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Desulfotomaculum gibsoniae is a mesophilic member of the polyphyletic spore-forming 
genus Desulfotomaculum within the family Peptococcaceae. This bacterium was isolated 
from a freshwater ditch and is of interest because it can grow with a large variety of or-
ganic substrates, in particular several aromatic compounds, short-chain and medium-
chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduc-
tion of sulfate. It can grow autotrophically with H2 + CO2 and sulfate and slowly 
acetogenically with H2 + CO2, formate or methoxylated aromatic compounds in the ab-
sence of sulfate. It does not require any vitamins for growth. Here, we describe the fea-
tures of D. gibsoniae strain GrollT together with the genome sequence and annotation. 
The chromosome has 4,855,529 bp organized in one circular contig and is the largest 
genome of all sequenced Desulfotomaculum spp. to date. A total of 4,666 candidate pro-
tein-encoding genes and 96 RNA genes were identified. Genes of the acetyl-CoA path-
way, possibly involved in heterotrophic growth and in CO2 fixation during autotrophic 
growth, are present. The genome contains a large set of genes for the anaerobic transfor-
mation and degradation of aromatic compounds, which are lacking in the other se-
quenced Desulfotomaculum genomes. 

Introduction
Desulfotomaculum gibsoniae strain GrollT (DSM 
7213) is a mesophilic sulfate-reducing bacte-
rium isolated from a freshwater ditch in Bre-
men, Northern Germany [1,2]. It grows with a 
wide range of substrates, including organic ac-
ids, such as medium-chain fatty acids, short-
chain fatty acids, and several aromatic com-
pounds [1]. These substrates are degraded to 

CO2 coupled to sulfate reduction. The strain is 
also able to grow autotrophically with H2/CO2 
and sulfate, and is able to ferment pyruvate and 
crotonate. In the absence of sulfate, it grows 
slowly on H2/CO2, formate, and methoxylated 
aromatic compounds. D. gibsoniae does not re-
quire vitamins for growth. 
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The genus Desulfotomaculum is a heterogeneous 
group of anaerobic spore-forming sulfate-
reducing bacteria, with thermophilic, meso-
philic, and psychrophilic members that grow at 
neutral or alkaline pH values [3]. Their cell wall 
stains Gram-negative, but the ultrastructure of 
the cell wall is characteristic of Gram-positive 
bacteria [4]. They are physiologically very di-
verse. In contrast to Gram-negative sulfate-
reducing bacteria and closely related Clostridia, 
very little is known about their physiology, but 
members of this genus are known to play an im-
portant role in the carbon and sulfur cycle in di-
verse habitats. 

The Desulfotomaculum genus is divided 
phylogenetically into different subgroups [1]. To 
get a thorough understanding of the evolution-
ary relationships of the different 
Desulfotomaculum subgroups and the physiolo-
gy of the individual species, it is important to 
have genome sequence information. Here, we 
present a summary of the features of D. 
gibsoniae strain GrollT, together with the de-
scription of the complete genomic sequencing 
and annotation. A special emphasis is put on the 
ability of this strain to grow on a large variety of 
aromatic compounds and the responsible genes, 
and its capacity for acetogenic growth in the ab-
sence of sulfate. 

 
Figure 1. Neighbor joining tree based on 16S rRNA gene sequences showing the phylogenetic affiliations 
of Desulfotomaculum and related species and highlighted to show the subgroups of Desulfotomaculum 
cluster 1. D. gibsoniae is printed in bold type. The recently described Desulfotomaculum defluvii (cluster 
1a), Desulfotomaculum intricatum (cluster 1f), Desulfotomaculum peckii (cluster 1e), and 
Desulfotomaculum varum (cluster 1a) and the entire cluster 1g are not included in the tree. A set of 
Thermotogales species were used as outgroup, but were pruned from the tree. Closed circles represent 
bootstrap values between 75 and 100%. The scale bar represents 10% sequence difference. 
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Classification and features 
D. gibsoniae is a member of the phylum 
Firmicutes. Phylogenetic analysis of the 16S 
rRNA genes of D. gibsoniae shows that it clusters 
in Desulfotomaculum cluster 1, subgroup b. (Fig-
ure 1 [1]). Other species in this subgroup are D. 
geothermicum, D. arcticum, D. alcoholivorax, D. 
thermosapovorans, D. sapomandens and the non-
Desulfotomaculum species Sporotomaculum 
hydroxybenzoicum and S. syntrophicum. 
D. gibsoniae is a mesophilic sulfate reducer, with 
an optimum growth temperature between 35-
37°C [1,2]. Fermentative and acetogenic growth 

was shown with pyruvate, crotonate, formate, H2 
+ CO2, and methoxylated aromatic compounds as 
substrates. In the presence of an electron accep-
tor it can completely oxidize substrates to CO2. 
Suitable electron acceptors are sulfate, thiosul-
fate and sulfite. The cells of D. gibsoniae are 
straight or slightly curved rods (1.0-2.5 × 4-7 
μm) with pointed ends (Figure 2). Spores of D. 
gibsoniae are spherical and located in the center 
of the cells, causing swelling. A summary of the 
classification and general features of D. 
gibsoniae is presented in Table 1. 

