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Immunoregulatory Potential of Exosomes
Derived from Cancer Stem Cells

Shannon M. Clayton,1 Joehleen A. Archard,1 Joseph Wagner,2 D. Gregory Farwell,1

Arnaud F. Bewley,1 Angela Beliveau,1 Andrew Birkeland,1 Shyam Rao,1 Marianne Abouyared,1

Peter C. Belafsky,1 and Johnathon D. Anderson1

Head and neck squamous cell carcinomas (HNSCCs) are malignancies that originate in the mucosal lining of
the upper aerodigestive tract. Despite advances in therapeutic interventions, survival rates among HNSCC
patients have remained static for years. Cancer stem cells (CSCs) are tumor-initiating cells that are highly
resistant to treatment, and are hypothesized to contribute to a significant fraction of tumor recurrences. Con-
sequently, further investigations of how CSCs mediate recurrence may provide insights into novel druggable
targets. A key element of recurrence involves the tumor’s ability to evade immunosurveillance. Recent pub-
lished reports suggest that CSCs possess immunosuppressive properties, however, the underlying mechanism
have yet to be fully elucidated. To date, most groups have focused on the role of CSC-derived secretory
proteins, such as cytokines and growth factors. Here, we review the established immunoregulatory role of
exosomes derived from mixed tumor cell populations, and propose further study of CSC-derived exosomes may
be warranted. Such studies may yield novel insights into new druggable targets, or lay the foundation for future
exosome-based diagnostics.

Keywords: cancer stem cells, exosomes, regulatory T lymphocytes, m2 macrophages, head and neck cancer,
secretory proteins

Introduction

Head and neck squamous cell carcinoma (HNSCC) is
the sixth most common type of cancer, with *500,000

new cases each year worldwide [1,2]. Over 70% of head
and neck cancers are associated with alcohol and to-
bacco consumption [3,4]. HNSCC early-stage treatment
typically includes surgery or radiotherapy while advance-
stages frequently employ a combination of surgery fol-
lowed by chemoradiotherapy [5,6]. Patient survival rates
are often low as a result of local and regional recurrence,
with a 40% mortality within 5 years post-treatment in high-
risk patients [7–10].

Immunosurveillance and immunoediting play an integral
role in the progression and recurrence of HNSCC tumors
[11,12]. The development of murine tumor models with
molecularly defined immunodeficiencies has enabled the field
to demonstrate the existence of cancer immunosurveillance
processes that are capable of preventing tumor progression
[13,14]. A large body of work has established that the immune
system can select for the emergence of tumors with limited
immunogenicity, capable of escaping immune recognition

and elimination [15–17]. This work led to the development of
the cancer immunoediting hypothesis that determines the
potential host-protective and tumor-sculpting properties of
the immune system during tumor development [18,19].

The immune system recognizes tumors through the ex-
pression of tumor-associated antigens (TAA) [20,21]. TAAs
are phagocytozed by professional antigen-presenting cells
(APCs), such as macrophages and dendritic cells (DCs)
[22,23]. APCs then present TAA on major histocompat-
ibility complex (MHC)-II complexes, which subsequently
interact with T cell receptors, thereby inducing an activation
signaling cascade that results in the cytotoxic elimination of
TAA bearing tumor cells [15,24].

Progressive tumors may evade and impair the immune
system through the release of a variety of factors, creating a
hypoimmunogenic tumor microenvironment [25,26]. The
secretion of cytokines with anti-inflammatory properties
such as transforming growth factor beta (TGFb) and inter-
leukin (IL)-10 can lead to the suppression of immune cells
involved in antitumor immunity, such as CD8+ T cytotoxic
cells and DCs [27–35]. These cytokines can also induce
immune cells with immunosuppressive properties such as
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regulatory T lymphocytes (Tregs) and myeloid derived
suppressor cells (MDSCs), which permit tumors to evade
immunosurveillance and elimination [36–43].

In recent years, several groups have leveraged this in-
creased understanding of the immunobiology underlying
tumor development and immunoediting to develop novel
targeted immunotherapeutic strategies to reactivate the
immune system [44–46]. The development of antagonist
antibodies against immune checkpoint pathways have led
to several successful drug approvals and effective im-
plementation into clinical practice [47–49].

