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Curvature of Radial Electric Field Aggravates Edge Magnetohydrodynamics
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Beijing 100871, China
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(Received 20 July 2020; revised 24 November 2020; accepted 30 November 2020; published 18 December 2020)

We show that the radial electric field (Er) plays a dual role in edge magnetohydrodynamics (MHD)
activity. While Er shear (first spatial derivative of Er) dephases radial velocity and displacement, and so is
stabilizing, a new finding here is that Er curvature (second spatial derivative of Er) tends to synchronize the
radial velocity and displacement, and so destabilizes MHD. As a highlighted result, we analytically
demonstrate that Er curvature can destabilize an otherwise stable kink mode, and so form a joint vortex-
kink mode. The synergetic effects of Er shear and Er curvature in edge MHD extend the familiar E × B
shearing paradigm. This theory thus explains the experimental findings that a deeper E × B well may
aggravate edge MHD, and so trigger the formation of the edge harmonic oscillation. A simple criterion
linking Er structure and the edge MHD activity is derived.

DOI: 10.1103/PhysRevLett.125.255003

Boundary layers are narrow regions, where various
physical quantities transition and change sharply. They
are ubiquitous features of bounded systems and are
essential players in important physical issues, such as
laminar-to-turbulence transition, turbulent drag pheno-
mena, etc. [1]. Linear and nonlinear stability of the
boundary layers are key issues in many areas of continuum
physics.
The edge (also known as pedestal region) of a

toroidally confined plasma is a quintessential example of
boundary layers. Its formation and stability are crucial to
high-confinement mode operation of fusion devices, e.g.,
the International Thermonuclear Experimental Reactor.
However, a narrow edge can support either hazardous
low-frequency magnetohydrodynamics (MHD) instabil-
ities [2], i.e., edge localized mode or benign high-frequency
edge harmonic oscillations (EHOs) [3–5]. It is a challeng-
ing problem to address the physical mechanism of which
type of edge MHD phenomena will be excited in such a
narrow layer. Peeling-ballooning (PB) modes are the most
studied ideal edge MHD instabilities. These are driven by
the free energy stored in the current density (j0) and the
plasma pressure (P0) profiles [6,7]. The radial electric field
is conventionally thought to impact the PB mode through
E × B flow shear (i.e., Er shear). However, this limited
view is inadequate because a strong E × B flow in the edge
region inevitably produces another free energy source—the
vorticity profile (ω0), which may drive edge instability
through its gradient (i.e., Er curvature). Therefore, to
characterize the edge MHD activity in the presence of
E × B flow, both Er shear and Er curvature must be
considered.

In this Letter, we report a new approach to study
edge MHD modes by considering the phase coupling of
vortex waves produced by different sources. The vortex-
wave interaction theory was proposed to interpret the
underlying physical mechanism of shear flow instabilities
[8]. For example, with this theory, the well-known
Kelvin-Helmholtz instability is shown to be induced by
phase locking of two neutrally stable interfacial vortex
waves [9–11]. In the edge region of toroidal plasmas, it is
the interaction of three types of vortex waves (produced by
j0, P0, and ω0 gradients) that determines the excitation of
the edge MHD mode. In an idealized setup of mean current
density and vorticity profiles, we show that the (neutrally
stable) vortex wave produced by the Er curvature is
“locked” to that by the j0 gradient, so the phase of the
radial velocity is pinned to that of the radial displacement,
and a joint vortex-kink mode is excited. For the mode
driven jointly by ω0, j0, and P0 gradients, we also carry out
numerical simulations in the framework of toroidal reduced
MHD. Our results indicate that the average ratio (R) of Er
curvature to Er shear in the edge region determines how the
structure of the Er profile impacts edge MHD instability.
By moving the trough of the Er well outward, a larger R
will be induced and the low-n MHD mode (e.g., EHO)
tends to be excited. While moving the trough inward, R
will become smaller, and the edge tends to be stabilized.
In order to illustrate the relation between phase

coupling and instability, we consider the evolution of a
radial displacement ξ̃r ¼ Reðjξ̂rðr; tÞjeiϑξr ðr;tÞeimθ−ikzzÞ,
which is subjected to a radial velocity disturbance
ṽr ¼ Reðjv̂rðr; tÞjeiϑvr ðr;tÞeimθ−ikzzÞ. In cylindrical coordi-
nates (r, θ, z), m, and kz are the wave numbers in θ and z
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directions, and ϑξr and ϑvr are the phases of ξ̂r and v̂r,
respectively. The evolutions of jξ̂rj and ϑξr follow as

