UCLA UCLA Previously Published Works

Title

Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap

Permalink https://escholarship.org/uc/item/0702h99j

Journal Science, 359(6376)

ISSN

0036-8075

Authors

Gandal, Michael J Haney, Jillian R Parikshak, Neelroop N <u>et al.</u>

Publication Date

2018-02-09

DOI

10.1126/science.aad6469

Peer reviewed

PSYCHIATRIC GENOMICS

Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap

Michael J. Gandal,^{1,2,3,4} Jillian R. Haney,^{1,2,3} Neelroop N. Parikshak,^{1,2,3} Virpi Leppa,^{1,2,3} Gokul Ramaswami,^{1,2,3} Chris Hartl,^{1,2,3} Andrew J. Schork,⁵ Vivek Appadurai,⁵ Alfonso Buil,⁵ Thomas M. Werge,^{5,6,7} Chunyu Liu,^{8,9} Kevin P. White,^{10,11} CommonMind Consortium,* PsychENCODE Consortium,* iPSYCH-BROAD Working Group,* Steve Horvath,³ Daniel H. Geschwind^{1,2,3}†

The predisposition to neuropsychiatric disease involves a complex, polygenic, and pleiotropic genetic architecture. However, little is known about how genetic variants impart brain dysfunction or pathology. We used transcriptomic profiling as a quantitative readout of molecular brain-based phenotypes across five major psychiatric disorders—autism, schizophrenia, bipolar disorder, depression, and alcoholism—compared with matched controls. We identified patterns of shared and distinct gene-expression perturbations across these conditions. The degree of sharing of transcriptional dysregulation is related to polygenic (single-nucleotide polymorphism–based) overlap across disorders, suggesting a substantial causal genetic component. This comprehensive systems-level view of the neurobiological architecture of major neuropsychiatric illness demonstrates pathways of molecular convergence and specificity.

espite remarkable success identifying genetic risk factors for major psychiatric disorders, it remains unknown how genetic variants interact with environmental and epigenetic risk factors in the brain to impart risk for clinically distinct disorders (*1*, *2*). We reasoned that brain transcriptomes—a quantitative, genome-wide molecular phenotype (*3*)—would allow us to determine whether disease-related signatures are shared across major neuropsychiatric disorders with distinct symptoms and whether these patterns reflect genetic risk.

We first analyzed published gene-expression microarray studies of the cerebral cortex across five major neuropsychiatric disorders (*3–11*) using

¹Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. ²Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA. ³Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA. ⁴Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA. ⁵Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark, ⁶The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark. ⁷Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark. ⁸Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60607, USA. ⁹The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China. ¹⁰Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. ¹¹Tempus Labs, 600 W. Chicago Avenue, Chicago, IL 60654, USA. *For each consortium, authors and affiliations are listed in the

supplementary materials. +Corresponding author. Email: dhg@mednet.ucla.edu 700 cerebral cortical samples from subjects with autism (ASD) (n = 50 samples), schizophrenia (SCZ) (n = 159), bipolar disorder (BD) (n = 94), depression (MDD) (n = 87), alcoholism (AAD) (n = 17), and matched controls (n = 293) (12). These disorders are prevalent and disabling, contributing substantially to global disease burden. Inflammatory bowel disease (IBD) (n = 197) was included as a non-neural comparison.

