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ABSTRACT: Accurate prediction of snow water equivalent (SWE) can be valuable for water resource managers. Re-
cently, deep learning methods such as long short-term memory (LSTM) have exhibited high accuracy in simulating hydro-
logic variables and can integrate lagged observations to improve prediction, but their benefits were not clear for SWE
simulations. Here we tested an LSTM network with data integration (DI) for SWE in the western United States to inte-
grate 30-day-lagged or 7-day-lagged observations of either SWE or satellite-observed snow cover fraction (SCF) to im-
prove future predictions. SCF proved beneficial only for shallow-snow sites during snowmelt, while lagged SWE
integration significantly improved prediction accuracy for both shallow- and deep-snow sites. The median Nash–Sutcliffe
model efficiency coefficient (NSE) in temporal testing improved from 0.92 to 0.97 with 30-day-lagged SWE integration,
and root-mean-square error (RMSE) and the difference between estimated and observed peak SWE values dmax were re-
duced by 41% and 57%, respectively. DI effectively mitigated accumulated model and forcing errors that would otherwise
be persistent. Moreover, by applying DI to different observations (30-day-lagged, 7-day-lagged), we revealed the spatial
distribution of errors with different persistent lengths. For example, integrating 30-day-lagged SWE was ineffective for
ephemeral snow sites in the southwestern United States, but significantly reduced monthly-scale biases for regions with sta-
ble seasonal snowpack such as high-elevation sites in California. These biases are likely attributable to large interannual
variability in snowfall or site-specific snow redistribution patterns that can accumulate to impactful levels over time for
nonephemeral sites. These results set up benchmark levels and provide guidance for future model improvement strategies.

KEYWORDS: Snowpack; Hydrology; Machine learning; Deep learning; Error analysis; Snow

1. Introduction

Snowpack is a critical source of water supply in many parts
of the world. In the western United States, snowmelt accounts
for more than half of the total runoff (Li et al. 2017) and is a
major water source for agriculture, human consumption, and
hydroelectric power generation (Kopytkovskiy et al. 2015;
Magnusson et al. 2020; Qin et al. 2020; Siirila-Woodburn et al.
2021; Ullrich et al. 2018; Vano 2020). Snowmelt timing is also
important for estimating peak flows and nutrient exports
(Corriveau et al. 2011, 2013). Water managers in the snow-
dominated western United States rely on the snow water
equivalent (SWE) measurements at ;800 Snowpack Teleme-
try (SNOTEL) sites to monitor snow drought and make water
management decisions (Hatchett et al. 2022; Nowak et al.
2021; USDA 2022). In situ SWE data, along with snow depth
data, have also been utilized to produce interpolated SWE
maps (Broxton et al. 2016; Dawson et al. 2018; NOHRSC
2004). If SWE values at in situ locations can be accurately pre-
dicted, they could be of significant value to data users and
stakeholders. A continuous, high-quality dataset without gaps

could be particularly useful for studying the snowpack vari-
ability and trends over long periods of time at sites that do
not have seamless daily data records for analysis.

SWE prediction is often achieved by combining observational
data with a model using a data assimilation (DA) approach like
ensemble Kalman filtering (EnKF) (Diro and Lin 2020; King
et al. 2020; Leisenring and Moradkhani 2011; Slater and Clark
2006). Slater and Clark (2006) improved SWE estimations by as-
similating ensemble forcing data and observations of SWE into a
conceptual snow model (SNOW-17). DA updates the internal
states of a process-based model using covariance-based, varia-
tional, particle swarm, or other methods, and the updated model
can provide better predictions of model outputs. The performance
of DA depends on the validity of assumptions such as linearity for
covariance-based methods and the probability distributions for
variational methods. It can also be impacted by the realism of the
underlying physical model and choices such as composition of the
covariance matrix and bias correction strategies (Evensen 2009).

Recently, machine learning approaches such as long short-
term memory (LSTM) deep learning (DL) networks have shown
great promise across many applications. LSTMmodels have dem-
onstrated high performance for modeling soil moisture (Fang et al.
2017; Fang and Shen 2020; Li et al. 2021; O and Orth 2021),
streamflow (Feng et al. 2020, 2021; Kratzert et al. 2019; Ma et al.Corresponding author: Chaopeng Shen, cshen@engr.psu.edu
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2021; Ouyang et al. 2021; Xiang et al. 2020), stream temperature
(Rahmani et al. 2021a,b), dissolved oxygen (Zhi et al. 2021, 2023),
and groundwater (Afzaal et al. 2020), among others (Shen and
Lawson 2021). Furthermore, these models offer uncertainty (Fang
et al. 2020; Klotz et al. 2022) and physical parameter (Tsai et al.
2021; Feng et al. 2022; Shen et al. 2023; Aboelyazeed et al. 2023)
estimation functionalities.

In the context of making forecasts with LSTM-based mod-
els, one can either use data integration (DI) (Feng et al. 2020)
(or “autoregression”), where recent observations are included
as inputs so that LSTM learns how to best make use of such
information, or variational data assimilation (Nearing et al.
2022), where an update to the LSTM internal states is applied
to minimize the difference between simulation and observa-
tion. Neither of the two options directly updates the observed
variable: if we have an LSTM model that simulates SWE, we
cannot simply update SWE because in LSTM models, SWE is
merely an output (or “display variable”) of the network and
not the state variable involved in calculating such an output;
thus updating SWE would have no impact on subsequent pre-
dictions. One could instead use the second option where
LSTM’s internal states are updated using variational data as-
similation. However, this approach can be expensive and,
based on previous evaluation, may not be as optimal as DI
(Nearing et al. 2022). LSTM deep networks showed high flexi-
bility and performance in leveraging recent observations to
improve prediction with DI. Fang and Shen (2020) were able
to substantially improve soil moisture forecasts over the con-
terminous United States (CONUS). They reduced the
3-day-ahead prediction root-mean-square error (RMSE) to
0.022, which was far lower than previously published esti-
mates (Koster et al. 2017). Feng et al. (2020) showed DI im-
proved 1-day-ahead median Nash–Sutcliffe model efficiency
coefficient (NSE) values for streamflow from 0.74 to 0.86 for a
benchmark dataset over the CONUS. DI lets the neural net-
work decide how to best fuse information from the lagged ob-
servations with other inputs to influence the output. DI
mostly corrects the errors accumulated in the forcing data or
in the model dynamics, and prevents such errors from
influencing the ensuing simulations (Fang and Shen 2020).
Due to the high autocorrelation of SWE time series, it is ex-
pected that SWE prediction should benefit significantly from
DI (Fang and Shen 2020). However, as SWE is determined by
a combination of antecedent conditions and can be impacted
by complex processes (e.g., rain-on-snow events), it was un-
certain if DI’s benefit was strong at the weekly or monthly
scales, and, if so, in which locations it would be most benefi-
cial. For SWE modeling, Meyal et al. (2020) trained LSTM
models on five SNOTEL sites and reported high forecast per-
formance using the most recent SWE observations. However,
they used only a small fraction of available SNOTEL stations,
which likely limits the usefulness of interpolation or extrapo-
lation of these predictions for other sites (Fang et al. 2022).

