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ABSTRACT OF THE DISSERTATION

Models for Human Navigation and Optimal Path Planning Using Level Set Methods and

Hamilton-Jacobi Equations

by

Christian Andrew Parkinson

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Andrea Bertozzi, Co-Chair

Professor Stanley J. Osher, Co-Chair

We present several models for different physical scenarios which are centered around human

movement or optimal path planning, and use partial differential equations and concepts

from control theory. The first model is a game-theoretic model for environmental crime

which tracks criminals’ movement using the level set method, and improves upon previous

continuous models by removing overly restrictive assumptions of symmetry. Next, we design

a method for determining optimal hiking paths in mountainous regions using an anisotropic

level set equation. After this, we present a model for optimal human navigation with un-

certainty which is rooted in dynamic programming and stochastic optimal control theory.

Lastly, we consider optimal path planning for simple, self-driving cars in the Hamilton-Jacobi

formulation. We improve upon previous models which simplify the car to a point mass, and

present a reasonably general upwind, sweeping scheme to solve the relevant Hamilton-Jacobi

equation.
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CHAPTER 1

Introduction & Overview

The problem of optimal path planning is fundamental to many areas of mathematics and

engineering. In its most basic form, the question of determining shortest paths was encoded

into ancient Greek geometry via Euclid’s axioms and the triangle inequality. Modern ad-

vances in partial differential equations, the calculus of variations, and optimal control theory

provide robust and widely applicable methods for computing different notions of optimal

paths. In this document, we present several mathematical models that address different

physical scenarios but are all centered around optimal path planning or human navigation.

Each of the models makes use of Hamilton-Jacobi equations, which can be seen to describe

extremal geometry problems arising from optimal control.

1.1 Organization of the Dissertation

This dissertation will be organized as follows. Chapter 2 will give a basic description of the

mathematics we use throughout the remainder of the document. We will begin by describing

the celebrated level set method of Osher & Sethian [OS88]. From there, we will address more

general Hamilton-Jacobi equations, including a discussion of continuous viscosity solutions

[CL83]. Next, we briefly discuss optimal control theory and dynamic programming, and

demonstrate how level set methods and Hamilton-Jacobi equations can be seen as special

cases of problems in optimal control. Finally, we present basic grid-based methods used to

compute approximate solutions to time-dependent Hamilton-Jacobi equations.

In chapter 3, we present a model for illegal deforestation in areas that are protected

by a law enforcement agency. The model includes a differential game wherein a group of
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hypothetical attackers enter the protected region from the boundary and perpetrate crimes

based on the benefit they expect to receive, the cost they expect to incur, and the likelihood

that they will be captured by law enforcement. We use the level set method to model the

movement of the entire group at once. As level sets evolve inward from the boundary of the

set, points along the level sets follow paths corresponding to optimal travel. In our model,

“optimal travel” accounts for both travel time and capture likelihood. We compare our

model to previous continuous models for deforestation, which are overly simplistic in that

they require the protected region to be highly symmetric and assume all quantities can be

one dimensionalized. We test our model in two real domains: Yosemite National Park in

California, and Kangaroo Island in South Australia.

In chapter 4, we design a model for optimal path planning in mountainous regions with

anisotropic motion depending on local slope of the terrain. This model also uses the level

set method to compute isocontours of optimal travels, though here the level set equation

involved more explicitly describes the solution to an optimal control problem. We test

our model by determining hiking paths in the vicinity of El Capitan and Half Dome, two

mountains in Yosemite National Park, and address several implementation issues that are

somewhat specific to this situation. We note that in mountainous regions, where geographical

features such as cliff faces and mountain passes often determine the best hiking paths, the

paths from different starting locations to a common ending location can be clustered into

relatively few routes.

In chapter 5, we modify the optimal walking path model to include uncertainty in the

walking velocity equation. Uncertainty in walking velocity supplies diffusion in the Hamilton-

Jacobi equation, meaning that level set methods are no longer applicable. Accordingly, we

consider a control theoretic model wherein we solve a Hamilton-Jacobi-Bellman equation

and determine optimal walking directions by way of a minimization problem. We again test

our model in the area surrounding El Capitan. When uncertainty is present, we consider

two different notions of optimal path, and observe that as the uncertainty disappears, the

optimal path converges to the deterministic optimal path.

Lastly, in chapter 6, we consider optimal path planning in a different scenario. Here we
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develop a method for resolving optimal paths of simple self-driving cars in the presence of

obstacles, using dynamic programming and a steady-state Hamilton-Jacobi equation. Such

vehicles are subject to nonholonomic constraints, meaning the motion is not omnidirectional,

as in the case of a hiker. Here the nonholonomic constraint specifies that motion occurs

tangential to the rear wheels, resulting in paths of bounded local curvature. We do not

simpify the car to a point mass, as is common practice with these models, meaning that no

special consideration is needed near obstacles, and there is no need for hierarchical algorithms

for path planning and collision avoidance. We present an upwind sweeping scheme to solve

the Hamilton-Jacobi equation for the travel time function, and test our algorithm in a number

of different ways.
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CHAPTER 2

Level Set Methods, Hamiton-Jacobi Equations &

Optimal Control Theory

In this chapter, we discuss the basics of the mathematical tools that will be used throughout

the remainder of this document. We begin with a discussion of the level set method of

Osher and Sethian [OS88]. A key component of the level set method is a Hamilton-Jacobi

equation which describes the the evolution of a front with prescribed velocity. Accordingly,

we discuss some of the classical theory of Hamiton-Jacobi equations. Next, we formulate

an optimal control problem and demonstrate the link between optimal control theory and

Hamilton-Jacobi equations. Finally, we discuss numerical methods for solving Hamilton-

Jacobi equations.

2.1 The Level Set Method

The level set method was devised by Osher and Sethian [OS88] to track fronts that are

propagating with speed depending on properties inherent to the front itself (normal direction,

local curvature, etc.). It has since found numerous applications across several fields of

applied mathematics and engineering [GFO18], including fluid dynamics [TBE01, SSO94a],

combustion [LSC19, TR06], crystal growth [GFC03, JT96], image segmentation [JZN12,

QWH07], dynamic visibility [KT08, TCO04], trajectory planning [PAB19, LUY12], and

environmental crime modeling [AFJ19, CV19] to name a few.
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2.1.1 Time-Dependent Formulation of the Level Set Method

Suppose that Γ0 ⊂ Rn is a closed (n − 1)-dimensional hypersurface. To evolve Γ0 using

level set motion, we first find a Lipschitz continuous function φ0 : Rn → R such that

Γ0 = {x ∈ Rn : φ0(x) = 0}, and φ0(x) < 0 for x inside Γ0, while φ0(x) > 0 for x outside

Γ0. That is, Γ0 is precisely the zero level set of the auxiliary function φ0. Next, we evolve

φ : Rn × [0,∞)→ R according to the partial differential equation

φt(x, t) + F (t, x,∇φ, n, κ, . . .) = 0,

φ(x, 0) = φ0(x).
(2.1)

As φ evolves, the zero level contour Γt = {x ∈ Rn : φ(x, t) = 0} also evolves. In equation

(2.1), n represents the unit normal to the current level set, κ represents the local curvature,

and other geometric properties could be included. One advantage of the level set method

is that these geometric properties can all be described in terms of the level set function φ.

For example, since Γt is the zero level contour of φ(·, t), the vector ∇φ(x, t) points in the

(outward) normal direction to Γt for any x ∈ Γt, and thus n(x, t) = ∇φ(x, t)/ |∇φ(x, t)|.

Likewise, the curvature κ = ∇ · n of Γt can be expressed in terms of the first and second

derivatives of φ. For example,

κ =
φ2
xφyy − 2φxφyφxy + φ2

yφxx

(φ2
x + φ2

y)
3/2

(2.2)

in two spatial dimensions, or

κ =(φ2
xφyy − 2φxφyφxy + φ2

yφxx + φ2
xφzz − 2φxφzφxz + φ2

zφxx

+ φ2
yφzz − 2φyφzφyz + φ2

zφyy)/(φ
2
x + φ2

y + φ2
z)

3/2
(2.3)

in three dimensions [OF03].

In its most basic form, the level set method models growth of Γ0 in the outward normal

direction. To accomplish this level set motion, the level set function should evolve with

advection in the direction of n = ∇φ/ |∇φ|. This results in the time-dependent Eikonal
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equation

φt + |∇φ| = 0,

φ(x, 0) = φ0(x).
(2.4)

If we choose φ0 to be the signed distance function to Γ0

φ0(x) =

−dist(x,Γ0), x inside Γ0,

dist(x,Γ0), x outside Γ0,
x ∈ Rn, (2.5)

then |∇φ0| = 1 near the zero level set, and so advancing (2.4) in time simply prescribes local

translation of φ0 by −t. This is illustrated in fig. 2.1. In that case, φ0(x, y) =
√
x2 + y2 − 1

so that Γ0 is the circle of radius 1. As time advances, “pulling” the initial profile down the

z-axis causes the level set—which is the intersection of the surface with the xy-plane—to

expand.

2.1.2 Time-Dependent Eikonal Equation: Distance Functions via Level Sets

Something to note about fig. 2.1 is that since the initial curve Γ0 is a circle of radius 1 and

the curve evolves outward with normal velocity 1, the curve Γt will simply be a circle of

radius 1 + t. Considering this, we see that for any point x(t) ∈ Γt, we have dist(x(t),Γ0) = t,

which provides an alternate way of looking at Γt. For t > 0, the curve Γt is precisely the set

of points at distance t from Γ0. While it is easy to identify the set of points at distance t > 0

(a) The surface (x, y, φ0(x, y)) and the level
set Γ0.

(b) The surface (x, y, φ(x, y, 1)) and the
level set Γ1.

(c) The surface (x, y, φ(x, y, 2)) and the
level set Γ2.

Figure 2.1: Illustration of the level set method with φ0(x, y) =
√
x2 + y2 − 1. As one “pulls” the initial profile down the

z-axis, the zero level set expands.
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(a) Successive isocontours of equal distance from the dumbbell
shape.

(b) Successive isocontours of equal distance from the UCLA cam-
pus boundary.

Figure 2.2: Level set flow provides a method for finding isocontours of equal distance (colored) from an initial contour (black).

from a given circle, it can be quite difficult to do so with more complicated geometries, but

level set flow provides a simple method. This is seen in fig. 2.2, where an artificial dumbbell

shape and the campus boundary of UCLA are used as examples of irregular geometries.

This “distance function” interpretation establishes an intimate connection between level

set methods and extremal geometry problems [OS01]. If we consider a particle sitting some-

where on Γ0 and traveling outward with maximum velocity 1 for time t > 0, then the interior

of Γt represents the set of points that the particle could potentially reach after traveling for

time t. If instead we are given a velocity field v(x) prescribing the speed with which the

particle can move throughout the domain, we can still account for the maximum reachable

set using the level set method. Now Γ0 should evolve outward with normal velocity v(x),

meaning that the level set function should exhibit local advection in the normal direction

n = ∇φ/ |∇φ| with velocity v(x):

φt + v(x) |∇φ| = 0,

φ(x, 0) = φ0(x),
(2.6)

where φ0 is the signed distance to Γ0 as before. This is seen in fig. 2.3. Here the normal

velocity is given by v(x, y) = 1+ 4
5

sin(x) sin(y) is plotted in fig. 2.3b. There are some regions

where the velocity dips to roughly 0.2 and other regions where the velocity is as high as 1.8.

The corresponding level set flow is seen in fig. 2.3a. In this case, for a given t > 0, Γt
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represents the boundary of the reachable set after traveling outward from the unit circle for

time t in the velocity field v(x, y).

2.1.3 Steady State Formulation for Monotonically Advancing Fronts

As pointed out by [Set99], the “travel-time” interpretation of the problem leads to an alter-

nate formulation of the level set equation when the normal velocity v(x) is strictly positive.

In this case, as level sets Γt evolve outward from Γ0, for any x in the domain, there will be a

unique T (x) such that x ∈ ΓT (x). Due to the evolution of Γt, the travel-time function T (x)

will satisfy

T (x+ n∆t) = T (x) +
∆t

v(x)
+ o(∆t), (2.7)

where n is the normal to the level set ΓT (x). Realizing that n = ∇T/ |∇T |, we can rearrange

and send ∆t→ 0 to arrive at

v(x) |∇T (x)| = 1,

T (x) = 0, x ∈ Γ0.
(2.8)

Thus, in the case that v(x) > 0, the travel-time function satisfies a time-independent Eikonal

equation. As described, T (x) is only defined for x outside of Γ0, but the solution to (2.8) can

be defined globally and will take negative values inside Γ0. Thus for any x, |T (x)| is the travel

(a) Level sets Γt for t = 0, 1, 2, 3, 4. These represent isocontours
of equal travel time from the initial contour in the given velocity
field.

(b) The normal velocity v(x, y) = 1 + 4
5

sin(x) sin(y) with which
the level sets evolve.

Figure 2.3: Level sets (left) traveling outward from the unit circle with presecribed normal velocity (right).
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time to Γ0, and sign(T (x)) indicates whether x is inside or outside of Γ0. We can handle

“inward” level set evolution with the time-dependent formulation (2.6) by either running

time in reverse, or by swapping φ0 for −φ0 to change the orientation of the problem. This

shows that when normal velocity is positive, (2.6) and (2.8) describe equivalent dynamics

with the understanding that φ(x, t) = 0 if and only if T (x) = t.

Each of these formulations is useful in different cases. The time-dependent formulation

(2.6) allows for non-positive normal velocity, can easily account for more sophisticated ge-

ometric effects, and can be solved numerically at arbitrarily high-order with little added

effort [OF03, OS91]. The time-independent formulation (2.8) bears a lower computational

burden due to removal of the time dimension, and can be approximated efficiently using fast

marching methods [SV01, SV03]. We primarily deal with the time-dependent formulation

(2.6) and its variations for the remainder of this document.

2.1.4 General Level Set Equations

More generally, level set equations are a subclass of Hamilton-Jacobi equations. The general

time-dependent Hamilton-Jacobi equation reads

φt +H(t, x,∇φ) = 0,

φ(x, 0) = φ0(x),
(2.9)

for some Hamiltonian function H(t, x, p). Here we use p as a proxy for ∇φ. We call (2.9) a

level set equation if H is positively homogeneous of degree 1 in the variable p:

H(t, x, αp) = |α|H(t, x, p), (2.10)

for all (t, x, p) in the domain and all α ∈ R. Note that this condition is trivially satisfied by

(2.4) where H(x, p) = v(x) |p|. This homogeneity is important because a priori we are only

concerned with the moving front Γt and the level set function φ may not have any physical

meaning. Since there are several functions with the same same zero level sets, the choice of
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which particular function is used to describe Γt should be somewhat arbitrary, and this is

captured by the homogeneity in the following way. Suppose φ(x, t) satisfies (2.9) and that

H is homogeneous of degree 1 in p, and define Γt = {x ∈ Rn : φ(x, t) = 0}. Further suppose

that f : R → R is a smooth, strictly increasing map so that f ′ > 0. Then φ(x, t) and

ψ(x, t) ..= f(φ(x, t)) have the same zero level sets Γt. Accordingly, we would like ψ(x, t) to

solve the same level set equation as φ(x, t)—with a modified initial condition—and indeed

ψt +H(t, x,∇ψ) = f ′(φ)φt +H(t, x, f ′(φ)∇φ) = f ′(φ)(φt +H(t, x,∇φ)) = 0.

This ensures that for level set equations, the essential piece of data is the initial contour Γ0,

and not the function used to model it. In certain cases, a particular level set function φ can

have a meaningful interpretation in its own right, and in these cases there is a best level set

function in some sense, which we address later.

In the ensuing sections, we briefly discuss some of the classical theory of Hamilton-Jacobi

equations and see how Hamilton-Jacobi equations and level set methods can be used to solved

problems in optimal control theory, but we close this section by pointing out two strengths of

the level set method as it pertains to tracking fronts. First, while all the examples shown thus

far use R2 as the domain, the level set method generalizes trivially to any dimension (none of

the above discussion requires that n = 2). Figure 2.4 shows a three-dimensional analog to the

level set motion in fig. 2.3. In this case, we let φ0(x, y, z) =
√
x2 + y2 + z2−1 so that Γ0 is the

unit sphere in R3. We then evolve Γ0 with normal velocity v(x, y, z) = 1+4
5

sin(x) sin(y) sin(z)

and display the level sets Γt at time t = 0, 2, 4.

Second, a key component of any front tracking method is how it handles changes in

topology. For example, the initial front Γ0 could be disconnected—one can envision two

bubbles expanding independently—while the disconnected pieces could combine to make a

single front Γt at some finite time t > 0. If we are simply tracking points along the front, it

may be difficult to ascertain when such a change in topology has occured, but the level set

method can handle this with no special consideration since the change in topology occurs

only in the projection to the lower dimension, not in the surface (x, φ(x, t)). This can be
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(a) The level set Γ0. (b) The level set Γ2.

(c) The level set Γ4.

Figure 2.4: Level set flow in R3. Γ0 is the unit sphere and is evolved with normal velocity v(x, y, z) = 1+ 4
5

sin(x) sin(y) sin(z).

(a) Level sets propagating inward from the dumbbell eventually
break apart.

(b) Level sets propagating outward from three circles eventually
join together.

Figure 2.5: The level set method has no problems tracking changes in the topology of the curve.

seen in fig. 2.5. In fig. 2.5a, the initial contour is the same dumbbell shape as before, but the

level sets propagate inward, eventually splitting from one curve into two. In fig. 2.5b, the

initial contour is the collection of three disjoint circles. As the level sets propagate outward,

they eventually join together.
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2.2 Hamilton-Jacobi Equations

In this section, we formally address some of the classical theory of Hamilton-Jacobi equations.

Hamilton-Jacobi equations have been studied in connection with classical mechanics since the

1800s [Ham33, Ham34], but the mathematical theory surrounding them has been established

relatively recently. As stated above, the general time-dependent Hamilton-Jacobi equation

is given by

φt +H(t, x,∇φ) = 0, x ∈ Rn, t > 0, (2.11)

where H : (0,∞)×Rn×Rn → R is called the Hamiltonian. In this case, an initial condition

φ(x, 0) = φ0(x) is often specified. We may restrict to a domain Ω ⊂ Rn and specify a

boundary condition that φ must satisfy on ∂Ω. This is especially true for the steady state

Hamilton-Jacobi equation

H̃(x,∇φ) = 0, x ∈ Ω, (2.12)

where H̃ : Ω×Rn → R. Here Ω is typically a bounded, open set and one is given prescribed

boundary data. Often in application—as is the case with (2.6, 2.8)—the Hamiltonian does

not depend explicitly on the variables x and t, so we may suppress this dependence later in

this document when no confusion could arise.

Note that (2.11) can actually be envisioned as a special case of (2.12) by considering new

coordinates x̃ = (t, x) and ∇̃ = (∂t,∇), so we will focus some of our discussion on (2.12). But

equations of the form (2.11) arise naturally as level set equations as above, and in optimal

control theory, so they are worth discussing in their own right.

2.2.1 Lack of Regularity and Non-Uniqueness

Since (2.11) is in general nonlinear, we do not expect globally smooth solutions to exist, even

when the initial data φ0 is smooth. Consider the case of the one-dimensional time-dependent

Hamilton-Jacobi equation,

φt +H(φx) = 0, (2.13)
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with H smooth. Formally, differentiating by x and setting u = φx we see that

ut +H(u)x = 0. (2.14)

That is, the x-derivative of φ solves a scalar conservation law. The solutions of conservation

laws are well-known to develop discontinuities along shocks, necessitating the theory of

discontinuous entropy solutions. Thus, since φ is the integral of a solution of a conservation

law, we can expect φ to remain continuous, but develop discontinuities in the first derivative.

While this explicit link between Hamilton-Jacobi equations and conservation laws is no longer

available in higher dimensions, the general conclusion still holds, and we must consider some

notion of a weak solution.

In the 1980s, Crandall and Lions [CL83, CL84] introduced the notion of continuous

viscosity solutions for Hamilton-Jacobi equations. We build toward the definition using, as

a motivating example, the steady-state Eikonal equation in one dimension:

|φ′(x)| − 1 = 0, x ∈ (−1, 1),

φ(−1) = φ(1) = 0.
(2.15)

By the mean value theorem, any smooth function satisfying the boundary conditions would

need to have φ′(x) = 0 for some x ∈ (−1, 1), and thus cannot satisfy (2.15). On the other

hand, it is trivial to build infinitely many Lipschitz continuous functions that satisfy the

equation almost everywhere. Figure 2.6 shows three such solutions that are constucted by

flipping and translating copies of the function f(x) = |x|. Thus it is natural to ask which of

these almost everywhere solutions is the “correct” solution.

2.2.2 Vanishing Viscosity for the 1D Eikonal Equation

To settle on a solution of (2.15), we perturb the equation by ε > 0 and instead consider

εφ′′ε(x) + φ′ε(x)2 − 1 = 0, x ∈ (−1, 1),

φε(−1) = φε(1) = 0.
(2.16)
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We refer to εφ′′ε(x) as a viscosity term, in analogy to fluid dynamics where diffusion arises

due to viscosity of the liquid. Note that as ε → 0, the equation returns to an equivalent

formulation of (2.15). However, by adding viscosity, we have changed a fully nonlinear

equation into a quasilinear, elliptic equation. Using the classical theory of elliptic regularity,

one can prove existence and uniqueness of a smooth solution of (2.16) [GT01]. In this

case, we can explicitly resolve the solution using basic methods from ordinary differential

equations. Rearranging the equation gives

εφ′′ε(x)

1− φ′ε(x)2
= 1, (2.17)

whence integrating yields
ε

2
log

(
1 + φ′ε(x)

1− φ′ε(x)

)
= x+ C, (2.18)

for a constant C which will change from line to line. Isolating φ′ε, we find

φ′ε(x) =
1− Ce2x/ε

1 + Ce2x/ε
= 1− 2Ce2x/ε

1 + Ce2x/ε
. (2.19)

Integrating again and enforcing φε(−1) = 0 yields

φε(x) =

∫ x

−1

(
1− 2Ce2y/ε

1 + Ce2y/ε

)
dy = x+ 1− ε log

(
1 + Ce2x/ε

1 + Ce−2/ε

)
. (2.20)

Figure 2.6: Three a.e. solutions to |φ′(x)| − 1 = 0 that satisfy φ(−1) = φ(1) = 0.
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Figure 2.7: φε(x) for ε = 0.3 (dotted red), 0.2 (dotted blue), 0.1 (dotted magenta), 0.05 (black).

Finally, enforcing φε(1) = 0 shows that C = 1 and gives the solution

φε(x) = x+ 1− ε log

(
1 + e2x/ε

1 + e−2/ε

)
, x ∈ (−1, 1). (2.21)

Plots of this solution at different levels of ε > 0 are displayed in fig. 2.7. From here we can

intuit that φε(x)→ 1− |x| as ε→ 0+. It is easy to justify this limit: if x ≤ 0, then 1+e2x/ε

1+e−2/ε

remains bounded as ε→ 0+ and so φε(x)→ 1 + x. If x > 0, then 1+e2x/ε

1+e−2/ε ∼ e2x/ε as ε→ 0+,

and so

lim
ε→0+

φε(x) = x+ 1− lim
ε→0+

[
ε log(e2x/ε)

]
= x+ 1− 2x = 1− x. (2.22)

Putting this together, we have

φ(x) ..= lim
ε→0+

φε(x) =

1 + x, x ≤ 0,

1− x, x > 0,

 = 1− |x| . (2.23)

We observe that φ as defined by (2.23) is indeed an almost everywhere solution of (2.15)

and satisfies the boundary conditions. This method for generating a solution to a Hamilton-

Jacobi equation is precisely the vanishing viscosity method introduced by [CL83], and φ

defined as the ε→ 0+ limit of the solution of (2.16) is the viscosity solution of the Hamilton-

Jacobi equation (2.15). (Note, this is not the definition of the viscosity solution; merely an

alternate characterization that is correct in this case.) One may ask what makes this solution

better than those suggested in fig. 2.6. The answer is two-fold. First, this notion of solution
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turns out to be the correct one for proving existence and uniqueness results. For elliptic

equations these results are often accomplished using tools such as comparison principles or

Perron’s method, and some of these tools are preserved in the limit as ε → 0+ [Bar13].

Second, the viscosity solution turns out to have the correct physical interpretation in many

applications such as optimal control [BC08], mean field games [BFY13, GLL11], and mean

curvature flow [CGG99].

2.2.3 Viscosity Solutions of Hamilton-Jacobi Equations with Application to the

1D Eikonal Equation

With the previous example in mind, we can define the viscosity solution of (2.11) and (2.12),

and discuss some of the basic properties. We largely follow [BC08], omitting proofs in favor

of examples and discussion.

Definition (Viscosity Solution). The function φ ∈ C(Ω) is a viscosity subsolution of (2.12)

if and only if for any test function v ∈ C1(Ω), if x0 ∈ Ω is a local maximum of φ− v, then

H̃(x0,∇v(x0)) ≤ 0. (2.24)

Likewise, the function φ ∈ C(Ω) is a viscosity supersolution of (2.12) if and only if for any

test function v ∈ C1(Ω), if x0 ∈ Ω is a local minimum of φ− v, then

H̃(x0,∇v(x0)) ≥ 0. (2.25)

Finally, φ ∈ C(Ω) is a viscosity solution of (2.12) if and only if it is both a viscosity subso-

lution and a viscosity supersolution.

In the case of the time-dependent equation (2.11), the above equations become

vt(x0, t0) +H(t0, x0,∇v(x0, t0)) ≤ 0, (2.26)
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whenever (x0, t0) is a local maximum of φ− v, and

vt(x0, t0) +H(t0, x0,∇v(x0, t0)) ≥ 0, (2.27)

whenever (x0, t0) is a local minimum of φ− v, respectively.