Antibody inhibitors of the PD-1/PD-L1 axis is one such
therapeutic approach that has achieved remarkable success
in a subset of patients [50,51]. In addition, several novel
immunotherapies developed from genetically modified chi-
meric antigen receptor T cells (CAR T cells), have shown
significant promise in targeting hematological malignancies,
such as certain subtypes of leukemia and lymphoma [52,53].
However, the application of CAR T cell technology to solid
tumors remains challenging [54–57]. Epidermal growth
factor receptor (EGFR) has been identified as a potential
target in epithelial tumors, such as HNSCC [58,59]. This has
led to the development of EGFR targeting CAR T cells in
non-small cell lung cancer that have undergone early
stage clinical trials and has been determined to be safe
[60,61]. Further elucidation of the mechanisms by which
tumors develop equilibrium and eventually escape
immunosurveillance is critical to develop additional novel
therapeutic approaches and diagnostics [62,63].

Tumor-derived exosomes

To date, most reports investigating immunoediting by tu-
mors has focused on canonical secretory factors, such as
growth factors and cytokines [64,65]. However, there is a
growing body of evidence that suggests that intercellular
communication between tumor cells and stroma and immune
cells also occurs through tumor-derived extracellular vesicles
called exosomes (TEX) [66–69]. Exosomes are cellularly se-
creted lipid bilayer nanovesicles secreted by virtually all cells
[70,71]. Exosomes function as a robust and intricate intercel-
lular communication system, which is evolutionarily con-
served down to gram negative bacteria [72,73]. TEX transmit
malignant information in the form of proteins, RNAs, lipids,
and metabolites that can reprogram recipient cells [74,75].

There has been a growing body of work indicating that
TEX isolated from the plasma of cancer patients may hold
value as diagnostic and prognostic biomarkers, as a ‘‘liquid
biopsy’’ of the tumor [76–78]. Exosomes’ contents and con-
centration in the plasma of patients with HNSCC has allowed
for the differentiation between patients with active disease, no
evident disease, and between early/advanced stages of tumor
progression [79,80]. These findings highlight the potential use
of TEX diagnostic biomarkers for HNSCC [81,82]. Indeed,
such TEX-based biomarkers as liquid biopsy diagnostics
from Exosome Diagnostics were recently approved for clin-
ical use for prostate and lung cancer [83,84]. These diag-
nostics aid clinicians in detecting, diagnosing, and monitoring
cancer progression in addition to identifying the unique ge-
netic composition of each patient’s tumor.

Several groups have also established that TEX functionally
mediate cancer progression via facilitating tumor growth and

promotion of the tumor microenvironment through localized
suppression of immune surveillance through a variety of re-
ported mechanisms [85–87]. APCs, such as macrophages and
DCs, phagocytose TEX, initiating signaling cascades that
ultimately induce a regulatory phenotype among profes-
sional APCs [88,89]. Ligands on the surface of TEX can also
bind cognate receptors on a cell’s surface, inducing specific
pathway signaling activation, which can also result in
receptor-mediated endocytosis, releasing the contents of TEX
within the target cell populations [90,91]. Alternatively, TEX
ligands can bind cell surface receptors, like MHC-I on lym-
phocytes, triggering suppressive signaling pathways without
entering the cell [92,93]. Further, PD-L1 expression on TEX
has been demonstrated to suppress antitumor immunity and
memory, and it may potentially account for limited response
rates of current therapeutic antibody approaches [94].