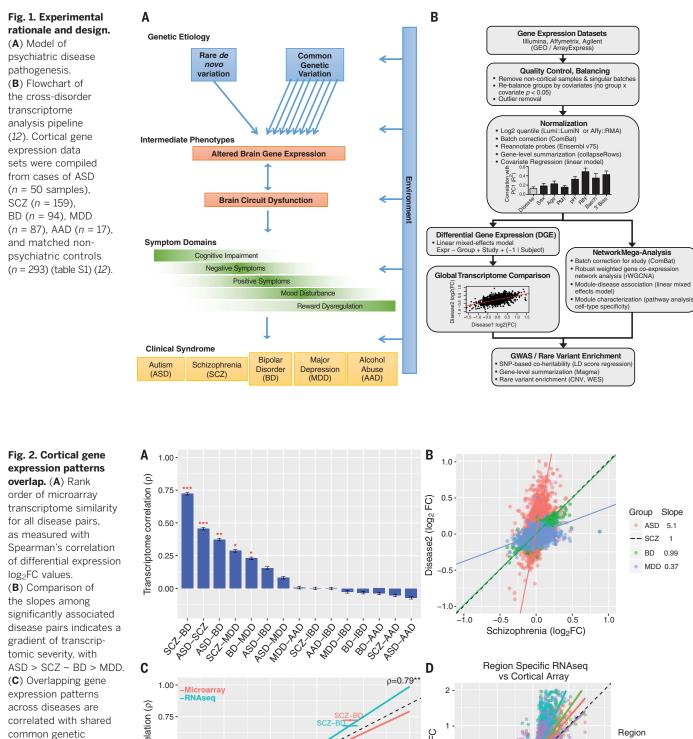
Individual data sets underwent stringent quality control and normalization (Fig. 1) (12), including rebalancing so as to alleviate confounding between diagnosis and biological (such as age and sex) or technical (such as post mortem interval, pH, RNA integrity number, batch, and 3' bias) covariates (figs. S1 and S2). Transcriptome summary statistics for each disorder were computed with a linear mixed-effects model so as to account for any sample overlap across studies (12). Comparison of differential gene expression (DGE) log₂ fold change (log₂FC) signatures revealed a significant overlap among ASD, SCZ, and BD and SCZ, BD, and MDD (all Spearman's $\rho \ge 0.23$, P < 0.05, 40,000 permutations) (Fig. 2A). The regression slopes between ASD, BD, and MDD log₂-FC effect sizes compared with SCZ (5.08, 0.99, and 0.37, respectively) indicate a gradient of transcriptomic severity with ASD > SCZ \approx BD > MDD (Fig. 2B). To ensure robustness, we compared multiple methods for batch correction, probe summarization, and feature selection, including use of integrative correlations, none of which changed the qualitative observations (fig. S3) (12). Results were also unaltered after first regressing gene-level RNA degradation metrics, suggesting that systematic sample quality issues were unlikely to drive these correlations (fig. S3). Further, the lack of (or negative) overlap between AAD and other disorders suggests that similarities are less likely due to comorbid substance abuse, poor overall general health, or general brain-related post-mortem artefacts.

Disease-specific DGE summary statistics (data table S1) provide human in vivo benchmarks for determining the relevance of model organisms, in vitro systems, or drug effects (13, 14). We identified a set of concordantly down- and up-regulated genes across disorders (fig. S4) as well as those with more specific effects. Complement component 4A (C4A), the top genome-wide association study (GWAS)-implicated SCZ disease gene (15), was significantly up-regulated in SCZ ($\log_2 FC =$ 0.23, $P = 6.9 \times 10^{-6}$) and in ASD [RNA sequencing (RNA-seq); $\log_2 FC = 0.91$, P = 0.014] (data table S1) but not in BD, MDD, or AAD. To investigate potential confounding by psychiatric medications, we compared disease signatures with those from nonhuman primates treated with acute or chronic dosing of antipsychotic medications. Significant negative overlap (fig. S5) (12) was observed, indicating that antipsychotics are unlikely to drive, but rather may partially normalize, these transcriptomic alterations, whereas the psychotomimetic phencyclidine partially recapitulates disease signatures.

To validate that these transcriptomic relationships are generalizable, we generated independent RNA-seq data sets for replication for three out of the five disorders (fig. S6) (12). We identified 1099 genes whose DGE is replicated in ASD [odds ratio (OR) 6.4, $P = 3.3 \times 10^{-236}$, Fisher's exact test] (table S2), 890 genes for SCZ (BrainGVEX; OR 4.5, $P = 7.6 \times 10^{-155}$), and 112 genes for BD (BrainGVEX; OR 3.9, $P = 4.6 \times 10^{-26}$), which is likely due to the relatively smaller RNA-seq sample size for BD (12). We observed similarly high levels of transcriptomic overlap among ASD, SCZ, and BD and a similar gradient of transcriptomic severity (Fig. 2C and fig. S7). The SCZ and BD patterns were further replicated in the CommonMind data set, although gene-level overlap was lower (fig. S7) (12, 16). The ASD signature was qualitatively consistent across the four major cortical lobules, indicating that this pattern is not caused by regional differences (Fig. 2D).

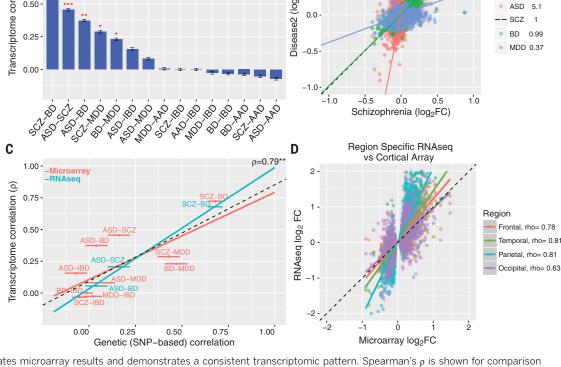
To more specifically characterize the biological pathways involved, we performed robust weighted gene coexpression network analysis (rWGCNA) (12, 17), identifying several shared and disorderspecific coexpression modules (Fig. 3). Modules were stable (fig. S8), showed greater association with disease than other biological or technical covariates (fig. S9), and were not dependent on corrections for covariates or batch effects (fig. S10). Moreover, each module was enriched for protein-protein interactions (fig. S8) and brain enhancer-RNA co-regulation (fig. S11) derived from independent data, which provides anchors for dissecting protein complexes and regulatory relationships.

