows correlation sum and persistent homology curve
dimension estimates.

d method number of linearly independent equations
1 SVD 0
2 SVD 20
2 QR 20
2 RREF 20
3 SVD 136
4 SVD 550

The correctness of these numbers can be verified by computing (e.g. using Macaulay2) the affine
Hilbert function [64, Section 9.3] of the ideal with the generators in Example 4.1.2. If we type

f = FindEquations(data, :with_qr, 2, false)

then we get a list of 20 polynomials that vanish on the sample.
The output is often difficult to interpret, so it can be desirable to round the coefficients:

round.(f)

The precision can be specified, the default being to the nearest integer. We obtain the output

x1x4 + x2x5 + x3x6,
x1x7 + x2x8 + x3x9.

Let us continue analyzing the 20 quadrics saved in the variable f. We use the following command
in Bertini to determine whether our variety is reducible and compute its degree:

import Bertini: bertini
bertini(round.(f), TrackType = 1, bertini_path = p1)
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Here p1 is the path to the Bertini binary. Bertini confirms that the variety is irreducible of
degree 8 and dimension 3 (cf. Figure 4.6).

Using Eirene we construct the barcodes depicted in Figure 4.7. We run the following com-
mands to plot barcodes for a random subsample of 250 points in SO(3):

# sample 250 random points
i = rand(1:887, 250)
# compute the scaled Euclidean distances
dists = ScaledEuclidean(data[:,i])
# pass distance matrix to Eirene and plot barcodes in dimensions up to 3
C = eirene(dists, maxdim = 3)
barcode_plot(C, [0,1,2,3], [8,8,8,8])

The first array [0,1,2,3] of the barcode_plot() function specifies the desired dimensions. The
second array [8,8,8,8] selects the 8 largest barcodes for each dimension. If the user does not
pass the last array to the function, then all the barcodes are plotted. To compute barcodes arising
from the complex specified in (4.17), we type

dists = EllipsoidDistances(data[:,i], f, 1e-5)
C = eirene(dists, maxdim = 3)
barcode_plot(C, [0,1,2,3], [8,8,8,8])

Here, f = FindEquations(data, :with_qr, 2, false) is the vector of 20 quadrics. The
third argument of EllipsoidDistances is the parameter λ from (4.17). It is here set to 10−5.

Figure 4.7: Barcodes for a subsample of 250 points from SO(3). The left picture shows the
standard Vietoris-Rips complex, while that on the right comes from the ellipsoid-driven complex
(4.17). Neither reveals any structures in dimension 3, though V = SO(3) is diffeomorphic to P3

R
and has a non-vanishing H3(V,Z).

Our subsample of 250 points is not dense enough to reveal features except in dimension 0. In-
stead of randomly selecting the points in the subsample, one could also use the sequential maxmin
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landmark selector [3, Section 5.2]. Subsamples chosen this way tend to cover the dataset and to
be spread apart from each other. One might also improve the result by constructing different com-
plexes, for example, the lazy witness complexes in [3, Section 5]. However, this is not implemented
in Eirene at present.

Dataset 2: A Sample from the Variety of Rank One 2×3-Matrices
The second sample consists of 200 data points from the Segre variety P1

R× P2
R in P5

R, that is
Example 4.1.3 with m = n = 3, r = 1. We load our sample into the Julia session by typing

data = datasets["2x3 rank one matrices"]

We try the DimensionDiagrams command once with the Boolean value set to false (Euclidean
space) and once with the value set to true (projective space). The diagrams are depicted in Fig-
ure 4.8. As the variety V naturally lives in P5

R, the projective diagrams yield better estimates and
hint that the dimension is either 3 or 4. The true dimension in P5

R is 3.

Figure 4.8: Dimension diagrams for 200 points on the variety of 2× 3 matrices of rank 1. The
left picture shows dimension diagrams for the estimates in R6. The right picture shows those for
projective space P5

R.

The next step is to find polynomials that vanish. We set homogeneous_equations to true
and d = 2: f = FindEquations(data, method, 2, true). All three methods, SVD, QR and
RREF, correctly report the existence of three quadrics. The equations obtained with QR after
rounding are as desired:

x1x4− x2x3 = 0, x1x6− x2x5 = 0, x3x6− x4x5 = 0.

Running Bertini we verify that V is an irreducible variety of dimension 3 and degree 3.
We next estimate the volume of V using the formula in Theorem 4.1.30. We intersect V with

500 random planes in P5
R and count the number of real intersection points. We must initialize 500

linear functions with Gaussian entries involving the same variables as f:
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import MultivariatePolynomials: variables
X = variables(f)
Ls = [randn(3, 6) * X for i in 1:500]

Now, we compute the real intersection points using HomotopyContinuation.jl.

using HomotopyContinuation
r = map(Ls) do L
# we multiply with a random matrix to make the system square
S = solve([randn(2,3) * f; L])
# check which are solutions to f and return the real ones
vals = [[fi(X => s) for fi in f] for s in solutions(S)]
i = find(norm.(vals) .< 1e-10)
return length(real(S[i]))

end

The command pi^2 * mean(r) reports an estimate of 19.8181 for the volume of V . The true
volume of V is the length of P1

R times the area of P2
R, which is π · (2π) = 19.7392.

Figure 4.9: Barcodes for 200 points on the Segre variety of 2×3 matrices of rank 1. The true mod
2 Betti numbers of P1

R×P2
R are 1,2,2,1. The left picture shows the barcodes for the usual Vietoris-

Rips complex computed using scaled Fubini-Study distance. The right picture is computed using
the scaled Euclidean distance. Using the Fubini-Study distance yields better results.

Using Eirene, we construct the barcodes depicted in Figure 4.9. The barcodes constructed
using Fubini-Study distance detect persistent features in dimensions 0, 1 and 2. The barcodes
using Euclidean distance only have a strong topological signal in dimension 0.

Dataset 3: Conformation Space of Cyclooctane
Our next variety V is the conformation space of the molecule cyclooctane C8H16. We use the same
sample Ω of 6040 points that was analyzed in [3, Section 6.3]. Cyclooctane consists of eight car-
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bon atoms arranged in a ring and each bonded to a pair of hydrogen atoms (see Figure 4.10). The
location of the hydrogen atoms is determined by that of the carbon atoms due to energy minimiza-
tion. Hence, the conformation space of cyclooctane consists of all possible spatial arrangements,
up to rotation and translation, of the ring of carbon atoms.

Figure 4.10: A cyclooctane molecule.

Each conformation is a point in R24 = R8·3, which represents the coordinates of the carbon
atoms {z0, . . . ,z7} ⊂ R3. Every carbon atom zi forms an isosceles triangle with its two neighbors
with angle 2π

3 at zi. By the law of cosines, there is a constant c > 0 such that the squared distances
di, j = ‖zi− z j‖2 satisfy

di,i+1 = c and di,i+2 =
8
3

c for all i (mod 8). (4.24)

Thus we expect to find 16 quadrics from the given data. In our sample we have c≈ 2.21.
The conformation space is defined modulo translations and rotation; i.e., modulo the 6-dimensional

group of rigid motions in R3. An implicit representation of this quotient space arises by substituting
(4.24) into the Schönberg matrix of Example 4.1.8 with p = 8 and r = 3.

However, the given Ω lives in R24 =R8·3, i.e. it uses the coordinates of the carbon atoms. Since
the group has dimension 6, we expect to find 6 equations that encode a normal form. That normal
form is a distinguished representative from each orbit of the group action.

Brown et al. [45] and Martin et al. [143] show that the conformation space of cyclooctane is
the union of a sphere with a Klein bottle, glued together along two circles of singularities. Hence,
the dimension of V is 2, and it has Betti numbers 1,1,2 in mod 2 coefficients.

To accelerate the computation of dimension diagrams, we took a random subsample of 420
points. The output is displayed in Figure 4.11. A dimension estimate of 2 seems reasonable:

i = rand(1:6040, 420)
DimensionDiagrams(data[:,i], false)

The dataset Ω is noisy: each point is rounded to 4 digits. Direct use of FindEquations()
yields no polynomials vanishing on Ω. The reason is that our code sets the tolerance with the
numerical rank in (4.21). For noisy samples, we must set the tolerance manually. To get a sense
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Figure 4.11: Dimension diagrams for 420 points from the cyclooctane dataset.

for adequate tolerance values, we first compute the multivariate Vandermonde matrix U≤d(Ω) and
then plot the base 10 logarithms of its singular values. We start with d = 1.

import PlotlyJS
M = MultivariateVandermondeMatrix(data, 1, false)
s = log10.(svdvals(M.Vandermonde))
p = PlotlyJS.scatter(; y=s, mode="lines", line_width = 4)
PlotlyJS.Plot(p)

This code produces the left plot in Figure 4.12. This graph shows a clear drop from −0.2 to
−2.5. Picking the in-between value −1, we set the tolerance at τ = 10−1. Then, we type

f = FindEquations(M, method, 1e-1)

where method is one of our three methods. For this tolerance value we find six linear equations.
Computed using :with_qr and rounded to three digits, they are as follows:

1. −1.2x1−3.5x2 +1.2x3−4.2x4−4.1x5 +3.9x6−5.4x7−2.0x8 +4.9x9−5.4x10 +2.2x11 +4.9x12

−4.2x13 +4.3x14 +3.8x15−1.1x16 +3.6x17 + x18

2. −0.6x1−1.3x2−2.0x4−1.3x5−2.5x7−2.5x10 + x11−2.0x13 +2.4x14−0.5x16 +2.3x17 + x20

3. 2.5x1 +8.1x2−4.0x3 +9.2x4 +9.6x5−10.5x6 +11.4x7 +4.7x8−11.5x9 +12.6x10−5.1x11

−10.5x12 +9.4x13−10.0x14−6.5x15 +1.9x16−8.3x17−1.1x19 + x21

4. x1 + x4 + x7 + x10 + x13 + x16 + x19 + x22

5. 0.6x1 +2.3x2 +2.0x4 +2.3x5 +2.5x7 + x8 +2.5x10 +2.0x13−1.4x14 +0.5x16−1.3x17 + x23
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6. −1.3x1−4.6x2 +3.8x3−4.9x4−5.5x5 +7.5x6−6.0x7−2.7x8 +7.5x9−7.2x10 +2.9x11 +6.5x12

−5.2x13 +5.7x14 +3.7x15−0.8x16 +4.7x17 +1.1x19 + x24

We add the second and the fifth equation, and we add the first, third and sixth, by typing f[2]+f
[5] and f[1]+f[3]+f[6] respectively. Together with f[1] we get the following:

x1 + x4 + x7 + x10 + x13 + x16 + x19 + x22
x2 + x5 + x8 + x11 + x14 + x17 + x20 + x23
x3 + x6 + x9 + x12 + x15 + x18 + x21 + x24

(4.25)

We learned that centering is the normal form for translation. We also learned that the columns in
(4.25) represent the eight atoms. Since we found 6 linear equations, we believe that the three 3
remaining equations determine the normal form for rotations. However, we do not yet understand
how the three degrees of rotation produce three linear constraints.

Figure 4.12: Logarithms (base 10) of the singular values of the matrices U≤1(Ω) (left) and U≤2(Ω)
(right).

We next proceed to equations of degree 2. Our hope is to find the 16 quadrics in (4.24). Let us
check whether this works. Figure 4.12 on the right shows the logarithms of the singular values of
the multivariate Vandermonde matrix U≤2(Ω). Based on this we set τ = 10−6.

The command FindEquations(M, :with_svd, 2, 1e-6) reveals 21 quadrics. However,
these are the pairwise products of the 6 linear equations we found earlier. An explanation for why
we cannot find the 16 distance quadrics is as follows. Each of the 6 linear equations evaluated at
the points in Ω gives about 10−3 in our numerical computations. Thus their products equal about
10−6. The distance quadrics equal about 10−3. At tolerance 10−6, we miss them. Their values are
much larger than the 10−6 from the 21 redundant quadrics. By randomly rotating and translating
each data point, we can manipulate the dataset such that FindEquations together with a tolerance
value τ = 10−1 gives the 16 desired quadrics. The fact that no linear equation vanishes on the
manipulated dataset provides more evidence that 3 linear equations are determining the normal
form for rotations.
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Figure 4.13: Barcodes for a subsample of 500 points from the cyclooctane dataset. The left plot
shows the barcodes for the usual Vietoris-Rips complex. The right picture shows barcodes for the
ellipsoid-driven simplicial complex in (4.17). The right barcode correctly captures the homology
of the conformation space.

The cyclooctane dataset was used in [3, Section 6.3] to demonstrate that persistent homology
can efficiently recover the homology groups of the conformation space. We confirmed this result
using our software. We determined the barcodes for a random subsample of 500 points. In addition
to computing with Vietoris-Rips complexes, we use the 6 linear equations and the 16 distance
quadrics to produce the ellipsoid-driven barcode plots. The results are displayed in Figure 4.13.
The barcodes from the usual Vietoris-Rips complex do not capture the correct homology groups,
whereas the barcodes arising from our new complex (4.17) do.

4.2 Persistent Homology with the Offset Filtration
Experimental research is based on collecting and analyzing data. It is very important to understand
the background mathematical model that defines a given phenomenon. One of the possibilities is
that the data is driven by a geometric model, say an algebraic variety or a manifold. In this case, we
would like to “learn the geometric object” from the data, as in Section 4.3. For example, we would
like to understand the topological features of the underlying model. A common way to do this is
by persistent homology, the topic of Section 1.4 of this dissertation, which studies the homology
of the set of points within a range of distances from the data set, and considers features to be of
interest if they persist through a wide range of the distance parameter.

This work is at the intersection of computational geometry, geometric design, topology and
algebraic geometry, linking all of these topics together. In what follows, we study the persistent
homology of the offset filtration of an algebraic variety, which we define to be the homology of its
offsets. Related work includes [110] in which the notion of persistent homology is extended to the
offsets of convex objects.
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We show that the indicators (barcodes) of the persistent homology of the offset filtration of a
variety defined over the rational numbers are algebraic and thus can be computed exactly (The-
orem 4.2.19). Moreover, we connect persistent homology and algebraic optimization (Euclidean
Distance Degree [86]) through the theory of offsets, bringing insights from each field to the other.
Namely, we express the degree corresponding to the distance variable of the offset hypersurface in
terms of the Euclidean Distance Degree of the original variety (Theorem 4.2.9), obtaining a new
way to compute these degrees. A consequence of this result is a bound on the degree of the ED
discriminant (Corollary 4.2.15) and on the degree of the closure of the medial axis (see 4.2.21).
We describe the non-properness locus of the offset construction (Subsection 2.1) and use this to
describe the set of points (Theorem 4.2.20) in the ambient space that are topologically interesting
(the medial axis and center points of the bounded components of the complement of the variety)
and relevant to the computation of persistent homology. Lastly, we show that the reach of a mani-
fold, the quantity used to ensure the correctness of persistent homology computations, is algebraic
(Proposition 4.2.23).

The section is structured as follows. The first subsection discusses offset hypersurfaces. We
analyze the construction, dimension and degree of offsets and define the offset discriminant. The
second subsection is about persistent homology. We define the persistent homology of the off-
set filtration of an algebraic variety and prove its algebraicity, connect the offset discriminant to
topologically interesting points in the complement of the variety, and prove the algebraicity of the
reach.