Note that in these definitions, we can add a constant to v without changing anything.

Thus we can assume without loss of generality that v(x0) = φ(x0), so that the graph of v

touches φ from above at x0 when φ is a subsolution, and the graph of v touches φ from below

at x0 when φ is a supersolution.

We can easily prove that φ(x) = 1−|x| is a viscosity solution to (2.15) according to these

definitions. In this case, H̃(x, φ′(x)) = |φ′(x)|− 1. Suppose that v ∈ C1((−1, 1)) is such that

φ− v has a local extremum at x0 ∈ (−1, 1). If x0 6= 0, this means φ′(x0)− v′(x0) = 0 and so

|v′(x0)| = |φ′(x0)| = 1. This shows that both the subsolution and supersolution conditions

hold trivially. Next, consider x0 = 0, and without loss of generality, let v(0) = φ(0) = 1.

Note that 0 cannot be a local minimum of φ − v; this would imply that 1 − |x| − v(x) ≥ 0

in a for x in a neighborhood of zero. But then −x ≥ v(x) − v(0) ≥ x, whence dividing

by x and taking a limit shows −1 ≥ v′(0) ≥ 1; a contradiction. Thus φ vacuously satisfies

the supersolution condition at x0 = 0. Conversely, if x0 = 0 is a local maximum, this

same computation holds with the inequalities flipped, showing that H̃(0, v′(0)) ≤ 0 and so

φ satisfies the subsolution condition at x0 = 0.

While this shows that φ(x) = 1−|x| is a viscosity solution of H̃(x, φ′(x)) = |φ′(x)|−1 = 0,

it is also helpful to note that the other almost everywhere solutions from fig. 2.6 are not

viscosity solutions. Using ψ(x) = |x| − 1 as an example, we see that ψ is still an almost

everywhere solution to the equation. However, taking v(x) = −x2, we note that ψ − v

has a local minimum at x0 = 0, while H̃(0, v′(0)) = −1 < 0, violating the supersolution

condition. A computation similar to above verifies that ψ—and indeed any of the functions

from fig. 2.6—is a viscosity subsolution. However, any function having points where the

derivative discontinuously jumps from negative to positive will violate the supersolution

condition in this example. Thus viscosity solutions to this particular equation are allowed to
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exhibit “infinite acceleration” in the negative direction but not in the positive direction. This

requirement is somewhat analogous to the entropy condition for shock-exhibiting solutions to

conservation laws, and under the relation established for (2.13) and (2.14), viscosity solutions

can be seen as integrated entropy solutions [AS06].

2.2.4 Properties of Viscosity Solutions

We briefly address some of the nice properties of viscosity solutions. The following proposi-

tion establishes that viscosity solutions are a generalization of classical solutions.

Proposition. Suppose that φ ∈ C1(Ω) is a classical solution of (2.12). Then φ is a viscosity

solution of (2.12).

Conversely, suppose that φ ∈ C(Ω) is a viscosity solution of (2.12) and suppose that φ

is differentiable at x0 ∈ Ω. Then

H̃(x0,∇φ(x0)) = 0. (2.28)

That is, a viscosity solution satisfies the equation wherever it is differentiable.

This proposition is trivial to prove from the definition simply by observing that if φ is

differentiable at a point x0 ∈ Ω and φ−v has a local extremum at x0, then ∇φ(x0) = ∇v(x0).

As stated above, viscosity solutions have some of the nice properties expected of solutions of

elliptic equations. First and foremost, existence and uniqueness can be proved using similar

methods as used for elliptic equations.

Henceforth, we deal with the time-dependent formulation (2.11). We assume that the

Hamiltonian H is uniformly continuous on [0, T ]×Rn×B(0, r) for any T, r > 0 and satisfies

a Lipschitz type inequality:

|H(t, x, p)−H(t, y, p)| ≤ ω(|x− y| (1 + |p|)), (H1)
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for all t ∈ (0,∞) and x, y, p ∈ Rn, where ω : [0,∞) → [0,∞) is continuous and increasing

with ω(0) = 0. With these assumptions, we have the following two results. The proofs of

these and more general statements can be found in [Bar13, BC08].

Theorem (Comparison Principle). Suppose that φ, ψ ∈ C(Rn× [0, T ]) are a viscosity subso-

lution and viscosity supersolution of (2.12), respectively. If φ(x, 0) ≤ ψ(x, 0) for all x ∈ Rn,

then φ(x, t) ≤ ψ(x, t) for all (x, t) ∈ Rn × (0,∞).

Theorem (Existence via Perron’s Method). Suppose that φ0 ∈ C(Rn) is bounded and

uniformly continuous. Let S denote the set of viscosity subsolutions ψ of (2.11) with

ψ(x, 0) ≤ φ0(x) for x ∈ Rn. Then φ : Rn × (0, T ] defined by

φ(x, t) ..= sup
ψ∈S

ψ(x, t), (x, t) ∈ Rn × (0, T ] (2.29)

is a viscosity solution of (2.11).

The first theorem trivial provides uniqueness of the viscosity solution. The theorem can

be modified to allow for an open, bounded spatial domain Ω ⊂ Rn, by requiring that the

boundary inequality φ ≤ ψ holds on the parabolic boundary Ω× {0} ∪ ∂Ω× (0,∞).

For the second theorem, it is important to note that the set S is non-empty. We can ex-

plicitly construct one member of S. If A = sup(x,t) |H(t, x, 0)|, then ψ∗(x, t) = −‖φ0‖∞−At

is a viscosity subsolution satisfying the bound at t = 0. This method is analogous to Perron’s

method for solving Laplace’s equation, wherein one maximizes the set of subharmonic func-

tions to arrive at a harmonic function. While the theorem is stated in the time-dependent

case, it holds slightly more generally. It works in our example (2.15). We remarked earlier

that any sawtooth function like those in fig. 2.6 is a viscosity subsolution to (2.15), while

the only viscosity solution is φ(x) = 1− |x| which is the supremum of all such functions.

We close our discussion of Hamilton-Jacobi equations and viscosity solutions by justify-

ing the term “viscosity solution.” As noted above, this terms refers to fluid dynamics, where
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the inviscid Euler equations can be seen formally as the “vanishing viscosity” limit of the

Navier-Stokes equations [Con06]. Here we can take the vanishing viscosity limit as in (2.16)

to arrive at the viscosity solution.

Theorem (Vanishing Viscosity Method). For ε > 0, suppose that φ(ε) : Rn × [0, T ] satisfies

the Hamilton-Jacobi equation with diffusion:

φ
(ε)
t (x, t) +H(t, x,∇φ(ε)) = ε∆φ(ε), (x, t) ∈ Rn × (0,∞),

φ(ε)(x, 0) = φ0(x).
(2.30)

Then as ε→ 0+, we have φ(ε) → φ locally uniformly where φ is the viscosity solution to (2.11).

This theorem was first proven in a slightly different form by Evans [Eva80] before the

notion of viscosity solutions was well established, and later re-proven in this context [CEL84].

This explains the name and is a perfectly valid alternate characterization of viscosity solution

in the case of Hamilton-Jacobi equations. However, the notion of viscosity solution extends

very naturally to second-order degenerate elliptic equations where the method of vanishing

viscosity is no longer broadly applicable, and one must define the viscosity solution in terms

of the inequalities (2.24, 2.25) [BC08]. Thus the name is perhaps too liberally applied.

With this, we move on to discuss the basics of optimal control theory and dynamic

programming, and the connection between these fields and Hamilton-Jacobi equations.

2.3 Optimal Control Theory

Modern optimal control theory dates to the 1950s, when Pontryagin established his optimal-

ity principle [Pon58, PBG62] and Bellman developed the theory of dynamic programming

[Bel54, Bel61]. Bryson traces the early roots of optimal control back through variational

calculus, stochastic processes and nonlinear programming [Bry96]. We focus much of our

discussion on the dynamic programming approach of Bellman, and provide examples linking
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optimal control theory to level set equations. We will again operate mostly formally. Similar

derivations in slightly different scenarios and with varying levels of rigor can be found in a

number of sources [Ber00, Bry18, CD18, Eva10, FR75, Kno81, Nis09, Pha09].

2.3.1 The Basic Optimal Control Problem

The basic optimal control problem involves a state equation that is parameterized by an

input variable which can be chosen by some external user. Different parameter inputs will

“steer” the state along different trajectories, and the goal of the user is to find the optimal

trajectory in terms of some cost or payoff functional.

Assume that the state x : [0, T ]→ Rn satisfies the differential equation

ẋ(t) = f(t,x(t),a(t)), t ∈ [0, T ],

x(0) = x0,
(2.31)

where x0 is some initial state. Here f : [0, T ]×Rn×A→ Rn is some function describing the

state dynamics, and it is parameterized by a : [0, T ] → A. For simplicity, we can suppose

A ⊂ Rm, and we call this the set of admissable control actions. At each time t ∈ [0, T ], the

value a(t) defines the control action chosen by the user. Equation (2.31) defines a family of

trajectories parameterized by functions a ∈ A; where A is the set of measurable functions

from [0, T ] to A. The cost associated with a given trajectory is

C[x(·),a(·)] = g(x(T )) +

∫ T

0

r(t,x(t),a(t))dt, (2.32)

where r : [0, T ] × Rn × A → R is the marginal running cost along the trajectory and

g : Rn → R measures the exit cost (in application, we usually have r, g ≥ 0 but this

assumption is not necessary in formulating the problem).

The optimization problem one wishes to solve is

inf
a∈A

C[x(·),a(·)] subject to the state equation (2.31). (2.33)
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That is, we wish to find the optimal control plan a(·), which determines the optimal trajec-

tory x(·) in terms of the cost functional C. This is the most basic optimal control problem.

In many cases one wishes to maximize the functional rather than minimize, whence we would

refer to it is a “payoff” or “profit” functional and replace C with P . The analysis remains

identical modulo some sign changes so in our derivations we will assume we are minimizing

cost. One can further modify the equation to allow for other physical scenarios such as

infinite horizon time, a compact spatial domain or a fixed endpoint.

2.3.2 The Value Function, the Dynamic Programming Principle, and the Hamilton-

Jacobi-Bellman Equation

To solve (2.33), we fix x ∈ Rn and t ∈ [0, T ], consider the modified “remaining cost”

functional

Cx,t[x(·),a(·)] = g(x(T )) +

∫ T

t

r(s,x(s),a(s))ds, (2.34)

where we restrict the state equation to the interval [t, T ] and consider trajectories with

x(t) = x. Define the value function

φ(x, t) = inf
a∈A

Cx,t[x(·),a(·)], (x, t) ∈ Rn × [0, T ]. (2.35)

The value φ(x, t) is the optimal remaining cost incurred by a trajectory that is at x at time

t. Then our original optimization problem (2.33) boils down to finding φ(x0, 0). In order to

do so, we derive a partial differential equation solved by φ.

First, notice that for any x ∈ Rn, we have φ(x, T ) = g(x) because there is no remaining

trajectory after time T so the cost incurred is the exit cost. Fix x ∈ Rn, t ∈ [0, T ) and

∆t > 0 such that t + ∆t ≤ T . Consider a trajectory beginning at x(t) = x, following an

arbitrary control plan a(·) on the interval [t, t + ∆t], and ending at some point x(t + ∆t).

From here, we follow an almost optimal control plan: let ε > 0 and find a control aε(·) such

that

g(xε(T )) +

∫ T

t+∆t

r(s,xε(s),aε(s))ds ≤ φ(x(t+ ∆t), t+ ∆t) + ε, (2.36)
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where xε(·) is the trajectory resulting from aε(·). Then following the control plan a(·) on

[t, t+ ∆t] and then aε(·) on (t+ ∆t, T ], we see that

φ(x, t) ≤ g(xε(T )) +

∫ T

t+∆t

r(s,xε(s),aε(s))ds+

∫ t+∆t

t

r(s,x(s),a(s))ds

≤ φ(x(t+ ∆t), t+ ∆t) +

∫ t+∆t

t

r(s,x(s),a(s))ds+ ε.

(2.37)

Taking the infimum over all such a(·) shows that

φ(x, t) ≤ inf
a∈A

{
φ(x(t+ ∆t), t+ ∆t) +

∫ t+∆t

t

r(s,x(s),a(s))ds

}
+ ε. (2.38)

On the other hand, we can find another almost optimal control plan a∗ε(·), with corresponding

trajectory x∗ε(·) such that

∫ T

t

r(s,x∗ε(s),a
∗
ε(s))ds+ g(x∗ε(T )) ≤ φ(x, t) + ε. (2.39)

By its very definition, we have

φ(x∗ε(t+ ∆t), t+ ∆t) ≤
∫ T

t+∆t

r(s,x∗ε(s),a
∗
ε(s))ds+ g(x∗ε(T )), (2.40)

which, combined with (2.39) gives

inf
a∈A

{
φ(x(t+ ∆t), t+ ∆t) +

∫ t+∆t

t

r(s,x(s),a(s))ds

}
− ε ≤ φ(x, t). (2.41)

Since ε > 0 is arbitrary, equations (2.38, 2.41) together yield the celebrated dynamic pro-

gramming principle of Bellman [Bel54]:

φ(x, t) = inf
a∈A

{
φ(x(t+ ∆t), t+ ∆t) +

∫ t+∆t

t

r(s,x(s),a(s))ds

}
. (2.42)
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From here we can rearrange and divide by ∆t to find

inf
a∈A

{
φ(x(t+ ∆t), t+ ∆t)− φ(x, t)

∆t
+

1

∆t

∫ t+∆t

t

r(x,x(x),a(s))ds

}
= 0. (2.43)

Assuming that φ ∈ C1(Rn × [0, T ]) and sending ∆t→ 0+ yields

φt(x, t) + inf
a∈A

{
〈ẋ(t),∇φ(x, t)〉+ r(t, x, a)

}
= 0. (2.44)

Finally, considering the state equation (2.31) and the terminal condition, this shows that φ

satisfies the terminal value problem

φt(x, t) + inf
a∈A

{
〈f(t, x, a),∇φ(x, t)〉+ r(t, x, a)

}
= 0, (x, t) ∈ Rn × [0, T ),

φ(x, T ) = g(x), x ∈ Rn.

(2.45)

Equation (2.45) is called the Hamilton-Jacobi-Bellman equation for this optimal control

problem. Note that it runs backwards in time. In general, one cannot expect that φ ∈

C1(Rn× [0, T ]) even when f, r, g are as nice as desired. However, under very mild conditions

on the data, φ will be the unique viscosity solution of (2.45) [BC08].

2.3.3 Optimal Trajectory Generation

Given the Hamilton-Jacobi-Bellman equation (2.45), one can generate optimal trajectories

as follows. As the equation is integrated backwards in time, set

a∗(x, t) ..= argmin
a∈A

{
〈f(t, x, a),∇φ(x, t)〉+ r(t, x, a)

}
. (2.46)

Then the solution x∗(·) to the equation

ẋ(t) = f(t,x(t),a∗(x(t), t)), t ∈ (0, T ],

x(0) = x0,
(2.47)
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is an optimal trajectory starting from the point x0. In this way, the Hamilton-Jacobi-Bellman

equation can be seen as a sufficient condition for existence of an optimal control: if (2.46)

has a unique minimizer a∗(x, t) for each (x, t), then we can determine an optimal trajectory.

The Pontryagin Optimality Principle provides the corresponding necessary condition for

a control plan a∗ to be optimal. Define the control Hamiltonian H : [0, T ]×Rn×Rn×A→ R

by

H(t, x, p, a) = 〈f(t, x, a), p〉+ r(t, x, a), (2.48)

for t, x, p, a in their respective domains. Here, as in (2.9, 2.10), we use p as a proxy for ∇φ.

The Pontryagin Optimality Principle states that if a∗(·) is an optimal control plan for (2.33)

with corresponding trajectory x∗(·), then there exists a dual trajectory p∗(·), such that

ẋ∗(t) = ∇pH(t,x∗(t),p∗(t),a∗(t)),

ṗ∗(t) = −∇xH(t,x∗(t),p∗(t),a∗(t)),
(2.49)

for t ∈ [0, T ] except at the end points where x(0) = x0 and p∗(T ) = ∇g(x∗(T )). Further,

along the trajectory (x∗(·),p∗(·)), we have

H(t,x∗(t),p∗(t),a∗(t)) = inf
a∈A

H(t,x∗(t),p∗(t), a). (2.50)

Supposing the solution φ of (2.45) is smooth, we will have p∗(t) = ∇φ(x∗(t), t) along the

trajectory. Thus (2.49) says, in essence, that optimal trajectories follow the characteristics of

the Hamilton-Jacobi-Bellman equation. Ordinarily, this is difficult to use in practice because

of the initial-terminal condition. However, in the case of a fixed endpoint problem—where

we are given xf ∈ Rn and require that x(T ) = xf—we have terminal data for both equations

in (2.49) and can integrate the system backwards in time. In this case, (2.49) gives an

alternative method for resolving optimal trajectories. We revisit this idea in chapter 4.
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2.3.4 The Eikonal Equation in Optimal Control

We return to our example of the Eikonal equation (2.6) and demonstrate how the level set

method can be seen as the solution to an optimal control problem.

Consider the state equation

ẋ(t) = v(x(t))a(t), t ∈ (0, T ]

x(0) = x0,
(2.51)

where v : Rn → R is some velocity function and the control variable a(·) takes values in

Sn−1 = {a ∈ Rn : |a| = 1}. We could imagine this equation describing the motion of a

particle traveling about Rn and v describes the velocity field determining the speed with

which the particle can move through space. The motion is isotropic, meaning that at any

point, the particle can decide which direction a ∈ Sn−1 to move and the velocity depends

only on where the particle is, not on the direction of motion.

Suppose that we would like the particle to end at the origin xf = 0, and thus penalize a

trajectory by the distance it ends away from the origin:

C[x(·),a(·)] = |x(T )| . (2.52)

The running cost along the path is zero: r(t, x, a) ≡ 0.

Following the above derivation, the value function ψ for this control problem solves the

Hamilton-Jacobi-Bellman equation

ψt + inf
|a|=1

{
v(x)〈a,∇ψ〉

}
= 0,

ψ(x, T ) = |x| .
(2.53)

The infimum can be explicitly evaluated. By the Cauchy-Schwarz inequality, we see that
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a = −∇ψ/ |∇ψ| and so the equation reads

ψt − v(x) |∇ψ| = 0,

ψ(x, T ) = |x| .
(2.54)

Finally, putting φ(x, t) = ψ(x, T − t), we see that φ solves

φt + v(x) |∇φ| = 0,

φ(x, 0) = |x| ,
(2.55)

which is the same as (2.6) with a slightly modified initial condition.

In the case that v(x) ≡ 1, the equation reduces to (2.4) and we can resolve the viscosity

solution expicitly. Notice that φ(x, t) = |x| − t satisfies the equation almost everywhere.

However, this function takes negative values, whereas the value function here should remain

non-negative since C[x(·),a(·)] ≥ 0 for any choice of a(·). Separate from the value function

interpretation, this non-negativity also results from the comparison principle. We note that

the zero function is a subsolution to (2.55), so since |x| ≥ 0, the comparison principle states

that the viscosity solution to (2.55) remains non-negative. Here the viscosity solution is

given by φ(x, t) = max{|x| − t, 0}, which makes intuitive sense: if the particle begins at a

distance less than t from the origin, then after traveling for time t with velocity 1, it will be

able to reach the origin and thus incur zero cost. If the distance is initially greater than t,

then traveling for time t allows the particle to reduce the distance (and thus the exit cost)

by t, resulting in a cost of |x| − t.

A similar analysis can be performed when v(x) is an arbitrary positive function. With

this interpretation, we could consider defining Ωt = {x ∈ Rn : φ(x, t) = 0}. In the above

example, Ωt = B(0, t), though this would change if we change the velocity function. Then Ωt

is precisely the set of points that can be reached when traveling outward from the origin for

time t. This is essentially the same comment that we made when considering (2.6), though

in that case Γt represented the boundary of the reachable set, whereas here Ωt is the whole

reachable set. This hints at how one may approach optimal path planning problems using
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level set methods.

2.4 Numerical Methods for Hamilton-Jacobi Equations

Finally, to conclude this chapter, we address numerical analysis and simulation of Hamilton-

Jacobi equations. We focus our discussion on finite difference methods for the time-dependent

Hamilton-Jacobi equation.

2.4.1 Monotone Schemes for the Time-Dependent Hamilton-Jacobi Equation

Because the solutions of Hamilton-Jacobi equations do not remain smooth, simple finite

differencing schemes usually fail to capture the intricate dynamics. Thus, effort has been

devoted to developing schemes that converge, under grid refinement, to the viscosity solution

of the equation. Inspired by similar methods for conservation laws [CM80], Crandall and

Lions introduced monotone finite difference schemes for Hamilton-Jacobi equations [CL84].

Such schemes were studied in their earliest form by Godunov [God59], and since the theory

of viscosity solutions has become well-established, they have been vastly broadened and

extended [ALM10, BO91, BS98, BJ05, HEO87, Sou85]. Oberman [Obe06] gives an overview

of monotone schemes, and their extension to so-called degenerate elliptic schemes for second

order equations.

For simple exposition, we describe the numerics in two-spatial dimensions on a rect-

angular grid and we suppress the dependence of H on t, x. The generalization to higher

dimensions and the dependence of H on t, x are achieved in obvious ways. Consider the

equation

φt +H(φx, φy) = 0. (2.56)

Define the grid xi = i∆x, yj = j∆y for grid parameters ∆x,∆y > 0, and discretize time

similarly: tn = n∆t for ∆t > 0. Further, let φnij denote the numerical approximation to

φ(xi, yj, tn). We assume we have prescribed initial data, meaning that φ0
ij is known for all
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(i, j). We consider an update scheme of the form

φn+1
ij = F (φnij, φ

n
i+1,j, φ

n
i−1,j, φ

n
i,j+1, φ

n
i,j−1), (2.57)

that advances the equation from time tn to time tn+1. More generally, we could allow F

to depend on the values of φn for all nodes in some specified neighborhood of (i, j). As

discussed above, one key property of viscosity solutions is that they respect a version of the

maximum principle. We would like our discretized equation to respect this as well. Thus, if

we have two discrete solutions φn and ψn to (2.56), we require that the update law (2.57)

gives

φn ≤ ψn =⇒ φn+1 ≤ ψn+1. (2.58)

To accomplish this, it is sufficient to require that F be non-decreasing in each of its argu-

ments.

In our case, we consider forward Euler time integration, which leads to an update rule of

the form

φn+1 = φn −∆tH(φnx, φ
n
y ). (2.59)

Since the viscosity solution may develop discontinuities in the derivatives, naive differenc-

ing methods will not accurately represent the solution. Thus, to approximate the spa-

tial derivatives of φ, we trade the Hamiltonian H(φx, φy) for a numerical Hamiltonian

Ĥ(φ+
x , φ

−
x ;φ+

y , φ
−
y ), where φ+

x , φ
−
x denote the forward and backward difference approxima-

tions to φx respectively, and similarly for φ+
y , φ

−
y . The numerical Hamiltonian Ĥ will deftly

combine or choose between the forward and backward differences so as to accurately represent

the equation. In order for the update rule

φn+1
ij = φnij −∆tĤ(φ+

x , φ
−
x ;φ+

y , φ
−
y )nij (2.60)

to be consistent, we require that Ĥ(φx, φx;φy, φy) = H(φx, φy). Under this condition, (2.60)

defines a monotone scheme so long as ∆t is sufficiently small, and Ĥ is non-decreasing in the

backwards differences and non-increasing in the forward differences: Ĥ(↓, ↑; ↓, ↑) [Shu07].
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The size of ∆t is restricted by a CFL condition:

∆t

(
H1

∆x
+
H2

∆y

)
≤ 1 (2.61)

where Hi is a bound on the derivative of H with respect to its ith argument [OF03]. It is

proven in [CL84] that the descrete solution φnij produced by a consistent, monotone scheme

will converge to the viscosity solution of (2.56) as ∆x,∆y,∆t→ 0.

There are several choices for the numerical Hamiltonian Ĥ [OS91]. Perhaps the easiest

to implement is the Lax-Friedrichs Hamiltonian

ĤLF (φ+
x , φ

−
x ;φ+

y , φ
−
y ) =H

(
φ+
x + φ−x

2
,
φ+
y + φ−y

2

)
− H1

2
(φ+

x − φ−x )− H2

2
(φ+

y − φ−y ). (2.62)

This numerical Hamiltonian uses the centered difference approximations for φx, φy, but in-

troduces diffusion on the order of ∆x,∆y to ensure that the solution remains smooth. Ac-

cordingly, this Hamiltonian can be seen as a numerical analog to the vanishing viscosity

method.

Alternatively, the Godunov Hamiltonian gives a fully upwind, minimally diffusive ap-

proximation to (2.56) [BO91]. This Hamiltonian is given by

ĤG(φ+
x , φ

−
x ;φ+

y , φ
−
y ) = ext

p∈I(φ+
x ,φ
−
x )

ext
q∈I(φ+

y ,φ
−
y )
H(p, q), (2.63)

where

I(a, b) = [min{a, b} , max{a, b}], (2.64)

and

ext
z∈I(a,b)

=

minz∈[a,b], when a ≤ b,

maxz∈[b,a] when a > b.
(2.65)

The Godunov Hamiltonian is typically more difficult to implement. However, in certain

cases, these extrema can be determined analytically. For example, in the basic Eikonal
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equation (2.4) where H(φx, φy) =
√
φ2
x + φ2

y, we have

ĤG(φ+
x , φ

−
x ;φ+

y , φ
−
y ) =

√
max{(φ−x )2

+, (φ
+
x )2
−}+ max{(φ−y )2

+, (φ
+
y )2
−}, (2.66)

where (X)+ = max{X, 0} and (X)− = −min(X, 0).