 
Figure 2. Scanning electron micrograph of D. gibsoniae strain GrollT. 

Genome sequencing and annotation
Genome project history 
D. gibsoniae was selected for sequencing in the 
DOE Joint Genome Institute Community Se-
quencing Program 2009, proposal 
300132_795700 'Exploring the genetic and 
physiological diversity of Desulfotomaculum 
species', because of its phylogenetic position in 
one of the Desulfotomaculum subgroups and its 
ability to use aromatic compounds for growth. 

The genome project is listed in the Genome 
OnLine Database (GOLD) [18] as project 
Gi07572, and the complete genome sequence is 
deposited in Genbank. Sequencing, finishing and 
annotation of the D. gibsoniae genome were per-
formed by the DOE Joint Genome Institute (JGI) 
using state of the art sequencing technology 
[19]. A summary of the project information is 
shown in Table 2. 
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Table 1. Classification and general features of D. gibsoniae strain GrollT (DSM 7213) according to the MIGS rec-
ommendations [5]. 

MIGS ID Property Term 
Evidence 
codea 

 Current classification Domain Bacteria TAS [6] 

  Phylum Firmicutes TAS [6-8] 

  Class Clostridia TAS [9,10] 

  Order Clostridiales TAS [11,12] 

  Family Peptococcaceae TAS [11,13] 

  Genus Desulfotomaculum 
TAS 
[11,14,15] 

  Species Desulfotomaculum gibsoniae TAS [1] 

  Type strain Groll  

 Gram stain 
Negative with a Gram-positive cell wall 
structure TAS [1,2] 

 Cell shape 
Straight or slightly curved rods with point-
ed ends TAS [1,2] 

 Motility 
Motile, but motility was lost during culti-
vation TAS [1,2] 

 Sporulation 
Spherical and central, slightly swelling the 
cell TAS [1,2] 

 Temperature range 20-40°C TAS [1,2] 

 
Optimum tempera-
ture 35-37°C TAS [1,2] 

 Carbon source 

CO2 (autotrophic) and many organic 
compounds including aromatic com-
pounds TAS [1,2] 

 Energy source 

Sulfate-dependent growth and fermenta-
tive growth with pyruvate, crotonate, 
formate,  
H2 + CO2, and methoxylated aromatic 
compounds TAS [1,2] 

 Electron acceptor Sulfate, thiosulfate and sulfite TAS [1,2] 

MIGS-6 
Habitat 
 Fresh water, mud, soil TAS [1,2] 

MIGS-6.2 
pH range 
Optimum pH 

6.0-8.0 
6.9-7.2 TAS [1,2] 

MIGS-6.3 Salinity 0-35 g l-1, no addition of NaCl necessary TAS [1,2] 

MIGS-22 Oxygen Obligate anaerobe TAS [1,2] 

MIGS-15 Biotic relationship Free living TAS [1,2] 

MIGS-14 Pathogenicity BSF 1 [16]  

MIGS-4 Geographic location Grolland, Bremen, Germany TAS [1,2] 

MIGS-5 
Sample collection 
time Spring 1989  

MIGS-4.1 Latitude 53.058 N  

MIGS-4.2 Longitude 8.762 E  

MIGS-4.3 Depth 60 cm (water), 1 cm sediment  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable 
Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted 
property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [17].
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 

Three genomic libraries: one Illumina shotgun library, one 
454 standard library, 
and one paired end 454 library 

MIGS-29 Sequencing platforms Illumina GAii, 454 Titanium 

MIGS-31.2 Genome coverage 479 × Illumina; 27.2 × pyrosequence 

MIGS-30 Assemblers Newbler v. 2.3 

MIGS-32 Gene calling method Prodigal, GenePRIMP 

 INSDC ID CP003273 

 Genbank Date of Release May 13, 2013 

MIGS-13 
 

GOLD ID 
NCBI project ID 
Database: IMG 
Source material identifier 

Gc0017752 
59873 
2508501002 
DSM 7213T 

 Project relevance 

Obtain insight into the phylogenetic and physiological diver-
sity of Desulfotomacum species, 
and genes for anaerobic degradation of aromatic compounds 

