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Transcription termination is a fundamental process in gene regulation. It is 

a critical step in mRNA maturation and it has been found that several cellular 

stresses can disrupt transcription termination. When termination is disrupted, 

transcription continues past the annotated 3’ end of genes (called readthrough 
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transcription). This has many downstream effects such as novel elongated 

transcripts, changes in epigenetic state, and large alterations in 3D genome 

structure (Hennig et al. 2018; Heinz et al. 2018). Given the variety of both causes 

and consequences of this phenotype, it is critical to develop methods to both 

identify and characterize defects of transcription termination (DoTT). In my first 

chapter, I present a software package called Automatic Readthrough Transcription 

Detection (ARTDeco), which can quantify readthrough transcription in data 

generated by next generation sequencing (NGS) assays that measure 

transcription. We demonstrate ARTDeco’s ability to discriminate between systems 

with DoTT and those with normal transcription termination. ARTDeco is able to 

quantify the degree of readthrough transcription in a system using three separate 

metrics. It is able to discriminate whether genes are transcribed due to gene 

activation (called primary induction genes) or due to readthrough transcription 

extending from the end of one gene through the body of its downstream gene 

(called read-in genes). We show that read-in genes represent analytical noise in 

the context of functional analyses. In addition, ARTDeco can identify downstream 

of gene (DoG) transcripts, which are intergenic transcripts originating from faulty 

termination. We show that ARTDeco can flexibly perform these functions across a 

variety of data types and organisms. In my second chapter, I deploy ARTDeco on 

NCBI’s Gene Expression Omnibus (GEO) repository of NGS data to search for 

signs of DoTT in virally-infected samples. We find evidence that several viruses 

cause DoTT. Among these viruses, we identify a likely mechanism for readthrough 

transcription in Rift Valley Fever Virus (RVFV). We confirm that the RVFV’s NSs 
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protein causes DoTT by expressing it in THP-1 monocytes. Further, we compare 

the full range of transcriptional responses between NSs and the NS1 protein from 

influenza A virus (IAV). We find that both proteins cause global readthrough 

transcription and disrupt interferon signaling in distinct ways.  

Finally, I develop a software package to address a different fundamental 

regulatory process: transcription initiation. Transcription initiation is known to occur 

as a result of multiple transcription factors (TFs) binding to a regulatory sequence 

and recruiting transcriptional machinery. Existing computational methods do not 

adequately capture the collaboration of the TFs from sequence alone. I developed 

the Dual HOMER method, which employs successive rounds of motif enrichment 

in order to infer cooperativity between TFs in transcription start site regions (TSRs). 

We show that Dual HOMER is able to recapitulate known interactions between 

TFs and lends novel insights into these interactions due to the properties of the 

transcriptional network it generates. In all, this thesis advances the understanding 

of two fundamental biological processes and outlines methods that lend biological 

insight to both.
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CHAPTER 1: INTRODUCTION 
 
 

One of the most important parts of transcription regulation is proper 

termination of transcripts. In normal conditions, polyadenylation-dependent 

transcription termination occurs when a transcribing RNA polymerase II (RNAPII) 

encounters a polyadenylation site (PAS), which triggers a change in conformation 

and recruitment of the cleavage and polyadenylation (CPA) machinery (Licatalosi 

et al. 2002). This leads to the release of the nascent pre-mRNA for further 

processing. RNAPII continues to transcribe RNAs that are degraded by the 

exonuclease XRN2. This continues until XRN2 catches up to the elongating 

RNAPII and causes its dissociation from the DNA (West, Gromak, and Proudfoot 

2004; Kim et al. 2004) 

 Proper transcription termination is of critical importance for gene regulation. 

In addition to maintaining intact transcriptional units, defects of transcription 

termination (DoTT) can be deleterious to gene regulation and genomic integrity. 

One consequence of defective transcription termination is transcriptional 

interference (Greger and Proudfoot 1998; Shearwin, Callen, and Egan 2005). This 

is when transcription continues past the canonical 3’ end of a gene and disrupts 

transcription initiation at the promoter of a downstream gene on the same strand. 

If the genes are on different strands, two elongating RNAPII complexes on 

opposite strands can collide (Prescott and Proudfoot 2002; Hobson et al. 2012). In 
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extreme cases, this can cause DNA damage and genome instability (Gaillard, 

García-Muse, and Aguilera 2015). 

It has recently been observed that several cellular stresses such as heat 

shock, osmotic stress, oxidative stress, hypoxia, senescence, cancer, and 

infection by influenza A virus (IAV) and herpes simplex virus 1 (HSV-1) can cause 

DoTT (Bauer et al. 2018; Cardiello, Goodrich, and Kugel 2018; Grosso et al. 2015; 

Heinz et al. 2018; Hennig et al. 2018; Muniz et al. 2017; Rutkowski et al. 2015; 

Vilborg et al. 2015, 2017). While this is a stress-mediated phenotype, in IAV and 

HSV-1, the viral proteins NS1 and ICP27, respectively, are known to cause this 

phenotype by interacting with the CPA machinery (Nemeroff et al. 1998; X. Wang 

et al. 2020). In clear cell renal carcinoma, it is hypothesized that mutations to the 

methyltransferase SETD2 cause alterations in the epigenome that make the cells 

more susceptible to DoTT (Grosso et al. 2015). Despite this multitude of known 

causes of this phenotype, there is still much work to do to characterize the full 

scope of possible causes.  

There are many phenotypic consequences for DoTT. Among these are 

alterations to the epigenome. Widespread transcription elongation in systems with 

DoTT leads to the opening of chromatin and reduced binding of transcription 

factors (TFs) (Hennig et al. 2018; Heinz et al. 2018). Transcripts that result from 

defective termination (also called readthrough transcription) do not go through 

normal mRNA maturation processes and, as a result, are not transcribed or 

translated (Rutkowski et al. 2015; Heinz et al. 2018). Given the scope of these 
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phenotypic consequences, comprehensive characterization of DoTT is needed 

from the perspective of identifying mechanisms that induce DoTT as well as their 

downstream effects. 

In addition to these epigenomic and transcriptomic consequences for 

DoTT, there are analytical consequences. In systems with widespread DoTT, 

many genes are transcribed due to readthrough transcription rather than promoter 

activation (we term these read-in genes) (Rutkowski et al. 2015; Heinz et al. 2018). 

Read-in genes represent analytical noise when examining patterns of gene 

expression using differential expression because these transcripts are retained in 

the nucleus and are never translated. Thus, they represent both non-functional 

transcripts as well as an artificial increase in transcription due to non-regulatory 

mechanisms. This can reduce discovery ability when investigating transcriptional 

networks in the context of systems with DoTT. Thus, it is important to be able to 

identify read-in genes in these systems. 

Another fundamental issue in transcriptional regulation is understanding 

how pairs of TFs collaborate to establish transcription start site regions (TSRs). 

Regulatory regions of the genome are formed when TFs bind to their target 

sequences, open the chromatin in these regions, recruit transcriptional machinery, 

and initiate transcription (Heinz et al. 2010). Rather than operating one TF at a 

time, this is a collaborative process wherein multiple TFs work together to establish 

a regulatory region or TSR (Zhu, Shendure, and Church 2005; Heinz et al. 2010, 

2015). 
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Several methods exist for inferring these cooperative interactions. 

However, these methods utilize statistical methods such as pointwise mutual 

information and the Fisher’s exact test, which estimate the co-occurrence of TF 

motifs against a random background model (van Bömmel et al. 2018; Meckbach 

et al. 2015). This ensures that enrichments for co-occurrence are above random 

expectation. However, this does not ensure that the motifs are enriched relative to 

their genomic background and, therefore, biologically relevant. This is especially 

important in the context of cell-type and signal specificity. 

In order to address issues in characterizing and identifying systems with 

DoTT, I developed a software tool called ARTDeco (automatic readthrough 

transcription detection). I demonstrated that ARTDeco is a useful tool for 

quantifying readthrough transcription in a system and can identify read-in genes. I 

then applied ARTDeco to discover readthrough in several viruses and test the 

mechanism of readthrough in Rift Valley Fever Virus by expressing the NSs protein 

in THP-1 monocytes. Finally, I developed a novel method for inferring TF motif co-

occurrences using successive rounds of motif enrichment. I show that this method 

recapitulates known physical interactions between TFs and that networks 

generated using this method have a unique biological interpretation. 
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CHAPTER 2: ARTDECO: AUTOMATIC READTHROUGH 
TRANSCRIPTION DETECTION 

 

2.1 Abstract  

2.1.1 Background:  

Mounting evidence suggests several diseases and biological processes 

target transcription termination to misregulate gene expression. Disruption of 

transcription termination leads to readthrough transcription past the 3′ end of 

genes, which can result in novel transcripts, changes in epigenetic states and 

altered 3D genome structure.  

2.1.2 Results:  

We developed Automatic Readthrough Transcription Detection 

(ARTDeco), a tool to detect and analyze multiple features of readthrough 

transcription from RNAseq and other next-generation sequencing (NGS) assays 

that profile transcriptional activity. ARTDeco robustly quantifies the global severity 

of readthrough phenotypes, and reliably identifies individual genes that fail to 

terminate (readthrough genes), are aberrantly transcribed due to upstream 

termination failure (read-in genes), and novel transcripts created as a result of 

readthrough (downstream of gene or DoG transcripts). We used ARTDeco to 

characterize readthrough transcription observed during influenza A virus (IAV) 

infection, validating its specificity and sensitivity by comparing its performance in 

samples infected with a mutant virus that fails to block transcription termination. 
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We verify ARTDeco’s ability to detect readthrough as well as identify read-in genes 

from different experimental assays across multiple experimental systems with 

known defects in transcriptional termination, and show how these results can be 

leveraged to improve the interpretation of gene expression and downstream 

analysis. Applying ARTDeco to a gene expression data set from IAV- infected 

monocytes from different donors, we find strong evidence that read-in gene-

associated expression quantitative trait loci (eQTLs) likely regulate genes 

upstream of read-in genes. This indicates that taking readthrough transcription into 

account is important for the interpretation of eQTLs in systems where transcription 

termination is blocked.  

2.1.3 Conclusions:  

ARTDeco aids researchers investigating readthrough transcription in a variety of 

systems and contexts.  

Keywords: Readthrough transcription, Transcription termination, Transcriptomics, 

Gene expression, Next-generation sequencing analysis 

2.2 Background 

Transcription termination is a fundamental step in gene expression 

regulation. For most genes, transcription termination is triggered when RNA 

polymerase II (RNAPII) transcribes a polyadenylation site (PAS) that activates the 

cleavage and polyadenylation (CPA) complex associated with the C-terminal 
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domain (CTD) of RNAPII (Licatalosi et al. 2002). There are two popular models for 

how CPA recruitment induces transcription termination. In the allosteric model, 

recruitment of CPA is accompanied by a conformational change in elongating 

RNAPII, causing dissociation from the DNA and release of the nascent pre-mRNA 

(H. Zhang, Rigo, and Martinson 2015). In the torpedo model, polyA-dependent 

cleavage of pre-mRNA by CPA leaves an uncapped nascent RNA emanating from 

elongating RNAPII. The exonuclease XRN2 degrades the unprotected nascent 

transcript until it catches up to transcribing RNAPII, causing its release from the 

DNA (Kim et al. 2004; West, Gromak, and Proudfoot 2004). Alternative 

transcription termination mechanisms have been described for histone genes, 

snRNAs, and transcripts generated by RNAPI and RNAPIII (Kawauchi et al. 2008; 

Nielsen, Yuzenkova, and Zenkin 2013; Richard and Manley 2009).  

Recent studies have demonstrated that cellular stress can disrupt normal 

transcription termination, leading to aberrant transcription of intergenic regions 

downstream of canonical termination sites (termed readthrough transcription or 

downstream of gene [DoG] transcription) through an unknown mechanism 

(pictured in Figure 2.1A). These stresses include heat shock, osmotic stress, 

hypoxia, influenza A virus (IAV) infection, herpes simplex virus 1 (HSV-1) infection, 

senescence, and cancer (Bauer et al. 2018; Cardiello, Goodrich, and Kugel 2018; 

Grosso et al. 2015; Heinz et al. 2018; Hennig et al. 2018; Muniz et al. 2017; 

Rutkowski et al. 2015; Vilborg et al. 2015, 2017). In addition to exerting cellular 

stress, IAV expresses the viral non-structural protein 1 (NS1), which by itself can 

induce readthrough transcription, presumably by inactivating the poly(A) signal-
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recognition molecule cleavage and polyadenylation specificity factor (CPSF) 30 

(Nemeroff et al. 1998). This causes inhibition of CPA activity at poly(A) signal-

dependent genes and leads to widespread readthrough transcription (Bauer et al. 

2018; Heinz et al. 2018; Nemeroff et al. 1998).  

Analyzing gene expression data from samples exhibiting evidence for 

readthrough transcription poses several challenges: without proper termination, 

both splicing and polyadenylation of the pre-mRNA may be impaired (N. Zhao et 

al. 2018). Size-selected RNA-sequencing (North-seq) experiments indicate that 

readthrough/DoG RNAs are long (> 13.5 kb) and not exported from the nucleus 

(Heinz et al. 2018). Similarly, HSV-1 infection leads to decreased signal for 

readthrough transcripts in cytoplasmic RNA relative to both total and nuclear RNA 

(Hennig et al. 2018). Ribosome profiling in HSV-1-infected cells indicates that 

readthrough RNAs are not bound by ribosomes and thus not translated (Rutkowski 

et al. 2015). The observation that readthrough transcription impedes protein 

expression is important because RNA profiling methods are often used as proxies 

for gene expression in biomedical research. RNA-seq or microarray profiling in 

systems with readthrough transcription are therefore likely to provide incorrect 

estimates of protein levels.  

Readthrough transcription can also impact the measurement of gene 

expression in genes located downstream of sites where transcription termination 

is inhibited. As aberrant transcription proceeds into downstream genes, RNA 

templated from these regions may be misinterpreted as evidence for expression 
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of these downstream genes (e.g. FAP in Figure 2.1B) (Rutkowski et al. 2015; Heinz 

et al. 2018). Following Rutkowski et al., we will term these loci “read-in” genes. The 

regulation of read-in genes is easily misinterpreted because the RNAs produced 

at these loci are unlikely to be exported or translated, and their promoters and 

other regulatory elements do not regulate their transcript levels. Given that most 

functional analyses and systems-level studies rely on RNA levels as their primary 

approach to molecular profiling, this represents a potential source of error when 

analyzing systems with widespread readthrough transcription. Without correcting 

for read-in genes, these analyses suffer from the inclusion of aberrantly transcribed 

read-in genes when studying the molecular pathways and regulatory mechanisms 

underlying transcriptional responses. 

In addition to generating non-canonical and novel transcripts, readthrough 

transcription can alter the epigenomic state of the genome (Cardiello, Goodrich, 

and Kugel 2018; Heinz et al. 2018; Hennig et al. 2018). In the case of heat shock, 

osmotic stress, and HSV-1 infection, it has been found that regions exhibiting 

transcriptional readthrough have increased chromatin accessibility (Hennig et al. 

2018; Vilborg et al. 2017). Strikingly, in IAV infection, transcriptional readthrough 

causes dynamic changes in 3D genome structure. This phenomenon occurs as 

elongating RNAPII displaces cohesin, the ringlike complex that spatially constrains 

the strands of DNA at the base of chromatin loops (Heinz et al. 2018). In addition, 

IAV-induced readthrough can result in widespread changes in histone 

modifications and transcription factor (TF) binding site occupancy (Heinz et al. 

2018).  
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Given the extensive impact that defects in transcription termination and 

readthrough transcription can have, computational tools are needed to identify and 

characterize their phenotypes from next-generation sequencing (NGS) profiling 

data. Although several studies have analyzed readthrough transcription, they have 

primarily used custom or ad hoc approaches (Hennig et al. 2018; Rutkowski et al. 

2015; Vilborg et al. 2015, 2017; Wiesel, Sabath, and Shalgi 2018). Presently, there 

are two published methods designed to analyze readthrough transcription: 

DoGFinder, a tool that discovers and quantifies intergenic transcripts downstream 

of genes (DoG transcripts) (Hennig et al. 2018; Rutkowski et al. 2015; Vilborg et 

al. 2015, 2017; Wiesel, Sabath, and Shalgi 2018), and DogCatcher, a tool that 

discovers and quantifies DoGs, Antisense Downstream of Gene (ADoG), Previous 

of Gene Transcripts (PoGs), and Antisense Previous of Gene (APoG) transcripts 

in addition to being able to perform differential expression analysis on these 

transcripts (Melnick et al. 2019) Both tools provide a useful characterization of 

readthrough transcription and can aid in the discovery of systems exhibiting 

transcription termination defects. However, their functionality is limited to 

searching for aberrant transcripts in intergenic regions.  

Here we present Automatic Readthrough Transcription Detection 

(ARTDeco), a framework for the quantification and characterization of readthrough 

transcription. ARTDeco expands on the functionality of existing approaches by 

implementing three separate strategies to quantify readthrough transcription by 

evaluating (1) the fraction of transcription starting upstream and continuing into a 

gene (‘read-in level’), (2) the fraction of transcription that continues past the end of 
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genes (‘readthrough level’), and (3) detection of novel DoG transcripts created as 

a result of readthrough transcription (pictured schematically in Figure 2.1C). We 

assess the performance of ARTDeco on previously generated data for IAV 

infection and heat shock treatment. We also demonstrate how ARTDeco can be 

used to quantitatively assess readthrough transcription across large donor  

 
Figure 2.1. ARTDeco evaluates different aspects of readthrough transcription. a Schematic 
diagram of typical transcription termination (top) and readthrough transcription (bottom). b 
Total RNA-seq, RNA polymerase II ChIP-seq, and H3K27ac ChIP-seq data at IFIH1 locus. 
Normalized read coverage ranges are indicated on the right and signals exceeding these 
levels may be clipped (e.g. RNA-seq coverage on the exons of IFIH1). IFIH1 represents a 
primary induction gene while FAP, GCG, and DPP4 represent read-in genes. c Schematic 
depicting the regions used to quantify read-in levels, readthrough levels, and DoG 
transcript discovery for each gene. 
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datasets and show that eQTLs for read-in genes likely control their upstream 

gene’s transcription levels. We conclude that our tool is capable of quantifying key 

features of readthrough transcription to improve the analysis and interpretation of 

NGS experiments performed on samples with defects in transcription termination. 

