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Abstract

Three Essays on Climate Risk

by

Maximilian Salavador Stiefel

Climate change is forcing a shift in the characteristics of many natural hazards. Along-

side other trends–such as increasing global interdependence, the rate of population and

economic growth, and widening social inequalities–the risk from climate-sensitive nat-

ural hazards presents an expanding source of danger across the world. Research and

practice on climate risk began by establishing standards for assessing hazards and im-

plementing structural solutions to mitigate consequences. The field has evolved since

then to include behavioral decision making and the multidimensionality in differences

among people and places as determinants of exposure and vulnerability, respectively.

These paradigm shifts in selecting factors for climate risk assessment happened alongside

developments in modeling divergences between statistical and perceived risk as well as

policy and scientific attention towards the distribution of hazards along socioeconomic

and demographic lines. This dissertation, Three Essays on Climate Risk, contributes to

answering pressing questions in climate risk research. The first essay, ‘Validating So-

cial Vulnerability in Disaster Loss Models’ suggests that climate risk assessments should

account for social vulnerability but practice caution since the relative contribution of

social indicators varies across climate hazards. In the second essay, ‘Social and Spatial

Inequalities in Climate Hazard Distributions,’ we compared multiple inequality metrics

to find that exposure heterogeneously varies across metrics by choice of demographic 

and geographic partitioning. Researchers should therefore carefully design studies based
vii



upon theories of inequality formation and policy relevance. Preliminary results from

the third essay, ‘Measuring Climate Risk Perception with Twitter Data,’ indicate that

user-generated big data may soon serve as an appropriate supplement to survey data

for measuring complex socio-cognitive phenomena. These essays advance climate risk

measurement & modeling, unpack geographies of climate risk, and illustrate implications

of improving climate risk information.
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Chapter 1

A Climate Risk Literature Review

Introduction

Natural hazards present a substantial source of danger across the world. Climate change

is forcing a shift in the characteristics of many of these hazards. Shifting characteristics

have refocused attention towards current hazard estimates as well as incentivized the

incorporation of projected hazard in risk assessments. Other factors–such as increasing

global interdependence, the rate of population and economic growth, and widening so-

cial inequalities–present an added impetus for better understanding our shared risk from

climate-sensitive natural hazards, which we refer to as climate risk. Research and prac-

tice on climate risk formally began at the beginning of the twentieth century through the

establishment of standards for assessing hazard and implementation of structural solu-

tions to mitigate consequences. These efforts developed alongside trends in the physical

and social sciences to integrate uncertainty as a fundamental feature of hazard estimates,

decision making as a determinant of exposure, and vulnerability as a multidimensional

moderator of negative consequences from hazard events. Growing interest in the roles of
1



CHAPTER 1. CLIMATE RISK

risk perception and inequality happened tangentially to these paradigm shifts in climate

risk research.

As a contribution to the expanding literature and importance of climate risk research,

this dissertation addresses pressing questions regarding concepts and methods in the

study of climate hazard modeling, exposure to hazards, vulnerability as a moderator of

hazard event outcomes, and the implications of perception and inequality on the afore-

mentioned phenomena. This first chapter provides a climate risk literature review on

the history of related fields and explanation of parameters used in climate risk mod-

els. Each following chapter studies aspects of climate risk with an empirical approach

across five different hazards: extreme precipitation, extreme heat, drought, wildfire, and

flooding. The second chapter, ‘Modeling Social Vulnerability Determinants of Disaster

Loss,’ estimates the relative contribution of social indicators to variability in disaster

loss. The third chapter, ‘Mapping Climate Risk Inequalities,’ assesses the social and

spatial distribution of climate hazards by comparing multiple types of inequality met-

rics. The fourth chapter, ‘Measuring Climate Risk Perception with Twitter Data,’ builds

a dataset of socio-cognitive characteristics from user-generated social media data. Our

goal in these studies is to advance measurement and modeling of climate risk, both the

contributing factors and the societal implications of changing physical hazard and risk

information. We proceed in this chapter with an overview of climate risk including major

research questions facing relevant fields, explaining parameters in climate risk modeling,

and a case study that demonstrates the dynamic application of concepts presented in

this review.
2



Climate Risk: An Overview

Risk analysis and associated fields have applications across numerous academic disciplines

and applied contexts. Although the modern fields of risk research developed in the post-

war era as a response to needs across different sectors–notably in aerospace, nuclear, and

chemical process (Bedford & Cooke, 2001)–the study and management of risk by groups

and societies has occurred since prehistory (Bernstein, 1996; Covello & Mumpower, 1985).

At the micro scale, individuals have always informally managed risk as part of cognitive

decision making processes (Boholm, 2015). Risk in this context is generally understood as

the representation of consequences associated with a given hazard frequency and intensity.

Hazards are a source of sub-optimal outcomes, such as losses, shortcomings, or reversals.

Furthermore, since the probability of any hazard realizing a given frequency and intensity

constitutes the uncertainty inherent to all risks, every risk estimate is associated with

some degree of uncertainty (Kaplan & Garrick, 1981).

Natural hazards, i.e., those that historically were exogenous to human forcing, such as

earthquakes, pandemics, and heatwaves, therefore lend themselves to being studied with

the risk analysis approach. Traditional risk-hazard research regarded the presence, effec-

tiveness, and integrity of structural engineering solutions as the primary driver for risk

reduction (White, 1945). This structural paradigm centered around engineered solutions

to reduce risk despite society still experiencing increased exposure from people moving

into hazardous areas, either structurally protected or not. Because of this, disaster losses

were greater than before a structural fix in case of technological failure, people were

taken by surprise when extremes were more intense than predicted, and risk was un-

manageable when people behaved in unexpected ways. Questions concerning the hazard

research community include: at what point does a phenomenon become a hazard, how
3
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do we characterize and model hazards, how and when will climate change force shifts

in natural hazard characteristics, and which outcomes are associated with hazard event

occurrence?

By mid-century, led by the research of Gilbert White, we acknowledged that structural

solutions were not sufficient and began explaining risk reduction through both structural

solutions and behavioral interventions (White, 1974). Different ways of explaining why

and how individuals made risk management decisions were proposed, notably through

bounded rationality and preference models. From this vantage point it was understood

that individuals would make decisions based on factors such as risk tolerance and past

experience rather than maximum risk aversion. The National Flood Insurance Program

(NFIP) in the United States is a direct result of this paradigm shift. NFIP allowed

better management of the myriad ways people expose themselves to risk yet still left out

considerations of factors at the individual and community levels producing unexplained

variability in disaster outcomes. This approach was eventually deemed too simplistic,

rational, and reliant on modernization (Watts, 2008). It became clear that risk could not

be sufficiently managed by only addressing hazard and exposure.

Vulnerability became a focus of risk-hazard research following critiques of the structural

and behavioral approaches to reducing disaster loss (Turner et al., 2003). These newer

lines of inquiry focused on applying a diverse mixture of factors attributed to struc-

tural, social, economic, institutional, and environmental elements and processes to risk

assessment (Wisner, Blaikie, Blaikie, Cannon, & Davis, 2004). The variation in loss

outcomes therefore came to be understood as the result of differences across people and

places in characteristics such as opportunity structures, quality of the built environment,

emergency management systems, and social networks. Most assessments recognize that

accounting for any one dimension of vulnerability in a localized or national-level assess-
4



ment only partially represents the full risk profile (Wisner, 2016). Research questions

stemming from the incorporation of vulnerability in the risk modeling framework include:

when a hazard event occurs, which factors moderate variation in outcomes while hold-

ing hazard constant?; how do we model statistical risk–the formal relationship among

hazards, outcomes, and moderators?; and do moderators differ across hazard types?

With an understanding that climate risk parameters broadly relate to either physical

hazard, exposure, and vulnerability, it became clear that worsening climate hazards do

not necessarily lead to greater loss (Mitchell, Devine, & Jagger, 1989). From a risk

reduction vantage point, recognizing this variability as attributable to the spatial distri-

bution of population and factors of production meant that agents can reconfigure towards

places with relatively lower hazard, leaving less potential for loss from a hazard event.

Similarly, capacity building and adaptation could fortify agents against the worst poten-

tial outcomes. Beyond the explicitly modeled parameters, individual and governmental

perceptions of the need to modify risk through these types of measures is featured as

a determinant of whether risk reduction occurs before disaster strikes. However, the

opportunity and necessity of making these adjustments is not equally distributed along

socioeconomic, demographic, and geographic lines.

In the simplest sense, to understand climate risk we need to measure each explanatory

term from equation 1, which can also be seen in Figure ?? provided by the Intergovern-

mental Panel on Climate Change (IPCC):

ClimateRiskitj = Hitj · Eitj · Vitj

Climate risk is a function of hazard H, exposure E, and vulnerability V, all per geographic

unit i at time t for outcome j (Kron, 2002). The subscripts are important for several
5
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reasons. First, estimating climate risk depends on the geographic unit of interest. This

is to say that the dimensions of vulnerability (and the other terms) differ according to i.

For an individual property owner, dimensions might include social context and the built

environment whereas vulnerability for a forest relates to water scarcity and plant species

distribution. These vulnerabilities also depend on which outcome j we are estimating–the

risk for what. An individual’s vulnerability to property loss depends on hazard proofing

and structural solutions while for loss of life it likely concerns a person’s age and type of

housing. Lastly, hazard, exposure, and vulnerability all depend on time t, particularly in

the context of climate change where we will experience a substantial shift in the hazard

term over the next century.

There are several important features of this equation. Each term is not independent

and rather interactive and dependent on every other term across time, space, and out-

come. Thus vulnerability depends on hazard intensity since below a certain threshold a

dimension may not be relevant to the outcome. We can estimate statistical climate risk

for single or multiple hazards, the choice of which then influences how we measure the

hazard term and which factors we take into consideration for measuring exposure and

vulnerability. Climate risk is like a great river: it sinuously builds from many sources,

the magnitude is managed yet unmanageable, and we only truly know the danger when

it overwhelms its common course.

Explicitly modeled parameters are not the only sources of variability in assessing sta-

tistical climate risk–perception and inequality also play critical moderating roles. Since

anthropogenic climate change occurs on the scale of decades to centuries and there is

such a high degree of uncertainty about mitigation intentions and actions, perception has

limited pertinence in this modeling framework to the physically determined hazard term.

However, perception does influence decisions to reduce risk through exposure and vul-
6



nerability. Reduction becomes actionable at a certain level of hazard (risk) perception.

Units (individuals, households, organizations, etc) may choose to shift physical location

or build disaster response capabilities beyond this point. Similarly, risk perception influ-

ences extra-unit decisions to reduce risk, leading to knock-on effects across society, such

as building levees or requiring household protection for insurance eligibility.

Widening inequalities, particularly an expansion at the lower end of socioeconomic dis-

tributions and hazard distributions along socioeconomic lines, would limit the capacity

for units in aggregate to reduce exposure and vulnerability, thus increasing climate risk.

Public focus on the inequality of climate risk has spurred key research areas including

whether marginalized communities bear disproportionate climate risk, how and why cli-

mate risk varies across populations and places, and the differential capacity of units to

mitigate climate risk. Inequality is a concern for risk assessment, since models at levels

higher than the individual miss disaggregated variability, as well as for risk reduction

because relative advantage, as compared to absolute, plays a similar role for capacity

building. Inequality therefore moderates climate risk through vulnerability and exposure

while simultaneously interacting with these factors across every stage of the disaster cy-

cle. Research questions addressing the roles of parameters in climate risk modeling that

extend beyond hazard, exposure, and vulnerability–such as perception and inequality–

include: Which other factors indirectly determine risk across the disaster cycle? What

is the distribution of risk across people and places? How do moderators shape risk dis-

tributions? Does perceived and statistical climate risk align? Which factors determine

differences between perceived and statistical climate risk?

Evidence of present climate risk comes from increasingly destructive weather and climate

related disasters over the past decade (Smith, 2020). Recent disasters have caused huge

losses–costing hundreds of billions of dollars (NOAA, 2020), claiming many lives (Center
7
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for Public Integrity, 2020), and destabilizing the livelihoods of thousands to millions of

people. To name just a few, many of which have broken historical records:

2011-2017 California Drought, the longest and driest in state history (Seager et al., 2015)

2012 Midwest Drought, resulted in excessive crop loss (Mallya, Zhao, Song, Niyogi, &

Govindaraju, 2013) 2012 Heat Wave, one of the most severe in the historical record and

led to dozens of directly attributable deaths (NASA, 2012) 2017-2020 California wildfire

seasons, successively shattered most records from previous wildfire seasons (Williams

et al., 2019) 2017 Hurricane Harvey, brought historic flooding to Houston (Trenberth,

Cheng, Jacobs, Zhang, & Fasullo, 2018) 2017 Hurricane Maria, a few weeks after Harvey

and which devastated Puerto Rico, killing thousands (Keellings & Ayala, 2019) 2018

Hurricane Michael, the first category five hurricane to hit the conterminous US in over

25 years (NOAA, 2019) 2019 Midwest Flooding, three billion dollars in loss, affected

14 million people, and set high water marks throughout the region (Center for Disaster

Philanthropy, 2019)

The chapters in this dissertation address aspects of many of the research questions out-

lined previously. In the first chapter, ‘Modeling Social Vulnerability Determinants of

Disaster Loss,’ we test the role of social vulnerability in moderating disaster loss across

climate hazards. The research questions we ask include: How do social vulnerability

values and the relative contributions of social indicators vary by input data selection?

Which social vulnerability indicators are most important in moderating disaster loss? Is

there a statistically significant relationship between disaster loss and social vulnerability?

The second chapter, ‘Mapping Climate Risk Inequalities,’ explores the distribution of

climate hazards across populations and places. We ask the following questions: How

unequally distributed are climate hazards: vertically, horizontally, and spatially? Which

population groups and places experience unequal climate hazard burdens? Do differ-
8



ent representations of climate hazard inequalities lead to varying environmental justice

interpretations?

For the last empirical chapter, ‘Measuring Climate Risk Perception with Twitter Data,’

our research questions include: Does Twitter data provide a robust and reliable basis

for measuring individual-level predictors of complex phenomena, such as climate risk

perception? How closely do climate risk perception measurements from Twitter data

match those from survey data? What is the relationship between statistical climate risk

and climate risk perception?

Our goal in this review is to orient the reader with concepts and methods applied in

the following empirical chapters. We will briefly cover the history and use of hazard,

exposure, and vulnerability in climate risk assessment as well as address the moderating

roles of perception and inequity. The focus will be on how individuals, households, and

communities navigate the disaster cycle, disaster loss, and the social construction of risk.

Understanding the complicated factors and complexity of climate risk requires a large

diversity of scholarship to produce insights that, although uncertain, offer actionable

recommendations for navigating our shared future.

Climate Hazards

Conceptual

Many natural hazards exist in the earth system. Some are independent of the climate,

such as earthquakes, whereas others, such as flooding, are not. The climate influence on

the latter group comes through meteorological phenomena: precipitation, temperature,

wind, and so on. People have dealt with climate hazards–wildfires, floods, heatwaves,
9
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storms, and droughts–since prehistory. Since the danger posed by climate hazards has

existed alongside human evolution, the geography of settlement and activity has devel-

oped around it, and for good reason. The nature of a climate hazard is that it is, in effect,

the tail end of a resource availability distribution (Burton, 1993; Kates, 1971). Among

other reasons, humans settled in hazard exposed areas while acknowledging the necessary

tradeoffs: inland and coastal flooding for access to fresh water and trading, heatwaves

and droughts for longer growing seasons, and wildfires for environmental management.

By doing so we were able to consistently access those resources.

Extreme events would eventually occur and cause a range of disruptions (Leroy, 2006) ,

the frequency and duration of which varied by hazard and place. In coastal California,

wildfires occurred every twenty years in Redwood forests but only every half century in

the chaparral (Steel, Safford, & Viers, 2015). Hurricanes hit areas of the southeastern US

nearly every year whereas devastating riverine floods might strike just once in a genera-

tion. Whether a slow onset drought or a fleeting forest fire, many settlements were able

to manage these hazards. Yet, other hazardous events extended to near or total systems

collapse (Dunning, Beach, & Luzzadder-Beach, 2012; Kuil, Carr, Viglione, Prskawetz, &

Blöschl, 2016). Despite such outcomes, not having access to crucial resources associated

with hazard proximity was not a viable solution (Di Baldassarre et al., 2013).

The net-benefit of this tradeoff, at least in most places, allowed for continuous settlement.

As civilization advanced, we reduced vulnerability by depending less on local environ-

ments and managing our environment through engineering solutions. The latter solution

coupled massive infrastructure projects, such as dams for water storage and levees to

prevent storm surges, with codes and standards for sites and structures. Climate haz-

ards became dangerous phenomena that were manageable and even negligible in certain

cases (Kates & Burton, 2008). Therein lies the current problem.
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Our expectations of distributed dependence and environmental management are based

on historical observations. We established farmland in abundant regions, assigned water

rights according to average river flow, and built stormwater systems to withstand certain

flood return periods. This made sense given that climate variability was consistent over

time. At the very least, the rate of climate change was neither noticeable nor actionable.

There were of course exceptions to this. Longer and shorter deviations occur, such as the

well documented Medieval Climatic Anomaly and El Nino Southern Oscillation respec-

tively, but the climate remained relatively stable and therefore dependable throughout

most of human history.

Historically unprecedented global warming and the associated changes to our climate

and environment render historical precedent no longer valid. The resource systems and

hazard management solutions we developed must now be reassessed, redesigned, and

reconstructed. In some cases we will change where and when we cultivate food and

materials, how we organize production networks, and the places we deem safe enough for

housing. In others we will implement technological fixes to avoid such disruption. Some

of those fixes will only be temporary, buying us just a few more years until we finally

concede to our changing climate hazard landscape.

Empirical

Climate change is altering the geography and characteristics of physical hazards. The

primary characteristics when measuring climate hazards fall under the categories of spa-

tiotemporality, intensity, and severity. Hazards vary by areal extent (size of affected

area), spatial patterning (dispersion and contiguity), frequency (rate of return), duration

(length of event), intensity (deviation from average conditions), and severity (degree and

type of impacts), all of which human activity moderates through climate, environmen-
11
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tal, and land use change (K. Smith, 2013). Despite efforts to mitigate climate change,

the momentum of social, technological, and physical systems has locked in a minimum

guaranteed amount of greenhouse gas emissions and therefore global warming (Samset,

Fuglestvedt, & Lund, 2020). According to the geologic record, many recent climate haz-

ard events are abnormal for the period of time in which humans have inhabited these

areas (Griffin & Anchukaitis, 2014; T. T. Smith et al., 2013). Many studies have con-

tributed to understanding the attributable portion of these disasters to anthropogenic

climate change (Peterson, Stott, & Herring, 2012), ranging from floods (van der Wiel et

al., 2017), heatwaves (Vogel, Zscheischler, Wartenburger, Dee, & Seneviratne, 2019), and

drought (Funk, Hoell, & Stone, 2014).

From a risk reduction perspective, hazards with smaller areal extents allow for engineering

solutions or nearby relocation of a settlement. Less frequent events provide enough time

for recovery and reconstruction. Lower intensity hazards avoid the most severe impacts.

The severity of some hazard impacts simply leads to reduced well being whereas others

end in loss of property and life. The particular combination of these parameters is crucial.

Low intensity but frequent events, such as high tide (sunny day) flooding, render places

uninhabitable. High intensity or severity hazards are clearly undesirable but may be

unavoidable if the areal extent is large enough, as is the case of tropical cyclones in the

southeastern US.

Modeling these hazards therefore relies on data with sufficient spatial, temporal, and

measurement resolution. The most common approach to quantifying climate hazards

is to estimate frequency and intensity, which depends on the hazard and event under

study. In practice this requires making decisions about how we choose to define extremes.

Taking a step back from specific instances, such as the 100-year flood, the frequency and

intensity that we are interested in estimating is that of extreme exceedances. The value
12



beyond which we consider an event extreme typically relies on one or more of three

things: historical observations, design standards, and probable loss. The second item is

an issue of risk management, which is not the focus of this review and merely discussed

as a rhetorical tool for contextualizing relevant information about risk assessment. The

third item relates to exposure and will therefore be covered later.

How we compare historical observations, typically the underpinning of what is extreme,

to climate change projections is not necessarily straightforward. For example, say a

historical 100-year flood will likely result in a 30 centimeter flood depth x at location i.

A 1 in 100 year flood is based on historical observations of the precipitation event that has

a daily occurrence probability of 0.000028, happening just once every one hundred years.

When looking across time periods T in the context of climate change, if 21st century

projected data from Global Climate Models (GCMS) show an increase in precipitation,

the 100-year precipitation event intensity might instead occur once every eighty years.

So, for the 100-year flood at location i we would expect some increase from historical

to projected time in depth x. In projected time, the depth exceedance of the historical

100-year flood is now more frequent and the projected 100-year flood is more intense.

As we are applying appropriate estimation protocols to represent change in hazardous

events over the next several decades, the accuracy, precision, and spatiotemporal reso-

lution of climate hazard models are also improving. An example of these developments

can be found in modeling the costliest natural hazard in the US, flooding (Wing, Pinter,

Bates, & Kousky, 2020). Local studies to assess flood hazard are expensive and slow,

resulting in poor spatial coverage. Two-dimensional flood models (2DFM) simulated over

a large area (continental scale) and at high resolution have filled these coverage gaps,

improved existing estimates, and allowed for efficient hazard assessment as we model a

range and uncertainty of impacts from projected changes in precipitation.
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Recent advances have substantially lowered the complexity, computational cost, and

data requirements for large area 2DFM implementation, usually by either simplifying

solutions to the shallow water equations or proposing an altogether different modeling

framework. Fathom Flood Risk Intelligence, a research organization affiliated with the

University of Bristol, has produced reliable high resolution 2DFM estimates globally

and for the US (Bates, Horritt, & Fewtrell, 2010). Compared to Federal Emergency

Management Agency (FEMA) National Flood Hazard Layer data–a highly labor and

resource intensive hazard product that is the gold standard for building codes, siting

decisions, and insurance determinations–Fathom found replicability within error. This

demonstrated continental scale viability of this modeling approach for decision-making

purposes (Wing et al., 2017) and found around three times as many people (from 13 to

41 million) live in the 100 year floodplain (Wing et al., 2018).

Climate change projections suggest that climate hazards, on average, will increase in

areal extent, frequency, duration, intensity, and severity over the 21st century (Aalst,

2006; Abatzoglou & Williams, 2016; Hirabayashi et al., 2013a; Luber & McGeehin,

2008; Papalexiou & Montanari, 2019; Wilby & Keenan, 2012). Hazards under study

by academics with potential impacts include heatwaves (Lau & Nath, 2012; Tuholske et

al., 2021), droughts (Overpeck, 2013), extreme storms (Knutson et al., 2010), wildfires

(Moritz et al., 2012), inland flooding (Quinn et al., 2019), and sea level rise-related per-

manent inundation and coastal flooding (Neumann, Vafeidis, Zimmermann, & Nicholls,

2015).

An increase in global temperatures is expected to lead to a mixture of changes in char-

acteristics for each climate hazard. The US Global Change Research Program provides

an overview of projected climate hazards, on average, across the conterminous US. His-

torical trends and future projections for the next century point to increases in heatwave
14



frequency and intensity; drought intensity and duration in the Southwest; hurricane

frequency, intensity and duration; winter storm frequency and intensity; precipitation

amounts, especially at higher latitudes and during winter; extreme precipitation fre-

quency and intensity; and frequency and intensity of all types flooding (high tide, storm

surge, fluvial, and pluvial) (USGCRP, 2017).

Published literature projects the Western US as a climate change hotspot under inter-

mediate and higher levels of emissions forcing (Diffenbaugh & Giorgi, 2012). Relative

to the rest of the globe, North America has avoided prolonged droughts in recent his-

tory even when considering crises in California and the Midwest. Increasing aridity on

the continent may turn that trend on its head over the next few decades (Dai, 2011).

The Southwest will likely see drier springs and summers, the latter of which will also

plague the Midwest (Swain & Hayhoe, 2015; Woodhouse, Meko, MacDonald, Stahle, &

Cook, 2010). Flooding looks to increase in the Pacific Northwest (Tohver, Hamlet, &

Lee, 2014). Acreage burned per year by wildfires has gone up for nearly every state in

the 21st century (Hoover & Hanson, 2020). The intensity and severity of wildfire hazard

is expected to continue to increase, especially in summer and fall, in the West, Northern

Midwest, and Southeast, and prospects point to greater areal extents and longer wildfire

seasons (Liu, L. Goodrick, & A. Stanturf, 2013).

The aforementioned hazard characteristics are not the only factors increasing dangerous

potential. Event timing leads to different outcomes, such as higher mortality from ear-

lier season heatwaves (Anderson G. Brooke & Bell Michelle L., 2011). More wintertime

precipitation as rain and earlier snowmelt runoff will increase springtime flooding (Tren-

berth, 2011). Land use change also influences hazard variability. Western US forests

have a ‘fire deficit’ due to misguided wildfire management practices. These forests have

only begun to overcome the deficit in the past couple of decades (Marlon et al., 2012). A
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deficit coupled with drought, record high temperatures, insect blight, and construction

in the Wildland-Urban Interface has led to a wildfire crisis in the west (Westerling, Hi-

dalgo, Cayan, & Swetnam, 2006). Mitigation and management is particularly challenging

for wildfires compared to other natural hazards because of idiosyncrasies in fire regimes

across ecosystems and large uncertainty surrounding ignition and weather conditions.

Exposure

Conceptual

The least complex but perhaps most important term in the climate risk equation is ex-

posure. Specifically, it refers to who and what is exposed to climate hazards (Peduzzi,

Dao, Herold, & Mouton, 2009). From the population side, it’s about how many people

are exposed and what function those people have in a society and in the disaster cycle.

Population distribution (location, density, and size) determines the amount of lives ex-

posed to disruption, harm, or loss from a climate hazard. Population exposure includes

the amount of commuters impacted from a hurricane, person-days of wildfire smoke, or

farm workers under a ‘heat dome’. Beyond population distribution, there is also the

social function of exposed peoples. ‘Essential’, ‘front line’, and ‘key’ are terms used to

describe workers making society function smoothly, the incidental backbone of society.

Risk is not only a function of how many people are exposed to hazards but on the role

that an exposed person plays in society.

The property side of exposure relates to the utility and cost of things that have instru-

mental value. There are other categories of exposed things, but these are not typically

considered in a climate risk or loss assessment context. Using the philosophical approach
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of understanding value, there are also exposed things of intrinsic or aesthetic value, such

as a unique habitat for a species with limited range or an outdoor recreation destination.

Clearly these things are valuable to many people, but neither do they receive a fraction

of the attention afforded to people and property nor are they easily operationalized for

the climate risk equation. Thus, people and property are the two main categories of

exposure.

Climate hazard events generate myriad loss-related consequences. Conditions ripe for

disaster outcomes are not necessary for these losses to occur, but typically increase loss

probability and severity. Loss categories implicated by climate hazards include commodi-

ties (e.g. crops), fixed assets (e.g. buildings), wellbeing (e.g. air quality), and survival,

among others. Each type of hazard produces different types of consequences, however

there is broad overlap. Tangible hazards (wildfire and flooding) can feasibly result in al-

most any type of loss while intangible hazards (temperature, precipitation, and drought)

tend to not impact fixed assets.

All climate hazards can reduce water supply and quality, damage crops, and increase

injuries and fatalities, although there is mostly an indirect relationship between drought

and the latter. Wildfire and flooding, and to a lesser extent extreme precipitation and

heat, disrupt transportation, communication, and utilities infrastructure. Some explain-

able interactions in hazard dynamics exist; droughts increase wildfire risk which increases

flood risk. Wildfires and flooding are the main culprits of property damage. Further-

more, increasing climate hazards coupled with population growth means greater risk for

disaster loss. Economic growth also increases the absolute amount of damage, particu-

larly from hurricanes (Mendelsohn, Emanuel, Chonabayashi, & Bakkensen, 2012). This

list is not exhaustive and simply provides a succinct overview of climate hazard-related

types of loss. Beyond direct losses there are innumerable wellbeing impacts on mental
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and physical health, economic output and opportunity, and quality of life.

Empirical

A growing population means greater exposure to climate hazards. Bureau (2020) projects

the US population to increase by about 25 percent over the next few decades (from around

320 to 400 million in 2060), the spatial distribution of which will play an important

role in the amount of people exposed to climate hazards. Over the past few decades

there has been a trend of relatively higher net migration to southern, western states

compared to other regions (Bureau, 2019). If this trend holds over the next few decades,

a higher proportion of people will be exposed to intense droughts, wildfires, hurricanes,

and heatwaves. The relative geographic distribution of population aside, more intense

climate hazards will barrel through already populated areas–four to six times as many

people will be exposed to extreme heat by the latter half of this century (Jones et al.,

2015).

As an example, California has long been recognized as an epicenter for wildfire risk due

to population growth in the Wildland-Urban Interface (WUI) (Hammer, Radeloff, Fried,

& Stewart, 2007; Radeloff et al., 2018)). While neither the largest nor most deadly, the

1991 fire in the Oakland-Berkeley hills was a foreshadowing of an increasingly common

fire pattern: human ignition starts a minor fire and it escalates uncontrollably, spurred on

by arid conditions and strong winds (FEMA, 1991). Simulations consistently show that

this pattern is likely to grow as a result of climate change, population growth, and land

use change (Bryant & Westerling, 2014; Kloster, Mahowald, Randerson, & Lawrence,

2012; Westerling & Bryant, 2008).

Government and industry are committing increasingly numerous resources to assessing

property exposed to natural hazards as climate change becomes an immediate reality.
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Similar to the population side of assessment, property exposure depends on the amount

and functionality (Schumacher & Strobl, 2011). Supply chain disruptions ensue if a

hurricane renders a port unusable and lives are lost if riverine flooding cuts off access to

essential services. Yet a wildfire burning through a recreational forest may go unnoticed

except by firefighters and those downwind of the smoke. Dissimilar to the people part of

the exposure term is that property has differential value.