∂
∂t jξ̂rj ¼ jv̂rj cosðϑvr − ϑξrÞ; ð1Þ

∂
∂tϑξr ¼ −kθVE×B þ jv̂rj

jξ̂rj
sinðϑvr − ϑξrÞ; ð2Þ

where kθ ¼ m=r, and VE×B is the mean E × B velocity
induced by the radial electric field. Equations (1) and (2)
reflect the formation of an instability. They are reduced
to an eigenmode description after the transformations,
∂tjξ̂rj ¼ γξjξ̂rj and ∂tϑξr ¼ −ωξ, with γξ as the growth
rate and ωξ as the eigenfrequency. Equation (1) shows that
the phase difference between the radial velocity and
displacement determines whether or not jξ̂rj will grow.
From Eq. (2), one can see that the E × B flow shear tends to
dephase the displacements at different radial locations, so
that it may induce phase slips and saturate the affected
mode. This effect has been discussed in Ref. [12].
For the E × B type velocity disturbance, one has v̂r ¼
−∇θϕ̂ × ẑ ¼ −imϕ̂=r and ϑvr ¼ −π=2þ ϑϕ (ϑϕ is the
phase of ϕ̂). The normalized electrostatic potential
ϕ̂ is related to the vorticity perturbation ω̂ via
∂rðr∂rϕ̂Þ=r −m2ϕ̂=r2 ¼ ω̂. ϕ̂ can be solved for as

ϕ̂ðr; tÞ ¼
Z þ∞

0

Gðr; r0Þω̂ðr0; tÞdr0; ð3Þ

where the Green’s function is Gðr; r0Þ ¼ −1=ð2mÞ
½ðr=r0ÞmHðr0 − rÞ þ ðr0=rÞmHðr − r0Þ� with HðxÞ as the
Hankel function. The poloidal mode number m reflects
the nonlocality of the ϕ̂ − ω̂ coupling. A smallermmeans a
longer range of coupling. With ξ̂r ¼

R
t
0 v̂rðt0Þdt0, the cross

phase (ϑvr − ϑξr) is thus uniquely determined by the spatial
distribution of the vorticity field. The instability problem is
then translated into a general problem of how the vorticity
disturbances produced by different free energy sources
interact with each other and influence the growth of the
displacement.
Vortex-Kink mode.—For analytical tractability, we start

with the joint mode driven by the current density gradient
and the vorticity gradient (i.e., the Er curvature) in the
framework of cylindrical reduced MHD [13,14]. Its lin-
earized form is cast as

� ∂
∂tþ VE×B∇

�
ω̃ ¼ −ṽrω0

0 þ B̃rj00 þ B0∇j̃; ð4Þ

� ∂
∂tþ VE×B∇

�
ψ̃ ¼ −ṽrψ 0

0 þ B0;z
∂ϕ̃
∂z ; ð5Þ

where we have set the mean density ρ0 ¼ 1 and the speed
of light c ¼ 1. The total vorticity ω ¼ ω0 þ ω̃ ¼

∇2⊥ϕ0 þ∇2⊥ϕ̃ where :̃: (the subscript “0”) denotes
the perturbed (mean) quantities, and 0 denotes the
radial gradient. ψ is the magnetic vector potential in z
direction and the total current density j ¼ j0 þ j̃ ¼
∇2⊥ψ0=ð4πÞ þ∇2⊥ψ̃=ð4πÞ. The first term on the rhs of
Eq. (4) is the kinematic vorticity source associated with the
mean vorticity gradient [10], the second term is the vorticity
source produced by the electromagnetic torque, associated
with the mean current density gradient, and the third term is
the Alfvnic effect of the mean magnetic field. We employ
idealized steplike profiles to mimic the rapid variations of
ω0 and j0 in the edge region [Fig. 1(a)]. Then, Eqs. (4)
and (5) are simple enough to permit an analytical
eigenmode solution. Using the transformations ϕ̃ðψ̃Þ ¼
ϕ̂ðψ̂Þe−iðΩþkθVE×BÞtþimθ−ikzz and eliminating ψ̂ in Eq. (4)
yields

Ω∇2⊥ϕ̂ ¼ −kθω0
0ϕ̂þ kθkjjB0

Ω
j00ϕ̂þ

k2jjB
2
0

4πΩ
∇2⊥ϕ̂; ð6Þ

where kz ¼ n=R0 (R0, the major radius; n, mode
number in z), and kjjB0 ¼ −B0;θðm − nqÞ=r with q ¼
ðrB0;zÞ=ðR0B0;θÞ as the safety factor. Neglecting the
Alfvnic effect ðOðk2kÞÞ, Eq. (6) is reduced to a type of
Taylor-Goldstein equation [15,16]. Hence, we expect that
the resonant interaction between the vorticity and the