2.3 Implementation 

ARTDeco is written in Python 3.6. It has the following software 

dependencies: BEDOPS (Neph et al. 2012), bx-python, DESeq2 (Love, Huber, 

and Anders 2014), HOMER (Heinz et al. 2010), NetworkX (Hagberg, A.A., Shult, 

D.A., Swart, P.J. 2008), NumPy (Oliphant 2006), Pandas (McKinney 2010), rpy2, 

RSeQC (L. Wang, Wang, and Li 2012), and Samtools (H. Li et al. 2009). Code is 

available at https://github.com/sjroth/ARTDeco.  

2.3.1 ARTDeco analysis framework  

ARTDeco requires aligned BAM files, a GTF file of gene annotations, and 

a chromosome sizes file. Optionally, a metadata file detailing the experimental 

design and a comparison file detailing the comparisons to be carried out during 

differential expression analysis can be supplied. The program will quantify 

expression at genic and intergenic regions (detailed below) and return summary 

statistics for readthrough transcription and DoG transcripts as well as read-in and 

readthrough ratios for each gene.  

2.3.2 ARTDeco preprocessing  
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The input gene annotation (GTF file) is preprocessed into BED files 

representing the key genomic regions interrogated by ARTDeco. For each gene, 

all separate isoforms are condensed into a single region starting from the most 

upstream transcription start site [TSS] to most downstream transcription 

termination site [TTS]) to avoid misidentifying alternative isoforms as readthrough 

transcripts. Intergenic regions for detecting read-in and readthrough transcription 

relative to each gene are then selected as outlined schematically in Figure 2.1C 

and Supplementary Figure 2.1B. Genes were excluded from consideration if their 

annotation fell within another gene. Read-in quantification regions are placed a 

fixed distance (as defined by the user; 1 kb by default) upstream of the most 

upstream TSS for each gene to avoid variation in TSS location relative to 

annotations. Readthrough quantification regions are placed a fixed distance (as 

defined by the user; 10 kb by default) downstream of each gene to avoid detection 

of transcription that normally occurs in the region immediately 3′ of the poly(A) 

signal-dependent cleavage site. The default length of each read-in/readthrough 

detection region is set to 15 kb (can be user-defined). If another gene is present in 

the locus, the length of the read-in/readthrough regions are truncated such that 

they extend a maximum of one-third of the distance to the next gene to avoid 

detecting signal originating from the other gene. Thus, the length of the read-in 

and readthrough regions can be expressed as min (maxLength, 1/3*geneDist) 

where maxLength is the maximum length of a rea-din/readthrough region (15 kb 

by default) and geneDist is the distance to the upstream or downstream gene. The 

minimum length of both read-in and readthrough regions can be user-defined and 
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is 100 bp by default. If genes are overlapping or too close in proximity, the 

readthrough/read-in region is removed and not reported for that gene. If one gene 

falls within the gene body of another gene (as is the case with many small RNAs), 

that gene is removed from consideration by ARTDeco. Inclusion of these genes 

leads to issues in interpretation and potential errors due to annotation rather than 

biological phenomena. Both read-in and readthrough regions are placed into BED 

files for downstream processing.  

2.3.3 ARTDeco expression quantification  

ARTDeco quantifies gene expression (both raw counts and FPKM) using 

HOMER’s analyzeRepeats.pl and the user-supplied GTF file as well as expression 

at intergenic regions using HOMER’s annotatePeaks.pl (Heinz et al. 2010). 

Expression is quantified across the whole gene body for each transcript in the GTF 

file and the most highly (maximum) expressed isoform (in FPKM) is stored for 

downstream processing of read-in and readthrough levels.  

2.3.4 ARTDeco read-in and readthrough level quantification  

For each gene, the expression in both raw counts and FPKM for both the 

maximum isoform of the gene and the intergenic region of interest are grouped 

together. Then, the log2 ratio of length-normalized counts is computed between 

the isoform and the read-in/readthrough region (outlined in Figure 2.1C and 

Supplementary Figure 2.1B). These ratios define the read-in and readthrough 

levels for each gene. ARTDeco then infers read-in genes based upon a user-

defined threshold for read-in level (0 by default) as well as a user-defined 
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expression threshold level (0.25 FPKM by default) to exclude genes with minimal 

expression. ARTDeco summarizes the basic statistics of read-in and readthrough 

levels for the most expressed genes (top 1000 by default).  

2.3.5 ARTDeco gene expression deconvolution  

ARTDeco can correct deconvolute the contribution of upstream 

readthrough transcription to total gene expression by using the upstream read-in 

expression. In order to do this, it subtracts the length-normalized raw expression 

in the read-in region from the length-normalized raw gene body expression. If the 

read-in region has higher expression than the gene body, the gene body 

expression is set to 0.  

2.3.6 Combining read-in levels with differential expression information  

Expression information can be combined with differential expression 

analysis as performed by DESeq2 (Love, Huber, and Anders 2014) to discriminate 

genes that are directly induced (termed “primary induction”) from those induced as 

a consequence of read-in transcription from upstream genes (termed “read-in”). 

This can be useful for enhancing the specificity of the analysis if the experimental 

condition is expected to impact transcription termination. DESeq2 is carried out on 

all transcripts in the GTF file as quantified by ARTDeco and this information is 

combined with read-in ratios for each gene. Genes are thresholded based upon 

log2 fold change (default is 2), adjusted p-value (BenjaminiHochberg correction as 

performed by DESeq2; default is 0.05), and expression in FPKM (default is 0.25) 
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and categorized as a primary induction or read-in gene based upon read-in levels 

(default is 0).  

2.3.7 ARTDeco DoG detection  

ARTDeco uses a rolling window approach beginning at the TTS of each 

gene as defined by our condensed gene annotation. Over each window of the 

user-specified length (500 bp by default), transcription levels are quantified and 

the FPKM of the window must meet a user-specified threshold to be considered 

part of a DoG (0.15 FPKM by default). A DoG can be extended beyond a 

downstream gene’s TSS if that gene is labeled a read-in gene. After DoGs are 

discovered for each experiment, their expression is obtained (raw and FPKM). 

Then, they are combined into a single annotation by taking the union wherein the 

longest DoG annotation is kept for shared DoGs across experiments. The 

expression of the unified set of DoGs and their differential expression (if applicable) 

is also reported (raw and FPKM). 

2.4 Results 

ARTDeco processes NGS data (e.g., RNA-seq) to characterize the 

features of readthrough transcription genome-wide. This includes the identification 

of genes that exhibit transcription downstream of their 3′ ends (readthrough 

genes), genes that are transcribed as a result of readthrough transcription from 

upstream genes (read-in genes), as well as detection of novel DoG transcripts 

created as a result of readthrough transcription. The basic workflow of ARTDeco 
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is detailed in Supplementary Figure 2.1A. ARTDeco can work with custom gene 

annotations and custom genomes. ARTDeco detects read-through events by 

comparing the levels of transcription in genic and intergenic regions for all genes, 

evaluating signal both upstream and downstream of genes to distinguish 

readthrough and read-in events. The intervals used to calculate intergenic 

transcription levels exclude regions immediately upstream of the transcription start 

site (TSS, > 1 kb) and downstream of the transcription termination site (TTS, > 10 

kb) to avoid detection of RNA signal that arises from incorrect TSS assignment 

and post-poly(A) site cleavage transcripts that may accumulate during normal 

termination, respectively. Because closely spaced genes (< 10 kb distance 

between gene ends) limit the ability to infer intergenic expression levels, these 

genes are excluded from the analysis. The log2 transcript signal ratio of the read-

in or readthrough regions versus the gene body expression can be used as a 

quantification of the degree of readthrough upstream (read-in level) or downstream 

(readthrough level) of a gene, respectively (Figure 2.1C, Supplementary Figure 

2.1B). In studies where a specific experimental condition is suspected to induce 

transcription readthrough, ARTDeco can combine its analysis strategy with 

differential expression analysis to discriminate between genes that are likely 

regulated by primary induction (i.e. promoter activation) versus read-in genes 

among all induced genes. ARTDeco also detects unannotated DoG transcripts 

using a rolling window approach with a minimal FPKM threshold beginning at the 

TTS of each gene, similar to DoGFinder (Wiesel, Sabath, and Shalgi 2018).  
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2.4.1 Global quantification of read-through  

To evaluate ARTDeco’s ability to quantify transcriptional readthrough 

across multiple experiments, we analyzed previously generated transcriptomic and 

epigenetic data from monocyte-derived macrophages infected ex vivo with two 

strains of IAV as well as a mock infection condition (example of data in Figure 

2.1B) (Heinz et al. 2018). The first influenza strain is the highly pathogenic IAV 

(subtype H5N1) virus (Influenza A/Vietnam/1203/2004 (H5N1) HAlo) used to 

model severe disease with an intact NS1 protein (called IAV here). The second 

strain has the same viral genetic background but is mutated to produce a 

truncated, non-functional NS1 protein (ΔNS1) (Heinz et al. 2018; Steel et al. 2009). 

These two strains induce a similar antiviral transcriptional response in the cell, but 

only IAV infection expresses an intact NS1 protein capable of inhibiting the CPA 

complex, leading to readthrough transcription. In effect, the ΔNS1 strain allows us 

to examine antiviral response activation without readthrough while the mock 

condition has neither antiviral response nor readthrough. This allows us to 

differentiate antiviral response transcription from readthrough transcription during 

IAV infection.  

First, ARTDeco quantifies the global level of readthrough transcription in 

each sample, by calculating the genome-wide distributions of read-in and 

readthrough ratios for the top 1000 expressed genes (Figure 2.2A,B). We found 

that the distributions of both read-in and readthrough ratios were shifted to higher 

values in the IAV samples relative to both ΔNS1 or mock infection (Figure 2.2A,B). 
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Because transcription levels still decay after the cleavage site even when 

termination is inhibited, readthrough levels, which are measuring the signal 

produced by readthrough transcription at sites directly downstream of where 

termination is inhibited, often have a more pronounced signal than read-in levels, 

which are measured upstream of the next gene, 83,649 bp downstream of the TTS 

on average. Given that read-in transcription is likely mediated by readthrough 

transcription from adjacent genes, we quantified this relationship by comparing 

read-in levels for every expressed gene (> 0.25 FPKM) with the readthrough levels 

of their upstream gene, finding that these two values were significantly correlated 

(Figure 2.2C, r = 0.55; p < 1e-151). This result is quantitatively and qualitatively 

consistent with the hypothesized relationship between read-in levels and the 

readthrough levels of the upstream gene. In all, this confirms the ability of 

ARTDeco to use read-in and readthrough levels to quantify readthrough 

transcription. 

Because read-in levels are defined as the log2 ratio of upstream 

readthrough transcription to genic transcription, they represent the relative 

contribution of readthrough to gene expression. Given this observation, we 

investigated whether read-in levels could potentially aid in deconvoluting the 

relative contributions of readthrough transcription and canonical gene activation to 

expression level. We examined all upregulated differentially expressed genes in 

the IAV condition relative to the mock condition and compared their expression  
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Figure 2.2. Quantification of readthrough phenotypes in IAV-infected monocyte derived 
macrophages. a Distribution of read-in levels (log2 ratio of reads in read-in region vs. gene 
body) for top 1000 expressed genes. b Distribution of readthrough levels (log2 ratio of 
reads in downstream region vs. gene body) for top 1000 expressed genes. c Downstream 
gene read-in level vs. upstream gene read-in level in the first replicate of the IAV condition. 
Both downstream and upstream genes were expressed at a level > 0.25 FPKM (r = 0.55; p 
< 1e-151). d Distribution of DoG lengths for DoGs discovered by ARTDeco using default 
settings (minimum length of 4 kb, window size of 500 bp, and minimum read density of 0.15 
FPKM). 
 

values between IAV and ΔNS1 conditions (Supplementary Figure 2.2A). We found 

that the expression levels between these two datasets was largely correlated (r = 

0.72; p < 1e-87), however, many genes were expressed more highly in the IAV 

condition due to read-in transcription (Supplementary Figure 2.2A). We then 
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corrected the expression values for both conditions by the estimated fraction of 

reads due to readthrough and compared their expression. We found that the 

correlation in gene expression was increased (r = 0.81; p < 1e-127) and that this 

increase was statistically significant (p < 0.001; Fisher’s z transformation) 

(Supplementary Figure 2.2B). This suggests that the read-in level provides 

information about the relative contribution of readthrough transcription to gene 

expression and indicates that ARTDeco can estimate gene expression by 

removing contributing upstream readthrough.  

Another method of quantifying readthrough transcription is the detection of 

DoG transcripts. Similar to the read-in and readthrough ratios, we performed DoG 

transcript discovery on mock-, IAV-, and ΔNS1-infected samples (Supplementary 

Table 2). We found more than twice as many DoGs in IAV-infected samples than 

the other conditions, consistent with the global increase in readthrough caused by 

NS1-mediated disruption of transcription termination. Additionally, DoGs found in 

the IAV condition were much longer than those in the ΔNS1 or mock conditions 

(almost twice as long on average), which were typically less than 10 kb in length 

(Figure 2.2D).  

In order to compare ARTDeco’s ability to detect DoG transcripts to existing 

methods, we independently used DoGFinder and Dogcatcher to identify DoGs in 

the IAV condition using default parameters (Supplemental Methods). Despite 

differences in how transcript detection is performed between the methods, all three 

methods exhibited comparable sensitivity and detected many of the same DoGs 
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(Supplementary Figure 2.3A,B). Notably, Dogcatcher found very few unique DoGs 

(Supplementary Figure 2.3A,B). This is likely because Dogcatcher screens DoGs 

similarly to DoGFinder (i.e., using a minimum coverage) while maintaining genic 

reads like ARTDeco. Differentially detected DoGs between the methods are largely 

explained by technical differences. DoGFinder and Dogcatcher screen DoGs 

based upon continuous coverage (presence or absence of reads spanning a 

portion of the screening window). In contrast, ARTDeco extends transcripts based 

upon a read density threshold measured in FPKM while keeping genic reads. This 

leads to DoGFinder-specific transcripts in regions with low signal but continuous 

coverage. Conversely, ARTDeco does not remove genic reads so some DoGs 

may represent mis-annotation of the TTS or inefficient transcription termination. 

These methodological differences are reflected by DoGFinder-specific transcripts 

with lower expression in FPKM (the criteria for ARTDeco) while ARTDecospecific 

transcripts have lower per-base coverage (the criteria for DoGFinder) 

(Supplementary Figure 2.3D,E).  

In order to validate ARTDeco’s ability to detect DoGs, we looked for 

independent evidence for transcription of DoGs by examining the levels of 

H3K36me3 and RNAPII phosphorylated on serine 2 of the CTD (RNAPII S2p) at 

DoG loci. Both H3K36me3 and RNAPII S2p are associated with transcription 

elongation, and should be enriched in readthrough regions relative to non-

transcribed regions. Because ARTDeco and DoGFinder discovered the most 

distinct DoGs individually and Dogcatcher discovered very few unique DoGs (only 

6; Supplementary Figure 2.3B), we chose to compare DoGs from ARTDeco and 
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DoGFinder. We found that DoGs shared between ARTDeco and DoGFinder had 

comparable occupancy of both signals while DoGs unique to DoGFinder had 

decreased signal (Supplementary Figure 2.3F,G). In summary, we find that 

ARTDeco has sensitivity comparable to DoGFinder and Dogcatcher and confirmed 

that the DoGs identified show evidence of transcription elongation.  

2.4.2 Identification of read-in genes  

Because pre-mRNAs produced as a result of readthrough transcription are 

generally not exported from the nucleus and are unlikely to be translated (Heinz et 

al. 2018; Hennig et al. 2018; Vilborg et al. 2015), differential RNA levels in samples 

with readthrough transcription likely misrepresent gene expression levels of newly 

transcribed genes and may confound functional analyses. Furthermore, 

readthrough transcription can continue far past the 3′ end of transcribed genes 

leading to the increase of RNA signal at downstream “read-in” genes. This leads 

to the illusion that read-in genes are regulated by the biological process being 

studied. One of the novel functions of ARTDeco is to identify read-in genes to infer 

whether a given gene is “induced” by readthrough transcription (i.e. read-in) or if it 

is directly targeted for induction by the cell’s regulatory machinery (referred to here 

as ‘primary induction’ genes).  

We sought to test the ability of ARTDeco to discriminate between primary 

induction and read-in genes among genes induced by IAV. In order to benchmark 

our method, we curated a gold standard set of primary induction and read-in genes 

based on differences in induction in the wild-type IAV and ΔNS1 viruses 
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(Supplemental Methods; Figure 2.3B). We considered gold standard primary 

induction genes to be upregulated in IAV relative to mock infection with clear signs 

of promoter activation in H3K27ac and RNAPII ChIP-seq data (Supplemental 

Methods; Supplemental Table 1; example Supplementary Figure 2.4A). Similarly, 

we considered gold standard read-in genes to be upregulated in IAV relative to 

both mock and ΔNS1 (log2 fold change > 2 and adjusted p-value < 0.05 according 

to DESeq2) with no signs of promoter activation (Supplemental Methods; 

Supplemental Table 1; example Supplementary Figure 2.4A). In total, there were 

163 gold standard primary induction genes and 135 gold standard read-in genes 

(Supplemental Table 1).  