Growth conditions and DNA isolation 
D. gibsoniae strain GrollT, DSM 7213, was grown 
anaerobically in DSMZ medium 124a 
(Desulfotomaculum Groll Medium) [2,20] at 
35°C. DNA was isolated from 0.5-1 g of cell paste 
using Jetflex Genomic DNA Purification kit 
(GENOMED 600100) following the standard pro-
tocol as recommended by the manufacturer. 
DNA quality was inspected according the guide-
lines of the genome sequence laboratory. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [21]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 139 contigs in one scaf-
fold was converted into a phrap [22] assembly 
by making fake reads from the consensus, to col-
lect the read pairs in the 454 paired end library. 
Illumina GAii sequencing data (2,432 Mb) was 
assembled with Velvet [23] and the consensus 
sequences were shredded into 1.5 kb over-
lapped fake reads and assembled together with 
the 454 data. The 454 draft assembly was based 
on 220 Mb 454 draft data and all of the 454 
paired end data. Newbler parameters are -
consed -a 50 -l 350 -g -m -ml 21. The 
Phred/Phrap/Consed software package [22] 
was used for sequence assembly and quality as-
sessment in the subsequent finishing process. 
After the shotgun stage, reads were assembled 

with parallel phrap (High Performance Software, 
LLC). Possible mis-assemblies were corrected 
with gapResolution [22], Dupfinisher [24], or 
sequencing cloned bridging PCR fragments with 
subcloning. Gaps between contigs were closed 
by editing in Consed, by PCR and by Bubble PCR 
primer walks (J.-F. Chang, unpublished). A total 
of 132 additional reactions were necessary to 
close some gaps and to raise the quality of the 
final contigs. Illumina reads were also used to 
correct potential base errors and increase con-
sensus quality using a software Polisher devel-
oped at JGI [25]. The error rate of the final ge-
nome sequence is less than 1 in 100,000. To-
gether, the combination of the Illumina and 454 
sequencing platforms provided 506.2 × coverage 
of the genome. The final assembly is based on 
2,347 Mb of Illumina draft data and 133 Mb of 
pyrosequence draft data. 

Genome annotation 
Genes were identified using Prodigal [26] as part 
of the DOE-JGI genome annotation pipeline [27], 
followed by a round of manual curation using 
the JGI GenePRIMP pipeline [28]. The predicted 
CDSs were translated and used to search the Na-
tional Center for Biotechnology Information 
(NCBI) non-redundant database, UniProt, TIGR-
Fam, Pfam, PRIAM, KEGG, COG, and InterPro da-
tabases. Additional gene prediction analysis and 
functional annotation was performed within the 
Integrated Microbial Genomes - Expert Review 
(IMG-ER) platform [29]. 
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Genome properties 
The genome consists of one circular chromo-
some of 4,855,529 bp (45.49% GC content) and 
includes no plasmids. A total of 4,762 genes 
were predicted, of which 4,666 are protein-
coding genes. In addition, 3,464 of protein cod-
ing genes (72.7%) were assigned to a putative 

function with the remaining annotated as hypo-
thetical proteins. The statistics of the genome 
are summarized in Table 3. 70.24% of the total 
genes were assigned to the COG functional cate-
gories (Table 4 and Figure 3). 

Table 3. Genome statistics 
Attribute Value % of total 

Genome size (bp) 4,855,529 100.00 
DNA coding region (bp) 3,949,133 81.33 
DNA G+C content (bp) 2,208,827 45.49 
Total genes 4,762 100.00 
RNA genes 96 2.02 
Protein-coding genes 4,666 97.98 
Genes in paralog clusters 2,789 58.57 
Genes assigned to COGs 3,345 70.24 
Pseudo genes 314 6.59 
Genes with signal peptides 737 15.48 
Genes with transmembrane helices 966 20.29 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Graphical map of the chromosome. From outside to the center: Genes on forward strand (color 
by COG categories), genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs 
red, other RNAs black), GC content (black), GC skew (purple/olive). 
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Table 4. Number of genes associated with the general COG functional categories 

