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Analysis of immune-related loci identifies 48 new susceptibility 
variants for multiple sclerosis

A full list of authors and affiliations appears at the end of the article.

Abstract

Using the ImmunoChip custom genotyping array, we analysed 14,498 multiple sclerosis subjects 

and 24,091 healthy controls for 161,311 autosomal variants and identified 135 potentially 

associated regions (p-value < 1.0 × 10-4). In a replication phase, we combined these data with 

previous genome-wide association study (GWAS) data from an independent 14,802 multiple 

sclerosis subjects and 26,703 healthy controls. In these 80,094 individuals of European ancestry 

we identified 48 new susceptibility variants (p-value < 5.0 × 10-8); three found after conditioning 
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on previously identified variants. Thus, there are now 110 established multiple sclerosis risk 

variants in 103 discrete loci outside of the Major Histocompatibility Complex. With high 

resolution Bayesian fine-mapping, we identified five regions where one variant accounted for 

more than 50% of the posterior probability of association. This study enhances the catalogue of 

multiple sclerosis risk variants and illustrates the value of fine-mapping in the resolution of 

GWAS signals.

Multiple sclerosis (OMIM 126200) is an inflammatory demyelinating disorder of the central 

nervous system that is a common cause of chronic neurological disability.1,2 It has its 

greatest prevalence amongst individuals of Northern European ancestry3 and is moderately 

heritable,4 with a sibling relative recurrence risk (λs) of ~ 6.3.5 Aside from the early success 

in demonstrating the important effects exerted by variants in the Human Leukocyte Antigen 

(HLA) genes from the Major Histocompatibility Complex (MHC),6 there was little progress 

in unravelling the genetic architecture underlying multiple sclerosis susceptibility prior to 

the advent of genome-wide association studies (GWAS). Over the last decade, our 

Consortium has performed several GWAS and meta-analyses in large cohorts, 7-10 

cumulatively identifying more than 50 non-MHC susceptibility alleles. As in other complex 

diseases, available data suggest that many additional susceptibility alleles remain to be 

identified.11

The striking overlap in the genetic architecture underlying susceptibility to autoimmune 

diseases9,10,12,13 prompted the collaborative construction of the “ImmunoChip” (see 

Supplementary Note and Supplementary Figs. 1 and 2 for details of IMSGC nominated 

content), an efficient genotyping platform designed to deeply interrogate 184 non-MHC loci 

with genome-wide significant associations to at least one autoimmune disease and provide 

lighter coverage of other genomic regions with suggestive evidence of association.14 Here, 

we report a large-scale effort that leverages the ImmunoChip to detect association with 

multiple sclerosis susceptibility and refine these associations via Bayesian fine-mapping.

After stringent quality control (QC), we report genotypes on 28,487 individuals of European 

ancestry (14,498 multiple sclerosis subjects, 13,989 healthy controls) that are independent of 

previous GWAS efforts. We supplemented these data with 10,102 independent control 

subjects provided by the International Inflammatory Bowel Disease Genetics Consortium 

(IIBDGC)15 bringing the total to 38,589 individuals (14,498 multiple sclerosis subjects and 

24,091 healthy controls). We performed variant level QC, population outlier identification, 

and subsequent case-control analysis in 11 country-organized strata. To account for within-

stratum population stratification we used the first five principal components as covariates in 

the association analysis. Per stratum odds ratios (OR) and respective standard errors (SE) 

were then combined with an inverse variance meta-analysis under a fixed effects model. In 

total we tested 161,311 autosomal variants that passed QC in at least two of the 11 strata 

(Online Methods). A circos plot16 summarising the results from this discovery phase 

analysis is shown in Figure 1.

We defined an a priori discovery threshold of p-value <1 × 10-4 and identified 135 primary 

statistically independent association signals; 67 in the designated fine-mapping regions and 

68 in less densely covered regions selected for deep replication of earlier GWAS. Another 
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13 secondary and 2 tertiary statistically independent signals were identified by forward 

stepwise logistic regression. A total of 48 of the 150 statistically independent association 

signals (Supplementary Table 1) reached a genome-wide significance p-value <5 × 10-8 at 

the discovery phase alone. Next, we replicated our findings in 14,802 multiple sclerosis 

subjects and 26,703 healthy controls with available GWAS data imputed to the 1000 

Genomes European phase I (a) panel (Online Methods). Finally, we performed a joint 

analysis of the discovery and replication phases.