While the in situ SWE network is valuable, the sites are un-
evenly distributed in space. Satellite data can observe snow
cover fraction (SCF) over the entire surface of the globe at
high spatiotemporal resolution, but SCF does not readily
translate into SWE as the relationship is complex, hysteretic,

and nonlinear (Egli and Jonas 2009; Luce and Tarboton 2004;
Magand et al. 2014). There are also airborne sensing data
(Painter et al. 2016) but they have not been systematically col-
lected for a long period of time. Previous efforts have at-
tempted to utilize SCF in multisensor data assimilation
(Girotto et al. 2020) but have had limited success. Given the
demonstrated success of deep learning, it is worthwhile to see
if DL models can make better use of this data.

Here we applied aDI scheme for SWE simulations at monitored
sites over the western United States and compared different model
formulations and lag times.We had three research questions:

1) How much improvement in SWE prediction can be obtained
by integrating SWE observations with 30-day or 7-day lag
times?

2) How useful are recent observations of SWE and SCF data,
respectively, for sites without in situ data (unmonitored sites)?

3) What are the orders of magnitude of predictive errors for
SWE, what are their characteristics (e.g., spatiotemporal
error, long-term cumulative error, or short-term flash error),
and which locations are most susceptible to these errors?

Our research primarily focused on the SWE prediction at moni-
tored sites, as these sites are highly valuable for water resource
managers and have ground-truth measurements for verification.
We also provided high-quality predictions at unmonitored sites
and worked to separate out different error sources.

2. Methods

a. Datasets

SNOTEL is a network of automated stations that monitor
SWE and meteorological parameters across mountainous re-
gions in the western United States (Serreze et al. 1999). At
each SNOTEL site, a “snow pillow” uses a pressure trans-
ducer to measure the weight of the snowpack, which is then
used to calculate the SWE (Gan et al. 2021). Daily SWE from
525 stations (those having data available from 2001 to 2019)
was used as training and test data in this work.

We used daily snow cover fraction (SCF) with 500-m spatial
resolution from the Moderate Resolution Imaging Spectroradi-
ometer (MODIS) on board the Terra satellite (Hall and Riggs
2021) as potential observations to be assimilated. The specific
product used was MOD10A1F, derived from the MODIS Snow
Cover Daily L3 Global 500-m Grid (MOD10A1). Gap-filling
techniques were employed to compensate for cloud cover or
poor data quality by incorporating observations from the most re-
cent clear-sky day. However, some gaps still persisted in the data
due to continuous cloud cover, and to address this issue, we
substituted the remaining no-data periods with a value of zero.
MOD10A1F has been reported to have a high accuracy of 96.2%
when compared with the snow cover map converted from a
3-m-resolution snow-depth product by an aerial laser scanner
(Stillinger et al. 2023). For each SNOTEL site, the SCF value
was calculated as the mean of the MODIS SCF data across all
pixels inside the 4-km grid box around the site. The 4-km resolu-
tion was chosen because we wanted to use the same resolution as
the parameters from gridMET (we did test both 500-m and 4-km
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resolution and achieved similar performance but the 4-km resolu-
tion had less noise and fewer gaps due to continuous cloud cover;
data not shown).

This work focused on the hydrologic component of the
prediction}that is, rather than using a meteorological forecast,
we used reanalysis forcings to drive the model. This allows analy-
sis of errors in different parts of the model. Moreover, as we
show, even reanalysis products (often seen as more accurate
than forecasts) can introduce large errors. We used gridded sur-
face meteorological data (gridMET) as our forcing data, a data-
set of daily high spatial resolution (;4 km; 1/248) surface
reanalysis meteorological data covering the contiguous United
States from 1979 through the present with 1-day resolution
(Abatzoglou 2013). It blends climate data from PRISM (800-m
resolution) and NLDAS-2 (12-km resolution) using climatically
aided interpolation. PRISM is upscaled and NLDAS-2 is down-
scaled to a 4-km resolution. The gridMET variables used in the
LSTM model were precipitation, 2-m surface air temperature,
downward surface shortwave radiation, wind velocity, and hu-
midity. The values of variables on the closest pixel to each
SNOTEL site were employed as the forcing data. We conducted
tests utilizing both the meteorological data from gridMET and
SNOTEL to separate out potential meteorological forcing errors.
SNOTEL provides potentially more accurate forcing data at
the SNOTEL sites, but this information is not available elsewhere
and thus would not work for predictions outside SNOTEL sites.
Other variables such as measured or simulated soil and snow tem-
peratures may be added, too, and could potentially have minor
benefits, but we did not include them in the present study as these
measurements were not available for most SNOTEL sites, and
we wanted to focus on widely available observational data.