There are other general numerical Hamiltonians. Otherwise, some numerical Hamiltoni-

ans have been suggested that apply when H has a specific form. For example, in the original

level set paper, Osher and Sethian suggest an upwind numerical Hamiltonian that applies

when H(φx, φy) = h(φ2
x, φ

2
y), for some function h [OS88].

In general, monotone schemes can be only first order accurate [God59]. However, to

attain higher order accuracy, Osher and Shu suggest (weighted) essentially non-oscillatory

(ENO) approximations to the derivatives φx, φy, in concert with one of these monotone

Hamiltonians [OS91, Shu07, Shu98]. For example, the second-order ENO approximations to

φx are given by

(φ+
x )i,j =

−
φi+2,j−4φi+1,j+3φi,j

2∆x
, if |(φxx)i,j| ≥ |(φxx)i+1,j| ,

φi+1,j−φi−1,j

2∆x
, if |(φxx)i,j| < |(φxx)i+1,j| ,

(φ−x )i,j =


φi+1,j−φi−1,j

2∆x
, if |(φxx)i,j| ≥ |(φxx)i−1,j| ,

φi−2,j−4φi−1,j+3φi,j
2∆x

, if |(φxx)i,j| < |(φxx)i−1,j| ,

(2.67)

where (φxx)i,j denotes the usual second-order centered approximation to φxx at the node (i, j).

The philosophy here is that we can avoid spurious oscillations near kinks by choosing the

one-sided approximation to the derivative which does not cross the kink. When using these

higher order approximations, the overall scheme is no longer monotone, but the monotonicity

is only violated by an error of size O(∆x,∆y,∆t), so convergence to the viscosity solution is

maintained and abitrarily high-order accuracy can be achieved in regions where φ remains

smooth [OS91].
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2.4.2 Numerical Diffusion and the Level Set Method

While the Godunov method is usually more difficult to implement than Lax-Friedrichs or

other monotone schemes, we argue that it is highly preferable in the case of level set equa-

tions. The strategy of the Lax-Friedrichs method is to add diffusion on the order of ∆x,∆y

so as to smooth the solution. While this will still provide an appoximation to the viscosity

solution, the smoothing is often undesirable in applications where the geometry of the level

sets is important.

We demonstrate this undesirable smoothing effect by looking at two examples of the

Eikonal equation. Recall, the equation is given by

φt + v(x) |∇φ| = 0,

φ(x, 0) = φ0(x),
(2.6)

where, in the level set application, we typically specify that φ0 is the signed distance to the

initial curve Γ0 that will be evolved with level set flow.

In the case that Γ0 has very sharp edges, the smoothing effect of the diffusion can cause

undesirable distortion. This is seen in fig. 2.8. Here the initial contour is shown in black, and

the velocity is constant v ≡ 1 so the level sets should represent isocontours of equal distance

from the initial contour. This means that near the sharp concavity, the level set should

(a) Lax-Friedrichs level set. (b) Godunov level set.

Figure 2.8: Level sets propagating outward from an initial contour (black) with sharp convexities and concavities. Near the
concavities, the Lax-Friedrichs level set (left, red) is overly smoothed, failing to mimic the sharp point. Near the convexities,
the Lax-Friedrichs level set did not evolve “fast enough”; it is closer to the initial contour at those points than at others. The
Godunov level set (right, blue) more effectively captures the geometry.
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maintain the sharp point, which is seen to happen when using the Godunov Hamiltonian

in fig. 2.8b. However, due to the smoothing, the Lax-Friedrichs Hamiltonian is unable to

maintain the point as seen in fig. 2.8a. Likewise, the Godunov Hamiltonian more effectively

captures the behavior near the sharp convexities, where the Lax-Friedrichs level set seems

to flatten out rather than maintaining equidistance from the initial contour. Examples like

this are very relevant to in applications like crystal growth [CMK01, GFC03, JT96, TZ06]

where we sharp edges form naturally, or image processing [JZN12, LHD11, QWH07, VC02]

where the level sets need to closely mirror the shapes in images.

Our second example reveals a failure in the Lax-Friedrichs method when there are regions

of zero velocity. In this example, we will let Γ0 be the unit circle, and suppose that velocity is

1 everywhere except for a circular region where velocity is zero (pictured in grey in fig. 2.9). In

fig. 2.9a, we notice that the level set created using the Lax-Friedrichs method do not entirely

stop when they reach the region of zero velocity. In that region, the numerical diffusion is

noticeable since the local advection is absent. By contrast, the Godunov level sets in fig. 2.9b

do stop in regions of zero velocity. This is again a concern in image segmentation where,

for example, the level set may be used to map out blood vessels in a CT scan [LHD11].

As we will see, it is also a major concern in path-planning where the level sets represent

the boundary of the reachable set at different times and regions of zero velocity can model

impassable obstacles. Especially in the case that the obstacles are fairly thin relative to the

grid resolution, the numerical diffusion can seriously skew results since it can cause the level

sets to diffuse through boundaries.

2.4.3 Other Numerical Methods for Hamilton-Jacobi Equations

We have briefly covered grid-based numerical schemes for the time-dependent Hamilton-

Jacobi equation. These will suffice for our computations, but there are several other methods

for solving Hamilton-Jacobi equations that bear mentioning.

As stated above, in the case of monotonically advancing fronts, one can opt for a steady-

state formulation (2.8) of the level set equation. A similar phenomenon occurs with the
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(a) Lax-Friedrichs level sets. (b) Godunov level sets.

Figure 2.9: Level sets propagating outward from the unit circle (black), with a region of zero velocity (grey). The Lax-
Friedrichs level sets (left, red) continue to slowly propagate through the circle due to numerical diffusion. The Godunov level
sets (right, blue) stop at the circle.

optimal control problem when the state dynamics (f in (2.31)) and running cost (r in

(2.32)) do not depend explicitly on t. In this case, the value function can be taken to

be independent of t and can be shown to solve a steady-state Hamilton-Jacobi-Bellman

equation. Thus there has been some effort devoted to developing schemes for steady-state

Hamilton-Jacobi equations. These can be broadly divided into fast marching schemes and

fast sweeping schemes. Fast marching schemes can be seen as a continuous generalization

of Dijkstra’s algorithm, navigating through the domain and assigning values to grid nodes

as the front passes them [Tsi95, Set99, SV01, SV03, AM06, AM09]. Fast sweeping schemes

rely on a Gauss-Seidel type iteration to monotonically update values at grid nodes [KOQ04,

KOT05, TCO03, Zha05]. Steady state methods are less general, but have the advantage of

lower computation burden due to the removal of the time dimension. For level set equations,

if efficiency is an issue and a time-dependent formulation is necessary, one can use so-called

narrow band method where computations are only performed near the propagating front

[AS95, LDM14, Min04, PMO99].

Recently, there has been increased interest in high dimensional Hamilton-Jacobi equations

due to applications like optimal transport [San15] and mean field games [BFY13, GLL11].

Such problems suffer from the curse of dimensionality [Bel54, Bel61], meaning that grid-based

methods are computationally infeasible. Accordingly, there has been much effort devoted to
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developing algorithms that break the curse of dimensionality. Many such methods are based

on the Hopf-Lax or Lax-Oleinik formulas [Eva10], and use optimization routines such as the

primal-dual hybrid gradient method [CP11] or the split Bregman method [GO09] to resolve

the values of the solution at individual points [DO16, LCO18, CDO19]. Alternatively, deep

learning methods can be applied to solve the equations [HJW18, NGK19, Rai18].
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CHAPTER 3

A Level Set Model of Deforestation in Protected Areas

Environmental crime in protected national parks is a concern to authorities around the

world. National parks often serve as hotspots for illegal logging and animal poaching, hence-

forth referred to as illegal extraction. In recent years, scientists have aided law enforce-

ment agencies in the prevention of such crimes by building models to describe deforestation,

track animal movement, and predict adversarial behavior of criminals among other things.

Leader-Williams and Milner-Gulland examined a case study of poaching in the Luangwa

Valley, Zambia and concluded that increasing detection rates was a more effective deterrent

to environmental crime than increasing severity of punishment [LM93]. Thus models that

can help improve detection rates of environmental criminals are a useful tool for patrollers

of protected areas.

3.1 Introduction & Previous Work

An important model of illegal extraction was given by Albers [Alb10]. They describe illegal

extraction as a continuous spatial game between patrol units (henceforth known as “patrol”)

and criminals (henceforth known as “extractors”). In the Albers model, extractors maximize

their expected profit by trading off costs of penetrating further into a protected region

(increasing effort required and risk of capture) against increased benefits of extracting further

from the boundary of the protected region. Albers’ model was formulated as a Stackelberg

game; an adversarial game with a defender and many attackers with perfect information

about the defender’s strategy. Albers gave some qualitative results in a very simplified

situation where the protected region was circular, and all quantities were radially symmetric.
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Johnson, Fang and Tambe proved an additional result regarding optimal patrol strategies

for this simple case [JFT12]. Kamra et al. further extended and improved the model,

retaining the continuous state space, removing the assumption that trees are homogeneously

distributed, considering collisions between law enforcement and extractors and calculating

optimal or near-optimal patrol strategies using machine learning techniques [KGF18]. All

of this work considered a circular protected region, wherein the goal of the extractors is to

move toward the center of the region.

Subsequently, several models for illegal extraction (both deforestation and animal poach-

ing) in protected regions were developed using discrete, rather than continuous, methods

[FJT13, FNP17, KFD15, KFG17, MTK16]. These algorithms incorporate different meth-

ods for modeling human behavior and different ways to treat the protected region. Kar et

al. used repeated Stackelberg games to attempt to understand the evolution of attackers

strategies, but did not consider realistic spatial domains [KFD15]. Fang et al. developed

the PAWS algorithm, considering detailed terrain and spatial information by describing the

protected region as a series of nodes connected by edges corresponding to natural pathways

through the region (for example along rivers or walking trails) [FNP17]. This algorithm

has been deployed in Queen Elizabeth National Park (QENP) in Uganda, and in Malaysian

forests. Taking another approach, Kar et al. used machine learning techniques to construct

a model for predicting poaching attacks, again deploying the model for a field test in QENP,

Uganda [KFG17]. In addition to the patrol strategy, McCarthy et al. are able to distinguish

between different types of patrol teams, and their algorithm was deployed in Madagascar

[MTK16].

In this work, we generalize the model of Albers [Alb10] so that it is applicable to realis-

tic protected regions, can include the effects of terrain and geometry, and can be executed

for real protected regions. The most important mathematical technique that enables this

extension is the level set method [OS88]. Indeed, as hinted in the previous chapter, the level

set method and Hamilton-Jacobi equations can be used to model movement in a variety

of contexts. Sethian and Vladimirsky [SV01, SV03] discuss a level set method for optimal

travel on manifolds. Martin and Tsai suggest a steady-state HJB formulation for deter-
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mining optimal paths on manifolds which are represented computationally by unstructured

point clouds [MT]. In application, Dubins[Dub57], Reeds and Shepp [RS90] and later Takei

and Tsai [TTS10, TT13], modeled movement of simple cars through terrain with obsta-

cles using methods from control theory and Hamilton-Jacobi-Bellman equations (we discuss

this further in chapter 6). Similar methods have been used to determine reachable sets for

aircraft autolanders [BMO07], and to model human movement in adversarial reach-avoid

games [CLS19, ZDH18]. Thus there is a precedent for using Hamilton-Jacobi type equations

to model movement throughout domains. However, as discussed above, attempts to model

environmental crime have either required overly restrictive assumptions regarding radially

symmetry and geometry of the protected region, or have been discrete in nature. This

work serves to fill a gap in the literature. We suggest a continuum model for environmental

crime that is still able to account for realistic terrain information, and bridges the divide be-

tween environmental crime modeling and Hamilton-Jacobi formulations for modeling human

movement.

This chapter is structured as follows. In section 3.2, we describe the model of Albers

[Alb10] in some detail. In section 3.3, we show how the level set method can be applied to

model movement through regions with terrain and describe our model for illegal extraction

from protected regions. Further, we provide an algorithm to calculate the regions through

which extractors will pass. In section 3.4, we present results and discuss their implications

towards both patrol strategies and our modeling approach. Lastly, in section 3.5, we make

conclusions and identify potential directions for further research.

We note that this work has been previously published in the SIAM Journal on Applied

Mathematics [AFJ19]. A full copyright acknowledgement is given at the end of the chapter.

3.2 The Illegal Deforestation Model of Albers

Albers [Alb10] presented a model for illegal extraction from protected regions that includes

spatial effects. They use a Stackelberg game in a circular region between defenders and

extractors. In their model, an extractor gains benefit and incurs cost based on the depth d
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into the region where they choose to extract. The benefit is associated with the extraction

point, and is modeled as a concave increasing function B(d). Cost is based on the trip

distance, and is modeled as a quasiconvex increasing function C(d), but no specific functions

are given. This concavity and convexity is an expression of diminishing returns: the next

step will provide less benefit and incur more cost than the previous step.

The extractor’s profit associated with extracting at depth d is then

P (d) = B(d)− C(d). (3.1)

To deter the extractors, the patrol specify a strategy ψ(d), representing the marginal de-

tection probability of the extractors. The probability that the extractor is detected is then

Ψ(d) =
∫ d

0
ψ(r)dr over the trip out of the protected region. If the illegal extractor is caught,

any resources they’ve extracted are confiscated and they must leave empty-handed. The

extractor’s expected profit can therefore be written as

P (d) = (1−Ψ(d))B(d)− C(d). (3.2)

We assume extractors have perfect information of the patrol strategy (they know the function

Ψ(d)) and hence their task is to find the optimal distance d∗ to penetrate into the protected

region so as to maximize their profit. Simultaneously, the patrollers task is to pick the patrol

strategy ψ(d) that minimizes d∗. The region that is not entered by the extractors is referred

to as the pristine area. Figure 3.1 illustrates the model, showing the pristine area where

extractors are never present and the outer region that they pass through while traveling into

or out of the protected region.

The key simplification here is that the model is entirely one-dimensional: all quantities

depend only on the depth d into the forest. In the original analysis, Albers suggested several

different types of patrol strategy including patrols that are homogeneous throughout the

region, patrols that are focused on an annulus near the boundary, or Dirac-mass patrol

concetrated at a single depth [Alb10]. Johnson, Fang and Tambe analyzed the same model
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d
Pristine area

Figure 3.1: Illustration of the Albers [Alb10] model, where extraction occurs at depth d in a circular region. Reproduction of
Figure 2 from [JFT12].

[JFT12]. They point out that even in the absence of patrol, if C(d) grows quickly enough

relative to B(d), there will be a pristine area. However, they also note that in certain cases,

homogeneous and boundary patrols can result in an empty pristine area. Finally, they prove

that the optimal patrol strategy will focus on an annulus and will increase toward the outer

edge of the annulus. We consider some of these patrols later in this chapter.

3.3 A Level Set Model for Illegal Deforestation

As described in section 2.1, the level set method can be used to model fronts propagating

with prescribed normal velocity. Here, as in [Alb10], we envision environmental criminals

moving inward from the boundary of a protected region. Since we are modeling movement

within the region, we want the level sets to evolve inward from the boundary Γ = Γ(0), and

so we set the initial condition φ0 to be the signed distance to Γ, taking positive values inside

Γ and negative outside. Thus, in contrast to fig. 2.1, translation of φ0 down the z-axis will

cause the level sets to shrink. This is illustrated in Figure 3.2. In this case, Γ is defined

by (x(θ), y(θ)) = (cos(θ), sin(θ) + sin(3θ)/2) and shown in black in fig. 3.2a. The level set

velocity is constant, so the series of red contours in fig. 3.2a represent sets of points accessible

after traveling a certain time from the boundary. Figure 3.2b shows the graph of the level

set function and with the same level sets overlaid on the surface.
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(a) Contours of equal travel time (red) from the boundary of a
region (black).

(b) The level set function φ with level sets (black).

Figure 3.2: Using the level set method to find contours of equal travel time inward from the boundary.

3.3.1 Modeling Extractors’ Behavior

Our model for the actions of illegal extractors committing crimes in protected regions is based

on the Albers model [Alb10]. However, we would like to remove what we deem are overly

restrictive assumptions. We are interested in real national parks and hence the protected

region will not be symmetric and the benefit and cost functions could be arbitrary, rather

than depending only on depth. The extension of the Albers model to arbitrary geometry

comes with a few challenges.

In [Alb10], the profit is maximized on a ring with some radius and extractors will enter

from any point on the boundary of the region to travel to the maximum profit ring. Without

radial symmetry, the profit will, in general, be maximized at an isolated point rather than

along a closed curve, and correspondingly there will be a single optimal route from this point

to the boundary of the protected region. Hence illegal extractors only ever occupy a set of

points of measure zero. In our model, we resolve this issue by assuming that extractors will

tolerate extracting anywhere where the profit is close to the maximum possible profit.

Another issue is that the cost function of Albers does not generalize easily to irregular

geometries. Instead of using a predefined formula based on distance, we constructively

determine the cost by considering the effects that would detract from the final profit with

the help of the level set method. Given terrain and elevation information for a real protected
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park, the paths taken by extractors will not be simple straight lines. Therefore it is also

necessary to find the paths extractors will follow to exit of the protected region. In the

ensuing section we describe an algorithm to find the pristine and non-pristine regions in a

protected area with arbitrary shape, terrain, benefit distribution and patrol strategy.

3.3.2 Problem Description

Let Ω ⊂ R2 represent the area that needs to be protected and let ψ(x, y) be the patrol

density function chosen by the patrol. The patrol budget E is defined as

E =

∫
Ω

ψ(x, y) dx dy. (3.3)

The budget measures how many patrolling resources can be allocated to protect the domain

Ω. Effectively, the budget scales ψ.

Extracting at a position (x, y) gives the extractor an amount of benefit B(x, y). For

example, the benefit could depend on the quantity, value, or species of trees. A priori, we

make no assumptions about B except that it is known. We denote by C(x, y) the expected

cost associated with extracting at position (x, y). Our cost function will be based on two

factors: the effort involved in traveling from the extraction point to the boundary of the

protected region, and the risk of being caught by patrols while inside the domain. The

further into the protected region the extractors penetrate, the higher the cost as they must

expend more time/energy traveling, and are more likely to be captured by the patrol.

This highlights a difference between our model and Albers’: we include the effect of the

patrol directly in the cost function, whereas they include it as a modification to the benefit.

In our model, the profit an extractor expects from extracting at a point (x, y) in the protected

region is simply P (x, y) = B(x, y)−C(x, y). We assume the extractors accept a position to

extract if the profit is within some tolerance of the maximum obtainable profit. Finally, we

determine the paths that extractors will take when leaving the protected area (where they

can be captured by the patrol). We assume the extractors will always take an optimal path

from the extraction point to the boundary, and can only be caught after they have finished
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extracting and started heading back to the boundary (since no crime has been committed

before they have extracted).

One feature that arises from our model is that in order to achieve high profit, extractors

should only enter from some sections of the boundary of the protected region. In practice

however, extractors start their trips from villages near the edge of the park boundary. This

means they may have to travel some distance to get to a position on the boundary of the

region which leads to high profit. We do not include the extra costs of travel outside the

protected region or travel from the boundary to the extraction location. Although we do

not do so in this work, it is possible to model some of these extra costs. For example, an

extra cost term applied on the boundary could represent the cost of travelling from a village

to that point, and the cost of the inward journey from the boundary to the extraction point

can be calculated relatively simply with a level set calculation that ignores patrol strategy.

3.3.3 Calculating the Profit Function

Since the benefit function is known in advance, it remains to calculate the expected cost

function. As explained in the previous section, the cost function depends on many factors,

including the optimal route to a given point. The level set method avoids most of the diffi-

culties one might expect when calculating optimal paths from all points inside the protected

region to the boundary. We use the level set method to find contours of equal cost in the

protected region. As the level sets evolve, individual points along the contour follow paths

of minimal cost, where the “cost” accounts for both the physical effort to traverse the region

and the risk of being captured by patrollers.

The expected cost associated with extracting at a given point (x0, y0) is calculated with

level set equation

φt +
1

1/v(x, y) + αψ(x, y)B(x0, y0)
|∇φ| = 0,

φ(x, y, 0) = φ0(x, y),

(3.4)

where φ0 is the signed distance to Γ(0) = ∂Ω, taking positive values inside Ω.
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As this equation advances, the zero level sets Γ(t) represent contours of equal cost t > 0.

The cost associated with (x0, y0) is defined to be the unique C > 0 such that (x0, y0) ∈ Γ(C).

That is, the cost function C(x0, y0) is implicitly defined by φ(x0, y0, C(x0, y0)) = 0. This is

illustrated in fig. 3.3.

The important term from a modeling perspective is the coefficient

V (x, y;B(x0, y0)) =
1

1/v(x, y) + αψ(x, y)B(x0, y0)
(3.5)

of |∇φ| in (3.4), which determines the level set velocity. Here v(x, y) represents the travel

velocity, which we use as a proxy for travel cost apart from any consideration of patrol. This

could account for travel speed, terrain difficulty or a number of other physical considerations.

Increasing v(x, y) will increase the level set velocity meaning that cost decreases. Also in the

denominator is the term ψ(x, y)B(x0, y0). This will cause cost to increase in regions that are

more densely patrolled, and accounts for the extractors unwillingness to be captured. We

Figure 3.3: Evolve level sets in from the boundary until the C > 0 such that (x0, y0) ∈ Γ(C). This C is the cost associated
with the point (x0, y0).
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scale the patrol density by B(x0, y0) because we assume that if an extractor has gained a

larger benefit, they will be more averse to being captured. Increasing ψ(x, y) will decrease

the level set velocity meaning that cost increases. The constant α is a dimensional parameter

that translates between travel difficulty and aversion to being captured, so we refer to it as

the risk aversion parameter. Higher α indicates that extractors are willing to travel through

more treacherous terrain to avoid patrol. Alternatively, lower α signifies that extractors

will assume more risk of being captured so as to travel more easily. An important note

is that V (x, y;B(x0, y0)) includes information about the extraction point (x0, y0) via the

benefit B(x0, y0). This means that the cost function must be calculated separately for each

extraction point. Thus we should actually write φ(x, y, t;B(x0, y0)) to express that this is

the level set function corresponding to the extraction point (x0, y0), but we will supress this

notation.

3.3.4 The Walking Velocity Function

It remains to decide on a velocity function v(x, y). Tobler gave an early formula for human

walking speed based on slope [Tob93]. More recently, Irmischer and Clarke [IC17] gave an

improved formula that they claim more accurately predicts travel times for humans walking

on roads,

v = 0.11 + exp

(
−(100s+ 2)2

1800

)
, (3.6)

where 100s is the grade in percent, and v is the corresponding speed in meters per second.

This formula agrees well with experimental results given in [IC17], but has a drawback for

our model, that the speed does not vanish as the slope goes to infinity because they only

considered grades up to 100% (signifying a 45◦ incline/decline). We hence modify the given

equation so that the speed drops to zero as the slope becomes more extreme and use

v = 1.11 exp

(
−(100s+ 2)2

2345

)
, (3.7)
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Figure 3.4: Our velocity function eq. (3.7) (solid blue line), and the Irmischer & Clarke function (3.6) (dashed red line). Our
velocity function decays to zero for high slopes while the function suggested by [IC17] does not.

which matches the maximum speed, gives similar results for grades less than 60% and decays

to zero for more extreme slopes as can be seen in fig. 3.4.

This walking velocity could be easily modified to further account for terrain types, roads,

rivers or other geographical and topographical features. We note that the exact form the

function is not a crucial piece of the model, and other walking velocity functions could be

used, though for the sake of realism, the general shape should be maintained: the maximum

velocity should be on the order of 1 and should occur at near zero slope, and the velocity

should decay to zero as slope becomes large.

Another note is that the walking speed v(x, y) that appears in the level set equation

(3.4) is a function of position only and does not depend on walking direction. This is a

simplification since walking speed does depend on walking direction (for example walking

down a hill is faster than walking up a hill, or walking along a ridgeline is faster than climbing

down the ridge). Assuming v depends only on position reflects the fact that walking in any

direction on steeply sloping ground is slow even if the slope in the direction of travel is

moderate. We take the maximum slope as the input to the velocity function (that is, for an

elevation profile E(x, y), we set s = ||∇E||). It is possible to account for walking direction

with a level set formulation which we discuss in chapter 4, but doing so requires an anisotropic

control-theoretic formulation.
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3.3.5 The Expected Cost Algorithm

As noted above, the level set equation defining the cost function depends on the extraction

point through the benefit function. Thus to compute the cost at different points, one would

need to run individual level set simulations for each point. We can partially avoid this by

computing the profit function using the following algorithm, which is illustrated in fig. 3.5

1. Since the cost level set equation (3.4) depends on the particular benefit level where

extraction takes place, we must solve it for all possible values of B. We pick N benefit

values in [minΩ B,maxΩB] and evaluate the cost function using each benefit value Bi,

by performing steps 2-4 for each Bi.

2. For a given Bi, first find the contour(s) of points where B(x, y) = Bi. In fig. 3.5a, the

black contour is the boundary of the domain, and the blue contour is an equal benefit

contour with the same benefit Bi.

3. Evolve the expected cost level set function with the benefit Bi using eq. (3.4). In

fig. 3.5b, the red contours are the equal-cost level set contours. Each of the contours

represents a different cost value.

4. The cost level sets only apply to the points whose benefit has been used to calculate

the level sets. That is, we have calculated the cost assuming the benefit gained is Bi, so

our results are only valid at the points (x, y) such that B(x, y) = Bi. Therefore we find

the intersections between the cost level contours φ(x, y, C) = 0 and the benefit contour

B(x, y) = Bi. At these intersections (marked in green), we can calculate C(x, y).