We identified 97 statistically independent SNPs meeting replication criteria (preplication < 

0.05, pjoint < 5 × 10-8, and pjoint < pdiscovery); 93 primary signals (Supplementary Figs. 3-95) 

and four secondary signals. Of these, 48 are novel to multiple sclerosis (Table 1) and 49 

correspond to previously identified multiple sclerosis effects (Table 2). An additional 11 

independent SNPs showed suggestive evidence of association (pjoint < 1 × 10-6) 

(Supplementary Table 2).

The strongest novel association, rs12087340 (pjoint = 1.1 × 10-20, OR = 1.21), lies between 

BCL10 (B-cell CLL / lymphoma 10) and DDAH1 (dimethylarginine 

dimethylaminohylaminohydrolase 1). The protein encoded by BCL10 contains a caspase 

recruitment domain (CARD) and has been shown to activate NF-kappaB.17 The latter is a 

signalling molecule that plays an important role in controlling gene expression in 

inflammation, immunity, cell proliferation, and apoptosis. It has been pursued as a potential 

therapeutic target for multiple sclerosis.18 BCL10 is also reported to interact with other 

CARD domain containing proteins including CARD11.19 We have also identified a novel 

association of rs1843938 (pjoint = 1.2 × 10-10, OR = 1.08), which is only 30 kb from 

CARD11.

One novel SNP was found within an exon, rs2288904 (pjoint = 1.6 × 10-11, OR= 1.10); a 

missense variant in SLC44A2 (solute carrier family 44, member 2). Notably, this variant is 

also reported as a monocyte-specifccis-acting eQTL for the antisense transcript of the 

nearby ILF3 (interleukin enhancer binding factor 3).20 This protein was first discovered to 

be a subunit of a nuclear factor found in activated T-cells, which is required for T-cell 

expression of IL2, an important molecule regulating many aspects of inflammation.

Of the 49 previously identified effects,9,10,21 37 are in designated fine-mapping regions, and 

23 of these 37 signals were localized to a single gene based on genomic position 

(Supplementary Table 3). Recognizing that proximity does not necessarily indicate 

functional importance, this emphasizes the utility of dense mapping in localizing signals 

from a genome-wide screen. The ImmunoChip analysis furthered the understanding of 

previously proposed secondary signals at three loci (Supplementary Note and 

Supplementary Tables 4-6); in particular we showed that the effects of two previously 

proposed independent associations at the IL2RA locus are driven by a single variant, 

rs2104286.7,22.

In an effort to define the functionally relevant variants underlying these associations, we 

further studied the regions surrounding the 97 associated SNPs using both a Bayesian and 

frequentist approach in 6,356 multiple sclerosis subjects and 9,617 healthy controls from the 
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UK (Online Methods).23 Based on imputation quality, fine-mapping was possible in 68 

regions (Supplementary Table 7): 66 of 93 primary (Fig. 2A) and two of four secondary. 

Eight of the 68 regions were fine-mapped to high resolution (Table 3, Fig. 2B and 

Supplementary Fig. 96). One third of the variants identified in these eight regions were 

imputed, indicating reliance on imputation even with dense genotyping coverage.

To assess whether functional annotation24 provides clues about the molecular mechanisms 

associated with genetic risk, we considered the relationship of variants to described coding 

and regulatory features in these eight regions. Although we found no variants with missense 

or nonsense effects, there was a notable enrichment for variants with functional effects: one 

known to affect splicing,25 three known to correlate with RNA or serum protein 

levels22,26,27 and several in transcription-factor binding and DNase I hypersensitive 

sites.28, 29 Four of the 18 variants in the fine-mapped regions are within conserved regions 

(GERP > 2).30 This lack of functional annotation likely reflects the limited repertoire of 

reference expression and epigenomic profiles and suggests that the function of the variants 

may be cell-type or cell-state specific, as has been reported for many eQTLs in immune cell 

types.20

To determine the Gene Ontology (GO) processes of the 97 associated variants, we used 

MetaCore from Thomson Reuters (Online Methods). We found the majority of the 97 

variants lie within 50 kb of genes having immunological function. Of the 86 unique genes 

represented, 35 are linked to the GO immune system process (Table 1 and Table 2). We do 

not see a substantial over- or under- representation of certain GO processes when comparing 

the novel and previously identified loci, but this may be a limitation of ImmunoChip 

targeting genomic loci enriched for immunologically active genes, with more subtle 

distinctions between them not adequately captured by broad annotations such as GO.

