
Nature Neuroscience

nature neuroscience

https://doi.org/10.1038/s41593-023-01565-4Article

Local synaptic inhibition mediates cerebellar 
granule cell pattern separation and enables 
learned sensorimotor associations

Elizabeth A. Fleming1, Greg D. Field    1,2, Michael R. Tadross    1,3 & 
Court Hull    1 

The cerebellar cortex has a key role in generating predictive sensorimotor 
associations. To do so, the granule cell layer is thought to establish unique 
sensorimotor representations for learning. However, how this is achieved 
and how granule cell population responses contribute to behavior have 
remained unclear. To address these questions, we have used in vivo calcium 
imaging and granule cell-specific pharmacological manipulation of 
synaptic inhibition in awake, behaving mice. These experiments indicate 
that inhibition sparsens and thresholds sensory responses, limiting overlap 
between sensory ensembles and preventing spiking in many granule 
cells that receive excitatory input. Moreover, inhibition can be recruited 
in a stimulus-specific manner to powerfully decorrelate multisensory 
ensembles. Consistent with these results, granule cell inhibition is required 
for accurate cerebellum-dependent sensorimotor behavior. These data 
thus reveal key mechanisms for granule cell layer pattern separation beyond 
those envisioned by classical models.

Associative learning is an essential process linking sensation and action, 
providing a key mechanism to modify behavior. The cerebellum has 
a central role in associative sensorimotor learning, both for generat-
ing coordinated movements and cognitive processes1,2. To do so, the 
cerebellum receives excitatory mossy fiber input from diverse sources3 
that transmit sensory, motor and cognitive information to granule 
cells in the granule cell layer4. Granule cells must integrate and relay 
these signals to Purkinje cells, the output neurons of the cerebellar 
cortex, in a manner that establishes unique sensorimotor representa-
tions necessary for associative learning and the expression of learned 
cerebellum-dependent behaviors.

Classical models speculate that unique granule cell representa-
tions are generated through a process of ‘pattern separation’5,6. Expan-
sion recoding is one mechanism thought to enable pattern separation 
because mossy fiber inputs are distributed onto a population of granule 
cells that is ~100-fold larger than the number of mossy fiber inputs6. 
Because each granule cell receives ~4 inputs that can transmit the same 

or different modalities7–10, random mixing is also thought to facilitate 
pattern separation. Another key mechanism proposed by classical 
theories is the thresholding of granule cell activity by local inhibitory 
interneurons in the granule cell layer called Golgi cells. Golgi cells 
exhibit spontaneous pacemaker activity, releasing γ-aminobutyric 
acid (GABA) that acts continuously on granule cells to produce a tonic 
inhibitory current11,12. This tonic inhibition regulates the spike thresh-
old13 and gain of granule cell responses14. In addition, Golgi cells receive 
feedforward excitation from mossy fibers and feedback excitation 
from granule cells, thus allowing them to respond dynamically to the 
inputs and outputs of the granule cell layer. Together, this tonic and 
phasic Golgi cell inhibition has long been hypothesized as necessary 
for creating sparse, nonoverlapping granule cell population codes.

In contrast with predictions of classical theories, modern calcium 
imaging approaches have shown that granule cell responses can be 
dense and redundant in some conditions15–18. These studies have indi-
cated that complex behaviors requiring task engagement, learning 
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video was used to detect whisker and facial movements between trials 
and isolate responses related to these movements32 (Supplementary 
Fig. 4). Third, we controlled for spontaneous and reactive body move-
ments using a sensitive piezo vibration sensor33,34 (Fig. 1a and Supple-
mentary Fig. 5). Together, these methods enabled us to discard trials 
with body movement and demonstrate that whisking-related activity 
does not significantly contaminate sensory responses (Supplementary 
Figs. 4 and 5; Methods).

In control conditions, combining data across stimulus frequencies 
and intensities reveals that both auditory and somatosensory stimuli 
recruit population-level granule cell activity in Crus I (Fig. 1). All stimuli 
evoke granule cell responses that begin near the time of stimulus onset 
(Fig. 1c,d,h,i). For auditory stimuli, which could be delivered for a longer 
duration (1 s) than somatosensory stimuli, individual granule cells 
respond at times across the duration of the stimulus window (Figs. 1c 
and 6a), and many granule cells respond preferentially at the offset 
of the stimulus (Fig. 1c). Overall, granule cells in control conditions 
produce modest responses (Fig. 1d,e,i,j) occurring with a low prob-
ability (Fig. 1f,k; auditory: 0.14 ± 0.00, n = 3,360 cells; somatosensory: 
0.06 ± 0.00, n = 815 cells) and small single-trial amplitude (Fig. 1g,l; 
auditory: 0.41 ± 0.01 ΔF/F, n = 1,942 cells; somatosensory: 0.53 ± 0.04, 
n = 118 cells). These properties are consistent for all individual audi-
tory and somatosensory stimuli tested (Supplementary Figs. 2 and 3).