An astrocyte-related module (CD4 and hubs *GJA1* and *SOX9*) was broadly up-regulated in ASD, BD, and SCZ [false discovery rate (FDR)–corrected P < 0.05] (Fig. 3C and data table S2) (*12*) and enriched for glial cell differentiation

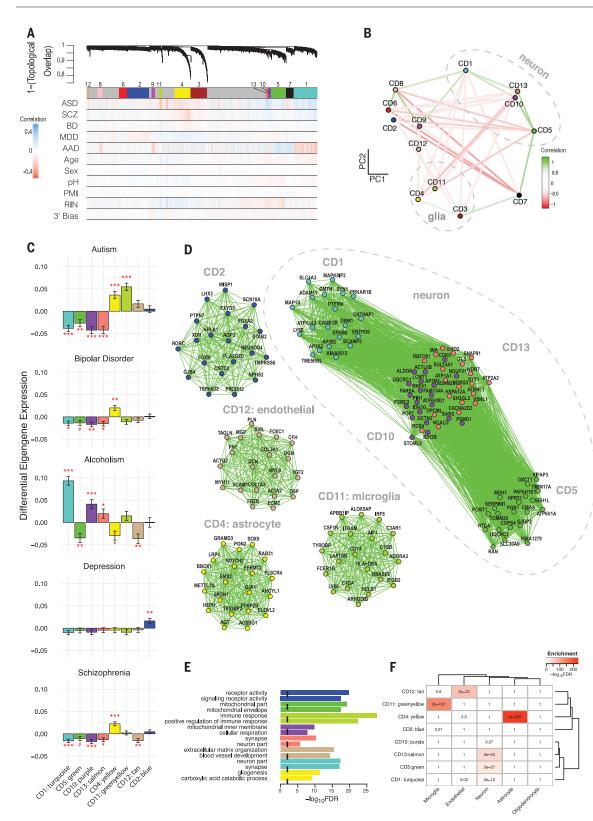


Downloaded from http://science.sciencemag.org/ on August 21, 2019

variation, as measured with SNP coheritability (22). The y axis shows transcriptome correlations using microarray-based (discovery, red) and RNA-seq (replication, blue) data sets. (D) RNA-seq across all



cortical lobes in ASD replicates microarray results and demonstrates a consistent transcriptomic pattern. Spearman's p is shown for comparison between microarray and region-specific RNA-seq replication data sets (all P < 10⁻¹⁴). Plots show mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.



modules of coexpressed genes across disease. (A) Network dendrogram from coexpression topological overlap of genes across disorders. Color bars show correlation of gene expression with disease status, biological, and technical covariates. (B) Multidimensional scaling plot demonstrates relationship between modules and clustering by cell-type relationship. (C) Module-level differential expression is perturbed across disease states. Plots show β values from linear mixedeffect model of module eigengene association with disease status (FDRcorrected #P < 0.1, *P < 0.05, **P < 0.01, ***P < 0.001). (D) The top 20 hub genes are plotted for modules most disrupted in disease. A complete list of genes' module membership (kME) is provided in data table S2. Edges are weighted by the strength of correlation between genes. (E and F) Modules are characterized by (E) Gene Ontology enrichment (top two pathways shown for each module) and (F) cell-type specificity, on the basis of RNA-seq of purified cell populations from healthy human

Fig. 3. Network

analysis identifies

Downloaded from http://science.sciencemag.org/ on August 21, 2019

and fatty-acid metabolism pathways. By contrast, a module strongly enriched for microglial markers (CD11) was up-regulated specifically in ASD (twosided *t* test, FDR-corrected $P = 4 \times 10^{-9}$). Hubs include canonical microglial markers (*HLA-DRA* and *AIFT*), major components of the complement system (*CIQA* and *CIQB*), and *TYROBP*, a microglial signaling adapter protein (*18*). Results fit with convergent evidence for microglial up-regulation in ASD and an emerging understanding that microglia play a critical role regulating synaptic function during neurodevelopment (*19*). One module, CD2, was up-regulated specifically in MDD (FDR-corrected P = 0.009) (data table S2) and was enriched for G protein–coupled receptors, cytokine-cytokine interactions, and hormone activity pathways, suggesting a link between inflammation and dysregulation of the

brain samples (25).