Offset Hypersurfaces of Algebraic Varieties
We devote this subsection to the algebraic study of offset hypersurfaces. Driven by real world
applications, our starting variety XR ⊆ Rn is a real irreducible variety and we construct its ε-offset
hypersurface, for any generic real positive ε . In order to use techniques from algebraic geometry,
we consider the variety X ⊆Cn that is the complexification of XR and let ε be any complex number.
In what follows, by the squared distance of two points x,y ∈ Cn we will mean the complex value
of the function d(x,y) = ∑

n
i=1(xi− yi)

2. This is not the usual Hermitian distance function on Cn,
but rather the complexification of the real Euclidean distance function. It is not a metric on Cn, but
it is a metric when restricted to Rn.

Offset Construction
Let X ⊆ Cn be an irreducible variety of codimension c and let ε be a fixed (generic) complex
number. By an ε-hyperball centered at a point y ∈ Cn, we mean the variety V (d(x,y)− ε2).

Definition 4.2.1. The ε-offset hypersurface is defined to be the union of the centers of ε-hyperballs
that intersect the variety X non-transversally at some point x ∈ X . Equivalently the ε-offset hyper-
surface is the envelope of the family of ε-hyperballs centered on the variety. For a fixed ε we
denote the ε-offset hypersurface by Oε(X).
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x

y

X

TxX = TxV (d(x, y)− ε2)

Figure 4.14: Non-transversal intersection of the variety with the ε-hyperball.

Let y ∈ Oε(X), the above-defined ε-offset hypersurface. Then there exists an x ∈ Xreg, that is
a regular (nonsingular) point of the variety, such that the squared distance d(x,y) is exactly ε2 and
by the non-transversality TxX ⊆ TxV (d(x,y)− ε2). Hence

x− y⊥ TxX ,

where TxX is the tangent space at x to X and TxV (d(x,y)−ε2) is the tangent space at x to V (d(x,y)−
ε2), the variety defined by the vanishing of the polynomial d(x,y)− ε2, which is the ε-hyperball
centered at y.

The latter condition can be described by polynomial equations as follows (see for example [86,
Section 2]). The condition x− y⊥ TxX is satisfied if and only if the rank of(

x− y
Jacx(I)

)
is less then c+ 1, where Jacx(X) is the Jacobian of the defining radical ideal of the variety X , at
the point x (the matrix of all the partial derivatives of all the minimally defining polynomials of X).
Namely x− y⊥ TxX if and only if all the (c+1)× (c+1) minors of the matrix above vanish.

To capture the entire geometry behind the construction of the offset hypersurface we consider
the closure of the set of all pairs (x,y) ∈ Cn×Cn such that x ∈ Xreg and y satisfies the conditions
above. We name this variety the offset correspondence of X and denote it by OC ε(X). This
correspondence is a variety in Cn

x×Cn
y and is equal to the closure of the intersection

(Xreg×Cn)∩V
(
(c+1)× (c+1) minors of

(
x− y

Jacx(I)

))
∩V (d(x,y)− ε

2).

Observe that the intersection of the first two varieties is the Euclidean Distance Degree corre-
spondence, E (X), that is the closure of the pair of points (x,y) in Cn

x×Cn
y , such that x ∈ Xreg and
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x− y⊥ TxX . This correspondence contains pairs of “data points" y ∈ Cn
y and corresponding points

on the variety x ∈ Xreg, such that x is a constrained critical point of the Euclidean distance func-
tion dy(x) = d(x,y) with respect to the constraint that x ∈ Xreg. For more details on this problem
we direct the reader to [86, Section 2]. Using the terminology of the Euclidean Distance Degree
problem, we have

OC ε(X) = E (X)∩V (d(x,y)− ε
2). (4.26)

From the offset correspondence, we have the natural projections prx : OC ε(X) Cn
x and pry :

OC ε(X) Cn
y . The closure of the first projection is the variety X and the closure of the second

projection is the offset hypersurface Oε(X).
It follows that the offset hypersurface is

Oε(X) = pry(OC ε(X))⊆ Cn
y .

Remark 4.2.2. When X is a real variety, note that by the Tarski-Seidenberg Theorem (see Lemma
4.2.2) the offset hypersurface is defined over the same closed real (sub)field as X and ε are defined.

In the following example, we illustrate an algorithm to compute the defining polynomial of the
offset hypersurface of an ellipse using Macaulay2 [107].

Example 4.2.3 (Computing the offset hypersurface of the ellipse). Consider the ellipse X ⊆C2

defined by the vanishing of the polynomial f = x2
1 +4x2

2−4. The code below outputs the defining
ideal of the offset hypersurface in terms of the parameter ε .

n=2;
kk=QQ[x_1..x_n,y_1..y_n,e];
f=x_1^2+4*x_2^2-4;
I=ideal(f);
c=codim I;
Y=matrix{{x_1..x_n}}-matrix{{y_1..y_n}};
Jac= jacobian gens I;
S=submatrix(Jac,{0..n-1},{0..numgens(I)-1});
Jbar=S|transpose(Y);
EX = I + minors(c+1,Jbar);
SingX=I+minors(c,Jac);
EXreg=saturate(EX,SingX);
distance=Y*transpose(Y)-e^2;
Offset_Correspondence=EXreg+ideal(distance);
Off_hypersurface=eliminate(Offset_Correspondence,toList(x_1..x_n))
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The result is that Oε(X) is the zero locus of the polynomial

y8
1 +10y6

1y2
2 +33y4

1y4
2 +40y2

1y6
2 +16y8

2 +4y6
1ε

2−30y4
1y2

2ε
2−90y2

1y4
2ε

2

−56y6
2ε

2−2y4
1ε

4 +62y2
1y2

2ε
4 +73y4

2ε
4−12y2

1ε
6−42y2

2ε
6 +9ε

8−14y6
1

−90y4
1y2

2−120y2
1y4

2 +64y6
2−62y4

1ε
2 +140y2

1y2
2ε

2−248y4
2ε

2−90y2
1ε

4

+270y2
2ε

4−90ε
6 +73y4

1 +248y2
1y2

2−32y4
2 +270y2

1ε
2−360y2

2ε
2

+297ε
4−168y2

1−192y2
2−360ε

2 +144.

The code above is designed to work in arbitrary dimensions and for any variety. For this reason,
we saturate by the singular locus of the variety, even though this step is unnecessary in this example
as the ellipse is smooth.

Example 4.2.4 (Offset hypersurface of a space curve). Let the variety X be the Viviani curve
in C3, defined by the intersection of a sphere with a cylinder tangent to the sphere and passing
through the center of the sphere. So X is defined by the vanishing of f1 = x2

1 + x2
2 + x2

3− 4 and
f2 = (x1−1)2 + x2

2−1. In Figure 4.15 the reader can see (on the left) the real part of the Viviani
curve and (on the right) the ε = 1 offset surface of the curve. This surface is defined by a degree
10 irreducible polynomial consisting of 175 monomials.

Figure 4.15: The Viviani curve (left) and its offset surface (right).

One could consider the family of all ε-offset hypersurfaces Oε(X) ⊆ Cn as ε varies over C.
This family is again a hypersurface in Cn

y×C1
ε defined by the same ideal as is Oε(X), but now ε is

a variable.
Define the offset family, O(X), to be the closure of all offset hypersurfaces of X in the n+ 1

dimensional space Cn
y×C1

ε defined by the same ideal as Oε(X). More precisely, let

O(X) = {(y,ε), y ∈ Oε(X)} ⊆ Cn
y×C1

ε .
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Example 4.2.5 (The offset family of an ellipse). A picture of the real part of O(X), where X is
the ellipse defined by the vanishing of x2

1 +4x2
2−4 = 0, can be seen below in Figure 4.16. It is the

set of all points (y1,y2,ε) ∈ C3 that are zeros of the polynomial in Example 4.2.3.

Figure 4.16: Offset family of an ellipse.

A horizontal cut (by a plane ε = ε0) of the surface above is the ε0-offset curve of the ellipse.

Offset Dimension and Degree
The degree and dimension are important invariants of an algebraic variety. These invariants of the
offset hypersurface have been studied by many authors (for example by San Segundo and Sendra
in [169–171]) in both the implicit and the parametric cases. To supplement the existing literature,
in this subsection we relate the degree in ε (or ε-degree) of the defining polynomial of generic
offset hypersurfaces to the ED degree of the original variety, for any irreducible variety X . In this
way, we achieve a new method for computing both ED degrees of varieties and degrees of offsets.

We now recall a theorem crucial in further understanding the essence of the offset construction.

Theorem 4.2.6 (Theorem 4.1 from [86]). The Euclidean Distance Degree correspondence E (X)
(see Equation (4.26)) is an irreducible variety of dimension n inside Cn

x×Cn
y . The first projection

prx : E (X) X ⊆ Cn
x is an affine vector bundle of rank c over Xreg. Over generic y0 ∈ Cn

y , the
second projection pry : E (X) Cn

y has finite fibers pr−1
y (y0) of cardinality equal (by definition) to

the Euclidean Distance Degree (ED degree) of X.
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E (X)

Cn
x Cn

y

prx pry

Remark 4.2.7. The second projection, pry, has a ramification locus which is generically a hy-
persurface in Cn

y , by the Nagata-Zariski Purity Theorem [154], [187]. The Euclidean Distance
discriminant (ED discriminant) is the closure of the image of the ramification locus of pry, (i.e. the
points where the derivative of pry is not of full rank, under the projection pry). As in [86, Section
7], we denote the ED discriminant of the variety X by Σ(X).

The offset correspondence is the intersection of the Euclidean Distance Degree correspondence
with the hypersurface V (d(x,y)− ε2) in Cn

x×Cn
y (recall Equation 4.26). This intersection is n−1

dimensional because E (X) is not a subvariety of V (d(x,y)−ε2) (because not all pairs (x,y)∈ E (X)
are at ε2 squared distance from each other). As a consequence the offset correspondence, OC ε(X),
is an n−1 dimensional variety in Cn

x×Cn
y . But over generic y0 ∈ Cn

y , the projection

pry : OC ε(X) Cn
y

has finite fibers, so the closure of the image, pry(OC ε(X)) = Oε(X) is n−1 dimensional as well,
hence the name offset hypersurface. For a more detailed analysis of the dimension degeneration
of components of the offset hypersurface see [173].

Remark 4.2.8. Observe that a fixed generic y0 is an element of the offset hypersurface Oε(X) for
precisely two times ED degree many distinct ε . This is because y0 has ED degree many critical
points to X , say {x1, . . . ,xEDdegree(X)} and then the corresponding offset hypersurfaces that include
y0, are the ones where ε is in{

±
√

d(x1,y0), . . . ,±
√

d(xEDdegree(X),y0)
}
.

Theorem 4.2.9. The degree in ε (or ε-degree) of the defining polynomial of O(X) (the offset
family) is equal to two times the Euclidean Distance degree of the variety X.

Proof. Suppose that O(X) is defined by f (y,ε). By Remark 4.2.8, a generic y0 is an element of
Oε(X) for precisely two times ED degree many ε . This is equivalent to f (y0,ε) having exactly
two times ED degree many roots. And these roots are{

±
√

d(x1,y0), . . . ,±
√

d(xEDdegree(X),y0)
}
,

where xi are critical points of the distance from y0 to the variety.

We note that San Segundo and Sendra [170] derived the ε-degree of plane offset curves in
terms of resultants. In the light of Theorem 4.2.9 their result says the following.
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Proposition 4.2.10 (Theorem 35 from [170]). Let X be a plane curve defined by the polynomial
f (x1,x2) of degree d. The ED degree of X equals

degx1,x2
(PPy1,y2(Resx3(F(xH),N(xH ,y)))) ,

where xH = (x1,x2,x3), y = (y1,y2), F(xH) is the homogenization of f with respect to a new vari-
able x3, N(xH ,y) =−F2(xH)(y1x3−x1)+F1(xH)(y2x3−y1), where F1 and F2 are the homogenized
partial derivatives of f and PPy1,y2 denotes the primitive part of the given polynomial with respect
to {y1,y2}.

Example 4.2.11 (Determinantal varieties). Suppose n ≤ m and let M≤r
n,m be the variety of n×

m matrices over C of rank at most r. This variety is defined by the vanishing of all (r + 1)×
(r + 1) minors of the matrix. For a fixed ε the construction of the offset hypersurface reduces
to determining the set of matrices that have at least one critical rank r approximation at squared
distance ε2. By [86, Example 2.3] all the critical rank r approximations to a matrix U are of the
form

T1 ·Diag(0,0, ...,σi1, ...,σir ,0, ...,0) ·T2,

where the singular value decomposition of U is equal to U = T1 ·Diag(σ1, ...,σn) ·T2, with σ1 >
... > σn singular values and T1,T2 orthogonal matrices of size n× n and m×m. Now by [116,
Corollary 2.3] the squared distance of such a critical approximation from U is exactly

σ
2
i1 + . . .+σ

2
ir .

Recall that σ2
i are the eigenvalues of U ·UT , so what we seek is that the sum of an r-tuple of the

eigenvalues of U ·UT equals ε2. Let us denote by
∧(r)(U ·UT ) the r-th additive compound matrix

of U ·UT . For the construction of this object we refer to [98, P14]. The additive compound matrix is
an
(n

r

)
×
(n

r

)
matrix with the property that its eigenvalues are the sums of r-tuples of eigenvalues of

the original matrix [98, Theorem 2.1]. So the eigenvalues of
∧(r)(U ·UT ) are exactly σ2

i1 + . . .+σ2
ir .

Putting this together we get that the offset hypersurface of M≤r
n×m is defined by the vanishing of

det

(r)∧
(U ·UT )− ε

2 · I(n
r)

 .

Observe that the ε degree of this polynomial is 2 ·
(n

r

)
, which is indeed two times the ED degree of

M≤r
n×m (see [86, Example 2.3]).

Offset Discriminant
We now consider the restriction pry|OC ε (X) : OC ε(X) Oε(X). We claim that, for generic ε , this
restriction is one-to-one outside its branch locus. Indeed if we fix a generic y0 ∈ Oε(X), then the
fiber above y0 equals
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pr−1
y (y0) =

(
V (d(x,y)− ε

2)∩ (C×{y0})
)
∩ (E (X)∩ (C×{y0})) .

By the definition of ED degree we have that

E (X)∩ (C×{y0}) = {(x1,y0), . . . ,(xEDdegree(X),y0)}.

Combining these we get,

pr−1
y (y0) = {(x1,y0), . . . ,(xEDdegree(X),y0)}∩

(
V (d(x,y)− ε

2)∩ (C×{y0})
)
.

This means that the fiber consists of pairs (x,y0), such that x is a critical point of the squared
distance function from y0 and is of squared distance ε2 from y0. For generic y0 ∈ Oε(X) and
generic ε , there is exactly one such critical point. Otherwise a y0 with at least two elements in the
fiber would be a doubly covered point of the offset hypersurface, hence part of its singular locus,
which is of strictly lower dimension than the offset hypersurface itself. Indeed the branch locus
of the restriction of pry is (generically) a hypersurface inside Oε(X) (by the Nagata-Zariski Purity
theorem [154, 187]), hence a codimension two variety in Cn

y , and it consists of points y for which
there exist at least two x1,x2 ∈ Xreg, such that (x1,y),(x2,y) ∈ OC ε(X), or one (x1,y) ∈ OC ε(X)
with multiplicity greater than one. We denote the closure of the union of all branch loci, over ε in C,
by B(X ,X), which is the bisector hypersurface of the variety X (see for instance [95,96]). Note that
the variety itself is a component of B(X ,X) because for ε = 0 the variety is covered doubly under
the projection pry. We call the set of doubly covered points such that (x1,y) 6= (x2,y) ∈ OC ε(x),
the proper bisector locus, and we denote it by B0(X ,X). In summary, we have the following result.