5. Repeat steps 2-4 for each benefit level Bi, until values of C(x, y) are known throughout

the region, and interpolate the cost value to other points.

By using this algorithm, we can calculate the cost function with N level set simulations,

at the expense of discretizing the benefit function into N levels. The algorithm produces a

collection of cost functions C( · ;B) : Ω → [0,∞), parametrized by B ∈ [minΩB,maxΩB],

where C(x, y;B) represents the cost of extracting at (x, y) if the benefit the extractor has
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(a) Begin by choosing a contour (blue) of
fixed benefit value.

(b) For this benefit value, evolve cost con-
tours (red) in from the boundary.

(c) At intersection points (green), one knows
the benefit and cost and thus can calculate
the profit.

Figure 3.5: Determining the profit function throughout the region. These images correspond to steps 2, 3 and 4 in the
expected cost algorithm (section 3.3.5) respectively.

gained is B. Since B(x, y) represents the benefit accrued at the point (x, y), the cost to

extract is given by C(x, y;B(x, y)). This value represents the minimal cost required to

travel from the extraction point (x, y) to the boundary of the protected region, considering

both the physical effort required to travel and the risk of being captured. Once this function

is obtained, we can calculate the profit for the extractors P (x, y) = B(x, y)−C(x, y;B(x, y)).

In what follows, we will suppress some notation, writing only C(x, y) at times, and leaving

the dependence of the cost on the benefit implicit.

3.3.6 Finding the Pristine Region

After resolving the expected profit function, the next step is to find the pristine region. In

[Alb10], the pristine region is the portion of the circular forest between its center and the

ring of maximum profit. In general, however, the pristine region must be defined differently.

We assume that extractors will extract anywhere where the profit is close to the maximum

possible profit. Denote Pmax as the maximum expected profit, and (1− ε)Pmax as the lowest

expected profit that the extractor will accept for some tolerance ε. We also assume that the

extractors will take the optimal path away from their extraction point to the boundary of

the region. Thus the pristine region is determined using the following algorithm.
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1. Find the equal profit contour corresponding to (1 − ε)Pmax. The extractors will only

extract within this high-profit region.

2. Pick points inside the high-profit region uniformly at random, and calculate the optimal

path from that point to the boundary of the region. The optimal path can be found

easily by solving the gradient descent equation

ẋ(t) = −∇C(x(t);B(x0)), (3.8)

where x(0) = x0 and C( · ;B(x0)) is the cost function wthat was calculated using the

benefit level B(x0). If we advance this equation until C(x(T );B(x0)) = 0, then x(·)

represents the minimal cost path from x0 to the exterior of the protected region.

3. The non-pristine region includes the high-profit region, and all points within some

(small) distance of one of the optimal paths found in the previous step. The rest of

the region is pristine since it is not traversed by extractors.

3.3.7 Metrics for Measuring Patrol Effectiveness

We suggest two metrics for measuring patrol effectiveness. First, in analogy with [Alb10],

we consider the pristine area ratio

PA =

∫
Ω
χ(x, y) dx dy∫

Ω
dx dy

, (3.9)

where χ(x, y) is an indicator function which is 1 in the pristine region and 0 in the non-

pristine region.

Second, the benefit function B(x, y) can be interpreted as a map of commodities that the

patrol would like to protect. Thus we could weight the pristine area by this function and

consider the protected benefit ratio

PB =

∫
Ω
B(x, y)χ(x, y) dx dy∫

Ω
B(x, y) dx dy

. (3.10)

49



Likewise, other functions besides B(x, y) could be used to express relative importance of

protecting certain areas more than others.

3.3.8 Equivalence of Our Model and Albers’

Although our model is more sophisticated than that of Albers [Alb10], we note that in certain

simple cases the two coincide. Consider an instance of Albers’ model in a circular forest of

radius 1 with a homogeneous patrol strategy with budget 1, which means that ψ ≡ 1/π.

Further, suppose the benefit function is given by B(d) = 2d and the cost function is given

by C(d) = d. In this case, the profit for the extractors is given by

P (d) = (1−Ψ(d))B(d)− C(d) = 2

(
1− d

π

)
d− d =

(
1− 2d

π

)
d. (3.11)

We achieve the same result using our model. Setting B(d) = 2d in [Alb10] is equivalent

to B(x) = 2(1 − |x|) in our model, since 1 − |x| measures the depth of x into the forest.

Setting C(d) = d in [Alb10] is equivalent to setting v(x, y) ≡ 1 in our model. Likewise, we

set ψ(x, y) = 1
π
, and α = 1. With these parameters, equation (3.4) reads

φt +
1

1 + 2(1− |x0|)/π
|∇φ| = 0. (3.12)

if we are calculating the cose at the point x0. The initial condition is given by the signed

distance to the boundary φ0(x) = 1− |x|. Since the coefficient of |∇φ| is independent of x,

and since |∇φ0| = 1 almost everywhere, we see that

φ(x, t) = 1− |x| − t

1 + 2(1− |x0|)/π
, (3.13)

is an almost everywhere solution to (3.12). Indeed, a computation like that performed for

the Eikonal equation in section 2.2.3 shows that this φ(x, t) is the viscosity solution of (3.13).
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The cost at x0 is then implicitly defined by φ(x0, C(x0)) = 0 which gives

1− |x0| −
C(x0)

1 + 2(1− |x0|)/π
=⇒ C(x0) =

(
1 +

2(1− |x0|)
π

)
(1− |x0|), (3.14)

whereupon

P (x0) = B(x0)− C(x0) = 2d(x0)−
(

1 +
2d(x0)

π

)
d(x0) =

(
1− 2d(x0)

π

)
d(x0), (3.15)

where d(x0) = 1− |x0|. This formula agrees with (3.11).

This equivalence holds slightly more generally. For example, if the patrol is piecewise

constant and the cost is linear in [Alb10], then our model will produce the same profit

function. If the patrol density and/or cost function are more complicated, then φt will not

be constant, and the PDE solution will be more complicated. Our approach to calculating

the cost and benefit functions is therefore equivalent to the approach given by [Alb10] in

simple scenarios but is capable of modeling much more general cases.

3.3.9 Control Theoretic Formulation

While we have constructed our model purely employing a level set approach, it can be noted

that the extractors are solving a control type problem, and thus we can phrase the model in

the language of control theory. Indeed, consider the state dynamics for an extractor given

by

ẋ(t) = a(t), t > 0, (3.16)

where the control variable a(·) represents the walking direction. If the extraction point is

x0 ∈ Ω, we can define the cost for a walking path to be

C(x;B(x0)) = inf
a(·)

{∫ Ta(·)

0

(
1

v(x(t))
+ αψ(x(t))B(x0)

)
dt

}
, (3.17)
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where Ta(·) is the time required to leave the region. The steady state Hamilton-Jacobi-

Bellman equation for this optimal cost is

|∇C(x;x0)| = 1

v(x)
+ αψ(x)B(x0). (3.18)

Under the equivalence of the time-dependent and steady-state Eikonal equation described in

section 2.1.3, we see that (3.4) and (3.18) describe the same cost function. Here φ(x, c;B(x0)) =

0 if and only if C(x;B(x0)) = c. We emphasize that this control-theoretic formulation was

not the inspiration for this model, but it gives an idea of why we can compute optimal paths

out of the region using gradient descent on the cost function.

3.3.10 Numerical Implementation

We briefly discuss the numerical implementation of our model. Since we are concerned with

two spatial dimensions, grid-based finite difference methods are sufficient. We approximate

(3.4) using the Godunov Hamiltonian, and since the set velocity is always positive, the

explicit formula (2.66) applies. We use the second-order ENO approximations of φx and φy

given in (2.67), in concert with second-order total variation diminishing Runge-Kutta time

integration [OS91]. Thus our scheme will be second-order accurate near the level set Γ(t) so

long as the velocity (which depends on the elevation profile) is sufficiently smooth.

There is an implementation issue that is worth mentioning. Note that the initial function

φ(x, 0) gives precisely the signed distance from x to Γ(0). As the level sets evolve, we no

longer have φ(x, t) is no longer the signed distance to Γ(t), and thus |∇φ| 6= 1. When |∇φ|

becomes too large or too small near the zero level contour Γ(t), the level set will speed up or

slow down, and may become difficult to resolve. We can fix this by occasionally replacing φ

with the signed distance function to Γ(t). That is, we occasionally halt the time integration,

reset φ(x, t) = dist(x,Γ(t)) and continue. This process is known as re-distancing. The

typical strategy for computing the distance function to the current contour Γ(t) is to set
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σ(x) = sign(φ(x, t)), initialize d(x, 0) = φ(x, t), solve the equation

dτ = σ(x)(1− |∇d|), τ > 0, (3.19)

until steady state. The steady state solution will then be the signed distance function to the

current contour. One advantage of this method is that we do not need to explicitly compute

the contour Γ(t); the contour is resolved implicitly by observing the sign of φ(x, t). If there

is no difficulty computing the contour Γ(t), and φ(·, t) is being resolved on a grid (xi, yj), one

can explicitly calculate the distance from each grid point to the contour, eliminating the need

to solve (3.19). However, this will only be computationally feasible in very low dimension.

The re-distancing problem is well established in the literature and several schemes have been

developed to solve the problem [EZL12, LDO17, SF99, SSO94b, SFS98]. We can more easily

demonstrate the necessity of re-distancing in the next chapter, where we observe level sets of

equal travel time in mountainous regions, so we put off the illustration until then, but note

that we do indeed perform re-distancing while solving (3.4).

In addition to the level set equations, we must also solve the gradient descent equation

(3.8) and evaluate the patrol effectiveness metrics from section 3.3.7. We solve the gradient

descent equation using a stiff ordinary differential solver (ode15s in MATLAB) to find the

paths from the protected region to the boundary of the protected region. The pristine

proportion metric measures the proportion of the protected region that is pristine. The

pristine region and the protected region are defined by polygons in our numerical formulation,

and we use a built-in function provided by MATLAB to find the areas of these polygons. To

calculate the proportion of the value protected requires the integrals in (3.10) to be explicitly

calculated and again a built-in MATLAB function suffices.

3.4 Results

We present results for our algorithm applied to two real world locations: Yosemite National

Park in California, and Kangaroo Island in South Australia, pictured in fig. 3.6. Yosemite
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National Park is a mountainous area with steep mountains and long valleys. Kangaroo

Island has an interesting shape, with a narrow neck separating the main part of the island

from a smaller part at the eastern end. For both locations we use real elevation data,

sourced from the United States Geographical Survey (Yosemite National Park data) and

the Foundation Spatial Data Framework (Kangaroo Island data). We apply several patrol

strategies identified by [Alb10] and [JFT12] before suggesting some simple and more effective

patrols that account for the geometry of the regions.

3.4.1 Yosemite National Park: No Patrol

We first consider the case without any patrols, so the cost function depends only on the

effort required to travel from the extraction point to the boundary of the park. In fig. 3.7,

we present results for two cases with different benefit functions. Both benefit functions have

the same form, a quadratic increase from 0 at the boundary to a maximum value at the point

furthest from the boundary, but fig. 3.7b has maximum benefit double that as in fig. 3.7a.

Explicitly B(x) = kd(x)(2dm− d(x))/dm where d(x) is the distance from x to the boundary,

and dm is the maximum distance of any point to the boundary. The parameter k scales the

(a) Yosemite National Park. (b) Kangaroo Island.

Figure 3.6: Elevation profiles for Yosemite National Park and Kangaroo Island. Yellow corresponds to higher elevation, blue
to lower elevation (scales different in each figure).
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benefit function.

The lower benefit case has a larger pristine area and smaller high-profit region. In the

high-benefit case, there is enough incentive for extractors to expend more effort and extract

from more locations within the protected region, obtaining much higher profits (although

not doubled). A selection of the optimal paths from extraction points to the boundary of

the protected region are also shown. In the sections that follow, we will use k = 8, the

high-benefit case.

3.4.2 Yosemite National Park: Homogeneous Patrol

In fig. 3.8 we consider the simplest nonzero patrol strategy, a homogeneous patrol in which

the entire protected area is patrolled with equal intensity. Two cases are shown, both with the

high-benefit case k = 8 from the previous section, but with different patrol budgets E. The

patrol strategy is simply ψ ≡ E/A where E is the budget and A is the area of the protected

(a) k = 4, 24 paths out of the total 192 are shown. Maximum

profit is 7.06× 104 and pristine proportion is 0.867.

(b) k = 8, 37 paths out of the total of 294 are shown. Maximum

profit is 1.65× 105 and pristine proportion is 0.784.

Figure 3.7: Two cases for Yosemite National Park with no patrols, benefit based on distance from boundary d as B(d) =
kd(2dm − d)/dm (where dm = maxΩ d) and k = 4 in (a) and 8 in (b). The dark gray denotes the high-profit region where
extraction occurs, and light gray shows the envelope of paths the extractors follow when exiting the protected region. Some of
the individual paths are shown for illustrative purposes.
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region. We specify α = 1 as the risk aversion parameter, as this choice gives agreement

between our model and that of [Alb10] in simple symmetric case (discussed in section 3.3.8).

As expected, when the patrol budget increases the pristine proportion increases and the

maximum profit obtained by the extractor decreases.

In fig. 3.8, doubling the patrol budget decreases the maximum profit obtained by ex-

tractors by roughly 22%, increases the pristine proportion by roughly 4%, and increases the

proportion of benefit protected by roughly 8.6%. These are clear improvements, but one

perhaps would expect more change upon doubling the patrol density. Johnson, Fang and

Tambe [JFT12] claimed that the homogeneous patrol was not optimal, and this agrees with

our intuition that some areas of the protected region will never be targeted by extractors,

so there is no need to patrol there.

(a) E = 3 × 104, 26 paths out of the total of 205 are shown.

Maximum profit is 1.27× 105 and pristine proportion is 0.809.

(b) E = 6 × 104, 23 paths out of the total of 179 are shown.

Maximum profit is 9.86× 104 and pristine proportion is 0.841.

Figure 3.8: Two cases for Yosemite National Park with homogeneous patrols, benefit based on distance from boundary d as
B(d) = kd(2dm − d)/dm (where dm = maxΩ d and k = 8) and different budgets E = 3× 104 in (a) and E = 6× 104 in (b).
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3.4.3 Yosemite National Park: Band Patrols

Johnson, Fang and Tambe[JFT12] identified the band patrol as the optimal strategy in

symmetric circular protected regions. In the circular case, the band patrol is an annulus

between two distances from the boundary, 0 < do < di < dm, where dm is the maximum

distance from the boundary, with highest patrol density at the outer extent do, and decreasing

density moving towards the inner-most extent of the band di. In the general case, we set up

a band patrol by patrolling between 0.3dm and 0.7dm from the boundary. Figure 3.9 shows

the patrol strategy and the results of our algorithm. We did not implement the algorithm

presented by [JFT12] to find the optimal band patrol, instead testing a number of band

patrols and choosing the one that gave the best results.

The patrol budget in fig. 3.9b is 3 × 104, the same as for the homogeneous patrol in

fig. 3.8a, but the outcome is significantly better for the patrollers. The homogeneous patrol

had a pristine proportion 0.809 and was able to protect 76.9% of the total benefit, whereas

(a) The patrol strategy. Yellow corresponds to more intense pa-
trolling, blue to no patrolling.

(b) The maximum profit is 1.25× 105 and the pristine proportion
is 0.901.

Figure 3.9: A band patrol in Yosemite National Park. The patrol is based on distance from boundary d and decreases linearly
from d = 0.3 to d = 0.7, and is zero elsewhere. The benefit is B(d) = kd(2dm − d)/dm (where dm = maxΩ d and k = 8) and
the budget E = 3× 104.
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the band patrol has a pristine proportion of 0.901 and protects 86% of the total benefit. The

optimal band patrol of [JFT12] has the property that extractors do not enter the patrolled

region, which ours does not. Despite this, it is still superior to the the homogenous patrol

(even the homogeneous patrol with twice the budget) and the other band patrols tested.

3.4.4 Yosemite National Park: Asymmetric Patrols

The patrol strategies employed above were identified by [Alb10] and are radially symmetric

with respect to the geometry of Yosemite National Park. That is, these strategies depended

only on the depth d of the point (x, y): ψ(x, y) = ψ∗(d). Our method does not require patrols

to be radially symmetric, and we here present an asymmetric patrol that outperforms the

symmetric patrols discussed previously. Observing the results of the other patrols, it seems

that extractors prefer to enter and leave the park at certain portions of the boundary: the

portions that are most concave. This is intuitive, as entering at those areas will ensure less

travel distance to reach the center. In response, we can design strategies to preferentially

patrol those regions through which extractors are more likely to enter. Figure 3.10 shows

just such a patrol strategy.

Exploiting the geometry of the park, rather than patrolling in a depth-dependent way,

the pristine proportion is increased to 0.92 and 90.7% of the benefit is protected. These

results are better than the band or homogeneous patrols with the same budget, and could

likely be improved upon even further by finding even more specialized strategies. This result

shows the critical importance of the geometry of the protected region. To a very rough

approximation Yosemite is fairly circular, but the relatively small-scale concavities are very

important in understanding the behavior of extractors.

3.4.5 Kangaroo Island

We now apply our method to Kangaroo Island, a small island off the southern coast of

Australia. We present two patrol strategies (a homogeneous patrol and a custom designed

patrol) that once again emphasize the importance of accounting for the geometry of the
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(a) The patrol strategy. Yellow corresponds to more intense pa-
trolling, blue to no patrolling.

(b) The maximum profit is 1.52× 105 and the pristine proportion
is 0.920.

Figure 3.10: A custom patrol in Yosemite National Park that is designed to patrol the concavities in the boundary of the
park. The benefit is B(d) = kd(2dm − d)/dm (where dm = maxΩ d and k = 8) and the budget E = 3× 104.

protected area. Kangaroo Island is fairly long and narrow with a portion at the eastern end

connected to the rest of the island by a small isthmus.

Figure 3.11 shows results of homogeneous patrols applied to Kangaroo Island. In this

case, we observe that, somewhat counter-intuitively, the increased patrol budget results in

a smaller pristine area proportion. The reason for this is that increasing the patrol budget

decreases the profit function but causes the high profit area to spread out. That is, with

increased patrol the surface profile of the profit function will look more like a plateau that

has a smaller maximum than in the low budget case, but has a larger near-maximal area.

Although the pristine region is smaller, the maximum profit obtained by the extractors is

much lower, decreasing from 1.34×105 to 1.15×105, so the patrol does have a significant effect

on the extractors. We also observe that a large portion of the non-pristine area comprises

the paths leaving the region as opposed to the high-profit region itself. This should inform

our decision regarding how to more effectively patrol the region. In any radially symmetric

patrol, the high-profit region will also be radially symmetric meaning that it will likely
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occupy the middle of the island and the paths will cover a very large area as they enter and

exit from the north and south side of the island. If we can force the high profit region out

of the middle of the island, then the paths will instead travel throughout the east and west

portions of the island, hopefully occupying a smaller area. Another key geographic feature

of the island is the peninsula at the eastern tip of the island. The peninsula is connected to

the island by an isthmus thin enough that, for our purposes, the peninsula can almost be

considered an independent region. Extractors will likely be uninterested by the peninsular

region since it has much less depth and thus offers much less benefit than the main body of

the island. Hence any patrol in that region is likely wasted effort.

With the homogeneous results in mind, fig. 3.12 shows the results of a more effective

patrol, where the middle of the island is patrolled uniformly and the eastern and western

ends are not patrolled. This patrol was able to increase the pristine area proportion to

0.875 compared to the homogeneous patrol which gave 0.349 with the same budget. Again,

designing this patrol required some simple observations regarding the geometry of the region,

and once again shows the importance of explicitly incorporating geographical information

into the model.

3.5 Conclusion & Avenues for Future Work

In this chapter, we presented a level set model for illegal deforestation. By treating environ-

mental criminals as a front propagting inward from the boundary of a protected region, we

are able to assign a cost to paths that move throughout the region. The cost for extractors

(a) E = 3 × 104, 44 paths out of the total of 431 are shown.

Maximum profit is 1.34× 105 and pristine proportion is 0.349.

(b) E = 6 × 104, 58 paths out of the total of 579 are shown.

Maximum profit is 1.15× 105 and pristine proportion is 0.305.

Figure 3.11: Two cases for Kangaroo Island with homogeneous patrols, benefit based on distance from boundary d as
B(d) = kd(2dm − d)/dm (where dm = maxΩ d and k = 8) and different budgets E = 3× 104 in (a) and E = 6× 104 in (b).
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(a) The patrol strategy. Yellow corresponds to more intense pa-
trolling, blue to no patrolling.

(b) The maximum profit is 1.54× 105 and the pristine proportion
is 0.875.

Figure 3.12: A custom patrol in Kangaroo Island that is designed to push the high profit region away from the center of the
island. The benefit is B(d) = kd(2dm − d)/dm (where dm = maxΩ d and k = 8) and the budget E = 3× 104.

takes into account travel time and capture probability. Previous continuum models relied on

overly restrictive assumptions regarding the geometry of the region, and symmetry of all the

key quantities. Our model agrees with these simpler models in some symmetric cases, but

is able to eschew these assumptions and cover much more general scenarios. We tested our

model in domains with irregular geometry and showed that very basic observations regarding

the geometry can lead to vast improvements both in terms of pristine area, and in terms of

value protected.

There are several avenues for future work in continuum modeling of illegal deforestation.

One obvious way in which the model could be improved is by incorporating more geographical

features, such as waterways and roads, in order to improve the realism. Additionally, we

have only considered benefit functions that depend on distance from the boundary, which is

likely not realistic. The proposed model can be evaluated with any benefit function, however

defining a realistic and accurate benefit function for a given national park would require

input from agencies involved in managing the park. In a similar vein, we could allow the

benefit function to change with time, perhaps tracking animal movement for a model of

animal poaching. However, this would like require major qualitative changes to the model.

Recently, Cartee and Vladimirsky [CV19] proposed a more control-theoretic model, fo-

cusing on the minimax problem arising from the adversarial game between the extractors

and the patrol. While this is an improvement, the game is still static. Another improvement

would be to develop a time-series version of the model wherein this is considered as one stage

in an on-going game, and the patrol strategy can change, either instantaneously or at dis-

crete times. Studying the large-time behavior of such a game could prove very enlightening

61



as to the best patrol strategies at each stage and the expected amount of deforestation over

several years.

One piece of the model that is mildly unsatisfying is the hazy definition of “patrol strat-

egy.” As is, the patrol strategy is specified at the outset in the form of a patrol density

function, but what exactly this means is open to some interpretation. In order to fully as-

sist a law enforcement agency, one would need to deal with problems of resource allocation

and patrol routes necessary to “achieve” a desired patrol density. Formulating this problem

mathematically would be crucial to implementing this model in a real-world scenario.

Finally, and perhaps most importantly, the model lacks real world validation. In order to

truly evaluate the model, it is crucial to test it against real world data. Identification of such

data is difficult. While open source deforestation data sets exist12, it is unclear how much of

the data reflects illegal logging of timber, versus natural deforestation or illegal deforestation

for other reasons such as agricultural land clearance [SU18]. A full analysis of the data, and

an update to the model that incorporates the data in the correct ways, are key steps before

the model could be implemented in practice.
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CHAPTER 4

Optimal Human Navigation in Steep Terrain

We consider the problem of determining the optimal walking path between two points given

elevation data in a region. If the terrain is fairly flat, this may be very easy as conventional

wisdom (“the shortest path between two points is a straight line”) will provide a good

approximation to the optimal path. However, in mountainous regions, straight line travel

is often inefficient or impossible and the optimal path between two points is no longer

clear. In this chapter, we introduce a level set method for resolving optimal walking paths.

We demonstrate the effectiveness of our method by computing optimal paths that travel

throughout mountainous regions of Yosemite National Park. We include details regarding

the numerical implementation of our model and, in concert with the previous chapter, we

address a specific application of a law enforcement agency patrolling a nationally protected

area.

4.1 Introduction & Previous Work

The problem of optimal path planning goes back at least as far as Dijkstra [Dij59] who

designed an algorithm for optimally traversing weighted graphs. In the years since, significant

effort has been devoted to developing and improving algorithms that find optimal or near-

optimal paths in a discrete setting [HNG15, MS04, Pap85]. Others have used modified

versions of Dijkstra’s algorithm for path planning in a semi-continuous setting [AM06, Tsi95].

As noted in the previous chapter, path planning problems have been largely reframed

using control theory and partial differential equations. Examples of these methods include

finding geodesic paths on manifolds, [KS98], curvature constrained motion for self-driving
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cars [AW01, Dub57, RS90, TTS10, TT13], ordered upwind methods (which can be seen

as a continuous version of Dijkstra’s algorithm) [AM09, SV01, SV03], reach-avoid games

[Lyg04, BMO07, ZDH18], or optimal sailing routes that include random effects to account

for weather patterns [FF19, SV15].

There has been some research into path planning in a geographical or terrain-based

setting though most previous work is focused on discrete, graph-based methods employing

Dijkstra’s algorithm and its many variants: so-called A∗ and D∗ algorithms [KS95, SUA16].

Such methods have long been used for vehicular navigation and can be adapted to include

real-time obstacle recognition [MMM16]. This problem is also of particular interest to those

working on unmanned aerial vehicles (UAVs) and other autonomous robots [BVM10, Hac08,

INY11, LG09]. In a continuous approach, Popović et al. [PVH17] propose a path planning

algorithm for UAVs by maximizing an information functional that measures the amount of

data a UAV can collect. However, to our knowledge, the methods of control theory and HJB

equations have yet to be applied to terrain-based path planning previous to this work.

This chapter will be presented as follows. In section 4.2, we present a model that uses the

level set method and a HJB formulation to compute optimal walking paths in a continuous

setting where travel direction can be considered dynamically and walking speed is depen-

dent on slope of the local terrain. This is as opposed to other terrain-based path planning

methods which are fully or partially discrete and do not account for directional movement.