FIG. 1. (a) Current density (j0) and vorticity (ω0) distributions
used in the theoretical model. (b) The eigenfunction’s amplitude
of the joint mode, where c0 ¼ 1.0328, c1 ¼ 0.6791, c2 ¼ 0.599,
c3 ¼ 1.0, a1=a2 ¼ 0.9, andm ¼ 5. (c) The growth rate γ ¼ ℑðΩÞ
of vortex-kink mode with a1=a2 ¼ 0.9, and (d) the cross phase of
the two interfacial vortex waves at r ¼ a1 and r ¼ a2. Here
the growth rate is normalized to the Alfvén frequency at a1 (i.e.,
ωA ¼ B0;θ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρ0a21

p
), and the mean vorticity is set as

ω0 ¼ 1.2ωA. The two vortex waves are decoupled when
m > 7, i.e., kθja2 − a1j > 0.6223.
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current density layers would be essential to joint instability.
ϕ̂’s eigenfunction has the following form [Fig. 1(b)]:

ϕ̂ðrÞ ¼

8><
>:

c0ð r
a1
Þm at r < a1

c1ða1r Þm þ c2ð r
a2
Þm at a1 ≤ r ≤ a2

c3ða2r Þm at r > a2

ð7Þ

The coefficients ci (i ¼ 0, 1, 2, 3) are constrained by the
matching conditions

c0 ¼ c1 þ c2

�
a1
a2

�
m
; ð8Þ

c3 ¼ c2 þ c1

�
a1
a2

�
m
; ð9Þ

ΩΔ1 ¼
k2jjB

2
0

4πΩ
Δ1 −

Bθ

2πa1

kθkjjB0

Ω
ϕ̂ða1Þ; ð10Þ

ΩΔ2 ¼
k2jjB

2
0

4πΩ
Δ2 þ kθω0ϕ̂ða2Þ; ð11Þ

where Δ1¼m½−c1þc2ða1=a2Þm−c0�=a1, Δ2 ¼ m½−c3 þ
c1ða1=a2Þm − c2�=a2. Equations (8) and (9) follow from the
continuity of ϕ̂ðrÞ at r ¼ a1 and r ¼ a2, and Eqs. (10) and
(11) are from the integral of Eq. (6) over the narrow
intervals at r ¼ a1 and r ¼ a2. The dispersion relation is
obtained by reorganizing Eqs. (8)–(11) into a matrix
representation Mc ¼ 0 and setting the determinant
jMj ¼ 0, where c ¼ ðc0; c1; c2; c3ÞT . The eigenmode
growth rate is given by γ ¼ ℑðΩÞ.
It is well known that, in the absence of ω0, for a step j0

profile, the kink mode is neutrally stable if nq is an integer
[red in Fig. 1(c)] [17,18]. It is also straightforward to check
that, for j0 ¼ 0, the kinematic vortex wave is also neutrally
stable. Therefore, by choosing nq as an integer (nq ¼ 1
here), we have a setup of two neutrally stable interfacial
vortex waves produced by j00 and ω0

0 at a1 and a2,
respectively. Here we choose a1=a2 < 1. For a1=a2 > 1,
the results are similar. First, we give an intuitive demon-
stration of the relation between the phase coupling of
vortex waves and the joint mode instability. As sketched in
Fig. 2, to form a joint instability, the two neutrally stable
interfacial vortex waves should be phase locked (resonant
interaction) [8], with their phases ϑ1 and ϑ2 given by
c0 ¼ jc0jeiϑ1 and c3 ¼ jc3jeiϑ2 , respectively. Assuming
kθja2 − a1j ≪ 1, for ϑ1 ¼ ϑ2, the two vortex waves are
in phase and they form a neutrally stable joint mode. If
0 < ϑ1 − ϑ2 < π, the two waves tend to limit each other;
i.e., the joint mode is a damped one. The joint mode is
destabilized if −π < ϑ1 − ϑ2 < 0, because the two vortex
waves strengthen each other. This is confirmed by Fig. 1(d)
(blue), where −π < ϑ1 − ϑ2 < 0 for the unstable joint
mode and ϑ1 − ϑ2 ¼ 0 for the neutrally stable one. It is
also consistent with the eigenmode analysis, showing the