Proposition 4.2.12. For a fixed generic ε the projection pry|OC ε (X) : OC ε(X) Oε(X) is one-
to-one outside the bisector hypersurface B(X ,X).

Let us see how this relates to (not the union but) the collection of offset hypersurfaces for all ε .
This collection is the offset family, O(X), and it is a hypersurface in Cn

y×C1
ε . Its defining polyno-

mial is the same as of Oε(X). Let us denote this polynomial by f (y,ε). Now if we consider f (y,ε)
to be a univariate polynomial in the variable ε , then we can compute its discriminant Discrε( f ),
which is a polynomial in the variables y, with the property that f (y0,ε) has a double root (in ε) if
and only if y0 is in the zero set of Discrε( f ).

Now y0 ∈ Discrε( f ) if and only if there are fewer than two times ED degree many distinct
roots, not counting multiplicities, of f (y0,ε). By Theorem 4.2.9 this means that either y0 has a
non-generic number of critical points, meaning that y0 is an element of the ED discriminant (for
definition recall 4.2.7), or there are two critical points xi 6= x j, such that

d(xi,y0) = d(x j,y0),

meaning that the projection pry : OC ε(X) Oε(X) is not one-to-one over y0, so y0 in an element
of the branch locus. To summarize this we have the following proposition.
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Proposition 4.2.13. Suppose that O(X) is defined by the vanishing of f (y,ε). Then the zero locus
of the ε-discriminant of f is the union of the ED discriminant of X and the bisector hypersurface
of X. So we have that

Discrε( f ) = Σ(X)∪B(X ,X).

In what follows we call the union of the ED discriminant and the bisector hypersurface the
offset discriminant, denoted ∆(X). And we recall that by construction, it is the envelope of all the
offset hypersurfaces to X .

Example 4.2.14 (Offset discriminant of an ellipse). Let X be the ellipse defined by x2
1 +4x2

2−4.
The offset family of the ellipse is defined by the vanishing of the polynomial from Example 4.2.3.
The ε-discriminant of this polynomial factors into five irreducible components. One of them is the
defining polynomial of the sextic Lamé curve

64y6
1 +48y4

1y2
2 +12y2

1y4
2 + y6

2−432y4
1 +756y2

1y2
2−27y4

2 +972y2
1 +243y2

2−729,

with zero locus Σ(X), the ED discriminant (evolute) of X . The remaining four components com-
prise the bisector curve B(X ,X) of the ellipse. Two out of these four components of B(X ,X) are
the x- and y- axes (the proper bisector locus B0(X ,X)), one of the components is the ellipse it-
self (because for ε = 0 the variety is doubly covered under the projection pry) and the remaining
component is fully imaginary. A cartoon of the real part of ∆(X) can be seen in Figure 4.17. The
ellipse is black, the proper bisector locus (the axis) is blue and the ED discriminant is red.

Figure 4.17: The ED discriminant and the bisector curve of the ellipse.
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Corollary 4.2.15. Let X be an irreducible variety in Cn. The degree of its offset discriminant ∆(X)
(hence also the degree of its ED discriminant Σ(X) and the degree of the bisector hypersurface
B(X ,X)) is bounded from above by

2 ·degy(O(X)) · (4 ·EDdegree(X)−2) .

Proof. Suppose that the offset family O(X) is the zero set of the polynomial f (y,ε). The offset
discriminant ∆(X) is the discriminant of the univariate polynomial

f (y,ε) = a0(y)+ . . .+ad−1(y) · εd−1 +ad(y)εd

in the variable ε of degree d = degε( f ). So ∆(X) is a homogeneous polynomial in the coefficients
a0(y), . . . ,ad(y) of degree equal to 2 ·d−2. By Theorem 4.2.9 we have that d = 2 ·EDdegree(X).
Now because the discriminant is a homogeneous polynomial in the coefficients we get the desired
degree bound.

Example 4.2.16 (Degree bounds of the offset discriminant). The following table contains de-
gree bounds of the offset discriminant based on the formula above and the total degree formulae,
deg()y(O(X)), by San Segundo and Sendra [170, Appendix. Table of offset degrees].

Name of X Defining poly. of X degyO(X) degεO(X) degy∆(X)≤
Circle x2

1 + x2
2−1 4 4 24

Parabola x2− x2
1 6 6 60

Ellipse x2
1 +4x2

2−4 8 8 112
Cardioid (x2

1 + x2
2 + x1)

2− x2
1− x2

2 10 8 140
Rose(3 petals) (x2

1 + x2
2)

2 + x1(3x2
2− x2

1) 14 12 308

As the degree of an algebraic variety is a proxy for computational complexity, these degree
bounds serve a reminder of the challenges of computing offsets, and thus persistence. We also see
how the difficulty depends on the nature of the starting variety X .

Algebraicity of Persistent Homology
As an application of this knowledge of offset hypersurfaces, we study the persistent homology
of the offset filtration of an algebraic variety. We define this to be the homology of the set of
points within distance ε of the variety, which is bounded by the offset hypersurface. We define
the persistent homology of the offset filtration in terms of the offset hypersurface. We prove the
algebraicity of two quantities involved in computing persistent homology. We do not present a
new algorithm to compute persistent homology. However, we do provide theoretical foundations
to show that it is possible for an algorithm to compute persistent homology barcodes exactly. If
the expected output of a computation is algebraic over the rational numbers, this means it can be
computed using polynomials of finite degree, and thus it is possible for the algorithm to terminate.
We also discuss the relevance of the offset discriminant to persistent homology. We refer the reader
to Section 1.4 of this dissertation for an introduction to persistent homology.
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Persistent Homology of the Offset Filtration of a Variety
Persistent homology is typically defined for a finite metric space. To compute the persistent ho-
mology of a variety X , one might sample a finite set of points from the variety and compute the
Čech complex of those points. The equivalent of the Čech complex CX(ε) obtained from sampling
every point on the variety would be the set of all points within ε of the variety. For this reason, we
define the persistent homology of the offset filtration of a variety X at parameter ε as the homology
of the subset

Xε = {x| there exists y ∈V with ||x− y|| ≤ ε} ⊂ Rn

consisting of all points within ε of the variety.
Since the ε-offset hypersurface is the envelope of a family of ε-hyperballs centered on the

variety, we can define the the persistent homology of the offset filtration of a variety at parameter
ε equivalently as the homology of the set bounded by Oε(X).

To define barcodes with respect to this filtration, we use Hardt’s theorem from real algebraic
geometry. We now make the necessary definitions and state the theorem.

Definition 4.2.17 (Definition 9.3.1 from [29]). Let S,T and T
′
be semi-algebraic sets, T

′ ⊂ T , and
let f : S T be a continuous semi-algebraic mapping. A semi-algebraic trivialization of f over
T
′
, with fiber F , is a semi-algebraic homeomorphism θ : T

′×F f−1(T
′
), such that f ◦θ is the

projection mapping T
′×F T

′
. We say that the semi-algebraic trivialization θ is compatible with

a subset S
′
of S if there is a subset F

′
of F such that θ(T

′×F
′
) = S

′ ∩ f−1(T
′
).

Lemma 4.2.1 (Hardt’s Theorem, 9.3.1 from [29]). Let S and T be two semi-algebraic sets, f :
S T a continuous semi-algebraic mapping, (S j) j=1,...,q a finite family of semi-algebraic subsets
of S. There exist a finite partition of T into semi-algebraic sets T = ∪r

l=1Tl and, for each l, a semi-
algebraic trivialization θl : Tl×Fl f−1(Tl) of f over Tl , compatible with S j, for j = 1, . . . ,q.

Let S = {(Xε ,ε)|ε ∈ [0,∞)} ⊂ Rn+1 and let prε : S R be the projection to ε . By Hardt’s
theorem, there is a partition of R into finitely many intervals Il = [δl,εl] for l ∈ {1, . . . , j} such
that the fibers pr−1

ε (ε) = Xε for all ε ∈ [δl,εl] are homeomorphic. Thus we can create the offset
filtration barcode of X .

We show that {δl}∪{εl} for l ∈ {1, . . . , j}, the values of the persistence parameter ε at which
a bar in the offset filtration barcode appears or disappears, are algebraic over the field of definition
of a real affine variety X . As a consequence, the persistent homology of the offset filtration of X
can be computed exactly.

The proof relies on two lemmas from real algebraic geometry. We describe the content of these
lemmas. The setting of the results is a real closed field, which we now define.

Definition 4.2.18 (Definitions 1.1.9 and 1.2.1 from [29]). A field R is a real field if it can be
ordered. A real field R is a real closed field if it has no nontrivial real algebraic extension.

The first lemma is Tarski-Seidenberg’s Theorem, a fundamental result in real algebraic geome-
try which implies that quantifier elimination is possible over real closed fields. This means that for
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every system of polynomial equations and inequalities that can described using logical quantifiers,
there is an equivalent system without the quantifiers.

To state the result, we use the following notation, where R is a real closed field and a ∈ R.

sign(a) = 0 if a = 0
sign(a) = 1 if a > 0
sign(a) =−1 if a < 0

Lemma 4.2.2 (Tarski-Seidenberg’s Theorem, 1.4.2 from [29]). Let fi(X ,Y ) = hi,mi(Y )X
mi + · · ·+

hi,0(Y ) for i = 1, . . . ,s be a sequence of polynomials in n + 1 variables with coefficients in Z,
where Y = (Y1, . . . ,Yn). Let ε be a function from {1, . . . ,s} to {−1,0,1}. Then there exists a
boolean combination B(Y ) (i.e. a finite composition of disjunctions, conjunctions and negations)
of polynomial equations and inequalities in the variables Y with coefficients in Z such that for
every real closed field R and for every y ∈ Rn, the system

sign( f1(X ,y)) = ε(1)
...

sign( fs(X ,y)) = ε(s)

has a solution x in R if and only if B(y) holds true in R.

The second result gives an isomorphism of homology groups of a variety and its restriction to
the closed subfield of real algebraic numbers over Q.

Lemma 4.2.3 (Theorem 4.2 from [71]). Let R⊂ R̃ be an inclusion of real closed fields. Let X̃ ⊂ R̃n

be a semialgebraic set and X = X̃ ∩Rn. Then there are canonical isomorphisms

Hq(X)∼= Hq(X̃),

Hq(X)∼= Hq(X̃).

The proof spans the first four sections of [71] and the first-named author Delfs’ thesis. Tarski-
Seidenberg’s theorem is used to establish a base extension functor from the category of semial-
gebraic maps and spaces over R to the corresponding category for R̃. Using base extension, a
triangulation of X̃ ⊂ R̃n can be obtained from a triangulation of X ⊂ Rn. This establishes the
desired isomorphism of homology groups.

Theorem 4.2.19. (Algebraicity of persistent homology barcodes.) Let f1, . . . , fs be polynomials in
Q[x1, . . . ,xn] with XR = VR( f1, . . . , fs). Then the values of the persistence parameter ε at which a
bar in the offset filtration barcode appears or disappears are real numbers algebraic over Q.

Proof. Let Ralg denote the closed subfield of real algebraic numbers over Q. Let Salg = {(Xε ∩
Rn

alg,ε)|ε ∈ [0,∞)}. Then Salg is a semialgebraic subset of Rn+1
alg in the sense of [29, Definition

2.4.1] since Salg is defined by polynomial equalities and inequalities with coefficients in Q. Let
prε : Salg Ralg be the projection to ε .



CHAPTER 4. GEOMETRY OF DATA 121

Since Ralg is a closed subfield of R, by Hardt’s theorem there is a partition of Ralg into finitely
many sets Il = [δl,εl]∩Ralg with δl,εl ∈ Ralg for l ∈ {1, . . . , j} such that pr−1

ε (ε) = Xε ∩Rn
alg for

all ε ∈ [δl,εl] are homeomorphic.
By Lemma 4.2.3, there is an isomorphism of homology groups

Hq(Xε ∩Rn
alg)
∼= Hq(Xε)

for each q and ε . So the partition by the sets Il = [al,bl]∩Ralg given by Hardt’s theorem cor-
responds to a partition of R by intervals Ĩl = [δl,εl] ⊂ R such that Xε for all ε ∈ [δl,εl] with
δl,εl ∈ Ralg are homeomorphic. Thus {δl}l∈{1,..., j}∪{εl}l∈{1,..., j} ⊂ Ralg.

Using the Offset Discriminant to Identify Points of Interest for Persistent
Homology
We now discuss the bisector hypersurface (a component of the offset discriminant) in the context
of persistent homology of the offset filtration. We first show how the bisector hypersurface can
help identify points where homological events occur. Then we discuss the medial axis, a subset of
the proper bisector locus of X , which gives information about the density of sampling required to
compute the persistent homology accurately.

Consider a bar in the offset filtration barcode corresponding to the top dimension Betti number.
To each such bar, there corresponds a y∈∆(X). Informally, this y is the center of the n-dimensional
hole corresponding to the bar. We illustrate with the example of the circle x2

1 + x2
2 = r2 ⊂ R2 in

Figure 4.18. The persistent homology of the circle has β1 = 1 for all ε < r, and a real component
of the offset hypersurface is a smaller circle inside the circle. When ε = r, the offset hypersurface
is simply the point at the center of the circle, and β1 = 0.

Theorem 4.2.20. (Geometric interpretation of endpoints in barcode.) Let X ⊂Rn+1 be a hypersur-
face. Let J = {[δl,εl]|l ∈ {1, . . . ,m}} be the set of intervals in the barcode for the top dimensional
Betti number βn. Then each interval endpoint εl corresponds to a point yl ∈Oεl(X) on the bisector
hypersurface B(X ,X) such that yl is the limit of a sequence of centers of hyperballs contained in
the complement of Oε(X) as ε εl .

We make the following observations. First, the correspondence does not assign each interval
to a unique point on the offset discriminant. Consider the persistent homology of the Trott curve.
In dimension 1, there is one interval corresponding to four cycles, and we do not specify to which
cycle to assign the interval. Second, we note that the set of yl corresponding to endpoint intervals
may not be 0-dimensional. For example, let X be the torus. Then the set of yl contains a circle.

We also comment on the topology of the real algebraic varieties involved. Suppose X ⊂ R2 is
a curve. Then Oε for ε ∈ (εl− ε

′
,εl) will have an oval component not present in Oε for ε > εl , so

yl is an isolated real point of Oεl .

Proof. Fix [δl,εl] ∈ J. Then there exists ε
′
> 0 such that βn(Xεl)< βn(Xε) for all ε ∈ (εl− ε

′
,εl).
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Figure 4.18: These pictures illustrate how the offset variety provides a geometric interpretation of
the endpoints of a bar. The black circle is the variety X and the orange circles are ε-balls around
X . When ε reaches the radius of the black circle, the blue offset hypersurface Oε has an isolated
real point.