Code Value % age Description 

J 157 4.26 Translation 

A 1 0.03 RNA processing and modification 

K 331 8.98 Transcription 

L 276 7.49 Replication, recombination and repair 

B 1 0.03 Chromatin structure and dynamics 

D 51 1.38 Cell cycle control, mitosis and meiosis 

Y 0 0.00 Nuclear structure 

V 68 1.84 Defense mechanisms 

T 237 6.43 Signal transduction mechanisms 

M 169 4.58 Cell wall/membrane biogenesis 

N 81 2.20 Cell motility 

Z 0 0.00 Cytoskeleton 

W 0 0.00 Extracellular structures 

U 74 2.01 Intracellular trafficking and secretion 

O 103 1.79 Posttranslational modification, protein turnover, chaperones 

C 365 9.90 Energy production and conversion 

G 104 2.82 Carbohydrate transport and metabolism 

E 255 6.92 Amino acid transport and metabolism 

F 73 1.98 Nucleotide transport and metabolism 

H 188 5.10 Coenzyme transport and metabolism 

I 158 4.29 Lipid transport and metabolism 

P 151 4.10 Inorganic ion transport and metabolism 

Q 75 2.03 Secondary metabolites biosynthesis, transport and catabolism 

R 459 12.45 General function prediction only 

S 309 8.38 Function unknown 

- 1417 29.76 Not in COGs 

Insights into the genome
Degradation of aromatic compounds 
D. gibsoniae can grow on a large variety of aro-
matic compounds (Figure 4) [1,2]. Other bacte-
ria capable of growth via anaerobic degradation 
of aromatic compounds linked to nitrate reduc-
tion, Fe(III) reduction, or sulfate reduction are 
much more restricted [30,31]. 
In sulfate-reducing bacteria (e.g. Desulfobacula 
toluolica) methylated aromatic compounds such 
as toluenes, xylenes or cresols are thought to be 
degraded via an initial fumarate addition to the 
methyl group followed by β-oxidation-like reac-
tions [32-34]. The genes putatively coding for 
the enzyme catalyzing the fumarate addition re-
action (hbsABC) are present in two copies in the 
genome of D. gibsoniae. They might have differ-
ent substrate specificities for the growth sub-

strates m- and p-cresol since the genome of D. 
toluolica possesses one set of these genes and 
can only grow with p-cresol [34,35]. In D. 
gibsoniae m- and p-cresol are expected to be 
converted to 3- or 4-hydroxybenzylsuccinate. 
The genes coding for enzymes involved in the 
subsequent β-oxidation (bhsABCDEFGH), yield-
ing 3- or 4-hydroxybenzoyl-CoA, are also pre-
sent in two copies. In growth experiments tolu-
ene degradation was not observed for D. 
gibsoniae [1,2]. The genome provides no oppos-
ing information. All genes for the degradation of 
the growth substrates phenylacetate and phenol 
are present including the type of phenylphos-
phate carboxylase typically found in strict an-
aerobes [36].
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Figure 4. Degradation of aromatic compounds in D. gibsoniae based on genomic data. Enzymes are highlight-
ed in red color. Possible encoding genes and their locus tags are shown below. Abbreviations: 
BamBCDEFGHI, class II benzoyl-CoA reductase; BCL, benzoate CoA-ligase; BCT, succinyl-CoA:benzoate 
CoA-transferase; BzdNOPQ, class I benzoyl-CoA reductase; BhsABCDEFGH, beta-oxidation of 
hydroxybenzylsuccinate; DCH, cyclohexa-1,5-diene-CoA hydratase; HAD, 6-OH-cyclohex-1-ene-1-carbonyl-
CoA dehydrogenase; HbsABC, hydroxybenzylsuccinate synthase; OAH, 6-oxo-cyclohex-1-ene-1-carbonyl-
CoA hydrolase; PadBCD, phenylacetyl-CoA acceptor oxidoreductase; padEGHI, phenylglyoxylate 
oxidoreductase; PadJ, phenylacetate CoA-ligase; PcmRST, 4-OH-benzoyl-CoA reductase; PPC, 
phenylphosphate carboxylase; PpsAB, phenylphosphate synthase. 
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All genes encoding enzymes of the upper benzo-
yl-CoA degradation pathway were identified in 
D. gibsoniae. The growth substrate benzoate is 
activated to benzoyl-CoA either via ATP-
dependent CoA-ligase (bcl) or succinyl-CoA de-
pendent CoA-transferase (bct) [37,38]. There are 
two classes of dearomatizing benzoyl-CoA 
reductases (BCRs) [39]. Class I are ATP-
dependent FeS enzymes composed of four dif-
ferent subunits [40]. There are two subclasses of 
ATP-dependent BCRs of the Thauera- and the 
Azoarcus-type. ATP-independent class II BCRs 
contain eight subunits and harbor a tungsten-
containing cofactor in the active site [41]. The 
ATP-independent class II BCR is characteristic of 
strictly anaerobic aromatic compound degrading 
bacteria [42]. In D. gibsoniae the genes of the 
catalytic subunit (bamB) of the class II BCR are 
present in six copies. All of the predicted seven 
genes for the putative electron activating subu-
nits of class II BCR (bamCDEFGHI) were identi-
fied in at least two copies and arranged next to 
each other. Surprisingly, genes of a class I BCR 
with high similarity (47-68% amino acid identi-
ty) to class I BCRs of the Azoarcus-type 
(bzdNOPQ) were found, but these were not lo-
cated in a single transcriptional unit. It is unclear 
which of the putative BCR-encoding genes is 
used for benzoyl-CoA and/or 3-OH-benzoyl-CoA 
reduction. The genes necessary to convert the 
product of BCRs, a cyclic conjugated dienoyl-
CoA, to 3-OH-pimelyl-CoA via modified β-
oxidation (dch, had, oah) are present in one copy 
each. It is unclear whether these genes are also 
involved in 3-OH-benzoyl-CoA degradation. One 
of the more unusual growth substrates of D. 