ARTDeco was able to identify IAV primary induction and read-in genes with 

an F1 score (a measure of the accuracy of classification computed by taking the 

harmonic mean of the precision and recall; Supplemental Methods) of 0.95 relative 

to our gold standard. ARTDeco’s performance when inferring read-in genes was 

robust to different parameters, but optimal when upregulated genes had a log2 fold 

change > 2, adjusted p-value < 0.05 and read-in level > − 2 (for all genes with 

expression > 0.25 FPKM; number of Gold Standard [GS] Primary Induction Genes 

= 163, number of GS Read-In Genes = 130, True Positives [TP] = 118, True 

Negative [TN] = 158, False Positive [FP] = 5, False Negative [FN] = 12) 

(Supplementary Figure 2.4C,D). We also found that ARTDeco was able to infer 

read-in genes on single experiments without differential expression information  
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Figure 2.3. ARTDeco successfully discriminates between genes that are directly 
induced by IAV infection (primary induction) and genes induced as a result of 
readthrough transcription (read-in). a Heatmap of z-normalized expression values 
and ARTDeco assignments for gold standard primary induction and read-in genes. 
Thresholds for assigning read-in genes were log2 fold change > 2, adjusted p-
value < 0.05, and read-in level > − 2. Leftmost column is ARTDeco assignment 
(blue is primary induction and red is read-in). Next column is gold standard 
assignment (green is primary induction and gold is read-in). Remaining columns 
are z-normalized gene expression for IAV replicate 1, IAV replicate 2, ΔNS1 
replicate 1, ΔNS1 replicate2, mock replicate 1, and mock replicate 2. b Distribution 
of log2 ratio of H3K27ac for IAV vs. Mock conditions at promoters for primary 
induction and read-in genes. (p < 1e-20; t-test) c Distribution of log2 ratio of 
H3K4me3 for IAV vs. Mock conditions at promoters for primary induction and read-
in genes. (p < 1e-10; t-test) d Distribution of RNA PolII serine-2 phosphorylation 
(S2p) at promoters in the IAV condition for primary induction and read-in genes. (p 
< 0.001; t-test) e Distribution of RNA PolII serine-5 phosphorylation (S5p) in the 
IAV condition at promoters for primary induction and read-in genes. (p < 1e-5; t-
test) f Distribution of log2 ratio of Start-seq signal for IAV vs. Mock at promoters 
for primary induction and read-in genes. (p < 1e-14; t-test). 
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and thresholding only on read-in levels (Supplemental Methods; Supplementary 

Figure 2.5A, optimal performance using a read-in level > − 1). Performance was 

generally poorer when not including differential expression information due to an 

increase in false positives as reflected in the false discovery rate (FDR) (0.04 with 

differential expression vs. 0.44 without differential expression) (Supplementary 

Figure 2.5A; F1 = 0.67; GS Primary Induction Genes = 4188, GS Read-In Genes 

= 128, TP = 105, TN = 4106, FP = 82, FN = 23). One source of false positives were 

a result of ARTDeco detecting readthrough transcription in the read-in region 

despite no significant change in genic expression in IAV relative to either mock or 

ΔNS1 and signs of promoter activation in the downstream gene (ex. MON2 in 

Supplementary Figure 2.5B). The use of differential expression also helps filter the 

number of genes considered and, thus, limits potential exposure to errors due to 

incorrect gene annotations. Based upon this, we conclude that the addition of 

differential expression allows ARTDeco to improve specificity in experimental 

designs where readthrough transcription is expected to be regulated in a specific 

condition.  

After using the above parameters (log2 fold change > 2, adjusted p-value 

< 0.05, and read-in level > − 2) to infer read-in genes with differential expression 

information, we sought independent validation of our inference. We clustered gene 

expression profiles for all gold standard genes and found that gene assignments 

showed expected expression patterns (i.e., true positives [read-in genes] were 

expressed exclusively in IAV while true negatives [primary induction genes] were 

expressed in both IAV and ΔNS1 but not in mock) (Figure 2.3B). Because read-in 
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genes are transcribed as a result of upstream expression rather than transcription 

initiation, we hypothesized that promoters of read-in genes would show decreased 

signs of promoter activation and transcription initiation relative to primary induction 

genes. As expected, promoters of primary induction genes were enriched for both 

H3K27ac and H3K4me3 (epigenomic signals associated with promoter activation) 

in IAV relative to mock while the promoters of read-in genes were not (Figure 

2.3B,C). Similarly, we examined the phosphorylation state of RNAPII at promoters. 

Primary induction genes showed higher RNAPII serine-5 phosphorylation (S5p) (a 

mark of transcription initiation) occupancy at promoters while read-in genes 

showed higher RNAPII serine-2 phosphorylation (S2p) (a mark of transcription 

elongation) occupancy (Figure 2.3D,E). These data are consistent with the 

hypothesis that the promoters of primary induction genes are activated by IAV 

while the promoters of read-in genes are not.  

In order to assess whether the promoters of primary induction genes 

showed more evidence of transcription initiation than those of read-in genes, we 

also examined Startseq data at promoters in both IAV- and mock-infected THP-1 

cells (a human monocytic cell line) (Heinz et al. 2018). Start-seq captures newly 

initiating short RNAs that approximate rates of transcription initiation at TSSs 

(Scruggs et al. 2015). We observed increased signals of transcription initiation at 

promoters of primary induction genes as compared to read-in genes despite 

differences in cell type (Figure 2.3F). This further strengthens the conclusion that 

primary induction genes represent a stimulus-specific response while read-in 

genes are expressed due to upstream readthrough transcription rather than 
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promoter activation. In all, these data show that ARTDeco is able to discriminate 

between primary induction and read-in genes in a set of differentially expressed 

genes.  

2.4.3 Functional analysis of primary induction and read-in genes  

Read-in genes represent over half (301/545) of all upregulated genes 

despite not being directly activated by IAV infection (Figure 2.4A). Given these 

read-in genes are not directly targeted for activation by the host transcriptional 

machinery and likely not expressed as proteins, it is possible that these genes 

represent biological noise and could dilute the results of functional analyses. With 

this in mind, we assessed the impact of read-in genes on common functional 

analyses such as gene ontology (GO) enrichment (Ashburner et al. 2000). 

Assessing GO enrichment separately on primary induction and read-in genes, we 

found that primary induction genes were strongly enriched for GO terms consistent 

with viral defense and immune response. In contrast, read-in genes showed 

minimal evidence for GO term enrichment, consistent with the hypothesis that 

read-in genes represent transcriptional noise. (Figure 2.4C). We also compared 

these enrichments with the GO enrichment for all upregulated genes, finding that 

inclusion of read-in genes did not identify additional enriched GO terms and diluted 

the fraction of regulated genes in each of the enriched terms relative to just 

analyzing the primary induction genes (Figure 2.4C). Given that GO is incomplete 

and has known biases such as method of investigation, curation practices, and 

authorship, it is possible that read-in genes are not properly functionally annotated 
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(Altenhoff et al. 2012; Thomas et al. 2012). With this in mind, we analyzed the TF 

binding motifs in the promoters of primary induction and read-in genes, reasoning 

that promoter sequences directly activated by the infection should be enriched for 

binding motifs for TFs activated during viral infection. We performed motif-finding 

using HOMER and found that promoters of primary induction genes were enriched 

for interferon-stimulated response elements (ISRE) while promoters of read-in 

genes lacked significant enrichment for TF binding motifs (Figure 2.4D). Together, 

our findings suggest that read-in genes are not directly activated as part of the 

immune response to infection and therefore should be excluded from functional or 

regulatory element analysis when attempting to infer regulatory mechanisms or 

functional responses in systems with readthrough transcription.  

2.4.4 Extension of ARTDeco to other experimental systems and NGS data 

types  

In order to validate ARTDeco on non-IAV datasets, we reanalyzed data 

from heat shock-treatment of NIH 3T3 cells (Vilborg et al. 2017), another stimulus 

known to induce transcriptional readthrough (Figure 2.5A). Similar to IAV data, we 

observed that all global signals of readthrough were elevated (i.e., distribution of 

read-in/readthrough level, DoG length, and DoG expression) (Figure 2.5B-D). 

Next, we assigned primary induction and read-in genes for the heat shock data. 

Similar to IAV, for primary induction genes we found significant GO term and TF 

motif enrichment that was consistent with a heat shock response while no 

significant enrichment was found for read-in genes (Figure 2.5E,F). These results 
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demonstrate that ARTDeco can successfully identify transcriptional readthrough 

and define primary and read-in gene sets in additional datasets, using the 

optimized default parameters determined in IAV infection. 

In order to demonstrate the flexibility and general applicability of ARTDeco 

to different experimental data types, we applied it to two methods that assess 

transcription by measuring RNAPII engagement: RNAPII ChIP-seq and mNET-

seq. RNAPII ChIP-seq directly measures DNA binding of the RNAPII complex, 

while mNET-seq measures nascent transcripts that are associated with the 

RNAPII complex (Nojima et al. 2015). First, we applied ARTDeco to RNAPII ChIP-

seq data from IAV, ΔNS1-, and mock-infected cells (Supplementary Figure 2.6A). 

Consistent with previous analyses, the distribution of readthrough levels reflects a 

defect in termination present in IAV infected samples but not the other two 

conditions, similar to the results generated using total RNA-seq, despite the 

different data type (Figure 2.2B, Supplementary Figure 2.6A). Additionally, we 

found that total RNAseq data was robust to different downstream readthrough 

distances while RNAPII ChIP-seq was not (Figure 2.2A, Supplementary Figure 

2.6A-C). Distributions of readthrough levels with a 5 kb distance were more similar 

between conditions and readthrough was therefore harder to detect on a global 

level compared to analysis using a 10 kb distance (Supplementary Figure 2.6A,B). 

Thus, ARTDeco’s default parameter of a 10 kb downstream readthrough distance 

is flexible with respect to data type. Next, we applied ARTDeco to a published data 

set that used mNET-seq to profile transcription in response to influenza infection 

(IAV H1N1 WSN/33, IAV H1N1 Puerto Rico/8/34, IAV H3N2 Udorn/72, IAV H3N2  
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Figure 2.4. Read-in genes mainly contribute noise to downstream functional 
analysis of differentially regulated genes. a Volcano plot of DESeq2 results for the 
maximum expressed isoform for each gene from IAV-infected macrophages vs. 
Mock-infected controls. Genes were considered up- or down-regulated if they had 
|log2 fold change| > 2 and adjusted p-value < 0.05 as well as FPKM > 0.25. Genes 
were considered primary induction if they were upregulated by this standard and 
had read-in levels < -2. Read-in genes were similarly upregulated but had read-in 
levels > -2. b Heat map of GO enrichment (−log10 p-value) for top 15 GO terms in 
primary induction and read-in genes. c Bar chart of proportion of genes from each 
gene list in a given GO term for top 10 GO terms for primary induction genes, read-
in genes, all upregulated genes, and random 500 genes with expression > 0.25 
FPKM. d HOMER motif enrichments (q-value) for top 3 known motifs in primary 
induction genes expression).  
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Udorn/72: NS1Δ99, and Influenza B virus [IBV] Florida/04/2006) as well as an 

siRNA construct for the CPSF complex, salt shock treatment using KCl, and 

inducible expression of wild-type and mutant NS1 proteins (Bauer et al. 

2018).Consistent with their reported results, we found that cells infected with 

influenza virus, subjected to KCl treatment, or deficient in the CPSF complex had 

higher readthrough levels relative to cells in the mock condition, reflecting 

decreased transcription termination efficiency. Interestingly, we confirmed the 

presence of readthrough transcription in IAV H3N2, which contains a deletion in 

the NS1 protein (Supplementary Figure 2.6D). This is consistent with the 

hypothesis of (Bauer et al. 2018) that cellular stress may drive part of the 

readthrough phenotype in A549 and HEK293 cells. In summary, we show that 

ARTDeco is compatible with multiple NGS data types with different characteristics.  

2.4.5 Reinterpretation of eQTLs identified in data with readthrough 

transcription  

To demonstrate how ARTDeco can improve the analysis of large-scale 

datasets that exhibit signs of readthrough transcription, we used ARTDeco to 

reanalyze RNA-seq profiles from primary human monocytes derived from 200 

individual donors. Within the original study, monocytes from each donor were 

genotyped and infected with IAV (H1N1 strain A/USSR/90/1977) or stimulated with 

individual donors. Within the original study, monocytes from each donor were 

genotyped and infected with IAV (H1N1 strain A/USSR/90/1977) or stimulated with 

lipopolysaccharide (LPS), Pam3CSK4, or R848 in vitro to elicit innate immune 
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responses with the goal of mapping expression quantitative trait loci (eQTLs) 

(Quach et al. 2016). We assessed the presence of readthrough transcription in 

these datasets by quantifying the median readthrough level of the top 1000 

expressed genes as a summary statistic for samples from each donor in each 

condition. This analysis revealed that IAV-infected samples showed significantly 

greater median  

 
Figure 2.5. ARTDeco analysis of readthrough transcription induced by heat shock in NIH 
3T3 cells. a Total RNA-seq levels at the Hsp90aa1 locus in mouse fibroblasts for heat 
shock and mock conditions from (Vilborg et al. 2017). Hsp90aa1 represents the primary 
induction genes while 1700001K19Rik is a read-in gene defined by ARTDeco. b 
Distribution of read-in levels for top 1000 expressed genes following heat shock. c 
Distribution of readthrough levels for top 1000 expressed genes following heat shock. d 
Distribution of DoG lengths in both mock and heat shock conditions. e Heat map of GO 
term enrichment (−log10 p-value) for top 15 enriched GO terms for primary induction and 
read-in genes. f HOMER motif enrichment for primary induction and read-in genes. 
 
readthrough ratios relative to the other stimuli profiled, consistent with the expected 

inhibition of transcription termination in samples infected with IAV (Figure 2.6A). 
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While analyzing IAV samples, we observed that some samples generally 

had higher levels of readthrough transcription than others, prompting us to 

consider whether ARTDeco could be used to quantitatively assess differences in 

global readthrough across samples. For example, samples from donors of 

European origin (EUB) had significantly higher median readthrough ratios than 

samples from donors of African ancestry (AFB) (Figure 2.6B, p < 1e-8, t-test), 

suggesting readthrough ratios may offer a quantitative estimate of the degree to 

which transcription termination is impacted by infection. In order to corroborate 

these observations, we compared the median readthrough level from each sample 

to the expression of viral NS1 RNA in each sample, finding the values to be highly 

correlated (Figure 2.6C, r2 = 0.53, p < 1e-33). NS1 mRNA levels are likely 

correlated with other aspects of infection, including the efficiency of viral entry, viral 

replication rates, and antiviral host responses, and it was noted in the original study 

that AFB samples showed higher expression of immune response genes such as 

chemokines and cytokines and thus were likely more resistant to infection (Quach 

et al. 2016). However, given the fact that NS1 is both necessary and sufficient to 

inhibit transcription termination (Bauer et al. 2018; Heinz et al. 2018), the 

correlation between readthrough transcription levels and NS1 expression is 

consistent with the molecular functions of the viral protein.  

In view of the widespread evidence for readthrough transcription in the IAV-

infected samples, we hypothesized that eQTLs that map to genes aberrantly 

transcribed by readthrough transcription (i.e. read-in genes) may be regulating 

transcription in upstream regions rather than directly controlling transcription 
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activation of the eQTL-associated read-in gene (Figure 2.6D). Using our list of 

inferred primary induction and read-in genes, we reexamined eQTLs (as inferred 

in the original analysis) defined in IAV-infected conditions. We hypothesized that 

eQTLs mapping to read-in genes would also map to upstream genes that serve as 

the source of readthrough transcription, while eQTLs mapping to primary induction 

genes would be more likely to map near or within the gene itself. We found that 

9/32 (28%) of eQTLs mapping to ARTDeco-defined read-in genes also mapped to 

their upstream genes, while none of the eQTLs mapping to primary induction 

genes also mapped to their upstream genes (Figure 2.6E, p < 1e-3, Fisher’s Exact 

Test, Supplementary Table 3). For example, in the case of the read-in gene 

SCN1B, the SNP rs2651133 was also assigned as eQTL to its upstream gene, 

GRAMD1A, in the IAV condition (Figure 2.6F). This SNP falls near a promoter-

distal enhancer upstream of GRAMD1A, where it likely influences regulatory 

mechanisms such as TF binding or promoter-enhancer interactions to modulate 

the activity of GRAMD1A. Since the promoter of SCN1B lacks epigenetic evidence 

for activation after IAV infection (Figure 2.6F, bottom), it is likely that the same 

eQTL affects the expression of SCN1B by directly modulating the expression of 

GRAMD1A, which then leads to readthrough transcription into the SCN1B locus. 

These findings underscore the need to be careful when interpreting the functions 

of eQTLs in the presence of readthrough transcription.  

2.5 Discussion  
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Here we present ARTDeco, a framework for comprehensively 

characterizing and quantifying readthrough transcription from NGS data. ARTDeco 

globally quantifies the degree of readthrough transcription using read-in levels, 

readthrough levels, and detection of DoG transcripts. We demonstrate that the 

medians of the read-in and readthrough level distributions for the top-expressed 

genes represent useful summary statistics for characterizing the degree of 

readthrough in a given sample. These measures represent a novel advance in the 

detection of readthrough transcription. ARTDeco expands upon existing methods 

for DoG transcript discovery by allowing the discovered transcripts to extend into 

annotated gene bodies to avoid arbitrary truncation (Melnick et al. 2019; Wiesel, 

Sabath, and Shalgi 2018). This allows for a more precise quantification of 

readthrough as well as more representative transcripts from large regions of 

transcriptional readthrough that extend through multiple genes (Figure 2.1B). 

ARTDeco’s approach is robust to multiple data types including RNA-seq, mNET-

seq, and RNAPII ChIPseq (Figures 2.2, 2.6, Supplementary Figure 2.6) making it 

a versatile tool for the characterization and detection of transcriptional 

readthrough. Additionally, it requires less preprocessing and has a nearly 2-fold 

faster runtime than DoGFinder and a nearly 5-fold faster runtime than Dogcatcher 

(Supplemental Methods; Table 2.1). ARTDeco’s flexibility and performance in 

addition to its novel measures of readthrough transcription represent a significant 

advance in analytical tools for studying defects in transcription termination.  

In addition to global quantification of readthrough transcription, ARTDeco 

provides per-gene quantification. This provides an opportunity to study 
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readthrough at the level of single genes in the context of both downstream 

readthrough and upstream read-in. The quantification of read-in levels can also 

enable the deconvolution of gene expression in systems with transcriptional 

readthrough. Additionally, each method of readthrough quantification enables us 

to pinpoint loci of interest in order to study the effects of readthrough on the 

epigenome and genome structure. Many of the mechanisms of how these changes 

occur are still unclear. For example, change in genome 3D structure due to 

transcriptional readthrough has been noted in both IAV infection and heat shock 

(Cardiello, Goodrich, and Kugel 2018; Heinz et al. 2018). Using readthrough levels 

and DoG transcripts, we may be able to better characterize the specific loci that 

are affected. This would lend great insight into how the mechanism of transcription 

induces these changes in genome 3D structure and epigenetic regulation.  