With respect to the static physiographic attributes (A), we
employed a range of predictors for the main LSTM unit:
(i) latitude; (ii) topographic characteristics including elevation,
slope, and aspect; and (iii) land cover characteristics (dominant
land cover, dominant land cover fraction, and forest fraction)
from MODIS Land Cover Type Yearly L3 Global 500 m
(MCD12Q1). The topographic characteristics, e.g., slope, eleva-
tion, and aspect, can affect the solar insolation on the snowpack,
while the vegetation cover and forest gaps also impact snow accu-
mulation and melt by canopy interception, wind dampening, local
longwave radiation emittance, and shading of shortwave radia-
tion (Smyth et al. 2022). Although we simply included all logically
relevant and widely available static attributes as inputs, we ran
experiments with different setups to show the impacts of adding
or removing some attributes (Table A2 in the appendix). Addi-
tional information such as tree morphometry}for example,
shape, height, crown size, and density}could have impacts on
snow (Seyednasrollah and Kumar 2013). We did not include
them because of large-scale availability issues, but they could be
tested in the future.

b. Modeling

As a quick summary, we trained two types of models. The
first type is a forward model that does not perform DI. This
model can be written concisely as

SWE1:t 5 LSTM(f 1:t, A), (1)

where t is the current time step, f represents the atmospheric
forcings, and A represents the static attributes that character-
ize a site. This formulation is a sequence-to-sequence model
and information from the future is not used during prediction
(Hochreiter and Schmidhuber 1997; Shen 2018; Fang and
Shen 2020). The second type of model uses DI, which refers
to the incorporation of recent observations into the model. It
can be concisely written as

SWET11:t 5 LSTM(f T11:t, A, y1:t2T): (2)

In other words, we feed a T-day lagged variable y, which
could be either SWE or SCF, and let LSTM decide how to
best use it to update the internal states so it could make a bet-
ter prediction (Fig. 1a). There are no special steps involved to
achieve the fusion of data, and all information is considered.
The only difference between the DI-LSTM model and the
forward model without DI is whether the lagged observations
are integrated (concatenated) in the inputs.

The LSTM models were developed based on previous soil
moisture and streamflow prediction work that had data inte-
gration components (Fang and Shen 2020; Feng et al. 2020).
LSTM is a special recurrent neural network that not only has
recurrent connections but also contains input, output, and for-
get gates to add or remove information from the cell state of
the LSTM (Fig. 1b) (Hochreiter and Schmidhuber 1997;
Graves 2012). The gates in a cell state act like filters that de-
termine which information to remember and which to discard
over long periods of time. These components were collec-
tively designed to help address the challenge of vanishing
gradients in deep learning, a problem that arises when the
gradient decreases exponentially across time steps (Hochreiter
et al. 2001). The LSTM network and our whole workflow were
implemented in PyTorch (Paszke et al. 2019), an open source,
Python-based, machine learning framework. More details
about the LSTM implementation here can be found in our
previous papers, Fang et al. (2017) and Fang and Shen (2020).
Given inputs I (a concatenation of meteorological forcings,
physiographic attributes, and lagged observations), our LSTM
algorithm can be written as the following:

Input transformation : xt 5 ReLU(WII
t 1 bI),

Input node : gt 5 tanh[D(Wgxx
t) 1 D(Wghh

t21) 1 bg],
Input gate : it 5 s[D(Wixx

t) 1 D(Wihh
t21) 1 bi],

Forget gate : f t 5 s[D(Wfxx
t) 1 D(Wfhh

t21) 1 bf ],
Output gate : ot 5 s[D(Woxx

t) 1 D(Wohh
t21) 1 bo],

Cell state : st 5 gt � it 1 st21 � f t,

Hidden state : ht 5 tanh(st) � ot, and

Output : yt 5 Whyh
t 1 by, (3)

where W and b are the network weights and bias parameters,
respectively; h are the hidden states; tanh is the tangent hy-
perbolic function used as an activation function; and D is the
dropout operator, which is a regularization technique to pre-
vent overfitting by randomly dropping out a proportion of
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neurons in a neural network during training. All the variables
are matrices.

DI in the framework of LSTM is straightforward}it either
simply concatenates the lagged observations with other inputs
to be supplied to LSTM as illustrated in Fig. 1, or sends in
lagged observations via additional neuron units, which are un-
necessary for this work. It is conceptually similar to autore-
gressive models that use past values of a variable as inputs to
predict its future values, but the past variables are not limited
to the variable to be predicted. In contrast with this simplistic
method, conceptual or process-based models often employ
data assimilation techniques to incorporate recent measure-
ments (Houser et al. 1998; Vrugt et al. 2006; Clark et al. 2008;
Nearing et al. 2022). As explored in other studies (Nearing
et al. 2022), an autoregressive model outperformed a varia-
tional data assimilation approach that used a separate back-
ward state update step. In this work, we tested our DI
algorithm with two variables: lagged SWE and lagged SCF.
Even though it was expected that SCF would not provide too
much information about SWE when snow is deep, SCF is
more widely available than SWE (as it can be observed by sat-
ellites), and we wondered if it could help improve predictions
at shallow-snow sites.

To avoid overtuning hyperparameters, the hyperparameter
combinations were inherited from our previous streamflow
model (Feng et al. 2020): a batch size of 100, a hidden-state

size of 256, and a dropout rate of 0.5. A 365-day training
sequence length was needed for the forward model but a
shorter length was sufficient for the DI models (Table A1).
We employed 365 days for all models for simplicity, consider-
ing the period of snow dynamics is one year for ephemeral
and seasonal snowpacks characteristic of the western United
States. All the models were trained until reaching convergence.
Each training job only needed 2.5 h on an NVIDIA TITAN Xp.
The stochastic gradient descent method AdaDelta (Zeiler 2012)
was used to automatically adapt the learning rate.

c. Temporal and spatial cross-validation testing

In the forward model, recent observations are not used;
that is, there is no y1:t2T term in the input in Eq. (1). In the DI
model, the y1:t2T term can be either SCF or SWE data at the
site, and the lag T can be either 7 [denoted as DI(SCF, 7) and
DI(SWE, 7)] or 30 [DI(SCF, 30) and DI(SWE, 30)] days. A
shorter lag results in the integration of a more recent observa-
tion and, most of the time, better predictive metrics. For each
model, the same integrated term and lag were employed in
both training and testing.