gibsoniae is catechol, a substrate metabolized 
only by a very limited number of anaerobic bac-
teria. The pathway of catechol metabolism via 
protocatechuate was outlined 20 years ago [2] 
and is now confirmed by the genome analysis. 
For the degradation of lignin monomers, the side 
chains will be degraded and the methoxy-group 
will be removed by o-demethylation. The genes 
responsible for this mechanism are present in 
the genome (Desgi_0674 to Desgi_0676). The re-
sulting compounds can then be degraded by the 
pathways outlined in Figure 4. 
Phylogenetic trees based on hbsA which is a 
homolog to bssA (Figure 5A) and hbsC which is a 
homolog tobssC (Figure 5B) show deeply 
branching lineages for the Desulfotomaculum 
gibsoniae genes and no clear affiliation to other 
sulfate-reducing bacteria except, in the case of 
the hbsC gene to alkane-oxidizing species. Inter-
estingly, similar genes were also found in the 
genomes of Desulfotignum balticum and 
Desulfotignum phosphitoxidans. Both are only 
known to use benzoate or its hydroxyl deriva-
tives, whereas the only other species of this ge-
nus, Desulfotignum toluenicum can grow very 
well on toluene [44-46]. Using the bamB and 
bamC genes for phylogenetic tree construction 
(Figure 6A and Figure 6B), the picture is even 
more heterogenous. The different genes are affil-
iated with genes found in sulfate-reducing and 
other bacteria, hence a clear clustering cannot 
be seen. Again, genome data provides some in-
teresting insights. Desulfospira joergensenii is 
not described as a benzoate utilizing bacterium, 
but seems to have some similar genes [47]. 

 
Figure 5A. Phylogenetic tree based on amino acid sequences of bssA and hbsA. The trees were calculat-
ed with the "One-Click" mode of the online phylogenetic analysis program Phylogeny.fr [43]. Dots repre-
sent bootstrap values between 75 and 100%. The sequences of Desulfotomaculum gibsoniae are printed 
in bold. Azoarcus sp. EbN1 and Geobacter sp. FRC-32 are identical to Aromatoleum aromaticum and 
Geobacter daltonii respectively. 
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Figure 5B. Phylogenetic tree based on amino acid sequences of bssC and hbsC. The trees were calculat-
ed with the "One-Click" mode of the online phylogenetic analysis program Phylogeny.fr [43]. Dots repre-
sent bootstrap values between 75 and 100%. The sequences of Desulfotomaculum gibsoniae are printed 
in bold. Azoarcus sp. EbN1 and Geobacter sp. FRC-32 are identical to Aromatoleum aromaticum and 
Geobacter daltonii respectively. 

 

Figure 6A. Phylogenetic tree based on amino acid sequences of five of the six homologs of bamB. The 
trees were calculated with the "One-Click" mode of the online phylogenetic analysis program Phyloge-
ny.fr [43]. Dots represent bootstrap values between 75 and 100%. The sequences of Desulfotomaculum 
gibsoniae are printed in bold, Geobacter sp. FRC-32 is identical to Geobacter daltonii. 
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Figure 6B. Phylogenetic tree based on amino acid sequences of six homologs of bamC. The trees were 
calculated with the "One-Click" mode of the online phylogenetic analysis program Phylogeny.fr [43]. 
Dots represent bootstrap values between 75 and 100%. The sequences of Desulfotomaculum gibsoniae 
are printed in bold, Geobacter sp. FRC-32 is identical to Geobacter daltonii. 

 
Complete substrate oxidation, autotrophic 
growth and homoacetogenic growth 
The genome of D. gibsoniae contains putative 
genes that code for the enzymes of the complete 
tricarboxylic acid (TCA) cycle: Citrate synthase, 
Desgi_1296, 2412; aconitase, Desgi_1576; 
isocitrate dehydrogenase, Desgi_4665; 2-
oxoacid:ferredoxin oxidoreductase, Desgi_0085-
0088, 2095, 2585-2588, 3041-3044; succinyl-
CoA synthetase, Desgi_1954-1955; succinate de-
hydrogenase, Desgi_0077-0080, 3996-3998; 
fumarase, Desgi_0075, 1952-1953; malate dehy-
drogenase, Desgi_1960. These genes could be 
involved in the complete oxidation to CO2 by D. 
gibsoniae. Moreover, the complete acetyl-CoA 
pathway is also present in the genome of D. gib-
soniae (Figure 7). However, D. gibsoniae is not 
able to grow on acetate with or without sulfate. 