An open question is what determines the level of readthrough. Work in 

HSV-1 infection suggests that sequence context at the TTS is a more important 

determinant of readthrough than expression level (Hennig et al. 2018). ARTDeco’s 

quantification of readthrough levels could potentially lend insight to this and hint at 

potential mechanisms. Additionally, it has been posited that readthrough has an 

effect on the expression of downstream genes via mechanisms such as 

transcriptional interference (Greger and Proudfoot 1998; Shearwin, Callen, and 

Egan 2005). It remains unclear to what degree this impacts transcriptional 

regulation and gene expression writ large. Quantification of read-in level allows us 

to more directly measure these effects by elucidating the relationship between 

upstream readthrough transcription and gene expression. 
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Figure 2.6. ARTDeco analysis of donor monocytes infected with IAV reveals that eQTLs 
mapping to read-in genes also frequently map to upstream genes. a Distribution of median 
readthrough levels for top 1000 expressed genes for all samples from Quach et al. (2016). 
Grouped by treatment condition. b Distribution of median readthrough levels for top 1000 
expressed genes for IAV samples from Quach et al. (2016). Grouped by population of 
origin. c Scatter plot comparing median readthrough level of top 1000 expressed genes 
with proportion of reads mapping to IAV NS1 gene (r2 = 0.53, p < 1e-33). d Schematic of 
two eQTL assignments that are difficult to interpret when readthrough transcription is 
present. On the top, a SNP is assigned as an eQTL for both the upstream gene and the 
read-in gene. On the bottom, a SNP located in the upstream gene is assigned as an eQTL 
for the read-in gene only. The first case represents eQTLs that may modulate the 
expression of the read-in gene by changing the expression of the upstream gene. e Bar 
chart showing the number of eQTLs mapped by Quach et al. (2016) to genes assigned as 
read-in and primary induction genes. eQTLs are classified as either mapping to the 
upstream gene as outlined in 6B or not mapping to the upstream gene. Enrichment was 
computed using Fisher exact test (p < 0.001). f Example of an eQTL (rs2661133) mapped 
by Quach et al. (2016) that maps to both a read-in gene (SCN1B) and the upstream gene 
(GRAMD1A) in IAV-infected samples. Genome browser tracks corresponding to mRNA 
from an African Belgian (AFB) and a European Belgian (EUB) from IAV-infected and non-
stimulated (NS) conditions as well as total RNA and H3K27ac for IAV infection from Heinz 
et al. (2018). The readthrough region is outlined in the black box. 
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A novel function of ARTDeco is the identification of read-in genes. To our 

knowledge, it is the first software tool that is designed to characterize this 

phenomenon. This is important as many functional analyses rely on gene 

expression levels to make inferences (e.g., differential expression, co-expression, 

etc.) and read-in genes represent a potential source of noise when employing 

these techniques. We demonstrated the ability to confidently identify read-in genes 

from NGS profiling data, and showed that these genes likely represent noise in 

functional analysis when analyzing differentially regulated genes in two different 

conditions (IAV and heat shock). Our analyses underscore the advantage of 

treating these genes as noise rather than a potential false signal in the data.  

We showed that in a population study of transcriptional responses to IAV 

infection that a significant proportion of eQTLs mapping to read-in genes also 

mapped to genes upstream (Figure 2.6C,D). In these cases, readthrough 

transcription is the probable mechanism by which the eQTL influences expression 

for variants mapped to read-in genes. Given the known difficulty of both mapping 

and interpreting the functional impact of these SNPs, it is important to correct for 

transcriptional readthrough when studying gene expression variation in 

populations in the context of systems with disrupted transcription termination. Our 

findings suggest that readthrough transcription analysis should be routinely 

incorporated into population-scale analyses of systems that may contain 

readthrough in order to better interpret eQTLs.  
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Table 2.1. Run time comparison for DoGFinder, Dogcatcher, and ARTDeco 

Task Number of 
Runs 

Average Run Time 
(s) 

ARTDeco Full 10 1095.76 

ARTDeco DoG Mode 10 982.83 

Dogcatcher Preprocessing 10 1307.25 

Dogcatcher (no differential 
expression) 

10 4085.60 

Dogcatcher (with differential 
expression) 

10 4593.81 

DoGFinder Preprocessing 10 982.71 

DoGFinder 10 1065.85 

 

2.6 Conclusions  

Readthrough transcription is an emergent phenotype that has been 

characterized in several systems including IAV infection, HSV-1 infection, heat 

shock, salt stress, senescence and renal carcinoma (Bauer et al. 2018; Cardiello, 

Goodrich, and Kugel 2018; Grosso et al. 2015; Heinz et al. 2018; Hennig et al. 

2018; Muniz et al. 2017; Rutkowski et al. 2015; Vilborg et al. 2015, 2017). Given 
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its relative novelty, it is likely that more stresses cause defects in transcription 

termination, and this phenotype may be more common than previously thought. 

The use of median readthrough level for top expressed genes as a summary 

statistic greatly aids discovery of these stresses. Further, ARTDeco can be used 

to analyze systems where components of the transcription termination machinery 

are knocked out in order to further analyze mechanisms of termination. In all, 

ARTDeco will aid future researchers by providing a systematic characterization of 

readthrough transcription.  

2.7 Availability and requirements  

Project name: ARTDeco.  

Project home page: https://github.com/sjroth/ARTDeco  

Operating system(s): Platform independent.  

Programming language: Python.  

Other requirements: Python 3.6, BEDOPS 2.4 or higher, bx-python 0.8 or higher, 

DESeq2 1.2 or higher, HOMER 4.9 or higher, NetworkX 2.2 or higher, NumPy 1.16 

or higher, Pandas 0.24 or higher, rpy2 2.9, RSeQC 3.0 or higher, and Samtools 

1.9 or higher.  

License: MIT License.  

Any restrictions to use by non-academics: No restrictions. 

2.8 Availability of data and materials  
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Data from Heinz et al. (2018) was obtained from GEO accession 

GSE103477 (available at https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE103477). Data from Vilborg et al. (2017) was obtained 

from GEO accession GSE98906 (available at 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98906). Data from 

Bauer et al. (2018)  was obtained from NCBI SRA SRP132032 (available at 

https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP132032). Data from Quach 

et al. (2016) was obtained from the EGA accession EGAS00001001895 (available 

at https://www.ebi.ac.uk/ega/studies/ EGAS00001001895). 
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2.10 Supplementary Methods 

2.10.1 NGS data processing 
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Data from Heinz et al. (2018) and Vilborg et al. (2017) were obtained from 

GEO accessions GSE103477 and GSE98906, respectively. Data from Bauer et al. 

(2018) was obtained from NCBI SRA SRP132032. Data from Quach et al. (2016) 

was obtained from the EGA accession EGAS00001001895. Reads from these 

data (and all data types therein) were trimmed using Cutadapt v2.4 (Martin 

2011).  All RNA-seq data was aligned to reference genome using  STAR v. 2.7.0d 

(Dobin et al. 2013). RNA-seq data was either aligned to a combined genome of 

hg38 and Influenza A/Vietnam/1203/2004 (H5N1) HAlo, the mm10 genome, or a 

combined genome of hg38 and Influenza A/A/USSR/90/1977 (H1N1) for data from 

Heinz et al. (2018), Vilborg et al. (2017), and Quach et al. (2016), respectively. 

After alignment, RNA-seq data was processed by ARTDeco (detailed below). 

mNETseq data from Bauer et al. (2018) was aligned to the hg38 genome and 

aligned files were further processed using mNET_snr (Nojima et al. 2016) prior to 

ARTDeco processing. ChIP-seq and Start-seq data was from Heinz et al. (2018) 

was aligned to the hg38 genome using Bowtie2 v. 2.3.5 (Langmead and Salzberg 

2012). Tag directories and peaks were called using HOMER v. 4.10 with the 

exception of RNAPII data which was processed by ARTDeco (detailed below) 

(Heinz et al. 2010). All NGS data were visualized on the UCSC genome browser 

using HOMER makeMultiWigHub.pl (Heinz et al. 2010; Kent 2002). 

2.10.2 ARTDeco data processing 

All RNA-seq data, RNAPII ChIPseq data from Heinz et al. (2018), and 

mNETseq data from Bauer et al. (2018) were run through the standard ARTDeco 
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preprocessing and quantification (outlined above). GTF files from GENCODE 

(Frankish et al. 2019) were used as input (hg38 v28 for data mapped to hg38 [or 

a combined genome containing hg38 and viral genomes] and mm10 vM17 for data 

mapped to mm10). Only gene types in the categories protein_coding, lincRNA, 

bidirectional_promoter_lncRNA, and processed_transcript as defined by 

GENCODE were considered for read-in gene analysis. Chromosome sizes files 

were generated using Samtools (H. Li et al. 2009). For total RNA-seq data from 

Heinz et al. (2018) and Vilborg et al. (2017), read-in genes were called with 

expression of >0.25 FPKM and read-in ratios of > -1 when not using differential 

expression information. When using differential expression information, genes 

were considered upregulated if they had log2 fold change > , p-value < 0.05, and 

FPKM > 0.25. These were assigned as read-in genes if read-in levels were > -2 

for Heinz et al. (2018) and > -1 for Vilborg et al. (2017) and if they fell into the 

above-mentioned gene categories. Thresholds were determined based upon 

benchmarking Heinz et al. (2018) data (described below). DoGs were called using 

default parameters for all datasets.  

2.10.3 Deconvolution of Gene Expression using Read-In Expression 

We took all upregulated genes as called by DESeq2 in the IAV condition 

relative to the mock condition and compared raw and corrected gene expression 

values in the IAV and ΔNS1 conditions. Similar to above, only gene types in the 

categories protein_coding, lincRNA, bidirectional_promoter_lncRNA, and 

processed_transcript as defined by GENCODE were considered. 
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2.10.4 Benchmarking Read-In Gene Inference 

We curated a set of gold standard read-in and promoter-activated/primary 

induction genes using differential expression output from total RNA-seq from Heinz 

et al. (2018). As a positive control for identifying primary induction genes, we used 

data from samples infected with an IAV virus that expresses a truncated NS1 

protein (ΔNS1) that does not cause readthrough transcription. We expected that 

genes considered upregulated in both IAV and ΔNS1 samples represent primary 

induction genes while genes upregulated in IAV samples but not ΔNS1 samples 

represent read-in genes. Differential expression analysis was carried out using 

DESeq2 (Love, Huber, and Anders 2014) as performed in the ARTDeco pipeline. 

Gold standard read-in genes were defined as true positives while gold standard 

promoter-activated/primary induction genes were defined as true negatives for 

performance evaluation. A gold-standard read-in gene was defined as being 

upregulated in IAV relative to ΔNS1 (log2 fold change > 2 and p < 0.05), expression 

in IAV > 0.25 FPKM, and expression in ΔNS1 < 0.5 FPKM while having no 

promoter-proximal H3K27ac or RNAPII ChIP-seq peaks. Promoter-activated 

genes (true negative when not using differential expression to infer read-in genes) 

were defined as having expression in IAV > 0.25 FPKM and having both H3K27ac 

and RNAPII ChIP-seq peaks near/on the promoter. Primary induction genes (true 

negative when using differential expression to infer read-in genes) were defined 

as upregulated in both IAV and ΔNS1 relative to the mock condition (log2 fold 

change > 2 and p < 0.05) with expression in both IAV and ΔNS1 above 0.25 FPKM 

and having promoter-proximal H3K27ac and RNAPII ChIP-seq peaks. 
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We computed various measures of performance such as false positive rate 

(FPR), false negative rate (FNR), false discovery rate (FDR) and F1 score. These 

were calculated as follows: 

 
where true positives (TP) are correctly assigned read-in genes, false positives (FP) 

are incorrectly assigned read-in genes, true negatives (TN) are correctly assigned 

primary induction genes, and false negatives (FN) are incorrectly assigned primary 

induction genes. We then varied parameters such as log2 fold change, p-value, 

and read-in level to test the ability of ARTDeco to infer read-in genes both with and 

without differential expression information included. 

2.10.5 Functional analysis of read-in genes 

Read-in genes were inferred using differential expression as described 

above for both the Heinz et al. (2018) and Vilborg et al. (2017) data. Gene ontology 

(GO) enrichment was performed using GOATOOLS (Klopfenstein et al. 2018) on 

read-in and primary induction genes. Additionally, motif enrichment of promoters 

was performed using HOMER (Heinz et al. 2010). 

2.10.6 DoGFinder and Dogcatcher DoG Comparison 
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DoGFinder (Wiesel, Sabath, and Shalgi 2018) and Dogcatcher (Melnick et 

al. 2019) were run in “window mode” with a window of 500 bp and coverage of 0.6 

using both IAV replicates. DoGs discovered using DoGFinder in each replicate 

were combined using the Union_DoGs_annotation function. DoGs discovered 

using Dogcatcher were combined using the 2.5_Dogcatcher_filter.py script. The 

characteristics of DoGs discovered by DoGFinder (i.e., identity, length, epigenomic 

signatures of transcription elongation) were compared to the set of combined 

ARTDeco DoGs for both IAV replicates in order to assess similarities and 

differences in transcript detection. Random DoG regions were generated using 

bedtools to shuffle genomic locations of DoGs discovered by ARTDeco in IAV 

replicates (Quinlan and Hall 2010). Per base coverage of DoGs was computed 

using bedtools coverage (Quinlan and Hall 2010). 

2.10.7 DoGFinder and Dogcatcher Runtime Comparison 

DoGFinder, Dogcatcher and ARTDeco were each run 10 times on mock, 

IAV, and ΔNS1 in order to assess runtime. All runs were performed on 50 Intel 

Xeon E5-2697 v3 @ 2.60GHz CPUs. DoGFinder was run in two stages. First, 

preprocessing was performed on these BAM files in order to ensure proper 

formatting for DoGFinder and Dogcatcher. A Snakemake workflow (Köster and 

Rahmann 2018) that combined custom scripts and Samtools (H. Li et al. 2009) 

was implemented for both DoGFinder and Dogcatcher to convert the BAM files to 

SAM files, switch strand orientation, sort the SAM files, and index the resulting 

BAM files. BAM files were converted into bedGraphs using bedtools (Quinlan and 
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Hall 2010) for Dogcatcher preprocessing in addition to the above steps. Then, 

DoGFinder was performed as detailed above with the addition of generating 

expression data for each set of DoGs discovered for each experiment as well as 

all DoGs (as discovered by Union_DoGs_annotation) using the Get_DoGs_rpkm 

function. ARTDeco was run as described above in both full mode (i.e., using all 

functions including read-in gene inference and differential expression) and in DoG 

discovery mode. Dogcatcher was run with and without differential expression (i.e., 

including or excluding the following scripts 

3.0_Create_R_subread_DESeq2_script.py, 

4.0_Dogcatcher_Rsubread_DESeq2.py, and 5.0_filter_sig_DESeq2.py. 
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2.11 Supplementary Figures 

Supplementary Figure 2.1 Basic outline of ARTDeco data processing (a) Basic 
flowchart of ARTDeco functions. Program inputs are BAM files, a GTF file, and a 
chromosome sizes file as well as optional inputs for differential expression modes 
comprised of a meta file and a comparisons file. Data files are preprocessed into HOMER 
tag directories, a condensed gene annotation BED, and intergenic (read-in and 
downstream) BED files. From here, ARTDeco can compute read-in and readthrough 
statistics (left branch) or detect DoGs. Read-in levels for genes are used for DoG transcript 
discovery (details in Methods). (b) Schematic depicting the regions used to quantify read-
in levels, readthrough levels, and DoG transcript discovery for each gene (maxlen is 15 kb 
by default). Examples of each region and total RNA-seq levels during IAV infection are 
depicted for the IFIH1 locus. 
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Supplementary Figure 2.2 Deconvolution of gene expression for upregulated genes in IAV 
relative to mock. (a) Uncorrected expression for IAV replicate 1 and ΔNS1 replicate 1. 
(r = 0.72; p < 1e-77) (b) Corrected expression for IAV replicate 1 and ΔNS1 replicate 1. 
(r = 0.81; p < 1e-127). 
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Supplementary Figure 2.3 Assessment of Downstream of Gene (DoG) transcripts. (a) Total 
RNAseq and H3K27ac ChIPseq at the IFIH1 locus and DoGs identified by ARTDeco and 
DoGFinder. (b) Venn diagram of all DoGs called by ARTDeco and DoGFinder using both 
IAV replicates using default coverage parameters and a sliding window of 500 bp. (c) 
Distribution of DoG lengths for DoGs called by ARTDeco and DoGFinder. (d) Distribution 
of RNA-seq FPKM values for DoGs identified by ARTDeco and DoGFinder. (e) Distribution 
of RNA-seq read coverage for DoGs identified by ARTDeco and DoGFinder. (f) Log2 
FPKM H3K36me3 occupancy for DoGs assigned by ARTDeco and DoGFinder as well as 
random regions. (g) Log2 FPKM RNAPII s2p occupancy for DoGs assigned by ARTDeco 
and DoGFinder as well as random regions. 
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Supplementary Figure 2.4 Examples of primary induction and read-in genes from IAV-
infected macrophages. (a) Example of a gold standard true positive (read-in) gene 
(RNF144A). Gene expression is upregulated in IAV relative to ΔNS1 and mock with low 
(> 0.5 FPKM) expression in ΔNS1. Additionally, there are no RNA PolII and H3K27ac ChIP-
seq peaks (as called by HOMER) at the promoter regions. (b) Example of gold standard 
true negative (primary induction) gene (TNFSF13B). Gene expression is upregulated in 
IAV and ΔNS1 relative to mock. Additionally, there are both RNA PolII and H3K27ac peaks 
(as called by HOMER) at the promoter region indicating transcription initiation. (c) 
Benchmarking of ARTDeco performance for inference of read-in genes using false positive 
rate (FPR), false negative rate (FNR), false discovery rate (FDR), and F1 score while 
varying DESeq2 log2 fold change. Values for adjusted p-value, FPKM, and read-in level 
are 0.05, 0.25 and 0, respectively. (d) Benchmarking for ARTDeco performance for 
inference of read-in genes using FPR, FNR, FDR, and F1 score while varying read-in level. 
Values for log2 fold change, adjusted p-value, and FPKM are 2, 0.05, and 0.25, 
respectively. 
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Supplementary Figure 2.5 Evaluation of read-in gene identification without using a control 
condition. (a) Benchmarking for ARTDeco performance for inference of read-in genes 
without differential expression while varying read-in level. Gene expression is > 0.25 
FPKM. (b) Example of a gene (MON2) that was marked as a read-in gene despite being 
initiated. There is substantial readthrough originating from the upstream gene USP15. 
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Supplementary Figure 2.6 Analysis of RNAPII ChIP-seq and mNet-seq data using 
ARTDeco. (a) Distribution of readthrough levels for IAV, ΔNS1, and mock for top 1000 
expressed genes based on ARTDeco’s analysis of RNAPII ChIP-seq data (instead of RNA-
seq data) using the default 10 kb downstream readthrough distance. (b) Distribution of 
readthrough levels for IAV, ΔNS1, and mock for top 1000 expressed genes based on 
ARTDeco’s analysis of RNAPII ChIP-seq data using a 5 kb downstream readthrough 
distance. (c) Distribution of readthrough levels for IAV, ΔNS1, and mock for top 1000 
expressed genes based on ARTDeco’s analysis of total RNA-seq data using a 5 kb 
downstream readthrough distance. (d) Distribution of readthrough levels for mNET-seq 
data from Bauer et al. (2018) for top 1000 expressed genes. Cell types are denoted in 
legend as A549 and HEK293. Treatment conditions are as follows: IAV H1N1 WSN/33, 
IAV H1N1 Puerto Rico/8/34, IAV H3N2 Udorn/72, IAV H3N2 Udorn/72: NS1Δ99, Influenza 
B virus [IBV] Florida/04/2006, KCl, wildtype and mutant NS1 proteins, siLUC, and siCPSF. 
Conditions where readthrough was observed in the original analysis conducted by Bauer 
et al. (2018) have distribution curves with higher opacity. 
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CHAPTER 3: ANALYSIS OF READTHROUGH TRANSCRIPTION IN 
NGS DATASETS ENABLES IDENTIFICATION OF VIRALLY-INDUCED 

DEFECTS OF TRANSCRIPTION TERMINATION 
 

3.1 Abstract  

Host-pathogen interactions are an essential part of disease progression 

during viral infections. Two viruses (influenza A virus [IAV] and herpes simplex 

virus 1 [HSV-1]) are known to induce defects of transcription termination (DoTT). 