Since βn(Xεl) < βn(Xε) for all ε ∈ (εl − ε
′
,εl), there is some ε1 ∈ (εl − ε

′
,εl) such that there

is a maximum δ1 > 0 such that there is a ball Bn+1
δ1

(zε1) such that Bn+1
δ1

(zε1) ⊂ Xεl but Bn+1
δ

(zε) is
contained in a bounded connected component of Rn+1 \Xε1 . Furthermore, since Xεn ⊃ Xεn−1 for
εn−1 < εn, there is a monotonically increasing sequence of {εn}n=1,2,... with ε1 < εn−1 < εn < εl

such that for each εn, there is a maximum δn such that there is a ball Bn+1
δn

(zεn)⊂ Bn+1
δn−1

(zεn−1) with

Bn+1
δn

(zεn) contained in a bounded connected component of Rn+1 \Xε .
Let εn εl . The diameter of the bounded connected component of Xεn containing zεn is less

than that of Xεn−1 containing zεn−1 for εn−1 < εn and Bn+1
δ1

(zε1) ⊂ Xεl , so δn 0. So {zεn} is a
Cauchy sequence in Rn+1, so it converges. Let y = lim

εn εl
zεn .

Since δn is the maximum radius of such a ball, Bn+1
δn

(zεn)∩Oεn contains at least two points
{y1,εn,y2,εn}. Corresponding to these points in Oεn are at least two points in the offset correspon-
dence OCεn(X), say {(x1,εn,y1,εn),(x2,εn,y2,εn)}.

As δn 0, we have ||y1,εn− y2,εn|| 0 since ||y1,εn− y2,εn|| ≤ δn . Thus y ∈ B(X ,X).

Since the construction in the proof of the theorem is based on the limit of a converging se-
quence, the method above does not point to a new algorithm for computing barcodes or determin-
ing the reach. However, it shows how persistent homology barcodes can be studied in the algebraic
geometry context of the bisector hypersurface.

Algebraicity of the Reach
The bisector hypersurface has further relevance to persistent homology because one of its compo-
nents is the closure of the medial axis. The shortest distance from a manifold to its medial axis
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is called the reach. The reach of a manifold is a very important quantity in the computation of its
persistent homology as it determines the density of sample points required to obtain the correct
homology. We now define the reach, describe its importance in the theory of persistent homology,
and prove its algebraicity.

Definition 4.2.21. Let X be a real algebraic manifold in Rn. The medial axis of X is the set MX of
all points u ∈ Rn such that the minimum Euclidean distance from X to u is attained by at least two
distinct points in X . The reach τ(X) is the shortest distance between any point in the manifold X
and any point in its medial axis MX .

Observe that the closure of the medial axis is by our definition the proper bisector locus, hence
the degree bound of the offset discriminant (see 4.2.15) gives upper bound on the degree of the
closure of the medial axis as well.

We now state the theorem showing that sampling density depends on the reach. In particular,
the smaller the reach (and thus, the curvier the manifold), the higher the density of sample points
required to compute persistent homology accurately. We have adapted this from [155], where it is
stated in terms of the reciprocal of a reach, a quantity which they call the condition number of the
manifold.

Theorem 4.2.22 (Theorem 3.1 from [155]). Let M be a compact submanifold of RN of dimension
k with reach τ . Let x̄ = {x1, . . . ,xn} be a set of n points drawn in i.i.d fashion according to the
uniform probability measure on M. Let 0 < ε < 1

2τ
. Let U =

⋃
x∈x̄

Bε(x) be a corresponding random

open subset of RN . Let β1 =
vol(M)

(cosk(θ1))vol(Bk
ε/4)

and β2 =
vol(M)

(cosk(θ2))vol(Bk
ε/8)

where θ1 = arcsin( ετ

8 ) and

θ2 = arcsin( ετ

16). Then for all

n > β1

(
log(β2)+ log

(
1
δ

))
the homology of U equals the homology of M with high confidence (probability > 1−δ ).

Studying a formulation for reach given by Federer with the tools of real algebraic geometry,
we show the algebraicity of the reach.

Proposition 4.2.23. (Algebraicity of reach). Let X be a real algebraic manifold in Rn. Let
f1, . . . , fs ∈ Q[x1, . . . ,xn] with XR = VR( f1, . . . , fs). Then the reach of X is an algebraic number
over Q.

Proof. Federer [97, Theorem 4.18] gives a formula for the reach τ of a manifold X in terms of
points and their tangent spaces:

τ(X) = inf
v6=u∈X

||u− v||2

2δ
, where δ = min

x∈TvX
‖(u− v)− x‖. (4.27)

Equation 4.27 gives the following system of polynomial inequalities with rational coefficients
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x ∈ TvX
δ 2 = ‖(u− v)− x‖2

δ > 0
2δτ = ||u− v||2

in unknowns {x,δ ,τ,u,v}. This defines a semialgebraic set in R3n+2 in the sense of [29, Definition
2.4.1]. Consider the projection on to R2 with coordinates (δ ,τ). By Tarski-Seidenberg’s theorem
( [29, Theorem 1.4.2]), the image is a semialgebraic set S.

Project S onto R with coordinate δ . The minimum δ0 is attained in the closure of the image.
Then S∩ {δ = δ0} ⊂ R is semialgebraic over Q. It is bounded below by 0. The reach is the
infimum of this set, and thus is an algebraic number over Q.

4.3 Voronoi Cells in Metric Algebraic Geometry of Plane
Curves

Metric algebraic geometry addresses questions about real algebraic varieties involving distances.
For example, given a point x on a real plane algebraic curve X ⊂ R2, we may ask for the locus of
points which are closer to x than to any other point of X . This is called the Voronoi cell of X at x,
as defined in Section 2.1. The boundary of a Voronoi cell consists of points which have more than
one nearest point to X . So we may ask, given a point in R2, how close must it be to X in order to
have a unique nearest point on X? This quantity is called the reach, and was first defined by [97].

We use Voronoi cells to study metric features of plane curves. The following theorem makes
precise the idea behind Figures 4.19 and 4.20.

Theorem 4.3.1. Let X be a compact algebraic curve in R2 and {Aε}ε↘0 be a sequence of finite
subsets of X containing all singular points of X such that every point of X is within distance ε of
some point in Aε .

1. Every Voronoi cell is the Wijsman limit (see Definition 4.3.12) of a sequence of Voronoi cells
of {Aε}ε↘0.

2. If X is not tangent to any circle in four or more points, then every maximal Delaunay cell is
the Hausdorff limit (see Definition 4.3.11) of a sequence of Delaunay cells of {Aε}ε↘0.

Voronoi diagrams of finite point sets are widely studied and have seen applications across sci-
ence and technology, most notably in the natural sciences, health, engineering, informatics, civics
and city planning. For example in Victoria, a state in Australia, students are typically assigned
to the school to which they live closest. Thus, the catchment zones for schools are given by a
Voronoi diagram [183]. Metric features of varieties, such as the medial axis and curvature of a
point, can be detected from the Voronoi cells of points sampled densely from a variety. Compu-
tational geometers frequently use Voronoi diagrams to approximate these features and reconstruct
varieties [6, 33, 34].
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Figure 4.19: Voronoi cells of 101, 441, and 1179 points sampled from the butterfly curve 4.29.

Figure 4.20: Delaunay cells of 101, 441, and 1179 points sampled from the butterfly curve 4.29.
The two large triangles correspond to tritangent circles of the curve.

The reach of an algebraic variety, as discussed in the Introduction, is an invariant that is impor-
tant in applications of algebraic topology to data science.The medial axis of a variety is the locus
of points which have more than one nearest point on X . This gives the following definition of the
reach.

Definition 4.3.2. The reach τ(X) of an algebraic variety X ⊂ Rn is the minimum distance from
any point on X to a point on the medial axis of X .

The paper [1] describes how the reach is the minimum of two quantities. We have

τ(X) = min
{

q,
ρ

2

}
, (4.28)

where q is the minimum radius of curvature of points in X and ρ is the narrowest bottleneck
distance. An example is depicted in Figure 4.21.
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Figure 4.21: The reach of the butterfly curve is attained by the maximal curvature point in the lower
left wing. The narrowest bottleneck is also shown. This figure is explained in Example 4.3.30.

This section is organized as follows. We begin with a systematic treatment in of convergence
of Voronoi cells of increasingly dense point samples of a variety. This gives the proof of Theorem
4.3.1, split among Theorems 4.3.15 and 4.3.17, as well as Proposition 4.3.20, which treats the
singular case separately. Theorem 4.3.1 is robust because it is not affected by the distribution of
the point sample. Theorem 4.3.1 provides the theoretical foundations for estimating metric features
of a variety from a point sample. We do this for the medial axis, curvature, evolute, bottlenecks,
and reach. For each of these metric features, we first give defining equations and where possible
a formula for the degree. We then turn our attention to detecting information about a real plane
curve X from its Voronoi cells. For each metric feature, we state a theoretical result about how
to detect the feature from the Voronoi cells of X or a subset of X . Corollaries to Theorem 4.3.1
provide convergence results for these features. The overall aim is to give a path to compute the
metric features of a plane algebraic curve X from Voronoi cells of dense point samples of X . We
use the butterfly curve

b(x,y) = x4− x2y2 + y4−4x2−2y2− x−4y+1 (4.29)

in our examples. In computational geometry and data science, these problems are often considered
when there is noise in the sample. We assume that our samples lie precisely on the curve X .

Voronoi and Delaunay Cells of Varieties and Their Limits
Let X ⊂ Rn be a real algebraic variety, and let d(x,y) denote the Euclidean distance between two
points x,y ∈ Rn.

Definition 4.3.3. The Voronoi cell of x ∈ X is

VorX(x) = {y ∈ Rn | d(y,x)≤ d(y,x′) for all x′ ∈ X}.
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An example of a Voronoi cell is given in Figure 4.22. This is a convex semialgebraic set whose
dimension is equal to codim(X) so long as x is a smooth point of X . It is contained in the normal
space to X at x:

NX(x) = {u ∈ Rn | u− x is perpendicular to the tangent space of X at x}.

The topological boundary of the Voronoi cell VorX(x) consists of the points in Rn that have two
or more closest points in X , one of which is x. The collection of boundaries of Voronoi cells is
described as follows.

Definition 4.3.4. The medial axis M(X) of an algebraic variety X ⊂ Rn is the collection of points
in Rn that have two or more closest points in X . An example of the medial axis is given in Figure
4.22.

Let B(p,r) denote the open disc with center p ∈ Rn and radius r > 0. We say this disc is
inscribed with respect to X if X ∩ B(p,r) = /0 and we say it is maximally inscribed if no disc
containing B(p,r) shares this property. Each inscribed disc gives a Delaunay cell, defined as
follows.

Definition 4.3.5. Given an inscribed disc B of an algebraic variety X ⊂ Rn, the Delaunay cell
DelX(B) is conv(B∩X). An example of a Delaunay cell and the corresponding maximally inscribed
disc is given in Figure 4.22.

Figure 4.22: The ellipse (x/2)2 + y2− 1 = 0 is shown in purple. The Voronoi cell of the red
point (

√
7/2,3/4) is shown in pink. It is a ray starting at the point (3

√
7/8,0) in the direction

(
√

7/4,3/2). The dark blue line segment between the points (−1/2,
√

15/4) and (−1/2,−
√

15/4)
is a Delaunay cell defined by the light blue maximally inscribed circle with center (−3/8,0) and
radius

√
61/8. The light blue line is the medial axis, which goes from (−3/2,0) to (3/2,0) because

the curvature at the points (−2,0) and (2,0) is 2.

Remark 4.3.6. For plane curves, the collection of centers of all inscribed spheres which give
maximal Delaunay cells (Delaunay cells which are not contained in any other Delaunay cell) is the
Euclidean closure of the medial axis. Points of a plane algebraic curve X which are themselves
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maximal Delaunay cells are points of X with locally maximal curvature. In this case, the maximally
inscribed circle is an osculating circle, see Definition 3.1.1.

We now describe two convex sets whose face structures encode the Delaunay and Voronoi cells
of X . We embed Rn in Rn+1 by adding a coordinate. We usually imagine that this last coordinate
points vertically upwards. So, we say that x ∈Rn+1 is below y ∈Rn+1 if xn+1 ≤ yn+1 and all other
coordinates are the same. Let

U = {x ∈ Rn+1 | xn+1 = x2
1 + · · ·+ x2

n}

be the standard paraboloid in Rn+1. If p ∈ Rn, then let pU = (p, ||p||2) denote its lift to U .
Given a convex set C ⊂ Rn+1, a convex subset F ⊂C is called a face of C if for every x ∈ F

and every y,z ∈C such that x ∈ conv(y,z), we have that y,z ∈ F . We say that a face F is exposed
if there exists an exposing hyperplane H such that C is contained in one closed half space of the
hyperplane and such that F =C∩H. We call an exposed face F a lower exposed face of C if the
exposing hyperplane lies below C.

Definition 4.3.7. The Delaunay lift of an algebraic variety X ⊂ Rn is the convex set

P∗X = conv(xu | x ∈ X)+{(0, . . . ,0,λ ) : λ ∈ R≥0} ⊂ Rn+1,

where we recall that xu = (x, ||x||2) and use + to denote the Minkowski sum. The Delaunay lift of
the butterfly curve is shown in Figure 4.23.

Figure 4.23: The Delaunay lift (Definition 4.3.7)
of the butterfly curve, viewed from below.

Figure 4.24: The Voronoi lift (Definition
4.3.9) of the butterfly curve, viewed from
below.
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We now study how the lower exposed faces of the Delaunay lift P∗X project to conv(X), and
give the Delaunay cells of X .

Proposition 4.3.8. Let X ⊂ Rn be an algebraic variety. Let π : Rn+1→ Rn be the projection onto
the first n coordinates. A subset F ⊂ P∗X is a lower exposed face if and only if π(F) is a Delaunay
cell of X. Furthermore, if HF is the hyperplane exposing F, then π(U ∩HF) is an inscribed sphere
of X and π(F) = DelX(π(U ∩HF)).

Proof. The map from Rn → Rn+1 defined by x 7→ xU = (x, ||x||2) lifts every sphere in Rn to the
intersection of a hyperplane H with U [126, Proposition 7.17]. Moreover, the projection of the
intersection of any hyperplane with U gives a sphere in Rn [126, Proposition 7.17].

Given a Delaunay cell DelX(B) for some inscribed sphere B, we have that P∗X lies above the
corresponding hyperplane H. This is because any points below H would project to points in X
lying inside of B, contradicting the condition that X ∩B = /0 for an inscribed disc B. So, H is the
exposing hyperplane of the face (DelX(B))U .

Suppose F ⊂ P∗X is a lower exposed face with exposing hyperplane HF . The interior of the
sphere π(HF ∩U) contains no points of X , because if it did contain a point x, then xU would lie
in the lower half-space of HF , which does not intersect P∗X . Then π(HF ∩U) is the inscribed disc
corresponding to a Delaunay cell.

Since π(HF ∩U) is a sphere, we have DelX(π(U ∩HF)) = conv(π(U ∩HF)∩ X). Let XU
denote the lift of X to Rn+1. Then π(U ∩HF)∩ X = π(U ∩HF ∩ XU) = π(HF ∩ XU), and so
DelX(π(U ∩HF)) = conv(π(HF ∩XU)) = π(conv(HF ∩XU)) = π(F).

We may define a convex set whose faces project down to the Voronoi cells as follows. For any
point x ∈ X , let T (x) denote the plane in Rn+1 through xU = (x, ||x||2) tangent to the paraboloid U .
Let T (x)+ be the closed half-space consisting of all points in Rn+1 lying above the plane T (x).

Definition 4.3.9. The Voronoi lift of an algebraic variety X ⊂Rn is the convex set PX =∩x∈X T (x)+.
The Voronoi lift of the butterfly curve is shown in Figure 4.24.