The differential value of property is therefore the feature that primarily compels stake-

holders to make accurate and precise exposure estimates. There are many valuation

approaches for property and types of value therein, the discussion of which would be

beyond the scope of this review (Damodaran, 2012). Essential to note is that in the

disaster cycle, ex ante valuations often differ in both quantity and quality than ex post

(Kamin & Rachlinski, 1995; Shogren & Crocker, 1991). Much of this is because there are

insufficient data and modeling capabilities for direct disaster loss and knock-on effects

across all levels, from organizational to the global economy. Another part may be due to

accounting tricks for reducing risk portfolios and mitigation costs while attributing loss

to hazard events as expansively as possible for reaping greater insurance and government

payouts (Bulut, 2017). Lastly, exposure is endogenous to hazard events due to shifts

in risk perception and asset prices (Daniel, Florax, & Rietveld, 2009). It is thus easier

to estimate generalized effects of historical hazard events on property loss than it is to

model risk (Kellenberg & Mobarak, 2011).

One way to reduce exposure is by simply divesting in places exceeding a certain climate

hazard threshold. There are likely two paths occurring in tandem for incorporating

better climate hazard estimates into a variety of financial decisions including lending

and investment. The mapping path asserts that institutions will adopt better hazard

estimates as standard practice. The lender path suggests lenders will cooperate among
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each other to share local information (Keenan & Bradt, 2020). Taking either path, we

can see how this might proceed in the housing market. Units rely on a variety of in-

house, contracting, and governmental agencies to determine climate risk. An example

of this occurs under FEMA’s National Flood Insurance Program (NFIP), which assesses

flood hazard at a property level to produce the National Flood Hazard Layer (NFHL).

The NFHL contains flood zone and zone subtype, which determine the quantitative

and qualitative flood risk, mitigation infrastructure, planned administrative works, and

the localized socio-environmental situation stemming from hydrologic and built context.

Units reference Flood Insurance Rate Maps (FIRMs) from the NFHL to make decisions

on where to build houses, lend mortgages, and write insurance (Frazier, Boyden, & Wood,

2020). Relative home values in climate risky areas will likely decrease over the next few

decades (Union of Concerned Scientists, 2018).

However, predicting where property values will depreciate over the temporal scale that

climate change operates–decades to centuries– is not a straightforward process. House

prices are a function of risk avoidance but also demand, amenities, profit seeking, and

more. Assigning value to, and determining the function of, property in the distant future

holds massive uncertainty (Anda, Golub, & Strukova, 2009; Nordhaus, 2007, 2013; Pizer,

1999). Valuation methods aside–depreciation, net present value, etc–the key issues stem

from not knowing the relative value of property over future time as well as the interaction

between hazard and exposure (Dietz, Bowen, Dixon, & Gradwell, 2016). The former

assumes that some property will become relatively less functionally important as society

changes, which decreases value.

Obvious targets of this are industries facing inevitable change as we increasingly address

problems of climate change, conservation, and ethics. Fossil fuels, plastics, and animal

farming are all encountering swift regulatory and demand-side changes that will result
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in varying degrees of reduced market share. Some of the property associated with this

industrial decline will be transitioned and the remainder will inevitably lose value and

function (Bansal, Ochoa, & Kiku, 2016). The latter issue, hazard-exposure interactions,

presents an equally challenging task of assessing future value in places that will experi-

ence unmanageable or very costly changes in hazard (Giglio, Maggiori, Rao, Stroebel,

& Weber, 2021). Persistent inundation, relentless wildfires, and unquenchable droughts

will transform where and how we live and operate our economy.

Ultimately, exposure is a numbers game. The more people and property exposed to

climate hazards the greater the probability and degree of loss. One of the most salient

examples of reducing exposure is a policy called managed retreat. Communities, gov-

ernments, and organizations will reduce climate risk by relocating exposed units if there

is enough exposure and a hazard becomes too frequent, too intense, or if the economics

indicate relatively favorable conditions elsewhere (Hino, Field, & Mach, 2017; Siders,

2019). There is essentially no risk once people and property are out of harm’s way. In

line with the ‘spatial fix’ of globalization (Harvey, 2001), we will expand and restructure

our society to fit a changing hazard landscape. ## Vulnerability {-}

Conceptual

Not all people and property exposed to climate hazards will exhibit the same outcomes

throughout the disaster cycle. The basis of these differential outcomes is in vulnerability,

which Tellman, Schank, Schwarz, Howe, & de Sherbinin (2020) define as the… ‘propensity

for loss of lives, livelihood or property when exposed to a hazard’. Our understanding

of vulnerability has burgeoned from decades of risk-hazard research, e.g. White (1974),

Hewitt (1983); Birkmann & Wisner (2006); Turner et al. (2003); Wisner et al. (2004);

Adger (2006); Eakin & Luers (2006); Watts (2008), to name just a few. Social behav-
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ior and situation moderate hazard event severity, i.e. negative consequences associated

with a hazard event. Socioeconomic marginalization, faulty infrastructure, environmen-

tal degradation, and limited institutional support render communities at higher risk.

The inverse of resilience and coping capacity, vulnerability has been conceptualized and

operationalized with myriad sets of characteristics that comprise the susceptibility of a

community to suffer harm from exposure to stresses and shocks.

Exposure and vulnerability have many overlapping aspects. For example, if exposure

disparities are along socioeconomic and demographic lines, a disproportionate number

of essential workers are from marginalized (i.e. vulnerable) groups, and if those two

populations overlap, then societal dysfunction during hazard events becomes even more

likely. This means that higher flood hazard in more vulnerable neighborhoods with a

relatively higher proportion of essential workers could lead to critical staffing shortages

in health, transport, and utilities during a major hurricane event.

Adjacent communities hit by the same climate hazard event may experience vastly dif-

ferent consequences due to variation in vulnerability among populations and places. The

vulnerability paradigm was therefore a reaction to the realization that engineering accom-

plishments failed to protect people from loss and behavioral theories never fully captured

the complexity and complications of human-environment interactions (Eakin & Luers,

2006). Risk models that account for vulnerability include Hazards-of-Place (HPM) (Cut-

ter, 1996), Pressure and Release (PRM), Access (AM) (Wisner et al., 2004), shown in

Figure ??. A key similarity of these models is the recognition that there are factors

predisposing us to greater risk beyond hazard, exposure, and mitigation thereof. HPM

specifically accounts for biophysical and social vulnerability, although the biophysical

aspect in this context is not so much vulnerability as it is exposure. Social vulnerability

resembles a recipe within HPM, whereby each ingredient can be specified, measured, and
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the result is greater than the sum of its parts. PRM considers vulnerability as a deter-

ministic progression of contexts that produce unsafe conditions: disaster occurs when

the root causes (e.g. racism), dynamic pressures (e.g. redlining), and unsafe conditions

(e.g. poor stormwater infrastructure) coincide with intense hazard events. AM explicates

disaster as a process and the societal factors comprising vulnerability serve as mediators

and moderators of severity as well as dynamic elements at every stage along the disaster

cycle.

AM best explains the reality of hazard events and consequences, yet it falls short of

providing a succinct model for empirical testing. PRM is also theoretically compelling

and serves as a considerate framework for qualitatively explaining the multi-level forces

interacting to increase climate risk. HPM and it’s related models, methods, and measure-

ments have become the quantitative and governmental standard for social vulnerability

research and policy. In all three of these models, social vulnerability determines how

effectively communities are able to cope with and respond to hazards.

Empirical

Theoretically, greater social vulnerability increases loss from climate hazard events (Cut-

ter, Boruff, & Shirley, 2003). This means that in a region impacted by the same hazard

event, such as a hurricane, areas with higher social vulnerability likely experience more

property and crop damage, injuries, and fatalities. Although this relationship generally

holds across places and time, there are some specific dynamics which deserve mention.

Vulnerability is a latent concept requiring the construction of an index or similar metric.

Not all variables included in such metrics, such as the HPM-based Social Vulnerability

Index (SoVI), are significantly correlated with dangerous outcomes (Tellman et al., 2020).

Similarly, although SoVI (or another index) may positively correlate with disaster loss,
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some variables comprising it may be negatively correlated. Other relationships may not

be linear nor monotonic and could vary depending on the particular set of circumstances.

Lastly, some relationships may vary over the disaster cycle, whereby a social vulnerability

factor initially correlates positively and over time negatively, or vice versa.

Studies recommend looking at both an aggregate social vulnerability measure and at in-

dividual variables used to construct it when conducting vulnerability assessments (Spiel-

man et al., 2020). To this end there are only a few large area, quantitative validations,

but some studies have found certain associations with disaster loss for specific hazards

(Bakkensen, Fox-Lent, Read, & Linkov, 2017; Rufat, Tate, Emrich, & Antolini, 2019;

Tellman et al., 2020; Yoon, 2012; Zahran, Brody, Peacock, Vedlitz, & Grover, 2008).

These studies typically build statistical models, e.g. OLS regressions, to infer significance,

direction, and magnitude of relationships (Yoon, 2012), however other studies have be-

gun introducing machine learning models for additional predictive power (Tellman et al.,

2020).

There are two common ways to operationalize social vulnerability (Yoon, 2012). The

deductive approach selects variables based on theory and empirical evidence of their

relevance, e.g., Flanagan, Gregory, Hallisey, Heitgerd, & Lewis (2011). The inductive

approach selects variables based on statistical relationships, e.g., SoVI from Cutter et

al. (2003). Deductive approaches tend to standardize selected variables whereas induc-

tive approaches utilize data reduction techniques such as Principal Component Analysis

(PCA).

Organizations and government agencies across the US have utilized the concept and

construction of social vulnerability in adaptation planning for at least a decade. In rec-

ommending social vulnerability indices (SVI) as a disaster preparedness and management

tool for communities, the CDC has developed a construction method and resulting index
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(Flanagan, Hallisey, Adams, & Lavery, 2018), which is based on a deductive approach. It

consists of 15 census variables across four categories: a) socioeconomic status, b) house-

hold composition, c) race/ethnicity/language, and d) housing/transportation. Census

tracts receive a nationally relative ranking for each category and for all categories com-

bined.

SoVI, based on an inductive approach, was first introduced by Cutter et al. (2003) as

a concise and measurable representation for the latent concept of social vulnerability

to natural hazards. The hazards-of-place model forms the theoretical basis for SoVI,

whereby physical hazard (e.g. 100-yr flood probability and depth) interacts with miti-

gation efforts (e.g. levees) to produce hazard potential, which varies by site (geographic

location) & situation (natural and built environmental context) and is moderated by

social fabric (Cutter, 1996; Cutter, Mitchell, & Scott, 2000). Social vulnerability is the

product of these dynamics.

Constructing SoVI requires more than two dozen Census derived variables, including

race/ethnicity, age, education, employment, income, poverty, home value, and renter

tenancy. The methods developed and employed to estimate SoVI utilize PCA, which

is a process for grouping weighted subsets of variables from a dataset into orthogonal

components. These composite components are then subjectively assigned labels, such as

socioeconomic status or housing, that characterize the variables grouped into that set.

The SoVI value for any place is based on the summed components from a PCA, each of

which is based on weighted sums of all variables included in constructing SoVI (Spielman

et al., 2020; Tate, 2012).

As noted earlier, there are types of vulnerability beyond social. The IPCC breaks out

dimensions of vulnerability for climate risk assessment into three broad categories: en-

vironmental, social, and economic (Cardona et al., 2012). Environmental factors in-
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clude: physical site and situation, human-environment interactions, the built environ-

ment, level of development, spatial clustering, and urbanicity. Social factors incorporate:

demographics, migration, displacement, marginalization, education, health, well-being,

culture, institutions, and governance. Economic factors comprise income, tax revenue,

savings, financial markets, debt-finance interactions, jobs, and livelihoods.

These factors range from individual to national and in some cases even global. When

measuring vulnerability it is therefore vital to select the relevant set of factors for the

outcome and geographic unit of interest. In the case of our focus, an individual to

community level of analysis for the conterminous USA, many of the stated factors are

not worth measuring. This could be due to sufficient similarity between geographic units

or low correlation with the outcome at our level of analysis, such as financial markets

and institutions. There are also factors that are either hard to operationalize or difficult

to measure, such as culture.

In light of these limitations, it is sometimes sufficient to only measure aspects of vul-

nerability for which a researcher has data or considers more important in assessing a

specific aspect of the risk profile. Data about physical context and economic situation,

such as building hazard proofing and emergency management systems, hold great infor-

mative potential (Douglas, 2007). However, obtaining these data for large area analyses

may not be feasible. In such cases, researchers might substitute these data for higher-

level mediating variables and leverage statistical modeling techniques that control for

spatiotemporally invariant variables.

The problems mentioned above are relevant to specifying and estimating vulnerability in

climate risk models across any vulnerability factor and dimension. Despite these hurdles,

the suggested modeling approaches provide an outline for achieving minimally biased

model specifications that include one dimension of vulnerability. Our discussion has
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been focused on social vulnerability to climate hazards since this is the only dimension

of vulnerability considered throughout the dissertation. To that end, we focus on the

modeling and interpretation of how social factors produce variation in loss outcomes

across similar hazard and exposure levels. The data and methods required to include

vulnerability factors from additional dimensions is beyond the scope of this research.

Climate Risk Perception

Everyone experiences some degree of risk. This is often represented as statistical risk,

such as being twice as likely to die in the event of a traffic accident without a seat-

belt. We typically derive statistical risk from observed, historical data related to risk

event frequency and magnitude, among other metrics. However, people perceive this risk

differently, even when provided with statistical risk estimates, according to subjective

valuations (Slovic, 2000; Slovic, Fischhoff, & Lichtenstein, 1980). Therefore, statistical

risk and perceived risk typically differ. The study of risk perception and the role it plays

in risk assessment, specifically climate risk, sprouted from researchers noticing disparities

in statistical and perceived risk for both common and rare hazards.

Concern over climate risk varies greatly across individuals and places. This variabil-

ity, despite overwhelming scientific consensus on the causes and broad consequences of

anthropogenic climate change, generates a great deal of interest in understanding the

determinants and spatiotemporal patterning of climate change risk perception (CCRP).

Explaining CCRP is of special interest to practitioners since it influences individual

policy support for and behavioral intentions towards climate change mitigation and

adaptation(Brody, Grover, & Vedlitz, 2012; Krosnick, Holbrook, Lowe, & Visser, 2006;

O’Connor, Bord, & Fisher, 1999; Smith & Leiserowitz, 2014). Scholars have developed
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several theoretical and methodological approaches to explain these differences, i.e., what

determines risk perception. These largely fall into three categories.

1. anthropological: cultural theory of risk (CTR)

2. sociological: social amplification of risk (SARF) and social representations theory

(SRT)

3. psychological: psychometric paradigm

The cultural theory of risk (Douglas, 2004) posits that the way an individual relates to

society influences their cultural worldviews, which in turn determines risk perception.

Sociological theories (SARF and SRT) emphasize the role of social networks and influen-

tial social institutions, such as the media, in disseminating and shaping risk perceptions

at the individual and societal levels (Kasperson et al., 1988; Moscovici, 1984). Am-

plification and representation of risk often influences governmental policies, individual

behaviors, and resource distributions, which we have seen in excellent display during the

COVID-19 pandemic. The psychometric paradigm, a brainchild of the quantitative revo-

lution, asserts that risk perception, and the variability explaining factors therein, can be

measured, statistically modeled, and predicted, preferably at the individual level (Slovic,

1987). Psychometric models typically operationalize risk perception as a cognitive pro-

cess that is guided by a set of heuristics (mental shortcuts). This model of risk perception

lends to methodological coherence for studying perception of quantifiable risks–climate

hazards are a good example.

Several theories have bolstered the psychometric paradigm, such as bounded rationality

(Kahneman, 2003). Complete risk information is rarely available, risk tolerance differs,

past experience matters, and other factors constrain perceptions (e.g. emotions). These

additional parameters help guide individual choice beyond convenient decision tools and

optimal outcomes. Extensions of this framework include models of satisficing, whereby
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individuals seek at least some satisfactory minimum outcome (Brown & Sim, 2008), and

preference, such that risks are tolerated if associated benefits are preferable (Lusk &

Coble, 2005). However, individuals may accept a risk despite the level of risk being

unacceptable, as determined by some standard, e.g., accepting low housing costs in a

100-year floodplain.

Understanding what determines risk perception is important for several reasons. The

first is to better understand which statistically high risk issues people tend to perceive

sparingly, which informs risk communication programs (McCarthy, Brennan, Boer, &

Ritson, 2008). A clearer idea of risk perception determinants also helps to crystallize

the mechanisms operating within behavior change models (Brewer, Weinstein, Cuite, &

Herrington, 2004). Information on which types of risk people discount and the probability

of changing either perception or behavior can then be used for policy and planning

purposes (Slovic, Fischhoff, & Lichtenstein, 1982).

One of the highest profile topics with the starkest differences between perceived and

statistical risk is climate change. It poses multiple, massive risks to humans across many

aspects of society, including food and water shortages (Gosling & Arnell, 2016; Wheeler

& Braun, 2013), property destruction from extreme weather events (Hsiang et al., 2017),

and mass population displacement (Sherbinin et al., 2011). Despite such high projected

statistical risk at both the individual and global levels, climate change risk perception

varies vastly among individuals (Maibach, Leiserowitz, Roser-Renouf, & Mertz, 2011).

In the US, it has historically been much less of a priority when compared to other risks,

terrorism for instance (Motel, 2014). Yet, perceptions of climate change as a high risk

issue that should be addressed have increased over the past decade (Funk & Kennedy,

2020).

Figure ?? presents several theoretical models to explain CCRP variation and the factors
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that influence it over time and across places. These models vary both in structure and

content. Models (a) (Xie, Brewer, Hayes, McDonald, & Newell, 2019) and (b) (Bradley,

Babutsidze, Chai, & Reser, 2020) posit that risk perception serves as a mediator among

relationships for a set of factors (knowledge, affect, etc.) and outcomes, such as be-

havioral willingness and psychological capacity to adapt to climate change. Model (c)

(Echavarren, Balžekienė, & Telešienė, 2019) does not consider factors such as knowledge

or emotions. Model (d) (van der Linden, 2017) proposes a general schema for how exter-

nal perceptions and societal pressures influence individual risk perception. As with any

model, there are issues. Some models omit potentially important variables, e.g., demo-

graphics (a). Most do not consider selection effects, such as risk perception influencing

residential exposure if individuals select out of places with high climate change risk (b).

However, they do provide a general understanding of the way risk perception researchers

think about relevant factors and the relational structure for model building.

Climate Hazard Inequalities

Inequality is generally understood as the unequal distribution of some element, climate

hazards in this case, across place and population (Allison, 1978). Research on inequality

tends to focus on methods for measuring it and theories on how it forms. Some applied

and empirical studies address questions of justice, equity, or a related topic, while others

inform how inequality affects a phenomenon under examination. Measuring inequality

depends on how a researcher chooses to define it. Once defined, several measurement

considerations include spatiotemporal scale, population weights, distribution sensitivity,

and relational orientation. These technical problems are most relevant when comparing

measures of inequality across units, but could even be considered when assessing inequal-
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ity within a unit. Spatiotemporal scale concerns the ecological fallacy, which describes

the problem of incorrect inferences due to aggregation (Ash & Fetter, 2004; Piantadosi,

Byar, & Green, 1988), and stationarity bias by assuming that relationships are stable

over space and time.

Population weights influence the intensity of inequality and the robustness of the inequal-

ity measure (Boyce, Zwickl, & Ash, 2016). Say we estimate an inequality statistic, such

as the Gini coefficient, for units A and B, with populations 10k and 100k respectively

and each with 10 sub-units. If we do not account for population but instead estimate

inequality by spatial hazard distribution across sub-units, we may find that unit B has

more hazard inequality. However, if we weight for population, it could instead be true

that unit A, with a more spatially dispersed population, has greater hazard inequality.

Regarding robustness, if we estimate the distribution of individual-level hazard between

unit A and B for two groups, white and non-white, we may find greater inequality in A.

Yet this finding could be due to a smaller sample size and make the inference statistically

insignificant.

The relational orientation of an inequality metric can be either vertical (across the vari-

able being measured) or horizontal (across the population) (Boyce et al., 2016). Vertical

metrics include the Gini coefficient and the Theil index. Horizontal modes of comparison

typically look at the distribution for a variable of interest for different groups of a pop-

ulation characteristic such as poverty, race/ethnicity, and other demographic variables

of public concern. Distributional sensitivity refers to how an inequality metric responds

to changes at different segments of the distribution. Some metrics are more sensitive to

changes in the middle of a distribution whereas others may respond more strongly to

changes at the tail ends (Atkinson, 1970; Duro, 2012). Choosing the appropriate metric

thus requires considering what kind of relationship inequality has with climate risk. If
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reducing extreme hazard creates greater equality then we would choose a metric sensitive

to changes in the tails.

From the theoretical side, the definition of inequality has evolved over time from an

outcome-oriented (e.g. income) to opportunity-oriented (e.g. early life circumstance) per-

spective. This is similar to the distinction between inequality and inequity. There are

elaborations of this, such as Sen (2000) capabilities and functionings distinction, whereby

individuals may have the opportunity to achieve some outcome but society is not struc-

tured in a way that allows for this realization. Theories on inequality tend to focus on

the formation and navigation of opportunity structures that produce unequal outcomes.

Walker (2011) proposed an environmental justice theory that distinguishes inequalities

in three interacting categories: distribution, procedure, and recognition. Distribution

relates to the variable being measured, e.g. climate hazards, clean air and water, green

space, and nutritious food, etc. Procedure concerns the social pathways for addressing

inequalities in distribution, e.g. free and fair access to legal and political systems. Recog-

nition refers to social acceptance and attention towards the distributional inequality,

e.g. respectful media coverage and official designations of injustices. These distinctions

highlight that inequalities form and exist across social dimensions beyond just the dis-

tribution of a climate hazard. Each community facing distributional inequalities does

not have equal capacity for remediation. Without procedural capabilities, communities

have less power in decision making processes to reduce inequalities. This affords them

less respect and perceived credibility, thus crippling their capacity to gain recognition of

the impacts. This chain of inequalities produces a positive-feedback loop, thereby gener-

ating greater inequality often disproportionately and cumulatively against marginalized

groups, in line with theories of cumulative advantage (DiPrete & Eirich, 2006).

Another theoretical approach proposed by PELLOW (2000), environmental inequality
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formation (EIF), emphasizes, “(a) the importance of process and history, (b) the role of

multiple stakeholder relationships, and (c) a life-cycle approach to the study of hazards”.

The EIF model suggests that environmental inequalities form when stakeholders bargain

for access to and control of scarce resources. In the case of climate hazard distributions

across households, the scarce resource is housing. The more advantaged in a society will

have greater opportunity to live in less hazardous homes. Inequalities may also result

from seemingly pro-justice decisions and policies with consensus from multiple stake-

holders but without recognition of inequalities arising from unintended consequences,

collateral damage, or among the most marginalized. Those with abundant social and

economic resources have the highest likelihood to reduce exposure to climate hazards.

For the less advantaged, inequalities might produce a parallel system of social opportu-

nity through status segmentation and physical displacement. Status segmentation occurs

when resource accumulation is not equitable, social and environmental ‘bads’ are dispro-

portionately experienced, the modes of procedural participation are asymmetric, and

recognition of challenges are avoided. These exclusions expand into housing and labor

markets, which results in physical displacement. Marginalized groups, often low-income

and racial/ethnic minority communities, are thus relegated to ‘ecological sacrifice zones’

(Bullard, 2011).

Inequalities could therefore manifest unintentionally as a result of complex processes

comprising antagonistic stakeholders seeking power and scarce resources. Another way

inequalities develop is through discrimination, which pervades every aspect of US so-

ciety. It is practiced on the basis of race, ethnicity, gender, sexual orientation, age,

disability, and class. Oftentimes, discrimination is overt and the consequences profound.

Black women are three to four times more likely to die during pregnancy than white

women (Chaves et al., 2018). Black individuals are twice as likely to be unemployed
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and earn 25% less when employed (Bertrand & Mullainathan, 2003). These disparities

exist across countless metrics and for many other marginalized communities. Systemic

discrimination leads to greater inequalities, further marginalization, and, partial or total

disenfranchisement from opportunity structures.

Historically in the United States, socially vulnerable populations had been systemati-

cally disenfranchised in housing markets, notably through a practice known as redlining,

whereby socially ‘risky’ neighborhoods were deemed bad investments (Aaronson, Hart-

ley, & Mazumder, 2017). The practice began in the 1930s when the Home Owners’

Loan Corporation (HOLC) drew maps socio-spatially demarcating the investment risk

profile of neighborhoods. Redlining has traditionally been understood as the unjustifi-

able discriminatory practice of refusing to provide or limiting credit in predominantly

racial/ethnic minority neighborhoods. This has limited the ability that communities

of color have for wealth generation through home ownership and segregated many into

neighborhoods lacking social, health, and infrastructural services has had devastating,

long-term repercussions. Redlining is a model example of discrimination-based inequal-

ities resulting in disenfranchisement. A more detailed definition from the Interagency

Fair Lending Examination Procedures:

“Redlining is a form of illegal disparate treatment in which a lender provides unequal

access to credit, or unequal terms of credit, because of the race, color, national origin or

other prohibited characteristic(s) of the residents of the area in which the credit seeker

resides or will reside or in which the residential property to be mortgaged is located.

Redlining may violate both the Fair Housing Act and the Equal Credit Opportunity

Act.” (Interagency Fair Lending Examination Procedures, n.d.)

The Fair Housing Act and related redlining prevention and restitution policies have been

established because applicants were routinely denied loans on the basis of racial/ethnic
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background. Lenders selected out of investing in ‘risky’ neighborhoods, those lined in

red ink on the map (Woods, 2012). It should be noted that some dispute exists about

whether HOLC maps were a root cause of discriminatory lending (Hillier, 2003). Redlin-

ing has traditionally been acknowledged in a mortgage lending context, however many

other types of discriminatory practices resembling redlining exist in housing markets and

beyond. The term could generally refer to any systematic discriminatory practice to-

wards racial/ethnic minorities in the provision of resources on the basis of neighborhood

of residence. Other examples of redlining include homeowners insurance (Squires, 2003;

Squires, Velez, & Taeuber, 1991), labor markets (L’Horty, Bunel, & Petit, 2019), and

credit cards (Cole, 2011). Long-term impacts include increased segregation that peaked

around 1970, and decreases in home ownership, house values, and credit scores (Aaronson

et al., 2017).

Despite regulations signed into law against redlining and related discriminatory mortgage

lending practices more than fifty years ago, housing market inequalities persist. Quillian,

Lee, & Honoré (2020) recently found that in the mortgage market… “black and Hispanic

borrowers are more likely to be rejected when they apply for a loan and are more likely

to receive a high-cost mortgage, conditional on loan approval. [Their] meta-analysis of

studies of racial disparities in the mortgage market suggests that discrimination in loan

denial and cost has not declined much over the previous 30–40 years, a disturbing finding.”

This disheartening description of the persistence of discriminatory lending practices does

not bode well for impacts to come from changing climate hazard. Rising seas, stronger

hurricane winds, more frequent floods, and uncontrollable wildfires will exacerbate the

disproportionate redistribution of resources and risk in an already inequitable system.

Socially vulnerable communities already bear a bigger share of previously unknown haz-

ard exposure as we improve our climate risk estimates. Data from Fathom, the research
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organization advancing flood hazard modes, has helped to reveal hazard disparities on

race, ethnicity, income, and other demographic characteristics. The share of hidden flood

exposure for minority residents in over two-thirds of states is higher than the state aver-

age. Neighborhoods with predominantly African American residents in Chicago and Fort

Lauderdale have flood exposure that is 30 and 36 percentage points higher than previous

estimates (Flavelle, Lu, Penney, Popovich, & Schwartz, 2020). Around 87 percent of

paid flood claims between 2007 and 2017 in Chicago occurred in predominantly minority

communities (Briscoe, 2020).

Tying Climate Risk Concepts Together: A Guide for

this Dissertation

There is a sprouting phenomenon synthesized from a couple of trends that connect the

concepts discussed in this review. First, the acknowledgment of climate change as necessi-

tating adaptive risk management has become ubiquitous in most sectors of the economy.

Second, access to, and quality of, property-level climate risk information has improved

substantially in recent years. With these improvements, both households and organi-

zations are gaining access to tools and recognizing the importance of managing their

climate risk. Residential housing markets are among those sectors that have begun to

exhibit adaptive risk management behaviors, particularly in where people choose to live.

The most alarmed, dissatisfied, and risk averse to climate change will select out of places

with high climate risk, as long as they have sufficient social opportunity. Developers,

mortgage lenders, and insurance writers–housing services firms–will also choose to dis-

invest in those places as a risk management strategy. This process may create greater

climate hazard disparities in housing markets along socioeconomic lines. Historic disen-
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franchisement from housing markets and the newer trend of climate lining–a potential

term for systemic disinvestment in and depopulation of places with high and increasing

climate hazard–will likely compound to increase social and environmental inequalities to

the disadvantage of already marginalized groups.

Researchers have only just begun documenting how these trends, such as out-migration

of the socially advantaged and disinvestment from housing services firms, might serve

as adaptive risk management solutions for climatically risky places. There is broad

recognition that these processes will occur in some form and in some places (Hino, Field,

& Mach, 2017; Siders, 2019). However, many questions remain unanswered and even

unaddressed, specifically how multiple climate risks interact with these trends over large

areas, the relationship between historical housing market disenfranchisement and current

climate risk exposure, whether historical trends in housing data suggest neighborhood

sorting on climate risk, and what happens to housing markets as information on climate

risk improves. The most socially vulnerable may find themselves literally and financially

underwater.

This already occurs with flood risk and the NFIP. Bakkensen & Ma (2020) “find clear

evidence that low income and minority residents are more likely to move into high risk

flood zones.” This means the reciprocal is also true, at least for flood risk; individuals

with socioeconomic advantage have moved and will continue to move out of harm’s way.

Systemic disinvestment will follow suit as housing services firms apply better climate risk

estimates in their algorithmic, data-driven decision-making processes. Many communities

will inevitably be left lacking the necessary infrastructure, investment, and insurance to

mitigate consequences from climate hazard events (O’Neill & O’Neill, 2012). Although

this dissertation does not explicitly study climate lining, we hope that the chapters

lay some groundwork for understanding the current state of climate risk dimensions
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determining the trajectory of this phenomenon. We believe it may be one of the greatest

impacts from climate change at a household level across the world. It will be particularly

problematic in higher income countries where the relative human suffering may evoke less

visceral reactions than places with absolute devastation resulting in innumerable ‘climate

refugees’.

Each chapter utilizes climate hazard estimates for addressing distinct aspects of the lit-

erature reviewed in this introduction. Hazards are generally estimated as multi-year

averages of extreme event frequency and intensity. The second chapter, ‘Modeling Social

Vulnerability Determinants of Disaster Loss,’ estimates the relative contribution of social

indicators to variability in disaster loss. In this chapter we draw from the vulnerabil-

ity literature to model the relationship among consequence, hazards, and vulnerability.