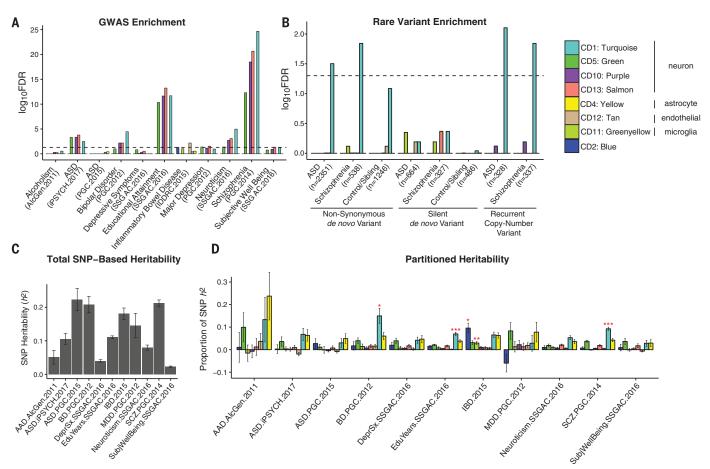


Fig. 4. Down-regulated neuronal modules are enriched for common and rare genetic risk factors. (**A**) Significant enrichment is observed for SCZ-, ASD-, and BD-associated common variants from GWAS among neuron/synapse and mitochondrial modules (*12*). GWAS data sets are listed in table S3. (**B**) The CD1 neuronal module shows significant enrichment for ASD- and SCZ-associated nonsynonymous de novo variants from whole-exome sequencing. The number of genes affected by different classes of rare variants is shown in parentheses. Significance was calculated by using logistic

regression, correcting for gene length. *P* values are FDR-corrected. (**C**) Total SNP-based heritability (liability scale for psychiatric diagnoses) calculated from GWAS by using LD-score regression. (**D**) Proportion of heritability for each disorder or trait that can be attributed to individual coexpression modules. Significance (FDR-corrected **P* < 0.05, ***P* < 0.01, ****P* < 0.001) is from enrichment statistics comparing the proportion of SNP heritability within the module divided by the proportion of total SNPs represented. The CD1 module shows significant enrichment in SCZ, BD, and educational attainment.

hypothalamic-pituitary (HPA) axis, which is consistent with current models of MDD pathophysiology (20). Several modules annotated as neuronal/mitochondrial were down-regulated across ASD, SCZ, and BD (CD1, CD10, and CD13) (Fig. 3C and data table S2) (12). The overlap of CD10 with a mitochondrial gene-enriched module previously associated with neuronal firing rate (21) links energetic balance, synaptic transmission, and psychiatric disease (data table S2).

The transcriptome may reflect the cause or the consequence of a disorder. To refine potential causal links, we compared single-nucleotide polymorphism (SNP)-based genetic correlations between disease pairs (22) with their corresponding transcriptome overlap. SNP coheritability was significantly correlated with transcriptome overlap across the same disease pairs (Spearman's $\rho = 0.79$, 95% confidence interval 0.43 to 0.93, P = 0.0013) (Fig. 2C), suggesting that a major component of these gene-expression patterns reflects biological processes coupled to underlying genetic variation.

To determine how disease-associated variants may influence specific biological processes, we investigated whether any modules harbor genetic susceptibility for specific disorders or for relevant cognitive or behavioral traits (12). We identified significant enrichment among several of the down-regulated, neuronal coexpression modules (CD1, CD10, and CD13) for GWAS signal from SCZ and BD, as well as for educational attainment and neuroticism (FDR-corrected P < 0.05, Spearman) (Fig. 4A) (12). We also observed enrichment for the three down-regulated neuronal coexpression modules in the iPSYCH Consortium (23) ASD GWAS cohort (Fig. 4A and table S3) (12). By contrast, these modules showed no enrichment for MDD, AAD, or IBD. Further, none of the microglial- or astrocyte-specific modules showed psychiatric GWAS enrichment. Extending this analysis to disease-associated rare variants (data table S3) (2, 12), we found that the CD1 neuronal module was enriched for genes harbouring rare, nonsynonymous de novo mutations identified in ASD (OR 1.36, FDR-corrected P = 0.03, logistic regression) and SCZ cases (OR 1.82, FDR-corrected P = 0.014) but not unaffected controls (Fig. 4B). A similar CD1-enrichment was observed for genes affected by rare, recurrent copy-number variation (CNV) in ASD (OR 2.52, FDR-corrected P = 0.008) and SCZ (OR 2.46, FDR-corrected P = 0.014). These results suggest convergence of common and rare genetic variation acting to down-regulate synaptic function in ASD and SCZ.