The lower exposed faces of the Voronoi lift PX project to Voronoi cells of X , as we now show.

Proposition 4.3.10. Let X ⊂Rn be an algebraic variety. Let π : Rn+1→Rn be the projection onto
the first n coordinates. A subset F of the Voronoi lift PX is an exposed face of PX if and only if
π(F) is a Voronoi cell of X. Furthermore, if HF is the hyperplane exposing F and HF ∩U 6= /0,
then HF ∩U is a point and π(F) = VorX(π(U ∩HF)).

Proof. For some point x ∈ X , consider PX ∩ T (x). Let p ∈ Rn. There exists p′U ∈ T (x) with
π(pU) = π(p′U). The distance from pU to the point p′U is the distance dRn(π(p),π(x)) [126,
Lemma 6.11]. Therefore, PX ∩T (x) consists of those points p′U for which the distance dRn(p,x) is
minimal over all x ∈ X . In other words, π(PX ∩T (x)) =VorX(x).

Suppose F ⊂ PX is an exposed face with exposing hyperplane HF such that HF ∩U 6= /0. Let
p ∈ HF ∩U . Since U ⊂ PX we have that p ∈ PX . Then, p ∈ F = HF ∩PX . This implies HF is the
tangent hyperplane to U at the point p, so in particular, p = U ∩HF . Since p is on the boundary
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of Px, we have π(p) ∈ X and T (π(p)) = HF . We have π(F) = π(PX ∩T (π(p))) =VorX(π(p)) =
VorX(π(U ∩HF)), where in the second equality we use the result in the preceding paragraph.

There is a sense in which the Voronoi lift PX and the Delaunay lift P∗X are dual. We now describe
this relationship. Suppose that X is not contained in any proper linear subspace of Rn. This implies
that PX is pointed, meaning it does not contain a line. Therefore, it is projectively equivalent to a
compact set [126, Theorem 3.36]. Embed Rn+1 into Pn+1 by the map

ι(x1, . . . ,xn+1) = (1 : x1 : · · · : xn+1).

Let l be the transformation of Pn+1 defined by the following (n+2)× (n+2) matrix
1 0 · · · 0 1
0 2 0 · · · 0
... 0 . . . 0

...
0 · · · 0 2 0
−1 0 · · · 0 1

 .

Then by [126, Lemma 7.1] the projective transformation l maps U to the sphere S ⊂ Rn+1. The
tangential hyperplane at the north pole (1 : 0 : · · · : 0 : 1) is the image of the hyperplane at infinity.
Moreover, the topological closure of l(PX) is a compact convex body so long as the origin is in the
interior of P∗X . In this case, we call the convex body l(PX) the Voronoi body. The Voronoi body is
full dimensional and contains the origin in its interior. Its polar dual

l(PX)
◦ :=

{
y ∈ Rn+1 :

n

∑
i=1

xiyi ≤ 1 for all x ∈ p(PX)

}

is also full dimensional and has the origin in its interior. If we apply l−1 to l(PX)
◦ we obtain an

unbounded polyhedron, which is exactly the Delaunay lift P∗X of X . For more details, see [126].
We now study convergence of Voronoi and Delaunay cells. More precisely, given a real al-

gebraic curve X and a sequence of samplings AN ⊂ X with |AN | = N, we show that Voronoi (or
Delaunay) cells from the Voronoi (or Delaunay) cells of the AN limit to Voronoi (or Delaunay)
cells of X . We begin by introducing two notions of convergence which describe the limits.

The Hausdorff distance of two compact sets B1 and B2 in Rn is defined as

dh(B1,B2) := sup

{
sup
x∈B1

inf
y∈B2

d(x,y), sup
y∈B2

inf
x∈B1

d(x,y)

}
.

More intuitively, we can define this distance as follows. If an adversary gets to put your ice cream
on either set B1 or B2 with the goal of making you go as far as possible, and you get to pick your
starting place in the opposite set, then dh(B1,B2) is the farthest the adversary could make you walk
in order for you to reach your ice cream.
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Definition 4.3.11. A sequence {Bν}ν∈N of compact sets is Hausdorff convergent to B if dh(B,Bν)→
0 as ν → ∞. Given a point x ∈ Rn and a closed set B⊂ Rn, define

dw(x,B) = inf
b∈B

d(x,b).

Definition 4.3.12. A sequence {Bν}ν∈N of compact sets is Wijsman convergent to B if for every
x ∈ Rn, we have that

dw(x,Bν)→ dw(x,B).

An ε-approximation of a real algebraic variety X is a discrete subset Aε ⊂ X such that for all
y ∈ X there exists an x ∈ Aε so that d(y,x) ≤ ε . By definition, when X is compact a sequence of
ε-approximations is Hausdorff convergent to X , and for all X , a sequence of ε-approximations is
Wijsman convergent to X . We use Wijsman convergence as a variation of Hausdorff convergence
which is well suited for unbounded sets. Delaunay cells are always compact, while Voronoi cells
may be unbounded.

We now study convergence of Delaunay cells of X , and introduce a condition on real algebraic
varieties which ensures that the Delaunay cells are simplices.

Definition 4.3.13. We say that an algebraic variety X ⊂Rn is Delaunay-generic if X does not meet
any d-dimensional inscribed sphere at greater than d +2 points.

Example 4.3.14. The standard paraboloid U in any dimension n+ 2 is not Delaunay-generic be-
cause it contains n-spheres.

Although the focus of this work is on algebraic curves in R2, we state the following theorem
for curves in Rn because the proof holds at this level of generality.

Theorem 4.3.15. Let X ⊂ Rn be a Delaunay-generic compact algebraic curve, and let {Aε}ε↘0
be a sequence of ε-approximations of X. Every maximal Delaunay cell is the Hausdorff limit of a
sequence of Delaunay cells of Aε .

Proof. Consider a sequence {Aε}ε↘0 of ε-approximations of X , where ε ↘ 0 indicates a de-
creasing sequence of positive real numbers εν for ν ∈ N. We will study the convex sets P∗Aε

=

conv(aU | a ∈ Aε), where a 7→ aU = (a, ||a||2) lifts a to the paraboloid U . The lower faces of P∗Aε

project to Delaunay cells of Aε [126, Theorem 6.12, Theorem 7.7].
We now apply [61, Theorem 3.5] to our situation. This result says the following. Let C be a

curve and Bε be a sequence of ε-approximations of C. Suppose every point on C which is contained
in the boundary of conv(C) is an extremal point of conv(C), meaning it is not contained in the open
line segment joining any two points of conv(C). Let F be a simplicial face of conv(C) which is an
exposed face of conv(C) with a unique exposing hyperplane. Then F is the Hausdorff limit of a
sequence of facets of conv(Bε). We apply this result in the case when C = XU = {xU ∈ Rn+1 | x ∈
X} and Bε = (Aε)U = {aU ∈ Rn+1 | a ∈ Aε}.

Since every point on U is extremal in conv(U) and conv(XU) ⊂ conv(U), every point on XU
which is contained in the boundary of conv(XU) is also extremal in conv(XU). A maximal Delaunay
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cell of X is a simplex because X is Delaunay-generic. Consider a maximal Delaunay cell of X
which is not a vertex. It has a unique description as DelX(B) for a disc B. Proposition 4.3.8
establishes a one-to-one correspondence between such Delaunay cells and lower exposed faces of
P∗X , which are uniquely exposed by the hyperplane containing (∂B)U . In this case, [61, Theorem
3.5] holds, so the result is proved.

If a maximal Delaunay cell is a vertex, then it is a point x ∈ X . It is then also an extremal point
of conv(XU). Since conv(Bε) is sequence of compact convex sets converging in the Hausdorff
sense to P∗X , by [61, Lemma 3.1] there exists a sequence of points of Bε which are extremal points
of conv(Bε) converging to xU . So, their projections are Delaunay cells of Aε converging to x, since
every point in a finite point set is a Delaunay cell of that point set.

We will now study limits of Voronoi cells, using results from [33], which studies convergence of
Voronoi cells of r-nice sets (for a definition, see [33, 119]). In the plane, these are open sets whose
boundary satisfies some properties. In particular, open sets whose boundaries are an algebraic
curve with positive reach r satisfy the r-nice condition. For plane curves, having positive reach is
equivalent to being smooth.

To study continuity and convergence of closed sets in the plane, J.W. Brandt uses the hit-miss
topology [144, Section 1.2] F on closed subsets of the plane.

Definition 4.3.16. In the hit-miss topology, a sequence {Fn} converges to F if and only if

1. for any p ∈ F , there is a sequence pn ∈ Fn such that pn→ p; and

2. if there exists a subsequence pnk ∈ Fnk converging to a point p, then p ∈ F .

Then, to determine if a function with range in F is continuous, we need to examine the above
conditions for sequences of sets obtained by applying the function to countable convergent se-
quences in R2. If all such sequences satisfy (1) then the function is upper-semicontinuous. If all
such sequences satisfy (2) then it is lower-semicontinuous. If a function satisfies both then it is
continuous.

Lemma 4.3.1. Let X ⊂ R2 be a smooth plane algebraic curve. Then the function VorX : X →F
sending x 7→VorX(x) is continuous in the hit-miss topology.

Proof. By [33, Theorem 2.2], the Voronoi function VorX : X →F is lower semicontinuous. By
[33, Theorem 3.2], if the curve is C2 and the skeleton (locus of centers of maximally inscribed
discs) is closed, then the Voronoi function is continuous. A smooth algebraic curve is C2. The
skeleton is closed because a smooth curve satisfies the r-nice condition, and r-nice curves have
closed skeletons [33].

By [144, 10], convergence in the hit-miss topology is equivalent to Wijsman convergence. In
what follows, we rephrase the results from [33] in the setting of Wijsman convergence of Voronoi
cells of plane curves, and extend it to singular curves.
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Theorem 4.3.17. Let X be a compact smooth algebraic curve in R2 and {Aε}ε↘0 be a sequence
of ε-approximations of X. Every Voronoi cell is the Wijsman limit of a sequence of Voronoi cells of
Aε .

Proof. By Lemma 4.3.1, the function VorX : X →F is continuous. Theorem 3.1 from [33] states
that in this case, if xε is a sequence such that xε ∈ Aε and xε → x, then VorAε

(xε)→VorX(x). Such
a sequence must exist because for all y ∈ X , there exists a yε ∈ Aε such that d(y,yε)≤ ε .

We now investigate the structure of Voronoi cells of different types of singular points. In
Figure 4.25, we give four examples of Proposition 4.3.18. First, we need a glueing lemma.

Lemma 4.3.2. Let C and D be subsets of R2 containing a point p ∈C∩D. Then

VorC∪D(p) =VorC(p)∩VorD(p).

Proof. A point x ∈ VorC∪D(p) is closer to p than it is to any other point of C or D. On the other
hand, a point in VorC(p)∩VorD(p) is closer to p than it is to any other point of C or D.

Proposition 4.3.18. Let X ⊂ R2 be a real plane algebraic curve and p be a singular point.

1. If p is an isolated point, its Voronoi cell is 2-dimensional;

2. If p is a node, then its Voronoi cell is 0-dimensional and equal to p;

3. If p is a tacnode, then its Voronoi cell is 1-dimensional.

Proof.

1. Suppose p is an isolated point. Then there is a ball B(p,r) centered at p such that the ball
contains no other points of the curve X . Therefore, the ball B(p,r/2) is entirely contained in
VorX(p), so it is 2-dimensional.

2. If p is a node, then we claim that the only point contained in VorX(p) is p. At p, the curve
meets in two branches which have distinct tangent directions at p. If we treat this as two
separate 1-dimensional subsets X1 and X2 and apply Lemma 4.3.2, we see that VorX(p) =
VorX1(p)∩VorX2(p). But, since p is a smooth point of X1 and X2, the Voronoi cells VorX1(p)
and VorX2(p) are each contained in their respective normal directions, which are distinct.
Therefore, VorX1(p)∩VorX2(p) = p.

3. If p is a tacnode, then two or more osculating circles (see Definition 3.1.1) are tangent at
p. We can choose ε > 0 so that we can separate X ∩B(p,ε) into subsets X1, . . . ,Xn corre-
sponding to the osculating circles at p such that VorXi(p) is a subset of the line from p to
the center of the corresponding osculating circle. Then, we apply Lemma 4.3.2. We have
VorX∩B(p,ε)(p) = ∩n

i=1VorXi(p). All of the VorXi(p) are contained in the normal line at p,
so VorX∩B(p,ε)(p) is also a subset of this normal line. Since VorX(p) is convex, and within
B(p,ε) the Voronoi cell is a line segment, VorX(p) is 1-dimensional.
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(a) (x2 + y2− x)2− (1.5)2(x2 + y2) = 0
An isolated singularity and its
2-dimensional Voronoi cell.

(b) (x2 + y2− x)2− (x2 + y2) = 0
A cusp and its 2-dimensional Voronoi cell.

(c) (x2 + y2− x)2− (0.5)2(x2 + y2) = 0
A node and its 0-dimensional Voronoi cell.

(d) x4− y2 = 0
A tacnode and its 1-dimensional Voronoi cell.

Figure 4.25: Four singular varieties with singular point (0,0). In each case the medial axis is blue,
the singular point is red, and its Voronoi cell is pink.

Example 4.3.19. In this example we illustrate why Theorem 4.3.17 fails when the curve has a
singular point. From this example it will be clear that the singular points must be included in the
samples Aε , and it turns out that this condition is enough to extend Theorem 4.3.17 to the singular
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case.
Consider the curve defined by the equation y2 = x3. In [60, Remark 2.4] the authors give

equations for the Voronoi cell of the cusp at the origin. This region is

Vory2=x3((0,0)) = {(x,y) ∈ R2 : 27y4 +128x3 +72xy2 +32x2 + y2 +2x≤ 0}.

In Figure 4.26 we give three ε-approximations of the curve and the corresponding Voronoi decom-
positions. Let ε = 1/n. The points in the ε-approximation Aε are given by:

Aε =

{(
j
n
,±
(

j
n

)3/2
)}∞

j=1

.

As we can see in Figure 4.26, there is no sequence of cells converging to Vory2=x3((0,0)) because
the x-axis, present due to the symmetrical nature of the sample, always divides the Voronoi cell.

Figure 4.26: Some ε-approximations of the curve y2 = x3 and their Voronoi diagrams. The Voronoi
cell of the cusp (0,0) is shown in pink. This figure is discussed in Example 4.3.19.

We now are able to expand Theorem 4.3.17 to include singular varieties.

Proposition 4.3.20. Let X ⊂R2 be a compact smooth algebraic curve and {Aε}ε↘0 a sequence of
ε-approximations with the singular locus Sing(X) ⊂ Aε for all ε . Then every Voronoi cell of X is
the Wijsman limit of a sequence of Voronoi cells of Aε .

Proof. By [33, Theorem 2.2], the Voronoi function is always lower-semicontinuous. So, we must
show that condition (1) in Definition 4.3.16 holds. That is, we need that for all p ∈ X , there is
a sequence pε ∈ Aε with pε → p such that for any x ∈ VorX(p) there is an xε ∈ VorAε

(pε) with
xε → x. We distinguish the cases when p is smooth and singular.