kink mode could be destabilized if ω0
0 ≠ 0 [blue,

Fig. 1(c)]. A twist is that, if initially the kink mode is
unstable [black, Fig. 1(c)], the growth rate of the joint mode
may be smaller than that of the pure kink mode [green,
m ¼ 2 in Fig. 1(c)]. To understand this, we decompose the
displacement near r ¼ a1 into two pieces, ξ̃ ¼ ξ̃1 þ ξ̃2
with ξ̃1ðξ̃2Þ produced by the vortex disturbance at
a1ða2Þ. The growth rate of the joint mode can be expressed
as γeff ¼ ðγ1ξ̃1 þ γ2ξ̃2Þ=ðξ̃1 þ ξ̃2Þ ¼ γ1 þ ξ̃2ðγ2 − γ1Þ=
ðξ̃1 þ ξ̃2Þ ¼ γ2 þ ξ̃1ðγ1 − γ2Þ=ðξ̃1 þ ξ̃2Þ, where γ1ð2Þξ̃1ð2Þ ¼∂tξ̃1ð2Þ and γ1 is the growth rate of the pure kink mode. For
−π < ϑ1 − ϑ2 < 0, ξ̃1 and ξ̃2 have the same sign and hence
minðγ1; γ2 < γeff < maxðγ1; γ2Þ. Through the analytical
solution for the piecewise continuous mean profiles, we
have an understanding of the essential physics of the joint
mode formation.
For more realistic j0 and ω0 profiles, an analytical

eigenmode solution is generally forbidden. The vortex-
wave interaction theory has the advantage of
providing a physical understanding of how an instability
forms. We carry out direct simulations of Eqs. (4) and (5)
with the j0 and ω0 profiles given by Fig. 3(a). As our focus
is the effect of the Er profile (Er shear and Er curvature),
we keep the j0 profile fixed and set the kink mode driven by

FIG. 2. A schematic illustration of the relationship between
vortex-wave interaction and joint mode instability. The red
horizontal arrows at the peaks and troughs of the black wave
field represent the displacement induced by the red wave field.
The black arrows at the red wave field are induced by the black
wave field. The two vortex waves are phase locked, and depend-
ing on the phase difference ðϑ1 − ϑ2Þ, the joint mode could be
(a) unstable, (b) neutrally stable, (c) stable.

FIG. 3. (a) Mean current density (dashed line) and Er profiles
(solid lines) in SI units. (b) Impact of Er profile on a unstable kink
mode. Both jE0

rj and jE00
r j are in dimensionless form. Red (blue)

marker means the growth rate of the joint mode is larger (smaller)
than that of the pure kink. (c) Growth rate of the vortex-kink
mode. (d) The spatially averaged cosine of cross phase between
v̂r and ξ̂r. (e) The spatially averaged amplitude ratio jv̂rj=jξ̂rj. The
toroidal mode number is n ¼ 3.

PHYSICAL REVIEW LETTERS 125, 255003 (2020)

255003-3



j00 unstable in our simulations. By implementing a series of
different Er profiles, it is shown in Fig. 3(b) that a larger
jE00

r j tends to further destabilize the pure kink mode, while a
larger jE0

rj tends to stabilize the kink mode. To measure the
relative effect of Er curvature verse Er shear, we define a
dimensionless parameter R≡ jE00

r j=jE0
rj (r is normalized

by the small radius), where jE00
r j ¼

R
1
0 jE00

r jdr and
jE0

rj ¼
R
1
0 jE0

rjdr. In contrast to the piecewise profiles,
the vortex disturbances produced by the current density
and vorticity fields in Fig. 3(a) are not localized to an
interface. Then, a direct way to see the influence of
vortex-wave interaction on the mode growth is studying
the phase difference, ϑvr − ϑξr [Eqs. (1) and (2)]. As shown
in Fig. 3(d), v̂r and ξ̂r become more synchronized by
increasingR and are dephased by decreasingR. According
to Eq. (1), the formal expression of the growth rate is
γ ¼ ∂t ln jξ̂rj ¼ ðjv̂rj=jξ̂rjÞ cosðϑvr − ϑξrÞ. Overall, R
impacts the growth rate mainly through modulating the
cross phase. In summary, R is the proper quantity to
quantify the Er profile effect, in contrast to the familiar Er
shear or shearing paradigm [19].
Vortex-kink-ballooning mode.—There is accumulating

experimental and simulation evidence indicating that a
deeper Er well may facilitate the excitation of a low-n edge
MHD mode, e.g., the EHO [3,19–21], other than having a
stabilizing effect. These facts point to a reconsideration of
the Er and MHD interaction in the edge region, i.e.,
incorporating the driving effect by Er curvature. The
simplest framework within which to study the joint mode
driven by j00, P