The acetyl-CoA pathway in D. gibsoniae does not 
perform acetate oxidation, as described in D. 
kuznetsovii [48], but facilitates complete oxida-
tion of substrates leading to acetyl-CoA, auto-
trophic growth on H2 + CO2 (or formate) in the 
presence of sulfate as electron acceptor, and 
slow homoacetogenic growth on pyruvate, 
crotonate, formate, hydrogen plus carbon diox-
ide, and methoxylated aromatic compounds [1]. 
Three putative acetyl-CoA synthase encoding 
genes can be found in the D. gibsoniae genome 
(Figure 8). All three genes have a putative car-
bon monoxide dehydrogenase catalytic subunit 
encoding gene (cooS) downstream. However, 
only Desgi_2051 is part of an operon structure 
containing other genes coding for enzymes in-
volved in the acetyl-CoA pathway. 
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C1 compound degradation 
In addition to the three cooS genes downstream 
of the genes coding for the acetyl-CoA synthase, 
D. gibsoniae has two other cooS genes in its ge-
nome, Desgi_2753, and Desgi_3080. The latter 
has a transcriptional regulator (Desgi_3081) 
downstream and a ferredoxin (Desgi_3079) and 
a nitrite reductase (Desgi_3078) upstream. 
Growth tests on CO have not yet been per-
formed. However, the presence of multiple cooS 
genes with neighbor genes like ferredoxin and 
nitrate reductase, or genes coding for the acetyl-
CoA pathway indicates that D. gibsoniae may 
grow on CO. 
D. gibsoniae can grow on formate coupled to sul-
fate reduction. In the genome, two putative 
formate dehydrogenases (FDHs) were found. 
One FDH (Desgi_1522-23) is translocated over 
the membrane and bound to a polysulfide 
reductase (NrfD)-like protein containing 10 
trans-membrane helixes (Desgi_1524). The al-

pha subunit contains a twin-arginine transloca-
tion (tat) motif and genes encoding proteins of 
the Tat system; TatA (Desgi_1521) and TatC 
(Desgi_1526) were found near the alpha subunit 
coding gene. The second FDH (Desgi_2136-
2139) might be a confurcating FDH. Desgi_2138 
shows similarity with the NADH binding 51kD 
subunit of NADH:ubiquinone oxidoreductase 
and Fe-S cluster binding motifs, which were 
found in all subunits. 
No methanol methyltransferase genes can be 
found in the genome of D. gibsoniae, which cor-
relates with the absence of growth on methanol 
[1]. Other methyltransferase genes that might 
point to growth with methylated amines were 
not found, except for a possible dimethylamine 
methyltransferase beta subunit (Desgi_3904) 
and a cobalamin binding protein (Desgi_3903). 
However, another methyltransferase gene, 
mtbA, which is absent from the genome, is nec-
essary for growth with dimethylamine. 

 
Figure 7. Acetyl-CoA pathway in D. gibsoniae based on genomic data. Enzymes are depicted in bold ital-
ic. Next to these enzymes are the possible encoding genes, and their locus tags. Genes with the locus tags 
Desgi_2048 and Desgi_2050 putatively code for the small subunit and the large subunit of the iron-sulfur 
protein, respectively. This protein is involved in transferring the methyl from tetrahydrofolate to acetyl-
CoA. Abbreviations: A-CoA S, acetyl-CoA synthetase; AcsA, carbon monoxide dehydrogenase; AcsB, ace-
tyl-CoA synthase; CFeSP, iron-sulfur protein; CH3, methyl; THF, tetrahydrofolate; MeTr, methyltransferase. 
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Figure 8. Gene orientation of putative coding acetyl-CoA synthase and neighboring genes in the genome of D. 
gibsoniae. Abbreviations: acsA, carbon monoxide dehydrogenase; acsB, acetyl-CoA synthase; acsE, methyl-
tetrahydrofolate methyltransferase; CFeSP, iron-sulfur protein; cooC, carbon monoxide dehydrogenase maturation 
factor; Fe-S, Iron sulfur; hp, hypothetical protein; hyd, hydrogenase; metF, methylene-tetrahydrofolate reductase; 
up, uncharacterized protein. 

 
Propionate and butyrate oxidation 
The genome of D. gibsoniae contains at least one 
copy of genes putatively encoding enzymes in-
volved in propionate oxidation via the 
methylmalonyl-CoA pathway (Figure 9A). This 
includes genes in a methylmalonyl-CoA (mmc) 
cluster (Desgi_1951-1961), which have a genetic 
organization similar to those seen D. kuznetzovii 
(Desku_1358-1369) and Pelotomaculum 
thermopropionicum (Pth_1355-1368) [48-50]. 
However, a few differences were found. The ge-
nome of D. gibsoniae lacks genes coding for 
methylmalonyl-CoA decarboxylase epsilon and 
gamma subunits. Moreover, the mmc cluster of 
D. gibsoniae contains a single gene encoding the 
alpha subunit of succinyl-CoA synthase 
(Desgi_1955), whereas the mmc clusters of D. 
kuznetzovii and P. thermopropionicum contain 
two encoding genes. Bifurcating hydrogenases 
may be used to re-oxidize ferredoxin, which is 
generated by pyruvate:ferredoxin 
oxidoreductase and NADH, which in turn is gen-
erated from malate dehydrogenation for the 
formation of hydrogen. The membrane-
anchored extracellular formate dehydrogenases 
and hydrogenases may be involved in generating 
a proton motive force for succinate reduction. 
Genes putatively coding for butyrate β-oxidation 
enzymes are also present in the genome of D. 
gibsoniae. One complete cluster of genes puta-
tively encoding all the enzymes required to con-
vert butyrate is present (Desgi_4671-4675, Fig-
ure 9B). Gene organization in this cluster is simi-
lar to that found in D. reducens (Dred_1493-