In section 4.3, we discuss the numerical simulation of the model, including implementation

concerns that are somewhat specific to terrain based path planning. We begin by testing

the model against toy problems using synthetic elevation data specifically designed so that

the “correct answer” is somewhat clear a priori and move on to use real elevation data of

Yosemite National Park. The motivation for this work was to aid law enforcement agencies

in efficiently patroling protected areas such as parks or forests, but with small adjustments,

our method could be applied to optimal path planning in any number of scenarios.

This chapter reproduces an article previously published in Communications in Mathe-

matical Sciences. A full copyright acknowledgment can be found at the end of the chapter.
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4.2 A Level Set Model for Terrain-Based Optimal Path Planning

The primary tool we will use in our path planning approach is the level set method [OS88]. As

discussed in chapter 2, the level set method implicitly solves an extremal geometry problem.

If Γ(0) is some initial contour, and we solve the Eikonal equation (2.6) with velocity v(x)

throughout a region, then Γ(t) denotes the set of reachable points in this velocity field after

traveling for time t. Thus, using the level set equation, one can compute the (approximate)

time that it takes to travel from one point to another in our domain. Let x0 ∈ R2 represent

a starting point and xf ∈ R2 represent a final point. For some small δ > 0, let φ0(x) =

|x− x0| − δ so that Γ(0) = {|x− x0| = δ} is a small circle around the point x0. When Γ(t)

evolves outward with prescribed normal velocity v(x), there will be some time t∗ > 0 such

that xf ∈ Γ(t∗); that is, at some positive time t∗, the level set will hit our ending point.

This time t∗ is the time required to travel from point x0 to point xf when traveling in the

normal direction with velocity v(x) (neglecting the small parameter δ). This approach can

be seen as a continuous analog of Dijkstra’s algorithm, assigning optimal travel times to

points as the level sets sweep through the region. This gives a method for calculating travel

times, but this model is too simple for our purposes, only allowing for travel in the normal

direction which is potentially far from optimal. For example, if in a physical setting there is

a large mountain between the points x0 and xf , one may wish to walk around the mountain

rather than over the mountain, as normal direction travel may suggest. Thus at each point,

one must not only consider the speed of travel, but also the direction of travel. Considering

direction, it no longer makes sense to simply specify a velocity v(x) at each point. Instead,

we assume that walking velocity depends on both the gradient of the terrain at the current

point and the direction of travel as we search for the optimal travel direction.

4.2.1 Our Model

For our model, assume that in addition to the starting and ending points x0, xf ∈ R2, there

is an elevation profile E(x) and a velocity function v(s) that gives human walking velocity

as a function of terrain slope s; for our purposes, we will again use the modified Irmischer
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& Clarke [IC17] walking function as detailed in section 3.3.4. The control variable will take

values a ∈ S1, unit vectors that represent walking direction. Now if one is standing at a

point x and desires to walk in the direction a, they can walk with velocity v(a ·∇E(x)) since

a·∇E(x) represents the slope at x in the direction of a. For each a ∈ S1, define the directional

Hamiltonian H(x, p, a) = V (a · ∇E(x))〈a, p〉. Fixing a, and using this Hamiltonian, the

equation

φt +H(x,∇φ, a) = 0 (4.1)

models advection in the direction of a, with level set velocity dependent on slope of the

terrain in the direction a. To consider optimal travel, we take the supremum over all walking

directions. Define the optimal path Hamiltonian

H(x, p) ..= sup
a∈S1

H(x, p, a) = sup
a∈S1

{
v(a · ∇E(x))〈a, p〉

}
. (4.2)

Then the level sets of the solution to the Hamilton-Jacobi-Bellman equation

φt +H(x,∇φ) = 0 (4.3)

correspond to contours of equal travel time when considering optimal walking direction.

Note that this is indeed a level set equation as discussed in section 2.1.4, since this optimal

path Hamiltonian is homogeneous of degree one in the variable p. Now to find the optimal

travel time between points x0 and xf , one can use the same method described above: letting

Γ(0) = {x ∈ R2 : |x− x0| = δ} for small δ, evolve Γ(t) using the level set equation with the

optimal path Hamiltonian until the time t∗ > 0 such that xf ∈ Γ(t∗). This t∗ is the minimal

time required to travel from x0 to xf . This procedure is displayed in fig. 4.1.

What remains is to compute the optimal path from x0 to xf : the path that requires

time t∗ to traverse. In order to do this, one simply needs to follow the characteristics of

the Hamilton-Jacobi-Bellman equation. In order to do so, we follow the characteristics

backwards from xf to Γ(0), since the initial control value is not resolved. The characteristic
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Figure 4.1: To find optimal travel time, begin with a small circle around x0 (red) and evolve level sets Γ(t) (magenta) outward
until the time t∗ > 0 at which xf ∈ Γ(t∗).

equations, which agree with the Pontryagin Optimality Principle from section 2.3.3, are

ẋ = −∇pH(x,p), x(0) = xf ,

ṗ = ∇xH(x,p), p(0) = ∇φ(xf , t
∗).

(4.4)

Physically, one can imagine starting at the point xf , considering what was the direction of

the optimal step that led to the current point, stepping backwards in that direction and

updating the direction in real time as one is walking backwards. Running this system of

ODEs to time t∗, one will have backtracked optimally from b to Γ(0).

To summarize, once we have defined the optimal path Hamiltonian (4.2), the algorithm

for finding the optimal path consists of two steps:

1. Find the optimal travel time by advancing the PDE

φt +H(x,∇φ) = 0,

φ(x, 0) = |x− x0| − δ,

until the time t∗ > 0 such that xf ∈ Γ(t∗).
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2. Find the optimal travel path by advancing the ODE system

ẋ = −∇pH(x,p), x(0) = xf ,

ṗ = ∇xH(x,p), p(0) = ∇φ(xf , t
∗)

until time t∗.

In another approach, Sethian and Vladimirsky [SV01, SV03] devise a static Hamilton-

Jacobi-Bellman formulation for path planning. In doing so, they are able to solve similar

problems without the time-dependence that is present in our model. While removing the

time-dependence eliminates a dimension, since we are only solving problems in two spatial

dimensions, our algorithm is sufficiently efficient for our purposes, and has the advantage

that it is simple to implement at any order of accuracy one desires. If efficiency is a concern,

local level set methods [AS95, LDM14, Min04, PMO99] could be used to speed up the level

set computation.

4.2.2 The Associated Control Problem

Again, as in section 3.3.9, we note that underlying the formalism of section 4.2.1, there is

a control problem that is being solved and a payoff function that is being maximized. As

above, let x0 ∈ R2 be the initial point. If one is standing at the point x ∈ R2, then traveling

optimally away from the point x0 for a time t is the same as maximizing the distance

|x(t)− x0|, where x(·) is a path with x(0) = x. At each time along the path, denote the

direction of travel by a(·). As discussed above, the travel velocity at the point x(·) and in

the direction a(·) is given by v(a(·) · ∇E(x(·))). Thus, the problem can be phrased as

sup
a(·)

Px,t[x(·),a(·)] = |x(t)− x0| (4.5)
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where the supremum is taken among measurable functions a : [0, t]→ S1, and the system is

subject to the state dynamics

ẋ(s) = v
(
a(s) · ∇E(x(s))

)
a(s), 0 < s ≤ t

x(0) = x.
(4.6)

Computing formally, one sees that the HJB equation associated with the value function

φ(x, t) = supa(·) Px,t[x(·),a(·)] for this control problem is (4.3) with the optimal path Hamil-

tonian (4.2) and initial condition φ0(x) = |x− x0|. We then make the slight modification

φ0(x) = |x− x0| − δ for small positive δ so that we can resolve the zero level sets Γ(t) of

φ(x, t) as the boundary of the reachable set at time t. To make this computation rigorous,

one would need to require that the map x 7→ v(a · ∇E(x)) is Lipschitz with a Lipschitz

constant that is uniform in a. When this holds, the value function will be the viscosity

solution of the HJB equation (4.3). However, this requirement will, in turn, depend upon

the smoothness of the elevation data E, which is something we cannot guarantee, so we em-

phasize that, in our case, the connection between the value function for the optimal control

problem and our HJB equation is merely formal.

4.2.3 Accounting for Uncertainty in the Starting Location

The above algorithm will compute a path for one who wishes to travel optimally throughout

a region. We would like to incorporate some uncertainty into the model to account for a real

world situation that law enforcement agents may encounter. Consider a scenario wherein a

law enforcement agency has knowledge that environmental criminals (for example, poachers

or illegal loggers) are operating within a protected region but can only identify the criminals’

location with some uncertainty. Supposing that the criminals perpetrate a crime within the

region and then travel to a known final destination, the law enforcement agency may want

to predict which paths the criminals will take.

In this situation, assume that rather than a starting point x0, we have a compact set Ω0

of possible starting points along with a probability distribution from which one can sample
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elements of Ω0. The algorithm described above requires a starting point drawn from Ω0

upon which one could calculate an optimal path to the end point xf . However, we wish to

calculate the optimal path to xf from each point in Ω0 and according to our procedure, this

would require solving (4.3) individually for each point x0 ∈ Ω0. Computationally, this would

be very inefficient, but we can avert this need by turning the problem around: rather than

starting from a point x0 ∈ Ω0 and evolving level sets outward toward xf , we can evolve level

sets outward from xf . As the level sets Γ(t) evolve outward from xf , they sweep through

the region Ω0 so that for each x0 ∈ Ω0, we find a time t∗(x0) such that x0 ∈ Γ(t∗(x0)). The

computation can be stopped when Ω0 is inside Γ(t) and for each x0 ∈ Ω0, we will have found

the time t∗(x0) required to travel from x0 to xf . This is pictured in fig. 4.2. Having done

this, we can draw points N points {x0,n}Nn=1 from Ω0 and calculate the optimal paths using

(4.4) with starting values x(0) = x0,n, p(0) = ∇φ(x
(n)
0 , t∗(x0,n). In this way, we can calculate

optimal paths to any points in Ω0 with only one level set computation.

As a minor note, according to Irmischer & Clarke [IC17], walking velocity is maximal

when one is walking on a slight decline. Thus reversing the direction of the level set evolution

means we must also reverse our sense of slope since the walking direction is now opposite

Figure 4.2: If there is uncertainty in the location of the starting point, we evolve level sets outward from b until they cover
A, recording optimal times for each a ∈ A as we go.
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the direction of the level set evolution. Hence, we replace E with −E. In doing so, when we

evolve level sets outward from xf , we are actually calculating optimal travel as if one was

traveling inward toward xf . Thus we can still compute the optimal path from x0 to xf even

though we use xf as the “starting point” for the level sets.

4.3 Implementation, Results & Discussion

To simulate the model numerically, we would like to use the Godnuov Hamiltonian discussed

in section 2.4. However, there are a few issues that arise. The first obstacle is deciding how

to calculate our Hamiltonian since this requires a maximization over a ∈ S1. If the velocity

function v is sufficiently simple, it may be possible to resolve this maximization explicitly

using calculus. When this is not possible (as with our simulations), one can maximize H

discretely. That is, rather than maximize over a ∈ S1, we maximize H(x, p, a) on a uniform

discretization of S1. This causes some approximation error, but as long as v(a · ∇E(x)) is

continuous in a for fixed x, this discrete maximization will tend to the exact supremum as

the discretization of S1 becomes more precise.

Second, as seen in (2.63), the Godunov Hamiltonian is computed by performing a se-

quence of minimizations or maximizations. Again, we need to perform this computationally.

In chapter 2, the motion was isotropic, meaning that the Hamilton-Jacobi-Bellman equation

reduced to an Eikonal equation, and the Godunov Hamiltonian could be resolved explic-

itly. Here we are dealing with anisotropic motion (wherein the level set velocity depends

on the direction of movement), and thus the explicit formula (2.66) is no longer available.

Accordingly, we perform these optimizations discretely as well.

We use the second order ENO approximations for the derivatives of φ, and second order

total variation diminishing Runge-Kutta time integration to simulate (4.3). One can solve

the optimal trajectory ODE system (4.4) using any method one wishes. For relatively jagged

elevation data E, the equation can become stiff, so it is recommended that one uses a stiff

solver with accuracy that matches that of the numerical solution to (4.3).

While this describes the basics of the numerical implementation, there are some minor
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adjustments required to obtain our results, which we discuss in section 4.3.2. Some of these

issues are caused by roughness in the terrain data. Indeed, rough terrain data may violate

the smoothness conditions required to ensure second order accuracy, and for this reason,

first-order schemes may be sufficient to solve this problem. However, there is no significant

difficulty in implementing the above scheme at second-order. This will provide second-order

accuracy in regions where terrain is relatively smooth, and in some cases we observed slightly

improved results (in terms of optimal travel time) using the second-order scheme.

4.3.1 Results

To test our code, we first ran simulations with synthetic (and very simple) elevation data.

This allows us to gauge whether our model aligns with our intuition. When we were confident

that our model and numerical methods were correct, we were able to download real elevation

data from the United States Geological Survey and run simulations in a real national park.

For our simulations, we chose Yosemite National Park and we ran optimal path simulations in

the direct vicinity of the mountain El Capitan. Specifically, we use data spanning longitude

119◦W - 120◦W and lattitude 38◦N - 39◦N with 1/3 arcsecond resolution. This was obtained

from the USGS National Map Viewer.

As in fig. 4.1 above, in the following images, the starting point x0 is represented by the

black asterisk surrounded with a red circle which denotes the starting contour Γ(0). Next,

the magenta contours represent several steps in the evolution of the contours Γ(t). The green

asterisk represents the point xf and the thick black line represents the optimal path from

x0 to xf . The elevation contours are plotted in colors ranging from blue representing low

elevation to yellow representing high elevation. In our first simulations, we place mountains

in certain areas and our intuition tells us that the optimal path should likely bend around the

mountains since it would require too much effort to climb up the mountain. Our simulations

do indeed reflect this, as seen in fig. 4.3.

Next, we use actual elevation data from the area surrounding El Capitan. Before showing

the result of the simulation, we show the elevation profile and the starting and ending points
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Figure 4.3: Optimal path winding around two mountains (toy problem).

in fig. 4.4. Note that directly above the endpoint, there is a very steep cliff face which should

be nearly impossible to traverse. Thus we would expect the optimal path to travel to the

east or west, descending down a gully rather than a cliff. Indeed, this is shown to happen in

section 4.3.1, wherein the path travels down the eastern or western slope depending on the

location of the initial point.

Figure 4.4: Elevation profile of El Capitan.
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(a) Optimal path down the western slope. (b) Optimal path down the eastern slope.

Figure 4.5: Optimal paths down from El Captian avoid the steep cliff.

Finally, we ran the algorithm that accounts for uncertainty in the location of the starting

point. Before we display our results, we remind the reader of the distinction here. In all of

these above results, we are calculating one optimal path from the point x0 to the point xf .

Now we wish to calculate several optimal paths from the region Ω0 to the point xf . Whereas

previously we evolved level sets outward from point x0 until they reach the point xf , now we

evolve level sets outward from xf until they subsume the region Ω0 and record the optimal

travel time for each x0 ∈ Ω0 as the level sets sweep through the region. This is shown in

fig. 4.2. We ran our algorithm in two different areas within Yosemite National Park. We

let Ω0 be a circle near the summit of El Capitan and calculated the optimal path down the

mountain from 100 random points drawn uniformly from Ω0. We then did the same thing

but using the elevation profile of Half Dome, another peak in Yosemite National Park. The

results are pictured in fig. 4.6.

Note that in both cases, while there are 100 randomly chosen starting positions, all of

the paths eventually conform to one of very few routes. We seek to quantify this similarity

between some paths. Suppose we have calculated several paths {Pn}Nn=1 starting from differ-

ent locations. For each path, we know the time Tn > 0 required to traverse the path, so that

Pn : [0, Tn] → R2 and the paths are oriented so that P (0) = xf and P (Tn) = x0,n, the nth

starting location. However, we are not concerned with where a path began, we would like

to classify the route that the path eventually takes. Thus, we only consider points along the
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(a) 100 optimal paths traveling down from the summit of El Capitan. (b) 100 optimal paths traveling down from the summit of Half Dome.

Figure 4.6: Calculation of optimal paths accounting for uncertainty in the initial location.

path that are outside of the set Ω0; that is, if we define T ∗n = sup{t : Pn(t) 6∈ Ω0}, we would

only like to compare the paths on the intervals [0, T ∗n ]. After making this restriction, one can

then re-parametrize using τ = t/T ∗n so that for each n, Pn : [0, 1]→ R2 denotes a path from

the ending point xf to the set Ω0. Then it is easy to define a metric to judge whether two such

paths lie nearby each other: for two paths P,Q, define d(P,Q) =
∫ 1

0
|P (τ)−Q(τ)| dτ . With

this metric, one can evaluate the pairwise distances between our paths, {d(Pn, Pm)}Nn,m=1.

Now, using basic clustering algorithms, one can categorize the paths into collections that are

morally the same, in the sense that they eventually collapse onto the same route. We per-

formed this clustering for the above two examples. Specifically, we used k-means clustering

with k = 2 clusters in each case, though other clustering methods could be used. The results

are included in fig. 4.7, where the first cluster of paths is depicted in red and the second in

blue. Here, we have plotted each of the 100 paths as well as the mean path for each cluster.

Thus any initial point that is marked with a blue circle has a corresponding optimal path

that eventually closely resembles the bright blue path and any initial point marked with a

red asterisk has a corresponding optimal path that eventually closely resembles the bright

red path. Returning to our original motivation, these graphics could be of great interest

to law enforcement agencies who are tracking criminal movement. For example, in the case

of El Capitan (fig. 4.7a), we observe that 20% of the paths travel down the western slope

while 80% travel down the eastern slope. This may suggest to law enforcement that they
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(a) Clustering the paths down from El Capitan into two collections. (b) Clustering the paths down from Half Dome into two collections.

Figure 4.7: Clustering can help us identify which paths are morally the same. The bright blue path is the representative path
for the blue points and the bright red path is the representative path for the red points.

should patrol the eastern slope with roughly four times the resources that they devote to the

western slope.

4.3.2 Implementation Notes

There are a few specific issues that arise when implementing the model numerically. We

mention three such issues (and their resolutions) and demonstrate their effects in fig. 4.8,

fig. 4.9, and fig. 4.10. The first issue is the aforementioned re-distancing problem, discussed

in section 3.3.10. To summarize, as the level sets evolve, φ(x, t) can become too flat or

too steep near Γ(t) which causes the level sets to become unreliable. To prevent this issue,

we occasionally halt the time integration of (4.3) and replace the level set function with

the distance function to the current level set. Figure 4.8 demonstrates the necessity for

re-distancing. When we solve the equation without re-distancing, the level sets “jump” over

the cliff (fig. 4.8a).

Next, as mentioned before, the system (4.4) used to find the optimal path becomes very

stiff when non-smooth elevation profiles are used. Even when using a stiff solver, the results

were unreliable in that the value of p(t) corresponding to a location x(t) was straying far from

the theoretically correct value ∇φ(x(t), t). This was causing the “optimal path” that our

code found to be wildly inaccurate, often times not even connecting xf to x0, opting instead
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(a) Level sets without re-distancing “jump over” the cliff. (b) Level sets with re-distancing wrap around the cliff.

Figure 4.8: Level sets without, (a), and with, (b), re-distancing.

to wander off in some seemingly random direction. To fix this, we do something similar to

the above fix: we occasionally stop the time integration, re-initialize p(t) = ∇φ(x(t), t) and

then restart the time stepping. We refer to this as re-initialization and the effect is shown

in fig. 4.9. If one can resolve φ at all values of (x, t) (as opposed to resolving φ only on a

discrete grid), one could replace the system (4.4) with the single equation

ẋ = −∇pH(x,∇φ(x, t)), x(0) = xf . (4.7)

When φ is not available at all points, one can solve for p using (4.4) and re-initialize as often

as possible which is akin to solving (4.7).

Finally, there is still one shortcoming of our Hamiltonian with respect to directional

movement: the slope in the direction of travel and its orthogonal are completely decoupled.

For example, consider a situation where there is a steep cliff face in the north-south direction

while the slope in the east-west direction is very mild. Our model would allow an individual

to walk east-west in this situation even though they may be standing on an prohibitively steep

slope. To fix this problem, we add a penalty for walking in locations where the maximum

slope in any direction is very large. This is as simple as multiplying our Hamiltonian by

a pre-factor that is approximately 1 for low slopes and approximately zero for high slopes.

We have chosen the penalization function P (S) = 1
2
− 1

2
tanh(S − 1) where S = rise

run
is
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(a) Optimal path without re-initialization veers of the map. (b) Optimal path with re-initialization finds its target.

Figure 4.9: Optimal paths without, (a), and with, (b), re-initilialization.

(a) Optimal path without high-slope penalization zig-zags up the cliff. (b) Optimal path with high-slope penalization avoids the cliff.

Figure 4.10: Optimal paths without, (a), and with, (b), the high-slope penalization.

the slope. Thus we actually solve the Hamilton-Jacobi-Bellman equation with Hamiltonian

P (|∇E(x)|)H(x, p) where H(x, p) is the optimal path Hamiltonian. The effect of this high-

slope penalization is seen in fig. 4.10

4.4 Conclusions & Further Work

In this chapter, we presented a method for resolving optimal walking paths given terrain

data. The key element of the model is a generalization of the level set equation. By rep-

resenting the direction of travel for the level sets with a control variable, we constructed a
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Hamiltonian whose corresponding level set equation models optimal travel. Using this, we

described a simple algorithm for calculating the optimal walking path between a starting and

ending point that consists of numerically solving a Hamilton-Jacobi-Bellman (HJB) equa-

tion and then a system of ordinary differential equations. Further, we suggest a method for

incorporating uncertainty into the location of the starting point: by modifying the algorithm

slightly, we can compute several optimal paths while only solving one HJB equation. To test

our algorithm, we simulated our model first using artificial elevation data and then using the

actual elevation data in certain regions of Yosemite National Park. In both cases, results

aligned very well with our physical intuition. Finally, we sampled several different starting

locations and calculated optimal paths that travel down from the summits of El Capitan

and Half Dome and noticed that in both cases, the paths can be naturally clustered into

collections of paths that follow the same basic route. We performed k-means clustering to

separate the paths into such collections. Such clustering could suggest simple yet effective

patrol strategies for a law enforcement agency tasked with patrolling nationally protected

areas.

While this algorithm handles uncertainty in the location of the starting point, uncertainty

could arise in many other places. In the ensuing chapter, we discuss adding uncertainty in

the equation of motion (4.4). In doing so, the state dynamics are represented by a stochastic

differential equation which leads to a slightly different Hamilton-Jacobi-Bellman equation.
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CHAPTER 5

Optimal Human Navigation with Uncertainty

In this chapter, we return to the problem of optimal path planning in mountainous ter-

rain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. We

reconstruct the previous path planning model to incorporate a stochastic component that

can account for uncertainty in the problem, and thus includes a Hamilton-Jacobi-Bellman

equation with viscosity. We discuss the model in the presence and absence of stochastic

effects, and suggest numerical methods for simulating the model. In particular, we discuss

two different notions of an optimal path when there is uncertainty in the problem.

5.1 Introduction & Previous Work

In section 4.1, we gave a short survey of path planning methods. One feature of most of those

models is that they are completely deterministic. Some exceptions are [FF19, SV15] where

some randomness is included to account for weather effects on a sailboat. But, for example,

in the simplest reach-avoid games, the strategy of each team is known to the opposing team.

Assumptions like this may not be realistic in practice, and thus it is important to incorporate

some uncertainty into the models, and this can be done in a number of ways. In the case

of reach-avoid games, Gilles and Vladimirsky suggest paths for the attackers or defenders

that minimize or maximize risk in different ways [GV]. These type of stochastic effects

are of special interest to those working on self-driving vehicles wherein misaligned axles,

miscalibrated sensors or a host of other variables could significantly perturb an optimal

driving path, and these can be modeled using randomness in a number of different ways

[AM01, LR12, LLM14, Mar99, Mar15]. Others have suggested optimal path planning for
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underwater unmanned vehicles using a stochastic drift term to account for the effects of the

ocean’s current [LJL15, SWL18, SL16].

In this chapter, we propose a method for optimal path planning where the walking velocity

depends on the local slope in the direction or motion (and is thus anisotropic), and there is

uncertainty in the equation of motion of the traveler. Rather than an ordinary differential

equation, our equation of motion is a stochastic differential equation where Brownian motion

can account for uncertainty in human walking speed, the ambient elevation data, terrain

traversibility or other factors. In doing so, we follow a similar formulation as in chapter 4.

However, since the Hamilton-Jacobi-Bellman equation for the stochastic case has viscosity,

the level set method is no longer applicable, so we opt for a model more rooted in control

theory.

This chapter is organized as follows: in section 5.2, we discuss the setup of our model,

including some of the underlying mathematical formalism and how it pertains to optimal

path planning. In section 5.3, we discuss the numerical methods that we used to simulate

the model. In section 5.4, we discuss the results of our simulations. Specifically, we once

again test our model against both synthetic data and real elevation data taken from the area

surrounding El Capitan. We compare two different notions of optimal paths when stochastic

effects are present. Finally, we observe that as the size of the uncertainty tends to zero—

and thus the solution of the stochastic HJB equation tends to the viscosity solution of the

ordinary HJB equation [CL83]—the optimal path tends toward the deterministic optimal

path.

5.2 Mathematical Model

We discuss the construction of our model, recalling very briefly the components of our

deterministic optimal control problem, and then detailing the extension to the stochastic

case.
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5.2.1 The Deterministic Path Planning Model

We recall the formulation of our path planning model from chapter 4, as discussed in sec-

tion 4.2.2. There are some slight modifications since we used a level set formulation in the

previous chapter, which we will abandon here since the stochastic Hamilton-Jacobi-Bellman

equation is no longer a level set equation.