This causes the expression of novel transcripts, epigenomic remodeling, and 

changes in 3D chromatin structure. We hypothesized that this phenotype was not 

limited to these viruses and searched publicly available data for virally-infected 

systems with DoTT. We find evidence of significant DoTT for the first time in three 

additional viruses: Rift Valley Fever virus (RVFV), Zika virus (ZIKV), and Sindbis 

virus (SINV). We then investigated the cause of this phenotype in RVFV by 

expressing in vitro-transcribed (IVT) mRNA for the viral NSs protein in THP-1 

monocytes. Expression of NSs revealed evidence of DoTT as well as a 

downregulation of host immune response genes. In all, we establish a pipeline for 

the discovery and validation of both the presence and mechanism DoTT in a novel 

system. This will enable future researchers to identify more viruses that induce 

DoTT and further characterize the causes and consequences of this phenotype. 

3.2 Introduction  

One key aspect of understanding disease progression and 

cytopathogenesis during viral infection is the characterization of host-pathogen 
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interactions in the context of host gene expression. Host cells express genes 

encoding interferons (IFNs), pro-inflammatory cytokines, and chemokines in 

response to detection of acute viral infection (Rai et al. 2021; Chen et al. 2018; 

Iwasaki and Pillai 2014). Several viruses have evolved strategies to evade this 

host IFN response including shutdown of host transcription and/or translation 

(García-Sastre 2017; Lyles 2000; Rai et al. 2021). Understanding and 

characterizing these strategies can lead to the discovery of druggable viral targets. 

 One understudied phenotype has been virally-induced DoTT. In normal 

conditions (i.e., without DoTT), RNA polymerase II (RNAPII) elongates along the 

gene body and encounters a polyadenylation site (PAS), which causes a 

conformational change and recruitment of the cleavage and polyadenylation (CPA) 

machinery (Licatalosi et al. 2002). The CPA complex associates with the C-

terminal domain (CTD) of RNAPII and the nascent pre-mRNA is released for 

further mRNA processing and maturation (H. Zhang, Rigo, and Martinson 2015). 

In systems with DoTT, RNAPII is not properly released from the DNA and 

transcription extends beyond the annotated transcription termination site (TTS) 

(called readthrough transcription). 

DoTT has a variety of effects on the host cell. Among these are changes in 

3D chromatin structure, opening of chromatin, and increase in transcription factor 

binding (Hennig et al. 2018; Heinz et al. 2018). Additionally, mRNAs that undergo 

readthrough transcription are not processed properly and are not exported out of 

the nucleus and translated (Rutkowski et al. 2015; Heinz et al. 2018). In traditional 
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gene expression analyses using RNA-seq, these mRNAs represent analytical 

noise. The degree to which DoTT and readthrough transcription contribute to viral 

pathogenesis is poorly understood. In order to address these concerns and further 

characterize DoTT, our lab recently developed a software tool called ARTDeco 

that can identify and quantify readthrough transcription in systems with DoTT 

(Roth, Heinz, and Benner 2020). 

Two viruses, IAV and HSV-1 are known to induce DoTT via similar 

mechanisms (N. Zhao et al. 2018; Rutkowski et al. 2015; Heinz et al. 2018; Bauer 

et al. 2018; Hennig et al. 2018; X. Wang et al. 2020). In IAV, the NS1 protein binds 

to the CPSF30 subunit of the CPSF and prevents recognition of the PAS (Nemeroff 

et al. 1998). In HSV-1, the ICP27 protein physically associates with many different 

subunits of the CPSF (CPSF160, CPSF100, CPSF73, CPSF30, Wdr33, and Fip1) 

in order to disrupt host transcription termination as well as aid in viral 3’ mRNA 

processing (X. Wang et al. 2020). To date these are the only two viruses with 

validated mechanisms for inducing DoTT. Despite this shared phenotype, little else 

is similar between the two viruses. However, notably, both viruses engage in host 

transcription shutoff in order to evade host immune defenses (He et al. 2020; 

Khaperskyy and McCormick 2015; Bercovich-Kinori et al. 2016) 

 RVFV is a single-stranded, ambisense RNA virus known to infect animals 

(cattle, goats, and sheep), insects (mosquitoes), and humans (Davies and Martin 

2006; Petrova et al. 2020). In livestock, the contraction of the virus can be fatal 

and is known to cause spontaneous abortion in pregnant animals (Glyn Davies, 
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Martin, and Food and Agriculture Organization of the United Nations 2003). In 

humans, it can cause a range of symptoms ranging from mild flu-like symptoms to 

liver failure, retinal hemorrhage, and CNS dysfunctions typical of a hemorrhagic 

fever (Petrova et al. 2020; Glyn Davies, Martin, and Food and Agriculture 

Organization of the United Nations 2003). Similar to IAV and HSV-1, RVFV causes 

host transcription shutoff (Billecocq et al. 2004). Currently, only one genome-wide 

transcriptomic study of cells infected with RVFV exists and the effects of infection 

on host transcription have not been fully investigated (de la Fuente et al. 2018).  

Here we use ARTDeco to screen public datasets in NCBI’s Gene 

Expression Omnibus (GEO) in order to identify viruses that cause DoTT. We find 

several viruses that show evidence of DoTT. Of these, we proposed and validated 

a mechanism of DoTT for RVFV by expressing IVT mRNA of its NSs protein into 

THP-1 monocytes and then performing total RNA-seq. We characterize both 

patterns of readthrough transcription as well as host IFN shutoff and compare 

these phenotypes to those induced by expression of IAV NS1 protein. We find that 

global patterns of readthrough transcription are similar between both proteins 

indicating that they both inhibit transcription termination similarly.  We also 

examined their effect on gene expression and found that they inhibit distinct sets 

of immune response and IFN-stimulated genes (ISGs). 

3.3 Methods 

3.3.1 Computational screening for DoTT, data processing, and bioinformatic 

analysis 
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Figure 3.1. ARTDeco can measure and identify readthrough transcription. A. Diagram of 
normal transcription termination and how viral proteins induce DoTT by interfering with 
cleavage and polyadenylation (CPA) machinery. B. Schematic of the three measures of 
readthrough transcription as defined by ARTDeco. The read-in and readthrough levels are 
the log2 ratio of reads mapping to an upstream “read-in” or downstream “readthrough” 
regions (respectively) to reads mapping to the gene body. Downstream of gene (DoG) 
transcripts are regions of continuous transcript coverage downstream of the annotated 
TTS. C. Proposed pipeline for utilizing publicly available NGS data to discover systems 
with readthrough transcription in the context of viral infection. 
 

 Data for cells infected with Rift Valley Fever Virus, Zika virus, Sindbis virus, 

and Ebola virus were downloaded from NCBI’s GEO database (accessions in 

table). Raw fastq files were trimmed for adapters using Cutadapt v2.4. Then, it was 

aligned using STAR v. 2.7.0d to either the hg38 reference genome or a 

concatenation of the hg38 and the virus genome in samples with viral infection 

(references in table). Aligned files were then processed using ARTDeco with 

default parameters in readthrough mode using the GENCODE v31 gene 
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annotation (Frankish et al. 2019). Only genes in the categories protein_coding, 

lincRNA, bidirectional_promoter_lncRNA, and processed_transcript as defined by 

GENCODE were considered for analysis of global patterns of readthrough (i.e., 

readthrough levels of top 1000 genes). Datasets were considered to have DoTT if 

infected samples showed higher readthrough levels than mock samples. This 

same processing pipeline was used for data generated in total RNA-seq 

experiments (outlined below).  

Clustering of both readthrough levels and gene expression values was 

performed using the Python package Seaborn and its clustermap function 

(Waskom 2021). All NGS data were visualized on the UCSC genome browser 

using HOMER makeMultiWigHub.pl. GO analysis on gene sets was performed 

using Metascape. Motif analysis of gene promoters was performed using HOMER 

findMotifs.pl. 

3.3.2 Generation of IVT mRNAs 

 We generated IVT mRNAs for the NS1 and NSs viral proteins from IAV and 

RVFV, respectively, as well as EGFP as a control. NS1 IVT mRNA was the same 

as that used in Heinz et al. (2018) and was generously provided by Sven Heinz. 

Similarly, EGFP sequence and primers were the same as used in Heinz et al. 

(2018). NSs sequence was codon optimized with a C-terminal HA tag using the 

IDT Codon Optimizer. NSs IVT mRNA was generated using a T7-promoter 

containing DNA template which was amplified using NS1_T7_f/NS1_T7_r primers. 

PCR products were phenol:chloroform extracted and resulting template was 
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transcribed using mMESSAGE mMACHINE™ T7 Transcription Kit (Invitrogen). 

IVT mRNA was extracted using MEGAClear Transcriptional Clean Up Kit (Ambion) 

and treated with Calf Intestinal Alkaline Phosphatase (NEB). Resulting mRNA was 

then purified using phenol:chloroform:isoamyl alcohol (Invitrogen).  

3.3.3 Electroporation 

 We introduced viral mRNAs (and EGFP) into cells via electroporation. We 

used 3M THP-1 cells per electroporation. Cells were pelleted by centrifugation (8 

minutes at 1200 rpm at room temperature) and washed with 10 mL OPTIMEM 

twice. Cells were electroporated in 200 𝛍L OPTIMEM in a 4 mm cuvette using a 

Gene Pulser Xcell (Bio-Rad) with a rectangular pulse of 400 V and 5 ms duration 

to deliver 3 𝛍g of NSs and EGFP IVT mRNA and 9 𝛍g of NS1 IVT mRNA. Cells 

were transferred to a pre-warmed 6 well plate with 3 mL of media (RPMI-1640 

containing 10% low-endotoxin FBS (Peak Serum Inc.), 1x (100 μM) non-essential 

amino acids (Life Technologies), 1x MEM Sodium Pyruvate Solution (1 mM) (Life 

Technologies), 1x GlutaMax I (Life Technologies), 50 μM β-mercaptoethanol (Life 

Technologies) and allowed to incubate for 6 hours at 37℃, 5% CO2, 100% 

humidity. For NS1, NSs, and one EGFP sample, media was treated with 500 units 

of IFN-β per mL of media with another EGFP sample left untreated as a control. 

After incubation, 0.5M cells were reserved for Western blot verification of protein 

expression using anti-NS1 and anti-HA antibodies for NS1 and NSs proteins, 

respectively. 

3.3.4 RNA-sequencing and library preparation 
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 After electroporation, cells were lysed using Trizol LS (Thermo). RNA was 

isolated using Direct-zol RNA Miniprep kit (Zymo Research) according to 

manufacturer’s instructions. Library preparation and sequencing were performed 

by UCSD’s IGM Genomics center. 

Table 3.1 Reagents 

Reagent Source Identifier 

Human IFN-β R&D Systems Cat# 11415-1 

Calf Intestinal Alkaline Phosphatase NEB M0290S 

UltraPure Phenol:Chloroform:Isoamyl Alcohol Invitrogen Cat# 
15593031 

Direct-zol RNA MiniPrep Zymo 
Research 

R2050 

MEGAClear Transcription Clean-up Kit Ambion AM1908 

Human: Cell line THP-1 ATCC TIB-202 

mMESSAGE mMACHINE™ T7 
Transcription Kit 

Invitrogen AM1344 

Q5® Hot Start High-Fidelity 2X Master Mix NEBNext M0494S 
 
Table 3.2 GEO Accessions 

Data set Study GEO Accession 

Rift Valley Fever Virus de la Fuente et al. (2018) GSE102481 

Zika Virus Carlin et al. (2018) GSE118305 

Sindbis Virus Garcia-Moreno et al. (2019) GSE125182 

Ebola Virus Smith et al. (2017) GSE100839 
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Table 3.3 Viral Genome Accession 

Virus GenBank Accession(s) 

Rift Valley Fever Virus MP-12 
Strain 

DQ380154.1, DQ375404.1, 
DQ380208.1 

Rift Valley Fever Virus ZH-548 
Strain 

DQ380206.1, DQ375407.1, 
DQ380151.1 

Zika Virus KU955593.1 

Sindbis Virus NC_001547.1 

Ebola Virus AF086833.2 
 

3.4 Results 

3.4.1 Screening of publicly available data reveals evidence for more virally-

induced DoTT 

 Our lab previously developed a software tool for identifying and 

characterizing systems with DoTT called ARTDeco (Roth, Heinz, and Benner 

2020). In brief, ARTDeco measures the amount of readthrough transcription in a 

given system using three different metrics (read-in level, readthrough level, and 

downstream of gene [DoG] transcripts). Our previous results indicated that the 

distribution of readthrough levels among the top 1000 expressed genes is a good 

measure of DoTT in a system as well as being robust to data type (Roth, Heinz, 

and Benner 2020). Given these observations, we deployed ARTDeco as a 
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discovery tool for identifying systems with readthrough transcription (schematically 

outlined in Figure 3.1). 

 
Figure 3.2. Distribution of readthrough levels in top 1000 expressed genes in publicly 
available datasets. Distribution of the readthrough levels of the top 1000 expressed genes 
in RVFV (A), ZIKV (B), and SINV (C) indicate presence of readthrough transcription while 
it does not for Ebola virus (D).  
 

Two highly dissimilar viruses (IAV and HSV-1) are known to cause DoTT 

(N. Zhao et al. 2018; Rutkowski et al. 2015; Heinz et al. 2018; X. Wang et al. 2020; 

Bauer et al. 2018; Hennig et al. 2018). Thus, we hypothesized that other viruses 

also cause this phenotype. We focused our search on viruses that induce host 

transcription shutoff as this is one of the only commonalities between IAV and 

HSV-1 infections but also screened other viruses for completeness (Khaperskyy 

and McCormick 2015; He et al. 2020). With this in mind, we utilized ARTDeco to 
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screen virally-infected systems with data in the NCBI GEO database to see if host 

DoTT was induced (Barrett et al. 2013) (Figure 3.1C). 

We found evidence of DoTT in total RNA-seq experiments for three 

separate viruses: RVFV, Zika virus (ZIKV), and Sindbis virus (SINV) (de la Fuente 

et al. 2018; Carlin et al. 2018; Garcia-Moreno et al. 2019). These are genetically 

diverse viruses with RVFV being a phlebovirus while ZIKV and SINV belong to the 

flavivirus and alphavirus genuses, respectively (Ikegami 2012; Musso and Gubler 

2016; Adouchief et al. 2016). Importantly, all three of these viruses induce host 

transcription shutoff in infected cells (Billecocq et al. 2004; Akhrymuk, Kulemzin, 

and Frolova 2012; Fros and Pijlman 2016; Carlin et al. 2018). All viruses showed 

more readthrough at later timepoints in infection conditions relative to the mock 

condition (i.e., no infection) (Figures 3.2A-C,3.3). ZIKV samples were sorted by 

infection status (i.e., infected cells vs. bystander cells) and only infected cells at 24 

hours post virus treatment showed signs of DoTT (Carlin et al. 2018) (Figure 

3.2B,3.3B). This is consistent with readthrough transcription resulting from viral 

infection rather than a technical artifact. In addition to viruses that show evidence 

of readthrough transcription, we found that many viruses (e.g., ARPE-19 cells 

infected with Ebola virus from Smith et al. (2017) in Figure 3.2D) showed no 

evidence of this phenotype. This indicates that while readthrough transcription is 

more common in viruses than previously appreciated, it is not a universal 

phenotype. In all, we show that ARTDeco can be deployed as a tool for discovery 

of DoTT and identify three viruses with the readthrough transcription phenotype.  
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3.4.2 Expression of RVFV NSs protein results in readthrough transcription 

After identifying DoTT in these viruses, we then sought to discover the 

mechanism for DoTT. We chose to focus on RVFV as we were able to identify its 

NSs protein as a strong candidate for the cause of this phenotype. We chose the 

NSs protein because it has been implicated in host transcription and translation 

shutoff processes during RVFV infection and is localized to the nucleus (Billecocq 

et al. 2004; Ly and Ikegami 2016). Additionally, it is known to interfere with mRNA 

export (similar to the NS1 protein in IAV) (Copeland, Van Deusen, and Schmaljohn 

2015). Because of these phenotypes, we hypothesized that NSs was the cause of 

readthrough transcription in RVFV. In order to test our hypothesis, we expressed 

NSs in THP-1 monocytes via electroporation of IVT mRNAs (Figure 3.4A). This 

approach is similar to both previous work in our lab where we expressed NS1 to 

examine the effects of readthrough transcription on the transcriptome and 

epigenome of THP-1 cells and the Pfizer and Moderna mRNA vaccines which lead 

to expression of the SARS-CoV-2 spike protein (Heinz et al. 2018; Sahin et al. 