All the models were trained from 2001 to 2015 and evalu-
ated for temporal, spatial, and spatiotemporal performance.
The temporal test was conducted using temporal cross valida-
tion, where the models were trained on all 525 SNOTEL sites
from 2001 to 2015 and then tested on all sites from 2016 to

FIG. 1. LSTM model with DI: (a) the sequence-to-sequence LSTM model with data integration
of T-day-lagged SWE or SCF, and (b) a schematic view of the workflow in an LSTM unit.
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2019. The spatial test was conducted using a 10-fold spatial
cross-validation approach where the 525 SNOTEL sites were
randomly divided into 10 folds. The model was trained from
2001 to 2015 on 9 of the folds and tested from 2001 to 2015 on
the remaining (untrained) sites. The test was run a total of
10 times while rotating the held-out fold, and thus every site
became a test site once. In the spatiotemporal test, the models
were trained in the same way as in the spatial test, but the
evaluation was conducted in the 4 years after the training
period, from 2016 to 2019.

d. Evaluation metrics

LSTM performance was evaluated over the testing years
using five statistical metrics: bias, RMSE, Pearson’s correla-
tion R, NSE, and the absolute difference dmax between the
maximum model simulation and the maximum observation
over the water year. The NSE (McCuen et al. 2006) considers
bias, with a perfect model yielding a value of 1, while poor
performing models can have infinitely negative values. Addi-
tionally, the absolute difference between the maximum model
estimate and the maximum observation over the water year,
referred to as dmax, was calculated using

dmax 5

∑
n

i51
|(SWEi,max 2 SWE*

i,max)|
n

, (4)

where SWEi,max and SWE*
i,max are respectively the maximum

model simulation and maximum observations at pixel i evalu-
ated in the water year, and n is the number of evaluated sites.

We used the daily 4-km gridded SWE data from the Uni-
versity of Arizona (UA) dataset (Broxton et al. 2016) as a
benchmark to evaluate our LSTM models. The UA dataset
was obtained by interpolating SWE from SNOTEL stations
using ordinary kriging. The SNOTEL SWE was normalized
by the net accumulated snowfall that considered both accu-
mulated snowfall and cumulative ablation. The interpolated
SWE values at those unmonitored stations were then denor-
malized by the net accumulated snowfall, as described in pre-
vious studies (Broxton et al. 2016; Zeng et al. 2018). This
dataset also incorporated snow-depth measurements from
thousands of National Weather Service (NWS) Cooperative
Observer Program (COOP) stations, which was achieved by
the new snow density model described in Dawson et al.
(2017). We compared the SWE data from the UA dataset on
the nearest grid points to the SNOTEL sites with our LSTM
models’ predictions for the period of 2001 to 2019. The UA
dataset can be accessed through the National Snow and Ice
Data Center (NSIDC).

e. Model error analysis

As discussed earlier, LSTM has been shown to be skillful at
capturing temporal dynamics especially for monitored sites,
which means it can be used as an approximate measure of the
information content of the input. To assist in interpreting the
results, we classified model error into three types: 1) temporal
error, produced when a model was trained on some sites in a
certain period and tested on the same sites in a different

period}it is introduced due to the model not being trained to
respond correctly in time; 2) spatial error, produced when a
model was trained on some sites in a certain period and tested
on different, untrained sites in the same period}it is due ei-
ther to the model not responding correctly to (static) site
characteristics, or because the available hydrometeorological
variables at the sites do not completely describe the problem;
and 3) meteorological forcing error, for example, incorrect
precipitation amounts in the inputs at particular grid cells.
The selected SNOTEL datasets were concentrated in the
western United States and biased toward high-elevation sites.
The precipitation was possibly underestimated by gridMet
due to high heterogeneity within the grid cells and sparse data
sampling. We attempted to decipher the error types while go-
ing through the results.

3. Results and discussion

In the following, we discuss the results from the forward
model alone (section 3a). We then compare the DI models
that integrate either SWE or SCF with different lag times to
improve the prediction at monitored sites (section 3b) and in-
vestigate the sources of errors and factors controlling where
DI is most useful (section 3c).

a. Forward model

In this work, the sequence-to-sequence LSTM without DI
was employed as a valuable benchmark for comparison. The
temporal test demonstrated that the LSTM could achieve
promising results for the sites where SWE history was available.
Across the 525 SNOTEL sites, the median NSE during the test
period was 0.92, indicating that the model explained 92% of the
observed variance. The forward model (LSTMtemporal_test)
yielded an RMSE of 48.2 mm, a bias of 5.3 mm, and a dmax of
62.4 mm (Table 1 and Fig. 1), which mainly reflect temporal and
forcing errors. However, their relative importance is unknown.
The forward model presented in this study demonstrates supe-
rior performance when benchmarked against the literature. For
context, Garousi-Nejad and Tarboton (2022) evaluated SWE
in the National Water Model, averaged SWE values across
all SNOTEL sites, and obtained an NSE of 0.75 and a bias of
255 mm. Hill et al. (2019) obtained an RMSE of 59 mm by con-
verting observed snow depths to SWE. GlobSnow v3.0 showed
an RMSE of 71 mm for the whole winter (September–June)
from 1979 to 2018 for North America (Venäläinen et al. 2021).
Overall, the LSTM model developed in this study can be re-
garded as a state-of-the-art model for SWE prediction, as evi-
denced by its performance metrics.

The sites with higher model performance are scattered
across the western United States, albeit with multiple spatial
“pockets” exhibiting significant bias (Fig. 3a). In general,
higher NSE values were found toward the northeastern part
of the domain (with the exception of a few low-NSE sites on
the boundary), and the lowest values were found toward the
southwest. Large negative biases were present in California
(Sierra Nevada range), western Oregon, Washington, and
central Idaho, which could be attributed to pronounced and
systematic errors in the gridded forcing dataset (see the detailed
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discussion in section 3c for Fig. 6) and/or higher interannual
variability resulting from intermittent and extreme precipita-
tion (e.g., atmospheric rivers; Goldenson et al. 2018). Overall,
southern sites were more challenging to predict than northern
ones, with low-latitude sites in Arizona (located at the south-
ern edge of the domain) showing mixed results with a higher
fraction of mid-to-low-performing sites. This pattern suggests
the LSTM is more effective in capturing SWE in regions with
climatologically deep snowpacks during the winter than
ephemeral snow in the south (Hatchett 2021).