We imagine that a hiker is standing at a point x0 ∈ R2, and wishes to walk to a point

xf ∈ R2. We are given the elevation profile E : R2 → R, and the modified Irmischer-Clarke

[IC17] walking velocity function v : R→ [0,∞) discussed in section 3.3.4. Let x : [0, T ]→ R2

represent the current position of the hiker, where T > 0 is the total walking time. Note, this

terminal time T is a parameter that one specifies at the outset. Our control variable will be

the walking direction along the path, a : [0, T ] → S1 ..= {a ∈ R2 : |a| = 1}. Given all of

this, the equation of motion for our hiker is

ẋ(t) = v
(
∇E(x(t)) · a(t)

)
a(t), 0 < t ≤ T,

x(0) = x0.
(5.1)

Note that ∇E(x) · a represents the local slope in the walking direction. For the cost func-

tional, we choose the Euclidean distance to the end point

C[x(·),a(·)] = |x− xf | . (5.2)

The dynamic programming principle discussed in section 2.3.2 shows that the value function

φ for this optimal control problem satisfies the terminal valued Hamilton-Jacobi-Bellman

equation

φt(x, t) + inf
a∈S1

{
v
(
∇E(x) · a

)
〈a,∇φ(x, t)〉

}
= 0,

φ(x, T ) = |x− xf | .
(5.3)
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After (5.3) is solved, the optimal control plan is given by

a∗(x, t) = argmin
a∈S1

{
v
(
∇E(x) · a

)
〈a,∇φ(x, t)〉

}
. (5.4)

and the optimal trajectory is given by

ẋ(t) = v
(
∇E(x(t)) · a∗(x(t), t)

)
a∗(x(t), t), 0 < t ≤ T,

x(0) = x0.
(5.5)

It was mentioned above that the terminal time T is a parameter that one must specify

beforehand. This is the main departure from the fully deterministic model in chapter 4,

where the algorithm provided the optimal travel time. It is important to note what this

means for the model. Notice that for our cost functional, we have chosen a lump sum cost

which is the distance from the end of the path x(T ) to the desired end point xf . The optimal

control problem attempts to minimize this cost. Thus the path that we observe will be the

path x whose end point is as close to xf as possible, given time T > 0. If we select T

too small, the path will not reach the end point, and in some cases this can lead to some

interesting decisions regarding how the path should be constructed. We discuss this further

in section 5.4.3.

5.2.2 The Stochastic Path Planning Model

In the above, we assume that all data is known perfectly and that there is no uncertainty. In

reality, weather effects, instrumentation noise, incomplete elevation data or any number of

other things could cause uncertainty in the equation of motion. Accordingly, we can account

for random effects by considering a stochastic equation of motion

dX t = v
(
∇E(X t) ·At

)
Atdt+ σ(X t,At)dW t, 0 < t ≤ T

X0 = x0,
(5.6)
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where the coordinates of W t are independent one-dimensional Brownian motions, and σ is

some function that determines the uncertainty.

Because the state is a stochatic process, we define the expected cost function

C[X,A] = E (|XT − xf |) . (5.7)

As in section 2.3.2, we fix x, t and restrict to trajectories X such that X t = x. The value

function is then defined by

φ(x, t) = inf
A
Cx,t[X,A]. (5.8)

Because there is no running cost in this problem, the dynamic programming principle for

this problem takes the form

φ(x, t) = inf
A

E{φ(X t+∆t, t+ ∆t)}. (5.9)

This states that the optimal remaining cost is constant along optimal trajectories. Rear-

ranging and invoking the fundamental theorem of (stochastic) calculus yields

0 = inf
A

E {φ(X t+∆t, t+ ∆t)− φ(x, t)} = inf
A

E
{∫ t+∆t

t

dφ(Xs, s)

}
. (5.10)

From here, assuming φ is smooth, we would like to resolve the infinitessimal dφ(Xs, s). To

do so, we recall the Itô formula for the stochastic chain rule. Suppose f : Rn × R → R is

smooth and Y t is an n-dimensional stochastic process. Then

df(Y t, t) = ft(Y t, t)dt+ 〈∇f(Y t, t), dY t〉+
1

2

n∑
i,j=1

fxixj(Y t, t)dY
(i)
t dY

(j)
t , (5.11)

where dY
(i)
t are the components of Y t. Specific to our case, recalling the fundamental

relationship (dWs)
2 ∼ ds for a one-dimensional Brownian motion and operating formally, we

see

dX(i)
s dX(j)

s = σ(Xs,As)
2dW (i)

s dW (j)
s + o(ds). (5.12)
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Because the coordinates of dW s are independent, we have dW
(i)
s dW

(j)
s = δijds. Further,

〈∇φ(Xs, s), dXs〉 = v
(
∇E(Xs) ·As

)
〈∇φ(Xs, s),As〉ds+ σ(Xs,As)〈∇φ(Xs, s), dW s〉.

(5.13)

Inserting these into (5.10), we arrive at

inf
A

E
{∫ t+∆t

t

(
φt(Xs, s) + v

(
∇E(Xs) ·As

)
〈∇φ(Xs, s),Xs〉

)
ds

+

∫ t+∆t

t

σ(Xs,As)〈∇φ(Xs, s), dW s〉

+

∫ t+∆t

t

1

2
σ2(Xs,As)∆φ(Xs, s)ds

}
= 0.

(5.14)

The middle term is zero in expectation since X t is non-anticipating. Thus, sending ∆t→ 0,

(5.14) reduces to the stochastic Hamilton-Jacobi-Bellman equation

φt(x, t) + inf
a∈S1

{
v
(
∇E(x) · a

)
〈∇φ(x, t), a〉+

1

2
σ(x, a)2∆φ(x, t)

}
= 0,

φ(x, T ) = |x− xf | .
(5.15)

Note that the positive sign on the diffusion is correct since the equation runs backwards in

time.

As in the deterministic case, one can solve (5.15) and determine the optimal control plan

according to

A∗t (x) = argmin
a∈S1

{
v(∇E(x) · a)〈∇φ(x, t), a〉+

1

2
σ(x, a)2∆φ(x, t)

}
. (5.16)

At this point, there is a choice as to how to construct a trajectory. One can use the optimal

control computed from the stochastic HJB equation but simulate the deterministic path

equation

ẋ(t) = v
(
∇E(x(t)) ·A∗t (x(t))

)
A∗t (x(t)), 0 < t ≤ T,

x(0) = x0,
(5.17)
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to arrive at an optimal path. Alternatively, to compute a single instance of a path, we could

simulate the equation

dX t = v
(
∇E(X t) ·A∗t (X t)

)
A∗t (X t)dt+ σ(X t,A

∗
t (X t))dW t, 0 < t ≤ T

X0 = x0.
(5.18)

Because this is only one instance and is subject to randomness, the path will not necessarily

connect the points x0 and xf . However, we can average over many realizations to arrive at

an expected optimal path. This is summarized in table 5.1.

These methods have different interpretations and may be better suited to modeling dif-

ferent physical scenarios. In using method (i), the uncertainty is factored into the planning

of the route, but upon traversing the route, there is no uncertainty in the velocity. This could

model a hiker walking through a forest. The hiker does not feel random perturbations in the

walking velocity at each step; rather, the uncertainty is in the exact form of the landscape

that lies ahead. Method (ii) may be of more practical use to a company shipping goods

from one port to another, wherein each boat that makes the trip will actually feel random

perturbations in velocity due to wind or currents. We will use both methods to compute

paths and compare the results in section 5.4.

To begin simulating the model, it remains to decide the exact form of the uncertainty σ

in the stochastic equation of motion. For our purposes, we take σ constant, so that we model

uncertainty in the walking velocity in a general sense without specifying the exact nature of

the uncertainty. As a consequence, if we reconsider (5.15), we notice that the viscosity term

Method (i) Method (ii)
Stochastic HJB Equation (5.15) Stochastic HJB Equation (5.15)

→ control values → control values
Deterministic equation of motion (5.17) Stochastic equation of motion (5.18)

ẋ = v
(
∇E(x) · a

)
a E

(
dX = v

(
∇E(X) ·A

)
Adt+ σdW

)
→ optimal path → expected optimal path

Table 5.1: The two options for how to compute optimal paths with uncertainty.
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is independent of the control variable s, and thus the equation can be re-written

φt(x, t) +
σ2

2
∆φ(x, t) + inf

a∈S1
{v(∇E(x) · a)〈∇φ(x, t), a〉} = 0,

φ(x, T ) = |x− xf | .
(5.19)

This case is interesting because now the optimal control is resolved exactly as in the deter-

ministic case, and (5.19) is reminiscent of the viscous Hamilton-Jacobi equation considered

by Crandall and Lions [Eva80, CL83]. Thus, as discussed in section 2.2, if our Hamiltonian

H(x, p) ..= inf
a∈S1
{v(∇E(x) · a)〈p, a〉} (5.20)

is continuous, the solution φ(σ) to equation (5.19) will converge to the viscosity solution φ of

the inviscid equation (5.3) as σ ↘ 0. Continuity of H(x, p) will depend on the nature of the

elevation data, but we can observe this convergence empirically by considering the optimal

path constructed by the the method at varying levels of uncertainty σ.

Other modeling decisions could be made. For example one could consider a running cost,

allow for infinite horizon time, or allow σ to depend on x and s (perhaps accounting for local

slope as with the velocity function). We chose our cost functional and finite horizon time

in analogy with the previous level set model for deterministic path planning [PAB19]. With

these decisions, the HJB equation remains time-dependent, and can thus be approximated

very simply at high-order accuracy using techniques like ENO and WENO [OS91, LOC94].

As stated above, we will discuss the ramifications of this decision in section 5.4.3. Likewise,

choosing σ constant simplifies the numerics in that it allows the diffusion to be resolved

implicitly as seen in section 5.3.1. Alternatively, if one wishes to have σ(x, s), it will likely

be difficult to resolve the diffusion implicitly, and a steady-state, infinite horizon time formu-

lation like those in [MT, ZDH18] may be necessary. This would also require more involved

numerical schemes; one could likely use a modified fast marching [Tsi95, SV01, SV03] or fast

sweeping method [KOQ04, TCO03]. Indeed, in the latter reference [TCO03], a fast sweeping

scheme is specifically applied to an anisotropic Eikonal equation which describes geodesic

distance on the graph of a smooth function.
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5.3 Numerical Implementation

In this section, we discuss the numerical methods used to solve (5.19). In the σ = 0 case,

we can use the same methods discussed in section 2.4. When σ 6= 0, the presence of the

diffusion introduces some additional challenges.

5.3.1 A Semi-Implicit Scheme for (5.19)

In section 2.4 and section 4.3, we described an explicit scheme which is sufficient for solving

(5.3). In order to numerically simulate the reaction-diffusion equation (5.19), one could

simply insert the centered difference approximation to ∆φ and implement the same explicit

Euler time stepping. However, this will require exceedingly small time discretization, since

the stability condition for forward Euler time stepping for a diffusion operator is of the form

∆t = O((∆x)2, (∆y)2). Instead, we resolve the diffusion implicitly.

Specifically, we let (xi, yj, tn) be a uniform discretization of space and time, and consider

the equation

φt −
1

2
σ2∆φ+H(∇φ) = 0, (5.21)

with a prescribed initial condition. To transform (5.19) into this form, we simply need to

make the transformation τ = T − t. We solve (5.21) numerically using the scheme

φnij −
σ2∆t

2∆x
(φ+

x − φ−x )nij −
σ2∆t

2∆y
(φ+

y − φ−y )nij = φn−1
ij −∆tĤG(φ+

x , φ
−
x ;φ+

y , φ
−
y )n−1

ij , (5.22)

where ĤG denotes the Godunov Hamiltonian.

Since implicit Euler time stepping for diffusion is unconditionally stable, our discretiza-

tion is still only bound by the CFL condition (2.61). For larger values of σ, the resulting

diffusion will smooth the solution φ, and thus sophisticated numerical Hamiltonians are

probably no longer necessary. However, we have implemented this scheme as stated, so that

as σ ↘ 0, the semi-implicit scheme (5.22) reverts to the explicit scheme used previously,

and there are no stability issues. We note that this semi-implicit scheme is only available
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when the uncertainty σ in the equation of motion is independent of the control variable. If

σ depends on a, then the Hamilton-Jacobi-Bellman equation takes the form (5.15), and in

this case the Hamiltonian cannot be decoupled from the diffusion term.

Before moving on to discuss the results of our simulations, we include some further

implementation notes. First, in this application it is especially necessary to use the Go-

dunov Hamiltonian (or some other essentially non-diffusive numerical Hamiltonian). The

Lax-Friedrichs Hamiltonian, for example, is highly inadvisable since the strategy of the

Lax-Friedrichs Hamiltonian is to add diffusion to the Hamilton-Jacobi equation. In this

application, adding diffusion at level ε = O(∆x,∆y) to the Hamilton-Jacobi equation is

akin to adding uncertainty in the equation of motion at level ε1/2. In the discretization we

will use, the numerical diffusion would be on the order of 0.01, which would correspond to

uncertainty in the equation of motion on the order of 0.1 m/s. This is a nontrivial level of

uncertainty, representing roughly one tenth of the maximum walking velocity.

Secondly, the computational boundary in this problem is entirely artificial. At the bound-

ary nodes, one cannot compute φ+
x , φ

−
x , φ

+
y , φ

−
y . In the preceding work, this was never an issue

and the boundary nodes could simply remain fixed. This is because characteristics of the

Hamilton-Jacobi equations were flowing out of the boundary, and the Godunov Hamiltonian

would naturally “choose” not to use those nodes. However, in this case, information will be

flowing in from the computational boundary due to the diffusion, and we need to prevent

this. To do so, after performing the semi-implicit update (5.22) at interior nodes, we enforce

the boundary conditions suggested by [KOQ04] to update the boundary nodes:

φn0,j = min(max(2φn1,j − φn2,j, φn2,j), φn−1
0,j ),

φnI,j = min(max(2φnI−1,j − φnI−2,j, φ
n
I−2,j), φ

n−1
I,j ),

φni,0 = min(max(2φni,1 − φni,2, φni,2), φn−1
i,0 ),

φni,J = min(max(2φni,J−1 − φni,J−2, φ
n
i,J−2), φn−1

i,J ).

(5.23)

These conditions attempt to extrapolate the solution outward from nearby nodes, while also

enforcing zero flux inward from the boundary.
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Lastly, in order to implement the Godunov scheme for our Hamiltonian, we must resolve

three minima or maxima: the minimum involved in the definition of the Hamiltonian, and

the two minima/maxima involved in the scheme itself. As discussed in section 4.3, we resolve

all this minima and maxima discretely, by simply sampling points and choosing the correct

ones. As long as the error from this descrete optimization remains on the order of ∆x and

∆y, the scheme will remain accurate to first order. The level of resolution needed for the

discrete optimization depends somewhat on the problem, but empirically it appears that the

most important facet is the regularity of the elevation data E. This makes intuitive sense: for

less smooth elevation, the minimization in (5.20) taken with respect to the walking direction

will require finer resolution to resolve. Likewise, for less smooth elevation, the discontinuities

in the derivative of the solution φ become more severe. Thus the optimization sets in the

Godunov scheme, which have the form I(u+
x , u

−
x ) and I(u+

y , u
−
y ), become larger. When σ

is small and these extrema are taken on too coarse a grid, instabilities may appear. This

was not a problem in section 4.3 because any instabilities that began to form were removed

during the redistancing step. However, (5.15) is no longer a level set equation, and thus

redistancing no longer applies.

5.4 Results & Observations

The model was implemented in MATLAB using the numerical schemes above to solve the

Hamilton-Jacobi-Bellman equations, and the forward Euler method to solve the equation

of motion. In the following figures, we will display elevation contours ranging from blue

signifying low elevation to yellow signifying high elevation. The starting point x0 will be

marked with a green star and the desired end point xf will be marked with a red star. The

lines representing the walking paths will be plotted in colors ranging from green, symbolizing

simulations with smaller σ values, to red, symbolizing larger σ values.
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(a) σ = 0.0 (b) σ = 0.2 (c) σ = 0.4

(d) σ = 0.6 (e) σ = 0.8 (f) σ = 1.0

Figure 5.1: Optimal paths using different σ values. End time T = 3.8 for each plot.

5.4.1 Synthetic Elevation Data

We began by testing our model against simple synthetic data. In fig. 5.1, we have computed

optimal paths with several different levels of uncertainty σ. Referring to table 5.1, we are

using method (i) to compute the optimal paths. That is, we are using the stochastic HJB

equation to determine the optimal control values, but then computing the path using the

deterministic equation of motion. In this example, the elevation is flat except for two large

mountains that lie between the starting point and end point.

In the deterministic case, plotted in fig. 5.1a, the path curves around the mountains as

one would expect: the walking velocity is significantly hampered by the change in elevation,

so it is more efficient to avoid those regions. In this case, we see that the optimal path

suggested by our algorithm is not particularly sensitive to small changes in σ. The path in

fig. 5.1b which has σ = 0.2 looks very similar to that in fig. 5.1a which has σ = 0. However,

as σ becomes larger, we do see significant changes in the path. The path in fig. 5.1f where

σ = 1 is significantly different from the deterministic case. Here the uncertainty is on roughly

the same order as the walking velocity. With this level of uncertainty, one could imagine
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(a) σ = 0.2 (b) σ = 0.4 (c) σ = 0.8

(d) σ = 0.2 (e) σ = 0.4 (f) σ = 0.8

Figure 5.2: (a) - (c) Average path over 10000 trials (black), and three realizations of the stochastic equation of motion (colored)
at different levels of uncertainty σ. (d) - (f) Average path (black) with standard deviation (grey), and the path computed using
method (i) (dotted green).

walking through a forest in a very dense fog. In planning the path, this algorithm suggests

that you walk directly toward your destination and adjust as necessary when obstacles arise.

Next, we consider method (ii) from table 5.1; that is, we simulate the stochastic equation

of motion many times and compute the average path. Specifically, we simulate the equation

L times, resulting in paths {x`(t)}L`=1 which are resolved at the same discrete time points,

but with some randomness due to the Brownian motion. We then define the average path

x(t) = 1
L

∑L
`=1 x`(t). We are still using the forward Euler method for the stochastic ODE and

since the coefficient in front of the Brownian motion is independent of X t, this corresponds

with the Milstein method which exhibits strong and weak convergence at first order [KP92].

In each of the following results, we simulated the equation of motion 10000 times and took

the average path. Results are displayed in figures 5.2a-5.2c. The black line represents the

average optimal path and the colored lines represent three individual realizations of the

stochastic equation of motion. Here as σ gets larger, the individual realizations become less

meaningful, but the average path is still somewhat smooth and roughly connects the starting

point to the ending point.
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We also calculate a form of confidence interval to evaluate how close a single realization is

likely to be to the average. To do this, at each point (x, y) along the average path, we calculate

the standard deviation (δx, δy) in each of the coordinates. Then at each point, we plot in

light grey the ellipse centered at (x, y) with radii (δx, δy) in the x or y direction, respectively.

As we travel along the path plotting these ellipses, the grey envelope represents the set of

points within one standard deviation of the average path. This is seen in figures 5.2d-5.2f.

In these plots the average path is plotted as a solid black line. Now we also display the path

that was computed using method (i) using a dotted green line. For small σ, the average

path and the determistic path match fairly well. For larger σ, they begin to diverge, but

the walking strategy seems similar: for larger σ, the average paths take a much more direct

approach, cutting corners more closely, or walking directly over the mountains. In each case,

the deterministic path stays well within one standard deviation of the average path. Notice

that as σ gets larger, the standard deviation grows very quickly so that in fig. 5.2f the set of

possible paths within one standard deviation of the average is quite large, and it may simply

be that method (i) provides a more reasonable solution in this application.

5.4.2 Real Elevation Data

Seeing that our model works correctly for simplified elevation data, we tested the model

against real elevation in the area surrounding the mountain El Capitan in Yosemite National

Park. The elevation profile of El Capitan, along with the starting an ending points, is

pictured in fig. 5.3. Notice that directly in between the starting and ending points, the

contour lines lie close together, indicating a sheer cliff face. The starting point is near the

summit of the mountain, and the ending point is in the valley to the south of the mountain,

so any walking path should choose the gentler grades to the east or west of the cliff face.

Indeed, this is exactly what we observe, as seen in fig. 5.4. These paths were determined

using method (i), the deterministic equation of motion. In these simulations all the scales

in the problem are completely genuine. The region displayed in these figures is a rectangle

1Image courtesy of Mike Murphy, uploaded to Wikipedia Commons under Share-Alike license:
https://commons.wikimedia.org/wiki/File:Yosemite El Capitan.jpg
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(a) The south-facing cliff face of El Capitan (b) The elevation profile of El Capitan.

Figure 5.3: El Capitan, Yosemite National Park, California1

roughly 5 kilometers east-to-west and 6 kilometers north-to-south. The starting and ending

points are roughly 2 kilometers apart and the terrain is mountainous, so several thousand

seconds are required to traverse a path connecting the points. Here, the elevation data is

much less smooth, and this leads to a greater sensitivity to small changes in σ. Figure 5.4b

shows that at σ = 0.05, the optimal path looks largely the same as in the deterministic case,

displayed in fig. 5.4a. However, when σ = 0.3, the optimal path is quite different, as seen in

fig. 5.4f.

One significant note here: at different levels of σ, there are different optimal terminal

times T . Recall, the parameter T must be chosen before simulating the model. In the

case of the synthetic data in fig. 5.1, the terminal time T is not particularly sensitive to

changes in σ, since qualitatively the paths are all similar and the amount of time that is

“wasted” by taking a non-optimal path is not significant. In that case, we set T = 3.8 and

any path with σ ∈ [0, 1] had sufficient time to reach the endpoint. This is not the case in

fig. 5.4, where small changes in σ lead to more significant qualitative changes in the paths.

Indeed, the greedy strategy of taking a more direct route and then adjusting as necessary

can be very costly in the case of El Capitan where it is very easy to get stuck in regions

of severe grades, and be nearly unable to move. In this case, if one is reasonably uncertain

about walking velocity as in fig. 5.4f, the algorithm suggests one should allow ample time,

and take a safer route that more deliberately avoids regions with large changes in elevation.
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(a) σ = 0.00, T ≈ 6800 (b) σ = 0.05, T ≈ 6850 (c) σ = 0.10, T ≈ 7500

(d) σ = 0.15, T ≈ 7550 (e) σ = 0.20, T ≈ 8950 (f) σ = 0.30, T ≈ 15550

Figure 5.4: Optimal paths descending El Capitan using different levels of uncertainty σ.

Because this route is significantly different, it requires a terminal time of roughly T = 15550

seconds, as opposed to a terminal time closer to T = 6800 seconds as in fig. 5.4a. For larger

values of σ (for example σ > 0.5), the path will not make it down the mountain even given

exorbitantly large terminal time, because it will walk too close to the cliff, become stuck, and

have insufficient time to adjust. We say more about the role of the parameter T , especially

as it pertains to impassable obstacles such as the El Capitan cliff face, in section 5.4.3.

As in the previous section, we would also like to use method (ii) to construct a path. In

figures 5.5a-5.5c, we plot the average path along with three realizations in the case that σ =

0.05, 0.1 and 0.2. When σ = 0.05, 0.1, each of these realizations is fairly close to the average

path, and the results are similar to those obtained using method (i). We have also included

the region that is one standard deviation away from the average path, as seen in figures 5.5d-

5.5f. Even when σ is very small, the variance in how the paths descend the mountain is fairly

large. This is because small perturbations in that region will more qualitatively change

the course of path. The results for σ = 0.2—displayed in figures 5.5c,5.5f—do not seem

particularly meaningful. In this case, the uncertainty in the walking velocity is large enough
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that if the path approaches the large cliff face, the random perturbation can cause the path

to move down the cliff. In this region, the walking velocity is approximately zero, and so the

random effects are the driving force for the movement. In those simulations, a large enough

portion of the paths descended the cliff in this manner, leading to a skewed average path,

and an enormously large standard deviation. Similar problems may arise whenever there

are regions where the walking velocity is very small. In such cases, it seems that using the

deterministic equation of motion with the stochastic control values (as in fig. 5.4) will give

a much more meaningful result.

5.4.3 Impassable Obstacles and the Role of the Parameter T

We remarked in section 5.2.1 that different choices for the terminal time T can lead to

qualitative changes in how the path is constructed. We can observe this in the example of El

Capitan. In fig. 5.6, we used σ = 0 so that the model is fully deterministic, and we simulated

the model with two different terminal times T . In fig. 5.6a, we see that with terminal time

(a) σ = 0.05 (b) σ = 0.1 (c) σ = 0.2

(d) σ = 0.05 (e) σ = 0.1 (f) σ = 0.2

Figure 5.5: (a) - (c) Average path over 10000 trials (black), and three realizations of the stochastic equation of motion (colored)
at different levels of uncertainty σ. (d) - (f) Average path (black) with standard deviation (grey), and the path computed using
method (i) (dotted green).
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(a) Optimal path given T = 2000 seconds. (b) Optimal path given T = 6800 seconds.

Figure 5.6: Optimal paths in the vicinity of El Capitan with different terminal times.

(a) Optimal path given T = 2 seconds. (b) Optimal path given T = 4.25 seconds.

Figure 5.7: Optimal paths using different end time values. The colored region is a wall.

T ≈ 2000 seconds, the path simply walks to the cliff face and stays put. However, given

T ≈ 6800 seconds, the path descends the eastern slope and finds the desired end point as

seen in fig. 5.6b

We can recreate this scenario using synthetic elevation data by placing a large wall directly

between the starting point and end point as in fig. 5.7. The elevation is incredibly steep in

the colored region, meaning that any optimal path would surely avoid the wall. In fig. 5.7b,

where T = 4.25, this is exactly the behavior we observe; the path curves around the obstacle.