2020; Jackson et al. 2020). Briefly, we generated NS IVT mRNA, electroporated 

them into cells treated with IFN-β, and subsequently performed total RNA-seq. In 

addition to treating with NSs, we also electroporated in IVT mRNAs for NS1 and 

EGFP to compare NSs to a known cause of readthrough (NS1) as well as a 

negative control (EGFP) (Figure 3.4A). Additionally, we electroporated EGFP into 

THP-1 cells that were untreated in order to control for effects of IFN-β treatment.  
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We observed readthrough transcription in both NS1 and NSs samples 

though no readthrough in EGFP treated samples. NS1-treated cells showed more 

readthrough than NSs-treated cells indicating that it is likely a more potent inhibitor 

of transcription termination, though this may be due to differences in protein  

 

 
Figure 3.3.  UCSC Genome Browser shots for viruses with DoTT. UCSC Genome Browser 
shots of loci exhibiting readthrough transcription in RVFV (A), ZIKV (B), and SINV (C). 
ZIKV cells were sorted by infection status prior to sequencing so ZIKV positive and ZIKV 
negative correspond to infected and bystander cells, respectively.  
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Expression (Figure 3.4B,C).  

Given that we had confirmed our hypothesis that NSs is a cause of DoTT 

in RVFV infection, we sought to examine patterns of readthrough. While NS1 

inhibits PAS recognition and causes global DoTT for polyadenylated genes, it is 

unknown whether RVFV infection induces DoTT on a genome-wide scale or 

targets specific loci (N. Zhao et al. 2018). We clustered the readthrough levels of 

the top 1000 expressed genes from all samples (Figure 3.4C). Much like NS1, NSs 

appears to induce readthrough transcription on a genome-wide level but at a lower 

magnitude than NS1 (Figure 3.4D). 

Next, we wanted to assess which genes experienced substantial 

readthrough transcription. It is currently unknown whether viruses target particular 

groups of genes for disabling termination or if certain genes are more susceptible 

to termination defects. We extracted two major clusters that showed distinct 

patterns of readthrough (Figure 3.4D). The first cluster showed significant 

readthrough for NS1 and the second cluster showed readthrough for both NS1 and 

NSs. We used Metascape to examine functional enrichment among genes in these 

clusters (Zhou et al. 2019). Interestingly, we found that both clusters had highly 

significant enrichment for immune defense genes (Figure 3.4E). The reason for 

this is unknown. It is possible that readthrough transcription is targeting immune 

response programs with a yet undiscovered mechanism. 

3.4.3 Expression of NSs and NS1 leads to distinct patterns of downregulation 

of immune response and ISGs 
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 In addition to examining DoTT caused by NS1 and NSs, we wanted to 

assess the effects of these proteins on host gene expression. Both of these 

proteins have been reported to interact with transcriptional machinery that affects 

transcription initiation in addition to their role in disrupting transcription termination 

and downstream mRNA processing (Nogales et al. 2018; Le May et al. 2004, [a] 

2008). With this in mind, we sought to examine their effects on transcription apart 

from inducing DoTT. We first examined genes that were upregulated in IFN-β-

treated and untreated cells that were electroporated with EGFP mRNA. We saw 

relatively few upregulated genes (considered upregulated with log2 fold change > 

1 and unadjusted p-value < 0.05) (Figure 3.5A). These few genes were primarily 

known ISGs and immune response loci, indicating some activation of IFN 

pathways. Overall, IFN activation appeared modest. 

 We then looked at genes that were downregulated in NS1- and NSs-treated 

cells relative to EGFP-treated cells (with IFN-β). Interestingly, we found more 

downregulated genes in these samples than genes upregulated as a result of 

IFNβ-stimulation (Figure 3.5A). Using Metascape, we examined functional 

enrichments among these genes (Zhou et al. 2019) (Figure 3.5C). Despite largely 

distinct gene sets, both NS1- and NSs-downregulated genes showed significant 

enrichment for immune response pathways (Figure 3.5C). We clustered gene 

expression profiles to verify that these differences were due to distinct patterns of 

host immune gene suppression rather than thresholding effects. Indeed, we 

confirm that these genes have distinct patterns of expression. This suggests that 

NS1 and NSs shutdown host ISG expression in unique ways (Figure 3.5B). 
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NSs shutdown of host gene expression is hypothesized to be due to 

inhibition of TFIIH and, expression of IFN-β-specifically, recruitment of the SAP30 

protein (Le May et al. 2004; Kainulainen et al. 2014; Kalveram, Lihoradova, and  

 
Figure 3.4. Cells expressing NSs show evidence of readthrough transcription. A. 
Schematic of experimental system for testing if viral proteins induce DoTT. Viral (or EGFP) 
IVT mRNAs are electroporated into THP-1 cells treated with IFN-β which are then 
subjected to total RNA-seq. B. Distribution of readthrough levels for the top 1000 
expressed genes for cells treated with NS1, NSs, and EGFP IVT mRNAs. C. Example of 
locus showing readthrough transcription for cells treated with NS1 and NSs. D. Clustering 
of readthrough levels for the top 1000 expressed genes in each experiment. Clusters are 
in the leftmost column. E. Metascape (Zhou et al. 2019) clustering of functional enrichment 
for genes with evidence of readthrough in NS1-treated cells (Blue cluster in D) and 
readthrough in both NS1- and NSs-treated cells (bottom two clusters). 
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Ikegami 2011; Terasaki, Ramirez, and Makino 2016; Le May et al. 2008). We 

wanted to examine whether NS1 and NSs promoter elements have sequence 

motifs that are reflective of shutdown of ISGs. As expected, we found that 

promoters of genes that are downregulated by both proteins contain interferon-

stimulated response elements (ISRE), consistent with the hypothesis that these 

proteins shut down host ISGs (Figure 3.5D). Surprisingly, we found no enrichment 

for YY1 motifs in promoters of genes downregulated by NSs (Figure 3.5D). NSs’s 

interaction with SAP30 is thought to suppress YY1-mediated transcription initiation 

at the promoter region of IFN-β (Le May et al. 2008). It is possible that this is not a 

global mechanism of transcription inhibition, but analyses of transcription initiation 

patterns are necessary to investigate this relationship. 

3.5 Discussion 

Previous analyses of virally-induced DoTT and readthrough transcription 

have focused on one virus or one dataset at a time. Here we outline a pipeline for 

discovery of systems with this phenotype utilizing ARTDeco. Briefly, researchers 

can access public databases such as GEO, dbGaP, TCGA, ENCODE, etc., 

download transcriptomic data, and process it using ARTDeco to assess whether 

DoTT are present. Given the ever increasing amount of data in these databases, 

this represents a high throughput way to search for and characterize systems with 

readthrough transcription. 

 We were able to discover DoTT in three viruses (RVFV, ZIKV, and SINV) 

not previously known to display this phenotype (Figure 3.2A-C). While these were 
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all total RNA-seq datasets, there was remarkable heterogeneity among them. 

While both RVFV and SINV datasets used whole cell populations, the ZIKV dataset 

utilized cell sorting to isolate infected and bystander cells (Carlin et al. 2018).  

 
Figure 3.5. Assessment of differentially regulated genes in response to treatment with IVT 
mRNAs. A. Counts of genes upregulated in EGFP-treated cells with IFN-β treatment 
(relative to without IFN-β treatment), genes downregulated in NS1-treated cells relative to 
EGFP-treated cells, and genes downregulated in NSs-treated cells relative to EGFP-
treated cells. B. Clustering of gene expression of genes downregulated in both NS1- and 
NSs-treated cells relative to EGFP-treated cells. C. Metascape (Zhou et al., 2019) 
clustering of functional enrichments for genes downregulated in NS1- and NSs-treated 
cells relative to EGFP-treated cells. D. Motif enrichments at promoters for genes 
downregulated in NS1- and NSs-treated cells relative to EGFP-treated cells. 
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Additionally, RVFV and SINV datasets were infected at different multiplicities of 

infection (MOI), 5 and 10, respectively (de la Fuente et al. 2018; Garcia-Moreno et 

al. 2019). Finally, all three datasets came from different cell types: human small 

airway epithelial cells (HSAECs) for RVFV, macrophages for ZIKV, and HEK293 

cells for SINV (de la Fuente et al. 2018; Carlin et al. 2018; Garcia-Moreno et al. 

2019).  

In addition to systems where we were able to discover DoTT, we also 

showed an example of a virally-infected system that did not show evidence of this 

phenotype (Ebola virus) (Figure 3.2D). These cells were infected at an MOI of 5 

so it is unlikely that this observation is due to an insufficient infectivity (Smith et al. 

2017). The effects of the Ebola virus on host transcription are largely unknown and 

poorly characterized, however, it is unlikely the induction of readthrough 

transcription is a consequence of infection (Speranza and Connor 2017). This 

demonstrates ARTDeco’s flexibility and ability to identify readthrough transcription 

in a multitude of systems as well as ability to discern systems with DoTT from 

systems without DoTT. Given the remarkable diversity of viruses and viral 

datasets, this is critically important when investigating this phenotype. 

 With the exception of RVFV (discussed below), it is unknown how these 

viruses cause DoTT. Based upon literature review, we hypothesize the 

mechanisms of DoTT in ZIKV and SINV. In ZIKV, the NS5 protein seems like a 

likely candidate for causing readthrough transcription. It localizes to the nucleus 

and is known to interact with gene regulation and RNA processing machinery 



 
 
 

80 
 

(Davidson 2009; Shah et al. 2018). Further, it is directly implicated in host IFN 

shutdown (Davidson 2009; Shah et al. 2018; Z. Zhao et al. 2021). Similarly, in 

SINV, the nsP2 protein is known to localize to the nucleus and inhibit host immune 

response (Fros and Pijlman 2016; Akhrymuk, Kulemzin, and Frolova 2012). 

Interestingly, nsP2 is thought to inhibit host immune responses by disabling host 

transcription entirely by degrading the RBP1 subunit of RNAPII (Akhrymuk, 

Kulemzin, and Frolova 2012). Similarly, Carlin et al. (2018) noted that RNAPII 

levels were lower in ZIKV-infected cells compared to bystander cells. How can 

RNAPII be degraded and simultaneously show signs of DoTT? As observed in 

Carlin et al. (2018), while there may be a global decrease in RNAPII occupancy on 

a genome-wide level, there may still be engaged RNAPII on the genome producing 

transcripts. In fact, this is the case for HSV-1 where ICP27 is known to both induce 

DoTT and degradation of RNAPII (X. Wang et al. 2020; Dai-Ju et al. 2006). Further 

investigation is required to confirm these hypotheses.  

Of the viruses that showed evidence of DoTT in public data, we were able 

to confirm the mechanism in RVFV. By utilizing insights from the available literature 

on the virus, we hypothesized that the NSs protein caused the phenotype. We 

confirmed this hypothesis by expressing NSs in THP-1 cells. To date, this is the 

third viral protein that has been identified to cause DoTT with the other two being 

NS1 in IAV and ICP27 in HSV-1 (Heinz et al. 2018; X. Wang et al. 2020).  It is 

notable that we were able to generate and test our hypothesis that NSs causes 

readthrough transcription without culturing the virus in our facilities. Instead, we 

used ARTDeco to screen publicly available data, examined literature surrounding 
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the biology of the virus, and electroporation of viral mRNAs into cells in order to 

validate the cause of DoTT. This represents a novel discovery approach that is 

similar to how SARS-CoV-2 mRNA vaccines were generated (Sahin et al. 2020; 

Jackson et al. 2020). 

 Our screening platform allowed us to examine the effects of expressing 

viral proteins on both transcription termination as well as general effects on the 

transcriptome. We found that NS1 induced more readthrough transcription than 

NSs did (Figure 3.3B-D). Both proteins caused DoTT on a genome-wide level 

suggesting that NSs disrupts transcription termination through a general 

mechanism rather than a locus-specific one (Figure 3.3B-D).  

We also analyzed the effects of these proteins on host gene expression. 

We found that, consistent with prior observations, both NS1 and NSs inhibit ISGs 

and innate immune response genes (Le May et al. 2004; Kainulainen et al. 2014; 

Terasaki, Ramirez, and Makino 2016; Le May et al. 2008). This is an interesting 

observation as there was an enrichment for immune response in genes that 

showed significant readthrough (Figure 3.4E). Given prior observations indicate 

that transcripts with considerable readthrough are not exported and translated like 

normally processed mRNAs, this suggests that these viruses mount a dual-

pronged attack against host immune response wherein they disable both 

transcriptional activation and transcription termination of host ISGs (Heinz et al. 

2018; Rutkowski et al. 2015). 
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Despite the fact that both viruses disrupted transcriptional activation of 

ISGs and innate immune response genes, genes downregulated by either NS1 or 

NSs were largely distinct (Figure 3.5B). This suggests that NS1 and NSs inhibit 

ISG activation in distinct ways. More experiments are needed to flesh out the 

mechanisms responsible for this difference.  NSs has been hypothesized to 

suppress promoter activation of ISGs via binding to SAP30, but the extent of this 

mechanism is unknown (Le May et al. 2008). To date, this aspect of NSs has not 

been interrogated on a genome-wide level and we have the ability to extend our 

experimental system to incorporate other assays that can address these 

questions. 

 DoTT may be an understudied hallmark of certain viruses. While the 

characterization of this phenotype adds to basic knowledge of viral mechanisms, 

it also represents a potential target for therapeutic interventions. It is unknown how 

cytopathic DoTT is to host cells. If DoTT is part of the host transcription shutoff as 

we hypothesize, perhaps targeting the protein responsible would represent an 

effective treatment. Additionally, if viruses can be engineered to lack DoTT as a 

phenotype, they may make good vaccines. This has already been accomplished 

with IAV so it may be possible to extend it to other viruses (Steel et al. 2009). In 

all, studying DoTT and readthrough transcription provides both mechanistic 

insights into virology as well as a potentially druggable phenotype. 
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CHAPTER 4: PREDICTING FUNCTIONAL INTERACTIONS BETWEEN 
TRANSCRIPTION FACTORS USING CONSECUTIVE ROUNDS OF 

MOTIF ENRICHMENT 
 

4.0 Disclosure 

 This chapter diverges from the previous theme of systems with defects of 

transcription termination (DoTT) and readthrough transcription and instead 

focuses on developing a method for analyzing transcription start site regions 

(TSRs). My work in the Benner Lab has focused on many aspects of transcriptional 

regulation including transcription initiation. While a major portion of the work has 

focused on DoTT, I have also taken an interest in the grammar of transcription 

initiation and worked on various projects that address transcriptional regulatory 

grammar writ large. This chapter is reflective of this aspect of my work. In it, I 

develop a novel method for computing motif co-occurrences that, in addition to 

recapitulating known transcription factor (TF) interactions, offers unique 

interpretational insights into these TF interactions. Thus, this chapter is 

representative of a significant portion of my work.   

4.1 Abstract  

Gene expression is regulated by the combinatorial action of transcription 

factors (TFs). This combinatorial action can be inferred by examining the co-

occurrence of TF binding motifs at regulatory regions. Here we develop a novel 

method of identifying motif co-occurrences that employs consecutive rounds of 

motif enrichment for target sequences against background genomic sequences. 



 
 
 

85 
 

We deploy this method on transcription start site data and find that our method, 

called the Dual HOMER method, is able to recapitulate known interactions 

between TFs better than an approach that does not incorporate motif enrichment. 

Finally, we show that the transcriptional network generated by the Dual HOMER 

network is directional and lends interpretable insight into the grammar of TF 

cooperativity. 

4.2 Introduction  

In the human body, all cells have approximately the same genome, 

however, there are many different cell types with distinct morphology and function. 

These differences are determined by differences in gene expression as influenced 

by cis-regulatory architecture (i.e., promoters, enhancers, and other regulatory 

sequences) (Maston, Evans, and Green 2006). The cis-regulatory architecture is 

determined by the binding of transcription factors (TFs) to regulatory sequences. 

TFs establish cell-type specific regulatory regions by binding sequence motifs 

(hereafter referred to as motifs), opening up compacted chromatin, and allowing 

recruitment of regulatory machinery (Heinz et al. 2015). Once this machinery has 

been recruited, many regulatory regions (i.e., active promoters and active 

enhancers) are transcribed into mRNAs (in the case of promoters at active genes) 

or enhancer RNAs (eRNAs) at enhancers. While there is extensive expression of 

eRNAs across the genome, the precise function and guiding grammar of these 

sites remains largely unknown (Djebali et al. 2012; Andersson et al. 2014; W. Li, 

Notani, and Rosenfeld 2016). 
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 Rather than acting one at a time, TFs act collaboratively (Heinz et al. 2010, 

2015; Zhu, Shendure, and Church 2005). There have been several approaches to 

studying cooperative binding of TFs both experimentally and computationally. 

Experimentally, the most common method for investigating whether two TFs are 

co-bound is chromatin immunoprecipitation with deep sequencing (ChIP-seq) and 

similar methods. For example, the ENCODE project was able to investigate 

patterns of TF binding for a panel of TFs on a number of cell lines (Moore et al. 

2020). However, this approach is highly limited because there are as many 1500 

TFs encoded in the human genome and the most expansive collection of TF 

binding data (ENCODE) only had antibodies for 653 (the most mapped in any 

single cell line was 171) (Moore et al. 2020; Partridge et al. 2020; Lambert et al. 

2018). Methods like sequential ChIP-seq (also known as re-ChIP) can profile 

whether two TFs collaborate by using successive rounds of antibody purification 

for both TFs to find sequences bound by both factors (Furey 2012). This approach 

can be highly laborious and suffers from the same limitations outlined above for 

conventional ChIP-seq. The final experimental approach is to perform a knockout 

on a given TF and examine how binding patterns of another factor (or factors) are 

affected. This approach is limited by the ability to knockout a given factor as well 

as the identification/immunoprecipitation of the hypothesized collaborating factor 

or design an applicable reporter construct. 

 Another approach is to computationally predict binding partners from ChIP-

seq data for a single TF (Whitington et al. 2011; Levitsky et al. 2019). In these 

approaches, the top scoring motif among binding sites is inferred as the target 
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motif for the TF in question and collaborative binding is inferred based upon the 

frequency, and other attributes such as orientation and spacing, of other motifs. 

This is more high-throughput than relying solely on experimental data, but it suffers 

from similar weaknesses to only requiring experimental evidence (i.e., the 

existence of the antibody for the TF in question). Further, this is limited to one 

target motif at a time and therefore limits the number of possible combinations of 

collaborative TFs. 