Finally, we explored the overlap between our findings and those in autoimmune diseases 

with reported ImmunoChip analyses. We calculated the percentage of multiple sclerosis 

signals (110 non-MHC, Supplementary Table 8) overlapping those of other autoimmune 

diseases by requiring an r2 ≥ 0.8 between the best variants reported in each study using 

SNAP.31 In total we find that ~22% of our signals overlap at least one other autoimmune 

disease. More specificially, ~9.1% overlap with inflammatory bowel disease (IBD) - ~7.3% 

with ulcerative colitis (UC), ~9.1% with Crohn’s disease (CD) -15, ~9.1% with primary 

biliary cirrhosis (PBC),32, 33 ~4.5% with celiac disease (CeD),34 ~4.5% with rheumatoid 

arthritis (RhA),35 ~0.9% with psoriasis (PS),36 and ~2.7% with autoimmune thyroid disease 

(AITD).37 We report the same top variant seen in PBC for 7 loci. We also note that our best 

TYK2 variant (rs34536443)38 is also the most associated variant for PBC, PS and RhA. 

Lastly, AITD, CeD, PBC, and RhA report variants with pairwise r2 ≥ 0.8 to the multiple 

sclerosis variant near MMEL139 (Supplementary Table 8).

In summary, we have identified 48 new multiple sclerosis susceptibility variants. These 

novel loci expand our understanding of the immune system processes implicated in multiple 

sclerosis. We estimate that the 110 non-MHC established risk variants explain 20% of the 

sibling recurrence risk; 28% including the already identified MHC effects9 (Supplementary 

Note). Additionally, we have identified five regions where consistent high resolution fine-
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mapping implicated one variant which accounted for more than 50% of the posterior in 

previously identified regions of TNFSF14, IL2RA, TNFRSF1A, IL12A, and STAT4. Our 

study further implicates NF-kappaB in multiple sclerosis pathobiology18, emphasizes the 

value of dense fine-mapping in large follow-up data sets, and exposes the urgent need for 

functional annotation in relevant tissues. Understanding the implicated networks and their 

relation to environmental risk factors will promote the development of rational therapies and 

may enable the development of preventive strategies.

Online Methods

ImmunoChip data (discovery set)

Details of case ascertainment, processing and genotyping for the discovery phase are 

provided in the Supplementary Note (Supplementary Table 9). Genotype calling for all 

samples was performed using Opticall.40 Samples that performed poorly or were determined 

to be related were removed (Supplementary Table 10). The data were organized in 11 

country level strata: ANZ (Australia + New Zealand), Belgium, Denmark, Finland, France, 

Germany, Italy, Norway, Sweden, United Kingdom (UK), and the United States of America 

(USA). SNP level quality control (Supplementary Table 11) and population outlier 

identification using principal components analysis (Supplementary Fig. 97) were done in 

each stratum separately.

Discovery set analysis

We applied logistic regression, assuming a per-allelic genetic model per data set, including 

the first five principal components as covariates to correct for population stratification 

(Supplementary Table 12 lists the per data set genomic inflation factors, λ). We then 

performed an inverse-variance meta-analysis of the 11 strata, under a fixed effects model, as 

implemented in PLINK.41 To be more conservative and account for any residual inflation in 

the test statistic, we applied the genomic control equivalent to the per-SNP standard error in 

each stratum. Specifically, we corrected the SNP standard errors by multiplying them with 

the square root of the raw genomic inflation factor λ, per data set, if the λ was >1.

Within the designated fine-mapping intervals, we applied a forward stepwise logistic 

regression to identify statistically independent effects. The primary SNP in each interval was 

included as a covariate, and the association analysis was repeated for the remaining SNPs. 

This process was repeated until no SNPs reached the minimum level of significance (p-value 

<1 × 10-4). Outside of the designated fine-mapping intervals, all SNPs having a p-value <1 × 

10-4 were identified and grouped into sets based on a physical distance of less than 2Mb and 

a similar stepwise regression model was applied. Any SNPs to enter the model with p-value 

<1 × 10-4 after conditioning were considered statistically independent primary signals.