However, in fig. 5.7a, where T = 2, the path walks toward the obstacle, stopping at the edge

because velocity is near zero there.

Recall, our model constructs the path that ends as close (in Euclidean distance) to the

desired end point as possible in the time allotted. When T = 2 in fig. 5.7a, there is not

enough time to walk around the wall and instead, to get as close to the desired end point
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(a) t = 0.0 (b) t = 0.7

(c) t = 1.4 (d) t = 2.1

Figure 5.8: The discontinuity in the control value a∗(x, t) propagates as time increases

as possible, the path walks directly toward the wall. When situations like this arise, there

is some critical amount of time T ∗ > 0 such that, given T > T ∗, the path will walk around

the obstacle, but given T < T ∗, the path will walk toward the obstacle because it will not

be able to get close enough to the end point if it walks around.

We can see this more explicitly if we plot the actual control values a∗(x, t) as well, as is

done in fig. 5.8. In this example, the critical time is roughly T ∗ = 3.4, so we have plotted

the path created by the algorithm with final time of T = 3.5, but we have plotted the path

at times t = 0, 0.7, 1.4, 2.1. The arrows in the pictures are the values of a∗(x, t). Notice that

in fig. 5.8a, there appears to be a discontinuity in the optimal control value. The deciding

factor for whether the path will walk around the wall or walk toward the wall is where

the starting point lies relative to this discontinuity. As time advances, the discontinuity in

a∗(x, t) propagates, and since the starting point lies below the discontinuity, the path follows

the arrows and walks around the obstacle. In the case when T = 2, the starting point is

above the discontinuity, and thus the path walks toward the obstacle, rather than around it.

Discontinuities in a∗(x, t) are to be expected and relate to non-uniqueness of the optimal

path. If x0 lay directly on the discontinuity in a∗(x, 0), then either walking around the

obstacle or toward it would be equally optimal, since both would result in a path that
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(a) Method (i), σ = 0.3, T = 4.75. (b) Method (ii), average path, standard deviation and three real-
izations.

Figure 5.9: Optimal paths around the wall with uncertainty.

ends the same distance from the desired end point. Mathematically, one reason to expect

discontinuities in a∗(x, t) is because a∗(x, t) is closely related to the gradient ∇φ(x, t) of the

solution to the HJB equation. Indeed, as discussed in section 2.3.4, in the case of isotropic

motion, we have the explicit relationship a∗(x, t) = −∇φ(x, t)/ |∇φ(x, t)|. When the motion

is anisotropic, as is the case in our model, the relationship between a∗(x, t) and ∇φ(x, t)

is no longer so explicit, but we can still anticipate that discontinuities in ∇φ(x, t) will give

rise to discontinuities in a∗(x, t). We will discuss this further in chapter 6 in the context of

simple self-driving cars, where we give examples of non-unique optimal paths.

When we add uncertainty, the path planning strategy becomes more greedy, walking

directly toward the end point and adjusting to avoid obstacles as is seen in fig. 5.1. When

there is a wall, this strategy is costly because if one walks toward the wall, there may be

insufficient time to adjust the route, and thus the critical time T ∗ required to walk around

the wall increases rapidly. This is why the large increase in T is necessary in the example

of El Capitan in fig. 5.4. We observe the same behavior in this synthetic example with the

wall, though the increase in T as not as pronounced as in the case of El Capitan. In fig. 5.9a,

we set σ = 0.3 and notice that to wrap around the wall and reach the end point, the optimal

path computed using method (i) requires an end time of T = 4.75 rather than T = 4.25 in

the deterministic case. In fig. 5.9b, we use method (ii), computing the average path over

10000 trials, and the path cuts through the wall since enough individual paths were pushed

off course due to the random perturbations, as is seen with the pink path in the figure. As

in fig. 5.5f, an individual could not realistically traverse the average path, since the wall is

impassable. Thus, it seems that method (i) gives to a more practical result.
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The dependence of the model on the parameter T is a major qualitative difference between

this optimal path planning model and the model presented in chapter 4. That model deals

only with the fully deterministic case, and uses a level set formulation wherein level sets

representing optimal travel evolve outward from the starting point, and the terminal time T

is defined as the time required for the level sets to envelop the end point. However, when we

add uncertainty to the model, we introduce diffusion in the HJB equation and lose the level

set intepretation of the equation. Thus while the model in chapter 4 has the advantage of

not depending on T , this model is more generally applicable.

5.4.4 Convergence to the Deterministic Path as σ ↘ 0

As stated in sections 2.2,5.2.2, given mild regularity conditions on our Hamiltonian, the

solution to the stochastic HJB equation (5.19) will converge to the viscosity solution to the

ordinary HJB equation (5.3) as σ ↘ 0. We can see this empirically, not by observing the

solution itself, but by examining the optimal path suggested by our algorithm at different

levels of σ. This is shown in fig. 5.10. Here we have plotted many paths on the same figure,

each computed using method (i) with a different σ value. As before, paths plotted in green

were computed using smaller σ values, and those in red were computed using larger σ values.

In fig. 5.10a, we see a very clear color gradient: the red paths computed with larger σ clearly

tend toward the green path as σ decreases to zero. In fig. 5.10b, this is less obvious, especially

since, for larger σ, the path takes a qualitatively different route. However, we do see that

for smaller σ (greener paths), there is a tendency toward the deterministic optimal path.

5.5 Conclusions & Future Work

Path planning algorithms have wide-reaching applications in self-driving vehicles, reach-avoid

games, pedestrian flow modeling and many other areas. Many previous models for path

planning are completely deterministic, while in reality stochastic effects may be present and

can significantly alter the motion along the path.

In this chapter, we developed a method for optimal path planning of human walking
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(a) Convergence of paths with synthetic elevation data. (b) Convergence of paths at El Capitan.

Figure 5.10: As σ ↘ 0, the stochastic optimal path converges back to the deterministic optimal path.

paths in mountainous terrain using a control theoretic approach and a Hamilton-Jacobi-

Bellman (HJB) equation and allowing for uncertainty in the controlled equation of motion.

The walking speed in our model depends on local slope in the direction of travel, giving rise

to an anisotropic control problem. In the HJB equation, the uncertainty presents itself in the

form of diffusion, leading to a viscous Hamilton-Jacobi-type equation. We suggest numerical

methods for solving these equations, opting for a semi-implicit numerical scheme with a

minimally diffusive numerical Hamiltonian, since any spurious numerical diffusion could be

intepreted as nontrivial amounts of uncertainty in the equation of motion. After solving the

HJB equation numerically, we suggest two methods for resolving the optimal path. First,

we use the optimal control values resolved via the stochastic HJB equation, but simulate a

deterministic equation of motion. This could simulate a person walking through a dark room

or a dense forest, wherein they are cognizant of some uncertainty as they are planning the

route, but do not feel random perturbations in velocity as they walk along a path. Second,

we integrate the stochastic differential equation many times and arrive at a single path by

averaging the results. This could model scenarios such as underwater unmanned vehicles,

wherein the traveler actually feels the stochastic effects on the travel velocity.

We test our algorithm, including both methods for resolving the path, with synthetic el-

evation data first, and then with real elevation data in the area surrounding El Capitan. We

compare these two notions of optimal path, and conclude that in the case of real elevation
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data or impassable barriers, the first notion gives a more meaningful result. We also ob-

serve that in these cases, there will be discontinuities in the optimal control parameter and,

especially in the presence of large walls, the position of these discontinuities can determine

the walking strategy. Finally, we simulate the model at different levels of uncertainty in the

equation of motion and observe that as uncertainty tends to zero, the optimal path path

suggested by the model converges back to the deterministic optimal path.

One avenue of future work, which is explored in the ensuing chapter, would be to use

similar methods to model path planning when the motion is more complicated. For example,

here the motion is anisotropic, but is still simplified in that the control variable a ∈ S1

changes instantaneously. In many realistic path planning scenarios, omnidirectional motion

is difficult or impossible, and the orientation of motion needs to be represented by a state

variable, rather than a control variable.

In another direction, while this model considers uncertainty and suggests an expected

optimal path, it has the shortcoming that there is no quantification of what “expected”

optimal path means. One avenue for future work would be to update the model to answer

probabilistic questions in more quantitative ways. For example, if there is uncertainty in the

model, can we construct the set of points that one could probably reach by a given time?

Under a given amount of uncertainty, what is the set of points one has a %50 chance of

reaching? Similarly, if a hiker is observed at point A at time 0, and at point B at time

T > 0, can we put a probability distribution on the paths linking A to B and requiring

time less than T to traverse in order to determine which path the hiker probably followed?

Questions like this most likely require significant updates to the model and stronger analytic

tools.
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CHAPTER 6

Time-Optimal Path Planning for Simple Self-Driving

Cars

The previous three chapters present level set and control theoretic models for human move-

ment. One feature of human navigation is that, at least in an approximate sense, walking

direction can change instantaneously. A hiker can stop, pivot, and walk in a different direc-

tion than before. This is in contrast to even the most simple vehicles, such as a unicycle,

where there is some notion of orientation of the vehicle that determines the direction of mo-

tion. The Hamilton-Jacobi-Bellman formulation for optimal path planning is fully capable

of modeling this type of motion, and in this chapter we give one such example.

6.1 Introduction

As autonomous vehicle technology becomes more and more prevalent, it is important to

develop robust and widely applicable trajectory planning algorithms. Many such vehicles—

planetary exploration rovers [Tom05], flying drones [NME19], or remote-controlled sub-

marines [AP01]—are subject to motion constraints which are nonholonomic, depending not

only on the configuration, but the velocity of the vehicle. Accordingly, much effort has been

devoted to trajectory planning for general nonholonomic mechanical systems [CGB15, GZ18,

VF18].

One important example of a nonholonomic vehicle is a simple self-driving car. To track

the motion of such a car, we model the current configuration using variables (x, y, θ): the

spatial coordinate (x, y) is the position of the center of mass of the car, and the orientation

θ is the angle between the rear wheels and the horizontal, increasing in the counterclockwise
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direction. The car drives using actuators attached to the rear wheels that supply torque to

each wheel individually, and steers using some mechanism separate from the rear wheels.

The car has a rear axel of length 2R, and a distance d between the center of the rear axel

and the center of mass, as pictured in fig. 6.1. The motion of the car is constrained by

a minimum turning radius which is equivalent to bounding the angular velocity |θ̇| ≤ W .

This bound could be resolved in terms of d,R and other parameters inherent to the steering

mechanism. Because of this, models like those in chapters 4,5, where the direction of motion

is the control variable cannot appropriately describe the navigation here.

The problem of path planning for simple self-driving cars goes back to Dubins [Dub57]

who envisioned a vehicle that could move forward along paths constrained by a minimum

turning radius. Later, Reeds and Shepp [RS90] generalized the Dubins car to one that could

also reverse direction. In both these cases, the problem was analyzed in a geometric and

combinatorial fashion, discretizing the path into regions of straight-line movement and arcs

of circles. The paths were designed to minimize length, and no obstacles were considered.

Barraquand and Latombe [BL93] added obstacles to the model, and devised a method of

growing a reachability tree outward from the desired final configuration. Based on similar

analysis, Agarwal and Wang [AW01] assumed polygonal obstacles and presented an efficient

algorithm for resolving paths that are robust to perturbation and nearly optimal.

Figure 6.1: A simple self-driving car.
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Since then, there has been increased effort to resolve optimal trajectories for such cars

(and similar robots) using methods rooted in optimization and control. In this case, the

nonholonomic constraint is

ẏ cos θ − ẋ sin θ = dθ̇ (6.1)

which ensures rolling without slipping and motion in the direction parallel to the rear wheels

[BL93, FL98]. There have been several discrete and variational models of motion planning

for these vehicles [FL98, AWS16, LO95, SSW13, WCW00]. One advantage of models based

on optimization is that they can seemlessly account for paths that are not only time-optimal,

but consider energy consumption as well [DS03, KNH19, WWW08, VDS08]. Models of this

sort are often hierarchical, relying on a global path planner and a local collision avoidance

algorithm [ABS18, LJO17].

Finally, a model for curvature constrained motion based on dynamic programming and a

Hamilton-Jacobi-Bellman equation was introduced by [TTS10, TT13], where obstacles are

included, but the car is simplified to a point mass. We present a model for optimal path

planning of nonholonomic self-driving cars based on a Hamilton-Jacobi formulation, but

considering the geometry of the vehicle. Our approach is akin to that of [TTS10, TT13].

However, those authors simplify the car to a point mass and accordingly must either create

a buffer region around an obstacles [TTS10] or opt for a semi-Lagrangian path planning

approach [TT13]. If we do not make the simplification, we can maintain the Hamilton-Jacobi

approach. The Hamilton-Jacobi formulation has the natural advantage that it averts the

need for hierarchical planning algorithms. Additionally, since our method resolves the value

function representing optimal travel time, this approach can provide optimal trajectories

from all starting configurations to a desired final configuration, as opposed to variational

methods which typically resolve a single trajectory. We also present an upwind sweeping

scheme that traces the characteristics outward from a desired final configuration.

This chapter is laid out as follows. In section 6.2, we discuss the Hamilton-Jacobi for-

mulation for optimal path planning of the nonholonomic vehicle above. In section 6.3, we

design an upwind, fast-sweeping method to solve the Hamilton-Jacobi-Bellman equation for
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the travel time function. In section 6.4, we test our algorithm in the presence and absence

of obstacles. Finally, in section 6.5 we discuss several avenues for future work on this and

similar problems.

6.2 The Hamilton-Jacobi Formulation for Nonholonomic Cars

We discuss the control theoretic formulation of path planning for our simple car. This

includes choosing a model for motion and a dynamic programming approach similar to those

used in previous chapters.

6.2.1 Kinematics & Control Problem

The most honest model of the movement of a car would be a dynamic model that sums the

forces on the car and determines movement via basic mechanics [PLM06]. In such a model,

the control variables would be the torques τ`, τr that are supplied by the actuators to the

left and right wheels, respectively. This will produce a maximal acceleration, which in turn,

when taking into account drag and other damping forces proportional to velocity, translates

into a maximal velocity. Accordingly, if the movement of the vehicle is all we are concerned

with, we can neglect some of the dynamics, and opt for a kinematic model, wherein the

control variables are the velocities v`, vr of the left and right wheel, respectively [WCW00].

There is a bijective transformation between these velocities, and the tangential velocity v

and normal (angular) velocity ω of the car: v = (vr + v`)/2, ω = (vr − v`)/2R. It is most

natural to describe the kinematics using these as control variables.

The equations of motion for the center of mass of the vehicle are

ẋ(t) = v(t) cosθ(t)− ω(t)Wd sinθ(t),

ẏ(t) = v(t) sinθ(t) + ω(t)Wd cosθ(t),

θ̇(t) = ω(t)W,

(6.2)

where W > 0 is the bound on the angular velocity of the vehicle, and v(·),ω(·) ∈ [−1, 1]. By
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using these control values, we are implicitly assuming instantaneous changes in velocities,

which is the same as assuming infinite acceleration.

We formulate a control problem for optimal paths using these kinematics. Suppose the

car moves in some domain Ω ⊂ R2 that is disjointly segmented into free space and obstacles:

Ω = Ωfree ∪ Ωobs. For any configuration (x, y, θ) ∈ Ω × [0, 2π) let D(x, y, θ) ⊂ R2 denote

the space occupied by the car. The shape could be arbitrary, but for our car, this will be a

rectangle of height 2R and width 2d that is centered at (x, y) and then rotated by θ. We call

a configuration admissable if D(x, y, θ)∩Ωobs = ∅. Next, suppose we are given a desired final

configuration (xf , yf , θf ) that is admissable. We call a trajectory (x(·),y(·),θ(·))—defined

for t ∈ [0, T ]—admissable if

1. it obeys (6.2) for all t ∈ (0, T ],

2. (x(t),y(t),θ(t)) is an admissable configuration for all t ∈ [0, T ], and

3. (x(T ),y(T ),θ(T )) = (xf , yf , θf ).

Given a starting point (x, y, θ), the goal is to choose (v(·),ω(·)) so as to minimize travel

time T among all admissable trajectories.

6.2.2 Value Function & Hamilton-Jacobi-Bellman Equation

Denote by A(x, y, θ, T ;xf , yf , θf ) the set of admissable trajectories beginning at the config-

uration (x, y, θ), ending at the configuration (xf , yf , θf ) and requiring less time than T to

traverse. The value function for this control problem is the optimal travel-time function:

φ(x, y, θ) = inf
v(·),ω(·)

{T : A(x, y, θ, T ;xf , yf , θf ) 6= ∅}. (6.3)

That is, we are using the cost functional

C[v(·),ω(·)] = T =

∫ T

0

1 dt. (6.4)
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Because neither the equation of motion (6.2) nor the cost functional (6.4) depend explicitly

on time, we can formulate a steady-state Hamilton-Jacobi-Bellman equation for this problem.

In this case, the dynamic programming principle takes the form

φ(x, y, θ) = ∆t+ inf
v(·),ω(·)

{φ(x(t+ ∆t),y(t+ ∆t),θ(t+ ∆t))}. (6.5)

Intuitively, equation (6.5) states that traveling optimally for time ∆t will decrease the re-

maining travel time by exactly ∆t. Using the same arguments as before, we arrive at

− 1 = inf
v,ω

{
ẋφx + ẏφy + θ̇φθ

}
. (6.6)

Inserting the equation of motion (6.2) results in

− 1 = inf
v,ω
{(v cos θ − ωWd sin θ)φx + (v sin θ + ωWd cos θ)φy + ωWφθ}, (6.7)

where v, ω ∈ [−1, 1]. Collecting terms with v and ω separately yields

− 1 = inf
v,ω
{(φx cos θ + φy sin θ)v +W (−dφx sin θ + dφy cos θ + φθ)ω}. (6.8)

Since the quantity being minimized is linear in v and ω, this results in a bang-bang controller

v = −sign(φx cos θ + φy sin θ),

ω = −sign(−dφx sin θ + dφy cos θ + φθ),
(6.9)

and φ solves the Hamilton-Jacobi-Bellman equation

1 = |φx cos θ + φy sin θ|+W |−dφx sin θ + dφy cos θ + φθ| . (6.10)

This equation is paired with the boundary condition φ(xf , yf , θf ) = 0. Note, this equation

only holds at admissable configurations. The value assigned to any inadmissable configura-

tion is φ(x, y, θ) = +∞.
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6.2.3 Small Time Local Controllability & Continuity of the Value Function

Again, the above computation only holds formally when φ is non-smooth. As long as φ

remains continuous, it will be the unique viscosity solution of (6.10). Any value functions in

the preceding chapters will be continuous under mild conditions on the input data. However,

with nonholonomic robots, it is easy to devise realisitic models of motions that give rise to

discontinuous value functions. For example, Dubins considered a self-driving car with d =

R = 0 and v ≡ 1 so that the car only drives forward [Dub57]. Suppose the minimum turning

radius is 1 and let φ∗ be the minimum travel time function for the Dubins car with ending

configuration (xf , yf , θf ) = (0, 1, π). Then φ∗(1, 0, π/2) = π/2 since the optimal path only

requires traversing a quarter circle. However for any x ∈ (0, 1), we have φ∗(x, 0, π/2) ≥ 3π/2

since the car will need to traverse at least three quarters of a circle to orient itself correctly.

The minimum travel time function will always be lower-semicontinuous [KQ01], and in the

case that it is discontinuous, one can define a weaker notion of solution and maintain existence

and uniqueness for the Hamilton-Jacobi-Bellman equation [CS03, TT13].

For nonholonomic motion, continuity of the value function is intimately tied with a

property called small time local controllability. For a configuration (x, y, θ) and a time t > 0,

define the reachability set

Σ(x, y, θ, t) = {(x0, y0, θ0) : A(x, y, θ, t;x0, y0, θ0) 6= ∅}. (6.11)

This represents the set of points that can be reached after starting from (x, y, θ) and traveling

for time t. The motion is said to be small time locally controllable (STLC) at (x, y, θ) if

(x, y, θ) ∈ int Σ(x, y, θ, t) for all t > 0. (6.12)

Roughly speaking, the vehicle is STLC if the time required to steer to configurations in

an ε-neighborhood of the current configuration is no greater than O(ε). The Dubins car

is not STLC; because it can only drive forward, to achieve a position slightly behind the

current position, it will need to traverse an entire circle. Thus, for example, in the case
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of the Dubins car described above, (x, y, θ) 6∈ int Σ(x, y, θ, 1). Conversely, when the car is

allowed to move forward and backward, it is STLC [ST91], and when the motion is STLC,

the value function remains continuous [TT13]. In general, there is an important interplay

between small time local controllability and optimal trajectory planning, and accordingly,

much effort has been devoted to analysis of STLC conditions for broad classes of control

problems [Kaw90, Kra98, KQ01, AL12, Jaf20].

6.3 Numerical Methods

To solve (6.10) numerically, we would like to develop a sweeping scheme similar to those in

[TT13, TCO03]. The primary concerns for such a scheme are that it should be upwind and

monotone [CL83, CM80, Obe06, OS91]. We note that from (6.9), there are a finite number

of values assumed by v, ω. We will design an update scheme that accounts for each pair and

decides which pair to use depending on which case we fall into. Since there is no incentive

for the car to stop moving, it is sufficient to consider v ∈ {−1, 1}. However, if the car is

already oriented in the optimal direction, then normal velocity should be zero, and hence

we need to allow ω ∈ {−1, 0, 1}. Analytically, the case that ω = 0 corresponds precisely

to −dφx sin θ + dφy cos θ + φθ = 0. However, due to numerical error, we almost never have

−dφx sin θ + dφy cos θ + φθ = 0 computationally, which means this case should be handled

separately. For the Reeds-Shepp car [RS90] (when d = 0), one must discritize |φθ|, and

interestingly, using the standard monotone discretization |φθ| ≈ −min{φ+
θ , φ

−
θ , 0}, the case

when ω = 0 corresponds to the case that the minimum chooses 0 [TT13].

6.3.1 An Upwind Sweeping Scheme for (6.10)

For simplicity, we describe the numerics on a uniform discretization of [a, b]× [c, d]× [0, 2π],

though in principle, the scheme could be adapted to non-standard grids. Fixing I, J,K ∈ N,
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let

xi ..= a+ i∆x, ∆x =
b− a
I

, i = 0, 1, . . . , I,

yj ..= c+ j∆y, ∆y =
d− c
J

, j = 0, 1, . . . , J,

θk ..= k∆θ, ∆θ =
2π

K
, k = 0, 1, . . . , K.

(6.13)

Let φijk be the numerical approximation to φ(xi, yj, θk). To discretize (6.10) in a fully upwind

manner, suppose that the particular pair (v, ω) ∈ {−1, 1}×{−1, 0, 1} represents the correct

control values at (x, y, θ). Then from (6.7), the equation reads

− 1 = (v cos θ − ωWd sin θ)φx + (v sin θ + ωWd cos θ)φy + ωWφθ. (6.14)

Accordingly, we define

Ak(v, ω) = |v cos θk − ωWd sin θk| ,

Bk(v, ω) = |v sin θk + ωWd cos θk| ,

ak(v, ω) = sign(v cos θk − ωWd sin θk),

bk(v, ω) = sign(v sin θk + ωWd cos θk).

(6.15)

Then the upwind approximation to each derivative term in (6.14) at (xi, yj, θk) is given by

(
[v cos θ − ωWd sin θ]φx

)
ijk

= Ak(v, ω)

(
φi+ak(v,ω),j,k − φijk

∆x

)
,

(
[v sin θ + ωWd cos θ]φy

)
ijk

= Bk(v, ω)

(
φi,j+bk(v,ω),k − φijk

∆y

)
,

(ωWφθ)ijk = |ω|W
(
φi,j,k+sign(ω) − φijk

∆θ

)
.

(6.16)

Inserting these into (6.7) or (6.10), we can isolate φijk. Indeed, at internal grid nodes, the

discrete equation reads

−1 = Ak(v, ω)

(
φi+ak(v,ω) − φijk

∆x

)
+Bk(v, ω)

(
φj+bk(v,ω) − φijk

∆y

)
+|ω|W

(
φk+sign(ω) − φijk

∆θ

)
,

(6.17)
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where any missing index is i, j or k. This shows that

φ∗ijk(v, ω) =
1 + Ak(v,ω)

∆x
φi+ak(u,v),j,k + Bk(v,ω)

∆y
φi,j+bk(v,ω),k + |ω|W

∆θ
φi,j,k+sign(ω)

Ak(v,ω)
∆x

+ Bk(v,ω)
∆y

+ |ω|W
∆θ

(6.18)

is a first-order upwind approximation of (6.10) in the case that (v, ω) attain the infima in

(6.7). This approximation and the “boundary” conditions—φ(xf , yf , θf ) = 0 and φ(x, y, θ) =

+∞ at inadmissable configurations—suggest the following sweeping scheme, which we sum-

marize here and detail explicitly in algorithm 1.

We initialize φ0
ijk to be zero at the nodes surrounding (xf , yf , θf ) and set φ0

ijk = +∞ at

other nodes. Next, for n = 1, 2, 3, . . . , we advance from φn−1
ijk to φnijk by sweeping through

the indices (i, j, k), computing φ∗ijk(v, ω) according to (6.18) and taking the minimum over

(v, ω). We sweep through the indices in alternating directions, backward and forward, un-

til all combinations of sweeping directions have been covered. There should a total of 8

sweeps corresponding to [i-forward,j-forward,k-forward], [i-forward,j-forward,k-backward],

[i-forward,j-backward,k-forward], etc. To ensure monotonicity of the scheme, we only up-

date φnijk if the value suggested by (6.18) is less than φn−1
ijk . After completing the 8 sweeps, we

enforce periodicity in θ (ensuring that φni,j,0 = φni,j,K for all n). We repeat this scheme until

the norm of successive iterations ‖φn − φn−1‖ is smaller than some specified tolerance, indi-

cating convergence. This algorithm returns the values φijk, which approximate φ(xi, yj, θk),

as well as the optimal control values vijk, ωijk which can be resolved during the sweeping as

detailed below.