 Another approach to inferring TF collaboration is to utilize computational 

predictions of TF-binding events from open chromatin data as well as promoter 

annotations (van Bömmel et al. 2018; Meckbach et al. 2015; Vandenbon et al. 

2012; Myšičková and Vingron 2012; Hu and Gallo 2010; Jankowski, Prabhakar, 

and Tiuryn 2014) (Compared in Table 4.1). Despite this diversity of methods, there 

are notable flaws. Of methods that mine sequence characteristics to predict co-

occurring motifs, none of them incorporate expected motif frequencies. Instead, 

they use statistical measures such as Fisher’s exact test (coTRaCTE) or pointwise 

mutual information (PC-TraFF) (van Bömmel et al. 2018; Meckbach et al. 2015). 

While this may allow for detection of co-occurrences above random expectation, it 

does not ensure that the motifs are enriched relative to the background frequencies 

of these motifs in the genome and, therefore, that the co-enrichment of two motifs 

is biologically significant.   

In order to overcome existing methodological shortcomings in existing 

methods for TF co-occurrence, we developed a novel method that we term the 
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dual HOMER approach to motif co-dependencies. HOMER performs motif finding 

by using an empirical estimation of motif frequencies in background sequences 

matched for GC content. It then scores the enrichment of motifs in a set of target 

sequences relative to these background sequences using the hypergeometric test 

(Heinz et al. 2010). This approach has the advantage of recovering enriched motifs 

in target sequences relative to the non-random background sequences (unlike the 

approaches cited above). This is useful in the context of the genome where there 

are known sequence biases. 

Table 4.1. Summary of major motif co-occurrence methods. 

Method Reference Regions 
Profiled 

Background 
Frequency 

Model 

Directional 
Network 

Dual 
HOMER 

This study All Random 
Genomic 

Yes 

PC-TraFF Meckbach et 
al. (2015) 

Promoters Statistical No 

Frequency 
Ratio 

Vandenbon 
et al. (2012) 

Promoters Statistical No 

TACO Jankowski, 
Prabhakar, 
and Tiuryn 

(2014) 

Cell-type 
DNase 

Hypersensivity 
sites 

All DNase 
Hypersensivity 

sites 

None 
Inferred 

coTRaCTE van Bömmel 
et al. (2018) 

All Statistical No 

 

 Our approach utilizes HOMER by applying it in two rounds. In the first 

round, we screen target sequences for enriched motifs relative to a random 
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genomic background. Subsequently, we take those enriched motifs and screen 

target sequences containing those motifs against random genomic background 

sequences containing those motifs (i.e., for a given motif, both the target and 

background sequences on the second round of HOMER contain that motif). This 

allows for a straightforward and interpretable co-enrichment calculation. It also 

avoids the problems outlined above by screening for enriched motifs in the first 

round of HOMER application. 

 We apply our dual HOMER method to transcription start site region (TSR) 

data generated using capped short RNA-seq (csRNA-seq) on a panel of 13 

commonly used cell lines. We find that we are able to recapitulate known 

enrichments for cooperative TFs on both a global and cell-type specific level. We 

verified the accuracy of these co-enrichments using the STRING protein-protein 

interaction (PPI) network (Szklarczyk et al. 2019). Further, using the novel 

interpretation of TF cooperation implied by our method, we are able to dissect the 

nature of common TF cooperation. In all, we present a novel method for motif co-

occurrence calculation that provides insight into the biology of TF cooperation in 

the context of TSRs. 

4.3 Methods  

4.3.1 Overview of Dual HOMER method 

 In brief, the Dual HOMER method works by executing two successive runs 

of the HOMER motif-finding algorithm for known motifs (illustrated schematically 
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in Figure 4.2A) (Heinz et al. 2010). On the first run, for a given peak set, HOMER 

motif enrichments are run for a user-supplied motif file (or the HOMER library by 

default). The user can specify the number of background sequences in order to 

maintain balance between the target and background sequences on the second 

iteration. Results for this run are deposited in a user-specified directory. After this 

first run, Dual HOMER extracts enriched sequences as filtered by q-value 

(Benjamini-Hochberg corrected p-value; 0.01 by default). 

 Dual HOMER extracts all target and background sequences and finds all 

instances of all motifs using the “tab2fastq.pl” and “homer2 find” commands (Heinz 

et al. 2010). Then, for each enriched motif, the HOMER motif-finding algorithm is 

applied again for target and background sequences containing the motif in 

question. Each set of results is then deposited in a subdirectory that is named after 

the enriched motif. 

4.3.2 Extraction of co-enrichments 

 Co-enrichments can be extracted using two main techniques. The first is to 

combine enrichment results into a matrix using HOMER’s “combineGO.pl” 

command (Heinz et al. 2010). This combines results from the enrichment outputs 

of each motif that is enriched on the initial HOMER run. In this matrix, the columns 

are the enriched motifs from the first run while the rows are the enrichments for all 

motifs from the second run.  

The other technique is to construct a directed co-enrichment graph (here 

using Networkx (Hagberg, A.A., Shult, D.A., Swart, P.J. 2008). Each motif enriched 
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in the first run represents a node and a directed edge is drawn from that node to 

every motif enriched in the second run of HOMER (q-value < 0.05 by default). This 

graph can be compressed into an undirected graph by requiring reciprocal directed 

edges. Edges in the undirected graph correspond to mutual dependency (and, 

therefore, cooperativity) between motifs. Networks were visualized using 

ipycytoscape. Communities were determined using Louvain clustering (Blondel et 

al. 2008). 

4.3.3 Assessment of Fisher’s exact test as a method of co-occurrence 

 We generated co-occurrence networks using the Fisher’s exact test in a 

method similar to coTRaCTE (van Bömmel et al. 2018). TSRs were annotated for 

what motifs were present using the HOMER “annotatePeaks.pl” script (Heinz et al. 

2010) The contingency table to determine co-occurrence between two motifs was 

set up as outlined in Table 1. Similar to above, each node represents a motif and 

each edge represents a significant co-occurrence (p-value < 0.05, odds ratio > 2). 

Networks were visualized using ipycytoscape. Communities were determined 

using Louvain clustering (Blondel et al. 2008). 

Table 4.2. Contingency table for Fisher’s exact test assessment of motif co-occurrence. 
 

TF A 
    
 
    

         TF B 
    
 
 

4.3.4 Motif Library Generation 

 
Both Occur 

 

 
TF B Only 

 
TF A Only 

 

 
Neither 
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 Due to substantial collinearity in the HOMER motif library, we eliminated 

redundant motifs from the default HOMER library using the compareMotifs.pl script 

using a similarity threshold of 0.6 (i.e., all motifs that were more similar were 

reduced into a single motif) (Heinz et al. 2010). This motif library was used 

throughout. 

4.3.5 Identification of TSRs 

 csRNA-seq was performed using the protocol from Duttke et al. (2019) on 

the following cell lines: A549, GM12878, H9, hCMEC/D3, HCT116, HEK293T, 

HepG2, K562, MCF7, MDA-MB-231, OvCar8, THP-1, and U2OS (manuscript in 

preparation). Fastq files for both csRNA and input files were aligned using STAR 

aligner and processed into HOMER tag directories (Dobin et al. 2013; Heinz et al. 

2010). TSRs were called using HOMER’s findcsRNATSS.pl script and 

subsequently merged using the mergePeaks script (merge performed for 

replicates of the same cell line as well as for all TSRs) (Heinz et al. 2010).  

4.3.6 Assessment of TF co-occurrences using PPI 

 In order to verify the accuracy of Dual HOMER co-occurrences, the 

interaction between TFs in the STRING PPI network was used (Szklarczyk et al. 

2019). Motifs from our library (discussed above) were converted into their 

corresponding gene names which were then mapped onto STRING PPI protein 

IDs using Ensembl BioMart (Howe et al. 2021). The PPI was rendered into a graph 

using NetworkX for ease of interaction assessment (Hagberg, A.A., Shult, D.A., 

Swart, P.J. 2008).  
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We performed bootstrap analyses by randomly sampling pairs of TFs to 

create a random network 1,000,000 times to assess the performance of the 

network of all TSRs and 1000 times to assess the performance of the network of 

THP-1 cells. This gave us an empirical p-value to assess enrichments for physical 

interactions in a given network. 

4.4 Results 

4.4.1 Characterizing the motif composition of TSRs across 13 cell lines 

 In order to investigate how TF binding sites (TFBS) affect transcription 

initiation on a genome-wide level, we profiled transcription start site regions (TSRs) 

across 13 common cell lines (listed in Methods) using csRNA-seq. csRNA-seq is 

a method developed by our lab wherein short initiating RNAs are isolated and then 

subjected to high throughput sequencing (Figure 4.1A). Previous work in our lab 

has indicated that it is able to capture nascent transcription initiation at nucleotide 

resolution (Duttke et al. 2019). We found that cell lines had an average of 39,155 

TSRs, which totaled to 171,726 unique TSRs across all of the cell lines (Figure 

4.1B). 

We then performed motif enrichment using HOMER on different groupings 

of TSRs (Heinz et al. 2010). First, we compared TSRs unique to each cell line to 

ubiquitous TSRs. We found that motifs that were enriched in individual cell lines 

corresponded to known lineage-determining TFs (LDTFs). For example, K562 

TSRs showed a significant enrichment for the GATA2 motif, an LDTF for 

hematopoiesis and a hallmark of that cell line (Linnemann et al. 2011; Fujiwara et 
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al. 2009). Similarly, HepG2 TSRs showed enrichment for HNF1b, HNF4a, and 

FOXA1 motifs, LDTFs for hepatocytes (Lau et al. 2018). In contrast, ubiquitous 

TSRs were enriched for general transcriptional activators such as Sp1, YY1, NFY,  

 
Figure 4.1. Initial assessment of motif enrichment in TSRs across 13 common cell lines. 
(A) Schematic diagram of csRNA-seq adapted from Duttke et al. (2018). Total RNA is size-
selected and enriched for capped short RNAs then subjected to deep sequencing. 
Downstream analysis is performed by HOMER. (B) Counts of TSRs identified in each cell 
line. (C) Heatmap of HOMER motif enrichments for the top 30 most variant motifs for TSRs 
unique to each cell line as well as ubiquitous TSRs. (D) Heatmap of HOMER motif 
enrichments for the top 30 most variant motifs for TSRs grouped by how many cell lines in 
which they appear. 
 
and NRF1 (Kaczynski, Cook, and Urrutia 2003; Gordon et al. 2005; Mantovani 

1999; Y. Zhang and Xiang 2016). This same pattern emerges if we group TSRs by 

the number of cell lines in which they are present. Ubiquitous factors such as Sp1 
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and NFY are found across a variety of cell lines while more specific factors such 

as HNF4a only occur in one or two. Interestingly, several factors such as NRF1 

and YY1 are only enriched in ubiquitous peaks. This suggests that these factors 

regulate almost exclusively ubiquitously expressed genes and do not serve as 

general transcriptional activators for cell type specific expression. 

4.4.2 Dual HOMER approach is a novel way of quantifying motif co-

enrichments that recapitulates known interactions between TFs 

 Although normal motif enrichment analysis as performed above provided 

insight into the grammar of transcription initiation, it has been noted that TFs act 

collaboratively at regulatory regions (Heinz et al. 2010, 2015; Zhu, Shendure, and 

Church 2005). With this in mind, we examined motif co-occurrences at TSRs to 

examine TF collaboration in the context of transcription initiation. Given limitations 

in existing methods for computing motif co-occurrences, we developed our own 

method. Our method (covered in more detail in the Methods section) consists of 

consecutive applications of the HOMER motif finding algorithm. The first run of 

HOMER is on a user-provided set of TSRs. From this first run, all enriched motifs 

are collected as well as all sequences (target and background) that contain those 

motifs are collected. Then, for each enriched motif, HOMER motif finding is applied 

to target and background sequences containing that motif. Motifs that are enriched 

in this second round of HOMER are considered to be co-enriched. We call this the 

Dual HOMER method. 
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This co-enrichment strategy has several advantages to existing methods. 

Firstly, the strength of co-enrichment (as quantified in the second round of HOMER 

motif finding) has a directional component. From our example in our schematic  

 

 
Figure 4.2. Outline of the Dual HOMER method. (A) Schematic of the Dual HOMER 
method. A user-provided set of peaks is subjected to an initial round of HOMER motif 
finding. Then, each enriched motif is subjected to another round of HOMER motif finding 
where target and background sequences possess the motif (Sp1 pictured here). (B) and 
(C) are diagrams of two different co-enrichment outcomes for enriched motifs. In (B), Motif 
2 is found to be enriched in peaks with Motif 1. This suggests that Motif 1 is dependent on 
Motif 2 for the given peaks. In (C), both Motif 1 and Motif 2 are co-enriched in sequences 
containing either motif. This suggests that both motifs are dependent on each other and 
thus collaborative. 
 
(Figure 4.2A), Sp1 is co-enriched with Fra2. These co-enrichments imply that the 

first motif (Sp1) is dependent on the second (Fra2) because the second motif is 

enriched in TSRs containing the first motif. This implies that TSRs with the Sp1 

motif require the Fra2 motif for activation. Likewise, the enrichment for Fra2 in 

peaks containing Sp1 indicates the dependency of Fra2 on Sp1. If both motifs are 

dependent on each other, we call this a mutual dependency and reflective of a 

cooperative relationship. Figures 4.2B and 4.2C detail the nature of these 
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relationships. To our knowledge, Dual HOMER is the only method to incorporate 

this notion of dependency. 

We applied the Dual HOMER to the set of all TSRs as well as individual 

cell lines. We chose two different representations of co-enrichment. The first is a 

network of mutual co-dependencies (Figure 4.3A). Given the reasoning outlined 

above and in Figure 4.2C, we believe this best captures TF cooperativity in the 

context of motifs. We observed that many of the motifs that were enriched in the 

set of ubiquitous TSRs (i.e., various ETS factors, Sp1, NFY, and Fra2) segregated 

to the same community (red) while more cell-type specific motifs segregated to the 

other communities (Figure 4.3A).  

The other representation we chose was a heatmap of co-enrichments as 

measured by the -log2 p-value of the second round of HOMER motif finding for 

each enriched motif (Figure 4.3B). This provides a quantitative insight into the 

dependency of motifs. Each column corresponds to an enriched motif in the first 

round of HOMER while each row represents motif enrichment in the second round 

of HOMER. In this framework, high enrichments along a column means that the 

motif has many dependencies (ex. Smad3) and high enrichments across a row 

means that the motif is depended upon (ex. Sp1). This provided different insights 

than the graph representation. General transcriptional activators such as Sp1, 

Fra2, and Klf4 have relatively modest dependencies (i.e., weaker enrichments in 

its column) but are a dependency for many factors (i.e., stronger enrichments in 

its row) (Figure 4.3B). By contrast, Smad3 had many dependencies but was rarely  
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Figure 4.3. Dual HOMER recapitulates known enrichments and lends insight into co-
enrichments. (A) Network of mutual dependencies for the set of all TSRs. Motifs are nodes 
(scaled to number of occurrences) while mutual dependencies are edges. (B) Heatmap of 
co-enrichments. Columns are enriched motifs from the first round of HOMER motif finding 
and rows are HOMER motif enrichments in the second round (i.e., in TSRs containing the 
motifs in the column). (C) Bootstrap analysis of physical interactions between TFs in the 
Dual HOMER network. Random pairs of TFs were randomly sampled to create networks 
1000 times and then assessed for the number of physical interactions. The Dual HOMER 
network was significantly enriched for physically-interacting TFs (p-value < 1e-6). 
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Figure 4.4. Assessment of the Fisher’s exact test co-occurrence network for all TSRs. (A) 
Fisher’s exact test network for all TSRs. Motifs are nodes (scaled to occurrences) while 
edges represent enriched co-occurrences. (B) Bootstrap analysis of physical interactions 
between TFs in the Fisher’s exact test network. Random pairs of TFs were randomly 
sampled to create networks 1000 times and then assessed for the number of physical 
interactions. The Fisher’s exact test network was significantly enriched for physically-
interacting TFs (p-value = 2.9e-5). 
 

depended on (stronger column enrichments than row enrichments) (Figure 4.3B). 

This is consistent with Smad3’s known role as a signal-dependent TF (SDTF) in 

the TGF-β signaling cascade rather than a stand-alone transcriptional activator 



 
 
 

101 
 

(Massagué and Chen 2000). In general, motifs tended to either be depended on 

or have many dependencies) (Figure 4.3B). 

 Given that both of our representations visually recapitulated expected 

observations (Figure 34.A,B), we sought to validate our network of mutual 

dependencies. In order to do this, we utilized the STRING PPI of physically 

interacting proteins (Szklarczyk et al. 2019) to assess if mutually dependent motifs 

represented physically interacting TFs (i.e., edges in our network correspond to 

physical interaction in the PPI). We performed a bootstrap analysis wherein we 

randomly sampled pairs of TFs and compared the frequency of direct interactions 

in the PPI to the frequency of direct interactions in our network. We found that our 

network was highly enriched for direct interactions (Figure 4.3C). This validates 

the prediction of cooperativity in our network. 

4.4.3 Dual HOMER outperforms the Fisher’s exact test as a metric of co-

occurrence 

 Although we were able to validate the Dual HOMER method, we sought to 

compare it to another common approach: the Fisher’s exact test. This statistical 

test is commonly used to assess frequency of co-occurrence. The Fisher’s exact 

test can be used to assess motif co-occurrence (e.g., coTRaCTE) as well as 

mutual exclusivity in cancer mutations (van Bömmel et al. 2018; Babur et al. 2015; 

Leiserson et al. 2015). We implemented this test on our data and compared results 

to the Dual HOMER method. 
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Figure 4.5. Comparison between Fisher’s exact test and Dual HOMER THP-1 TSR 
networks. Fisher’s exact test (A) and Dual HOMER (B) networks for THP-1 TSRs. Nodes 
are scaled to motif occurrences. Bootstrap analysis of physical interactions between TFs 
in the Fisher’s exact test (C) and Dual HOMER (D) networks. Random pairs of TFs were 
randomly sampled to create networks 1000 times and then assessed for the number of 
physical interactions. The Fisher’s exact test network was not significantly enriched for 
physically-interacting TFs (p-value = 0.19). The Dual HOMER network was significantly 
enriched (p-value < 0.001). 