The spatial test, which can help to quantify spatial and forc-
ing errors, revealed a noticeable declination of performance
relative to the temporal test, which highlights the challenges
facing spatial interpolation. The RMSE increased to 53.9 mm,
and the NSE dropped to 0.88, with an R of 0.96. The NSE and
R still seem competitive when compared with the results
reported in the literature. For example, SNODAS, which reg-
ularly assimilates SWE observations and is considered a high-
quality dataset, had an R of 0.93–0.98, while some blended
satellite products (ATMS and AMSR2) had an R of approxi-
mately 0.9 (Gan et al. 2021). The maximum SWE error, dmax,
was 70.9 mm for the spatial test, which was effectively the
same as the 71-mm value calculated from the UA dataset. Ad-
ditionally, the UA dataset uses all the data (and is thus not a
spatial extrapolation or cross validation test where the testing
sites are withheld from the input data), so this comparison is
biased against the LSTM. However, it is worth noting that the
gridded UA dataset represents specific attributes within a
given area, whereas our LSTM is trained on point SWE meas-
urements, which may be a closer representation of SNOTEL
data than the gridded datasets. When the forward model was
applied both for spatial and temporal applications, RMSE
and dmax increased noticeably, by 17.6 and 31.4 mm, respec-
tively, when compared with the temporal test (Table 1, For-
ward LSTM–spatiotemporal test).

Despite its high performance, the LSTM still encountered
some challenges in predicting SWE because of the complex

nature of snow processes}for example, long persistence, aero-
dynamic redistribution, and high spatial heterogeneity. SWE ac-
cumulation may be influenced by site-specific factors such as
wind-driven redistribution patterns (Winstral and Marks 2002;
Freudiger et al. 2017) or avalanches (Lehning and Fierz 2008)
that could not be adequately described by available static attrib-
utes. Similar to forcing error, for snow the errors with precipita-
tion do not dissipate but can accumulate over time, potentially
causing errors for the entire snow season from the beginning of
the accumulation phase. In the following analysis, the forward
model was used to diagnose different types of errors and to
serve as a benchmark for the DI models.

b. DI models integrating SWE or SCF

After establishing the forward LSTM model as a baseline,
we investigated simulations that integrated either SWE or
SCF data. When integrating 30-day lagged SWE, the model’s
performance improved to reach an NSE value of 0.97, RMSE
of 28.4 mm, and dmax of 27.1 mm in the temporal test [Table 1;
DI(SWE, 30)–temporal test]. Relative to the previous temporal
test of the forward model, the inclusion of DI and 30-day-lagged
SWE observations reduced the RMSE and dmax by 41% and
57%, respectively, while also greatly reducing bias to 3.7 mm.
The NSE and dmax curves of the DI model in the temporal tests
exhibited a significant contrast when compared with those of
the forward model (Fig. 2; NSE and dmax). The contrast is more
prominent than in some previous assimilation work based on
ensemble Kalman filtering (Slater and Clark 2006). In a practi-
cal application, the DI SWE model will most likely be utilized
to forecast SWE at monitored locations one month in advance.
DI greatly reduced the bias observed in the northwest (Fig. 3a)
and improved the model accuracy at low-NSE sites on the north-
east boundary of the map caused by errors existing in the gridded
forcing data or higher interannual variability (Fig. 3b). However,
the model still had difficulty capturing the ephemeral snow
at low-latitude sites in Arizona. The spatiotemporal test for
DI(SWE, 30) did not use the test sites for training but only used

TABLE 1. Model performances with different test scenarios. Temporal test means that the model was trained on some sites in a
certain time period and tested on the same sites in a different period. Spatial test means that the model was trained on some sites
and tested on other sites (in the same time period). In a spatiotemporal test, the model was trained on some sites in a period and
tested on other sites in a different period. The time periods after the model name in the first column represent the training and
testing periods, i.e., [training period]–[testing period]. DI(x, T) indicates a data integration LSTM model trained with either SWE or
SCF as x that incorporated recent data via DI with a T-day lag.

Model Bias (mm) RMSE (mm) R NSE dmax (mm)

Forward LSTM–temporal test [2001–15]–[2016–19] 5.3 48.2 0.97 0.92 62.4
Forward LSTM–temporal test with in situ forcing [2001–15]–[2016–19] 20.01 39.3 0.98 0.94 50
Forward LSTM–spatial test [2001–15]–[2001–15] 3.2 53.9 0.96 0.88 70.9
Forward LSTM–spatial test with in situ forcing [2001–15]–[2001–15] 2.88 45.8 0.97 0.91 56.6
Forward LSTM–spatiotemporal test [2001–15]–[2016–19] 21.2 65.8 0.95 0.84 93.8
DI(SWE, 30)–temporal test [2001–15]–[2016–19] 3.7 28.4 0.99 0.97 27.1
DI(SWE, 30)–spatial test [2001–15]–[2001–15] 2.0 32.6 0.98 0.96 29.1
DI(SWE, 30)–spatiotemporal test [2001–15]–[2016–19] 2.8 36.8 0.98 0.95 33.8
DI(SCF, 30)–temporal test [2001–15]–[2016–19] 22.7 45.9 0.97 0.92 57.3
DI(SCF, 30)–spatial test [2001–15]–[2001–15] 0.6 54.3 0.96 0.87 67.9
DI(SCF, 30)–spatiotemporal test [2001–15]–[2016–19] 23.27 66.8 0.95 0.84 86.6
DI(SWE, 7)–temporal test [2001–15]–[2016–19] 1.0 12.3 1.00 1.00 9.7
DI(SCF, 7)–temporal test [2001–15]–[2016–19] 21.1 42.8 0.97 0.93 58.2
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the 30-day lagged SWE observations for DI in testing. The errors
for the spatiotemporal test rose modestly (in absolute terms) in
RMSE (36.8 mm) and dmax (33.8 mm), indicating that this model
could be useful for newly instrumented SWE observational sites
or campaigns without long data records for training. It is impor-
tant to note that this prediction used reanalysis meteorological
forcing data, and thus did not seek to represent internal variabil-
ity or uncertainty caused by the meteorological forecast data.

Integrating 30-day-lagged SCF only had minor impacts on
dmax and NSE in the temporal test (red lines in Fig. 2) and
was more effective in reducing temporal errors rather than
spatial errors. A comparison between the forward model and
DI(SCF, 30) in the temporal test showed a reduction of 2.3
and 5.1 mm in RMSE and dmax, respectively. However, in the
spatial test, dmax was reduced by 3 mm but RMSE increased
by 0.4 mm (Table 1). Therefore, SCF’s most effective role was
to reduce temporal errors.