The consequence we focus on is disaster loss, which includes property and agricultural

damage from a hazard event. Vulnerability comprises social indicators such as poverty,

racial/ethnic status, and primary mode of transport. Our goal in modeling this rela-

tionship is to validate specifications of the vulnerability parameter by hazard type for

the climate risk equation. This chapter aims to primarily address the following gap in

the literature: Which non-hazard factors moderate variation in outcomes when a hazard

event occurs?

The third chapter, ‘Mapping Climate Hazard Inequalities,’ assesses the social and spatial

distribution of climate hazards by comparing multiple types of inequality metrics. In this

chapter we use measures and methods from the inequality literature to describe different

manifestations and aspects of climate hazard inequalities. By doing so we can tease apart

whether, for which groups, and where inequalities exist for each climate hazard. This

chapter aims to primarily address the following gap in the literature: How do climate

hazards distribute over people and places?
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The fourth chapter, ‘Measuring Climate Risk Perception with Twitter Data,’ builds a

dataset of socio-cognitive characteristics from user-generated social media data. Our

aim is to test whether a novel data source and set of methods can be used to construct

measures that would traditionally be gathered through a survey instrument. The impli-

cation of this type of validation is that additional data sources can supplement surveys

to better represent a target population, offer higher spatiotemporal resolutions, and pro-

vide access to harder to measure characteristics such as social networks. This chapter

contributes to answering a central research question in climate risk perception research:

Which factors determine differences between perceived and statistical climate risk? How-

ever, it primarily focuses on the measurement of those factors and borrows theoretical

specifications from previously published articles.

Climate risk is an increasingly important area of study due to climate change, the rate

of population and economic growth, and widening social inequalities. The fields of risk

research on climate hazards have evolved over time from only estimating physical haz-

ard and structural solutions, then accounting for individual and organizational decision

making as a determinant of exposure, and eventually considering the multidimensionality

of vulnerability to negative consequences resulting from hazard events. These paradigm

shifts in selecting factors for climate risk assessment happened alongside developments

in modeling the determinants of risk perception as well as the implications for deviations

between statistical and perceived risk. The unequal distribution of climate risk among

marginalized groups and places has garnered scientific and policy attention to mitigate

inequitable outcomes over the next several decades.
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Appendix
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Figure 1.1: IPCC disaster and climate risk model where risk is a function of hazard,
exposure, and vulnerability Kron (2002).
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Figure 1.2: Risk models that account for vulnerability include Hazards-of-Place (HPM)
Cutter (1996), Pressure and Release (PRM), Access (AM) Wisner et al. (2004). A key
similarity of these models is the recognition that there are factors predisposing us to
greater risk beyond hazard, exposure, and mitigation thereof.
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Figure 1.3: Climate Change Risk Perception Models. Models (a) Xie et al. (2019)
and (b) posit that risk perception serves as a mediator among relationships for a set
of factors (knowledge, affect, etc.) and outcomes, such as behavioral willingness and
psychological capacity to adapt to climate change. Model (c) Echavarren et al. (2019)
does not consider factors such as knowledge or emotions. Model (d) van der Linden
(2017) proposes a general schema for how external perceptions and societal pressures
influence individual risk perception.
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Chapter 2

Modeling social vulnerability

determinants of disaster loss

A common outcome of climate hazard events is disaster loss, which is moderated by social

vulnerability. To understand which social vulnerability factors have the largest moder-

ating effect, many studies model the relationship among social vulnerability, climate

hazard, and disaster lossa. This study validates social indicators that have been identi-

fied in the literature and in practice as influential for moderating adverse outcomes from

environmental hazards. We first demonstrate that social vulnerability indices, measures

for aggregating multiple social indicators into one variable, are not internally consistent

as values range drastically when including different input data nor are they theoretically

consistent since the relative contribution of each indicator to index values also changes.

We then build several statistical models of the relationship between climate hazard, so-

cial vulnerability, and disaster loss in order to examine which social indicators are the

strongest predictors of loss. Our results suggest that climate risk modeling should ac-

count for social vulnerability and that the relative contribution of social indicators varies
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across hazards. Context also appears to be important, whereby certain indicators may

represent a larger explanatory share of outcome variation, in this case loss, depending on

the levels of other indicators and model parameters.

Introduction

A common outcome of climate hazard events is disaster loss, which is moderated by

social vulnerability. To understand which social vulnerability factors have the largest

moderating effect, many studies model the relationship among social vulnerability, cli-

mate hazard, and disaster loss. These studies aid in understanding the disaster process

and mitigating disaster loss. However, vulnerability-hazard-loss studies typically exhibit

at least one of several issues, including climate hazard-agnostic construction of social

vulnerability indices (SoVI); samples with few hazard events; omission of climate hazard

measurement; and looking at climate hazards and/or social vulnerability in aggregate.

Respectively, the presence of these weaknesses in the study designs result in lack of: trans-

ferability, since SoVI construction is sensitive to input data selection; generalizability,

considering that hazard events and the affected areas may be significantly idiosyncratic;

interpretability, because there is no observable relationship between disaster loss and

hazard exposure; and applicability, as discrete climate hazards and social vulnerability

factors require different adaptive actions.

We address these issues in the conterminous United States by validating the the role of

social vulnerability in climate risk modeling. Data comes from the US Decennial Census

and American Community Survey on social indicators, government and academic extreme

sources related to climate hazards (precipitation, extreme heat, drought, wildfire, and

flooding), and the Spatial Hazard Events and Losses Database for the United States
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(SHELDUS). Our solutions to the aforementioned problems include: a climate hazard-

specific SoVI construction; a large sample of hazard events; explicit measurement and

modeling of climate hazards; and a hazard-specific disaggregation of explained variance

from social vulnerability indicators on disaster loss. Climate hazards we study include

extreme precipitation, extreme heat, drought, wildfire, and flooding. We first test the

internal and external validity of the SoVI in a climate hazard-specific context. Then

we run a series of statistical models on the relationship between disaster loss and social

vulnerability while controlling for climate hazard. Our primary research goal is to explain

the climate hazard-specific relative importance of individual social vulnerability factors

in constructing a SoVI and moderating disaster loss. To achieve this we ask the following

research question per climate hazard:

Research questions

How does the social vulnerability index vary by input data selection? Is there a sta-

tistically significant relationship between disaster loss and social vulnerability for each

climate hazard? Which social indicators contribute most to the social vulnerability index

and disaster loss outcomes?

1. How do SoVI values and factor-level relative contributions vary by input data

selection?

2. Which social vulnerability indicators are most important in moderating disaster

loss?

3. Is there a statistically significant relationship between disaster loss and social vul-

nerability?

Disaster mitigation helps reduce loss by tailoring plans to specific climate hazards. Wild-
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fire mitigation strategies rely on ecosystem science-based fuels reduction and prescribed

burn strategies alongside residential developments built to withstand extreme temper-

atures (Schoennagel et al., 2017). Flood mitigation requires extensive depth pattern

mapping and implementing defense infrastructure (Wilby & Keenan, 2012). Social vul-

nerability reduction targeting is likely also hazard-specific. Many studies either disregard

the individual variables used to construct social vulnerability indices or address them only

in a descriptive manner. Instead, we examine the importance of each SoVI variable to

better understand how vulnerability manifests for different hazards both as a latent mea-

surement through index construction as well as in the applied context of disaster loss.

Since disaster loss depends not only on climate hazard and social vulnerability but also

on other characteristics, such as the built environment and institutions, we control for

these to reduce specification error (specifically omitted variable bias) in modeling the

relationship between social vulnerability and disaster loss while controlling for climate

hazards.

We hypothesize that social vulnerability increases the probability of disaster and the

associated loss at any level of climate hazard and that the social factors most impacting

disaster outcomes can be addressed with in-place adaptation planning, e.g., by improving

transportation infrastructure as opposed to moving the elderly away from a hazard. This

would mean that reducing social vulnerability could always be a priority in an adaptive

risk management context and that there are discrete ways in which this can be done.

Literature Review

Disasters often occur when the root causes (e.g. racism), dynamic pressures (e.g. redlin-

ing), and unsafe conditions (e.g. poor stormwater infrastructure) of social vulnerability
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coincide with intense hazard events (K. Smith, 2013; Wisner et al., 2004). There are myr-

iad disaster losses generated by climate hazards. Conditions ripe for disaster outcomes

are not necessary for these losses to occur, but typically increase loss probability and

severity. Loss categories implicated by climate hazards include commodities (e.g. crops),

fixed assets (e.g. buildings), wellbeing (e.g. air quality), and human life, among others.

Each type of hazard produces different types of loss, however there is broad overlap.

Tangible hazards (wildfire and flooding) can feasibly result in almost any type of loss

while intangible hazards (temperature, precipitation, and drought) tend to not impact

fixed assets. In our context, and since the disaster loss database we utilize only measures

‘direct losses’ (property and crop damage, injuries, and fatalities), we focus on these for

the remainder of this study.

Social vulnerability, the propensity of social systems to suffer harm from exposure to

external stresses and shocks, determines how effectively communities are able to cope with

and respond to climate hazards. Human activity therefore moderates hazard severity,

i.e. losses accrued. Living in exposed areas, building faulty infrastructure, and limiting

the quality and availability of institutional support often renders communities at higher

climate risk, disaster probability and loss from the interaction of hazard, exposure, and

vulnerability.

Theoretically, greater social vulnerability increases disaster loss from climate hazards

(Cutter et al., 2003). This means that in a region impacted by the same hazard event,

such as a hurricane, areas with higher social vulnerability likely experience more direct

losses. Although this relationship generally holds across places and time, there are some

specific dynamics which deserve mention. The first is that not all variables included

in constructing indices such as SoVI are significantly correlated with disaster loss (Tell-

man et al., 2020). Similarly, although SoVI may positively correlate with disaster loss,
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some variables comprising it may negatively correlate. Other relationships may not be

monotonic and vary depending on the particular set of circumstances. Lastly, some rela-

tionships may vary over the disaster cycle, whereby a social vulnerability factor initially

correlates positively and over time negatively, or vice versa.

Constructing SoVI requires more than two dozen Census derived variables, including

race/ethnicity, age, education, employment, income, poverty, home value, and renter

tenancy. The methods developed and employed to estimate SoVI utilize Principal Com-

ponent Analysis (PCA), which is a process for grouping weighted subsets of variables

from a dataset into orthogonal components. These composite components are then sub-

jectively assigned labels, such as socioeconomic status or housing, that characterize the

variables grouped into that set. The SoVI value for any place is based on the summed

principal components, each of which is based on weighted sums of all variables included

in constructing SoVI (Spielman et al., 2020; Tate, 2012).

Studies recommend looking at both an aggregate social vulnerability measure and at in-

dividual variables used to construct it when conducting vulnerability assessments (Spiel-

man et al., 2020). To this end there are only a few large area, quantitative validations,

but some studies have found certain associations with disaster loss for specific hazards

(Bakkensen et al., 2017; Rufat et al., 2019; Tellman et al., 2020; Yoon, 2012; Zahran

et al., 2008). These studies typically build statistical models, e.g. OLS regressions, to

infer significance, direction, and magnitude of relationships (Yoon, 2012), however other

studies have begun introducing machine learning models for additional predictive power

(Tellman et al., 2020).

As mentioned, there are one or more methodological issues facing existing studies that

attempt to validate social vulnerability variables in disaster loss outcomes. Climate

hazard-specific SoVI construction is almost never conducted as most research uses the
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classic SoVI variable set and includes all possible geographies (Cutter et al., 2003; Gaither

et al., 2011; Lehnert, Wilt, Flanagan, & Hallisey, 2020; Spielman et al., 2020; Tellman et

al., 2020). Studies that use hazard event occurrence and magnitude do sometimes gather

a large sample of hazard events, but others will look at only one or a few events (Fekete,

2009; Finch, Emrich, & Cutter, 2010; Rufat et al., 2019). Others do not measure hazard

magnitude (Bakkensen et al., 2017).

In terms of explicit measurement and modeling of independent and interactive climate

hazard, there are studies that account only for average climate hazard (Emrich & Cutter,

2011; Gaither et al., 2011), hazard events (Tellman et al., 2020), or neither (Bergstrand,

Mayer, Brumback, & Zhang, 2015; Cutter et al., 2003; Lehnert et al., 2020; Nelson,

Abkowitz, & Camp, 2015). The latter group fails to measure or incorporate climate

hazard exposure while either modeling the relationship to disaster loss or investigating

some aspect of social vulnerability in a climate hazard context, although there are usually

no explanatory claims. We found no studies modeling interactive climate hazard.

Hazard-specific disaggregation of explained variance from SoVI (and the variables used

to construct it) on disaster loss is rarely done. Those that have done so usually refer to

the approach as validation (Bakkensen et al., 2017) and conduct it for a singular hazard

(Rufat et al., 2019; Tellman et al., 2020). These are the most similar studies to our

efforts, however there is still room for improvement, as outlined earlier. For example,

Tellman et al. (2020) only investigates flooding at the county level and without an average

climate hazard measure. Robust estimates of causal effects are limited in the literature

since generalization is difficult due to unique selection processes operating across diverse

combinations of social context and climate hazards. These limitations apply even to the

most clever natural experiments (Frankenberg, Laurito, & Thomas, 2014).

Beyond studies that attempt to explain the vulnerability-hazard-loss relationship, there
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are many providing other types of information, such as spatially descriptive analysis

(Bergstrand et al., 2015; Emrich & Cutter, 2011; Lehnert et al., 2020; Spielman et al.,

2020; Tate, 2012); SoVI sensitivity analysis across a variety of construction methods

(Spielman et al., 2020; Tate, 2012); and non-loss outcomes such as population redistribu-

tion from wildfires (Hammer, Stewart, & Radeloff, 2009), Hurricanes Andrew (Smith &

McCarty, 1996) and Katrina (Donner & Rodríguez, 2008), and sea level rise in Louisiana

(Hauer, Hardy, Mishra, & Pippin, 2019).

Data and Methods

Our approach involves matching disaster loss, climate hazard, and social vulnerability

indicators at the census tract level. We focus on direct economic loss (property dam-

age, crop loss, etc.), five climate hazards (extreme precipitation, extreme heat, drought,

wildfire, and flooding), and a set of over twenty social vulnerability indicators. The

first analytical task compares how SoVI rankings and the relative contributions of social

vulnerability indicators vary when including different geographic subsets– hazard-specific

places of higher exposure. Then we build several statistical models testing the association

between social vulnerability and disaster loss.

Climate hazards

To estimate climate hazard we first determine the relevant spatial unit of analysis and

integrate many datasets to comparable spatial and temporal scales. Climate model out-

put (precipitation and temperature) come from tens of internationally accepted global

climate models which have been validated as part of the Coupled Model Intercompar-

ison Project Phase 5 (Taylor, Stouffer, & Meehl, 2012). Researchers have downscaled
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these data to higher resolution across the US by utilizing local information (e.g. weather

patterns, hydrodynamics, etc.) and leveraging the empirical linkages between coarse

resolution and fine resolution climate. We use the downscaled data products to pro-

duce high spatiotemporal resolution estimates of general climate risk for a given raster

cell. Other hazards (drought, wildfire, and flooding) use these climate averages as input

data alongside myriad other data sources (terrain, vegetation, soil type, etc.) in more

complex modeling frameworks to estimate water scarcity through supply and demand

relationships, fire weather and burn probabilities, and flood depths and return inter-

vals, respectively. Figure ?? displays the climate hazards we estimate and the average

climate hazard aggregated at the tract level. Table 2.1 provides summary statistics.

@ref(#climate-hazard-estimation) offers a detailed explanation of how we estimate each

climate hazard.

Social vulnerability

We measure social vulnerability with data from the US Decennial Census and American

Community Survey (ACS). These data are available at the Census Tract level, which

is typically around 8,000 people (there are approximately 73,057 Census Tracts in the

US). We rely on the Cutter et al. (2003) implementation to construct SoVI and make

comparisons to the CDC index when appropriate. Table 2.2 contains summary statistics

and Figure ?? maps SoVI and a subset of social factors across the US.

Disaster loss

We derive disaster loss from the Spatial Hazard Events and Losses Database for the

United States (SHELDUS) (CEMHS, 2020), which provides annual county-level disaster
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loss estimates for multiple natural hazards from 1960 to 2020. These estimates comprise

the response variables for our statistical models. Years 2001-2020 were chosen for two

reasons. The first is that we matched disaster loss at each observation year with cor-

responding social vulnerability indicator estimates from the Census and five year ACS.

Sub-five year ACS releases do not typically target Census Tracts. For years and variables

without inter-decadal ACS estimates, we did a linear interpolation between the two clos-

est dates. The second reason is that we use disaster loss relative to GDP and Census

Tract, which we calculate by dividing county-level disaster loss by GDP and weighting by

tract-level area and population size. These county-level GDP data are available for years

2001-2020 and come from the Bureau of Economic Analysis (BEA) (BEA, 2021). This

process is shown for the state of Oregon in 2.7. We look exclusively at property damage

and crop loss across the following hazards specified by SHELDUS, which we aggregate

to match the broader hazard categories we study:

1. Storm: lightning, severe storm/thunder storm, tornado, winter weather, wind, fog,

hail

2. Heat: heat

3. Wildfire: wildfire

4. Drought: drought

5. Flooding: coastal, flooding, hurricane/tropical storm, landslide

Rank correlation

We estimate Spearman’s rank correlation coefficient for each social factor and climate

hazard (see Figure 2.5). Darker blue (towards 1) represents a stronger positive correlation

and darker red (towards -1) represents a stronger negative correlation. An X in the cell

represents a non-significant relationship at the 0.01 level.
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The strongest positive correlation is between renter and minority and the strongest neg-

ative correlation is between income and SoVI. Among social factors and climate hazards,

the strongest positive correlation is between minority and drought while the strongest

negative correlation is between minority and flood. This means that tracts with a higher

proportion of minorities tend to have higher drought risk and lower flood risk.

Internal and theoretical consistency

We adapt methods from Spielman et al. (2020) to assess the internal and theoretical con-

sistency of SoVI in a climate hazard context. SoVI construction follows methods used in

Spielman et al. (2020), which extends upon methods established by Cutter et al. (2003),

Schmidtlein, Deutsch, Piegorsch, & Cutter (2008), and Tate (2012). This uses Principle

Components Analysis with a varimax rotation to construct thematic components of input

variables (e.g. race/ethnicity, housing, etc.). Components with eigenvalues greater than

or equal to 1 contribute to the final index.

For each hazard, we bin census tracts by 2050 hazard risk (terciles) to experiment with

how including different input data impacts the sensitivity of relative SoVI ranks for census

tracts, known as internal consistency. For example, how does the state-wide rank of a

census tract in North Carolina change when including data for: (a) all US census tracts,

(b) census tracts in the same hazard tercile across the the US, (c) census tracts for the

FEMA region containing North Carolina, and (d) only census tracts in North Carolina.

To test theoretical consistency, we again look at different scopes for constructing SoVI.

For each of these census tract-level input datasets, we first calculate the variable-wise

contribution to SoVI. Using the expected contribution for each variable from the litera-

ture, we test how the variable contribution direction changes with each SoVI calculation.

Variables are ranked by contributions after each SoVI estimation run.
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Hazard-specific determinants of vulnerability

Our analysis on theoretical consistency ranks variables by relative contribution to SoVI

for each climate hazard. However, estimates from the PCA used to construct SoVI do

not present a rigorous enough way to infer the relative importance of social factors across

climate hazard contexts. To build upon this, we assess the relative influence of SoVI and

social vulnerability indicators on disaster loss outcomes by fitting separate models for

each type of climate hazard. Our goal is to further identify the most important social

factors determining vulnerability for each climate hazard. Per hazard, each final dataset

for every statistical model is an annual, Census Tract-level panel with the average climate

hazard, total disaster loss, and social vulnerability indicators (typically proportions or

averages). We convert all continuous variables to Z-scores with mean 0 and standard

deviation 1.

Our level of analysis remains at the census tract across all models and the primary

outcome variable is relative disaster loss, derived from the SHELDUS data described

earlier. We find the relative disaster loss per county by dividing the estimated disaster

loss by the county Gross Domestic Product, both of which are deflated to 2012 dollars.

We then refine the spatial resolution to the census tract by weighting relative disaster loss

estimates by population size and area. The first model looks at the annual probability

of experiencing disaster loss for census tract i in year t:

logit(Pit) = HitβH +X ′
itβX

Where P is the probability of disaster loss, H is hazard exposure, and X ′ is a vector of

social vulnerability factors, such as income, race/ethnicity, and unemployment. Figure

2.8 displays the average annual probability of disaster loss across levels of hazard expo-

sure, bound by 95% confidence intervals. We chose a logistic model since the outcome is
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binary; that is, whether a census tract experienced disaster loss in any given year. Tables

2.7 provides regression results for our logistic models across each hazard and compared

to the null model (excluding social vulnerability indicators).

The second modeling experiment explores the way vulnerability manifests across different

climate hazards. We first match census tracts on demographic similarity using Coars-

ened Exact Matching (CEM) (Iacus, King, & Porro, 2012). A similar purpose to the

commonly used method of Propensity Score Matching (PSM), CEM divides our sample

into treatment and control groups. PSM relies on a score to assign observations to ei-

ther group whereas CEM coarsens variables and matches observations according to the

coarsening. The treatment group in this case contains census tracts with high hazard

exposure and the control group are census tracts with low hazard exposure.

With the census tracts matched, we derive demographic profiles for communities with

highest climate risk, as measured by the most vulnerable to high hazard exposure and

the least resilient to low hazard exposure. To do this we separately estimate impacts

of climate hazard exposure on disaster loss for the treatment and control groups in

each matched strata, which is the CEM term for a group of similarly matched units

(census tracts). We apply third-order polynomial transformations to the hazard exposure

estimates to account for non-linearity in the response, which we model as the natural

logarithm of disaster loss so that fractional changes are equivalent.

We find the census tracts with highest climate risk by iteratively selecting units with both

the largest climate hazard effect and the smallest difference in climate hazard coefficients

for the independently estimated treatment and control models. Explained analytically,

we select the first n matched units across each of two ranked value sets, the treatment

group effect (descending) and the effect difference between groups (ascending).

We then run two multivariable fractional polynomial (MFP) models–a semi-automatic
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approach to estimating non-linearity in multivariate models (Zhang, 2016)–one each for

the treatment and control groups, per hazard. Each MFP model allows up to four degrees

of freedom per term to flexibly estimate the relationship between social vulnerability on

disaster loss for census tract i and year t:

ln(Lit) = FPSoV I(SoV Iit) +Hitβh + ϵit

Where the dependent variable ln(L) represents the natural logarithmic transformation of

disaster loss, H is hazard exposure, and social vulnerability is modeled as FPSoV I . MFP

models iteratively evaluate for non-linear and non-significant relationships between the

dependent and independent variables and each non-linear term found is represented as:

FPH(Hit) = β1H
p1
it + β2H

p2
it + β3H

p3
it + β4H

p4
it

MFPs are effective at modeling odd tail-end behavior and capturing non-linear effects of

weather variables on economic outcomes such as crop yields (Blanc & Sultan, 2015), which

are included in our disaster loss estimates. It restricts the polynomial power terms to a

small predetermined set of values, which can be both integers and non-integers, allowing

models to produce a wide array of curve shapes without the necessity of estimating

powers (Ambler & Benner, 2015). Figure 2.10 shows disaster loss on the y axis across

levels of social vulnerability per hazard, bound by 95% confidence intervals. The x-axis

shows absolute changes in the social vulnerability index. These curves demonstrate the

influence of social vulnerability on disaster loss between exposure categories.

Our last set of models estimates the influence of social vulnerability factors on on disaster

loss outcomes while controlling for climate hazard using a two-way fixed-effects model

for census tract i and year t:

ln(Lit) = fH(Hit) +X ′
itβ + λi + ϕit+ ϵit

Where the dependent variable ln(L) represents the natural logarithmic transformation
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of disaster loss, H is hazard exposure, X ′ is a vector of social vulnerability factors, λ

are tract fixed effects which account for time invariant differences between tracts that

we do not observe, such as soil type, topography, and disaster management. ϕ are time

period fixed effects which control for unmeasured idiosyncrasies within tracts over time

such as gradual changes in the built environment and disaster mitigation infrastructure.

These fixed effects are added to control for past and present climate hazard management.

Crucially, these fixed effects capture variability in disaster loss associated with tract-

level differences in relevant local dynamics. Fixed effects demean the dependent variable,

transforming our hazard exposure variables into estimates of exogenous shocks (Blanc,

2017). After comparing the AIC and BIC for several polynomial expressions (quadratic,

cubic, and quartic), we chose to model the explanatory variable H as a third-order

polynomial:

fH(Hit) = β1Hit + β2H
2
it + β3H

3
it

Figure 2.11 illustrates disaster loss across levels of climate hazard exposure, bound by

95% confidence intervals. Disaster loss values on the y axis above 1 represent loss that

is relatively greater than tract level GDP. The x-axis shows absolute changes in hazard

exposure.

The typical statistics used to compare non-linear models are the Akaike and Bayesian

Information Criteria, AIC and BIC respectively. Neither statistic can be interpreted

independently and a lower value is preferable when comparing values across models as this

indicates lower out of sample prediction error. We also use the proportion of explained

deviance, a pseudo R2 measure for non-linear models. We also made sure there was

minimal multicollinearity among the covariates in all of our models, which led us to

remove 11 variables from the statistical analysis. Variable inflation coefficients were used

to assess multicollinearity by determining whether a false positive would be interpreted
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due to high correlation with one or more covariates.

Spatial autocorrelation is a common problem to consider when modeling data with a spa-

tial component. This is because it violates the assumption of independent and identically

distributed observations (in space), which biases the statistical estimates. In our case, all

of our variables are positively spatially correlated, which can be found with Moran’s I,

a global measure of spatial autocorrelation. The Moran’s I statistic indicates the degree

of linear spatial association between the variable of interest x and spatially weighted

averages vector of neighboring values Wx, where W is the summed spatial weight matrix

wij which formalizes the adjacency structure of the dataset (Moran, 1948). The Moran’s

I statistic is computed as:

I = N
W

∑N
i=1

∑N
j=1 wij(xi−x̄)(xj−x̄)∑

i=1(xi−x̄)2

With N as the total number of spatial units, all for reference unit i and comparison

units j. Values usually range from -1 to 1. The closer the statistic is to 1, the greater

the degree of positive spatial autocorrelation while a value closer to -1 indicates stronger

negative spatial autocorrelation. We found the highest degree of spatial correlation with

the disaster loss data, since the loss estimates were equally distributed across affected

counties, next are climate hazards (flood being the lowest and storm the highest), and

lastly the social vulnerability indicators. Systematic subsampling can address spatial

autocorrelation within our modeling framework, whereby we sub-sample Census Tracts

at sufficient spatial separation (either in terms of distance or degree of neighbor) such

that the resulting observations are mostly spatially uncorrelated. . The variogram, a

tool to find an optimal distance for sample filtration, defines co-variation as a function

of spatial distance. We used half the range of the variogram, which is the distance under

which the sample is spatially autocorrelated. Sample sizes for each climate hazard can

be found in Table 2.4.
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Results

Our primary goal in this research is to validate the role of social vulnerability indica-

tors in moderating disaster loss from climate hazards. To do so we modeled the annual

relationship among disaster loss, climate hazard, and social vulnerability. Prior studies

with similar goals have omitted climate hazard estimates, modeled social vulnerability

indicators and climate hazards in aggregate, and used generalized indices for social vul-

nerability. Our approach has produced results to this end across several analytical tasks,

both descriptive and inferential. We first used Principal Components Analysis (PCA),

a dimensionality reduction technique, to estimate the Social Vulnerability Index (SoVI)

across different geographic scales and samples. With these different samples we con-

ducted tests on measurement validity for both internal and theoretical consistency. The

next task employed a statistical matching method known as Coarsened Exact Matching

(CEM) to identify community archetypes, with which we then modeled the relation-

ship between climate hazard and disaster loss to select the highest climate risk strata

as indicated by high climate hazard-driven disaster loss and low resilience provided by

social factors. Lastly, we built several statistical regression models to test the added

explainability on disaster loss that social vulnerability indicators provide.

Hazard-Specific SoVI Measurement Validity

By repeating SoVI estimation experiments for all US Census Tracts (a) and then for

Census Tracts by risk terciles of each hazard (b), FEMA region (c), and state (d), we

observe, as input data varies, shifts in the relative SoVI ranking for census tracts within

a state. We demonstrate the large variation in relative ranking as we switch the scope,

and amount, of input data by using the state of North Carolina. We estimated SoVI
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eight times for each Census Tract, which are then ranked statewide. Out of 2192 census

tracts in North Carolina, over 748 tracts vary in rank by over 500 places. The maps

by hazard in Figure 2.6 display the relative ranking for census tracts in North Carolina.

SoVI has questionable internal consistency as a latent construct of social vulnerability

since the value and relative rank for an administrative unit depends on the geographic

scope. We demonstrate similar results to Spielman et al. (2020) by looking at the range

in SoVI rankings for hazard specific contexts.

Table 2.3 displays results on theoretical consistency. We sort social indicators by the

average rank in contribution to SoVI across all the runs. When using all census tracts

within the conterminous US, four variables exhibit different contribution directions than

expected (‘Per Capita Income’, ‘Group Quarters’, ‘Unemployed’, and ‘Multi-Unit Hous-

ing’). The variables with the most reversals in direction (how many times they differed

from the expected direction) are Unemployed and Multi-Unit Housing. The variables

with the highest and lowest average ranks are, respectively, ‘Per Capita Income’ and

‘Renter’. ‘Age Dependence’ has the smallest range in relative ranks.

Climate Risky Communities

The CEM procedure results in about 80 strata, which means 160 models in total across

high and low climate hazard exposure groups. Control variables include the full set

of social vulnerability factors. Presented in Figure 2.9 are the top three community

archetypes per hazard. These sets represent socio-demographic compositions with both

the greatest association between climate hazard and disaster loss and least difference in

outcomes between high and low social vulnerability. The most notable result here is for

flood, which represents similarly composed communities that tend to be right around

average across social vulnerability indicators.
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Validating Social Vulnerability across Hazards

Across all models our regression analyses found better model fits, using AIC and BIC as

the metric, when including social vulnerability indicators. Regression output is provided

in Table 2.7, Table 2.13, and Table 2.16. Similarly, looking at the difference in propor-

tion of explained deviance, we find better model explainability for those including social

vulnerability indicators. The best performing type of model are the two way fixed effects

models of disaster loss, with predicted curves and output in Figure 2.11 and Tables 2.16,

which we find by summing the proportion of explained variance for the models including

social vulnerability indicators. The logistic models of disaster loss probability are the

next best performing (curves in Figure 2.8 and output in Tables 2.7) while the multivari-

able fractional polynomials of disaster loss between high and low climate hazard groups

were the poorest performing (curves in Figure 2.10 and output in Table 2.13).