TEX can also suppress the immune system indirectly
through ectoenzymes CD39 and CD73 bound to the surface
of TEX. CD39 hydrolyzes ATP into 5¢ AMP and CD73
hydrolyzes 5¢ AMP into adenosine [95,96]. Adenosine sig-
nals through the A2AR and A2BR receptors on tumor-
associated macrophages (TAMs), MDSCs, natural killer
cells, Tregs, DCs, and cytotoxic CD8+ T cells in a paracrine
fashion (Fig. 1) [97–100]. HNSCC-derived TEX have also
been shown to induce apoptosis of CD8+ cytotoxic T cells
[101,102]. CD95 and PD-1 receptors on the surface of CD8+

FIG. 1. Exosomes derived from mixed tumor cell popu-
lations possess potent immunoregulatory properties, in-
cluding, M2 macrophage polarization, Treg induction, and
elimination of CD8+ cytotoxic T cells. CSCs have been
shown to have immunomodulatory properties, yet it is cur-
rently not clear if CSC derived exosomes mediate these
properties. CSCs, cancer stem cells. Treg, regulatory T
lymphocyte. Color images are available online.
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T cells are bound by TEX surface molecules FasL and
PD-L1, respectively, inducing apoptosis [103,104]. Ad-
ditionally, excess levels of PD-L1+ exosomes detected in
patient plasma were associated with advanced HNSCC
disease [104]. TAMs are highly abundant in the tumor mi-
croenvironment and have been established to promote tumor
progression via facilitating immune escape [105,106]. Re-
cently, miR-21+ exosomes from SNAIL+ cancer cells have
been demonstrated to polarize macrophages to the M2
phenotype by targeting PDCD4 and IL-12A [107]. These
studies demonstrate that TEX are capable of creating an
immunosuppressive microenvironment via elimination of
CD8+ cytotoxic T cells and differentiation of TAMs toward
an M2 regulatory phenotype.

Tregs are vital for maintaining tolerance, thwarting auto-
immunity, and restraining chronic inflammatory diseases
[108–113]. However, Tregs also limit beneficial responses
through the suppression of antitumor immunity [114,115].
Tregs possess several mechanisms at their disposal to mediate
their immunosuppressive effects, including suppression by
cytolysis, suppression by metabolic disruption, suppression
by inhibitory cytokines, and suppression by the modulation of
DC maturation or function [116,117].

Elevated levels of Tregs have been observed in multi-
ple tumor types [118]. Tregs and conventional CD4+ T
cells are recruited to the tumor microenvironment via
CCL20 of TEX [119]. TEX induce CD4+CD25- T cells
into CD4+CD25+FOXP3+ Tregs in a TGFb and IL-10-
dependent manner, which results in phosphorylation and acti-
vation of the Smad2/3 and STAT3 signaling factors [120].
TEX also induce the upregulation of several immunosuppres-
sive genes COX2, IL-10, CD39, CD73, PD-L1, and CD26 in
Tregs [121]. The subsequent secretion of TGFb and IL-10 by
Tregs suppresses the proliferation of antitumor T cells via
modulation of DC function and maturation [122]. Tregs also
secrete cytolysis via secretion of granzyme A, granzyme B, and
perforin targeting cells responsible for immunosurveillance
[123,124].

Cancer stem cells

Solid tumors are heterogeneous mixtures of different cel-
lular subpopulations, which possess multiple phenotypes, dif-
ferentiation, and mitogenic potentials [125–127]. A small
subpopulation of tumor cells have been demonstrated to in-
crease tumorigenicity, with stem cell-like abilities to self--
renew and differentiate, which have become known as cancer
stem cells (CSCs) [128,129]. CSCs have been attributed to
resistance seen against cancer therapies, surviving both chemo
and radiotherapy treatment and giving rise to local or distal
recurrence in patients (Fig. 2) [130,131]. Current cancer ther-
apeutic interventions such as surgery, radiotherapy, and che-
motherapy eliminate most tumor cells, yet residual therapy-
resistant CSCs may account for recurrence [131–133].

Al-Hajj et al. demonstrated that a population of tumor cells
in breast cancer had the ability to self-renew and differenti-
ate, and identified cell markers for CSCs, CD44+CD24-
[128]. When CD44+CD24- CSCs were injected into mice,
tumors formed that were phenotypically diverse and re-
sembled the heterogeneous nature of the tumor the CSCs
originated from [128]. The CD44- cells were not tumori-
genic, cementing CD44 as an important marker for the

identification of CSCs [129]. Similarly, CSCs were identified
using these markers in HNSCC with similar results [134].
Populations of CD133+ cells have also been demonstrated to
increase tumorigenesis, in a fashion similar to that of CD44+
cells [135]. Studies of CSC surface markers have shown
CD44+ cell populations to more highly co-express CD133
than the CD44- cell population [133,136]. ALDH-1 was
identified as an additional CSC marker, where CD44+CD24-
ALDH-1+ cells displayed higher potential to form tumors
and possessed increased radioresistance [137].