While for all the sites the benefit of incorporating SCF data
did not seem significant, it improved SWE prediction for sites
with shallow snow depth, especially during the snowmelt
period. Site stratification shows that SCF brings benefits to
shallow-snow sites (Fig. 4). Table A3 in the appendix provides
the metrics of DI(SCF, 30) and the forward model at sites
where mean SWE is less than 40 mm. Both the forward model
and DI(SCF, 30) have better performance during snow accumu-
lation rather than melt, as snow ablation is a more complicated
process. However, integrating 30-day-lagged SCF greatly de-
creased bias and improved the NSE for SWE prediction during
the melt season at shallow-snow sites. This is presumably be-
cause SCF has a more linear relationship with SWE during the
melt season (Swenson and Lawrence 2012). Since the snowmelt
phase has always been a challenge, we think SCF is still useful
for predicting available snowmelt water at large scales.

DI(SWE, 7) prediction reached nearly perfect simulations
in the temporal test with R and NSE both close to 1.00, a
nearly negligible bias of 1.0 mm, RMSE of 12.3 mm, and a

dmax of 9.7 mm. The remaining RMSE could be explained by
the effect of 7-day differences in actual and input precipita-
tion. Previously, Leisenring and Moradkhani (2011) employed
multiple data assimilation methods to assimilate SWE data
“whenever new observations are available” (which would be sim-
ilar to a 1-day lag) for a Ward Creek SNOTEL site in California.
They reported that EnKF produced an RMSE of 47.24 mm
and an NSE of 0.936, while another method called EPF-WRR
produced an RMSE of 28.95 mm and an NSE of 0.976. In
contrast, our DI(SWE, 7) yielded an NSE of 0.995 for the
same site. It seems that deep network-based data integration
is highly performant and well suited for modeling the snow
processes during the 7 days before prediction.

Upon examination of several sites, it was observed that DI
often corrected the underestimation of snow accumulation by
the forward models (Fig. 5a). The DI and forward models di-
verged early (about a month) into the snow accumulation season.
It was surprising to find that, even with 30-day lagged SWE, the
DI(SWE, 30) model was closer to the observed SWE than the for-
ward only model. This stands in contrast to the general trend ob-
served in other hydrological LSTM models, where only the most
recent observations typically contribute to predictive improve-
ments (Feng et al. 2020). DI(SWE, 30) consistently followed the
observed snow accumulation trend from the beginning of all
accumulation seasons (Figs. 5a,c). However, there were cases
where DI(SWE, 30) and DI(SWE, 7) diverged earlier, for ex-
ample, December 2016, October 2017, and December 2018
(Fig. 5d), reflecting the impact of ephemeral snow accumulation
and melt. Models integrating SCF were found to be intermediate
in NSE but significantly underestimated peak SWE for deep
snow sites (Fig. 5a). Nevertheless, SCF still had benefits for pre-
dicting ephemeral snow at the beginning of the accumulation
season and the end of the melt season, and was able to correct
the errors in some testing periods of DI(SWE, 30) and the for-
ward model, e.g., from March to May 2017 and 2019 of Fig. 5b
and from October to November 2017 of Fig. 5d.

FIG. 2. Empirical cumulative distribution function of test performance metrics: (left) NSE and (right) dmax for the
forward and DI models. LSTMtemporal_test (black solid line) denotes the forward model in the temporal test; LSTMspatial_test

(black dashed line) denotes the forward model in the spatial test (prediction at untrained sites). The remaining model re-
sults are for the temporal test: DISCF,30 (pink solid line) integrates 30-day-lagged snow cover fraction (SCF) observations;
DISWE,30 (blue solid line) integrates 30-day-lagged snow water equivalent (SWE) observations; DISCF,7 (red dashed line)
integrates 7-day-lagged SCF observations; and DISWE,7 (blue dashed line) integrates 7-day-lagged SWE observations. The
red arrows marked “better” show the direction in which model improvement occurs.
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A question of interest is, How could the LSTM be so effec-
tive at integrating observations of varied lags? We hypothesize
that LSTM may simply build a model that accounts for the
differences between SWEt2T and SWEt. In other words, it
only needs to learn to represent the snow processes in the pe-
riod of T by giving an accurate initial condition at day t 2 T.
LSTM could also build longer-term memory to internally
keep track of states related to thermal and compaction pro-
cesses. In addition, LSTM could potentially have units that
perform uncertainty analyses, as we showed previously (Fang
et al. 2020). This would enable LSTM to weigh the impor-
tance of the information based on its perceived uncertainty.
Because of LSTM’s strong DI capability, DI(SWE, T) essen-
tially serves as an error stopper where errors longer than T
are suppressed. We leverage LSTM’s adaptive DI ability as
an error detector in the next section: we show sites with long-
term (multimonth), short-term (7–30 days), and ultra-short-term
(,7 days) forcing errors and the approximate magnitudes of
these different error sources.

c. Error source analysis

In this section we extract a few insights from model com-
parison. Recall that we previously considered three types
of errors, due to (type A: temporal error) model temporal

dynamics or nonstationarity, (type B: spatial error) spatial
heterogeneity, and (type C: forcing error) inaccurate forcings.
The models’ errors in tests can be a combination of different
types of errors. However, these three types of errors are most
likely not additive}meaning the errors from different sources
cannot be simply added to estimate the total error (neither
the unit of the error metrics, e.g., RMSE, or the nature of
the errors is linear). Nonetheless, separating them roughly
can be helpful to diagnose the magnitude of the error sour-
ces and to anticipate the likely effectiveness of improve-
ment strategies.