Climate hazards are a statistically significant predictor of disaster loss in almost all

models except for the MFP analysis on heat and drought. The hazard-specific model

with the best performance is the TFE model for heat. However, the relationship between

heat and disaster loss is negative, which contradicts hypotheses about greater hazard

producing higher loss. For positive hazard-loss relationships, the highest performing

model is logistic for drought. The climate hazard that has the strongest relationship with

disaster loss is the MFP model for flood in the high climate hazard group. Across all

model types the strongest relationship is for drought, but this hazard is not significant

in the MFP model sets. The hazard that is significant across all model sets with the

strongest average relationship with disaster loss is flood. The hazard with the weakest

relationship is wildfire. Hazards holding disaster loss relationships inconsistent with

theory (i.e. negative) are storm, heat, and the aggregate climate hazard.
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There are no social vulnerability indicators that always have a positive (meaning a unit

increase in the SVI is associated with increased loss) or negative (meaning a unit increase

in the SVI is associated with decreased loss) and statistically significant relationship

with disaster loss. The indicators with the most consistent positive relationship are

poverty, living in group quarters, uninsured, no high school diploma, and renters. Those

with the most consistent negative relationships are crowded housing, age dependency,

population density, mobile homes, and no vehicle. The social vulnerability indicator that

has the strongest average positive relationship with disaster loss across all model types

is percent uninsured while that with the strongest negative is the age dependency ratio.

Relationships with the lowest effect size include minorities and disabled. Taking just

the average effect from positive and negative coefficients, the strongest relationships are

group quarters and the age dependency ratio, respectively. The effect direction for SoVI

is inconsistent across models as well.

Discussion

These results offer evidence that social vulnerability plays an essential role in moderating

disaster loss from the climate hazards of extreme precipitation, extreme heat, drought,

wildfire, and flooding for the conterminous USA. The average increase in explained vari-

ation among all models was about double when including social vulnerability indicators

as opposed to the null model that just accounted for climate hazard. The hazard holding

the strongest positive associations with disaster loss are flooding and drought. For social

vulnerability indicators it seems to be percent living in group quarters and uninsured.

Flood risk does have a theoretical and empirical relationship with these variables, par-

ticularly group quarters (Khunwishit & McEntire, 2012; Lowe, Ebi, & Forsberg, 2013).
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People living in group quarters do not own their property and therefore are unable to

invest in risk insurance and mitigation. Furthermore, not having health insurance (per-

cent uninsured) likely correlates with not having homeowners insurance to help recoup

after a hazard event.

We did not focus on whether including individual social vulnerability indicators improved

model specification over an aggregated metric such as SoVI, which has been shown in

numerous studies (Rufat, Tate, Burton, & Maroof, 2015; Spielman et al., 2020; Tellman

et al., 2020). Instead, we focused on validating which aspects of these social vulnerability

profiles were most important across each climate hazard.

Despite evidence supporting the hazards of place model and social vulnerability as an

essential term in the climate risk equation, it is also the case that indicators are not

consistent predictors of disaster loss across different hazards. Effect directions and mag-

nitude additionally vary by model type. It may further be true that indicators provide

inconsistent prediction even within hazard type but for different hazard events. Although

we haven’t explicitly tested for this in the present study, the results suggest it is likely

the case. The reason these dynamics exist is due to variability in aspects we weren’t able

to measure.

Aspects include differences in hazard mitigation among places, ranging from large infras-

tructure projects to household hardening, and across time, since we used over two decades

of hazard events in our panel. Although we attempted to control for this in our two way

fixed effects models, there is certainly some degree of variability still unexplained by

these factors. Even so, the TFE models did achieve the best model performance. Other

reasons may be specific to event characteristics (temporality, intensity, areal extent, etc.)

that result in disparate relationships with social vulnerability indicators.

Culprits beyond the theoretical reasons why social vulnerability indicators are not con-
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sistent predictors of disaster loss are the methodological issues with our approach. The

hazard loss data that we use is at the county level, which has been equally assigned across

all affected counties by the data provider. We then extrapolated to the census tract, both

of which might present problems. There is also the possibility of omitted variable bias

by not including hazard mitigation factors. Furthermore, we use an overall hazard risk

instead of explicitly modeling the characteristics of each hazard event that produced loss.

Other papers have included approximations of hazard event characteristics in their mod-

eling with similar discrepancies across vulnerability indicator-loss relationships (Tellman

et al., 2020).

Perhaps communities facing similar climate hazards exhibit greater convergence of SoVI

values, relative rankings of SoVI, and variable contributions to both SoVI and explaining

disaster loss, yet it appears that is not the case. Our results highlight the need for place,

community, and hazard-specific vulnerability assessments. If relying on SoVI, adaptation

planning for any climate-sensitive hazard will generate vastly different recommendations

depending on which populations are included in the construction of the index. For exam-

ple, if the goal is to conduct capacity building on five targeted social factors, we would

likely consider a different set of factors for every unique set of census tracts included in

the analysis. We can see this in Figure ??, which highlights the average relative contri-

butions to SoVI and disaster loss explained variance. Even the recommended direction

and degree for influencing any social vulnerability indicator will vary by the scale, scope,

and scenario of the mitigation plan.
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Conclusion

Our study supports the inclusion of social vulnerability in climate risk modeling. In-

dicators comprising the latent concept of social vulnerability are evidently significant

and robust in a statistical modeling framework. However, this conclusion does not give

a good idea as to the relationship direction and magnitude under varying hazard and

exogenous conditions. We recommend several ways to attain a better sense of how ex-

actly these indicators relate to disaster loss and the climate risk model. First, include

data on hazard mitigation. This could come from a range of sources, including govern-

ment repositories such as the National Inventory of Dams, FEMA FIRM maps, state

and local climate action plans, and private data from the insurance industry. Second,

include an overall hazard risk alongside event specific measurements. It is not possible

to correctly measure event characteristics for every event sampled, but an overall haz-

ard risk can provide added explanatory support. Third, utilize higher spatial resolution

disaster loss data that is accurately spatially attributed. We believe a more rigorous

and reliable modeling framework will result from implementing these recommendations.

Only when enough studies consistently validate social vulnerability indicators would it

be reasonable to recommend that institutions focus resources towards them for disaster

loss mitigation. Localized studies of specific hazards still likely provide the best evidence

to support mitigation planning.
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CHAPTER 2. VALIDATING SOCIAL VULNERABILITY

Table 2.1: Climate hazard summary statistics. Values range from 0 to 100.

varNames mean sd median min max
Extreme Precipitation 60.43 22.04 68.66 0.0 98.93
Extreme Heat 52.26 22.08 53.94 0.0 100.00
Drought 35.85 24.27 31.00 0.0 96.00
Wildfire 19.88 14.61 19.00 0.0 84.00
High tide flood 4.90 15.87 0.00 0.0 100.00
Inland flood 60.29 16.35 62.64 0.0 99.80
Storm surge flood 4.75 15.98 0.00 0.0 100.00
Composite flood 63.65 17.48 65.57 0.0 100.00
Climate 46.41 8.68 47.36 10.6 73.56
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Figure 2.1: County-level climate hazards. Values range from 0 to 100.
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Figure 2.2: County-level climate hazards. Values range from 0 to 100.
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Table 2.2: Social Vulnerability Indicator Summary Statistics

varNames mean sd median min max
Age Dependency (pct) 0.44 0.14 0.44 0.0 1.75
Crowded Housing (pct) 3.52 5.18 1.80 0.0 100.00
Disability (pct) 13.28 5.96 12.50 0.0 100.00
Group Quarters (pct) 2.67 9.54 0.20 0.0 100.00
Limited English (pct) 4.14 6.81 1.30 0.0 100.00
Minority (pct) 38.22 29.88 29.80 0.1 100.00
Mobile Home (pct) 6.02 10.73 0.70 0.0 100.00
Multi-Unit Housing (pct) 12.26 18.46 4.50 0.0 100.00
No High School (pct) 13.10 10.49 10.30 0.1 100.00
No Vehicle (pct) 9.32 12.22 5.20 0.0 100.00
Per Capita Income 32082.59 16967.81 28438.00 0.0 227064.00
Population Density 5406.16 11960.15 2258.08 0.0 263992.73
Poverty (pct) 15.31 11.87 12.20 0.1 100.00
Renter (pct) 46.90 25.15 43.60 1.1 99.90
Singe Parent (pct) 9.19 6.43 7.80 0.0 100.00
Unemployed (pct) 6.42 4.63 5.30 0.1 100.00
Uninsured (pct) 9.32 7.10 7.60 0.0 100.00
Social Vulnerability Index 50.00 28.78 50.00 0.0 100.00
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Figure 2.3: County-Level Social Vulnerability Index (SoVI) and indicators.
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Figure 2.4: County-Level Social Vulnerability Index (SoVI) and indicators.
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Figure 2.5: Spearman’s Rank Correlation matrix among climate hazards and social vul-
nerability indicators.
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Figure 2.6: Census Tract Vulnerability Rankings per Hazard Grouping for North Car-
olina. By repeating SoVI estimation experiments eight times: for all US Census Tracts
(a), for Census Tracts by risk terciles of each hazard (b), FEMA region (c), and state
(d), we observe, as input data varies, shifts in the relative SoVI ranking for census tracts
within a state. The relative ranking varies greatly as we switch the scope, and amount,
of input data. Ranked statewide, out of 2192 census tracts in North Carolina, over 748
tracts vary in rank by over 500 places.
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Table 2.3: Social indicator variable contributions to the Social Vulnerability Index.
Sorted social by the average rank in contribution to SoVI across all the estimation runs.
When using all census tracts within the conterminous US, four variables exhibit different
contribution directions than expected

varNames expected original reversals maxRank minRank avgRank
Age Dependency (pct) - + 6 2 6 3
Crowded Housing (pct) + - 5 1 15 4
Disability (pct) + - 13 2 16 6
Group Quarters (pct) + + 0 4 14 8
Limited English (pct) + + 1 3 17 8
Minority (pct) + + 0 6 12 8
Mobile Home (pct) + + 0 7 11 8
Multi-Unit Housing (pct) + + 0 7 11 9
No High School (pct) + + 0 2 16 10
No Vehicle (pct) + - 13 2 17 10
Per Capita Income + + 0 3 16 10
Population Density + + 5 1 17 11
Poverty (pct) + + 0 2 17 11
Renter (pct) + + 0 9 13 11
Singe Parent (pct) + + 0 5 15 11
Unemployed (pct) + + 0 7 16 13
Uninsured (pct) + + 0 6 17 13
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Table 2.4: Spatial subsample sizes by climate hazard.

hazard n
climate 6898
drought 2916
fire 6958
flood 14557
heat 1816
storm 1241

78



Figure 2.7: Relative disaster loss calculated by dividing county-level disaster loss by GDP
and weighting by tract-level area and population size.
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Table 2.5: Logistic model summaries across hazards.
Null (Storm) Storm + SVI Null (Heat) Heat + SVI Null (Drought) Drought + SVI

Constant −0.604*** −0.614*** −1.304*** −1.342*** −0.510*** −0.546***
(0.008) (0.008) (0.017) (0.017) (0.028) (0.030)

Climate Hazard −0.143*** −0.137*** −0.124*** −0.176*** 0.500*** 0.300***
(0.008) (0.010) (0.017) (0.019) (0.028) (0.032)

Age Dependency −1.274 −5.461 0.862

(1.869) (3.630) (8.031)
Crowded Housing −0.124*** −0.091*** 0.294***

(0.012) (0.025) (0.047)
Disability −0.069*** 0.034 0.072+

(0.012) (0.023) (0.041)
Group Quarters 0.011 0.056* 0.036

(0.011) (0.022) (0.037)
Limited English 0.049*** 0.254*** 0.367***

(0.014) (0.030) (0.064)
Minority −0.028+ 0.118** 0.448***

(0.016) (0.037) (0.056)
Mobile Home −0.183*** −0.018 0.108**

(0.011) (0.020) (0.035)
Multi-Unit Housing 0.035** −0.055* −0.087*

(0.011) (0.024) (0.041)
No High School 0.129*** 0.107** −0.623***

(0.017) (0.036) (0.069)
No Vehicle −0.011 −0.174*** −0.077+

(0.013) (0.028) (0.041)
Per Capita Income 0.052*** 0.062* 0.176***

(0.013) (0.026) (0.042)
Population Density 0.014 −0.111** 0.101*

(0.010) (0.038) (0.042)
Poverty 0.003 0.041 0.169***

(0.016) (0.030) (0.049)
Renter −0.003 0.172*** 0.160**

(0.016) (0.036) (0.052)
Singe Parent 0.011 −0.074** −0.150***

(0.012) (0.024) (0.043)
Unemployed 0.015 0.056* 0.202***

(0.011) (0.022) (0.038)
Uninsured −0.035** −0.146*** −0.186***

(0.011) (0.023) (0.039)

Num.Obs. 64 508 64 508 21 652 21 652 5702 5702

AIC 83 563.2 82 601.2 22 440.2 21 869.0 7249.3 6770.6

BIC 83 581.4 82 791.8 22 456.2 22 036.6 7262.6 6910.3

Log.Lik. −41 779.616 −41 279.593 −11 218.106 −10 913.497 −3622.663 −3364.317

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.6: Logistic model summaries across hazards.
Null (Wildfire) Wildfire + SVI Null (Flood) Flood + SVI Null (Climate) Climate + SVI

Constant −0.515*** −0.526*** −0.790*** −0.798*** −0.137*** −0.138***
(0.006) (0.006) (0.004) (0.004) (0.003) (0.003)

Climate Hazard 0.079*** 0.059*** 0.012** 0.061*** −0.138*** −0.099***
(0.006) (0.006) (0.004) (0.004) (0.003) (0.004)

Age Dependency −4.885*** −0.725 −2.828***
(1.166) (0.736) (0.674)

Crowded Housing −0.101*** 0.052*** −0.046***
(0.009) (0.005) (0.005)

Disability −0.032*** −0.010+ −0.052***
(0.008) (0.005) (0.005)

Group Quarters 0.104*** −0.016*** 0.021***
(0.008) (0.004) (0.004)

Limited English 0.066*** 0.039*** 0.045***
(0.010) (0.006) (0.005)

Minority 0.180*** 0.201*** 0.050***
(0.013) (0.007) (0.006)

Mobile Home −0.060*** 0.025*** −0.056***
(0.008) (0.005) (0.004)

Multi-Unit Housing 0.056*** 0.044*** 0.026***
(0.008) (0.005) (0.004)

No High School 0.039** −0.069*** 0.070***
(0.012) (0.007) (0.006)

No Vehicle −0.061*** 0.007 0.008

(0.009) (0.005) (0.005)
Per Capita Income −0.072*** 0.078*** 0.039***

(0.010) (0.005) (0.005)
Population Density −0.114*** 0.036*** 0.014***

(0.010) (0.005) (0.004)
Poverty 0.002 0.002 −0.059***

(0.011) (0.006) (0.006)
Renter −0.021+ −0.099*** −0.007

(0.012) (0.007) (0.007)
Singe Parent −0.067*** 0.022*** 0.021***

(0.009) (0.005) (0.005)
Unemployed −0.113*** 0.039*** −0.011*

(0.008) (0.004) (0.004)
Uninsured 0.077*** 0.007 −0.043***

(0.008) (0.005) (0.004)

Num.Obs. 120 172 120 172 353 911 353 911 377 714 377 714

AIC 158 725.0 156 273.7 439 390.6 436 049.2 520 095.8 517 121.2

BIC 158 744.4 156 477.4 439 412.1 436 275.5 520 117.5 517 348.8

Log.Lik. −79 360.489 −78 115.865 −219 693.279 −218 003.603 −260 045.892 −258 539.584

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.7: Logistic model proportions of explained deviance.

Null (Storm) 0.00359
Storm + SVI 0.01552
Null (Heat) 0.00252
Heat + SVI 0.0296
Null (Drought) 0.04379
Drought + SVI 0.11198
Null (Wildfire) 0.00111
Wildfire + SVI 0.01677
Null (Flood) 2e-05
Flood + SVI 0.00772
Null (Climate) 0.00341
Climate + SVI 0.00918
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Figure 2.8: Logistic models of disaster loss probability. Z-scores for climate hazard are
on the x-axis and the probability of experiencing disaster loss is on the y-axis.
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Figure 2.9: Demographic profiles for archetypal high climate risk communities.
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Table 2.8: Multivariable Fractional Polynomial model summaries across hazards: exposed
populations

Null (Storm) Storm + SVI Null (Heat) Heat + SVI Null (Drought) Drought + SVI

Constant 8.417*** 8.525*** 6.786*** 6.919*** 7.223*** 7.234***
(0.071) (0.076) (0.079) (0.086) (0.411) (0.423)

Climate Hazard −0.426*** −0.468*** −0.043 −0.197* 0.383 0.353

(0.064) (0.065) (0.078) (0.078) (0.268) (0.268)
SoVI −0.226*** 0.496*** −0.109

(0.042) (0.084) (0.232)

Num.Obs. 21 094 21 094 10 062 10 062 1489 1489

AIC 102 222.0 102 074.9 54 701.9 54 515.9 8029.0 8027.0

BIC 102 245.8 102 122.6 54 723.6 54 559.2 8044.9 8058.8

Log.Lik. −51 107.987 −51 031.452 −27 347.965 −27 251.952 −4011.498 −4007.500

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.9: Multivariable Fractional Polynomial model summaries across hazards: unex-
posed populations

Null (Storm) Storm + SVI Null (Heat) Heat + SVI Null (Drought) Drought + SVI

Constant 8.494*** 8.636*** 7.128*** 7.383*** 7.547*** 7.557***
(0.019) (0.024) (0.047) (0.056) (0.085) (0.105)

Climate Hazard −0.052** −0.114*** −0.891*** −0.862*** 0.263* 0.254*
(0.020) (0.021) (0.047) (0.047) (0.118) (0.118)

SoVI −0.278*** −0.331*** 0.162

(0.035) (0.067) (0.127)

Num.Obs. 43 414 43 414 11 590 11 590 4213 4213

AIC 225 526.3 225 265.1 59 556.5 59 451.3 23 129.3 23 108.4

BIC 225 552.4 225 317.2 59 578.6 59 495.4 23 148.3 23 146.5

Log.Lik. −112 760.169 −112 626.571 −29 775.271 −29 719.633 −11 561.650 −11 548.189

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.10: Multivariable Fractional Polynomial model summaries across hazards: ex-
posed populations

Null (Wildfire) Wildfire + SVI Null (Flood) Flood + SVI Null (Climate) Climate + SVI

Constant 8.511*** 8.586*** 7.525*** 7.665*** 8.913*** 8.980***
(0.013) (0.017) (0.008) (0.010) (0.011) (0.013)

Climate Hazard 0.399*** 0.399*** 0.148*** 0.134*** −0.255*** −0.259***
(0.013) (0.013) (0.010) (0.010) (0.012) (0.012)

SoVI −0.258*** 0.266*** 0.254***
(0.025) (0.015) (0.015)

Num.Obs. 82 684 82 684 267 209 267 209 203 955 203 955

AIC 428 290.1 427 849.2 1 413 011.6 1 410 143.3 1 032 489.3 1 030 822.3

BIC 428 318.1 427 905.2 1 413 043.1 1 410 206.3 1 032 520.0 1 030 883.6

Log.Lik. −214 142.062 −213 918.622 −706 502.812 −705 065.667 −516 241.645 −515 405.135

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 2.11: Multivariable Fractional Polynomial model summaries across hazards: unex-
posed populations

Null (Wildfire) Wildfire + SVI Null (Flood) Flood + SVI Null (Climate) Climate + SVI

Constant 8.052*** 8.480*** 7.523*** 7.596*** 9.027*** 9.189***
(0.046) (0.048) (0.022) (0.025) (0.013) (0.014)

Climate Hazard −0.325*** −0.236*** 0.400*** 0.443*** −0.327*** −0.372***
(0.042) (0.042) (0.015) (0.015) (0.012) (0.012)

SoVI 0.153*** 0.089*** −0.117***
(0.037) (0.026) (0.017)

Num.Obs. 37 488 37 488 86 702 86 702 173 759 173 759

AIC 196 581.4 195 688.2 461 370.3 460 915.7 903 260.7 902 343.5

BIC 196 607.0 195 739.4 461 398.4 460 971.9 903 290.8 902 403.9

Log.Lik. −98 287.678 −97 838.101 −230 682.128 −230 451.860 −451 627.325 −451 165.743

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.12: MFP models proportion of explained deviance: exposed

Null (Storm) 0.00212
Storm + SVI 0.00934
Null (Heat) 3e-05
Heat + SVI 0.01893
Null (Drought) 0.00137
Drought + SVI 0.00672
Null (Wildfire) 0.01048
Wildfire + SVI 0.01581
Null (Flood) 8e-04
Flood + SVI 0.01149
Null (Climate) 0.0021
Climate + SVI 0.01025

Table 2.13: MFP models proportion of explained deviance: unexposed

Null (Storm) 0.00016
Storm + SVI 0.00629
Null (Heat) 0.03023
Heat + SVI 0.0395
Null (Drought) 0.00118
Drought + SVI 0.00754
Null (Wildfire) 0.0016
Wildfire + SVI 0.02527
Null (Flood) 0.00816
Flood + SVI 0.01341
Null (Climate) 0.0044
Climate + SVI 0.00967
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Figure 2.10: Multivariable Fractional Polynomial (MFP) models of disaster Loss and
SoVI between high and low hazard Census Tracts. Z-scores for SoVI are on the x-axis
and relative disaster loss is on the y-axis.
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Table 2.14: Two Way Fixed Effects model summaries across hazards.
Null (Storm) Storm + SVI Null (Heat) Heat + SVI Null (Drought) Drought + SVI

Constant 8.660*** 8.545*** 7.255*** 7.174*** 7.454*** 7.414***
(0.018) (0.018) (0.031) (0.031) (0.077) (0.077)

Climate Hazard −0.932*** −0.867*** −1.072*** −1.000*** 0.438** 0.403**
(0.024) (0.025) (0.043) (0.044) (0.136) (0.143)

Age Dependency 3.661 −2.195 −4.783

(2.631) (4.705) (13.185)
Crowded Housing −0.301*** −0.391*** 0.382***

(0.017) (0.034) (0.077)
Disability −0.128*** −0.198*** 0.143*

(0.016) (0.030) (0.069)
Group Quarters 0.138*** 0.289*** 0.053

(0.016) (0.029) (0.061)
Limited English −0.117*** 0.027 0.275**

(0.021) (0.041) (0.101)
Minority −0.592*** −0.501*** 0.259**

(0.023) (0.049) (0.092)
Mobile Home −0.185*** −0.078** 0.016

(0.014) (0.026) (0.058)
Multi-Unit Housing −0.081*** −0.113*** −0.115+

(0.016) (0.029) (0.069)
No High School 0.430*** 0.477*** −0.630***

(0.024) (0.048) (0.106)
No Vehicle 0.008 −0.196*** −0.101

(0.018) (0.034) (0.068)
Per Capita Income −0.260*** −0.410*** −0.275***

(0.018) (0.034) (0.070)
Population Density −0.235*** −0.178*** −0.235***

(0.015) (0.026) (0.068)
Poverty 0.072** 0.125** 0.042

(0.022) (0.038) (0.082)
Renter 0.126*** 0.101* 0.139

(0.023) (0.047) (0.088)
Singe Parent −0.020 −0.269*** −0.290***

(0.017) (0.032) (0.072)
Unemployed −0.188*** −0.219*** −0.008

(0.016) (0.030) (0.062)
Uninsured 0.144*** 0.325*** 0.170**

(0.016) (0.029) (0.064)

Num.Obs. 64 508 64 508 21 652 21 652 5702 5702

AIC 327 063.9 323 585.2 114 421.1 112 178.4 31 157.4 31 003.5

BIC 327 109.3 323 803.0 114 461.0 112 370.0 31 190.6 31 163.1

Log.Lik. −163 526.966 −161 768.606 −57 205.557 −56 065.202 −15 573.683 −15 477.769

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.15: Two Way Fixed Effects model summaries across hazards.
Null (Wildfire) Wildfire + SVI Null (Flood) Flood + SVI Null (Climate) Climate + SVI

Constant 8.510*** 8.451*** 7.508*** 7.431*** 8.983*** 8.960***
(0.012) (0.011) (0.007) (0.007) (0.006) (0.006)

Climate Hazard 0.408*** 0.259*** 0.303*** 0.173*** −0.462*** −0.492***
(0.015) (0.015) (0.007) (0.008) (0.008) (0.008)

Age Dependency −10.563*** 0.109 −1.747+
(1.744) (1.143) (1.028)

Crowded Housing −0.153*** −0.031*** −0.222***
(0.013) (0.008) (0.007)

Disability −0.048*** 0.035*** −0.058***
(0.012) (0.008) (0.007)

Group Quarters 0.368*** 0.129*** 0.122***
(0.012) (0.007) (0.006)

Limited English −0.131*** −0.113*** −0.149***
(0.015) (0.009) (0.008)

Minority −0.069*** −0.165*** −0.280***
(0.019) (0.011) (0.010)

Mobile Home −0.198*** 0.062*** −0.090***
(0.012) (0.007) (0.006)

Multi-Unit Housing 0.053*** −0.034*** −0.007

(0.012) (0.007) (0.007)
No High School 0.145*** 0.023* 0.327***

(0.018) (0.011) (0.009)
No Vehicle −0.137*** 0.025** −0.014*

(0.013) (0.008) (0.007)
Per Capita Income −0.491*** −0.270*** −0.233***

(0.014) (0.008) (0.007)
Population Density −0.461*** −0.197*** −0.318***

(0.011) (0.007) (0.006)
Poverty 0.081*** 0.126*** −0.008

(0.016) (0.010) (0.009)
Renter 0.068*** −0.007 0.161***

(0.018) (0.011) (0.010)
Singe Parent −0.201*** 0.011 0.000

(0.013) (0.008) (0.007)
Unemployed −0.336*** −0.120*** −0.198***

(0.012) (0.007) (0.006)
Uninsured 0.261*** 0.172*** 0.083***

(0.012) (0.007) (0.007)

Num.Obs. 120 172 120 172 353 911 353 911 377 714 377 714

AIC 624 896.5 614 945.2 1 874 428.9 1 864 497.0 1 936 243.0 1 920 788.0

BIC 624 945.0 615 178.0 1 874 482.8 1 864 755.6 1 936 297.2 1 921 048.2

Log.Lik. −312 443.251 −307 448.621 −937 209.433 −932 224.489 −968 116.513 −960 370.016

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
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Table 2.16: Two Way Fixed Effect models proportion of explained deviance.

Null (Storm) 0.0309
Storm + SVI 0.08232
Null (Heat) 0.04078
Heat + SVI 0.13668
Null (Drought) 0.00408
Drought + SVI 0.03703
Null (Wildfire) 0.00975
Wildfire + SVI 0.08874
Null (Flood) 0.0078
Flood + SVI 0.03536
Null (Climate) 0.01273
Climate + SVI 0.0524
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CHAPTER 2. VALIDATING SOCIAL VULNERABILITY

Figure 2.11: Two-Way Fixed Effect models of disaster loss and climate hazard. Z-scores
for climate hazard are on the x-axis and the probability of experiencing disaster loss is
on the y-axis.

92



Chapter 3

Mapping Climate Risk Inequalities

Environmental hazards are unequally distributed along geographic, demographic, and

socioeconomic lines. This study leverages differences among distinct metric formulations

and types to examine diverse representations of inequality for distinct climate hazards.

We study the vertical, horizontal, and spatial dimensions of inequality. Vertical inequal-

ities manifest across either space or population, horizontal inequalities are those between

population groups, and spatial inequalities assess the similarity of nearby values. Each

climate hazard has varying degrees of vertical inequality when looking among states and

at the national level. Horizontal inequalities are present between high and low social

vulnerability groups, but it is not necessarily the case that lower social vulnerability

groups lived in more hazardous places. Hazards tend to be highly spatially unequal,

which is in accordance with the underlying physical processes producing hazard geogra-

phies. This study suggests that–since inequality varies greatly across hazards, places, and

metrics–researchers should carefully select inequality metrics specific not only to the re-

search question but also based on the identification of theoretical processes for inequality

formation and policy-relevant implications.
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Introduction

Environmental hazards, such as pollution, are unequally distributed along geographic,

demographic, and socioeconomic lines. Environmental hazards that are climate-sensitive

pose danger to not only human well-being but also property. It is therefore crucial to

understand how, and for whom, inequalities manifest across the distributions of climate

hazards. There are typically two ways to measure inequalities, vertically and horizon-

tally. Vertical metrics assess variation for the variable of interest, in this case a climate

hazard (e.g. wildfire), and horizontal metrics measure variation among population groups

(e.g. race/ethnicity). A spatial approach to representing the ‘where’ of inequality has also

garnered attention as a way to understand spatial processes influencing a distribution.

The vulnerability framework for hazard inequality analysis is often used to accurately

represent factors contributing to climate risk. Although studies have emphasized the im-

portance of measuring both aspects of climate risk (hazard and vulnerability) in different

ways (vertical, horizontal, and spatial), there exist several issues with prior approaches,

including a lack of attention toward organizational processes influencing hazard siting

and mitigation (Weinberg, 1998); too narrow a set of environmental inequality outcomes

(Downey, 2005); contradictory results depending on the choice of areal unit (Fielding &

Burningham, 2005); conflating inequality with injustice as well as proximity with impacts

(Walker, Mitchell, Fairburn, & Smith, 2005); biased statistical modeling (Hajat, Hsia,

& O’Neill, 2015); and an aspatial conceptualization of inequality formation (Galster &

Sharkey, 2017).