In addition, because of the close physical proximity between some fine-mapping intervals 

and SNP sets, independence was tested for all identified signals within 2Mb of one another. 

The and cluster plots (Supplementary Fig. 98) of all independent SNPs were examined, and 

the SNP was excluded if unsatisfactory. If any SNP was excluded, the forward stepwise 

logistic regression within that fine-mapping interval or SNP set was repeated after removal 
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of the SNP. During this process, 17 additional SNPs were excluded based on cluster or 

forest plot review.

Replication Set

The replication phase included GWAS data organized into 15 strata. Within each stratum, 

poorly performing samples (call rate < 95%, gender discordance, excess heterozygosity) and 

poorly performing SNPs (Hardy-Weinberg equilibrium (HWE) p-value <1 × 10-6, minor 

allele frequency (MAF) < 1%, call rate < 95%) were removed. Principal components 

analysis was performed to identify population outliers per stratum, and the genomic control 

inflation factor was < 1.1 for each. The data included in the final discovery and replication 

analyses are summarized in Supplementary Table 13 and Supplementary Table 14. All the 

samples used in the replication set were unrelated to those in the discovery set; verified by 

identity-by-descent analysis.

We attempted replication of all non-MHC independent signals that reached a discovery p-

value of <1 × 10-4 in a meta-analysis set of GWAS. Each data set was imputed to the 1000 

Genomes European phase I (a) panel using BEAGLE42 to maximize the overlap between the 

Immunochip SNP content and the GWAS data. Post-imputation genotypic probabilities were 

used in a logistic regression model, per stratum, to estimate SNP effect sizes and p-values. 

By using the post-imputation genotypic probabilities, we penalized SNPs that didn’t have 

good imputation quality, thus ensuring a conservative analysis. Furthermore, we accounted 

for population stratification in each data set by including the first five principal components 

in the logistic model. We then meta-analysed the effect size and respective standard errors of 

the 15 strata using a fixed effects model inverse-variance method. We applied the genomic 

control equivalent to the per-SNP standard error in each stratum, controlling for the 

respective genomic inflation factor λ (Supplementary Table 14).

To replicate the primary SNPs per identified signal in the discovery phase, we used the 

replication effect size and respective standard error. For the secondary and tertiary SNPs, we 

fitted the same exact models as in the discovery phase, per data set. We then performed 

fixed effects meta-analysis to estimate an effect size that corresponds to the same logistic 

model. In the case that a SNP was not present in the replication set, we replaced it with a 

perfectly tagging SNP, i.e. a SNP that had r2 and D’ equal to 1. If a perfectly tagging SNP 

was not available, we selected a SNP that had equivalent MAF and the highest possible r2 

and D’. Estimation of r2 and D’ for this objective were based on the ImmunoChip control 

samples.

Joint analysis (discovery and replication sets)

The discovery and replication phase effect sizes and respective standards errors were meta-

analysed under a fixed effects model. A SNP was considered replicated when all three of the 

following criteria were met: 1) replication p-value <5.0 × 10-2, 2) joint p-value <5 × 10-8, 

and 3) the joint p-value was more statistically significant than the discovery p-value. SNPs 

that reached a p-value of <1 × 10-6 but did not pass the genome-wide threshold, were coined 

suggested if the above criteria 1) and 3) were met.
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Fine-mapping of association signals

To fine-map signals of association we used a combination of imputation and Bayesian 

methodology.23 Around each of the 97 associated SNPs, 2Mb were isolated in the discovery 

and replication phase UK data as well as the European samples from the Phase 1 1000G.28 

Forming the single largest cohort, only UK samples were considered to minimize the effects 

of differential imputation quality between populations of different ancestry. In addition to 

the previous quality control, SNPs with failed alignment or a difference in MAF > 10% 

between the typed cohorts and the 1000G samples, MAF < 1%, or HWE p-value <1.0 × 10-4 

were removed.