We next used LD score regression (24) to partition GWAS heritability (Fig. 4C and data table S4) into the contribution from SNPs located within genes from each module (Fig. 4D) (12). CD1 again showed significant enrichment for SCZ (2.5-fold, FDR-corrected $P = 8.9 \times 10^{-11}$), BD (3.9 fold, FDR-corrected P < 0.014), and educational attainment (1.9-fold, FDR-corrected P < 0.0008; χ^2 test) GWAS, accounting for ~10% of SNP-based heritability within each data set, despite containing only 3% of the SNPs. This illustrates how gene network analysis can begin to parse complex patterns of common variants, each of small effect size, to implicate specific biological roles for common variant risk across neuropsychiatric disorders.

These data provide a quantitative, genomewide characterization of the cortical pathology across five major neuropsychiatric disorders, providing a framework for identifying the responsible molecular signaling pathways and interpreting genetic variants implicated in neuropsychiatric disease risk. We observed a gradient of synaptic gene down-regulation, with ASD > SZ \approx BD. BD and SCZ appear most similar in terms of synaptic dysfunction and astroglial gene up-regulation, which may represent astrocytosis, activation, or both. ASD, an early-onset disorder, shows a distinct up-regulated microglial signature, which may reflect the role for microglia in regulation of synaptic connectivity during neurodevelopment (19). MDD shows neither the synaptic nor astroglial pathology but does exhibit dysregulation of HPA-axis and hormonal signaling not observed in the other disorders.

Our data suggest that shared genetic factors underlie a substantial proportion of cross-disorder expression overlap. Given that a minority of these relationships represent expression quantitative trait loci (fig. S12), most of the genetic effects are likely acting indirectly, through a cascade of developmental and cell-cell signaling events rooted in genetic risk. Genetic variation is also not the only driver of expression variation; there is undoubtedly a contribution from environmental effects. Hidden confounders could introduce a correlation structure that matches SNP-level genetic correlations, but parsimony and hidden covariate correction suggests that this is unlikely. Diagnostic misclassification could artificially elevate shared signals, but the results are robust to disorder removal (fig. S13), and misclassification would not account for the substantial overlap we observed with ASD, which has a highly distinct phenotypic trajectory from later onset disorders. Last, we have replicated broad transcriptomic and cell type-specific patterns independently for ASD, SCZ, and BD, providing an organizing pathological framework for future investigation of the mechanisms underlying specific gene- and isoform-level transcriptomic alterations in psychiatric disease.

REFERENCES AND NOTES

- 1. D. H. Geschwind, J. Flint, Science 349, 1489-1494 (2015).
- 2. M. J. Gandal, V. Leppä, H. Won, N. N. Parikshak
- D. H. Geschwind, Nat. Neurosci. 19, 1397-1407 (2016).
- 3. I. Voineagu et al., Nature 474, 380-384 (2011).
- 4. K. Garbett et al., Neurobiol. Dis. 30, 303-311 (2008).
- M. L. Chow et al., PLOS Genet. 8, e1002592 (2012). 5.
- C. Chen et al., Mol. Psychiatry 18, 1308-1314 (2013). 6.
- P. R. Maycox et al., Mol. Psychiatry 14, 1083-1094 (2009). 7
- 8. K. Iwamoto, M. Bundo, T. Kato, Hum. Mol. Genet. 14, 241-253 (2005).
- 9 S. Narayan et al., Brain Res. 1239, 235-248 (2008).
- 10. L.-C. Chang et al., PLOS ONE 9, e90980 (2014).
- 11. I. Ponomarev, S. Wang, L. Zhang, R. A. Harris, R. D. Mayfield, J. Neurosci. 32, 1884-1897 (2012).
- 12. Materials and methods are available as supplementary materials.
- 13. D. Prilutsky et al., Trends Mol. Med. 20, 91-104 (2014).
- 14. J. Lamb et al., Science 313, 1929-1935 (2006).
- 15. A. Sekar et al., Nature 530, 177-183 (2016).
- 16. M. Fromer et al., Nat. Neurosci. 19, 1442-1453 (2016).