If p is a smooth point on X , and x ∈VorX(p), there exists an ε such that x and p are both in the
Voronoi cell VorAε

(pε) for some pε .
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Suppose now that p∈X is a singular point. We wish to show that there is a sequence of Voronoi
cells converging to VorX(p), and we take the sequence VorAε

(p). To establish convergence, it
is now enough to show that for all x ∈ VorX(p), there is an xε ∈ VorAε

(p) with xε → x. Since
x ∈ VorX(p), we have that x is closer to p than it is to any other point in X . So, in particular,
x ∈VorAε

(p).
Now we have shown that for each p∈X , condition (1) in Definition 4.3.16 holds. Therefore, for

each p ∈ X , we have sequences of Voronoi cells which are convergent to Vorp(X) in the hit-miss
topology. Since convergence in the hit-miss topology and Wijsman convergence are equivalent,
every Voronoi cell of X is the Wijsman limit of a sequence of Voronoi cells of the Aε .

This concludes the proof of Theorem 4.3.1.

Medial Axis
Let X = V (F) ⊂ R2 be a smooth plane algebraic curve. We now study the medial axis of X , as
defined in Definition 4.3.4. The Zariski closure of the medial axis is an algebraic variety which has
the same dimension as the medial axis. We can obtain equations in variables x,y for the ideal I of
a variety containing the Zariski closure of the medial axis in the following way.

Let (s, t) and (z,w) be two points on X . Then, s, t,z, and w satisfy the equations

F(s, t) = 0 and F(z,w) = 0.

If (x,y) is equidistant from (s, t) and (z,w) then

(x− s)2 +(y− t)2 = (x− z)2 +(y−w)2.

Furthermore, (x,y) must be a critical point of the distance function from both (s, t) and (z,w). Thus
we require that the determinants of the following 2×2 augmented Jacobian matrices vanish:[

x− s y− t
Fs Ft

]
,

[
x− z y−w

Fz Fw

]
,

where Fs,Ft ,Fz and Fw denote the partial derivatives of F(s, t) and F(z,w), respectively. Let

I = 〈F(s, t),F(z,w),(x− s)2 +(y− t)2− (x− z)2− (y−w)2,

(x− s)Ft− (y− t)Ft ,(x− z)Fw− (y−w)Fz〉.

Then, J = (I : (s− z, t−w)∞)∩R[x,y] is an ideal whose variety contains the Zariski closure of
the medial axis.

We now study the medial axis from the perspective of Voronoi cells. It has been observed that
an approximation of the medial axis arises as a subset of the Voronoi diagram of finitely many
points sampled densely from a curve [74]. We now discuss theoretical results given in [33] about
the convergence of medial axes. Let X be a compact smooth plane algebraic curve, and let Aε be
an ε-approximation of X . A Voronoi cell VorAε

(aε) for aε ∈ Aε is polyhedral, meaning it is an
intersection of half-spaces.
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Definition 4.3.21. For sufficiently small ε , exactly two edges of VorAε
(aε) will intersect X [33].

We call these edges the long edges of the Voronoi cell, and all other edges are called short edges.
An example is given in Figure 4.27.

Figure 4.27: The long edges (blue) and short edges (red) of Voronoi cells of points sampled from
the butterfly curve as in Definition 4.3.21.

In this case, let Ŝε(aε) denote the union of the short edges and vertices of the Voronoi cell
VorAε

(aε). An ε-medial axis approximation is the set of all short edges

Ŝε =
⋃

p∈Aε

Ŝε(p).

Proposition 4.3.22. ( [33, Theorem 3.4]) Let X be a compact smooth plane algebraic curve. The
medial axis approximations Ŝε converge to the Euclidean closure of the medial axis.

Remark 4.3.23. The medial axis is the union of all endpoints of Voronoi cells VorX(p) for p ∈ X .
The medial axis is also the union of all centers of maximally inscribed circles of X .

The following corollary shows that the corresponding statements also hold for ε-approximations.

Corollary 4.3.24. Let {Aε}ε↘0 be a sequence of ε-approximations of a compact smooth algebraic
curve X ∈ R2.

1. The collection of vertices of the Voronoi diagrams of the Aε converge to the medial axis.

2. The collection of centers of maximally inscribed discs of the Aε converge to the medial axis.

Proof. This is a consequence of Theorem 4.3.15, Theorem 4.3.17, and Proposition 4.3.22.
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Example 4.3.25. In Figure 4.28 we display the centers of maximally inscribed circles, or equiv-
alently circumcenters of the Delaunay triangles, for an ε-approximation of the butterfly curve
where 898 points were sampled. In Figure 4.29 we show the short edges of Voronoi cells from an
ε-approximation of the butterfly curve where 101 points were sampled.

Figure 4.28: A medial axis approximation
of the butterfly curve obtained from cir-
cumcenters of Delaunay triangles, which
are shown in red.

Figure 4.29: A medial axis approximation
of the butterfly curve obtained from short
edges of Voronoi cells, which are shown
in red.

The medial axis plays an important role in applications for understanding the connected compo-
nents and regions of a shape. As such, it is a very well-studied problem in computational geometry
to find approximations of the medial axis from point clouds. A survey on medial axis computation
is given in [13].

Curvature and the Evolute
In Section 3.1 of this dissertation, we defined and provided equations for the minimal radius of
a curvature of a plane curve. We now describe how to recover the curvature at a point from
the Voronoi cells of a subset of a curve X . In applications, Voronoi-based methods are used for
obtaining estimates of curvature at a point. An overview of techniques for estimating curvature of
a variety from a point cloud is given in [148]. Further, there are also Delaunay-based methods for
estimating curvature of a surface in three dimensions [63].

Theorem 4.3.26. Let X be a smooth plane curve of degree at least 3 and p ∈ X a point. Let δ be
less than the distance to the critical point of curvature nearest to p, and let B(p,δ ) be a ball of
radius δ centered at p. Then
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1. The Voronoi cell VorX∩B(p,δ )(p) is a ray. The distance from p to the endpoint of this ray is
the radius of curvature of X at p.

2. Consider a sequence of ε-approximations Aε of X ∩B(p,δ ). Let aε be the point such that
p ∈ VorAε

(aε), and let dε be the minimum distance from aε to a vertex of VorAε
(aε). Then,

the sequence dε converges to the radius of curvature of X at p.

Proof. The Voronoi cell VorX∩B(p,δ )(p) is a subset of the line normal to X ∩B(p,δ ) at p. This line
has an endpoint either at the center of curvature of p or at a point where it intersects the normal
space of a distinct point p′ in X ∩B(p,δ ). The point where the normals at p and p′ intersect is
contained in the Voronoi cell with respect to X ∩B(p,δ ) of each of them, so in particular X ∩
B(p,δ ) has a nonempty medial axis. This medial axis has an endpoint which corresponds to a
point of critical curvature [105]. This contradicts the constraint on δ . Therefore, the endpoint of
the Voronoi cell VorX∩B(p,δ )(p) is the center of curvature of p. This concludes the proof of (1).

For (2), we know that the sequence VorAε
(aε) is Wijsman convergent to VorX∩B(p,δ )(p) by

Theorem 4.3.17. Denote by Vε the set of vertices of VorAε
(aε). By Corollary 4.3.24, we also have

that the sets Vε are Wijsman convergent to the endpoint of VorX∩B(p,δ )(p), which we call p′. By
the definition of Wijsman convergence, this means that for any x ∈ R2, dw(x,Vε)→ dw(x, p′). By
the definition of dw, we have dw(p,Vε) = dε and dw(p, p′) is the radius of curvature of p. This
concludes the second part of the proof.

The evolute E of a plane curve is the locus of all centers of curvature of the curve. Therefore,
to find the evolute using Voronoi cells we may splice the curve into sections and apply Theo-
rem 4.3.26. Let X be compact. Let C ⊂ X denote the points of locally maximal curvature. Then
X\C consists of finitely many components X =X1∪·· ·∪Xn. Let τ denote the reach of X , and cover
each Xi by balls Bi, j of radius less than τ . Let Ei, j denote the collection of vertices of Voronoi cells
of Xi ∩Bi, j. Then by Theorem 4.3.26, E = ∪i, jEi, j. Furthermore, for ε-approximations Aε,i, j of
Xi∩Bi, j, the union over i, j of their Voronoi vertices will converge to E by Theorem 4.3.17.

Bottlenecks
Bottlenecks are the topic of Section 2.2 of this dissertation. We now study bottlenecks from the
perspective of Voronoi cells. For a smooth point p in a algebraic curve X ⊂ R2, the Voronoi
cell VorX(p) is a 1-dimensional subset of the normal line to X at the point p. Therefore, the
normal direction can be recovered from the Voronoi cell VorX(p). For sufficiently small ε , an ε-
approximation Aε of X will have Voronoi cells whose long edges approximate the normal direction.
More precisely, by Theorem 4.3.17, if aε ∈ Aε is the point such that p ∈ VorAε

(aε), then the
directions of the long edges of VorAε

(aε) converge to the normal direction at p. We remark here
that the problem of estimating normal directions from Voronoi cells is well-studied, and numerous
efficient, robust algorithms exist [6, 10, 148].

Two points x,y ∈ X form a bottleneck if their normal lines coincide. This implies that the line
connecting them contains both VorX(x) and VorX(y).
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Figure 4.30: The real bottleneck pairs of the butterfly curve, computed in Example 4.3.28.

Definition 4.3.27. Let Aε be an ε-approximation of an algebraic curve X ⊂ R2. We say a pair
xε ,yε ∈ Aε is an approximate bottleneck reach candidate if the line xεyε joining xε and yε meets
each of VorAε

(xε) and VorAε
(yε) at short edges of those cells.

Example 4.3.28. We now compute the bottlenecks for the quartic butterfly curve b(x,y) = 0. The
formula in 2.2 predicts that there are 192/2 = 96 bottlenecks. Using the description above and
JuliaHomotopyContinuation [44], we obtain the 96 bottleneck pairs. Of these, 22 are real. We
show them in Figure 4.30.

In Figure 4.31, we show the approximate bottleneck reach candidates for 348 points sampled
from the butterfly curve. The following result tells us that if the reach is achieved by a bottleneck
pair, then this bottleneck pair is a limit of approximate bottleneck reach candidates.

Theorem 4.3.29. Let {Aε}ε↘0 be a sequence of ε-approximations of a smooth algebraic curve
X ⊂R2. If x,y is a bottleneck pair of X that achieves the reach, then there are sequences xε ,yε ∈Aε

of approximate bottleneck reach candidates converging to x and y.

Proof. Consider the line segment xy joining x and y. Since x and y are a bottleneck pair that
achieves the reach, the midpoint of xy is on the medial axis of X . So xy intersects some short edge
of two Voronoi cells VorAε

(xε) and VorAε
(yε) in a point vε . Then, xε and yε form an approximate

bottleneck reach candidate by definition. We must then show that the sequence xε converges to x
and the sequence yε converges to y.
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Figure 4.31: The approximate bottleneck reach candidates (see Definition 4.3.27) of 568 points
sampled from the butterfly curve. The narrowest width of an approximate bottleneck reach candi-
date is approximately 0.495 while the true narrowest bottleneck width is approximately 0.503.

Since vε is in the normal space of x, there exists a neighborhood of x such that the nearest point
of the intersection of this neighborhood and X to vε is x. So for ε smaller than the radius of this
neighborhood, one of the two points in Aε on either side of x as one moves along X must be the
one whose Voronoi cell contains vε . Since xε is the point whose Voronoi cell contains vε , we have
that xε is one of the two closest points in Aε to x, meaning that d(x,xε)≤ ε . Hence, xε converges
to x. Similarly, yε converges to y.

Reach
Example 4.3.30. We may find the reach of the butterfly curve by taking the minimum of half
the narrowest bottleneck distance and the minimum radius of curvature. This is shown in Figure
4.21. From the computations in Example 4.3.28, we find that the narrowest bottleneck distance
is approximately 0.251. Meanwhile, from Example 3.1.7, we find that the minimum radius of
curvature is approximately 0.104. Therefore, the reach of the butterfly is approximately 0.104.

In previous sections, we describe how the reach is the minimum of the minimal radius of
curvature and half of the narrowest bottleneck distance. We also give equations for the ideal of the
bottlenecks and for the ideal of the critical points of curvature. We now give Macaulay 2 [107]
code to compute these ideals for smooth algebraic curves X ⊂ R2. Finding the points in these
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ideals, using for example JuliaHomotopyContinuation [44], and taking appropriate minimums
gives the reach of X .

R=QQ[x_1,x_2,y_1,y_2]
f= x_1^4 - x_1^2*x_2^2 + x_2^4 - 4*x_1^2 - 2*x_2^2 - x_1 - 4*x_2 + 1
g=sub(f,{x_1=>y_1,x_2=>y_2})
augjacf=det(matrix{{x_1-y_1,x_2-y_2},{diff(x_1,f),diff(x_2,f)}})
augjacg=det(matrix{{y_1-x_1,y_2-x_2},{diff(y_1,g),diff(y_2,g)}})
bottlenecks=saturate(ideal(f,g,augjacf,augjacg),ideal(x_1-y_1,x_2-y_2))

R=QQ[x,y]
f=x^4 - x^2*y^2 + y^4 - 4*x^2 - 2*y^2 - x - 4*y + 1
num=(diff(x,f))^2 + (diff(y,f))^2
denom=-(diff(y,f))^2*diff(x,diff(x,f)) +
2*diff(x,f)*diff(y,f)*diff(y,diff(x,f)) -
(diff(x,f))^2*diff(y,diff(y,f))
crit=det(matrix({{num*diff(x,denom)- 3/2*denom*diff(x,num),
num*diff(y,denom)-3/2*denom*diff(y,num)},{diff(x,f),diff(y,f)}}))
criticalcurvature=ideal(f,crit)

Alternatively, one can estimate the reach from a point sample. The paper [1] provides a method
to do so. We provide a substantially different method that relies upon computing Voronoi and
Delaunay cells of points sampled from the curve. We have already discussed how to approximate
bottlenecks and curvature using Voronoi cells. This gives the following Voronoi-based Algorithm 1
for approximating the reach of a curve.

Algorithm 1 Voronoi-Based Reach Estimation
Input: A⊂ X a finite set of points forming an ε−approximation for a compact, smooth algebraic

curve X ⊂ R2.
Output: τ , an approximation of the reach.

for a ∈ A do
Compute an estimate for the curvature ρa at a using a technique from [148].

end for
Set ρmin = minA(ρa).
Set q to be the radius of any disk containing X .
for a,b ∈ A do

if a,b form an approximate bottleneck reach candidate as in Definition 4.3.27 then
Set q = min(q,d(a,b)/2)

end if
end for
Set τ = min(q,ρmin).
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The reach is equivalently defined as the minimum distance to the medial axis, which suggests
the following Delaunay-based Algorithm 2 for estimating the reach. This algorithm is susceptible
to sample error, and to give accurate results would require more sophisticated techniques.

Algorithm 2 Delaunay-Based Reach Estimation
Input: A⊂ X a finite set of points forming an ε−approximation for a compact, smooth algebraic

curve X ⊂ R2.
Output: τ , an approximation of the reach.

Compute a Delaunay triangulation D of A.
Set M = /0.
for T a Delaunay triangle of D do

Set cT be the circumcenter of the Delaunay triangle T .
Set M = M∪{cT}.

end for
Set τ = minc∈M,a∈A d(a,c).

The approximate methods can be used with curves of higher degree, while the symbolic meth-
ods are hard to compute for curves with degrees even as low as 4, but give a more accurate estimate
for the reach. This suggests that more work can be done to develop fast and accurate methods to
compute the reach of a variety.