After solving (6.10) via algorithm 1, one can compute the optimal path by discretizing

time and evolving (6.2) beginning at (x(0),y(0),θ(0)) = (x0, y0, θ0) until (x(t),y(t),θ(t)) are

sufficiently close to (xf , yf , θf ). The optimal travel time is given theoretically by φ(x0, y0, θ0)

and thus should be approximated by φi0,j0,k0 where (xi0 , yj0 , θk0) is the nearest grid point to

(x0, y0, θ0).

We include several practical implementation notes. First, referring to algorithm 1, it is

important that we begin the while-loop by assigning φnijk ← φn−1
ijk , and operate only with φnijk

in the ensuing computations. This way, as we sweep through and φnijk is updated, we are
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Algorithm 1 A sweeping scheme to solve (6.10)

Initialization: Input a desired ending pose (xf , yf , θf ), a grid discretization as in (6.13)
and a small error tolerance ε > 0. Initialize φ0

ijk = 0 for the grid nodes immediately
surrounding (xf , yf , θf ) and φ0

ijk = +∞ for all other grid nodes. Initialize v0
ijk and ω0

ijk

arbitrarily. Initialize φ1
ijk = 0 at all grid poits and set n = 1. Sweep through all indices

(i, j, k) and record the admissable indices (those corresponding to admissible configura-
tions).

while ‖φn − φn−1‖ > ε do

Assign φnijk ← φn−1
ijk for all (i, j, k).

for i = 1 to I − 1 do
for j = 1 to J − 1 do

for k = 1 to K do
if (i, j, k) is admissable then

For each pair (v, ω) ∈ {±1} × {0,±1}, compute φ∗ijk(v, ω) according to (6.18).

Assign φnijk ← min{minv,ω φ
∗
ijk(v, ω), φn−1

ijk }

if φnijk = φn−1
ijk then

Assign (vnijk, ω
n
ijk)← (vn−1

ijk , ω
n−1
ijk )

else
Assign (vnijk, ω

n
ijk)← argminv,ω φ

∗
ijk(v, ω)

end if
end if

end for
end for

end for

Repeat the above for loops, sweeping in alternating directions until all combinations of
sweeping directions have been completed (a total of 8 sweeps).

Enforce periodicity in θ: φni,j,0 ← φni,j,K for all (i, j)
Assign n← n+ 1

end while

Assign φijk ← φnijk, vijk ← vnijk, ωijk ← ωnijk

return φijk, vijk, ωijk for all (i, j, k)
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constantly using the newest information, in the same manner as in Gauss-Seidel iteration

[KOQ04]. For example, if we are sweeping forward in i, we will first compute φn1,j,k and

then use this newly computed values to resolve φn2,j,k. Second, some care needs to be taken

with the “boundary” nodes in k. When k = K, we could have k + sign(ω) = K + 1,

but this index should be identified with k = 1 by periodicity. Third, to slightly reduce

the computational load, one can pre-compute Ak(v, ω), Bk(v, ω), ak(v, ω), bk(v, ω) and also

exploit the symmetries Ak(−v,−ω) = Ak(v, ω), ak(−v,−ω) = −ak(v, ω) (and similarly for

Bk(v, ω), bk(v, ω)) to avoid looking up redundant values. Fourth, while algorithm 1 suggests

a method for resolving the optimal control values v, ω during the sweeping scheme; this only

needs to be done during the final sweep, not in each of the 8 sweeps. Alternatively, one can

ignore these values during the sweeping and use the values of φijk to compute the optimal

control values from (6.9) afterwards. If one opts for this method, special consideration should

be made for the case that ω = 0; for example ω = 0 when |−dφx sin θ + dφy cos θ + φθ| < δ for

some small δ, and ω = sign(−dφx sin θ + dφy cos θ + φθ) otherwise. Fifth, when initializing

φ0
ijk, one will likely need to choose a large positive number for the grid nodes away from

(xf , yf , θf ) instead of using +∞. This number is arbitrary but needs to be larger than

any actual value of φ(x, y, θ) in the domain. Sixth, one may notice that the nodes at the

computational boundary (i = 0, I and j = 0, J) are never updated and thus will remain large.

Practically, this forces the car to remain in the computational domain. Further, since the

scheme is fully upwind and characteristics flow out of the boundary, there is no danger of this

affecting the solution at the interior nodes (the sweeping scheme will naturally “choose” not

to use the boundary nodes). Thus there is no need for special consideration at the boundary

as was necessary in section 5.3, and is generally necessary when using diffusive schemes

[KOQ04]. Seventh, the norm one uses to evaluate convergence is somewhat arbitary since

the computational solution space is finite dimensional. However, in light of the ensuing notes,

we suggest the supremum norm: ‖φn − φn−1‖ = supijk
∣∣φnijk − φn−1

ijk

∣∣. Eighth, the algorithm

returns an approximation to the value function at grid nodes corresponding to the entire

computational domain [a, b]×[c, d]×[0, 2π]. Thus the value function can be used to determine

the optimal path from any point in the domain to the final configuration (xf , yf , θf ), which
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is to say that the initial configuration (x0, y0, θ0) is not an integral part of the model. If the

goal is only to resolve the path from (x0, y0, θ0) to the final configuration, one does not need

to wait for convergence of φnijk at all nodes (i, j, k), but rather only at the node (i0, j0, k0)

closest to the inital configuration. Empirically, the values φnijk at any nodes corresponding to

configurations visited along the path between (x0, y0, θ0) and (xf , yf , θf ) will converge before

the value of φni0,j0,k0
. This makes intuitive sense since characteristics are flowing outward

from (xf , yf , θf ). Thus the terminal condition can be reduced to
∣∣φni0,j0,k0

− φn−1
i0,j0,k0

∣∣ < ε

(perhaps performing one extra sweep for safety, since the grid point (xi0 , yj0 , θk0) is only

an approximation of (x0, y0, θ0)). Ninth and finally, in light of the previous observation, to

reduce computational load, we can remove nodes (i, j, k) from the sweeping when the value

of φnijk has converged.

6.3.2 Proof of Concept: Eikonal Equation

In principle a sweeping scheme analogous to the one above could be developed for any

equation of the form

r(x) = inf
a

{ d∑
`=1

f`(x, a)ux`

}
. (6.19)

For example, this includes any Hamilton-Jacobi-Bellman equation for a time-independent

control problem where the running cost does not depend explicitly on the control variables.

Two difficulties may arise when running such a scheme: evaluating the infimum on the

right hand side may be non-trivial, and dimensions d > 3 are susceptible to the curse of

dimensionality. However, as a proof of concept, we can run this same algorithm for the two

dimensional steady-state Eikonal equation. Suppose that φ : R2 → R solves

1 = |∇φ| in R2 (6.20)

and φ(0, 0) = 0. As stated in section 2.3.4, this can be realized as the Hamilton-Jacobi

equation for the minimum travel time function, when the equation of motion is ẋ = a where

a(·) ∈ S1 is the control variable. By analysis similar to that in sections 2.2, 2.3, the exact
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solution to this equation is given by φ(x, y) =
√
x2 + y2.

Re-writing (6.20) in the form

− 1 = inf
a∈[0,2π]

{φx cos(a) + φy sin(a)} (6.21)

shows that it is amenable to our algorithm. In this case, the upwind discretization takes the

form

φ∗ij(a) =
1 + |cos(a)|

∆x
φi+sign(cos(a)),j + |sin(a)|

∆y
φi,j+sign(sin(a))

|cos(a)|
∆x

+ |sin(a)|
∆y

, (6.22)

and we can run the same algorithm as before. Results of this simulation are included in

fig. 6.2. The computational domain is [−1, 1]2, and we run the simulation with increasingly

fine discretization. The table in fig. 6.2b shows convergence at order slightly less than 1.

The discretization (6.21) is first order accurate. However, error estimates for numerical

solutions of Hamilton-Jacobi equations depend not only on the order of approximation,

but also on the regularity of the solution. Classical results establish convergence at order

1/2 if the discretization is first order accurate and the solution remains Lipschitz continuous

[CL84, Sou85]. It is difficult to improve on the order of convergence, though one can improve

the accuracy by considering additional approximations to the derivatives of φ along different

directions [TTS10, Par20]

(a) Numerical Solution with I = J = 1280 grid points. (b) Convergence table.

Figure 6.2: Application of our algorithm to the two-dimensional Eikonal equation.
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6.4 Results & Observations

We tested our algorithm using the spatial domain Ω = [−1, 1] × [−1, 1]. In our tests, we

set R = 0.04, d = 0.07 and W = 4, meaning that the minimum radius of a circle that the

car can traverse is 1/4. Note these are all dimensionless parameters, used solely for testing

purposes. In our simulations, we used a uniform discretization with 200 grid nodes in each

direction. Depending on the simulation, the sweeping scheme required roughly 25 iterations

to converge with tolerance ε = 10−4, though it took longer in simulations with obstacles.

In the first simulation, we computed the value function φ(x, y, θ) for the final orientation

is (xf , yf , θf ) = (1
2
, 1

2
, 0) with no obstacles. Figure 6.3a displays the isocontour {(x, y, θ) ∈

Ω× [0, 2π] : φ(x, y, θ) = 1}. One interesting note here is the approximate symmetry across

the line θ = π, which is an expression of periodicity in the value function. When d = 0,

we do indeed have π-periodicity: φ(x, y, θ) = φ(x, y, θ + π) [TT13]. When d 6= 0, this is

only approximate. Figure 6.3b shows a contour map of the function φ(x, y, 0), which gives

the travel time from different starting positions if the car is already facing in the positive

x-direction. The final position (xf , yf ) = (1
2
, 1

2
) is represented by the red dot. As a sanity

check, we note that along the line y = 1
2
, the value is given by φ(x, 1

2
, 0) = |x− xf | since the

optimal path merely includes pulling forward or reversing into the spot.

(a) The isocontour φ(x, y, θ) = 1, (xf , yf , θf ) = ( 1
2
, 1
2
, 0). (b) The contour map of φ(x, y, 0), (xf , yf , θf ) =

( 1
2
, 1
2
, 0).

Figure 6.3: Visualization of the travel time function.
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We used the value function from fig. 6.3b to compute optimal paths. Figure 6.4 dis-

plays optimal paths from three different starting configurations to the final configuration

(xf , yf , θf ) = (1
2
, 1

2
, 0). The final location is marked by the red star, and the initial locations

are marked by colored dots. This figure shows that the best strategies for the blue and pink

car involve traveling large portions of the path in reverse, before pivoting and achieving the

final configuration while moving in the forward direction. By contrast, the green car trav-

els only forward. Note, these optimal paths were computed independently and are simply

plotted on top of each other; the paths will require different amounts of time to traverse and

there is no interaction between the cars.

Reeds and Shepp [RS90] analyzed this problem in the case that d = 0 so that the car

is a point mass. They proved that the optimal path between two points consists of a finite

number of straight lines and arcs of circles of minimum radius. Further, they proved that

while kinks will occur as the car switches driving direction (as seen in the path of the blue car

in fig. 6.4), the optimal path requires no more than two kinks. Our simulations empirically

confirm this; in the examples in fig. 6.4, none of the paths required more than one kink.

For an example of an optimal path with two kinks, consider the parallel parking problem

displayed in fig. 6.5. In this example (x0, y0, θ0) = (xf +2d, yf +3R, θf ) and the car is plotted

at four points along the path: the initial position, the two kinks, and the final position.

An interesting phenomenon in optimal path-planning is that optimal paths are are not

always unique. We see this even in the simplest path-planning models. For example, con-

sider the case of a particle moving isotropically through a velocity field ν(x, y) ≥ 0 in two

dimensions. Following the computation in section 2.3.4, the optimal travel time function φ

for this problem satisfies the steady-state Eikonal equation

ν(x, y) |∇φ(x, y)| = 1, φ(xf , yf ) = 0 (6.23)

where (xf , yf ) is the desired end point, and the optimal control value is given by the normal

to the level sets. It is easy to design ν so as to produce non-unique optimal paths. In fig. 6.6,

we compute the value function where ν(x, y) = 0 when max{|x| , |y|} ≤ 1
4

and ν(x, y) = 1
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(a) Initial configurations. (b) Configurations 1/5 of the way along the paths.

(c) Configurations 2/5 of the way along the paths. (d) Configurations 3/5 of the way along the paths.

(e) Configurations 4/5 of the way along the paths. (f) Final configurations.

Figure 6.4: Optimal paths for cars with (x0, y0, θ0) = (− 1
2
, 1

2
, π) [blue], (− 1

2
,− 1

2
, 0) [green], and ( 1

2
,− 1

2
, 5π

4
) [pink]. The final

configuration is (xf , yf , θf ) = ( 1
2
, 1

2
, 0) [red star].
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Figure 6.5: A car parallel parking demonstrates an optimal path with two kinks.

otherwise. This creates an obstacle represented by the black square in fig. 6.6. If the starting

point (magenta dot) and ending point (red star) are centered horizontally on either side of

the obstacle, the optimal path between them is non-unique. Indeed, for any point along the

red line, there are multiple optimal trajectories, as depicted by the dotted and dashed lines.

A similar phenomenon arises in path planning for our car. The control variables are

uniquely determined by (6.9) wherever φ is smooth, but looking at the isocontour in fig. 6.3a,

Figure 6.6: Contour map of the solution of φ to the Eikonal equation (6.23). Velocity is given by ν(x, y) = 0 in the black
square and ν(x, y) = 1 elsewhere. Optimal trajectories are uniquely determined by the normal to level sets wherever the normal
is well-defined. Along the red line, the normal cannot be determined and the optimal trajectories are non-unique; the dotted
and dashed lines are equally optimal.
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(a) Non-uniqueness of optimal trajectory from (− 1
2
, 1
2
, π) to

( 1
2
, 1
2
, 0).

(b) Non-uniqueness of optimal trajectory from ( 1
2
,− 1

2
, π) to

( 1
2
, 1
2
, 0).

Figure 6.7: One can easily establish non-uniqueness of optimal paths when θ0 = θf + π by reflection or rotation.

it is somewhat clear there are small sets where φ is not smooth and optimal trajectories

cannot be determined uniquely. The most obvious points where φ will be non-differentiable

are the points (x, y, θf + π). In this case, it is often easy to intuit multiple optimal paths.

Included in fig. 6.7 are two examples of non-unique optimal paths. Figure 6.7a shows the

same blue car as in fig. 6.4, and the path reflected across the line y = 1
2

[gold]. Figure 6.7b

shows an optimal path from (x0, y0, θ0) = (1
2
,−1

2
, π) to (xf , yf , θf ) = (1

2
, 1

2
, 0) [orange] and

the same path rotated by π about the point (x, y) = (1
2
, 0) [light blue]. Reflection and

rotation are easy methods to establish non-uniqueness of the optimal trajectories, but there

are other ways as well. Considering the paths in fig. 6.7a, we could translate the kink in the

x-direction to arrive at more optimal trajectories.

Lastly, we introduce obstacles. To reiterate, the algorithm for solving (6.10) is the

same, except that the value function is not updated at nodes corresponding to illegal

configurations—those that would cause the car to collide with an obstacle. In fig. 6.8,

we compute the optimal paths from the same three starting configurations as in fig. 6.4 but

now with obstacles [black] hindering the cars’ movement.

In fig. 6.9, we have a car pulling into a very narrow parking spot. Note that no extra

consideration (in the form of local collision avoidance) was necessary to resolve this path.

Here the width of the parking spot is only 0.1 and the width of the car is 2R = 0.08.
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(a) Initial configurations. (b) Configurations 1/5 of the way along the paths.

(c) Configurations 2/5 of the way along the paths. (d) Configurations 3/5 of the way along the paths.

(e) Configurations 4/5 of the way along the paths. (f) Final configurations.

Figure 6.8: Optimal paths for cars for the same cars as in fig. 6.4 with obstacles [black] occluding their way. The final
configuration is (xf , yf , θf ) = ( 1

2
, 1

2
, 0) [red star].
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Figure 6.9: A car pulling into a very narrow parking spot.

Thus if we buffered the obstacles, the final configuration would likely by illegal, and if we

approximated the car by a point mass, it is likely that it would have taken on some illegal

configurations. As an aside, the optimal trajectory into the parking spot has three kinks,

showing that the result of [RS90]—stating that only two kinks are sufficient—is not true in

the presence of obstacles.

6.5 Conclusions & Future Work

In this chapter, we presented a Hamilton-Jacobi-Bellman formulation for optimal path plan-

ning of nonholonomic vehicles, accounting for impassable obstacles and the actual geometry

of the vehicle. We developed an upwind sweeping scheme to solve the Hamilton-Jacobi-

Bellman equation for the value function, and tested our scheme against the two dimensional

Eikonal equation. We validated our model in the presence and absence of obstacles and

compared with the classical results for curvature constrained motion. We note that no extra

considerations were needed when dealing with obstacles since the geometry of the car is not

being neglected.

We propose several avenues for future work on this project. The first would be to improve

the realism by accounting for terrain data, modeling more specific problems, including vehicle

dynamics, or considering any number of other physical concerns. Along with this, field tests
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would be crucial. Terrain-based or indoor path-planning for nonholonomic vehicles like ours

is the subject of much recent work [DMC12, DCK18, SLV17, WSY19, WDG19], but to our

knowledge, none of this work includes the Hamilton-Jacobi formulation of the problem.

Similarly, one could account for concerns other than time-optimization in this Hamilton-

Jacobi formulation. For example, Fierro and Lewis [FL98] compute the marginal energy

expenditure along the path

E(v, ω) =
1

2
mv2 +

1

2
Iω2 (6.24)

where m is the mass of the vehicle and I is the moment of inertia of the vehicle (for the

rectangular vehicle considered above, we would have I = 1
3
m(R2 + 4d2)). Using this, we

could change the cost functional to something like

C[v(·),ω(·)] =

∫ T

0

[1 + λE(v(t),ω(t))]dt, (6.25)

where λ ≥ 0 is some weight that determines the importance of conserving energy. Time

minimization and energy minimization are competing goals. If λ = 0, we revert to time-

optimal path planning. As [DS03] points out, the λ → +∞ limit is not meaningful, since

the “optimal” control plan is to stay motionless in that case; thus if energy is the only

concern, one must enforce a finite time horizon. This energy term is seemlessly handled by

the Hamilton-Jacobi formulation. The new Hamilton-Jacobi-Bellman equation is simply

− 1 = inf
v,ω

{
(φx cos θ + φy sin θ)v +W (−dφx sin θ + dφy cos θ + φθ)ω + λE(v, ω)

}
. (6.26)

However, this significantly complicates the numerics. Because of the energy term, there will

no longer be a simple, upwind update formula for a sweeping scheme. Also, the equation is no

longer a level set equation so single-pass fast marching methods [Tsi95, BS98, AM06, AM09]

and level set methods like that presented in chapter 4 are no longer available. Instead, one

can recast the problem in a time-dependent manner. Indeed, defining the convex indicator
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function of the final configuration

ιf (x, y, θ) =

 0, (x, y, θ) = (xf , yf , θf ),

+∞, otherwise,
(6.27)

the equivalent time dependent formulation is

φt + inf
v,ω

{
(φx cos θ + φy sin θ)v +W (−dφx sin θ + dφy cos θ + φθ)ω + λE(v, ω)

}
= −1,

φ(x, y, θ, T ) = ιf (x, y, θ),

φ(xf , yf , θf , t) = 0, for all t ∈ [0, T ]. (6.28)

Equation (6.28) can be solved numerically using the generic methods for Hamilton-Jacobi

equation presented in section 2.4. However, even this is nontrivial. The equation is 3 + 1

dimensional, and the update rule for the Godunov scheme will be very difficult to resolve.

The time horizon T can be taken to be arbitrarily large; given infinite time, the optimal cost

function should be static, so if one makes the substitution τ = T − t and lets T →∞, then

the equation runs forward in time and the solution will reach steady state in finite time.

This is a commonality shared with single-pass algorithms. Thus while single-pass algorithms

do not apply in their basic form, it is likely possible to adapt them to this situation.

A third avenue for future work is extension of the model to higher dimensions. For exam-

ple, there are two natural extensions to three dimensions, analogous to the representation of

R3 using either cylindrical or spherical coordinates. In what follows we assume the vehicle

is simplified to a point mass. If the curvature constraint in the xy-plane is decoupled from

the curvature constraint in the z-direction, the travel time function satisfies the equation

1 = |φx cos θ + φy sin θ|+Wxy |φθ|+Wz |φz| , (6.29)

where Wxy,Wz > 0 are bounds on the angular velocity of planar or vertical motion, respec-

tively. This could model the kinematics of a simple airplane. Alternatively, one could enforce
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a total curvature constraint, in which case the travel time function satisfies

1 = |φx cos θ cosϕ+ φy sin θ cosϕ+ φz sinϕ|+W

√
φ2
ϕ +

φ2
θ

cos2 ϕ
, (6.30)

where, as in spherical coordinates, θ represents the xy-planar angle and ϕ is the angle of

inclination [BM10, CZZ17, CS20]. This could perhaps model the kinematics of a simple

submarine. The application of these Hamilton-Jacobi formulations to actual airplanes or

submarines would likely require additional modeling concerns (for example, an airplane may

need to maintain a minimum cruising speed, and a submarine will not have a braking mech-

anism similar to that of a car), and perhaps even dynamic considerations. However, the

simple kinematics have other application. As [RS90, TT13] point out, this could be used by

a plumber to plan optimal piping trajectories assuming the pipes cannot be bent too much.

There is also application in the medical field: Duan et al. [DPS14] model manueverable

bevel-tip needles using curvature constrained paths in 3D, and Duits et al. [DMM18] apply

similar methods to model blood vessels in retinal images and brain-connectivity measures in

MRI.

Finally, one could modify this model for differential games. Isaacs devised the now

famous homicidal chauffeur problem [Isa51, Isa65] wherein a pursuer, who is constrained

to paths of bounded curvature, tries to collide with an evader who is slower, but exhibits

isotropic motion. While this is a slightly frivolous example, there could be very interesting

differential games involving vehicles of this type. For example, classical mathematical models

of traffic flow concentrated largely on macroscopic quantities such as density and flow rate,

as in the canonical Lighthill-Whitham-Richards model [LW55a, LW55b, Ric56]. In recent

years, there has been a push to model traffic flow microscopically, considering each vehicle

individually [LCP17, LKY19, WSC19]. One could modify our Hamilton-Jacobi formulation

by including interaction between vehicles in order to model traffic jams via mean field games.

This could be a significant step bridging the gap between classical macroscopic traffic models

and modern microscopic traffic models.
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CHAPTER 7

Conclusions

In this dissertation we explored models for human navigation and optimal path planning.

Key ingredients of the models included level set methods, optimal control theory and Hamilton-

Jacobi equations. We covered the basic theory surrounding these mathematical tools in

chapter 2. These methods are very broadly applicable, and could be easily adapted to any

number of physical scenarios.

In chapter 3, we introduced a novel, continuous model for deforestation in protected

areas. Previous models of this type relied on overly stringent assumptions of symmetry.

Using the level set method, we were able to remove any such assumptions, thus providing

a model which is applicable to protected areas with realistic geometries. As a proof of

concept, we applied our model to Yosemite National Park and Kangaroo Island and pointed

out that simple geometric considerations can greatly improve patrol efficacy. We suggested

several avenues for future work on this project, including adapting the model for repeated

differential games, addressing resourse allocation for real patrol routes, and modifying the

model to include real data.

In chapter 4, we designed a level set model for terrain-based optimal path planning.

By representing walking direction with a control variable, we derived a Hamilton-Jacobi-

Bellman equation which corresponds to optimal travel outward from a starting point. We

tested this method in the surroundings of El Capitan and Half Dome, two mountains in

Yosemite National Park. We then suggested a method for incorporating uncertainty in the

location of the starting point, and discussed clustering all potential paths into a small number

of routes.

In chapter 5, we revamped and extended the optimal path planning model from chapter 4
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to include stochastic effects. Uncertainty in the equation of motion led to diffusion in the

Hamilton-Jacobi-Bellman equation meaning that the level set interpretation of the problem

was no longer available. Thus we opted for a control theoretic model. We offered two

different notions of “optimal path” when there is uncertainty in the problem, and tested

our model against synthetic data and real elevation data, again using El Capitan as an

example. We discussed the role of the time horizon in the problem, since this is the major

qualitative difference between this model and the level set model. We outlined a few ways

this work could be extended. Perhaps the most significant extension would be to adjust the

model to be able to answer probabilistic path planning questions. For example, under some

uncertainty, could one compute the set which is reachable with %50 likelihood?

In chapter 6, we implemented a model for time-optimal path planning of simple nonholo-

nomic vehicles. Since cars cannot move omnidirectionally, the control variable could not be

the direction of motion as in the previous chapters. Rather, we modeled the motion of a car

using location and orientation, and controlled these via tangential and angular velocity. The

Hamilton-Jacobi formulation averted the need for hierarchical collision avoidance algorithms,

and we did not neglect the geometry of the car, meaning no additional consideration was

needed near boundaries of obstacles. We suggested additional work on this model to include

energy minimization, adapt the model for higher dimensions, or simulate real situations such

as traffic flow.

Optimal control theory and Hamilton-Jacobi equations provide a simple framework for

countless questions surrounding optimal path planning and human navigation. This disser-

tation presented several examples of their utility.
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