0
0, and ω0

0 in the edge region is the toroidal
reduced MHD equations [22,23], i.e., replacing Eq. (4) by

� ∂
∂tþ VE×B∇

�
ϖ̃ ¼ −ṽrω0

0 þ B̃rj00 þ B0∇j̃

þ b0κ0 ×∇⊥p̃; ð12Þ

and adding the pressure perturbation p̃’s evolution equation

� ∂
∂tþ VE×B∇

�
p̃ ¼ −ṽrP0

0; ð13Þ

where ϖ̃ ¼ ω̃þ∇2⊥p̃=ðen0Þ, b0 ¼ B0=jB0j and κ0 ¼
b0∇b0 is the curvature of the mean magnetic field line.
We carry out our simulation by using the three fields BOUT+
+ code [23]. As in the vortex-kink simulation, we fix the
current density and pressure profiles and vary the Er profile
to study how Er influences the excitation of the joint mode.
Both the amplitude and the shape of the Er adopted here
[Fig. 4(b)] are similar to those in experiments [24]. A direct
way to uncover the features of the Er structure is to
decompose it into a symmetric piece (ES) and an anti-
symmetric piece (EAS), i.e., Er ¼ ES þ EAS [Fig. 4(b)]. ES
is fixed and EAS is set by EAS ¼ σBθR0ðD0f1 −
tanh½Dsðr − r0Þ�g þ CÞ with σ ¼ �1, R0 as the major
radius, D0 ¼ 45 krad=s, C ¼ 3 krad=s, and r0 ¼ 0.855

(the trough of ES) [25]. Different Er profiles are obtained
by changing Ds. δ is the shift of the Er well trough relative
to the symmetric one. Physically, Er is determined by
various kinetic processes such as ion pressure gradient, ion
rotation, ion orbit loss, etc. [26], which are beyond the
MHD model employed in the current Letter. Figure 4(c) is
the linear growth rate spectrum of the joint mode for a
series of Er profiles. It clearly shows that, by increasingR,
the joint instability is enhanced [dashed, Fig. 4(c)]. It is
weakened [solid, Fig. 4(c)] by reducingR. Interestingly, Er
curvature has a larger destabilizing effect on the relatively
low-n mode, because there the vortex coupling is stronger.
The trend of the cross phase withR is similar to that of the
vortex-kink scenario [Fig. 3(d)].

FIG. 5. (a) Marginal boundaries of the joint mode and the
conventional PB mode. The red line corresponds to increase ofR
and the blue line to decrease of R with D0 ¼ 10 krad=s and
Ds ¼ 35. (b) A schematic sketch of the Er well. ½rL; rR� is chosen
as the edge region.

FIG. 4. (a) The equilibrium pressure (black line) and current
density (red line) profiles. (b) Three typical Er profiles. (c) The
linear growth rate spectrum for differentR. (d) The growth rate of
the n ¼ 7 mode. (e) The spatially averaged cosine of cross phase
(ϑvr − ϑξr ). (f) The spatially averaged amplitude ratio jv̂rj=jξ̂rj.
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It is well documented that the edge-localized mode
(ELM)-free H mode sits just below the boundary of the
conventional PB mode [27]. An outstanding question is
how the EHO (here proposed as the joint mode) is excited.
A proper way to address this issue is choosing different
EAS and compare the marginal boundary of the joint
mode with that of the PB mode. The results are shown in
Fig. 5(a). It reveals that the enhancement of R (EAS > 0)
significantly moves the boundary of the joint mode to the
stable regime of the PB mode for large α, which
corresponds to the H mode. As a consequence, the joint
mode is excited before α encounters the conventional PB
boundary, beyond which the ELM is triggered. In other
words, the Er curvature can facilitate the transition of
ELMy H mode to ELM-free H mode. To link the
proceeding theoretical analysis to experiments, assuming
a U shape Er well [Fig. 5(b)], it is straightforward to show
that

R ≃
1

ΔL

�
1 −

ER − EB

ER þ EL − 2EB

δ

ΔL

�
; ð14Þ

where ELðRÞ is the electric field at the left (right) margin
rLðRÞ, EB is the trough of the Er well and δ ¼ ΔR − ΔL.
Since EL, ER > EB, if δ < 0, R will be enhanced and the
edge mode is destabilized [dashed lines, Fig. 4(c)]. If
δ > 0, the edge mode is weakened because R is reduced
[solid lines, Fig. 4(c)].
In conclusion, these results significantly extend and alter

the widely invoked ideal peeling-ballooning model of edge
MHD. It also opens new territory for studying couplings of
microscopic modes.
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