Conclusion
In this chapter, we have explored the interplay between data analysis and algebraic geometry. We
surveyed tools for modeling point sets with algebraic varieties and determining their dimension,
degree, and homology. We showed how algebraic geometry and offset hypersurfaces can inform
persistent homology. We proved that Voronoi diagrams of point sets converge to Voronoi cells
of varieties and used this fact to develop algorithms for computing metric features, such as the
reach, curvature, bottlenecks, and medial axis of plane curves. In the next chapter, we will see how
numerical and computational tools can be used to explore algebraic varieties.
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Chapter 5

Computational Algebraic Geometry

The past several years have seen rapid development in the speed and efficiency of software used for
numerical algebraic geometry. These numerical techniques complement theoretical techniques and
unlock possibilities for answering large computational and enumerative questions. In this chapter,
we will demonstrate the strength of these numerical tools. In Section 5.1, we use software to
show that the degree of a variety is 96120, a large number possible to compute only with recently
developed technology. In Section 5.2, we show how computational techniques can be used to
explore the variety of symmetric matrices with repeated eigenvalues, combining with theoretical
techniques to study its implicit equations, degree, and dimension.

The original work in this chapter comes from two papers. Section 5.1 comes from the paper
[46], which is joint work with Laura Brustenga i Moncusí and Sascha Timme. It is published in Le
Matematiche. Section 5.2 comes from the single-authored paper [185].

5.1 Using Numerical Algebraic Geometry to Compute Degrees
Automorphism groups of varieties and group actions on varieties are of much interest to researchers
of algebraic geometry, arithmetic, and representation theory [7, 48, 145, 181]. Here we study the
action of the projective linear group PGL(C,4) on cubic surfaces parameterized by points in P19

C .
In particular, we compute the degree of the 15-dimensional projective variety in P19

C defined by
the Zariski closure of the orbit of a general cubic surface under this action. This degree is also
meaningful in enumerative geometry: It is the number of translates of a cubic surface that pass
through 15 points in general position. This formulation provides an alternate method for obtaining
the degree.

Aluffi and Faber considered the analogous problem for plane curves of arbitrary degree, first
the smooth case in [7] and then the general case in [8]. They obtained a closed formula for the
degree of the orbit closure of a plane curve under the action of PGL(C,3). This was a signif-
icant undertaking, involving long and detailed calculations in intersection rings using advanced
techniques from intersection theory.

Instead of adopting the techniques developed by Aluffi and Faber, we use tools from numerical
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algebraic geometry [113, 176]. We refer the reader to Section 1.3 of this dissertation for an intro-
duction to these tools. The general idea is as follows. We fix a cubic surface f and 15 points in
general position in P3

C. The condition that a translate of f passes through these 15 points results in
a polynomial system for which we compute all isolated numerical solutions by homotopy continu-
ation and monodromy methods using the software HomotopyContinuation.jl [44]. The concept
of an approximate zero [28] makes precise the definition of a numerical solution. We use Smale’s
α-theory and the software alphaCertified [114] to certify that the obtained numerical solutions
indeed satisfy the system of polynomial equations. Finally, we use a trace test [141] to check that
no solution is missing. With these techniques, we conclude that the number of numerical solutions
we obtain, 96120, is in fact the degree of the orbit closure. This result is a “numerical theorem”
rather a theorem in the classical sense.

Our presentation is organized as follows. First, we introduce the linear orbit problem in detail
and derive the polynomial systems used in our computations. Next, we discuss the techniques used
from numerical algebraic geometry and the computations performed to arrive at the result.

Linear Orbits and Polynomial Systems
A cubic surface in P3

C is defined by a cubic homogeneous polynomial in 4 variables with complex
coefficients. The parameter space for cubic surfaces is P19

C and we fix coordinates (c0 : · · · : c19) ∈
P19
C .

The projective space P15
C of homogeneous 4×4 matrices A = (ai j)1≤i, j≤4 is a compactification

of the projective general linear group

PGL(C,4) = {A ∈ P15
C | detA 6= 0} ⊆ P15

C .

The group PGL(C,4) acts on a cubic surface f ∈ P19
C , with ϕ ∈ PGL(C,4) sending f to the cubic

surface ϕ · f defined by the equation

f (ϕ(x,y,z,w)) = 0 .

This corresponds to a linear change of the coordinates x,y,z,w. We say that ϕ · f is the translate of
f by ϕ . Then PGL(C,4) · f is the orbit of f in P19

C and its Zariski closure Ω f := PGL(C,4) · f is a
15-dimensional projective variety.

Example 5.1.1. To illustrate this idea, we consider the action of PGL(C,2) on pairs of points
defined by homogeneous polynomials

f (x,y) = b0x2 +b1xy+b2y2 .

The parameter space for pairs of points is P2
C, that is f = (b0 : b1 : b2) ∈ P2

C. Let

ϕ =

(
a11 a12
a21 a22

)
.
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Then

f (ϕ(x,y)) =b1(a11x+a12y)2 +b2(a11x+a12y)(a21x+a22y)+b3(a21x+a22y)2

=(b1a2
11 +b2a11a21 +b3a2

21)x
2 +

(2b1a11a12 +b2(a11a22 +a12a21)+2b3a21a22)xy +

(b1a2
12 +b2a12a22 +b3a2

22)y
2.

and thus

ϕ · f = (b1a2
11 +b2a11a21 +b3a2

21 :
2b1a11a12 +b2(a11a22 +a12a21)+2b3a21a22 :

b1a2
12 +b2a12a22 +b3a2

22) ∈ P2
C .

To compute the degree of the orbit closure of a general cubic surface under the action of
PGL(C,4), we construct as follows polynomial systems whose number of isolated regular so-
lutions correspond to the desired degree.

Fix a general cubic surface f ∈ P19
C and a general linear subspace L⊆ P19

C of dimension 4, the
codimension of Ω f . Consider the rational map

Θ f : P15
C P19

C

sending a 4× 4 matrix ϕ to ϕ · f . By definition, the image of Θ f is Ω f . By [145, Theorem 5],
a generic hypersurface of degree at least three in at least four variables has a trivial stabilizer (we
note that in [48, Propostion 7.5] it is stated that the argument in [145] has an error but that it does
not affect the correctness of the statement). Hence, the map Θ f is one-to-one, so the degrees of the
zero-dimensional varieties Ω f ∩L and Θ

−1
f (Ω f ∩L) = Θ

−1
f (L) are equal.

Note that Θ
−1
f (L) includes non-invertible matrices whose kernel does not contain f . But since

we assume L ⊆ P19
C to be general, Θ

−1
f (L) will not intersect the codimension 1 subvariety of P15

C
of matrices with determinant equal to 0.

It follows that the degree of the orbit closure is the number of regular isolated solutions of the
polynomial system

L̃ ϕ · f = 0 (5.1)

in the entries of ϕ ∈ P15
C , where L̃ ∈ C15×20 is a matrix representing the general linear subspace

L⊆ P19
C of dimension 4.

The degree of Ω f can be thought of in enumerative terms as the number of translates of f that
pass through 15 points p1, . . . , p15 ∈ P3

C in general position. Consider the translated cubic surface
ϕ · f . Note that ϕ · f passes through a point p∈ P3

C if and only if f (ϕ(p)) = 0 . Therefore we obtain
the polynomial system

f (ϕ(pi)) = 0 , i = 1, . . . ,15 (5.2)

in the entries of P15
C . By Bertini’s theorem, we may assume that the hypersurfaces f (ϕ(pi)) = 0

intersect transversally. Hence, the degree of Ω f is equal to the number of matrices satisfying (5.2).
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Formulations (5.1) and (5.2) both result in a system of 15 homogeneous cubic polynomials
in the 16 unknowns (ai j)1≤i, j≤4, but they have different computational advantages. To perform
numerical homotopy continuation, it is beneficial to pass to an affine chart of projective space. This
can be done in formulation (5.1) by fixing a coordinate, say adding the polynomial a11−1= 0. But
this introduces artificial solutions. For example, for every solution φ ∈ C16, we have that ei 2

3 π
φ

and ei 4
3 π

φ are also solutions. The formulation (5.2) does not produce these undesired artificial
solutions. However, the formulation (5.1) is better suited for applying the trace test than (5.2).

A Numerical Approach
In this section we explain our use of numerical algebraic geometry to obtain Theorem* 5.1.1 be-
low. Reasonable mathematicians may differ as to whether it is appropriate to state this result as a
theorem since we currently cannot certify the last step of our computation. We add the asterisk to
acknowledge these differing opinions.

Theorem* 5.1.1. The degree of the orbit closure of a general cubic surface under the action of
PGL(C,4) is 96120.

All computations performed to arrive at this result are available from the authors upon request.
To compute the degree of the orbit closure, we sample a general cubic surface f ∈ P19

C by draw-
ing the real and imaginary parts of each of its coordinates independently from a univariate normal
distribution. We then solve the polynomial system (5.2) encoding the enumerative geometry prob-
lem. A naive strategy is to sample 15 points p1, . . . , p15 ∈ P3

C in general position and use a total
degree homotopy, but in this case the Bézout bound is 315 = 14,348,907. Here, the monodromy
method is substantially more efficient.

To apply the monodromy method, we consider (5.2) as a polynomial system on the entries of
ϕ parameterized by 15 points p1, . . . , p15 in P3

C. We consider the incidence variety

V = {(ϕ,(p1, . . . , p15)) ∈ P15
C × (P3

C)
15 | F(ϕ(pi)) = 0, i = 1, . . . ,15}

and we denote by π the projection P15
C × (P3

C)
15 (P3

C)
15 restricted to V .

We find a start pair (ϕ0; p1, . . . , p15) ∈ V and then we use the monodromy action on the fiber
π−1(p1, . . . , p15) to find all solutions in this fiber. Such a start pair can be found by exchanging
the role of variables and parameters. First, we sample a ϕ0 ∈ P15

C and the first three coordinates
of 15 points pi ∈ P3

C in general position. This yields a system of 15 polynomials each depending
only on a unique variable: The ith polynomial depends only on the fourth coordinate of pi. Such
a system is easy to solve. Solving it yields a start pair (ϕ0; p1, . . . , p15) ∈ V , on which we run the
monodromy method implemented in the software package HomotopyContinuation.jl [44]. In
less than an hour on a single core, this method found 96120 approximate solutions corresponding
to the start points p1, . . . , p15 ∈ P3

C.
Next we apply Smale’s α-theory as implemented in the software alphaCertified [114] to

certify two conditions of our numerical approximations: First, we show that each is indeed an
approximate zero to our original polynomial system, and second that all 96120 approximate zeros
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have distinct associated zeros. Due to computational limits we were only able to obtain a certifi-
cate using (arbitrary precision) floating point arithmetic. Hauenstein and Sottile call this a “soft”
certificate since it does not eliminate the possibility of floating point errors. It is preferable to
use rational arithmetic for certification, but for a system of our size too much time is required to
perform such a computation.

The certification process establishes a lower bound on the degree of the orbit closure. As a last
step, we run a trace test to verify that we have indeed found all solutions. The trace test described in
the previous section is only applicable to varieties W ⊂Pn

C. In [141] the authors derive a trace test to
certify the completeness of a collection of partial multihomogeneous witness sets. Our formulation
(5.2) provides only one partial multihomogeneous witness set, namely π−1(p1, . . . , p15), and not
the entire collection that would be necessary to run a trace test. To avoid these complications, we
use formulation (5.1). We note that it is straightforward to construct a linear subspace L from the
15 points p1, . . . , p15 such that our solutions from the monodromy computation are also solutions
to (5.1), so translating formulation (5.2) to (5.1) is not difficult.

In the language of numerical algebraic geometry our 96120 solutions together with the linear
subspace L constitute a pseudo witness set [112]. We construct a general pencil Mt of linear spaces
with M0 =L. Working with approximate solutions refined to around 38 digits of accuracy we obtain
for tr(1) a vector with norm of approximately 10−32. Additionally, increasing the accuracy of the
solutions decreases the norm of the trace test result. While this gives us very high certainty that
we indeed obtained all solutions, we do not have a rigorous certificate that the trace test converges
to zero when we increase the accuracy of the solutions. A certification of the trace test similar to
Smale’s α-theory for numerical solutions remains an open problem.

From the described computations we conclude that degree of the orbit closure of a general
cubic surface under the action PGL(C,4) is 96120.

We note that as a test of our methods, we confirmed known degrees of other varieties. In
agreement with a theoretical result of Aluffi and Faber [7], we computed that the degree of the orbit
closure of a general quartic curve in the plane is 14280. Additionally we computed that the degree
of the orbit closure of the Cayley cubic, defined by the equation yzw+xzw+xyw+xyz = 0, is 305.
Due to the symmetry of the variables in the Cayley cubic, there are 4! matrices corresponding to
every polynomial in the orbit. As expected, we computed 7320 = 4! ·305 solutions. This coincides
with a theoretical result of Vainsencher [181].

5.2 Real Symmetric Matrices with Partitioned Eigenvalues

Let λ = (λ1, . . . ,λm) be a partition of n. Let R
n(n+1)

2 be the space of real symmetric n×n matrices.

We define the variety of λ -partitioned eigenvalues VR(λ ) ⊂ R
n(n+1)

2 to be the Zariski closure of
the locus of matrices with eigenvalue multiplicities determined by λ . Since we take the Zariski
closure, these varieties include all matrices with eigenvalue multiplicities determined by partitions
of n that are coarser than λ .

The space of real symmetric matrices has multiple advantages over the spaces of real square
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matrices, complex square matrices, and complex symmetric matrices. Unlike other real matrices,
real symmetric matrices have all real eigenvalues. Additionally, the real symmetric case has better
properties with respect to diagonalizability than complex square or complex symmetric matrices.

We illustrate these properties with the example of n = 2,λ = (2), the locus of 2× 2 matrices
with coinciding eigenvalues.

Example 5.2.1. Complex 2× 2 matrices with the repeated eigenvalue µ can have two Jordan
normal forms. The first is diagonal and the second is not. For convenience, call a 2×2 matrix with
coinciding eigenvalues type A if its Jordan normal form (JNF) is diagonal and type B otherwise:

JNF of a Type A matrix :
(

µ 0
0 µ

)
JNF of a Type B matrix :

(
µ 1
0 µ

)
.

We examine the dimensions of the loci of type A and type B matrices in three cases: complex
square, complex symmetric, and real symmetric. In each case, the dimension of the locus of type
A matrices is 1 because scalar matrices are fixed by conjugation. For complex square matrices, the
dimension of the Type B locus is 3. For complex symmetric matrices, the dimension of the Type
B locus is 2. Conjugating the JNF of a Type B matrix by any invertible matrix of the form(

a b
c d

)
where a2+c2 = 0 yields a symmetric matrix with coinciding eigenvalues. Real symmetric matrices
are orthogonally diagonalizable, so the Type B locus for real symmetric matrices is empty.

The significance of these dimensions is as follows. A generic real symmetric matrix with coin-
ciding eigenvalues is diagonalizable and a generic complex square matrix or complex symmetric
matrix with coinciding eigenvalues is not. Real symmetric matrices can be studied through their
diagonal restrictions.

Matrices with repeated eigenvalues have been studied in contexts from geometry [38] to classi-
cal invariant theory and linear algebra [83–85,123,135,159,164,178]. Recently, they have come to
focus in the study of curvature of algebraic varieties, as in Section 3.2. The principal curvatures of
a variety are the eigenvalues of the second fundamental form. Coincidences of eigenvalues corre-
spond to geometric features; for example, on a surface, a point where the eigenvalues of the second
fundamental form coincide is called an umbilic. At an umbilic the best second-order approximation
of a surface is given by a sphere.