Studies often present inequalities from the hazard perspective, e.g., “high exposure areas

are 50% more likely to have vulnerable residents,” which doesn’t necessarily represent

the presence of inequalities across the whole population group or large-area geographies
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since vulnerable individuals may also be less likely to live in high exposure areas. Simi-

larly, inequalities are communicated through the geographic perspective, wherein stud-

ies make claims such as… ‘2/3 of states see 30% higher hazard exposure for vulnerable

populations’, which could significantly change with any modification to the areal units

(Mitchell & Walker, 2007). We propose a multi-hazard and multi-dimensional analysis

of climate hazard inequalities for extreme precipitation, extreme heat, drought, wildfire,

and flooding. Our first task, risk mapping, describes the spatial distribution of risk as the

bivariate association among hazards and social vulnerability. This exploratory step helps

to better understand the spatial codistribution of risk terms. Next we estimate several

vertical inequality metrics and then break risk up by population to measure horizon-

tal inequalities between high and low vulnerability groups. Then we assess inequalities

across space through a spatially dependent vertical inequality metric and by looking at

patterns and intensity of high risk spatial clusters. We contribute to a growing literature

on climate risk inequalities by asking the following research questions:

Research questions

1. How unequally distributed are climate hazards: vertically, horizontally, and spa-

tially?

2. Which population groups and places experience unequal climate hazard burdens?

3. Do different representations of climate hazard inequalities lead to varying environ-

mental justice interpretations?

Although many studies have addressed climate hazard inequalities, there has been no

published research to date that provides a succinct yet representative analysis across

different inequality metrics, climate hazards, and social vulnerability indicators for the

conterminous United States. Our overarching question is whether the burden of climate
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hazard falls on vulnerable communities, which we define using the social vulnerability

framework. We expect hazards to be unequally distributed across all inequality met-

rics and disproportionately high in vulnerable communities. Knowing the distributions

of these hazards is helpful in contexts where risk should be spread and resources are

limited, such as insurance underwriting and public infrastructure planning. A better

understanding of climate hazard inequalities will help target resources and attention to-

wards groups and places requiring greater assistance towards climate adaptation and

mitigating disaster loss.

Literature Review

The study of unequal resource distributions represents a long history in the social and

environmental sciences. Inequality is generally understood as the unequal distribution

of some element, climate hazards in this case, across place and population (Allison,

1978). Theories of inequality tend to focus on what inequality is, how we measure

it, and how it forms. Some applied and empirical studies address questions of justice,

equity, or a related topic, while others inform how inequality affects a phenomenon under

examination. Income inequality has received perhaps the most attention in this regard

(Kuznets, 1955; Piketty & Saez, 2003).

A primary reason so much interest has been directed towards income inequality is to

understand the efficacy of the development process. As an economy develops, typically

measured by national GDP, income inequality was hypothesized to initially increase to a

peak and then decrease; this inverted U-shape is known as the Kuznets curve (Kuznets,

1955). This hypothesized pattern has not borne out in the US or several other high-

income countries. In the US a historical pattern that had followed the Kuznets curve
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gave way to increasing income inequality in the late twentieth and early twenty-first

century (Morris, Bernhardt, & Handcock, 1994; Morris & Western, 1999; Rey & Janikas,

2005). If we agree on a just development process and therefore a minimum increase in

wellbeing for all, inequality research into who and how many get marginalized and left

out provides pivotal information.

There are two common types of inequality measurement, vertical and horizontal, re-

ferred to as the relational orientation (Handcock & Morris, 1999; Jayaraj & Subrama-

nian, 2006). Vertical metrics include the Gini coefficient and the Theil index. Horizontal

modes of comparison typically look at the distribution for a variable of interest across

different groups of a population characteristic such as poverty, race/ethnicity, or other

demographic variables of public concern. Some technical considerations with taking these

measures include spatiotemporal scale, population weights, and distributional sensitivity.

These problems are most relevant for comparing measures of inequality across units, but

could even be considered when assessing inequality within a unit. Distributional sensi-

tivity refers to how an inequality metric responds to changes at different segments of the

distribution. Some metrics are more sensitive to changes in the middle of a distribution

whereas others may respond more strongly to changes in the tails of a distribution.

Spatiotemporal scale concerns the ecological fallacy–incorrect inferences due to aggrega-

tion (Ash & Fetter, 2004; Piantadosi et al., 1988)–and stationarity bias–assuming that

relationships are stable over space and time [Cazelles & Hales (2006); Kwan (2021). Pop-

ulation weights influence the intensity of inequality and the robustness of the inequality

measure depending on the unit of analysis (Gluschenko, 2018). A simple example exists

for equal area raster cells and equal population polygons, which have unequal population

and area, respectively. An inequality analysis would use equal area units if the research

addresses an absolute right to a certain level of some resource with any deviation too
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far from that level considered unacceptable. However, equal population units would be

used if the researcher were concerned with the total impact of inequality and whether

places with unacceptable levels of the resource also contained a disproportionately large

number of people [Reardon & O’Sullivan (2004).

Beyond income, environmental hazards are another variable of distributional concern that

have received attention from researchers to better understand environmental inequalities.

Air, soil, and water, pollution comprise the central hazards in this effort (Bell & Ebisu,

2012; Bullard, 2005; Mitchell & Dorling, 2003). Akin to income inequality research, the

literature of environmental inequalities raises fundamental questions about development:

for whom and at what cost? The modern environmental justice movement stems from

this endeavor and has been both established as a central tenant of environmental hazards

research and governmental responsibility for the people. Importantly, environmental

inequalities are usually understood as both caused by and ameliorated by people, similar

to income.

Natural hazard inequalities have not received as much attention as anthropogenic ‘en-

vironmental hazards’ in both research and practice. To some extent this history makes

sense given that natural hazard landscapes are largely fixed and out of our control,

disaster mitigation notwithstanding. Even when humans bear responsibility for a ‘nat-

ural disaster’, e.g., through the failure of critical infrastructure, it has not always been

considered an issue of environmental justice. Events in recent decades contradict these

assumptions, some notable examples including Hurricane Katrina and wildfires in Santa

Rosa.

Insofar as there is a tendency to consider natural disasters separate from human culpa-

bility, climate change demands a rethinking of hazard inequalities. Not only will climate

hazards change over the next century (more than they already have), but individuals,
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organizations, and governments will adapt accordingly. Access to an adaptation process

for a changing hazard landscape that is conditional on privilege will undoubtedly dis-

enfranchise more vulnerable populations. As with environmental hazards, marginalized

communities on the front lines of climate change will be relegated to ‘ecological sacri-

fice zones’, a term from the environmental justice literature describing communities with

high hazard levels and limited resources, all but forgotten by policymakers and the public

(Bullard, 2011).

Understanding physical contexts in which climate hazards occur, such as low elevation

coastal towns inundated by rising sea levels, is crucial for hazard mitigation. However,

losses related to climate hazards, typically resulting from a disaster, do not only vary as

a function of the hazard distribution. Losses vary by place, whereby adjacent communi-

ties with nearly identical hazard exposure experience markedly different loss outcomes.

This variation may be due to differences in built environment, institutions, and social

vulnerability. Although the former two categories are tremendously important in miti-

gating disaster loss, it is the last category, social vulnerability, that we focus on for this

study. Since social vulnerability increases the risk of a climate hazard creating disaster

loss, physical context is not sufficient for building a localized or national-level risk pro-

file as it only captures part of the climate risk equation. It is also the case that social

vulnerability is more predictive of the support provided against hazard exposure from

the built environment and institutions than the reciprocal (Anderson, 2007; Bloomberg,

2020; Bullard, 2001; Lichter, Parisi, Grice, & Taquino, 2007; O’Neill & O’Neill, 2012;

Troesken, 2002). Therefore, identifying where and who is at greatest risk from a combi-

nation of high hazard and vulnerability can inform efforts towards strengthening aspects

of these other categories.

We typically describe vulnerability as the propensity of social and ecological systems to
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suffer harm from exposure to external stresses and shocks, thus denoting the antonym of

resilience. Social vulnerability has been conceptualized and operationalized with myriad

constructions of social, economic, political, and technological characteristics that com-

prise the susceptibility of a community to climate hazard-related disaster loss. Examples

include general indices by Cutter et al. (2003) and the CDC (Flanagan et al., 2011), as

well as hazard- and place-specific indices, such as flooding in Germany (Fekete, 2009).

Higher social vulnerability typically increases the risk posed by climate hazards. Since

the spatial distribution of climate hazard exposure is not uniform, higher social vulner-

ability does not always produce greater climate risk (disaster probability and loss from

the interaction of social vulnerability and climate hazards). It is therefore necessary to

measure both dimensions of climate risk.

Thus, we could consider social vulnerability as the degree to which communities are

prepared for, cope with, and recover from climate hazards (Cutter et al., 2003), yet

other researchers propose a simpler definition (Turner et al., 2003; White, 1974) as the…

‘propensity for loss of lives, livelihood or property when exposed to a hazard’ (Tellman

et al., 2020). Conceptualizing the social vulnerability of a community in this way has a

wide-ranging and well-established history as an accessible and representative measure-

ment scheme despite relying on indirect and, sometimes, contested variables. Population

characteristics, such as average income, racial/ethnic background, and housing quality,

serve as proxy measurements for ways that individuals and communities mitigate disaster

loss; the accessibility, efficacy, and robustness of institutional support; and perhaps even

the quality and size of social networks. Climate risk mapping combines the geographies

of social vulnerability and climate hazards to better understand where, who, and what

is most at risk.

Disaster mitigation is a resource scarce endeavor that benefits from targeting projects
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to specific places and groups of people, which we represent here through social vulner-

ability indicators. Places with the highest climate risk require the greatest attention,

and well-designed, targeted projects are more effective in ensuring community adoption

and efficacy. We find this in cases ranging from stormwater (Dudula & Randhir, 2016),

small private forests (Mostegl, Pröbstl-Haider, Jandl, & Haider, 2019), and the urban

heat island (Hertel & Schlink, 2019). The relationship between social vulnerability and

disaster mitigation varies by climate hazard. Targeting projects towards places with high

climate risk will rely on knowing the climate hazards facing communities, which in turn

determines the social vulnerability factors requiring the most resources.

Improvements in data and methods for estimating climate hazards indicate that socially

vulnerable communities already bear a bigger share of previously unknown risk. New

estimates suggest the share of flood exposure for minority residents in over two-thirds

of states is higher than the state average. Neighborhoods with predominantly African

American residents in Chicago and Fort Lauderdale have flood exposure that is 30 and

36 percentage points higher than previous estimates (Flavelle et al., 2020). Around 87

percent of paid flood claims between 2007 and 2017 in Chicago occurred in predominantly

minority communities (Briscoe, 2020). High flood risk is a product of not only hazard ex-

posure but also floodplain infrastructure. Since more than 85 percent of levees are funded,

owned, and maintained primarily by local authorities or entities (“Levees,” 2017), higher

risk typically falls in places with lower tax bases because they lack the capital to construct

hazard management infrastructure (@  bagstadTaxesSubsidiesInsurance2007; Bloomberg,

2020). Communities with a lower tax base oftentimes consequently have less political

power to attract state, federal, and private investment in large infrastructure projects

(Crain & Oakley, 1995; Dwarka & Feitelson, 2013; O’Neill, 2018). Even infrastructure

in places with limited political power, a low tax base, and socioeconomic marginalization
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may fall into disrepair or lag behind what is presently needed thus leading to disastrous

consequences such as when the levees broke during Hurricane Katrina in New Orleans

(Van Heerden, 2007).

Our climate hazard future is uncertain. This stems from how much mitigation we achieve,

how (and where) society develops, and the limits to our climate models. Hurricane

frequency may not increase (Walsh et al., 2016), and even if it does, we don’t know

exactly where in the Atlantic and Gulf of Mexico region will experience the greatest

increases (Marsooli, Lin, Emanuel, & Feng, 2019). Droughts may persistently affect even

more of North America (Jeong, Sushama, & Naveed Khaliq, 2014) yet not be as much

of a concern for potable water resources due to increased precipitation, as long as proper

catchment infrastructure is in place (Wanders & Wada, 2015). Increasing flood losses

may merely be driven by asset expansion in exposed areas (Kundzewicz et al., 2014)

as flood risk projections are highly variable from region to region and model to model

(Hirabayashi et al., 2013a). The present rate of climate change will modify wildfire

regimes. How they modify those regimes is highly uncertain since the current rate of

climate change is without proxy in the geologic record (Marlon et al., 2009). Despite this

uncertainty, we do know that high climate risk has the potential for severe losses and

that understanding the distribution of this risk can help to inform loss mitigation.

Data and Methods

Our approach involves measuring the distributional inequalities of climate hazards na-

tionally and at the state level. We match five climate hazards (extreme precipitation,

extreme heat, drought, wildfire, and flooding) and a set of over twenty social vulnera-

bility indicators, as well as the Social Vulnerability Index (SoVI), at the Census Tract
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level. First we describe bivariate distributions of climate hazards and SoVI. Then we

measure vertical inequality, that which is across the distribution of each climate haz-

ard. The next measurement is of horizontal inequality, which we assess through a series

of metrics, including the proportion of Census Tracts with both high climate hazard

and social vulnerability index values, inequality at the median and 90th percentile of

the group-wise hazard distributions, the disparity from average climate hazard between

groups, and the probability of each group living in a high hazard place. Lastly, we look at

spatial inequalities using the spatial Gini coefficient and Moran’s I, a measure of spatial

clustering.

Climate hazards

To estimate climate hazard we first determine the relevant spatial unit of analysis and

integrate many datasets to comparable spatial and temporal scales. Climate model out-

put (precipitation and temperature) come from tens of internationally accepted global

climate models which have been validated as part of the Coupled Model Intercomparison

Project Phase 5 (Taylor et al., 2012). Researchers have downscaled these data to higher

resolution across the US by utilizing local information (e.g. weather patterns, hydrody-

namics, etc.) and leveraging the empirical linkages between coarse resolution and fine

resolution climate. We use the downscaled data products to produce high spatiotem-

poral resolution estimates of general climate risk for a given raster cell. Other hazards

(drought, wildfire, and flooding) use these climate averages as input data alongside myr-

iad other data sources (terrain, vegetation, soil type, etc.) in more complex modeling

frameworks to estimate water scarcity through supply and demand relationships, fire

weather and burn probabilities, and flood depths and return intervals, respectively. In

Chapter 2, Figure ?? displays the climate hazards we estimate and the average climate
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hazard aggregated at the tract level. Table 2.1 provides summary statistics. Appendix A

@ref(#climate-hazard-estimation) offers a detailed explanation of how we estimate each

climate hazard.

Social vulnerability

Social vulnerability is generally operationalized as an index made up of dozens of

census variables across the categories of socioeconomic status, household composition,

race/ethnicity/language, and housing/transportation. There are two common ways

to operationalize social vulnerability (Yoon, 2012). The deductive approach selects

variables based on prior knowledge of their relevance (e.g. Flanagan et al. (2011)). The

inductive approach selects variables based on statistical relationships (e.g. SoVI from

Cutter et al. (2003)). Although deductive approaches are commonly used and simpler,

this study only utilizes an inductive method to construct SoVI.

We measure social vulnerability with data from the US Decennial Census and American

Community Survey (ACS). These data are available at the Census Tract level, which is

typically around 8,000 people (there are approximately 73,057 Census Tracts in the US).

We rely on the Cutter et al. (2003) implementation to construct SoVI. In Chapter 2,

Table 2.2 contains summary statistics and Figure ?? maps SoVI and a subset of social

factors across the US.

Bivariate associations of climate risk

We observe the tract level bivariate association between the SoVI and five climate hazards

as well as the aggregate climate hazard. In the legend in Figure 3.1, the climate hazard

categories increase vertically upward whereas the social vulnerability factors increase
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laterally rightward. Climate risk on this scale is divided into nine categories by each of

three bins from social vulnerability and the climate hazards.

Vertical Inequalities

1. Gini Coefficient

The most commonly used metric for measuring vertical inequality is the Gini Coeffi-

cient. It has been applied primarily for income and related variables (Cowell, 2011;

Dorfman, 1979), but can be leveraged to measure inequality in any variable of interest

such as galaxy morphology (Abraham, Bergh, & Nair, 2003), species abundance (Schef-

fer, Bavel, Leemput, & Nes, 2017), and public facilities access (Cromley, 2019). The Gini

Coefficient serves as an efficient and intuitive indicator for inequality, adheres to neces-

sary characteristics for an inequality metric such as symmetry, mean and population size

independence, and Pigou Dalton Transfer Sensitivity (Haughton & Khandker, 2009), but

it is less sensitive to changes at the tails of the distribution (Atkinson, 1970; Duro, 2012;

Sitthiyot & Holasut, 2020). We estimate the Gini Coefficient with the following formula:

Gini = 1 + 1
n
− [ 2

MEANHAZ∗n2 ]
∑n

i=1[n− i+ 1) ∗HAZARDi]

Where i is the geographic unit (Census Tract), MEANHAZ is the average hazard across

all units, HAZARD is the hazard estimate for unit i, and n is the number of Tracts. Gini

values range from 0 to 1 with higher values representing more inequality.

2. Theil Index

Alternative metrics to estimate vertical inequality address the previously mentioned issue

with the Gini Index, limited sensitivity to changes at the tails of the distribution. They
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fall under the Generalized Entropy (GE) family of inequality metrics and allow for varying

sensitivity at different segments of the distribution depending on the formulation. The

Theil index is most sensitive to changes in the lower range of the distribution, which we

calculate as:

Theil =
∑n

i=1(
wi

N
)( HAZARDi

MEANHAZ
)log( HAZARDi

MEANHAZ
)

where w is the population weight for unit i. Theil values range from 0 to infinity with

higher values representing more inequality.

3. Generalized Entropy

An alternative GE metric that is sensitive to changes in the upper range of the distribution

is:

GE = 1
2
∗ [(

∑n
i=1(

wi

N
)( HAZARDi

MEANHAZ
)2)− 1)]

GE values range from 0 to infinity with higher values representing more inequality.

Horizontal Inequalities

Another way to measure inequality is by summarizing key aspects of the distribution

among different groups of a population. Often these groups are based on demographic

characteristics, such as poverty, minority status, home ownership, etc. We use the pre-

viously described set of social vulnerability indicators to partition climate hazard distri-

butions, thereby producing two groups for each indicator, e.g. above/below the poverty

line, non-Hispanic white/non-white, renter/owner, etc. Many of these characteristics are

outlined as explicit inequality concerns in US Federal and state government policy and

law (Clinton, 1994).
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The metric on which we base our horizontal inequality measurements is the hazard for

each population group, which we calculate at the median as:

HAZARDj =
∑n

i=1 HAZARDi∗POPULATIONi∗Xij∑n
i=1 POPULATIONi∗Xij

Where POPULATION is the population in Census Tract i and X is the proportion of

population group j. With this equation we can derive alternative statistics such as hazard

at the 90th percentile of the distribution for each population group, which we find by

looking at the distribution of the numerator in equation (??). Other inequality metrics we

calculate include inequality at the 90th percentile of the group-wise hazard distributions,

the proportion of Census Tracts with high climate hazard and high social vulnerability,

the disparity from average climate hazard between groups, and the probability of each

group living in a high hazard place.

Hazard at the median. Median hazard experienced by each group. This provides a view

of the average hazard experienced between groups. Values range from 0 to the maximum

of the hazard statistic.

Hazard at the 90th percentile. Hazard at the 90th percentile for each group. Looking

at inequalities across different segments of the group-wise hazard distribution informs

whether there is variation in the hazard ratio between groups at lower and higher hazard

levels. Values range from 0 to the maximum of the hazard statistic.

Proportions of high climate hazard and high social vulnerability. We order Census Tracts

into terciles (high, medium, low) on SoVI and climate risk. Then we calculate the

proportion of Census Tracts per administrative unit, either state or county, with high

social vulnerability and high climate hazard. This statistic can be thought of as the

spatial intensity of high climate risk for a geographic unit. Values range from 0 to 1.

Disparities in hazard. Average difference in climate hazard relative to the mean. We con-
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sider this as a measure of the group-specific skewness for the climate hazard distribution.

Values range from 0 to the maximum of the hazard statistic.

Probabilities of high hazard. The number of individuals experiencing high hazard divided

by the total population to estimate the probability of each group experiencing high

hazard. This statistic can be thought of as the spatial frequency of high climate risk for

an aggregated unit. Values range from 0 to 1.

The values we report in our results represent ratios of the hazard metric between groups.

A value greater than 1 indicates higher hazard burden for the socially vulnerable whereas

below 1 is lower.

Spatial inequality

Disaster mitigation and climate adaptation targeting, at least from a federal or state

perspective, becomes even more efficient when we identify clusters of high risk areas,

i.e., hotspots. Spatial inequalities are also important for understanding spatial processes

producing and patterns resulting from opportunity structures and inequality formation

across space. One way to assess clustering of values for a continuous spatial field is with

Moran’s I statistic, a measure of spatial autocorrelation. The global Moran statistic

is a single value that measures the degree of spatial autocorrelation across the whole

dataset. It represents how similar or dissimilar values are as a function of space for one

variable, typically ranging from -1 to 1, the closer the statistic is to 1, the greater the

degree of positive spatial autocorrelation; while the closer it is to -1 indicates stronger

negative spatial autocorrelation. -1 is perfect dispersion, +1 is perfect clustering, and

0 is complete spatial randomness. It indicates the degree of linear spatial association

between the variable of interest x and spatially weighted averages vector of neighboring

values Wx, where W is the summed spatial weight matrix wij if it is row-standardized
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and which formalizes the adjacency structure of the dataset (Moran, 1948). Moran’s I

statistic is computed as:

I = N
W

∑N
i=1

∑N
j=1 wij(xi−x̄)(xj−x̄)∑

i=1(xi−x̄)2

With N as the total number of spatial units, all for reference unit i and comparison

units j. A bivariate Moran’s I is akin to the univariate Moran’s I statistic, except

that rather than determining the level of spatial autocorrelation within one variable

(spatial clustering for values of one variable), the bivariate statistic determines spatial

autocorrelation between two variables (spatial clustering for values across two variables).

We use this bivariate measure to estimate clustering of values for the SoVI and climate

hazard. Like the univariate Moran’s I, a bivariate Moran’s I usually ranges between -1

and 1. An estimate of 0 implies no spatial autocorrelation. It provides an indication of

the degree of linear association between an observation variable in one region xi and a

different variable in nearby regions yj according to the spatial weight matrix wij which

formalizes the neighborhood or contiguity structure of the dataset (Moran, 1948). The

bivariate Moran’s I statistic is computed as:

Ibivariate = N
W

∑N
i=1

∑N
j=1 xixjwij∑N
i=1 x

2
i

where xi is the variable that we are testing and is measured as deviation from the mean,

i.e. xi = Xi–X̄. The location variable for the area’s proximity is given by wij which is

the element from the corresponding spatial weight matrix. A bivariate global Moran’s

I statistic only provides information about the average degree of spatial autocorrelation

between two variables across the full sample. To examine bivariate localized spatial

autocorrelation, we estimate the local Moran’s I, which provides similar information to

the global statistic, except that it is specific to an area surrounding a spatial unit i:

IbivariateLocali =
∑

j xixjwij∑
i x

2
i
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The local Moran’s I represents climate hazard and social vulnerability clusters for each

hazard. We identify high hazard and high social vulnerability (high-high) spatial clusters

of US Census Tracts.

Results

We first describe the spatial distribution of climate risk as represented by the bivariate

association between the social vulnerability index and each climate hazard across the

conterminous USA. Then we present results for our vertical and horizontal inequality

estimates at the national level. To get a better idea of how inequality varies throughout

the US and the relationship among different inequality metrics, we also estimate metrics

at the state level. We report these state level results and look at correlations among

different metrics to explain similarities and differences across different ways of measuring

inequality. Lastly, we present findings at the state and national level on spatial inequality

and clustering. Table 3.1 maps the social indicator variable names to the characteristics

they represent.

Inequality within hazard distributions

Table 3.9 displays inequality metrics for all hazards. Wildfire is the most unequal accord-

ing to the Gini Coefficient while flooding is the least. Drought is also relatively less equal

than other hazards across all metrics. The aggregate climate hazard is usually less un-

equal than flooding, suggesting that hazard burdens are more uniform across space and

the population when considering any-type hazard. The first generalized entropy met-

ric, the Theil index, inversely places wildfire as nearly the most equal alongside storm,

whereas the second entropy metric reconfirms wildfire as the most unequally distributed
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hazard. This likely suggests that a main driver of wildfire inequalities comes from changes

in the middle and upper end of the wildfire distribution since the Theil index is most

sensitive to changes at the bottom. Furthermore, we see that the Theil index is lower

across all hazards than the other GE metric, similarly indicating greater influence from

changes at the upper end of distributions.

Tables present correlations among vertical inequality metrics. The statistics are positive

and high (above .9) except for between Theil and Gini for wildfire. This lower correlation

also signals that there is a great deal of inequality among places with lower wildfire hazard

but that as wildfire hazard increases so does the equality of hazard values.

Among group inequalities

Table ?? displays the most and least unequal groupings per hazard and inequality metric.

We see that hazard differences at the median are highest for those living in mobile homes

(heat, fire, flood, and climate), minorities (drought), and those without vehicles (storm).

Differences at the 90th percentile are highest for the disabled across all hazards except

drought, which is for renters. Average disparities are highest for those without vehicles

aside from those in mobile homes for storm. Similarly, the probability of living in a high

hazard area is also highest for those without vehicles in all but two hazards, drought and

storm.

Inequalities among groups vary by hazard and metric. The least unequal groupings

include those who live in crowded housing for hazard at the median; communities with

limited English, multiunit housing, mobile homes for hazards at the 90th percentile;

mobile homes, no vehicle, group quarters, poverty for average disparities; and those in

poverty, disabled, mobile homes, unemployed for the probability of living in high hazard.

Overall, social indicators comprising the least unequal groupings are more mixed than
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the most unequal.

We also present the highest and lowest hazards and social indicators per state in Table

3.10. We see that drought and fire are the most unequally vertically distributed hazards

at the state level while climate and storm tend to be the least. The most horizontally

unequal hazards vary by state, but fire and flooding are notably unrepresented in the

mixture. At the minimums, fire tends to be one of the least unequally distributed along-

side drought. The grouping for which inequalities are at a greatest include those living

with a disability, in a mobile home, without high school diplomas, minorities, and the

uninsured. The least unequal groupings are for multi-unit housing, group quarters, and

limited English.

Inequality metric correlations by hazard

Another way to understand the relationship among inequality metrics, variables of inter-

est, and population groupings is by observing correlations between estimates. Tables 3.9

provides these correlations. To present a snapshot of these relationships, we found the

social indicators with the highest inequality per hazard and then calculated Spearman’s

Rank Correlations among ratios for hazard at the median and 90th percentile. We find

relatively low and inconsistent correlations among the various metrics aside from the

vertical inequality correlations described earlier. Of particular interest are low correla-

tions between hazard at the median and at the 90th percentile, suggesting that hazard

inequalities are rather variable at different segments of the distributions. We also ob-

serve low and often negative correlations between vertical and horizontal inequalities. It

is therefore not necessarily the case that a state with a highly unequal vertical hazard

distribution portends greater inequality between population groups.
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Spatial Inequalities

Spatial variation is clearly visible when looking across inequality metrics for different

states. An additional way to view these spatial inequalities is through descriptive map-

ping, cluster detection, and spatially-explicit statistical measures. We observe high cli-

mate risk and high social vulnerability patterns across several measurements. The maps

shown in Figures 3.1, 3.9, and 3.14 display distinct regions of high climate risk for each

hazard: east of the Mississippi River and the Pacific Northwest for storm and flood; the

Desert Southwest and Southeast for heat; rural areas west of the Rocky Mountains for

fire and drought; and rural, inland areas west of the Rocky Mountains, coastal tracts in

Gulf states, Appalachia, and central to southern Florida for the aggregated climate risk.

The spatial inequality statistics calculated per hazard across the whole dataset can be

found in Table 3.11. The univariate Global Moran’s I statistics for every hazard are high

(above .7) and all positive. Flood is the least spatially clustered whereas heat and storm

are the most clustered. The bivariate Moran is relatively low (under .01) and positive for

heat and drought. Spatial Gini statistics represent the spatial decomposition of the Gini

index. We see that all of the inequality in the Gini Index comes from non-neighboring

Census Tracts.

Figure 3.14 displays bivariate local indicators of spatial autocorrelation at the 0.05 sig-

nificance level. Tracts that are not significant do not exhibit any meaningful spatial

clustering of similar or dissimilar values. We find distinct high social vulnerability in-

dex and high hazard clusters in the following areas: storm concentrates in the pacific

northwest and from the mid-Atlantic to northeast, heat in the southeast and southwest,

drought in the desert southwest and mountain west, fire in the forested west, flood is

throughout the east and the pacific northwest, and the aggregate climate hazard is in

the Great Basin, Appalachia, and the Gulf of Mexico.
113



CHAPTER 3. CLIMATE HAZARD INEQUALITIES

The disparity measurements calculated for Figures ?? and ?? provide a slightly different

picture of the spatial and social distribution of climate risk. Counties with the largest

disparities exist in nearly every state across the conterminous USA, at least where there

is hazard exposure (e.g. wildfire hazard is very low in the Great Lakes and Northeast,

so many states west of the Mississippi have few risk disparities). Distinct patterns still

exist and generally follow the geography outlined in the previous paragraph.

Discussion

This analysis has compared different ways of measuring inequalities across multiple cli-

mate hazards and social indicators. Our goal was to better understand different aspects

of climate hazard inequalities and whether these hazards are distributed in an unjust

way. We posed the following questions: How unequally distributed are climate hazards:

vertically, horizontally, and spatially? Which population groups and places experience

unequal climate hazard burdens? Do different representations of climate risk inequalities

lead to varying environmental justice interpretations?

We find mixed results regarding the nature of hazard inequalities at a national and

state level among different population groups. Importantly, the presence of one type of

inequality (vertical, horizontal, or spatial) does not necessarily indicate the existence of

other types of inequalities. Similarly, inequalities for one vulnerable group, as designated

by a specific social indicator, provide limited insight into inequalities for the ‘socially

vulnerable’. Climate hazards tend to be less unequally distributed when compared to

Gini index estimates for other variables, which is not part of the present analysis. Only

drought and fire are more unequally distributed than income (0.25) and none are more

unequally distributed than pollution (0.76) (Boyce et al., 2016). It makes sense that
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drought and fire are the most vertically unequal since the spatial distribution of high

hazard is disproportionately greater in the western half of the country whereas high storm,

heat, and flooding hazard are present in nearly every state. Furthermore, wildfire and

drought are functions of fuel and population, respectively, both of which are characterized

by spatially unequal surface characteristics. It seems that vertical inequalities at the

national level are not a particularly concerning feature of climate hazard distributions.