While gridMet was employed as the main forcing data to en-
sure the model’s wide applicability, we contrasted this forcing
with precipitation and temperature recorded at SNOTEL sites
(missing in situ temperature data were substituted with gridMet
temperature), which shows gridded forcing data are an impor-
tant (but not the sole) source of error. The forward model, when
utilizing SNOTEL in situ forcing, exhibited significant improve-
ment, leading to a reduction of 8.9 and 8.1 mm in RMSE and a
reduction of 12.4 and 14.3 mm in dmax (Table 1) in the temporal
and spatial tests, respectively. In situ forcing data decreased the
RMSE at sites with large bias in western Oregon and Washing-
ton, as well as the northeast domain (Figs. 6a,b), but did not
fundamentally change the behavior of the models at sites

FIG. 3. Map of temporal test performance metrics (bias, R, and NSE) for (a) the forward
model and (b) the DI model integrating SWE observations with a 30-day lag, DI(SWE, 30). The
sites annotated in the map, represented by star-shaped points and labeled with letters a–d, repre-
sent the locations for the time series plots shown in Fig. 5, described below.
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in California near Lake Tahoe (location a, Fig. 5a, yellow line).
Thus, the errors for the Californian sites were not mainly caused
by issues with gridMet forcing data. Although the reason is still
under investigation, a plausible explanation is that we need a

longer training period (.15 years) for these sites due to the
high interannual variability of precipitation events (e.g., atmo-
spheric rivers) that drive snowfall totals (and SWE) in the Sierra
Nevada range. Moreover, local aerodynamic redistribution

FIG. 4. Boxplots for Ddmax (blue boxes outlined with dashed lines) and DNSE (pink boxes
outlined with solid lines) stratified by mean SWE; Ddmax and DNSE are the differences of dmax

and NSE, respectively, between DI(SCF, 30) and the forward model in the spatial tests. The
Ddmax is Ddmax normalized by maximum SWE. The negative Ddmax and positive DNSE values
denote that the DI(SCF, 30) model has improved performance over the forward model.

FIG. 5. Time series of the forward model (LSTMtemporal_test with either gridMet or in situ forcings) and the models
integrating SWE and SCF at different time lags for four sites, shown for the temporal tests. The locations of these sites
are annotated in Fig. 3 and in Figs. 6, and 7, described below. Elevations are (a) 2101, (b) 2621, (c) 2548, and (d) 1423 m.
These sites were selected because of their large discrepancies between the forward and DI models.
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patterns may play an important, systematic role for these lo-
cations, leading to errors not capturable by this model.

Subsequently, we can take the spatiotemporal test of
the forward model (RMSE 5 65.8 mm and dmax 5 93.8 mm;
Table 1) as a worst-case scenario with all prediction errors rep-
resented. Its difference from the forward model’s spatial test
(DRMSE 5 65.8 2 53.9 5 11.9 mm; Ddmax 5 93.8 2 70.9 5

22.9 mm) is likely due to model errors with respect to multi-
year nonstationarity (type A, temporal error). Relatedly, its
difference from the forward model’s temporal test (DRMSE 5

65.8 2 48.2 5 17.6 mm; Ddmax 5 93.8 2 62.4 5 31.4 mm)
is connected to unexplained spatial heterogeneity (type B,
spatial error). The sites susceptible to spatial error (Fig. 7a)
concentrate on the northeastern part of the domain, the
northwestern mountain ranges, and Arizona. These sites may
have some (currently unclear) distinct characteristics that are
difficult to learn based on the current input attributes. Assum-
ing the above, then the difference between the temporal tests
of the forward model and DI(SWE, 30) (DRMSE 5 48.2 2

28.45 19.8 mm; Ddmax 5 62.42 27.15 35.3 mm) is related to
both the impact of model dynamics (type A) and the cumula-
tive effect of forcing errors (type C) between 30 days and
snowmelt. Such errors are carried for a long time and, if not
reduced with DI, persist longer to cause large errors for the
whole season. In addition, the sites with large DNSE here are
not the ones with large spatial errors, except for those in Arizona
(Fig. 7b), indicating that they are caused by different processes,
such as the complicated temporal dynamics caused by high
interannual variability of precipitation events at location
a. Relatedly, the difference between the temporal tests of
DI(SWE, 7) and DI(SWE, 30) (DRMSE 5 28.4 2 12.3 5 16.1
mm; Ddmax 5 27.1 2 9.7 5 17.4 mm) (see the map in Fig. 7c)

is the error accumulated between 7 and 30 days. These sites
(Fig. 7c) are different from the hotspots in Fig. 7b and should
represent errors that are accumulated and then removed in a
shorter time frame (7–30 days). The remaining error (RMSE5

12.3 mm; dmax 5 9.7 mm) is accumulated for only 7 days.
Again, the errors are not additive and are only intended for a
rough analysis.

Sites with large DNSE between DI(SWE, 7) and DI(SWE, 30)
also have substantial ephemeral snow, which can be suscep-
tible to large forcing errors with the forward model. Exam-
ining the differences between the DI and forward models,
we notice DI(SWE, 30) strongly improved NSE in parts
of the domain but had little impact on some other sites
(Fig. 7b). In general, DNSE tended to be higher in the south
of the domain rather than the north, and was especially
large along the southern boundary. However, the 30-day
DI model still encountered some difficulties on low-latitude
sites in the mountains of Arizona and New Mexico (Fig. 7c).
A plausible explanation is that DI was not very helpful with
the ephemeral snow situations occurring in those sites. The in-
put data could miss precipitation events and temperature
changes that led to errors}in October 2017 in Fig. 5d, for ex-
ample, the forward model did not have a response at all but
the model with in situ precipitation well captured the observa-
tion trends. By the time DI(SWE, 30) encountered this dis-
crepancy, the ephemeral snow would have already melted.

4. Conclusions

The LSTM forward model was already highly competitive
in comparison with previous SWE models, and data integra-
tion with LSTM was effective at increasing prediction per-
formance. Integrating SWE at a 30-day lag, the median
NSE was as high as 0.97 for monitored SNOTEL sites, with
a negligible bias and a small dmax of 27.1 mm. Such effec-
tiveness is because snow modeling errors have long time
persistence, which DI is effective at addressing. This means
such a model could serve as a useful forecast scheme for
water resource managers in snow-dominated regions. That being
said, there are sites with significant numbers of ephemeral snow
events where 1-month-ahead predictions would not have much
benefit, and a shorter lag would be needed. It is much more diffi-
cult to predict at monthly scale and high accuracy for these sites
with ephemeral snow.