 
 
 

103 
 

The Fisher’s exact test network formed from examining all TSRs looked 

sparse but had some of the major motifs such as Sp1, NRF1, and YY1 (Figure 

4.4A). However it was missing some notable motifs such as Fra2 and many of the 

ETS factors (Figure 4.4A). We checked the network to see if physical interactions 

in the STRING PPI were present, similar to the analysis of the Dual HOMER 

network. We found that the Fisher’s exact test network was enriched for physical 

interactions (Figure 4.4B). This enrichment was about an order of magnitude lower 

than the enrichment for physical interactions in the Dual HOMER method (p-value 

= 2.9e-5 vs p-value < 1e-6) (Figures 4.3C,4.4B).  

To get a better picture of the differences between the two networks, we 

compared them using TSRs identified in THP-1 cells (Figure 4.5). The Fisher’s 

exact test network was considerably larger than the Dual HOMER network (Figure 

4.5A,B). Many of the enrichments in the Fisher’s exact network were for motifs 

such as HNF4a and HNF6 that are not enriched in THP-1 cells under a single 

HOMER run and are known to be liver-specific LDTFs (J. Li, Ning, and Duncan 

2000; Nagaki and Moriwaki 2008; Samadani and Costa 1996; Hayhurst et al. 

2001). In contrast, the Dual HOMER approach did not have these unexpected 

enrichments and showed expected enrichments in Egr1, Fra2 and Myb, which are 

known to be involved in monocyte differentiation and did not appear in the Fisher’s 

exact test network (Figure 5.5B) (Matsui et al. 1990; Friedman 2007; Valledor et 

al. 1998; Krishnaraju, Hoffman, and Liebermann 2001). 

 



 
 
 

104 
 

Figure 4.6. Exploration of graph properties of the Dual HOMER network. (A) Indegree of 
motifs for the top 50 motifs sorted by indegree. (B) Outdegree of motifs for the top 50 motifs 
sorted by outdegree. (C) log2(indegree/outdegree) of motifs for the top 50 motifs sorted 
by log2(indegree/outdegree). (D) Dual HOMER network for YY1. (E) Dual HOMER network 
for Pitx1. 
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Finally, we compared the Fisher’s exact test and Dual HOMER networks 

using the STRING PPI. We found that the Dual HOMER network had significant 

enrichment for physical interactions while the Fisher’s exact test network did not 

(p-value < 0.001 vs. p-value = 0.19, respectively) (Figure 4.5C,D). This confirms 

that the unexpected enrichments likely represent false positive interactions. In all, 

the Dual HOMER method outperforms the Fisher’s exact test in identifying 

cooperative TF pairs. 

4.4.4 Examination of graph properties of Dual HOMER network lends insight 

into differences between general and cell-type specific transcriptional 

activators 

 Given that our approach recapitulated known patterns of TF cooperativity, 

we sought to investigate the properties of our motif network in order to better 

understand the grammar of transcription initiation. As noted earlier, our network 

can be rendered as a directed graph where, for a given motif, outbound edges 

indicate dependencies that motif has while inbound edges represent motifs that 

depend on the target motif (Figure 4.2B,C). This directional aspect of interactions 

is not captured by any existing method for co-occurrence inference and lends for 

unique interpretational power (Table 4.1). 

 With this in mind, we investigated the graph properties of motifs in the Dual 

HOMER network. We plotted the indegree, outdegree, and 

log2(indegree/outdegree) of motifs in our network (Figure 4.6A,B,C). We found that 
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general transcriptional activators had high indegree while tissue-specific TFs had 

high outdegree (Figure 4.6A,B). In general, we found more general TFs had a 

higher log2(indegree/outdegree) value than TFs (Figure 4.6C). This trend makes 

sense as general transcriptional activators are depended upon by many factors for 

activation while more tissue-specific TFs likely retain their specificity by not 

initiating transcription without the proper epigenomic context and coactivators. 

We wanted to further examine the relationship of indegree and outdegree 

with some examples. We chose YY1 and Pitx1 as examples of TFs that have a 

high and low log2(indegree/outdegree) (4.17 vs. -1.80), respectively (Figure 4.6C-

E). YY1 is noted as a general transcriptional activator so it’s higher indegree is 

expected as it is depended upon frequently and in many different contexts (Gordon 

et al. 2005; Verheul et al. 2020). Interestingly, YY1 had only one dependency, Sp1 

(Figure 4.6D). This is notable as Sp1 has been found to physically interact with 

YY1 and amplify transcription initiation where this interaction takes place (Seto, 

Lewis, and Shenk 1993; Lee, Galvin, and Shi 1993). Manual examination of Sp1’s 

co-enrichments found that YY1’s enrichment in peaks with Sp1 was q-value = 

0.011 when the cutoff was q-value < 0.01 so this may be a mutual dependency. 

On the opposite end of the spectrum, Pitx1 had many dependencies and 

was rarely depended upon (Figure 4.6C,E). When Pitx1 was depended upon, it 

was only in mutual dependencies (Figure 4.6E). Pitx1 is multifaceted homeobox 

TF that is involved with many developmental and disease processes. It is known 

to be critical in several developmental processes, most notably the pituitary gland 
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and hindlimb area (Tran and Kioussi 2021). It is a tumor suppressor gene in the 

context of breast cancer due to its ability to repress ERɑ (Stender et al. 2011). This 

repressor function may explain Pitx1’s dependence on CTCF as both are known 

to repress TERT expression, although collaboration in the context of this 

phenotype has not been characterized to our knowledge (Qi et al. 2011; Stender 

et al. 2011). 

4.5 Discussion 

Here we outline a novel method for detecting motif co-occurrences and 

inferring TF collaboration. The Dual HOMER method detects co-occurrences by 

utilizing successive rounds of HOMER motif enrichment. In the first round of motif 

enrichment, Dual HOMER identifies enriched motifs in target sequences against a 

random genomic background. In subsequent rounds, Dual HOMER iterates 

through these motifs and identifies which motifs are co-enriched in target and 

background sequences containing the original motif (schematically outlined in 

Figure 4.2A). We demonstrate that this method effectively recapitulates known 

physical interactions between TFs and outperforms the Fisher’s exact test as a 

measurement of co-occurrence (Figures 4.3C,4.5). Further, Dual HOMER’s output 

of co-enrichment of motifs has a directional interpretation, which lends to unique 

biological insights (Figure 4.2B,C). 

 The novelty of the Dual HOMER method is two-fold. First, it employs motif 

enrichment analysis against background sequences in order to infer co-

occurrences. One other method employs this strategy (MCOT), however, it limits 
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its co-enrichment strategy to one primary motif at a time (presumably, the factor of 

interest in a ChIP-seq experiment) and background sequences are the results of 

permutations of target sequences rather than random genomic background (as in 

Dual HOMER’s approach) (Levitsky et al. 2019). By leveraging motif enrichment 

in target sequences relative to genomic background, the Dual HOMER method is 

able to detect important motifs in the target sequence while ruling out motifs that 

occur by chance relative to background frequencies. An example of this is in the 

comparison between the Dual HOMER and Fisher’s exact test networks in TSRs 

occurring in the THP-1 cell line (Figure 4.5A,B). The Fisher’s exact test network 

had enrichment for TFs that are LDTFs for other cell types (e.g., HNF4a and HNF6, 

both LDTFs for the hepatocyte lineage) and was missing critical factors to the 

monocyte lineage that were present in the Dual HOMER network (e.g., Egr1, Fra2 

and Myb) (J. Li, Ning, and Duncan 2000; Nagaki and Moriwaki 2008; Samadani 

and Costa 1996; Hayhurst et al. 2001; Matsui et al. 1990; Friedman 2007; Valledor 

et al. 1998; Krishnaraju, Hoffman, and Liebermann 2001). In this scenario, Dual 

HOMER is both more sensitive to critical LDTFs and does not include as many 

false discoveries. 

 The other major novelty of the Dual HOMER method is the directionality of 

the network. In our network, directed edges can be drawn from one motif to another 

if the second motif is enriched in HOMER enrichment for sequences containing the 

first (schematically outlined in Figure 4.2B,C). This aspect of the network is 

biologically realistic as some TFs are general transcriptional activators (e.g., Sp1) 

while others are cell-type and/or stimulus specific (HNF factors). Further, our 
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notion of mutually dependent TFs is consistent with collaborative TF binding from 

a conceptual standpoint (Heinz et al. 2015, 2010; Zhu, Shendure, and Church 

2005). We were able to use the properties of the directed graph to characterize 

TFs. We found that TFs that had many dependencies tended to be cell-type 

specific and signal-dependent TFs (ex. Pitx1) while TFs that were frequently 

depended upon tended to be general transcriptional activators (ex. YY1) (Figure 

4.6). Given this property of the Dual HOMER network, it allows for more precise 

biological characterization of TF networks. 

 Interestingly, Dual HOMER markedly outperformed a Fisher’s exact test 

network in the context of a cell-type specific network (i.e., all TSRs in the THP-1 

cell line; discussed above) (Figure 4.5). This is in contrast to the performance of 

the two methods on the network of all TSRs where Dual HOMER only slightly 

outperformed the Fisher’s exact test (Figures 4.3,4.4). This difference can be 

explained by Dual HOMER filtering for enriched motifs. In the context of the global 

set of TSRs, filtering for enriched motifs is not as critical since there is a relatively 

large search space (171,726 total TSRs). However, in a single cell line (e.g., THP-

1), there are fewer TSRs (40,011), which likely skews expected motif frequency 

estimations when not factoring in genomic background. Further, intuitively, in a 

cell-type specific context, there is a prior expectation of enrichment for LDTFs 

since these determine cell identity (Heinz et al. 2015). This represents a distinct 

advantage for the Dual HOMER method and may indicate that it is most useful 

when applied to cell-type specific data. 
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 Dual HOMER’s ability to recover critical information about cell-type specific 

TF cooperativity could yield benefits for understanding disease states. As an 

example, the development of cancer can be linked to the rewiring of regulatory 

networks (Islam et al. 2021; Melton et al. 2015) It has also recently been observed 

that variants for heritable traits do not restrict themselves to expected causal 

pathways but instead exert regulatory influence over the entire genome (termed 

the omnigenic model of heritable disease) (Boyle, Li, and Pritchard 2017). Under 

this model, most heritable variants affect gene regulatory networks, which then 

affect the aforementioned causal pathways. In both of these cases, Dual HOMER 

could be deployed to compare disease states with healthy states in order to 

understand how transcriptional regulatory networks differ between these two 

states. This could lend insight into mechanisms of disease and possible drug 

targets. In all, the Dual HOMER method represents a step forward in detecting 

motif co-occurrences that recapitulates known TF cooperativity and lends unique 

interpretability. 
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CHAPTER 5 CONCLUSION 
 

Both transcription termination and transcription initiation are fundamental 

processes in gene regulation. Here I investigated key aspects of both of these 

processes. In the context of transcription termination, I developed ARTDeco, a 

software package aimed at characterizing and quantifying readthrough 

transcription. Defects of transcription termination (DoTT) are a relatively novel 

phenotype. I was able to quantify readthrough transcription using three different 

metrics: read-in level, readthrough level, and downstream of gene (DoG) transcript 

discovery (Figure 2.1C). Further, we show that these measures can discriminate 

between systems with readthrough transcription and those without it (Figure 

2.2A,B,D). This represents a major advance in the study of systems with DoTT. 

Previous packages aimed at quantifying readthrough could only perform the 

function of DoG discovery (Melnick et al. 2019; Wiesel, Sabath, and Shalgi 2018). 

ARTDeco not only outperformed these packages in terms of runtime, DoGs 

discovered by ARTDeco showed more signs of transcription (Table 2.1, 

Supplementary Figure 2.3).  

 Another major advancement that ARTDeco provides is the identification of 

read-in genes. Read-in genes are genes that are transcribed due to readthrough 

transcription rather than promoter activation. I show that ARTDeco can infer 

whether a gene is a read-in or primary induction gene using the read-in level as a 

metric (Figure 2.3). Further, read-in genes were shown to represent functional 

noise (Figure 2.4). This is critical for analysis of gene expression in systems with 
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DoTT. Given that many analysis utilize differential expression to curate gene sets, 

it is critical to know whether there is a polluting signal such as read-in genes. The 

read-in level can also be used to denoise gene expression estimations. Because 

the read-in level represents the relative contribution of upstream readthrough to 

gene expression, it can be used to remove upstream readthrough as a source of 

noise (Supplementary Figure 2.2). 

 The final application of ARTDeco in Chapter 2 involved deploying it on a 

population-level study of gene expression response to influenza A virus (IAV). I 

showed that ARTDeco was able to successfully quantify readthrough in this data 

set and that patterns of readthrough matched expectations based upon the original 

study (Figure 2.6A-C) (Quach et al. 2016). More importantly, it was demonstrated 

that variants that modulated the expression of read-in genes were enriched for 

affecting the upstream gene (Figure 2.6D-F). This is significant as it shows that 

readthrough can pollute eQTL enrichments in systems with readthrough. 

 In Chapter 3, I extend ARTDeco’s functionality into a discovery pipeline for 

systems with DoTT (Figure 3.1). ARTDeco discovered readthrough in three 

viruses: Rift Valley Fever virus (RVFV), Zika virus (ZIKV), and Sindbis virus (SINV) 

(Figure 3.2A-C). This more than doubles the known viruses that induce DoTT. I 

examined the literature on these viruses in order to hypothesize mechanisms of 

readthrough for each of these viruses. I hypothesized that the NSs protein caused 

DoTT in RVFV due to its role in host transcription shutoff (Le May et al. 2008; Ly 

and Ikegami 2016; Billecocq et al. 2004; Bouloy et al. 2001). Host transcription 



 
 
 

114 
 

shutoff is among the only phenotypes shared between the two viruses previously 

known to cause DoTT, IAV and herpes simplex virus 1 (HSV-1) (Nogales et al. 

2018; Khaperskyy and McCormick 2015; He et al. 2020).  

I was able to demonstrate that NSs induces readthrough transcription by 

expressing the NSs protein in THP-1 monocytes and subsequently performing total 

RNA-seq (Figure 3.4A-C). This adds a crucial validation step to the existing 

discovery pipeline. I compared the readthrough induced by NS1 (the causative 

protein in IAV) to the readthrough induced by NSs. Both proteins induced 

readthrough on a global level with NS1 inducing slightly more readthrough. This 

suggests that NSs interferes with transcription termination machinery in a manner 

similar to NS1. In the future, it will be informative to express the ICP27 protein (the 

cause of DoTT in HSV-1) and compare patterns of readthrough between all of the 

proteins. It is possible that differences between these proteins cause distinct 

patterns of readthrough. 

I also examined gene expression in THP-1 cells expressing the NSs and 

NS1 proteins and found that the host immune response was downregulated in 

distinct ways (Figure 3.5). This difference had not been noted elsewhere in the 

literature. Further, this suggests that both of these proteins mount a dual-pronged 

attack on host transcription wherein both gene activation and transcription 

termination are attacked. Future experiments are needed to validate and 

characterize this phenomenon. 
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In Chapter 4, I introduce a new method of detecting motif co-occurrences. 

We applied this method to csRNA-seq data for 13 commonly used cell lines in 

order to profile transcription factor (TF) collaboration at transcription start site 

regions (TSRs). This method provides several unique aspects. First, no existing 

method of motif co-occurrences incorporates motif enrichment of target sequences 

against genomic background sequences. In addition to this, the Dual HOMER 

method offers a novel presentation of a transcriptional network. To date, it is the 

only motif co-occurrence technique that returns a directional network (pictured in 

Figure 4.2B,C). This directionality arises from the nature of the method. Dual 

HOMER runs successive rounds of motif enrichment (schematically outlined in 

Figure 4.2A). The first round is on all TSRs. Subsequent rounds are on a subset 

of TSRs that contain an enriched motif from the first round as well as background 

sequences containing that motif. This second round of enrichment establishes the 

dependency of the motif being queried (i.e., in the sequences) on this round of 

enriched motifs (schematically discussed in Figure 4.2B,C).  

This dependency relationship lends to direct interpretability of the 

transcriptional network generated. I noted that general transcriptional activators 

tend to be depended upon more often while cell-type specific and signal-

dependent TFs tend to have more dependencies (Figure 4.6). When examining 

individual TFs, this gave unique insights. For example, YY1’s only dependency 

was to Sp1 (Figure 4.6D). This is in line with literature that these two factors 

physically interact and that Sp1 specifically increases YY1’s ability to activate 

transcription (Seto, Lewis, and Shenk 1993; Lee, Galvin, and Shi 1993). The 
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directional aspect of Dual HOMER’s network allows for these unique insights and 

may shed light on TF interactions at a mechanistic level. 

  I validated the performance of this network using the STRING protein-

protein interaction network (PPI) (Szklarczyk et al. 2019). I found that mutual 

dependencies in the Dual HOMER network for both all TSRs and TSRs specific to 

the THP-1 cell line were enriched for physical interactions between TFs  (Figures 

4.3C,4.4D). Further, the Dual HOMER network outperformed another common 

statistical measure of co-occurrence (the Fisher’s exact test) (Figures 

4.3C,4.4,4.5). This was especially the case for TSRs occurring in the THP-1 cell 

line where the Fisher’s exact test network performed exceptionally poorly in 

comparison to the Dual HOMER network (Figure 4.5). This is likely because in the 

context of fewer TSRs motif enrichment becomes more important for ruling out 

false co-occurrences. This makes sense in the context of the THP-1 cell line TSRs 

where the Fisher’s exact test network found co-occurrences between motifs whose 

corresponding TFs are not expressed in that lineage (Figure 4.5A). 

Finally, it is important to note the potential translational impact of these 

findings. ARTDeco’s ability to denoise gene expression data in the context of DoTT 

will be immensely useful in characterizing disease states that cause this 

phenotype. By quantifying and understanding how DoTT manifests, this can help 

identify biomarkers as well as druggable targets. Further, it will aid in discovering 

the full scope of stresses that induce readthrough transcription. I outlined a pipeline 

that uses ARTDeco to discover these stresses in the context of viruses. My work 
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in this thesis demonstrates that, with the aid of ARTDeco, it is possible to identify 

and confirm the cause readthrough in viruses. Given that DoTT is likely part of 

cytopathogenesis, the proteins responsible for this phenotype represent potential 

druggable targets. Finally, Dual HOMER could potentially be utilized to investigate 

how transcriptional networks are rewired in disease states. This holds most 

potential for cancer wherein it is well known that somatic mutations substantially 

rewire transcriptional networks. Perhaps Dual HOMER’s network can lend insight 

into what dependencies are present and this may help identify druggable genes or 

pathways. 
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