Gandal et al., Science 359, 693-697 (2018)

17. P. Langfelder, S. Horvath, BMC Bioinformatics 9, 559 (2008).

- 18. B. Zhang et al., Cell 153, 707-720 (2013).
- 19. M. W. Salter, B. Stevens, Nat. Med. 23, 1018-1027 (2017).
- 20. P. W. Gold, Mol. Psychiatry 20, 32-47 (2015).
- 21. K. D. Winden et al., Mol. Syst. Biol. 5, 291 (2009).
- 22. S. H. Lee et al., Nat. Genet. 45, 984-994 (2013).
- 23. C. B. Pedersen et al., Mol. Psychiatry 23, 6-14 (2018).
- 24. H. K. Finucane et al., Nat. Genet. 47, 1228-1235 (2015).
- 25. Y. Zhang et al., Neuron 89, 37-53 (2016).
- 26. P. Du, W. A. Kibbe, S. M. Lin, Bioinformatics 24, 1547-1548 (2008).
- 27. L. Gautier, L. Cope, B. M. Bolstad, R. A. Irizarry, Bioinformatics 20. 307-315 (2004).
- 28. G. K. Smyth, Stat. Appl. Genet. Mol. Biol. 3, e3 (2004).
- 29. M. C. Oldham, P. Langfelder, S. Horvath, BMC Syst. Biol. 6, 63 (2012).
- 30. W. E. Johnson, C. Li, A. Rabinovic, Biostatistics 8, 118-127 (2007).
- 31. S. Durinck, P. T. Spellman, E. Birney, W. Huber, Nat. Protoc. 4, 1184-1191 (2009).
- 32. J. A. Miller et al., BMC Bioinformatics 12, 322 (2011).
- 33. P. Langfelder, B. Zhang, S. Horvath, Bioinformatics 24, 719-720 (2008).
- 34. N. N. Parikshak et al., Cell 155, 1008-1021 (2013).
- 35. M. J. Mason, G. Fan, K. Plath, Q. Zhou, S. Horvath, BMC Genomics 10 327 (2009)
- A. C. Zambon et al., Bioinformatics 28, 2209–2210 (2012).
- 37. J. Reimand, T. Arak, J. Vilo, Nucleic Acids Res. 39 (suppl. 2), W307-W315 (2011)
- 38. J. D. Dougherty, E. F. Schmidt, M. Nakajima, N. Heintz, Nucleic Acids Res. 38, 4218-4230 (2010).
- 39. X. Xu, A. B. Wells, D. R. O'Brien, A. Nehorai, J. D. Dougherty, J. Neurosci. 34, 1420-1431 (2014).
- 40. Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nature 511, 421-427 (2014).
- 41. Psychiatric GWAS Consortium Bipolar Disorder Working Group, Nat. Genet. 43, 977-983 (2011).
- 42. S. Ripke et al., Mol. Psychiatry 18, 497-511 (2013)
- 43. Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, Mol. Autism 8, 21 (2017).
- 44. G. Schumann et al., Proc. Natl. Acad. Sci. U.S.A. 108,
- 7119-7124 (2011).
- 45. J. Z. Liu et al., Nat. Genet. 47, 979-986 (2015). 46. A. Okbay et al., Nat. Genet. 48, 624-633 (2016).
- 47. A. Okbay et al., Nature 533, 539-542 (2016).
- 48. C. A. de Leeuw, J. M. Mooij, T. Heskes, D. Posthuma, PLOS Comput. Biol. 11, e1004219 (2015).
- 49. P. Munk-Jørgensen, P. B. Mortensen, Dan. Med. Bull. 44, 82-84 (1997).
- 50. C. B. Pedersen et al., JAMA Psychiatry 71, 573-581 (2014).
- 51. B. N. Howie, P. Donnelly, J. Marchini, PLOS Genet. 5, e1000529 (2009)
- 52. B. Howie, J. Marchini, M. Stephens, G3 (Bethesda) 1, 457-470 (2011).
- 53. N. Patterson, A. L. Price, D. Reich, PLOS Genet. 2, e190 (2006).
- 54. A. Manichaikul et al., Bioinformatics 26, 2867-2873 (2010).
- 55. C. C. Chang et al., Gigascience 4, 7 (2015).
- 56. J. de Ligt et al., N. Engl. J. Med. 367, 1921-1929 (2012).
- 57. S. De Rubeis et al., Nature 515, 209-215 (2014).
- 58. M. Fromer et al., Nature 506, 179-184 (2014)
- 59. S. L. Girard et al., Nat. Genet. 43, 860-863 (2011).
- 60. S. Gulsuner et al., Cell 154, 518-529 (2013).
- 61. I. lossifov et al., Nature 515, 216-221 (2014).
- 62. I. lossifov et al., Neuron 74, 285-299 (2012).
- 63. B. M. Neale et al., Nature 485, 242-245 (2012). 64. B. J. O'Roak et al., Nature 485, 246-250 (2012).
- 65. A. Rauch et al., Lancet 380, 1674-1682 (2012).
- 66. S. J. Sanders et al., Nature 485, 237-241 (2012).
- 67. B. Xu et al., Nat. Genet. 44, 1365-1369 (2012). 68. G. Mi, Y. Di, S. Emerson, J. S. Cumbie, J. H. Chang,
- PLOS ONE 7, e46128 (2012).
- 69. D. Moreno-De-Luca et al., Mol. Psychiatry 18, 1090-1095 (2013).
- 70. S. J. Sanders et al., Neuron 87, 1215-1233 (2015) 71. B. K. Bulik-Sullivan et al., Nat. Genet. 47, 291-295 (2015).
- 72. S. Akbarian et al., Nat. Neurosci. 18, 1707-1712 (2015).
- 73. K. D. Hansen, R. A. Irizarry, Z. Wu, Biostatistics 13, 204-216 (2012).
- 74. A. E. Jaffe et al., Proc. Natl. Acad. Sci. U.S.A. 114, 7130-7135 (2017).
- 75. V. Reinhart et al., Neurobiol, Dis. 77, 220-227 (2015).
- 76. L. Cope, X. Zhong, E. Garrett, G. Parmigiani, Stat. Appl. Genet.
- Mol. Biol. 3, e29 (2004). 77. G. Parmigiani, E. S. Garrett-Mayer, R. Anbazhagan,
- E. Gabrielson, Clin. Cancer Res. 10, 2922-2927 (2004). 78. M. V. Martin, K. Mirnics, L. K. Nisenbaum, M. P. Vawter,
- Mol. Neuropsychiatry 1, 82-93 (2015).
- 79. P. Yao et al., Nat. Neurosci. 18, 1168-1174 (2015).
- 80. K. G. Ardlie et al., Science 348, 648-660 (2015).
- 81. A. van B. Granlund et al., PLOS ONE 8, e56818 (2013).