1489), which can also utilize butyrate (Figure 
10A). In D. gibsoniae another gene cluster 
(Desgi_1916-1925) is present which only lacks 
one gene coding for butyryl-CoA:acetate CoA-
transferase (Figure 11). Desgi_1918 and 
Desgi_1920-1925 have a similar organization to 
genes found in D. acetoxidans (Dtox_1697-1703) 
[51]. In addition to the genes encoding enzymes 
involved in butyrate β-oxidation, these clusters 
contain genes for electron transfer flavoproteins 
(Desgi_1920-1921 and Dtox_1698-1699) and for 
Fe-S oxidoreductases (Desgi_1922 and 
Dtox_1700). Although Dtox_1700 is annotated as 
a cysteine-rich unknown protein, a protein blast 
of these ORFs against the D. gibsoniae genome 
revealed 53.65% identity (Evalue = 0.0) with the 
putative Fe-S oxidoreductase encoded by 
Desgi_1922. Two genes encoding acyl-CoA 
synthetases (Desgi_1916-1917) are present up-
stream of the acetyl-CoA dehydrogenase gene in 
D. gibsoniae (Desgi_1918), but these are not 
found near this cluster in D. acetoxidans. Howev-
er, these genes are present in the same gene 
cluster location in other butyrate-degrading sul-
fate-reducing bacteria (SRB), namely D. 
alcoholivorax (H569DRAFT_00537-00530), D. 
kuznetsovii (Desku_1226-1234) and 
Desulfurispora thermophila 
(B064DRAFT_00829-00837). Acyl-CoA 
synthetases are most likely involved in the bio-
synthesis of coenzyme A [52]. Several other clus-
ters of genes containing at least three genes en-
coding enzymes involved in butyrate conversion 
can be found in the genome of D. gibsoniae. 
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Figure 9. (A) Propionate and (B) butyrate degradation pathways in D. gibsoniae based on genomic data. The 
two main gene clusters for propionate and butyrate degradation are indicated in red and blue colors. For bu-
tyrate degradation, additional gene clusters were found, shown in different colors. For the other steps in the 
propionate degradation pathway, genes were found to be located in different places in the genome. Abbrevia-
tions: PCT, propionate CoA transferase; MCE, methylmalonyl-CoA epimerase; MCM, methylmalonyl-CoA 
mutase; SCS, succinyl-CoA synthase; SDH, succinate dehydrogenase; FHT, fumarase (fumarate hydratase); 
MDH, malate dehydrogenase; ODC, oxaloacetate decarboxylase; PFO, pyruvate: ferredoxin oxidoreductase; 
PFL, pyruvate formate lyase; POT, propionyl-CoA:oxaloacetate transcarboxylase; BAT, butyryl-CoA: acetate-
CoA transferase; ACD, acyl-CoA dehydrogenase; ECH, enoyl-CoA hydratase; 3-HCD, 3-hydroxybutyryl-CoA 
dehydrogenase; ACA, acetyl-CoA acetyltransferase. 

Figure 10. Orthologous neighborhood genes for gene cluster Desgi_4671- 4675, encoding enzymes necessary 
for butyrate degradation. Light blue – 3-hydroxybutyryl-CoA dehydrogenase (3-HCD); green – enoyl-CoA 
hydratase (ECH); old pink – acetyl-CoA acetyltransferase (ACA); dark green – Acyl-CoA dehydrogenase (ACD); 
red – butyryl-CoA: acetate CoA-transferase (BAT). 
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Desulfotomaculum gibsoniae Grol, DSM 7213

Desulfotomaculum acetoxidans, DSM 771

Desulfotomaculum alcoholivorax, DSM 16058

Desulfurispora thermophila, DSM 16022

Desulfotomaculum kuznetsovii 17, DSM 6115

Desgi_1916-Desgi_1925

Dtox_1697-Dtox_1703

H569DRAFT_00537-H569DRAFT_00530

Desku_1226-Desku_1234

B064DRAFT_00829-B064DRAFT_00837  

Figure 11. Orthologous neighborhood genes for gene cluster Desgi_1916- 1925, encoding enzymes necessary for 
butyrate degradation. Purple/pink – acyl-CoA synthetase; red – acyl-CoA dehydrogenase (ACD); orange/dark pur-
ple – electron transfer flavoprotein; yellow – Fe-S oxidoreductase; old pink – acetyl-CoA acetyltransferase (ACA); 
light blue – 3-hydroxybutyryl-CoA dehydrogenase (3-HCD); green – enoyl-CoA hydratase (ECH). 