Even so, state-specific analyses present varying insights on a hazard-by-hazard basis.

Many states have hazard inequalities much greater than the national average, examples

include Nevada for storm, California for heat, Oregon for drought, Arizona for fire, and

New York for flooding. Although vertical inequality metrics offer a broad insight into

the distribution of climate hazards, they do not provide any evidence towards issues of

distributive justice.

Horizontal inequality metrics do compare hazard burdens for distinct population groups

and therefore deal in issues of justice if any comparison group is socially vulnerable.

Inequalities between groups are present but not in the same direction for all hazards,

social indicators, and places. Ratios between lower and higher social vulnerability groups

are usually less than 1 for hazard at the median, hazard at the 90th percentile, average

hazard disparities, and high hazard probabilities, indicating that less vulnerable groups

often experience greater hazard (Table 3.9. Even ratios that exceed 1 tend to not be

very extreme. Exceptions include high ratios for minorities and drought as well as mo-

bile homes and fire. Interestingly, nearly all ratios decrease at higher segments of the

distribution, indicating that more vulnerable populations do not usually bear a greater

or increasing share as hazard increases. We see this with decreasing and flat trends in

Figure ??, which shows ratios for a selected subset of social indicators across hazard

distributions. Lower inequalities in certain indicators (multi-unit housing, limited en-
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glish, and group quarters) seem to indicate that urban areas have lower hazard exposure.

Keeping in mind that horizontal inequalities do vary by geographic aggregation, our re-

sults nonetheless suggest that there is not a sweeping environmental justice concern at

the national-level for climate hazards. However, looking at smaller area (county, state,

region, etc) horizontal distributions across different social indicators does appear to be

necessary.

Even though looking at vertical and horizontal inequality metrics independently gives us

a good sense of the inequality patterns, it does not inform how different facets of inequal-

ity relate to one another. Correlations among inequality metrics suggest that inequality

is multi-dimensional for hazards, populations, and places, thereby highly sensitive to the

metrics, input data, and data partitioning (demographic and spatial) selected by a re-

searcher. Negative correlations between our inequality metrics and different segments

across the hazard distribution further indicate that places with low hazard are not nec-

essarily less unequal and in fact may often be more unequal by focusing hazard exposure

in a few small areas with a higher proportion of vulnerable groups.

Hazard distributions across space are also a large source of inequality. We observe near

perfect clustering for climate hazards according to the univariate Moran’s I (although

less clustered for wildfire and flooding) and spatially random patterning between social

vulnerability and climate hazards when referring to the bivariate Moran’s I. The bivari-

ate statistic is an expected result considering the myriad stochastic processes underlying

formation of climate risk landscapes, which include both social and physical determi-

nants. A potential reason why flooding and wildfire are less spatially dependent than

other hazards is that the models for these hazards contain more than just meteorological

parameters, including terrain, land use, and vegetation. The spatial Gini decomposition

adds to a picture of spatially concentrated hazard. Nearby Tracts tend to be more simi-
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lar since all of the inequality stems from non-neighboring Tracts. Moreover, local Moran

statistics show clear regions of clustering among high and low risk tracts. Yet, the ver-

tical and horizontal inequality metrics taken as a whole offer up the perspective that

inequalities are disperse and diverse. The spatial intensity of inequalities and ubiquity

across states, alongside clearly defined regional differences, presents both challenges and

opportunities for disaster mitigation and climate adaptation planning.

Climate hazard inequalities have not inspired the same level of interest as those of in-

come and pollution, two variables which have garnered a great deal of attention by both

inequality researchers and policymakers. A primary reason is that climate hazards are

not fully manageable by humans (they are ‘natural’, to some extent), which implores the

question as to whether people should be afforded safety below a certain level of hazard.

Whereas this is the case for income and pollution–there is broad consensus that extending

below or beyond a certain income or pollution level is unacceptable and means should be

implemented to mitigate such circumstances. One reason the literature suggests there is

this disparity in acceptable levels between climate hazards and variables, such as income

and pollution, is that many people select into higher climate hazard areas to access other

qualities that have recreational and aesthetic value (skiing, sea views, etc.) (Harries,

2008; Plattner, Plapp, & Hebel, 2006). However, people also make similar decisions to

be exposed to more pollution or have lower relative incomes to access amenities of value

(e.g. large, expensive cities) (Millimet & Slottje, 2002).

Despite lacking an objectively agreed upon or legally binding level of acceptable climate

hazard, inequalities in these distributions still elicit concern. There is keen interest in both

literature and policy on whether marginalized communities and the socially vulnerable

bear a disproportionately high climate hazard burden. We see this in studies on how

differences in degrees of warming produce varying levels of hazard inequalities (King &
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Harrington, 2018), the planning implications of climate change on the most vulnerable in

society (Frosch, Pastor, Sadd, & Shonkoff, 2018), the sociology of climate justice (Dunlap

& Brulle, 2015); and hazard-dependent home value appreciation rates, termed climate

gentrification (Keenan, Hill, & Gumber, 2018). Governments and organizations also set

goals and invest in programs for reducing these inequalities and the negative externalities

they produce (Yarmuth, 2021).

Observing inequalities can help inform decisions towards investing in hazard mitigation.

First and foremost, using inequality metrics advises decision making towards reducing

inequalities in places and populations with high hazard and high socially vulnerability–

ecological sacrifice zones (Bullard, 2011). Yet, inequality metrics highlight that high

hazard is not a sufficient premise for disaster mitigation support. If this was always

given to geographies with the highest hazard, potential issues would arise when there

are large differences among the contrasting types of inequalities facing people and places

(Braun, Oßenbrügge, & Schulz, 2018). Not only does this approach potentially lead to

moral hazards by encouraging people to move into higher hazard places, it also advantages

those who would choose to accept higher hazard. To prevent this, investments can be

more equally distributed along two tracks: reducing inequalities and reducing exposure

in the highest hazard places. Inevitably, the former will sometimes occur in relatively

lower hazard places.

Future research should address several items. Exploring hazard inequalities at larger

scales using higher resolution hazard data to illuminate intra- county and city and in-

equalities. Examining how inequalities change over time along with population char-

acteristics, both historically and by projecting out to the future, will provide evidence

regarding differences among groups for selection into and out of hazardous areas. Inves-

tigating the processes underlying spatial inequality formation and opportunity structures
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is an imminently important endeavor, but one that likely necessitates place-based, qual-

itative, legal, and other research approaches extending beyond the methodological scope

of this type of study. A crucially important research topic will be to understand how

society responds to shifting climate hazard from an inequality lens. Extending our anal-

ysis beyond social vulnerability indicators to features of disaster mitigation and climate

adaptation would tease out processes underway that will either ameliorate or exacerbate

existing inequalities.

Conclusion

Our research informs both the overall degree of climate hazard inequality as well as

inequalities between people and places. We compared vertical inequality metrics with

sensitivities to changes in different parts of the hazard distribution, the variation in hori-

zontal inequalities by categorization of the socially vulnerable, how vertical and horizontal

inequality metrics inform and contradict each other at the state and national levels, and

the geographies of spatial inequalities. We find a great deal of variability among inequal-

ity metrics and rankings for states, hazards, and social indicators. Our findings suggest

that choosing appropriate types of inequality metrics (vertical, horizontal, and spatial)

for a particular use case should be emphasized. Identifying different formulations of a

metric also has implications. For example, a vertical inequality metric most sensitive to

changes in the middle of a distribution would miss inequalities manifesting at the tail

ends, producing a false negative for identifying an issue of distributional concern. If the

study were to instead use a metric sensitive to changes in the tails then the recommen-

dation would likely be to mitigate and reduce exposure to extreme hazards for greater

equality.
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Another key takeaway is that horizontal inequalities vary substantially across differ-

ent vulnerability categories. Researchers and practitioners should consider this in their

project design. One way to do this is by looking at social vulnerability indicators of

explicit concern, such as those outlined in environmental justice laws. An alternative

approach would be to select the indicators most determinant of some negative hazard

outcome, such as hazard loss, by looking at and conducting validation studies to this

end. Lastly, it appears that climate hazards are not ubiquitously unequally distributed

across population groups, suggesting less of a need for abatement investments to the

same extent as those for pollution hazards. Instead, climate hazard inequality concerns

may bear out through responses to changing hazard in the form of depopulation, disin-

vestment, and disenfranchisement of climate risky places. Attention should be directed

towards communities at risk of marginalization from the climate adaptation process and

how to provide support for them.
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Table 3.1: Social indicator variable abbreviations and descriptions.
abbreviation social indicator
AGEDEP Age Dependency (pct)
CROWD Crowded Housing (pct)
DISABL Disability (pct)
GROUPQ Group Quarters (pct)
LIMENG Limited English (pct)
MINRTY Minority (pct)
MOBILE Mobile Home (pct)
MUNIT Multi-Unit Housing (pct)
NOHSDP No High School (pct)
NOVEH No Vehicle (pct)
PCI Per Capita Income
POPDENS Population Density
POV Poverty (pct)
RENT Renter (pct)
SNGPNT Singe Parent (pct)
UNEMP Unemployed (pct)
UNINSUR Uninsured (pct)
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Figure 3.1: Bivariate association across climate hazards and the Social Vulnerability
Index (SoVI).
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Figure 3.2: State-level Storm hazard inequalities for the vertical Gini and Theil Indices,
median across the full hazard distribution, and p90 at the 90th percentile of hazard.
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Figure 3.3: State-level Heat hazard inequalities for the vertical Gini and Theil Indices,
median across the full hazard distribution, and p90 at the 90th percentile of hazard.
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Figure 3.4: State-level Drought hazard inequalities for the vertical Gini and Theil Indices,
median across the full hazard distribution, and p90 at the 90th percentile of hazard.
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Figure 3.5: State-level Fire hazard inequalities for the vertical Gini and Theil Indices,
median across the full hazard distribution, and p90 at the 90th percentile of hazard.
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Figure 3.6: State-level Flood hazard inequalities for the vertical Gini and Theil Indices,
median across the full hazard distribution, and p90 at the 90th percentile of hazard.
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Figure 3.7: State-level Climate hazard inequalities for the vertical Gini and Theil Indices,
median across the full hazard distribution, and p90 at the 90th percentile of hazard.
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Figure 3.8: Horizontal inequality ratios by hazard percentile across climate hazards. A
ratio above 1 indicates higher hazard burden for socially vulnerable groupings.
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Figure 3.9: State-level proportions of high climate risk census tracts, defined as tracts in
the top tercile of hazard and social vulnerability.
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Figure 3.10: Hazard disparities by State calculated as the verage difference in climate
hazard relative to the mean for each group We consider this as a measure of the group-
specific skewness for the climate hazard distribution. A ratio above 1 indicates higher
hazard burden for socially vulnerable groupings.
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Figure 3.11: Hazard disparities by County calculated as the verage difference in climate
hazard relative to the mean for each group We consider this as a measure of the group-
specific skewness for the climate hazard distribution. A ratio above 1 indicates higher
hazard burden for socially vulnerable groupings.
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Figure 3.12: High hazard probabilities by State calculated as the number of individuals
experiencing high hazard divided by the total population. This statistic can be thought
of as the spatial frequency of high climate risk for an aggregated unit. A ratio above 1
indicates higher hazard burden for socially vulnerable groupings.
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Figure 3.13: High hazard probabilities by County calculated as the number of individuals
experiencing high hazard divided by the total population. This statistic can be thought
of as the spatial frequency of high climate risk for an aggregated unit. A ratio above 1
indicates higher hazard burden for socially vulnerable groupings.
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Table 3.2: National climate hazard inequality metrics
variable storm heat drought fire flood climate
Gini 0.20 0.24 0.37 0.41 0.15 0.10
Theil 0.08 0.10 0.22 0.10 0.03 0.02
entropy 0.10 0.11 0.25 0.53 0.07 0.02
RENTmedian 0.93 0.93 1.12 0.83 0.92 0.95
POVmedian 0.98 1.04 0.99 0.92 0.96 0.98
UNEMPmedian 0.99 1.01 1.03 0.94 0.98 0.99
NOHSDPmedian 0.92 1.00 1.07 0.88 0.94 0.96
DISABLmedian 1.03 1.03 0.94 1.03 1.02 1.01
SNGPNTmedian 0.98 1.02 1.02 0.94 0.97 0.99
MINRTYmedian 0.84 0.96 1.24 0.79 0.89 0.93
LIMENGmedian 0.81 0.91 1.23 0.67 0.86 0.90
MUNITmedian 0.96 0.91 1.12 0.70 0.91 0.94
MOBILEmedian 1.02 1.15 0.82 1.35 1.10 1.07
CROWDmedian 0.80 0.86 1.21 0.77 0.87 0.89
NOVEHmedian 1.06 0.90 1.06 0.65 0.90 0.94
GROUPQmedian 1.04 1.00 0.89 1.01 1.02 1.00
UNINSURmedian 0.94 1.08 1.00 0.98 0.97 0.99
RENTp90 0.93 0.94 1.08 0.97 0.89 0.90
POVp90 0.93 0.95 0.85 0.90 0.92 0.94
UNEMPp90 0.96 0.94 0.89 0.90 0.93 0.96
NOHSDPp90 0.84 0.90 0.88 0.90 0.89 0.91
DISABLp90 1.01 1.01 0.90 0.99 1.01 1.00
SNGPNTp90 0.92 0.92 0.86 0.88 0.91 0.94
MINRTYp90 0.82 0.89 1.08 0.92 0.83 0.86
LIMENGp90 0.59 0.63 0.82 0.78 0.79 0.83
MUNITp90 0.78 0.73 0.80 0.71 0.85 0.87
MOBILEp90 0.78 0.86 0.46 0.88 0.99 0.98
CROWDp90 0.65 0.68 0.84 0.85 0.85 0.87
NOVEHp90 0.96 0.86 0.86 0.80 0.88 0.92
GROUPQp90 0.83 0.75 0.54 0.75 0.91 0.93
UNINSURp90 0.87 0.97 0.85 0.95 0.92 0.95
proportion 0.08 0.12 0.10 0.11 0.11 0.10
dispNOVEH 0.98 1.02 1.07 1.21 1.06 1.03
dispGROUPQ 1.00 1.00 1.06 1.01 1.00 1.00
dispDISABL 1.00 1.00 1.02 1.04 1.01 0.99
dispMOBILE 1.02 1.00 1.02 0.92 0.99 0.99
dispUNEMP 0.99 1.00 1.03 0.95 0.98 0.99
dispPOV 0.99 1.00 1.01 0.93 0.98 0.99
probNOVEH 0.72 0.55 0.15 0.05 0.91 0.34
probGROUPQ 0.72 0.53 0.15 0.05 0.86 0.30
probDISABL 0.73 0.53 0.13 0.05 0.85 0.29
probMOBILE 0.72 0.53 0.14 0.04 0.83 0.28
probUNEMP 0.73 0.53 0.14 0.04 0.83 0.29
probPOV 0.72 0.53 0.14 0.04 0.83 0.28
median: across the full hazard distribution
p90: at the 90th percentile of hazard
proportion: proportion of high hazard and high social vulnerability
tracts
disp: disparities from the average hazard
prob: probability of living in a high hazard tract
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Table 3.3: Storm hazard rank rorrelations among state-level inequality metrics.
Gini Theil entropy DISABLmed DISABLp90 NOVEHmed NOVEHp90 GROUPQmed GROUPQp90

Gini 1.000 0.943 0.952 0.339 0.130 -0.568 -0.826 0.532 -0.927
Theil 0.943 1.000 0.999 0.403 0.026 -0.664 -0.867 0.730 -0.870
entropy 0.952 0.999 1.000 0.406 0.040 -0.646 -0.862 0.717 -0.878
DISABLmed 0.339 0.403 0.406 1.000 0.592 0.101 -0.185 0.588 -0.209
DISABLp90 0.130 0.026 0.040 0.592 1.000 0.362 0.278 0.022 0.063
NOVEHmed -0.568 -0.664 -0.646 0.101 0.362 1.000 0.820 -0.523 0.521
NOVEHp90 -0.826 -0.867 -0.862 -0.185 0.278 0.820 1.000 -0.618 0.839
GROUPQmed 0.532 0.730 0.717 0.588 0.022 -0.523 -0.618 1.000 -0.364
GROUPQp90 -0.927 -0.870 -0.878 -0.209 0.063 0.521 0.839 -0.364 1.000
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Table 3.4: Heat hazard rank rorrelations among state-level inequality metrics.
Gini Theil entropy POVmed POVp90 MOBILEmed MOBILEp90 UNINSURmed UNINSURp90

Gini 1.000 0.944 0.935 0.500 -0.271 0.557 -0.369 0.108 -0.351
Theil 0.944 1.000 0.998 0.660 -0.157 0.612 -0.313 0.198 -0.260
entropy 0.935 0.998 1.000 0.669 -0.140 0.601 -0.316 0.201 -0.250
POVmed 0.500 0.660 0.669 1.000 0.461 0.614 0.117 0.484 0.147
POVp90 -0.271 -0.157 -0.140 0.461 1.000 -0.063 0.421 0.498 0.689
MOBILEmed 0.557 0.612 0.601 0.614 -0.063 1.000 0.414 0.221 -0.160
MOBILEp90 -0.369 -0.313 -0.316 0.117 0.421 0.414 1.000 0.227 0.361
UNINSURmed 0.108 0.198 0.201 0.484 0.498 0.221 0.227 1.000 0.791
UNINSURp90 -0.351 -0.260 -0.250 0.147 0.689 -0.160 0.361 0.791 1.000
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Table 3.5: Drought hazard rank rorrelations among state-level inequality metrics.
Gini Theil entropy MINRTYmed MINRTYp90 LIMENGmed LIMENGp90 CROWDmed CROWDp90

Gini 1.000 0.967 0.951 -0.012 -0.250 0.076 -0.467 0.105 -0.307
Theil 0.967 1.000 0.970 -0.004 -0.249 0.053 -0.439 0.101 -0.285
entropy 0.951 0.970 1.000 0.039 -0.191 0.117 -0.344 0.150 -0.181
MINRTYmed -0.012 -0.004 0.039 1.000 0.599 0.603 0.385 0.387 0.330
MINRTYp90 -0.250 -0.249 -0.191 0.599 1.000 0.322 0.561 0.150 0.614
LIMENGmed 0.076 0.053 0.117 0.603 0.322 1.000 0.632 0.175 0.172
LIMENGp90 -0.467 -0.439 -0.344 0.385 0.561 0.632 1.000 -0.013 0.591
CROWDmed 0.105 0.101 0.150 0.387 0.150 0.175 -0.013 1.000 0.470
CROWDp90 -0.307 -0.285 -0.181 0.330 0.614 0.172 0.591 0.470 1.000
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Table 3.6: Fire hazard rank rorrelations among state-level inequality metrics.
Gini Theil entropy DISABLmed DISABLp90 MOBILEmed MOBILEp90 GROUPQmed GROUPQp90

Gini 1.000 0.576 0.974 0.440 0.057 0.751 -0.106 0.631 -0.050
Theil 0.576 1.000 0.472 0.364 0.237 0.102 -0.340 0.323 -0.399
entropy 0.974 0.472 1.000 0.483 0.035 0.790 -0.022 0.701 0.086
DISABLmed 0.440 0.364 0.483 1.000 0.570 0.504 0.438 0.540 0.269
DISABLp90 0.057 0.237 0.035 0.570 1.000 0.091 0.426 0.173 0.093
MOBILEmed 0.751 0.102 0.790 0.504 0.091 1.000 0.294 0.703 0.221
MOBILEp90 -0.106 -0.340 -0.022 0.438 0.426 0.294 1.000 0.105 0.591
GROUPQmed 0.631 0.323 0.701 0.540 0.173 0.703 0.105 1.000 0.250
GROUPQp90 -0.050 -0.399 0.086 0.269 0.093 0.221 0.591 0.250 1.000
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Table 3.7: Flood hazard rank rorrelations among state-level inequality metrics.
Gini Theil entropy DISABLmed DISABLp90 MOBILEmed MOBILEp90 GROUPQmed GROUPQp90

Gini 1.000 0.958 0.927 0.617 0.107 0.744 -0.341 0.714 -0.298
Theil 0.958 1.000 0.825 0.628 0.173 0.682 -0.304 0.774 -0.281
entropy 0.927 0.825 1.000 0.692 0.089 0.777 -0.279 0.648 -0.277
DISABLmed 0.617 0.628 0.692 1.000 0.570 0.683 0.185 0.562 -0.090
DISABLp90 0.107 0.173 0.089 0.570 1.000 0.241 0.607 0.181 0.350
MOBILEmed 0.744 0.682 0.777 0.683 0.241 1.000 0.210 0.579 -0.127
MOBILEp90 -0.341 -0.304 -0.279 0.185 0.607 0.210 1.000 -0.164 0.464
GROUPQmed 0.714 0.774 0.648 0.562 0.181 0.579 -0.164 1.000 0.171
GROUPQp90 -0.298 -0.281 -0.277 -0.090 0.350 -0.127 0.464 0.171 1.000

142



Table 3.8: Climate hazard rank rorrelations among state-level inequality metrics.
Gini Theil entropy DISABLmed DISABLp90 MOBILEmed MOBILEp90 GROUPQmed GROUPQp90

Gini 1.000 0.984 0.983 0.196 0.008 0.324 -0.196 0.211 -0.527
Theil 0.984 1.000 1.000 0.258 0.092 0.341 -0.166 0.222 -0.514
entropy 0.983 1.000 1.000 0.258 0.093 0.339 -0.167 0.216 -0.515
DISABLmed 0.196 0.258 0.258 1.000 0.837 0.672 0.519 0.321 -0.005
DISABLp90 0.008 0.092 0.093 0.837 1.000 0.435 0.519 0.164 0.127
MOBILEmed 0.324 0.341 0.339 0.672 0.435 1.000 0.718 0.487 0.054
MOBILEp90 -0.196 -0.166 -0.167 0.519 0.519 0.718 1.000 0.304 0.465
GROUPQmed 0.211 0.222 0.216 0.321 0.164 0.487 0.304 1.000 0.558
GROUPQp90 -0.527 -0.514 -0.515 -0.005 0.127 0.054 0.465 0.558 1.000
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Table 3.9: Maximum and minimum inequality metrics by hazard and social indicator.
hazard median p90 disparity probability
Maximum
storm NOVEH DISABL MOBILE DISABL
heat MOBILE DISABL NOVEH NOVEH
drought MINRTY RENT NOVEH NOVEH
fire MOBILE DISABL NOVEH NOVEH
flood MOBILE DISABL NOVEH NOVEH
climate MOBILE DISABL NOVEH NOVEH

Minimum
storm CROWD LIMENG NOVEH NOVEH
heat CROWD LIMENG GROUPQ GROUPQ
drought MOBILE MOBILE POV DISABL
fire NOVEH MUNIT MOBILE MOBILE
flood LIMENG LIMENG UNEMP MOBILE
climate CROWD LIMENG DISABL MOBILE
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Table 3.10: Selection of maximum and mininimum state-level hazard inequality metrics.
states MaxHV MinHV MaxHH MinHH MaxIH MinIH
alabama drought climate storm drought DISABL GROUPQ
arizona fire heat heat drought MOBILE LIMENG
arkansas drought storm heat drought MOBILE LIMENG
california fire climate drought fire DISABL MUNIT
colorado fire heat heat fire MOBILE LIMENG
connecticut fire storm storm fire DISABL LIMENG
delaware drought storm storm fire MUNIT MOBILE
district of columbia fire storm drought flood MINRTY GROUPQ
florida fire climate heat fire MOBILE LIMENG
georgia drought climate heat drought MOBILE LIMENG
idaho drought climate flood drought DISABL MUNIT
illinois fire storm drought fire DISABL LIMENG
indiana drought storm storm fire DISABL GROUPQ
iowa drought heat heat fire DISABL MUNIT
kansas fire climate heat fire DISABL LIMENG
kentucky drought storm storm drought NOHSDP MUNIT
louisiana drought storm storm drought NOHSDP MUNIT
maine drought climate storm fire NOHSDP LIMENG
maryland fire storm drought flood DISABL NOVEH
massachusetts fire storm storm fire MOBILE LIMENG
michigan drought storm storm fire DISABL GROUPQ
minnesota drought storm storm fire DISABL POV
mississippi drought storm heat drought UNINSUR GROUPQ
missouri drought storm storm drought MOBILE MINRTY
montana drought climate climate drought DISABL MUNIT
nebraska drought storm heat fire DISABL MUNIT
nevada fire climate drought storm MOBILE LIMENG
new hampshire fire storm storm fire DISABL LIMENG
new jersey fire storm drought fire MOBILE LIMENG
new mexico fire heat heat fire DISABL LIMENG
new york fire storm drought fire MOBILE NOVEH
north carolina drought storm storm drought DISABL GROUPQ
north dakota drought storm storm drought NOHSDP MUNIT
ohio drought storm heat fire DISABL LIMENG
oklahoma drought climate storm fire MOBILE LIMENG
oregon drought climate storm heat MOBILE MUNIT
pennsylvania fire storm storm fire MOBILE MINRTY
rhode island fire storm storm fire MOBILE LIMENG
south carolina drought storm heat drought DISABL GROUPQ
south dakota drought climate drought heat DISABL GROUPQ
tennessee drought climate heat fire MINRTY LIMENG
texas fire climate heat fire DISABL LIMENG
utah fire heat drought fire DISABL LIMENG
vermont drought storm heat drought UNINSUR LIMENG
virginia drought storm storm drought DISABL MUNIT
washington drought climate drought fire DISABL LIMENG
west virginia drought climate heat drought NOHSDP MINRTY
wisconsin drought storm drought fire DISABL GROUPQ
wyoming fire flood fire storm DISABL NOVEH
a HV: Hazard Vertical; HH: Hazard Horizontal; IH: Social Indicator Horizontal
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Table 3.11: National spatial inequality statistics across climate hazards.
hazard moranUnivariate moranBivariate Gini nearbyGini distantGini
storm 0.994 -0.042 0.198 0 0.198
heat 0.993 0.044 0.238 0 0.238
drought 0.947 0.040 0.367 0 0.367
fire 0.868 -0.084 0.408 0 0.408
flood 0.701 -0.095 0.148 0 0.148
climate 0.903 -0.043 0.105 0 0.105
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Figure 3.14: Local Indicators of Spatial Association (LISA) show high climate risk and
high social vulnerability clusters for each hazard.
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Chapter 4

Measuring climate risk perception

with Twitter data

Concern over climate risk varies greatly across individuals and places. To measure this

variation, studies typically conduct expensive and time consuming qualitative studies

and surveys that have limited spatiotemporal and sociodemographic coverage of climate

risk trends. This study contributes to a growing body of social and behavioral science

research that substitutes survey data with user-generated big data. To that end, we build

a dataset for modeling the determinants of climate risk perception using data provided

by the microblogging service Twitter. We apply natural language processing to textual

data and analyze social networks to construct this dataset. Validation of our measure-

ments is conducted in two phases, first against statistical model results from a published

survey measuring the same climate risk perception determinants and next with the spa-

tial distribution of climate risk perceptions measured by an annual survey. Although

the instruments and data we gathered require additional refinement, preliminary results

obtained as part of this validation study indicate that Twitter may soon serve as an
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appropriate supplementary data source for measuring complex phenomena.

Introduction

Concern over climate risk varies greatly across individuals and places. This variabil-

ity, despite overwhelming scientific consensus on the causes and broad consequences of

anthropogenic climate change, generates a great deal of interest in understanding the de-

terminants and spatiotemporal patterning of climate risk perception (CRP). Explaining

CRP is of special interest to practitioners since it influences individual policy support

for and behavioral intentions towards climate change mitigation and adaptation (Brody

et al., 2012; Krosnick et al., 2006; O’Connor et al., 1999; Smith & Leiserowitz, 2014).

Qualitative studies and surveys, the standard for measuring CRP, are expensive and time

consuming, resulting in limited spatiotemporal and sociodemographic coverage of CRP

trends. User generated big data (UGBD), an alternative source for measuring social, be-

havioral, and psychological phenomena (including risk perception), could help fill these

coverage gaps and improve existing estimates. General quality concerns raise doubt about

the usefulness of UGBD, particularly since these data do not represent solicited responses

and are instead considered ‘found’. Researchers have recently begun building a framework

for implementing UGBD quality control, which could pave a generalizable path forward

to measure social and psychological indicators for modeling complex outcomes with these

data. However, even with quality controls, UGBD should undergo measurement-specific

validation before being used to describe or infer characteristics about a target population.

We propose addressing the aforementioned issues in several ways. First, to determine

the suitability of conducting individual-level CRP studies with UGBD, we measure CRP

with Twitter data using a theoretical model. Second, to assess the reliability of our CRP
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measurements from UGBD sources, we validate against two sources of peer-reviewed

survey data. Third, to present the applicability of these methods in an applied context,

we compare statistical models of the relationship between climate hazard estimates and

CRP measured from survey and Twitter data. Through these experiments we aim to

provide further evidence towards answering the following questions:

Research questions

1. Does Twitter data provide a robust and reliable basis for measuring individual-level

predictors of complex phenomena, such as climate risk perception?

2. How closely do climate risk perception measurements from Twitter data match

those from survey data?

3. What is the relationship between statistical climate risk and climate risk percep-

tion?

Beyond efficiency gains in measuring CRP trends over time, space, and population,

Twitter data may also prove useful for studying a variety of CRP related topics, such

as: measuring CRP change throughout the hazard/disaster event process, assessing how

different types of messaging influence CRP, and exploring the relationship between in-

formation reliability and CRP. Validating CRP measurements from Twitter data is an

essential first step towards answering any of these questions.

Literature Review

Everyone experiences some degree of risk. This is often represented as statistical risk,

such as being twice as likely to die in the event of a traffic accident without a seatbelt.
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We typically derive statistical risk from observed, historical data related to risk event

frequency and magnitude, careful measurement of the exposed population, income or

technological protections[/mediators?] from the event for sub-populations, among other

metrics. However, people perceive this risk differently, even when provided with statis-

tical risk estimates, according to subjective valuations (Slovic, 2000; Slovic, Fischhoff, &

Lichtenstein, 1980). Therefore, statistical risk and perceived risk typically differ. One

of the highest profile topics with the starkest differences between perceived and statis-

tical values is climate risk. Despite high current and projected statistical risk at both

the individual and global levels, climate risk perception varies vastly among individuals

(Maibach et al., 2011).