Using LSTM and DI as probes for error sources, our analysis
showed that both the temporal and spatial errors are important.
Temporal errors can be effectively reduced by DI with SWE,
while spatial errors are more difficult to reduce}assimilating
SCF data mainly had benefits only for shallow-snow sites,
and especially during snowmelt. We need to seek more ex-
tensive spatial observations like snow depths to constrain
the simulations, which will be particularly useful for the hot-
spots identified in Fig. 7b. Further, our model comparisons
show that hotspots of different kinds of errors exist in differ-
ent parts of the domain. The highlighted spatial error exists
in the northern and southern boundaries of the domain; the
majority of the multimonth error occurs in California and
Oregon, and on the northeastern and southern boundaries of

FIG. 6. Maps of RMSE differences between forward models
with and without in situ precipitation and temperature for the (a)
temporal test and (b) spatial test. DRMSE is DRMSE normalized
by dmax of the forward model using gridMet. This figure shows the
fraction of accumulated SWE error that could be reduced by using
in situ forcing data. A large negative value means that using in situ
forcing was highly effective, and a positive value means in situ data
actually increased the error. Overall, in situ forcing leads to better
models than the gridded forcing. The sites annotated in the map,
represented using star-shaped points and labeled with letters a–d,
represent the locations for the time series plots in Fig. 5.
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our domain; and the error of less than 1 month concentrates in
more southern mountains and where ephemeral snow occurs fre-
quently. For climate change impact simulations, we cannot rely
on DI, and would require better resolution of precipitation pro-
cesses and longer data history in the climate models to improve
SWE prediction in these regions (Rhoades et al. 2018). Consid-
ering the power of LSTM, however, it is unlikely that improved
structures of process-based snow models will obtain noticeably
lower errors than LSTM’s forward model.

In real applications, DI in a SWE model can be beneficial
for filling data gaps at sites that lack daily data, which is espe-
cially pertinent when investigating long-term trends and varia-
tions in snowpack. For instance, in the eastern United States

where SWE is documented on a weekly or biweekly basis, DI
can be a crucial tool in overcoming data insufficiency. Once
accurate meteorological forecast data are available, the DI
model can be employed to forecast SWE at monitored sites
approximately one month in advance. The results presented
in this work have set up benchmark levels and provide guid-
ance for future improvements.
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APPENDIX

Sensitivity Experiments

We ran many experiments, including varying LSTM
sequence length and static attributes. This was done not
to choose which model to show, but rather to demon-
strate the impact of certain configurations on the results
to provide some insights.

We explored the effects of sequence length on LSTM per-
formance. Table A1 provides a performance comparison of the
forward model, DI(SWE, 30), and DI(SWE, 7) with different
sequence lengths (rho 5 90 and 365) in the temporal tests (all
sites were trained in 2001–15 and tested in 2016–19). Increasing
the sequence length to 365 can benefit the forward model, con-
sidering the period of snow dynamics is one year for seasonal
and ephemeral snowpacks characteristic of the western United

States. However, the DI models only need a short sequence
length.

Although not used for model selection, we tested the fol-
lowing static attributes: (i) latitudes; (ii) soil depth; (iii) topo-
graphic characteristics, including elevation, slope, and aspect;
(iv) land cover characteristics (dominant land cover, dominant
land cover fraction, forest fraction) and vegetation characteristics
(rooting depth) from MODIS Land Cover Type Yearly L3
Global 500 m (MCD12Q1); and (v) geological characteristics
(subsurface porosity and permeability) from the GLobal
HYdrogeology MaPS (GLHYMPS) datasets. We ran spatial
tests with different combinations of static attributes to show
the impacts of adding or removing attributes (Table A2). It
turned out that latitude, topographic, and land cover charac-
teristics all had positive impacts on the spatial test results,
but, as expected, the geological characteristics and soil depth
had no impact.

We further compared the performance of the forward
model, DI(SWE, 30), and DI(SCF, 30) in the snow accumula-
tion and melt seasons in the spatial tests (Table A3). All mod-
els have better performance in the accumulation season than
the melt season since snow ablation is more complicated than
accumulation. More interesting, for the shallow-snow sites where
mean SWE was less than 40 mm, the integration of 30-day-
lagged SCF significantly improved the performance in terms of
NSE and bias because of a more linear relationship between
SCF and SWE during snowmelt (Swenson and Lawrence 2012).

TABLE A1. Temporal test results for the forward model, DI(SWE, 30), and DI(SWE, 7) with different values for rho (sequence
length: 90 and 365).

Model Bias (mm) RMSE (mm) R NSE dmax (mm)

Forward–rho 5 90 [2001–15]–[2016–19] 218.49 57.8 0.96 0.88 88.5
Forward–rho 5 365 [2001–15]–[2016–19] 5.3 48.2 0.97 0.92 62.4
DI(SWE, 30)–rho 5 90 [2001–15]–[2016–19] 22.8 27.6 0.99 0.97 24.2
DI(SWE, 30)–rho 5 365 [2001–15]–[2016–19] 3.7 28.4 0.99 0.97 27.1
DI(SWE, 7)–rho 5 90 [2001–15]–[2016–19] 20.7 11.5 1.00 1.00 8.8
DI(SWE, 7)–rho 5 365 [2001–15]–[2016–19] 1.0 12.3 1.00 1.00 9.7

TABLE A2. Spatial test results from models with different combinations of the static variables. For each model, we ran 10-fold
cross validation where the model was trained on a rotating group of the monitored sites (9/10 site groups) from 2001 to 2015 and
tested on the remaining untrained sites from 2001 to 2015. The model performance listed as the spatial test result is the median of
the 10 rounds of testing.

Model Bias (mm) RMSE (mm) R NSE dmax (mm)

Forward}with latitudes, topographic, and land cover, vegetation, and
geological characteristics [2001–15]–[2001–15]

20.05 59 0.96 0.86 78.4

Forward}with latitudes, topographic, and land cover and vegetation
characteristics [2001–15]–[2001–15]

4.9 59.5 0.96 0.87 72.7

Forward}with latitudes, topographic, and land cover characteristics
[2001–15]–[2001–15]

3.17 53.9 0.96 0.88 70.9

Forward}with topographic and land cover characteristics [2001–15]–[2001–15] 5.6 58.2 0.96 0.87 75.0
Forward}with latitudes and topographic [2001–15]–[2001–15] 4.5 54.7 0.96 0.89 72.9
Forward}with latitudes [2001–15]–[2001–15] 11.8 67.6 0.95 0.83 90.0
Forward}without any static attributes [2001–15]–[2001–15] 7.0 65.9 0.95 0.84 85.0
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