 
Sulfate reduction 
The genome contains single copies of the sulfate 
adenyltransferase (Desgi_3703), adenosine-5´-
phosphosulfate (APS) reductase (Desgi_3701–
3702) and dissimilatory sulfite reductase (Desgi 
4661-4662) as are found in most of the other 
members of the genus [18-20]. A membrane-
bound pyrophosphatase (Desgi_4294) is used 
for energy regeneration as in other 
Desulfotomaculum spp. The QmoABC complex 
contains only the A and B subunit, the C subunit 
is lacking (Desgi_3699–3700). In all members of 
the genus Desulfotomaculum the QmoAB is fol-
lowed by HdrCB (Desgi_3697–3698). This ar-
rangement is identical to that seen in the closely 
related species “Desulforhudis audaxivator”, 
Desulfurispora thermophila and the Gram-
negative Desulfarculus baarsii and strain 
NaphS2, which possess a Gram-positive AprBA 
[53]. Interestingly, the same organization is also 
found in some phototrophic sulfur-oxidizing 
bacteria, such as Thiobacillus dentrificans, 
Thiothrix nivea and Sedimentibacter 
selenatireducens [54]. Other closely related 
Gram-positive SRB like Desulfovirgula 
thermoconiculi and Ammonifex degensii have a 
complete QmoABC system like all other SRB and 
the Green Sulfur Bacteria, or have QmoAB linked 
to a Fe-S oxidoreductase/HdrD as seen in 
Desulfosporosinus spp. This latter modification is 
also seen in other Gram-negative SRB, which 

have a Gram-positive AprBA-like Desulfomonile 
tiedjei and Syntrophomonas fumaroxidans [55]. It 
seems that both Desulfotomaculum sp. and 
Desulfosporosinus have been the source of the 
entire aps reductase/ QmoA complex for mem-
bers of the Gram-negative Syntrophobacterales 
[55]. The genomes of Syntrophobacter 
fumaroxidans and of Desulfovirgula 
thermoconiculi have two different systems that 
can be linked to the aps reductase. 
In D. gibsoniae the dsrAB (Desgi_4661–4662) is 
linked to the same truncated dsr operon coding 
only for dsrC and dsrMK (Desgi 4648–4649) as 
in other Desulfotomaculum spp [48,51,56]. 

Hydrogenases 
D. gibsoniae has six [FeFe] and three [NiFe] 
hydrogenases, suggesting a lower redundancy in 
the case of [FeFe] enzymes than other members 
of the genus. The [FeFe] hydrogenases include 
one membrane-associated protein (Desgi_0926-
0928) that contains a tat motif in the alpha sub-
unit (Desgi_0926), suggesting an extracellular 
localization; one monomeric hydrogenase 
(Desgi_0935) encoded close to the membrane-
bound enzyme, which suggests the possibility of 
co-regulation; two copies of trimeric NAD(P)-
dependent bifurcating hydrogenases 
(Desgi_4669-4667 and Desgi_3197-3195); one 
enzyme (Desgi_0771) that is part of a multi-gene 
cluster encoding two flavin-dependent 
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oxidoreductases that is also present in other 
Desulfotomaculum spp., and one HsfB-type 
hydrogenase (Desgi_3194) encoding a PAS-
sensing domain that is likely involved in sensing 
and regulation, and possibly with the bifurcating 
Desgi_3195 hydrogenase. 
The [NiFe] hydrogenases include one enzyme 
(Desgi_1398 – 1397) that may also be bound to 
the membrane by a cytochrome b (Desgi_1402); 
one simple dimeric enzyme (Desgi_1231-1230); 
and one trimeric group 3 hydrogenase 
(Desgi_1166-1164), similar to methyl-viologen 
reducing hydrogenases from methanogens, and 
which is encoded next to a HdrA-like protein 
(Desgi_1163). 

Nitrogenases 
A cluster of nitrogenase genes, specifically genes 
encoding nitrogenase iron protein, nitrogen reg-
ulatory protein PII, nitrogenase molybdenum-
iron protein alpha chain, nitrogenase molyb-
denum-iron protein beta chain, nitrogenase mo-

lybdenum-iron cofactor biosynthesis protein 
NifE, nitrogenase molybdenum-iron protein, al-
pha and beta chains, nitrogenase cofactor bio-
synthesis protein NifB; ferredoxin, iron only 
nitrogenase protein AnfO (AnfO_nitrog) 
(Desgi_2428-2419) were detected within the 
annotated genome sequence. Thus, D. gibsoniae 
probably has the capacity for nitrogen fixation. 
However, the fixation of molecular nitrogen has 
not been analyzed in this species so far. 
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