Climate risk is unique relative to other risks subjected to perception studies due to the

magnitude, complexity, and spatiotemporal scale (Breakwell, 2010). Some research sug-

gests that because of this, it is difficult for individuals to experience climate change

directly (Weber, 2010), although recent record-breaking events and subsequent attribu-

tion efforts indicate otherwise (Burger, Wentz, & Horton, 2020; Zhai, Zhou, & Chen,

2018). Similarly, from an evolutionary perspective, climate risk differs from the set of

short-term and small area risks present during much of human existence (Griskevicius,

Cantú, & van Vugt, 2012). However, since agricultural civilization, humans have had

to manage risk and adapt to challenges presented by variability in weather and climate

(Bocco & Napoletano, 2017; Orlove, 2005; Taraz, 2017).

The dominant way of measuring CRP is by administering a survey to a putatively repre-

sentative sample from a target population, such as the national UK sample used by van

der Linden (2015). Yet, these studies tend to have small, quasi-representative samples,

limited geographic extent and/or spatial variation, exist at just at one point in time,

and require substantial planning and coordination. Despite the shortcomings of these
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surveys, they are undoubtedly the gold standard for CRP measurement (Howe, Milden-

berger, Marlon, & Leiserowitz, 2015; Leiserowitz, 2006). Table 4.1 contains a selection

of sampling schemes.

General problems with these sampling schemes are small sample sizes, skewed sample

demographics, non-probabilistic sampling, and self selection of participants (especially if

using something like Mechanical Turk). User generated big data (UGBD), while also po-

tentially selective and unrepresentative, could be an additional source for measuring CRP

trends over space-time, inferring significant statistical relationships between explanatory

factors and CRP, and further explaining CRP variability. UGBD, specifically from so-

cial media platforms, have become increasingly useful for answering questions related to

migration patterns (Zagheni, Weber, & Gummadi, 2017), male fertility (Rampazzo, Za-

gheni, Weber, Testa, & Billari, 2020), public transit ridership sentiments (Collins, Hasan,

& Ukkusuri, 2013), as well as assessing the quality of municipal disaster management via

social media during floods (Scott & Errett, n.d.). Papers such as Yuan & Liu (2018)

and Martín, Cutter, & Li (2020) verified Twitter as a legitimate source for studying

hurricanes and the disaster process: rapid damage assessment and evacuation behavior,

respectively. Although we found no studies specifically looking at climate risk percep-

tion, many studies use data from the microblogging service Twitter to study different

types of perception, some of which are related to risk, including:

• internet of things (Bian et al., 2016)

• genetically modified organism risk (Whittingham, Boecker, & Grygorczyk, 2020)

• neighborhood quality (Hess, Iacobucci, & Väiko, 2017)

• users’ moods (Bollen, Mao, & Pepe, 2011)

• reputation of other users (Schultz, Utz, & Göritz, 2011)

• breast cancer (Modave et al., 2019)
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• HPV vaccine (Keim-Malpass, Mitchell, Sun, & Kennedy, 2017)

• eco-friendliness of luxury fashion (Blasi, Brigato, & Sedita, 2020)

• lead in school drinking water (Ekenga, McElwain, & Sprague, 2018)

• risks/benefits of self-driving cars (Kohl, Mostafa, Böhm, & Krcmar, 2017)

• impacts of weather on COVID (Gupta et al., 2021)

• H1N1 pandemic (Chew & Eysenbach, 2010)

• earthquakes, using a space-time weighted index to better capture the occurrence

of local events (D’Auria & Convertito, 2016).

Studies looking at climate change-related perceptions include prevalence of climate

change discussions as a function of temperature variability (Kirilenko, Molodtsova, &

Stepchenkova, 2015) and real time risk of a tropical cyclone (Bec & Becken, 2019).

The first paper found that Twitter users do associate extreme temperature anomalies

with climate change while the latter found meaningful relationships between emotional

characteristics and risk perception of Cyclone Debbie. Authors in most of these studies

tend to use the words ‘attitude’ and ‘perception’ interchangeably. Many focus on binary

measures of perception, i.e. sentiments (Thelwall, Buckley, & Paltoglou, 2011). Some

manually categorize these sentiments, but most use natural language processing, a

computational toolbox for analyzing human language. Other studies simply use the

word ‘perception’ as a generic term for topic prevalence (Hamed et al., 2015).

There are obvious issues with UGBD and how studies utilize it. First, there are general

quality concerns since UGBD do not represent survey responses and instead are consid-

ered ‘found data’. The unstructured and unsolicited nature of UGBD leads to reliability

issues, specifically regarding accuracy. Even so, compelling reasons to utilize UGBD

include abundant observations, spatiotemporal resolution and extent, open access, and

limited overhead. Salvatore, Biffignandi, & Bianchi (2020) have outlined a wealth of
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statistical and measurement issues with Twitter data and proposed a quality framework,

which borrows from the vast literature on survey and UGBD quality control. With suf-

ficient quality frameworks and validation, UGBD has the potential to bolster our ability

to conduct scientific research.

Aside from quality issues, many studies employing UGBD tend to oversimplify the the-

oretical conceptualization, model specification, and statistical measurement of complex

phenomena. Specifically, there are fundamental problems with the way most studies uti-

lize Twitter data to study perception. Psychologists, who are the most likely to correctly

operationalize perception in statistical models, are not well represented in the disciplinary

spread of researchers using Twitter data. Most authors are computer scientists or come

from environmental and climate change studies. It’s therefore not surprising that Twit-

ter data studies we reviewed neglected to appropriately operationalize perception or risk

perception. The risk perception-as-sentiment approach, whereby researchers reduce per-

ception to a binary sentiment (more correctly termed affect in the psychology literature) is

understandable insofar as simple representations suffice in addressing the stated research

goals. However, most studies barely endeavor to distinguish perception from awareness.

The limitations of this simplistic specification are thus innumerable. Even when studies

make a distinction, the overlap between psychological concepts related to perception can

muddle the analysis. A brief definition of some perception-adjacent concepts from the

American Psychological Association (APA Dictionary of Psychology, n.d.):

• perception: the process or result of becoming aware of objects, relationships, and

events by means of the senses, which includes such activities as recognizing, ob-

serving, and discriminating.

• attitude: a relatively enduring and general evaluation of an object, person, group,

issue, or concept on a dimension ranging from negative to positive.
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• thought: ideas, images, mental representations, or other hypothetical elements of

thought are experienced or manipulated. In this sense, thinking includes imagining,

remembering, problem solving, daydreaming, free association, concept formation,

and many other processes.

• feeling: a self-contained phenomenal experience. Feelings are subjective, evaluative,

and independent of the sensations, thoughts, or images evoking them.

• emotion: a complex reaction pattern, involving experiential, behavioral, and phys-

iological elements, by which an individual attempts to deal with a personally sig-

nificant matter or event. The specific quality of the emotion (e.g., fear, shame) is

determined by the specific significance of the event.

• knowledge: the state of being familiar with something or aware of its existence,

usually resulting from experience or study.

• opinion: attitude, belief, or judgment.

The study of risk perception, in contrast to perception, has a well defined framework

with clear applicability to any-type risk: how and why does the perception of risk differ

from statistical risk? Perception studies concern the neuropsychological factors involved

in the process of perception. It should be stated that operationalizing concepts is not

a straightforward task (Asadzadeh, Kötter, Salehi, & Birkmann, 2017; Moscati, 2018).

To the non-psychologist, there appears to be a tendency for these definitions to blend

together as it may be difficult to specify what uniquely distinguishes each concept. It

is therefore typical, even for psychologists, to misrepresent a concept when it is opera-

tionalized for a model or study, such as the oft noted confusion between affect, attitude,

and emotion (Sjöberg, 2006). Non-psychologists similarly tend to equivocate measure-

ments from a Twitter corpus, such as ‘topic prevalence’ or ‘sentiment’, with perception.

It is therefore important to employ a theoretically-driven, clear, and parsimonious model
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specification when studying such complex concepts. Risk perception is no exception.

Building on the varied theories of risk perception and existing theoretical models, van der

Linden (2015) proposed a social-psychological model of climate risk perceptions, which

divides determinants into three dimensions: cognitive factors, experiential processing, and

socio-cultural influences. The model explains over 70% of the variance in risk perception

when controlling for a fourth dimension, socio-demographics. The model sits firmly within

the psychometric paradigm, yet readily incorporates the cultural theory of risk, social

amplification of risk and social representations theory. The dimensions included in the

model borrow from (Helgeson, Linden, & Chabay, 2012). Figure ?? displays a conceptual

framework for this model. For further detail, van der Linden (2017) thoroughly describe

each dimension and provide an elaborated fifth dimension, heuristics and biases, which

was omitted from statistical modeling for the sake of parsimony. A brief description of

each dimension follows.

Cognitive factors: climate change knowledge, the main cognitive factor, has a positive

association with CRP (Lee, Markowitz, Howe, Ko, & Leiserowitz, 2015). Disagreement

still exists about the explained variance attributed to knowledge (Hornsey, Harris, Bain,

& Fielding, 2016), when marginal increases in risk perception from greater knowledge

begin to significantly decrease (Tobler, Visschers, & Siegrist, 2012), and the relative

importance of different types of knowledge (causes, impacts, mitigation, etc.) (Kaiser &

Fuhrer, 2003).

Experiential processing: there are two factors in experiential processing, negative

affect and personal experience. Negative affect is a conceptual application of the ‘risk-

as-feelings’ hypothesis (Loewenstein, Weber, Hsee, & Welch, 2001), whereby the strong

reaction an individual has to a risk, called a somatic marker (Damasio, 2006), forms

the foundation of our ‘affect heuristic’ (Slovic, Finucane, Peters, & MacGregor, 2004).
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A negative affect is therefore a negative association, i.e. dislike, dread, etc., with a risk,

which in turn has a positive association with risk perception (Finucane, 2012; Leiserowitz,

2006). Although personal experience with climate change has a hypothetically positive

association with risk perception, it does depend on a few facets. Personal experience can

be either objective (e.g. measured weather anomaly) or subjective (…“this is the hottest

summer I can remember.”) (Akerlof, Maibach, Fitzgerald, Cedeno, & Neuman, 2013),

how we measure and qualify personal experiences with climate change varies substantially

(Capstick & Pidgeon, 2014), and what constitutes an experience that is representative

of climate change is unclear (Howe & Leiserowitz, 2013).

Socio-cultural influences: these are broken into two factors, the social construction

of risk and culture, values, and worldviews. Although the social construction of risk is

difficult to measure at the individual level and even considered by some as vague meta-

theory (Voelklein & Howarth, 2005), it certainly plays a role in how people perceive risk

(Joffe, 2003), especially from climate change (N. Smith & Joffe, 2013). The general un-

derstanding of how this influences risk perception is through descriptive and prescriptive

norms. Hence risk perception is greater when those around us are concerned with cli-

mate change risk (descriptive) and they implore us to also be concerned (prescriptive)

(Cialdini, Kallgren, & Reno, 1991; van der Linden, 2015). The way culture, values, and

worldviews influence risk perception is based on grid-group theory (Douglas & Wildavsky,

n.d.), a typological system orienting individuals within some position among egalitari-

anism, individualism, hierarchism, and fatalism. Different typologies have modified this

initial conceptualization and distinct theories derive from it, namely ‘cultural cognition’

(Kahan, 2012). General concerns address the role that culture plays in risk perception,

whether we can measure culture as neatly as researchers try to operationalize it, and if

it’s even possible to infer culture at the individual level.
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Socio-demographics: There isn’t much consensus about the role of most of these char-

acteristics. Gender, race, and political ideology are the few exceptions. Particularly, be-

ing a white male conservative has a negative association with CRP (McCright & Dunlap,

2013). Conservative political ideologies, specifically in the US, tend to positively asso-

ciate with distrust in science and media (Leiserowitz, Maibach, Roser-Renouf, Smith, &

Dawson, 2013). The ‘white male’ effect reduces risk perception and is pervasive across

many other types of risk (Finucane, Alhakami, Slovic, & Johnson, 2000; McCright &

Dunlap, 2011)

Data and Methods

Climate risk perception (CRP) measurements try to gauge how concerned individuals are

about present and future risk from a changing climate. We intend to measure CRP with

user generated big data (UGBD), conduct two validations of these measurements, and

compare how well UGBD and survey measurements match statistical climate risk over

space and time. The first validation we conduct tests the accuracy of our UGBD proxy-

survey instrument and the next assesses whether we achieve similar enough results against

the spatial distribution of climate risk perception measured through an established US

national survey.

Instead of through a survey, the standard for measuring CRP, our data come from Twit-

ter’s Application Programming Interface (API) (Twitter, 2020). We primarily leverage

methods from the natural language processing toolbox to infer CRP from UGBD, but

also utilize machine learning and network analysis methods. Many recent papers explain

natural language processing, such as sentiment analysis, for disaster and climate-related

research (An et al., 2014; Dahal, Kumar, & Li, 2019; Ruz, Henríquez, & Mascareño,
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2020).

Twitter allows access to the full archive of tweets since 2008 for academic research. Our

query finds posts (tweets) from the past ten years that include keywords such as wildfire,

hurricane, climate change, climate risk, etc. These raw responses are then parsed and

configured into a data table. As of May 13, 2021, we have collected approximately 23

million tweets. These tweets come with rich contextual information, which we uniquely

use for a variety of different tasks. Most of these data come from directing an API call

at the full archive endpoint, but some must be obtained by specifying the requested data

and user ID at a particular endpoint (e.g. get the 20 most recent tweets liked by a user).

Table 4.2 outlines some of the types of information accessed via the API.

To clean the tweet dataset, we remove systematic false positive matches (i.e. unrelated

posts such as ‘this song is like wildfire’) by manually examining a randomly sampled sub-

set of the full data (approximately ~10k tweets, each from a different author). Automated

posting from problem users, such as bots, is filtered out by removing tweets from user

IDs who are within the top 1 percent of posting frequency. We also remove all posts from

organizations using a demographic inference tool developed by Wang et al. (2019), which

is an open source multimodal deep learning system trained on over 35 million Twitter

profiles to classify age, gender, and organization. After cleaning our tweet sample, we

find the latitude and longitude of the home profile for each user ID. Nominatim, the open

source geocoder that powers Open Street Maps (Osm-Search/Nominatim, 2021), locates

the center point of each matching location name. The last step in data processing is to

consolidate tweets by user and convert the individual-level text collections to a bag of

words corpus (BoW), whereby each collection represents a list of unordered words with

all rare and stop words (the, at, my, etc.) removed. After gathering, cleaning, geocoding,

and consolidating, the Twitter data is ready for analysis.
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The van der Linden (2015) model serves as the theoretical foundation in our approach

to measuring climate risk perception. We chose this model since it achieved the highest

explained variance of any model we reviewed and integrated different theoretical frame-

works for understanding risk perception. The Twitter data measurement tool we de-

velop seeks to replicate each van der Linden (2015) model dimension across the multiple

CRP determinants (cognitive factors, experiential processing, and socio-cultural influ-

ences socio-demographics). We continue the same model specification so that we can

verify the accuracy of our Twitter measurements when compared to the original survey

data.

Figure ?? provides a tabular breakdown of the dependent variable (risk perception) and

explanatory variables. Model Term refers to the determinants of risk perception posited

by van der Linden (2015), Specification describes the numerical-theoretical relationship of

the concepts to their numerical representation and risk perception (all variables have been

transformed to positively associate with risk perception), Survey Instrument contains the

questions used in the original study to measure each risk perception determinant, and

Twitter Proxy describes our proposed approach for appropriately measuring the deter-

minants using Twitter data, while maintaining a similar enough operationalization to

the original survey instrument. All explanatory variables, except for socio-altruistic and

egoistic value orientations, have a positive relationship with risk perception, meaning

higher values (e.g. better knowledge about climate change) increase risk perception. Al-

though van der Linden (2015) did not find a statistically significant relationship among

socio-altruistic and egoistic value orientations and CRP, we still choose measure these

terms for experimental purposes.

Our Twitter dataset is a sample of users (i.e. study participants) who have previously

posted about some aspect of climate change risk. Much of our measurement relies on
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passing the tweet corpus per user through peer-reviewed lexicons, a list of words and their

associations (Riloff & Shepherd, 1997). These can be adopted from existing sources, gen-

erated for specific purposes, or augmented from existing sources for specific purposes.

We measure risk perception with emotional analysis using the NRC Word-Emotion Asso-

ciation Lexicon (Mohammad & Turney, 2010) to associate textual data with eight basic

emotions (anger, fear, anticipation, trust, surprise, sadness, joy, disgust). From this

we take the average of all negative emotion and sentiment scores (anger, fear, sadness,

disgust). Proportions are relative to the user. Integer values range from 0 to 10.

Knowledge about climate change comes from three proportions: (a) tweets with climate

science-related language, (b) links with reliable sources, and (c) tweets with techni-

cal words. The first is the proportion of words matching the NASA Earth Observa-

tory glossary (earthobservatory.nasa.gov/glossary). We manually remove those that are

common (e.g. force) or false cognates (e.g. wave) as well as from our original Twit-

ter query (e.g. wildfire, precipitation, etc.). The second is the proportion of credi-

ble links (.gov or .org), with designated climate disinformation .org websites omitted

(desmogblog.com/climate-disinformation-database). The third is the proportion of rare

and technical words using the De-Jargonizer (Baram-Tsabari et al., 2020; Rakedzon,

Segev, Chapnik, Yosef, & Baram-Tsabari, 2017). We take the average of these three

proportions. Continuous values range from 0 to 1.

Holistic affect is measured with sentiment analysis, which provides a rating for textual

data on a continuous scale from negative to positive. Similar to the approach used for

measuring risk perception except that we do not measure emotions. Many sentiment

analysis approaches exist, ranging from simple and lexicon-based, such as the Valence

Aware Dictionary and sEntiment Reasoner (VADER) (Gilbert & Hutto, 2014), to com-

plex and machine learning-based, such as deep convolutional neural networks (Severyn
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& Moschitti, 2015). We use the microblogging-specific lexicon AFINN (Nielsen, 2011).

Integer values range from -5 to 5.

We measure personal experience with extreme weather using disaster event frequency

over the past five years from the Spatial Hazard Events and Losses Database for the

United States (SHELDUS) (CEMHS, 2020), which provides annual disaster occurrence

for multiple natural hazards. These data are county-level, so we consider an event to

be experienced by an individual if it happened in a county within 100km of their home

location.

Broad value orientations are split into three categories: biospheric, socio-altruistic, and

egoistic values. We use a validated personal values lexicon (Wilson, Shen, & Mihalcea,

2018) to assign numerical values based on word associations. Integer values range from

0 to 10 for each value category.

To estimate the influence of social norms, we estimate adherence to the biospheric value

orientation for user IDs connected to each of our participants. Connectivity is found

through a variety of social network indicators (following, likes, replys, retweets, men-

tions). Each ‘connected’ user ID will then be assessed for adherence to the biospheric

value orientation. We estimate the expected value of social norms using the relative

frequencies of interaction between participants and connected user IDs, i.e.:

EVsn =
n∑

i=1

P (Xrf
i ) ∗Xbv

i (4.1)

Where EVsn is the expected value of social norms, P (Xrf ) is the relative frequency of

interaction, and Xbv is the biospheric value orientation, all for connected user i, and

estimated for each participant.

Demographic characteristics are obtained through a variety of open source inference
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tools. Age comes from a multimodal deep learning system (Wang et al., 2019); political

ideology from a machine learning model (Preoţiuc-Pietro, Liu, Hopkins, & Ungar, 2017);

education from a distance supervised regression method (Culotta, Ravi, & Cutler, 2016);

and income from predictive models with graph embeddings (Aletras & Chamberlain,

2018). We do not measure gender and race using any inference tool since we do not believe

it is appropriate to do so given the current state of these methods (Fosch-Villaronga,

Poulsen, Søraa, & Custers, 2021; Hao, 2019; Keyes, 2018). The primary issue is that

race and gender are subjective characteristics that study participants typically self-assess.

However, age, political ideology, education, and income are more or less objective and

can be measured by observational procedure, such as through birth certificates, voting

records, diplomas, and tax returns, respectively. However, inferring these demographic

characteristics still presents ethical and methodological issues.

Once we’ve compiled metrics for all participants, we map the distribution of each variable

onto the distributions obtained by van der Linden (2015). Proxy measurements map onto

the survey instruments (all of which are indices) using the mean and standard deviation.

We use an inverse transform method to approach similarity in the numerical distributions

for substitutable variables across model specifications, which allows greater comparability

in the following experiments.

The first analysis compares our risk perception estimate, which we obtained by emotional

analysis of fear for climate risk-related tweets, to risk perception predicted with the

parameterization from van der Linden (2015) (analysis 1). We then test how well our

proxy measurements compare to the original model specification, with the dependent

variable as ‘fear for climate hazards’ (analysis 2). Lastly, we employ a Bayesian model

to infer risk perception using parameter estimates from analysis 2 and van der Linden

(2015) (analysis 3).
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Analysis 1 predicts risk perception with the statistical model built by van der Linden

(2015) using new data from our proxy Twitter measurements. We estimate an OLS re-

gression with survey measurements of each construct (climate change knowledge, holistic

effect, etc.) from the van der Linden (2015) data. This model serves as a prediction tool

to test the data gathered via Twitter. Our goal is to compare risk perception inferred

by natural language processing of Twitter data to risk perception estimated in an ex-

planatory statistical model. Analysis 2 fits an ordinary least squares regression to our

proxy measurements. This experiment compares the relative importance and direction

of predictor variables between the original and Twitter statistical models.

Analysis 3 is a Bayesian model of climate risk perception. The model uses prior knowl-

edge of the effect that each model term has, represented by means and variances of OLS

regression coefficients produced from the original and proxy models. We use this model

to predict climate risk perception across the conterminous USA for each participant.

The predictions from experiment 3 are used to compare to a survey dataset that mea-

sures CRP, Climate Change in the American Mind, conducted by Yale University’s Cli-

mate Change Communication Research Program and partners (Leiserowitz et al., 2019).

Specifically, the survey question we use for this comparison is, “How much do you think

global warming will harm you personally?”. Howe et al. (2015) downscaled responses

from Leiserowitz et al. (2019) over many survey waves to produce county level estimates,

called the Yale Climate Opinion Maps 2020 (YCOM). We calculate the z-scores of both

estimates to be able to compare relative risk perceptions. YCOM approximates that the

downscaled results are accurate to within ±8 percentage point (“Yale Climate Opinion

Maps 2020,” n.d.), which equates to a z-score range of ±1.27.

Next we demonstrate in an applied context the overall comparability of our Twitter

CRP estimates to those of YCOM while also exploring the relationship between climate
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risk perception and statistical climate risk. Although a similar relationship, evidence for

increased risk perception with higher statistical climate risk is neither clear nor abundant,

unlike that for personal experience (Akerlof et al., 2013; Lujala, Lein, & Rød, 2015).

We estimate generalized linear models for five climate hazards (extreme precipitation,

extreme heat, drought, wildfire, and flooding) as well as a multi-hazard climate risk

estimated from the average of all five. The hazard term in each is modeled with regression

splines to capture the expected non-linear relationship between a hazard level and the

associated risk perception. We control for all the variables presented in van der Linden

(2015) across both types of climate risk perception estimates.

Results

Our study seeks validation of individual-level climate risk perception data gathered via

Twitter, a microblogging service with tens of millions of monthly users across the United

States. Each user provides potentially informative data about themselves, their life

histories, and their social context by submitting short posts embedded with web links

and images. Engagement with the Twitter community offers further information about

patterns of social interaction. Not only do these patterns allow researchers to study

social networks within Twitter but also to perform demographic inference due to the

predictive nature of social connections. Moreover, users unwittingly divulge other details

about themselves, such as clues about income from language use, to inform additional

characteristics.

Validating our Twitter-sourced data as an acceptable substitute for survey data was con-

ducted in several steps. We first compared the risk perception metric, which was gathered

independently from the other model terms, to a risk perception variable predicted with
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the statistical model built by (van der Linden, 2015). Next we contrast the model re-

sults for the survey and Twitter data. Coefficient estimates from these statistical models

built were then used as priors in a Bayesian model. The predicted risk perception from

this model was compared to an established survey dataset to assess how accurately the

Twitter data measurements represent the geography of climate risk perception. Lastly

we compare both risk perception metrics with statistical climate risk to demonstrate a

use case for these large area estimates.

We first map the spatial distribution of users in our Twitter dataset, shown in Figure

4.3. We see that user locations closely align with population. Despite there being lower

density west of the Mississippi, there is still sufficient spatial spread to conduct county-

level estimates. Figure ?? shows the county-level spatial distributions for our Twitter

data proxy measurements of climate risk perception model terms. We later compare

these spatial distributions to those measured by the Yale Climate Opinion Maps 2020.

Figure ?? provides intercorrelations for the original variables and our proxy measure-

ments. Values along the diagonal represent Cronbach’s alpha for the same variable

between the original and proxy data. Cronbach’s alpha is a measure of mean scale re-

liability, i.e. the similarity in numerical distributions for each item comprising an index

or representing a feature. The bottom triangle is from the original data and the top tri-

angle is the Twitter data. Relationships are mostly consistent between the two datasets,

with a notable difference that personal experience has a much weaker relationship to risk

perception for the Twitter data. Cronbach’s alpha across all variables suggests sufficient

(above 0.6) measurement similarity.

A comparison between risk perception estimated with statistically modeled and natural

language processing (NLP) methods is presented at the county level in Figure 4.7. These

are reported as relative differences between the two risk perception metrics. The Twit-
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ter metric appears higher in most places. Most of the counties with higher values for

predicted risk perception occur in the US Midwest. We then calculated the number of

counties precisely hit by the Twitter metric. Since around 30 percent of variance remains

unexplained from the original model, we find the proportion of counties that have risk

perception estimates with less than 30 percent difference to assess the comparability of

the two risk perception measurement methods, which is about 67 percent.

Table 4.3 offers a comparison of model results between the statistical model built with

survey data by (van der Linden, 2017) and that built from Twitter data. We present

coefficient estimates for the original and proxy models. The last four columns describe

whether there was a change in the effect direction for predictors between the original

and proxy models as well as the change in the relative ranking of explained variance.

Coefficients and relative rankings are similar except for a much higher effect in the Twit-

ter model from a biospheric value orientation. Climate change knowledge also has a

substantially lower relative effect.

The final validation exercise compares predicted results from a Bayesian model with

Twitter data to the YCOM survey data. Figure 4.8 provides the spatial distribution

of the Bayesian predicted estimates, Figure 4.9 shows the spatial distribution for the

downscaled YCOM data, and Figure 4.10 presents how many counties have Twitter risk

perception estimates that fall within the YCOM 95% confidence interval, of which there

are approximately 75 percent. There doesn’t appear to be any spatial patterning or

regionalization for counties above or below the risk perception estimates.

Our last experiment compares statistical climate risk to two metrics of perceived climate

risk, illustrated in Figure ??. We found increasing risk perception for storm hazard when

comparing against the Twitter risk perception metric whereas the YCOM metric shows

higher risk perception for drought and wildfire. All other hazards for both metrics had
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either constant or decreasing risk perception as a function of statistical risk.

Discussion

Survey data serves a fundamental role in empirical scientific research. Since the early

1900s, surveys have been in use and enabled inquiry into many facets of social views,

intentions, and behaviors. Methodological improvements generated more refined and so-

phisticated survey instruments and responses while advancing technology allowed for new

modes of data collection, from mail to telephone to online. We designed an experiment to

test whether it is possible to reliably construct a proxy survey dataset from found data,

in this case using the online microblogging service Twitter. Our research questions were:

does Twitter data lend to measuring individual-level predictors of complex phenomena,

such as climate risk perception; how closely do climate risk perception measurements

from Twitter data match those from survey data; and what is the relationship between

statistical climate risk and climate risk perception?

Overall, results suggest that we are within an acceptable range for validating this method

of ‘survey design’. The intercorrelations shown in Figure ?? among our dependent vari-

ables are nearly all positive (except for between holistic affect and biospheric value ori-

entation), the differences in relationship strengths are notable but not without possible

explanation, and Cronbach’s Alpha show sufficient convergence in numerical distribu-

tions (0.6 is usually considered a minimum allowable level). One reason biospheric value

orientation holds a negative association with holistic affect is that the latter is general-

ized, i.e., not specific to climate change as a hazardous problem. It will require more

sophisticated natural language processing (NLP) to distinguish between holistic affect for

climate change as a hazardous problem and against climate change as a political issue,
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among the many other conceptualizations and reactive affects climate change holds.

We do find some concordance between risk perception estimated from natural language

processing and risk perception predicted with the statistical model advancing the climate

risk perception model that we used as a theoretical basis for this study (van der Linden,

2015). Figure shows this comparison 4.7, which presents nearly 67% of counties within

a permissible range. This proportion could be much higher, The likely culprit, again,

is limitations in the NLP methods. We simply used emotion analysis to measure risk

perception (fear, anger, etc). This type of analysis neither captures risk as an emotion

nor risk specific to climate hazards.

Existing machine learning methods for building domain-specific language models do offer

a path forward (e.g. specific to climate risk perception). Typically, a researcher conducts

supervised learning by training a model for a specific task, such as estimating the degree of

climate risk perception. Supervised learning requires labeled data for training, i.e., data

that has been coded to represent the degree of climate risk perception. These training

datasets are usually thousands to millions of records long, which clearly presents a massive

undertaking since labeling is a non-automated, human annotated task. Alternatively, fine

tuning a pre-trained model can be done with unlabeled data for self supervised learning,

for example by feeding the model pop science books about climate change impacts. This

all goes to say that any refinement of our risk perception measurement is possible but

sits beyond the scope of the present study.

Building a statistical model from Twitter data for climate risk perception is feasible.

Table 4.3 shows that effect directions and relative rankings are similar for the Twitter

model. However, a biospheric value orientation appears to be far more influential in

the Twitter model than in the original. Again, this could be due to a difference in

what is being measured between the two approaches. The original survey specifically
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asks about adherence to particular aspects of the various value orientations (biospheric,

socio-altruistic, and egoistic) such as, “How important is respecting the earth to you on a

scale of -1 to 9 with -1 being opposed to my values and 9 being of supreme importance.”

A solution to this discrepancy in measurement validity would be to conduct a similar

model building exercise for specific tasks outlined in the risk perception example above.

Despite Twitter-derived survey datasets showing promise, these types of data collection

are not a replacement for traditional survey instruments. The Bayesian model specified

with priors (probabilistic parameters) from a combination of coefficient estimates from

survey and Twitter statistical models illustrates this point. Risk perception predicted

from a Bayesian model achieves greater concordance with a national measurement of

climate risk perception than a frequentist OLS model, shown in Figures 4.8. Therefore,

social listening with Twitter data should be thought of as a supplemental research tool

for ascertaining both stated and realized intentions as well as improving spatiotemporal

extent and resolution.