Both classical models5,6 and in vivo whole-cell recordings13 have 
suggested that inhibition restricts granule cell sensory responses 
due to spike thresholding. Therefore, local inhibition could explain 
the low probability and amplitude of individual granule cell 
trial-by-trial responses. To test how local synaptic inhibition regulates 
sensory-evoked granule cell responses, we used the DART system19 
to selectively block GABAA receptors on granule cells (Fig. 1 and Sup-
plementary Figs. 1 and 6–8). Here we expressed a glycosylphosphati-
dylinositol (GPI)-anchored HaloTag Protein (HTPGPI) in granule cells to 
acutely and specifically antagonize GABAA receptors upon infusion of 
gabazine.1DART.2 (Fig. 1; DART). This manipulation dramatically altered 
responses to all sensory stimuli tested (Fig. 1 and Supplementary Figs. 2  
and 3), producing significantly larger mean population responses  
(Fig. 1d,e,i,j), increased response probability (Fig. 1f,k; auditory: 
0.38 ± 0.00, n = 3,360 cells, P < 0.0001, paired t test; somatosensory: 
0.31 ± 0.01, n = 815 cells, P < 0.0001, paired t test) and increased ampli-
tude of single-trial responses (Fig. 1g,l; auditory: 0.60 ± 0.02 ΔF/F, 
n = 1,942 cells, P < 0.0001, paired t test; somatosensory: 0.88 ± 0.07, 
n = 315 cells, P < 0.0001, paired t test). These changes in single-trial 
response probability and amplitude were observed across all individual 
variations of auditory and somatosensory stimuli tested (Supplemen-
tary Figs. 2 and 3).

In addition to changes in sensory-evoked responses, we also 
observed a significant enhancement of spontaneous activity when 
inhibition was blocked (Fig. 1c,h; control F: 0.000 ± 0.000, DART F: 
0.004 ± 0.001, n = 1,616 cells, P < 0.0001, paired t test). This effect is 
consistent with previous data revealing that a nonspecific block of 
GABAergic inhibition in the cerebellar cortex increases spontane-
ous granule cell spiking and can degrade the signal-to-noise ratio of 
sensory-evoked responses35.

To test the selectivity of these effects, we used a variation of 
gabazine.1DART.2 that cannot bind HTP (nonbinding gabazine.1nbDART 
(nbDART)) and a variation of HTP that cannot bind ligand (ddHTP). 
Neither nbDART infused into animals expressing HTP nor DART infused 
into animals expressing ddHTP significantly changed auditory or soma-
tosensory responses (Supplementary Figs. 6 and 7). Together, these 
results are consistent with the central role of GABAergic inhibition 
in enforcing granule spike thresholds to restrict population activity, 
maintaining sparsity of spiking both within and across trials.

Notably, many granule cells that are silent in control conditions 
become responsive after blocking synaptic inhibition, resulting in a 
dramatic increase in the number of granule cells responsive to both 

and compound body movements likely to involve sensory, motor, 
cognitive and efference copy signals can result in relatively widespread 
granule cell activity. In such cases, where many complex granule cell 
representations are evolving across time, it has been challenging to 
disentangle discrete sensory representations and how they combine to 
form complex multisensory codes that remain dissociable for learning 
and behavior. Moreover, it has been difficult to test what mechanisms 
shape these sensory representations, as there has been a lack of tools 
for acute, cell-type-specific manipulations of granule cell GABAergic 
inhibition. Thus, how the granule cell layer encodes discrete sensory 
input at the population level, how local synaptic inhibition contributes 
to such representations and what role granule cell inhibition has in 
cerebellum-dependent behavior have remained unclear.

To address these long-standing questions, we have used an 
approach that allows in vivo measurement of cerebellar granule cell 
population responses while acutely blocking synaptic inhibition in 
a cell-type-specific manner. Specifically, we have used multiphoton 
population imaging in combination with the drugs acutely restricted 
by tethering (DART) system19,20 to acutely block synaptic inhibition 
onto granule cells. In response to discrete sensory input, we find that 
granule cell population activity is sparse and can be variable in terms 
of response probability, neural ensemble identity and response timing 
across trials. In contrast, acutely blocking synaptic inhibition dramati-
cally enhances stimulus-evoked responses, revealing a large popula-
tion of previously inactive cells, suggesting that thresholding is a key 
mechanism for sparsifying granule cell population ensembles. In addi-
tion, thresholding establishes separable granule cell populations that 
can only respond to combined multisensory inputs, a property that 
would not be possible if ensemble sparsity were determined by inputs 
alone. Surprisingly, we also find that inhibition can be recruited in a 
stimulus-specific manner, further enhancing pattern separation by 
removing cells from multisensory ensembles that are part of unisen-
sory ensembles. In support of our finding that synaptic inhibition has 
a central role in granule cell layer pattern identity and pattern separa-
tion, we find that blocking inhibition onto granule cells impairs the 
expression of a learned, cerebellum-dependent sensorimotor behavior. 
Together, these data reveal multiple distinct computations mediated by 
GABAergic inhibition onto granule cells that support sensory encoding, 
pattern separation and behavior in ways that extend classical models.