9 February 2018

- 82. C. L. Noble et al., Gut 57, 1398-1405 (2008).
- 83. S. Girirajan et al., Am. J. Hum. Genet. 92, 221-237 (2013).

- 84. D. Malhotra, J. Sebat, Cell 148, 1223-1241 (2012).
- 85. S. J. Sanders et al., Neuron 70, 863-885 (2011).
- 86. L. A. Weiss et al., N. Engl. J. Med. 358, 667-675 (2008).
- 87. C. R. Marshall et al., Am. J. Hum. Genet. 82, 477-488 (2008).
- 88. D. Moreno-De-Luca et al., Am. J. Hum. Genet. 87, 618-630 (2010). 89. J. T. Glessner et al., Nature 459, 569-573 (2009).
- 90. E. K. Green et al., Mol. Psychiatry 21, 89-93 (2016).
- 91. J. T. Glessner et al., PLOS ONE 5, e15463 (2010).
- 92. H. Stefansson et al., Nature 455, 232-236 (2008).
- 93. J. L. Stone et al., Nature 455, 237-241 (2008).

95. V. Vacic et al., Nature 471, 499-503 (2011).

ACKNOWLEDGMENTS

94. D. F. Levinson et al., Am. J. Psychiatry 168, 302-316 (2011). 96. D. Rujescu et al., Hum. Mol. Genet. 18, 988-996 (2009).

97. S. E. McCarthy et al., Nat. Genet. 41, 1223-1227 (2009).

98. J. G. Mulle et al., Am. J. Hum. Genet. 87, 229-236 (2010).

The work is funded by the U.S. National Institute of Mental Health

MH103339, D.H.G.; R01-MH110927, D.H.G.; R01-MH100027,

D.H.G.; R01-MH110920, C.L.; and U01-MH103340, C.L.), the

Simons Foundation for Autism Research Initiative (SFARI)