Wrapping up our analysis with an experiment teasing apart the origins of risk perception

research, to better understand why statistical risk and risk perception differ, we observed

the relationship between two risk perception measures and five climate hazards, shown in

Figure ??. Assuming that the YCOM data is a benchmark, we only found increasing risk

perception with statistical risk for drought and fire. The Twitter data inversely found

increasing risk perception only for storm. This experiment offers more evidence that

our Twitter dataset requires further refinement. Ideally we would see similar shapes and

ranges in predicted curves across both risk perception measures. In addressing potential

reasons for why we observe these relationships, we know fire and drought hazards tend

to exhibit coincidence, higher frequency and a greater areal extent (if we include wildfire

smoke) than flooding, and impacts primarily in the western USA. Working through how
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these factors may influence different relationships for drought and fire than the other

hazards, hazards that people experience annually or even multiple times a year reduce

the gap between statistical and perceived risk. Risk perception is higher on average in

the western USA. Lastly, if risk perception increases for one hazard it would also increase

for any coincident hazard.

Decreasing risk perception with greater storm, heat, and flood hazard doesn’t point to a

convincing reason. Heat and flood are the most spatially even hazards, i.e., the highest

probability of experiencing high hazard when drawing a random spatial sample of points.

These hazards also tend to be higher in rural areas and the southeastern USA, which are

more politically conservative and as such exhibit greater dismissiveness of climate change

and the risk it poses. Storm hazard is highest in the pacific northwest and the northeast,

regions for which overall climate risk is relatively low thus giving those with the greatest

hazard a feeling of limited exposure.

Areas for future research include applying more sophisticated machine learning methods

to measuring climate risk perception and its determinants, as explained earlier in the

discussion. Testing the sensitivity of these measurements when implementing a Twitter

data quality framework could also improve measurement accuracy and precision. Find-

ing additional data sources to validate every indicator would assist in fine tuning our

measurement instruments. Lastly, applying the methodological approach proposed here

to related topics may even further highlight the advantages of supplementing survey data

with Twitter data, such as observing how CRP changes throughout the hazard/disaster

event process, assessing how different types of messaging influence CRP, and exploring

the relationship between information reliability and CRP.
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Conclusion

This study is one of the first validations of climate risk perception and its determinants us-

ing data from the microblogging service Twitter. We constructed a proxy survey dataset

to conduct this validation by applying natural language processing and network analysis

to text and social connections, respectively. Our risk perception measurement suitably

compared to predicted risk perception from a theoretically-based statistical model pro-

posed by van der Linden (2015); the determinants of risk perception that we measured

aligned in effect size and direction to the aforementioned model; and a final iteration of

risk perception, predicted by a Bayesian model including priors from modeling both sur-

vey and Twitter data, found sufficient agreement with an established survey. However,

our statistical and perceived risk comparisons between climate risk perception measure-

ments from Twitter and the established survey did not represent similar trends across

climate hazards. One way to reach greater concordance between the two measures may

be through applying UGBD quality control frameworks to fine tune measurement instru-

ments.

Groves (2011) outline three eras of survey data collection. The nascent period (1930-1960)

which witnessed the introduction and formalization of survey methods, the institution-

alizing period (1961-1990) of widespread adoption by governments and other industries,

and the digital period (1991-present) that embraced alternative collection modes, par-

ticularly from the internet, in large part due to declining survey participation rates. It

is possible that we are entering a fourth era, the find-and-retrieve period (for lack of a

better term), whereby researchers construct ‘survey’ datasets by collecting characteris-

tics provided by individuals via social networks and the internet of things (among other

sources). As happened in other periods, newer modes of data collection and analysis will
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supplement older, thoroughly validated, and rigorous methods to afford researchers and

the public a more accurate representation of reality.
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Appendix
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Figure 4.1: Theoretical climate risk rerception model (CRPM) from van der Linden
(2015). A social-psychological model of climate risk perceptions which divides determi-
nants into three dimensions: cognitive factors, experiential processing, and socio-cultural
influences. The model explains over 70% of the variance in risk perception when control-
ling for a fourth dimension, socio-demographics.
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Figure 4.2: Methodological approach to modeling climate risk perception with Twitter
data.
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Table 4.1: Review of climate risk perception survey sampling methods.
sample size (n) place contact mode method explained variance (pct)

808 UK in-person nationally representative 69.00
500 UK online quota 49.00
673 US mail nationally representative 47.00
921 Australia online quota 72.00

1111 US online quota 43.00
765 Alger County, Michigan, USA mail locally semi-representative 55.00

1822 Great Britain interviews nationally representative 54.00
1001 USA two waves: (1) mail out and (2) telephone nationally representative 52.00
1093 USA telephone quota 43.00
1093 USA telephone quota 42.00

269 New Zealand mail nationally representative 1-year panel 43-48
157 Mannheim, Germany in-person locally representative 31.00
621 Sweden mail nationally representative 24-26

1002 USA telephone nationally representative 22-25
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Table 4.2: Available data fields from the Twitter Application Programming Interface
(API).

variables description
text input text from Twitter user or referenced tweet (retweet)
userID unique identifier of Twitter user
location text-based location of userID (e.g. Santa Barbara, California)
tweetID unique identifier of tweet
timeStamp date and time of tweet posting
language preferred lanugage of Twitter user
links url for any content embedded in tweet
retweetID unique identifier for referenced tweet
replyID unique identifier for replied tweet
mentionID unique identifier for any mentioned userID
likes tweets liked by a userID
followers userIDs following a userID
following userIDs that a userID follows
hashtags metadata tag related to a theme
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Figure 4.3: Spatial distribution of Tweets across the Conterminous USA.
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Figure 4.4: County-level spatial distribution of climate risk perception predictors esti-
mated from Twitter data.
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Figure 4.5: County-level spatial distribution of climate risk perception predictors esti-
mated from Twitter data.
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Figure 4.6: Intercorrelations among climate risk perception predictors with Cronbach’s
Alpha along the diagonal.
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Figure 4.7: Relative difference in risk perception predicted with regression model and
natural language processing (NLP) methods presented at the county level and reported
as relative differences between the two estimates.
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Table 4.3: Original and Proxy Model Coefficients with Effect Directions and Relative
Rankings

predictors originalCoefficient proxyCoefficient signChange origRank proxyRank rankChange
holisticAffect 0.37 0.11 no 1 3 -2
personalExperience 0.20 0.17 no 2 2 0
socialNorms 0.20 0.01 no 3 5 -2
ccKnowledge 0.10 0.03 no 4 4 0
biospheric 0.05 0.39 no 5 1 4
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Figure 4.8: Predicted risk perception from Twitter data with a Bayesian model.
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Figure 4.9: County-level percent concerned climate change will harm them personally
from Yale Climate Opinion Maps (YCOM).
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Figure 4.10: County comparison of Twitter and YCOM risk perception. Estimates that
fall within the YCOM survey instrument .95 confidence interval.
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Figure 4.11: The relationship between statistical climate risk and climate risk perception.
An upward trend along the x-axis indicates a positive association between statistical and
perceived risk.
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Figure 4.12: The relationship between statistical climate risk and climate risk perception.
An upward trend along the x-axis indicates a positive association between statistical and
perceived risk.
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Chapter 5

Conclusion

Climate risk is an increasingly important area of study due to climate change, the rate

of population and economic growth, and widening social inequalities. The fields of risk

research on climate hazards have evolved over time from only estimating physical haz-

ard and modeling structural solutions, then accounting for individual and organizational

decision making as a determinant of exposure, and eventually considering the multi-

dimensionality of vulnerability to negative consequences resulting from hazard events.

These paradigm shifts in selecting factors for climate risk assessment happened alongside

developments in modeling the determinants of risk perception as well as the implications

for deviations between statistical and perceived risk. The unequal distribution of climate

risk among marginalized groups and places has garnered scientific and policy attention

to mitigate inequitable outcomes over the next several decades.

This dissertation contributes to answering pressing questions in climate risk research.

We began with a climate risk literature review that covered the history of related fields

and explained prominent concepts and methods for each parameter of climate risk. Each

of the subsequent chapters took an empirical approach to studying distinct aspects of
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climate risk across five different climate hazards–extreme precipitation, extreme heat,

drought, wildfire, and flooding. The second chapter, ‘Modeling Social Vulnerability De-

terminants of Disaster Loss,’ estimated the relative contribution of social indicators to

variability in disaster loss. The third chapter, ‘Mapping Climate Risk Inequalities,’ as-

sessed the social and spatial distribution of climate hazards by comparing multiple types

of inequality metrics. The fourth chapter, ‘Measuring Climate Risk Perception with

Twitter Data,’ built a dataset of socio-cognitive characteristics from user-generated so-

cial media data. Our goals in conducting these studies were to advance measurement

and modeling of climate risk, both the contributing factors and the societal implications

of changing physical hazard and risk information. We proceed with a summary of each

chapter including future research outlines, follow this by recommending a topical area

for research and policy attention, and conclude with thoughts on how to integrate con-

cepts and methods from this dissertation into a generalizable framework for climate risk

modeling.

‘Modeling Social Vulnerability Determinants of Disaster Loss,’ took a statistical mod-

eling approach to validating social indicators that have been identified in the literature

and in practice as influential for moderating adverse outcomes from environmental haz-

ards. We first demonstrated that social vulnerability indices, measures for aggregating

multiple social indicators into one variable, are not internally consistent as values range

drastically when including different input data nor are they theoretically consistent since

the relative contribution of each indicator to index values also changes. We then built

several statistical models of the relationship between climate hazard, social vulnerability,

and disaster loss in order to examine which social indicators are the strongest predictors

of loss. Our results suggest that climate risk modeling should account for social vul-

nerability and that the relative contribution of social indicators varies across hazards.
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Context also appears to be important, whereby certain indicators may represent a larger

explanatory share of outcome variation, in this case loss, depending on the levels of other

indicators and model parameters.

We recommend several ways to attain a better sense of how exactly social indicators re-

late to disaster loss and the climate risk model. First, include data on hazard mitigation.

This could come from a range of sources, including government repositories such as the

National Inventory of Dams, FEMA FIRM maps, state and local climate action plans,

and private data from the insurance industry. Second, include an overall hazard estimate

alongside event specific characteristic measurements. It is not possible to correctly mea-

sure event characteristics for every event sampled, but an overall hazard estimate can

provide added explanatory support. Third, utilize diverse types and sources of outcomes

with higher spatial resolution that is accurately spatially attributed. It will be reasonable

to recommend that institutions focus resources towards specific social indicators for dis-

aster loss mitigation when enough studies consistently validate their influence. Localized

studies of specific hazards still likely provide the best evidence to support mitigation

planning.

‘Mapping Climate Risk Inequalities,’ leveraged differences among distinct metric formu-

lations and types to examine diverse representations of inequality. Vertical, horizontal,

and spatial inequality were the three dimensions that we studied. Vertical inequali-

ties manifest across either space or population, horizontal inequalities are those between

population groups, and spatial inequalities assess the similarity of nearby values. Each

hazard had varying degrees of vertical inequality when looking among states and at the

national level. Horizontal inequalities were present between high and low social vulner-

ability groups, but it was not necessarily the case that lower social vulnerability groups

lived in more hazardous places. Hazards tend to be highly spatially unequal, which is in
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accordance with the underlying physical processes producing hazard geographies. This

study suggests that–since inequality varies greatly across hazards, places, and metrics–

researchers should carefully select inequality metrics specific not only to the research

question but also based on the identification of theoretical processes for inequality for-

mation and policy-relevant implications.

There are a few avenues for future research that would add to better understanding of

vertical, horizontal, and spatial hazard inequalities. Exploring hazard inequalities at

larger scales using higher resolution hazard data to illuminate intra- county and city and

inequalities. Examining how inequalities change over time along with population char-

acteristics, both historically and by projecting out to the future, will provide evidence

regarding differences among groups for selection into and out of hazardous areas. Inves-

tigating the processes underlying spatial inequality formation and opportunity structures

is an imminently important endeavor, but one that likely necessitates place-based, qual-

itative, legal, and other research approaches extending beyond the methodological scope

of this type of study. A crucially important research topic will be to understand how

society responds to shifting climate hazard from an inequality lens. Extending our anal-

ysis beyond social vulnerability indicators to features of disaster mitigation and climate

adaptation would tease out processes underway that will either ameliorate or exacerbate

existing inequalities.

‘Measuring Climate Risk Perception with Twitter Data,’ contributed to a growing body

of social and behavioral science research that substitutes census and survey data with

user-generated big data. To that end, we built a dataset for modeling the determinants

of climate risk perception using data provided by the microblogging service Twitter.

We primarily applied natural language processing to textual data and analyzed social

networks to construct this dataset. Validation of our measurements was conducted in two
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phases, first against statistical model results from a published survey measuring the same

climate risk perception determinants and next with the spatial distribution of climate

risk perceptions measured by an annual survey. Although the instruments and data

we gathered require additional refinement, preliminary results obtained as part of this

validation study indicate that Twitter may soon serve as an appropriate supplementary

data source for measuring complex phenomena.

Improvements in measuring and modeling climate risk perception estimated with Twitter

data include applying more sophisticated machine learning methods to measuring climate

risk perception and its determinants. Testing the sensitivity of these measurements when

implementing a Twitter data quality framework, similar in purpose to those established

for survey data, could also improve measurement accuracy and precision. Finding addi-

tional data sources to validate every indicator included as part of the modeling would

assist in fine tuning our measurement instruments. Lastly, applying the methodological

approach proposed here to related topics may further highlight the advantages of supple-

menting survey data with Twitter data, such as observing how CRP changes throughout

the hazard/disaster event process, assessing how different types of messaging influence

CRP, and exploring the relationship between information reliability and CRP.

Beyond specific future research directions stemming from these papers, there is a climate

risk topic of increasing importance for the next several decades that was laid out in

the introduction of this dissertation. We suggested that, as a climate risk management

strategy, the risk averse will select out of residing and investing in places with higher

hazard based on both statistical and perceived climate risk. Individuals and households

will likely sort on climate hazard by social advantage. Housing services firms–mortgage

lenders, insurance underwriters, and developers–will disinvest from hazardous areas. This

may proceed in a similar way to redlining, where the most vulnerable end up living in
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more hazardous places with fewer resources to participate in housing markets and manage

climate risk. Disinvestment justified by unmanageable climate risk is not prohibited

under current law:

“Redlining on a racial basis has been held by the courts to be an illegal practice. It is

unlawful under the Fair Housing Act only when done on a prohibited basis. Redlining

an area on the basis of such considerations as the fact that the area lies on a fault line

or a flood plain is not prohibited.” Federal Reserve Board (Interagency Fair Lending

Examination Procedures, n.d.)

It does seem that the precipice is clearly marked. Climate adaptive risk management will

be the least equitable in places with housing market disinvestment and out-migration of

the socially advantaged. Communities with disproportionately high social vulnerabil-

ity will face additional barriers to affordable housing. Historic redlining practices and

the newer practice of climate lining– a potential term for these tandem processes of

out-migration and disinvestment–may compound to increase socioeconomic inequity and

environmental injustice. Property-level climate hazard data has already begun to impact

housing markets. Housing services firms are disinvesting in areas with high flood hazard

exposure, which is also a product of urban stormwater and floodplain infrastructure.

Higher risk typically falls in places with lower tax bases, many of which were historically

redlined, because they lacked the resources and investment to construct essential hazard

management infrastructure (Bloomberg, 2020).

Even before the process just described takes shape, an initial issue with improved climate

hazard estimation is additional requirements to purchase insurance or retrofit a home, for

example if new flood models place the property in the 100-year floodplain (Pralle, 2019).

In other cases where insurance is not mandatory but highly recommended, the less advan-

taged may not be able to afford it yet a disaster without insurance could be devastating.
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Safransky (2020) finds that this contemporary data-driven approach to disinvestment is

not unique to climate risk. Urban planners now employ algorithmic decision-making for

spatial governance and capital investment. This approach has led to the racialization of

space and the spatialization of poverty (Lipsitz (2007); Safransky, 2020), whereby race

influences the physical locations and societal spaces in which people live and those spaces

reciprocally play a role in opportunity structures and social outcomes.

In any place where disinvestment and depopulation is justified by unmanageable climate

risk, marginalized communities will face increasing housing market barriers. Just and

equitable climate adaptive risk management should ensure access to affordable housing,

quality neighborhoods, and low climate hazard. Understanding where, how, and why

climate lining occurs is therefore crucial for implementing effective regulatory measures

to prevent disinvestment, especially in the most socially vulnerable neighborhoods. Some

research questions stemming from these developments are as follows. What is the spatial

relationship between historical housing disenfranchisement (e.g. redlining) and climate

hazards? Do historical trends in housing data suggest that neighborhood sorting on cli-

mate hazards is already happening? How will households and housing markets respond

to advances in the production and provision of climate hazard information? What are

the socioeconomic and demographic distributions of people living in areas with climate

hazard-driven out-migration and disinvestment? What are the consequences for house-

holds in areas deemed to be too hazardous by individuals and organizations but that do

not have access to support, such as managed retreat programs?

An approach to developing a research agenda for the study of climate lining and other

climate risk topics must be inclusive of the topics studied in this dissertation. Thinking

back to the equation presented in the introduction:
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ClimateRiskitj = Hitj · Eitj · Vitj

Where climate risk is a function of hazard H, exposure E, and vulnerability V, all per

geographic unit i at time t for outcome j (Kron, 2002). This generalizable modeling ap-

proach can be easily applied to any combination of subscripts, such as property loss for

households in the year 2050. The papers in this dissertation studied dimensions of climate

risk using census tracts and counties as the geographic unit and disaster loss as the out-

come. Time varied depending on the modeling experiment. We did not explicitly assess

risk for a specific combination of geographic unit, outcome, and time period. Although

specifying subscripts for the climate risk equation depends on the research question and

application, it is not the case that modeling climate risk for a specific subscript com-

bination represents all determinants of risk. This is to say that household climate risk

depends not only on household vulnerability but also the vulnerability of neighborhood,

city, state, and country. The same applies for exposure and hazard. Because of this, we

recommend that risk assessments select an outcome and geographic unit for a set time

range before carefully specifying the data required in a climate risk model.

Climate risk assessments for future time periods need to take into account that risk per-

ception mediates each parameter in the model. Examples include greater risk perception:

encouraging climate change mitigation to reduce hazard, decreasing exposure as units

would move out of hazardous places, and reducing vulnerability through resiliency and

capacity building. Furthermore, climate adaptation and the disaster cycle may exhibit

feedback loops that increase existing socioeconomic and hazard inequalities. Widening

inequalities, particularly an expansion at the lower end of socioeconomic distributions as

well as hazard distributions along socioeconomic lines, would limit the capacity for units

in aggregate to reduce exposure and vulnerability, thus increasing climate risk. It is also
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important to note that selecting one outcome is not representative of the full risk profile.

Pursuing a comprehensive climate risk assessment at the household level with these con-

siderations in mind therefore requires a multitude of model specifications and input data.

Instead of estimating a full risk profile, we recommend that climate risk assessment should

instead consider the most consequential outcomes facing a geographic unit. Quantifiable

risks at the household level are likely property loss and damage, insurance and utilities

costs, and disruptions to daily life. Winnowing down the risks to a specifiable set such as

this allows researchers and practitioners to feasibly select relevant outcomes and param-

eter values that overlap and thus reduce the amount of data and effort required, which

is particularly useful for those with limited resources.

Climate risk threatens human well-being and economic systems across the United States.

We demonstrated that social vulnerability moderates how well prepared communities are

for disaster events. Governments can implement climate adaptation planning to decrease

risk from climate hazards but will need to target resources towards social indicators

and places that need them most. In spite of even the most accurate resource targeting,

communities will determine hazard mitigation according to the way they perceive and

respond. This dissertation added to our understanding of the roles that climate hazard,

social vulnerability, and sociocognitive factors play in climate risk assessment. We hope

our findings and recommendations will support strategies for more equitable, effective,

and efficient climate risk assessments.
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Appendix A

Climate Hazard Estimation

To assess climate risks we first determine the relevant spatial unit of analysis and integrate

many datasets to comparable spatial and temporal scales. Data from historical observa-

tions and modeled projections establish baseline and future risks for each climate hazard.

We weight future risk estimates with the change in risk over the next several decades.

Climate risk projections come from tens of internationally accepted global climate models

which have been validated as part of the Coupled Model Intercomparison Project Phase

5 (Taylor et al., 2012). When available, we choose output for Representative Concentra-

tion Pathway 8.5 (RCP8.5), a conservative, worst-case scenario for the continued release

of CO2 into the atmosphere. Researchers have downscaled these projections to higher

resolution across the US by utilizing local information (e.g. weather patterns, vegetation,

hydrodynamics, topography, etc.) and leveraging the empirical links between climate at

large scales and that at finer scales. We take these downscaled data products to produce

high spatiotemporal resolution estimates of how climate risk will change over the 21st

century. Figure ?? displays the climate hazards we estimate and the average climate

hazard aggregated at the county level. Table ?? provides summary statistics.
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Drought (water scarcity)

We estimate drought risk based on the Water Supply Stress Index (WaSSI) hydrologic

model, which measures how much available water in a location is used by human activ-

ity. WaSSI is specific to each watershed, a land area with the same water outlet. The

geographic unit of analysis is USGS hydrologic designation HUC-8, the sub-basin level,

analogous to medium-sized river basins. WaSSI takes into account current and projected

water supply (surface and ground water), demand due to population size and water use,

and features of the watershed, such as soil properties and land cover. The underlying

analysis uses downscaled data from CMIP5 climate models under the RCP8.5 scenario

as inputs (Averyt et al., 2013; Duan et al., 2019).

Heat and storm (extreme high temperatures and precipitation)

Climate models project extreme heat and precipitation events to increase globally. We

measure projected changes to extreme events using Localized Constructed Analogs, global

climate model (GCM) output that has been enriched for statistical downscaling to a

higher geographic resolution (Pierce, Cayan, & Thrasher, 2014). Downscaled projections

better match local conditions at a high 5km2 resolution. We conduct all statistical

estimates, e.g. annual extreme counts, per GCM model and then average across 27 GCMs

from the Climate Model Intercomparison Project (CMIP5). Precipitation estimates are

based on the annual average counts of extremely wet (or snowy) two-day storms and the

annual total amount of precipitation that will fall during those storms. Heat estimates

are based on annual average counts of extremely hot days. The ‘extreme’ threshold is

based on the cell-wise 98th percentile of observed values during the historic baseline,

from 1981-2005.

Wildfire: spatiotemporality, intensity, and severity
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We measure wildfire risk by areal extent and return interval (proportion burned), in-

tensity (flame length exceedance probability), and severity (conditional risk to potential

structures). The first two parameters, areal extent and return interval, are based on the

MC2 dynamic global vegetation model, which uses information from an ensemble of 19

CMIP5 climate models on changing temperatures, precipitation, and atmospheric CO2.

MC2 simulates the competition among plants for light, nitrogen, and soil water to project

vegetation coverage in the future; this projected vegetation coverage is translated into an

expected proportion of area likely to burn across the U.S. These data come as annual es-

timates of proportion burned until 2100 (Abatzoglou, 2013; Abatzoglou & Brown, 2012;

Bachelet & Turner, 2015; Barbero, Abatzoglou, Larkin, Kolden, & Stocks, 2015).

The other two parameters derive from US Forest Service data products: intensity repre-

sents the likelihood that flame length exceeds four feet if a fire were to occur, and severity

represents the risk posed to a hypothetical structure if a fire occurred (Scott et al., 2020).

Neither of these estimates factor in wildfire probability, which we instead capture using

the MC2 data. We produce a wildfire risk rating from the weighted geometric average of

relative ranked values for these statistics. The weighting is .5 for areal extent and return

interval, .25 for intensity, and .25 for severity.

We enhance the MC2 data with observed Western US fire occurrence from the Monitor-

ing Trends in Burn Severity remotely sensed data product (Eidenshink et al., 2007) and

localized improvements in quality, resolution, and coverage, such as probabilistic wildfire

projections for California’s Fourth Climate Change Assessment (Westerling, 2018). Typ-

ically, we average across estimates from different datasets that cover the same time and

place. However, when spatiotemporal resolutions are misaligned or very coarse, we take

the maximum value across datasets to represent the absolute probability of fire occur-

rence. We apply a mask to reduce the risk estimate in cells representing non-vegetated
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land and the presence of human activity, such as agriculture and densely built environ-

ments, which lower the risk of wildfire.

5. Flood: high tide, storm surge, pluvial, fluvial

Flood risk is a combination of several types of flooding: storm surge, high tide, fluvial,

and pluvial. Coastal flooding, storm surge and high tide, occurs when coastal areas

become inundated by sea water. Precipitation-based flooding can occur anywhere and

generally represents two distinct types: bodies of water overflowing (fluvial) and surface

water floods (pluvial). Flood risk estimates come from the occurrence probability and

likely depth of all four types of flooding between 2020 and 2050 for both Representative

Concentration Pathway (RCP) 4.5 and 8.5. We estimate each type of flood risk indepen-

dently and calculate a marginal cumulative sum to produce the flood risk rating. This

approach accounts for accumulation of any-type flooding and does not discount for lower

or non-existent any-type flooding. For example, if risk is present across three types of

flood for a parcel, with a risk of 50 across each type we observe a flood risk rating of

87.5; 90.6 if risk is 25, 50, and 75 across types; and 96 if risk is 0, 80, and 80. Property-

level flood risk estimates are calculated as the average value of all cells within the entire

property parcel.

Coastal flooding: high tide

High-tide coastal flooding occurs when water inundates land during the highest tides.

It is a cyclically occurring phenomenon where coastal waters exceed mean higher high

water (MHHW), the average height of the highest tide recorded each day. The land

above MHHW is dry most of the time. MHHW has a baseline average from the most

recent National Tidal Datum Epoch from 1983-2001 and locally varies by relative sea

level, tidal behavior, and geomorphological features and processes, such as elevation and
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coastal erosion. Similarly, high tide flooding probability is a function of local relative sea

level and elevation. This means that as the planet warms and sea levels rise, high tide

flooding is likely to become more frequent and cover a greater spatial extent in coastal

communities. However, the increase in frequency depends on local relative sea level rise.

We use several National Oceanic and Atmospheric Administration (NOAA) data and

modeling products to estimate high tide flooding: daily observed tidal variability mea-

sured at over 100 tide gauges, a 50m2 MHHW interpolated surface, 10m2 digital elevation

models (DEM), and relative sea level rise projections (Kopp et al., 2014; Marcy et al.,

2011; Sweet, Dusek, Marcy, Carbin, & Marra, 2019; Sweet et al., 2017; Sweet, Dusek,

Obeysekera, & Marra, 2018). We utilize established coastal flooding models to quantify

the typical range of high tide heights for a location and the associated inundation. We

then use forecasts of relative sea level rise through 2050 to augment these tidal heights

and estimate how much land will be effectively inundated in the future.

A simple explanation of the method to estimate high tide flooding is:

1. Interpolate MHHW, relative sea level rise, and daily tidal distributions with inverse

distance weighting for each cell of the DEM.

2. Non-parametric probability density estimation to produce theoretical high tide

flooding probability density functions (HTF PDF) with the maximum daily tidal

distributions.

3. Shift the HTF PDFs by projected relative sea level rise in ten-year time steps.

4. Apply DEM elevation values to HTF PDFs to produce high tide flooding proba-

bility estimates. These values represent our high tide flood risk rating, the daily

probability of high tide flooding. We multiply the probability by 365 to find the

expected annual number of high tide flooding days.

5. Finish with a geospatial cleanup. We remove cells representing hydrographic fea-
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tures and those with risk larger than 0 but disconnected from the sea using region

grouping.

Coastal flooding: storm surge

A storm surge is a rise in ocean water, higher than any normal tide, generated by a

storm. Storm surges happen when extreme storm winds push water toward the shore.

The depth of the resulting flood depends on the strength of the storm and its direction,

as well the shape of the coastline and local terrain. Similar to high tide flooding, sea level

rise will increase the depth of storm surge in coastal communities. We use models from

NOAA and the National Hurricane Center (NHC) that estimate the worst-case scenario

flood depth at a 10m2 resolution along the Atlantic and Gulf coasts for each category of

hurricane. To quantify the likelihood of these floods historically and in the future, we

analyze hurricane tracks to measure how often category 1-5 storms pass within about 50

miles of a location.

Precipitation-based flooding: fluvial and pluvial

These types of flooding occur in both coastal and inland areas. Fluvial, or riverine,

flooding happens when a river or body of water overflows onto surrounding land. Pluvial,

or surface, flooding occurs when extreme rainfall creates flash flooding or surface water

buildup away from a body of water. These types of flooding comprise our most intensive

modeling efforts due to their inherent complexity. The remainder of this document focuses

on precipitation-based flooding.

We utilize the open-source cellular automata-based model, Weighted Cellular Automata

2D (WCA2D), to quantify present and future precipitation-based flood risk. WCA2D has

dynamic parameterization and modern computing hardware capabilities for fast simula-

tions (Guidolin et al., 2016). WCA2D is part of the CADDIES framework, a toolkit for
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efficient, high resolution computational flood modeling (Ghimire et al., 2012; Guidolin

et al., 2012). Initially developed for small area urban surface water runoff and sewer

network simulations (Austin, Chen, Savić, & Djordjević, 2014), CADDIES has expanded

to become a generalizable tool for modeling precipitation-based flood risk.

The CADDIES framework has been validated with UK Environment Agency test cases

and the Infoworks model (Guidolin et al., 2016); identified as a suitable tool for identifying

flood hazard in urban and rural catchments (Webber, Booth, Gunasekara, Fu, & Butler,

2019); and applied in case studies ranging from the cascading effects of flooding on critical

infrastructure (Gibson et al., 2019; Vamvakeridou-Lyroudia et al., 2020) to how green

infrastructure mitigates urban flooding (Webber et al., 2020).

We establish current (2020) flood risk using historical meteorological observations and

global climate models (GCMs) validated under Coupled Model Intercomparison Project

Phase 5 (Taylor et al., 2012). These data feed models of rainfall and runoff that capture

flooding behavior across the United States. Flood risk in 2050 is modeled using the same

GCM ensemble under the RCP 4.5 and 8.5 scenarios. We estimate expected occurrence

probability and likely depth of a flood between 2020 and 2050.
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