Imputation was performed separately for the UK discovery and replication cohorts on each 

2Mb region using the default settings of IMPUTEv2.43,44 Missing genotypes in the 

genotyped SNPs were not imputed, and any imputed SNP that failed the HWE and MAF 

threshold was subsequently removed. We carried out frequentist and Bayesian association 

tests on all SNPs in each cohort separately, assuming additivity, using the default settings of 

SNPTESTv2.45 Frequentist fixed-effect meta-analysis was carried out using the software 

META.46 Bayesian meta-analysis was carried out using an independence prior (near-

identical results were obtained using a fixed-effect Bayesian meta-analysis).

To identify regions where reliable fine-mapping could be achieved, we used the information 

score (INFO, obtained from IMPUTEv2) as identified from the 1000G samples. 

Specifically, we measured the fraction of variants with both r2 > 0.5 and r2 > 0.8 to the 

primary associated variant, having greater than 50% and 80% INFO scores respectively. 

Regions where any SNP with r2 > 0.5 had INFO < 50% were excluded. We also excluded 

regions where the top hit from imputation had an INFO score less than 80%. Regions were 

considered to be fine-mapped with high quality when all variants with r2 > 0.8 had at least 

80% INFO. Within these regions, we excluded variants where the inferred direction of 

association was opposite in the UK discovery and replication cohorts.

To measure the posterior probability that any single variant drives association, we calculated 

the Bayes Factor. Under the assumption that there is a single causal variant in the region, 

this is proportional to the probability that the variant drives the association.23 We identified 

the smallest set of variants that contained 90% and 50% of the posterior probability. We 

called a region successfully and consistently fine-mapped if there were at most five variants 

in the 50% confidence interval and the top SNP from the frequentist analysis lived in the 

90% confidence interval. For these regions, we annotated variants with information about 

evolutionary conservation, predicted coding consequence, regulation, published associations 

to expression or DNase I hypersensitive sites using ANNOVAR,47 VEP,24 and the eQTL 

browser, a recent immune cell expression study20, and other literature.

Gene Ontology

To determine the GO processes for which our associated variants were involved, we used 

MetaCore from Thomson Reuters. We annotated the processes for the unique genes within 

50Kb of the variants.
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Cross disease comparison

In order to explore the potential overlap with variants identified across other autoimmune 

diseases, we calculated the percentage overlap of reported variants found in other 

ImmunoChip reports to our ImmunoChip results. The top variants reported as either novel or 

previously known in other ImmunoChip reports were compared with the 110 variants 

representing both our novel and previous discoveries in multiple sclerosis. In order for a 

signal to be considered as overlapping, we required an r2 ≥ 0.8 using the Pairwise LD 

function of the SNAP tool in European samples.31

Secondary analyses

We performed a severity based analysis of MSSS in cases only from the discovery phase 

(Supplementary Fig. 99). In addition, a transmission disequilibrium test was done in 633 

trios to test for transmission of the 97 identified risk alleles (Supplementary Fig. 100). 

Details are given in the Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Discovery phase results
Primary association analysis of 161,311 autosomal variants in the discovery phase (based on 

14,498 cases and 24,091 healthy controls). The outer most track shows the numbered 

autosomal chromosomes. The second track indicates the gene closest to the most associated 

SNP meeting all replication criteria. Previously identified associations are indicated in grey. 

The third track indicates the physical position of the 184 fine-mapping intervals (green). The 

inner most track indicates −log(p) (two-sided) for each SNP (scaled from 0-12 which 

truncates the signal in several regions, see Supplementary Table 1). Additionally, contour 

lines are given at the a priori discovery(−log(p) = 4) and genome-wide significance (-log(p) 

= 7.3) thresholds. Orange indicates -log(p) ≥ 4 and < 7.3, while red indicates −log(p) ≥ 7.3. 

Details of the full discovery phase results can be found in ImmunoBase.
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Figure 2. Bayesian fine-mapping within primary regions of association
a) Summary of the extent of fine-mapping across 66 regions in 9,617 healthy controls from 

the UK, showing the the physical extent of, the number of variants, and the number of genes 

spanned by the posterior 90% and 50% credible sets. b) Detail of fine-mapping in region of 

TNFSF14. Above the x-axis indicates the Bayes Factor summarizing evidence for 

association for the SNPs prior to conditioning (blue markers) while below the x-axis 

indicates the Bayes Factor after conditioning on the lead SNP (rs1077667). Mb=Megabases.
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