CSCs are essential for the recurrence, and several reports
have established that they protect the developing tumor
from immunosurveillance and elimination by promoting a
protumor microenvironment and by regulating the immune
system. Recently, Miao et al. established that adaptive
immune resistance emerges from CSCs [126]. CSCs dem-
onstrate stronger inhibition of CD8+ T cells and induction
of Tregs and MDSCs than non-CSC tumor cell subpopu-
lations [138]. Several reports have established that CSCs
downregulate the presentation of MHC antigens, contrib-
uting to escape from CD8+ cytotoxic T lymphocytes [139].
CSCs have also been demonstrated to polarize TAMs to-
ward the regulatory M2 phenotype [140].

To date, most published reports of the mechanisms un-
derlying CSCs’ immunosuppressive properties have focused
on their secretion of various cytokines including TGFb-1,
and IL-6 [135,141,142]. These immunoregulatory cytokines

FIG. 2. CSCs have been reported to possess chemor-
adiotherapy resistance properties that result in tumor recur-
rence. The determination of the mechanisms by which CSCs
escape canonical therapeutic interventions, and subsequent
evasion of immunosurveillance may provide insights into
novel druggable targets designed to limit tumor recurrence.
Color images are available online.
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possess potent anti-inflammatory properties, mediated by
Tregs and MDSCs, which subsequently secrete additional
cytokines with additional immunomodulatory properties
that suppress the immune system, promoting a tumor per-
missive microenvironment.

CSCs are tumor-initiating cells whose progeny generate
the bulk of subsequent tumor tissue. A growing body of work
has established that exosomes derived from bulk tumor tissue
are key mediators of communication within the tumor mi-
croenvironment, and induce protumorigenic effects in im-
mune cells, and other nontumor bystander cells [143–145].

To date, few published reports have investigated the
physiology and functional properties of CSC secreted exo-
somes (CSCEX) [146–148]. However, it is feasible that CSC
secrete CSCEX, which possess similar immunosuppressive
properties similar to TEX [85]. Numerous reports have es-
tablished that exosomes derived from other stem cell source
possess comparable properties as well [149–152].

The determination of whether CSCEX allow for CSC to
evade immunosurveillance and facilitate relapse within an
immune-permissive tumor microenvironment represents a
current critical gap in knowledge that warrants further in-
vestigation [153]. Better understanding of the molecular
mechanisms by which CSCEX potentially regulate antitu-
mor immunity may yield vital insights into tumor progres-
sion, and elucidate novel drug targets for aggressive tumors
[66]. Such investigations may also yield insights into novel
diagnostic biomarkers that are able to discern CSC-load
post-treatment using CSCEX isolated from liquid biopsies.
Taken together, there is strong evidence to suggest that
further study of CSCEX may yield valuable biomedical and
translational insights into recurrent tumor progression.

Conclusion

CSCs are highly tumorigenic and resistant to traditional
cancer treatments, giving rise to local and distal tumor recur-
rence. To date, published reports have focused on CSCs’ se-
cretions of cytokines rather than exosomes. However, a
growing body of evidence has established that exosomes de-
rived from complex tumor tissue specimens comprised of
multiple subpopulations of cells possess potent immunoregu-
latory properties that facilitate tumor progression. It is critical
to distinguish whether these exosomes were derived from
CSCs or solely from non-CSC to identify potential mechanistic
differences for novel therapeutic interventions and diagnostics
specifically targeting CSCs. However, it is feasible that many
of the properties attributed to TEX are also associated with
CSCEX. Further investigation of CSCEX, and their effects on
the immune system, may uncover previously undiscovered
mechanisms underlying the suppression of antitumor immu-
nity, thereby elucidating novel druggable immunotherapy
targets. Targeting of CSCs is an attractive approach to limit
cancer treatment resistance, and to prevent tumor relapse.
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