A matrix is called degenerate if its eigenvalues are not all distinct. The locus of such matrices
is a variety defined by the matrix discriminant. As a polynomial in the eigenvalues, the matrix
discriminant is the product of the squared differences of each pair of eigenvalues, and thus it is
zero exactly when the eigenvalues are not distinct. To study the variety of degenerate matrices, one
considers the discriminant as a polynomial in the entries of the matrix. In [159], Parlett gives an
equation for the discriminant of a matrix in its entries by describing it as the determinant of another
matrix.
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In a refinement of the study of degenerate matrices, some authors [84, 85, 164] have studied
matrices by their number of distinct eigenvalues. In this situation, the role of the matrix discrim-
inant is played by the sequence of k-subdiscriminants. The 0-subdiscriminant is the usual matrix
discriminant. An n×n matrix has exactly n−k distinct eigenvalues if and only if subdiscriminants
0 through k−1 vanish and the k-subdiscriminant does not. In [164], Roy gives an explicit descrip-
tion of the k-subdiscriminant of the characteristic polynomial of a matrix A in terms of the entries
of A. Furthermore, she expresses the k-subdiscriminant as a sum of squares with real coefficients.

In [85], Domokos studies the variety of matrices with a bounded number of distinct eigenvalues
from the perspective of invariant theory. This variety can be characterized by its invariance under
the action of conjugation by the special orthogonal group on the space of symmetric matrices. He
describes the minimal degree homogeneous component of the space of invariants of the variety of
matrices with a bounded number of distinct eigenvalues.

The variety of λ -partitioned eigenvalues appears in [24], where Bik and Draisma analyze its
properties with respect to distance optimization. In [129], Kozhasov studies the open submani-
fold of the variety of λ -partitioned eigenvalues where the eigenvalue have exact multiplicities λ .
Kozhasov proves that it is a minimal submanifold of the space of real symmetric n×n matrices. A
minimal submanifold of a Riemannian manifold is one with zero mean curvature vector field; this
generalizes the concept of surfaces in R3 that locally minimize area.

This section further investigates the variety of λ -partitioned eigenvalues, with each section
addressing a different aspect. First, we give a parametrization. Second, we prove a formula for
the dimension. Third, we put the parametrization to work to find equations and the degree of this
variety for small n. We explain how representation theory can be used to extend these calculations
to larger n. We also describe the ring of SO(n)-invariants. Lastly, we study the diagonal restriction,
computing its degree. We show how the diagonal restriction provides a good model for distance
optimization questions regarding the variety of λ -partitioned eigenvalues, presenting a theorem of
Bik and Draisma for its Euclidean distance degree.

Parametrization
We now describe a parametrization of the variety of λ -partitioned eigenvalues VR(λ ) ⊂ R

n(n+1)
2

by rational functions. Real symmetric matrices are diagonalizable by orthogonal matrices. The
orthogonal group is parametrized by the set of skew-symmetric matrices.

Proposition 5.2.2. Let λ = (λ1, . . . ,λm) be a partition of n and let Diag(λ ) be a diagonal n× n
matrix with diagonal entries µ1, . . . ,µm where each entry µi appears with multiplicity λi. Let B be
a skew-symmetric n×n matrix. Let I be the n×n identity matrix. The map

p : Rn×n Rn×n

B 7→ (I−B)(I +B)−1Diag(λ )(I +B)(I−B)−1

is a partial rational parametrization of VR(λ ).
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Proof. Consider the Cayley transform map from the space Skew(n) of real skew-symmetric n×n
matrices to the orthogonal group O(n) of real n×n matrices:

Cay : Skew(n) O(n)

B 7→ (I−B)(I +B)−1

where I is the n×n identity matrix. Its image is the set SO(n) of special orthogonal matrices minus
those with −1 as an eigenvalue. See [11] for details. A real symmetric matrix A can be written in
the form A = PDP−1 where P is an orthogonal matrix and D is a diagonal matrix. The entries of
D are the eigenvalues of A.

As the image of the Cayley transform map is just the set SO(n) of special orthogonal matrices
minus those with −1 as an eigenvalue, to obtain a fuller parametrization of VR(λ ), we use Cay to
parametrize SO(n) and swap any two rows in the matrices in SO(n) to obtain orthogonal matrices
with determinant −1. The matrices excluded from this method form a subvariety of codimension
1 and thus can be ignored for most numerical calculations. We utilize such a parametrization in
the next section.

Dimension
The dimension is an important invariant of any algebraic variety. We now give a formula for
the dimension of the variety of λ -partitioned eigenvalues and show how it can be proved using
the fact that this variety is the O(n)-orbit of a certain form of diagonal matrix. To use the alge-
braic definition of dimension, we study the complexification of VR(λ ), which is characterized by
a parametrization.

Theorem 5.2.3. The real algebraic variety VR(λ ) ⊂ R
n(n+1)

2 of n× n real symmetric matrices in

R
n(n+1)

2 with eigenvalue multiplicities corresponding to the partition λ = (λ1, . . . ,λm) of n has
dimension m+

(n
2

)
−∑

m
i=1
(

λi
2

)
.

Proof. Every real symmetric matrix A can be written in the form A = PDP−1 where P is a real or-
thogonal matrix and D is a diagonal matrix with diagonal entries equal to the eigenvalues of A. The
complexification of VR(λ ) consists of matrices of the form A = PDP−1 where P is an orthogonal
matrix with complex entries and D is a diagonal matrix with entries partitioned by λ . Choose m
distinct eigenvalues. Arrange the matrix D so that repeated eigenvalues are grouped together along
the diagonal. Scalar matrices commute with all matrices, so the scalar matrix block corresponding
to each eigenvalue commutes with the corresponding blocks of P and P−1. Thus any matrix P with
orthogonal blocks for each eigenvalue stabilizes D. The dimension of the orthogonal group O(n)
is
(n

2

)
. So the dimension of the block orthogonal stabilizer of D is ∑

m
i=1
(

λi
2

)
. By Proposition 21.4.3

of [180], the dimension of the orbit of a fixed diagonal matrix is
(n

2

)
−∑

m
i=1
(

λi
2

)
. Since there are m

choices of eigenvalues, the dimension of the variety of matrices with multiplicities corresponding
to λ is as stated.

Having a formula for the dimension of this variety will help us to find its equations.
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Equations
We now discuss how to find equations for the varieties VR(λ ). The case n = 2 was discussed in
the introduction. For n = 3 and most partitions of n = 4, we use the parametrization from above to
generate points on the variety and then use interpolation to find polynomials that vanish on these
points. For larger n, the matrices used for interpolation become too large for both our symbolic and
numerical methods. We discuss how representation theory can be used to make these computations
more feasible. As a first step towards studying the relevant representations, we describe the ring of
invariants.

In Examples 5.2.4, 5.2.5 and 5.2.6, we analyze the varieties VR(λ ) where λ is a partition of
n = 3 or n = 4. By Theorem 5.2.3, we know the codimension of each variety. We generate points
and use interpolation to find equations on those points. We use Macaulay2 [107] to verify that
these equations generate a prime ideal of the expected codimension. This confirms that we have
indeed found enough equations to generate the desired ideal.

For n = 4 and λ = (2,1,1), our interpolation code found no polynomials of degree less than
or equal to 5. As this partition is just the case of degenerate 4×4 matrices, it has been studied by
other authors. The ideal is of codimension 2, generated by the (unsquared) summands in a sum of
squares representation of the matrix discriminant. Parlett provides an algorithm using determinants
for computing this discriminant and writing it as a sum of many squares [159]. Domokos gives a
nonconstructive proof that it can be written as a sum of 7 squares [83].

Example 5.2.4. Let n = 3 and λ = (2,1). We confirm the findings of other authors that this ideal
is of codimension 2 and degree 4 [178, Section 7.5]. It is generated by the following 7 cubic
polynomials. The matrix discriminant is the sum of the squares of these polynomials.

−x11x13x22 + x11x13x33 + x2
12x13− x12x22x23 + x12x23x33− x3

13 + x13x2
22− x13x22x33

−x2
12x23 + x12x13x22− x12x13x33 + x2

13x23
−x11x13x23 + x12x2

13− x12x2
23 + x13x22x23

x11x12x23− x11x13x22 + x11x13x33− x12x22x23− x3
13 + x13x2

22− x13x22x33 + x13x2
23

−x11x12x22 + x11x12x33− x11x13x23 + x3
12 + x12x22x33− x12x2

23− x12x2
33 + x13x23x33

−x2
11x23 + x11x12x13 + x11x22x23 + x11x23x33− x2

12x23− x12x13x33− x22x23x33 + x3
23

x2
11x22− x2

11x33− x11x2
12 + x11x2

13− x11x2
22 + x11x2

33 + x2
12x22− x2

13x33 + x2
22x33− x22x2

23− x22x2
33 + x2

23x33

Example 5.2.5. Let n = 4 and λ = (3,1). The ideal is of codimension 5 and degree 8. It is
generated by the following 10 quadrics:

−x12x34 + x13x24
−x12x24 + x13x34 + x14x22− x14x33

−x12x34 + x14x23
x12x33− x12x44− x13x23 + x14x24
−x12x23 + x13x22− x13x44 + x14x34
x11x34− x13x14− x22x34 + x23x24
x11x24− x12x14 + x23x34− x24x33

−x11x33 + x11x44 + x2
13− x2

14 + x22x33− x22x44− x2
23 + x2

24
x11x23− x12x13− x23x44 + x24x34

−x11x22 + x11x44 + x2
12− x2

14 + x22x33− x2
23− x33x44 + x2

34
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Example 5.2.6. Let n = 4 and λ = (2,2). The ideal is of codimension 4 and degree 6. It is
generated by the following 9 quadrics:

x2
11 +4x2

13− x2
22−4x2

24−2x11x33 + x2
33 +2x22x44− x2

44
x11x12 + x12x22 +2x13x23 +2x14x24− x12x33− x12x44
x11x14− x14x22 +2x12x24− x14x33 +2x13x34 + x14x44
x11x13− x13x22 +2x12x23 + x13x33 +2x14x34− x13x44
−x2

11−4x2
14 + x2

22 +4x2
23−2x22x33 + x2

33 +2x11x44− x2
44

2x12x14− x11x24 + x22x24− x24x33 +2x23x34 + x24x44
2x12x13− x11x23 + x22x23 + x23x33 +2x24x34− x23x44
−x2

11−4x2
12 +2x11x22− x2

22 + x2
33 +4x2

34−2x33x44 + x2
44

−x11x34 +2x13x14− x22x34 +2x23x24 + x33x34 + x34x44

Naive interpolation strategies, both symbolic and numerical, become infeasible as n increases.
To reduce the dimensions of these matrices and make these linear algebra computations more
feasible, we turn to representation theory. See [102] and [150, Chapter 10] for details.

The ideal I(VR(λ )) is stable under the action by conjugation of the real orthogonal group SO(n)

on the space R
n(n+1)

2 of real symmetric n×n-matrices. Thus the degree d homogeneous component
I(VR(λ ))d is a representation of SO(n). So to find generators of I(VR(λ )), we find representa-
tions of SO(n). Since SO(n) is reductive, every representation has an isotypic decomposition into
irreducible representations. While these irreducible representations may be of high dimension,
they can be studied through their low-dimensional highest weight spaces. We refer the reader
to [102, Chapter 26] or [150, Chapter 10] for details.

Here we examine the special case of one-dimensional representations of SO(n). These vector
spaces contain polynomials that are themselves invariant under the action of SO(n), rather than
simply generating an ideal which is SO(n)-stable as an ideal.

Denote by I(VR(λ ))
SO(n) the graded vector space of SO(n)-invariant polynomials in I(VR(λ )).

Let VR(Dλ ) denote the intersection of VR(λ ) with the variety of diagonal matrices in R
n(n+1)

2 . We
often identify VR(Dλ ) with a variety in Rn. Let I(VR(Dλ ))

Sn be the graded vector space of Sn-
invariant polynomials in I(VR(Dλ )).

Theorem 5.2.7. I(VR(λ ))
SO(n) and I(VR(Dλ ))

Sn are isomorphic as graded vector spaces.

Proof. Let Symn be the space of real symmetric n×n matrices and Diagn the subspace of diagonal
matrices. Denote by Sn the subgroup of SO(n) of matrices which permute the diagonal entries.
Consider the degree-preserving linear map from R[Symn]

SO(n) R[Diagn]
Sn given by restriction

of functions. Every orbit of symmetric matrices under the action of SO(n) contains a diagonal
matrix. The stabilizer of the group of diagonal matrices under the action SO(n) is Sn. Thus there
is an isomorphism of quotient groups Symn/SO(n) ∼= Diagn/Sn. So the restriction of functions is
an isomorphism of graded vector spaces R[Symn]

SO(n) ∼= R[Diagn]
Sn . It induces an isomorphism

I(VR(λ ))
SO(n) ∼= I(VR(Dλ ))

Sn .

This result is beneficial because I(VR(Dλ ))
Sn is easier to study than I(VR(λ ))

SO(n). We thus
turn our study to I(VR(Dλ )).
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Diagonal Matrices
We now study the intersection of the variety of λ -partitioned eigenvalues with the variety of diag-
onal matrices. Recall that VR(Dλ ) denotes the intersection of VR(λ ) with the variety of diagonal

matrices in R
n(n+1)

2 . We identify this with the variety in Rn of points with coordinates that have mul-
tiplicities given by the partition λ . Then VR(Dλ ) is a union of the n!

λ1!···λm! subspaces of dimension
m given by permuting the coordinates of the subspace

V1 = {(a1, . . . ,a1,a2, . . . ,a2, . . . ,am, . . . ,am) | ai ∈ R}

where the coordinate ai is repeated λi times. Characterizing VR(Dλ ) as a union of linear spaces
reveals its degree.

Proposition 5.2.8. Let λ = (λ1, . . . ,λm) be a partition of n. The degree of the variety VR(Dλ ) of
n×n diagonal matrices with eigenvalue multiplicities partitioned according to λ is

n!
λ1! · · ·λm!

One may ask how well the diagonal restriction of the variety of λ -partitioned eigenvalues
models the variety as a whole. With regards to distance optimization, the diagonal restriction is a
quite good model. Let X ⊂ Rn be a real algebraic variety and XC ⊂ Cn its complexification. Fix
u ∈ Rn. Then the Euclidean distance degree (EDD) of X is the number of complex critical points
of the squared distance function du(x) = ∑

n
i=1(ui− xi)

2 on the smooth locus of XC [86]. It can be
shown that this number is constant on a dense open subset of data u∈Rn. In [24], Bik and Draisma
prove that the variety of λ -partitioned eigenvalues and its diagonal restriction have the same EDD.
The diagonal restriction is a subspace arrangement, so its EDD is its number of distinct maximal
subspaces.

Theorem 5.2.9 (Bik and Draisma). Let λ = (λ1, . . . ,λm). The Euclidean distance degree of the
variety VR(λ ) of λ -partitioned eigenvalues is n!

λ1!···λm! .

Conclusion
In this chapter, we have seen how numerical algebraic geometry can be used to answer questions
that are harder to approach with theoretical mathematics. We saw how certification techniques can
yield numerical theorems. We also made a foray into the study of techniques to pair representation
theory with numerical algebraic geometry to answer difficult computational questions.
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