(SFARI grant 206733, D.H.G., and SFARI Bridge to Independence

study was supported by The Lundbeck Foundation Initiative for

Award, M.J.G.), and the Stephen R. Mallory schizophrenia research

award at the University of California, Los Angeles, (UCLA) (M.J.G.). The

Integrative Psychiatric Research (grant R102-A9118) and by the Novo

Nordisk Foundation. Published microarray data sets analyzed in this

GSE28521, GSE28475, GSE35978, GSE53987, GSE17612, GSE12649,

GSE21138, GSE54567, GSE54568, GSE54571, GSE54572, GSE29555,

and GSE11223), ArrayExpress (accession no. E-MTAB-184), or directly

from the study authors (4). New RNA-seq data (available on Synapse

with accession numbers syn4590909 and syn4587609, with access

generated as part of the PsychENCODE Consortium, supported by

grants U01MH103339, U01MH103365, U01MH103392, U01MH103340,

governed by NIMH Repository and Genomics Resource) were

U01MH103346, R01MH105472, R01MH094714, R01MH105898,

R21MH102791, R21MH105881, R21MH103877, and P50MH106934

awarded to Schahram Akbarian (Icahn School of Medicine at Mount

Medicine at Mount Sinai), Peggy Farnham (USC), Mark Gerstein (Yale),

(LIBD), James A. Knowles (USC), Chunyu Liu (UIC), Dalila Pinto (Icahn

School of Medicine at Mount Sinai), Nenad Sestan (Yale), Pamela Sklar

Sinai), Gregory Crawford (Duke), Stella Dracheva (Icahn School of

Daniel Geschwind (UCLA), Thomas M. Hyde (LIBD), Andrew Jaffe

(Icahn School of Medicine at Mount Sinai), Matthew State (UCSF),

Patrick Sullivan (UNC), Flora Vaccarino (Yale), Sherman Weissman

from the CommonMind Consortium used in this study (Synapse

Pharmaceuticals Company, F. Hoffman-La Roche and NIH grants

R01MH085542, R01MH093725, P50MH066392, P50MH080405,

R01MH097276, R01-MH-075916, P50M096891, P50MH084053S1,

R37MH057881, R37MH057881S1, HHSN271201300031C, AG02219,

the following brain bank collections: the Mount Sinai NIH Brain and

Tissue Repositories, the Harvard Brain Bank as part of the Autism

AG05138, and MH06692. Brain tissue for the study was obtained from

Tissue Repository, the University of Pennsylvania Alzheimer's Disease

Core Center, the University of Pittsburgh NeuroBioBank and Brain and

Tissue Project (ATP), the Stanley Medical Research Institute, and the

NIMH Human Brain Collection Core. Summary statistics for the ASD

GWAS performed on data from the iPSYCH consortium are available in

data table S5. Data and analysis code are available at https://github.

psychiatric-disorders-parallels-polygenic-overlap. The authors thank

S. Parhami, H. Won, J. Stein, D. Poliodakis, J. Flint, R. Ophoff, and

comments and for assistance with module heritability analyses.

www.sciencemag.org/content/359/6376/693/suppl/DC1

SUPPLEMENTARY MATERIALS

10 February 2016; resubmitted 21 June 2017

Materials and Methods

Supplemental Text

References (26-98)

Data Tables S1 to S5

Accepted 20 November 2017

10.1126/science.aad6469

Figs. S1 to S13

Tables S1 to S3

Consortia

members of the D.H.G. laboratory for critical reading of earlier versions

of this manuscript. The authors also thank B. Pasaniuc for his helpful

5 of 5

com/mgandal/Shared-molecular-neuropathology-across-major-

(Yale), Kevin White (UChicago), and Peter Zandi (JHU). RNA-seq data

accession no. syn2759792) was supported by funding from Takeda

study are available on Gene Expression Omnibus (accession nos.

Downloaded from http://science.sciencemag.org/ on August 21, 2019

(NIMH) (grants P50-MH106438, D.H.G.; R01-MH094714, D.H.G.; U01-

Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap

Michael J. Gandal, Jillian R. Haney, Neelroop N. Parikshak, Virpi Leppa, Gokul Ramaswami, Chris Hartl, Andrew J. Schork, Vivek Appadurai, Alfonso Buil, Thomas M. Werge, Chunyu Liu, Kevin P. White, CommonMind Consortium, PsychENCODE Consortium, iPSYCH-BROAD Working Group, Steve Horvath and Daniel H. Geschwind

Science **359** (6376), 693-697. DOI: 10.1126/science.aad6469

Genes overlap across psychiatric disease

Many genome-wide studies have examined genes associated with a range of neuropsychiatric disorders. However, the degree to which the genetic underpinnings of these diseases differ or overlap is unknown. Gandal *et al.* performed meta-analyses of transcriptomic studies covering five major psychiatric disorders and compared cases and controls to identify coexpressed gene modules. From this, they found that some psychiatric disorders share global gene expression patterns. This overlap in polygenic traits in neuropsychiatric disorders may allow for better diagnosis and treatment.

Science, this issue p. 693

ARTICLE TOOLS	http://science.sciencemag.org/content/359/6376/693
SUPPLEMENTARY MATERIALS	http://science.sciencemag.org/content/suppl/2018/02/07/359.6376.693.DC1
RELATED CONTENT	http://science.sciencemag.org/content/sci/359/6376/619.full http://stm.sciencemag.org/content/scitransmed/3/102/102mr3.full http://stm.sciencemag.org/content/scitransmed/3/95/95ra75.full http://stm.sciencemag.org/content/scitransmed/8/335/335ps10.full http://stm.sciencemag.org/content/scitransmed/4/119/119mr3.full
REFERENCES	This article cites 97 articles, 10 of which you can access for free http://science.sciencemag.org/content/359/6376/693#BIBL
PERMISSIONS	http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title *Science* is a registered trademark of AAAS.