Results
Inhibition sparsens population-level sensory representations
To measure sensory-evoked activity in populations of cerebellar gran-
ule cells, we performed two-photon calcium imaging of GCaMP6f, 
which has been shown to report spiking in granule cells in vitro16  
(Fig. 1a,b). By crossing Ai148 (ref. 21) and BACα6Cre-A transgenic mice22, 
we observed dense labeling of granule cells, with only rare off-target 
labeling of Purkinje cells, which were excluded from imaging analysis 
(Methods; Supplementary Fig. 1). Crus I of the lateral cerebellum is a 
major target of both auditory and somatosensory pathways23, and gran-
ule cells in this lobule are robustly driven by both auditory and soma-
tosensory stimuli9,24,25. Thus, we imaged activity in Crus I in response to 
auditory stimuli (Fig. 1c–g (pure tones: 1, 5 and 10 kHz at 68 and 72 dB) 
and Supplementary Fig. 2) and somatosensory stimuli (Fig. 1h–l (gentle 
orofacial air puffs: 10, 15 and 20 PSI) and Supplementary Fig. 3).

Our goal was to measure how discrete sensory inputs are encoded 
in the granule cell layer and could be used as an initial substrate for 
associative learning. Although movement has been shown to enhance 
associative learning in one cerebellum-dependent behavior, it is not 
necessary for learning per se26. Thus, because Crus I receives input 
related to whisking and likely other movements27–31 that could confound 
our measures of sensory ensembles, we took multiple steps to isolate 
sensory-related granule cell activity (Methods). First, animals were 
habituated to orofacial air puffs, such that they produced reflexive 
whisker movements on only a minority of trials. Second, high-speed 
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auditory and somatosensory stimulation (Figs. 1c,h and 2a). Therefore, 
we compared the number of responsive cells to a conservative estimate 
of the total cells present in our field of view (based on the size of regions 
of interest (ROIs) detected with our analysis; Methods). This allowed us 

to estimate that, under baseline conditions, approximately 5.2 ± 0.5% 
of granule cells in our field of view responded to any individual audi-
tory stimulus and 1.1 ± 0.2% of granule cells responded to any indi-
vidual somatosensory stimulus (Fig. 2b). Following block of synaptic 
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Fig. 1 | Local synaptic inhibition sparsens and thresholds cerebellar granule 
cell sensory responses. a, Schematic of experimental approach for two-photon 
(2P) imaging of granule cell sensory responses with in vivo cell-type-specific 
pharmacology. b, Example average field of view across trials of granule cells 
expressing GCaMP6f during presentation of a somatosensory stimulus in the 
absence of whole-body movement. Yellow arrowheads designate significantly 
responsive cells. c, Top, example calcium traces (ΔF/F) from a granule cell on 
sequential tone presentation trials before (black) and after (red) gabazine.1DART.2 
infusion (DART, 1 µM). Bottom, mean responses of all cells with significant 
responses to a tone before (left) and after DART application (right) in an example 

mouse with granule cell HTP expression. Example cell above is cell 46. d, Mean 
time course of responses during tone presentation before (black) and after (red) 
DART infusion (n = 3,360 cells). Error is s.e.m. across cells from six mice. e, Mean 
response amplitudes for individual cells before (black) and after (red) DART 
infusion. Black lines are mean ± s.e.m. across cells. f, Same as e, for response 
probability. g, Same as e, for mean responses on all trials with significant 
responses (n = 1,942 cells). h–l, Same as c–g, for responses to somatosensory 
stimuli from six mice (i–k, n = 815 cells; l, n = 315 cells). Example cell in h is cell 192 
in the heatmap. ****P < 0.0001, paired t test (e–g, j–l).
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inhibition, there was a large expansion in the fraction of granule cells 
responsive to both auditory (13.1 ± 1.3%, P < 0.0001, n = 26 stimulus 
conditions, paired t test) and somatosensory (7.7 ± 2.1%, P < 0.01, n = 12 
stimulus conditions, paired t test) stimuli (Fig. 2b). Two points merit 
emphasis: First, these results indicate that the fluorescent granule cell 
responses we have measured are unlikely to reflect subthreshold activ-
ity, as the majority of granule cells were not responsive until inhibition 
was blocked. These cells necessarily received excitatory input in control 
conditions that was not reported by GCaMP activity. Second, the spar-
sity of granule cell population responses we have measured is due to 
local synaptic inhibition, not a sparsity of incoming mossy fiber input.

Inhibition establishes discrete unisensory ensembles
Given that each stimulus evokes sparse granule cell activity under con-
trol conditions, we next asked whether individual granule cells respond 
selectively to distinct stimuli. We find that granule cells prefer individual 
stimulus features, such that cells with robust responses to auditory 
stimuli of a given frequency respond more weakly to other frequencies 
(Fig. 3a–g; n = 3 mice; all comparisons to preferred stimulus, P < 0.0001, 
one-way analysis of variance (ANOVA)). Similarly, neurons that respond 
to a given somatosensory (Fig. 3i and Supplementary Fig. 10; all com-
parisons to preferred stimulus, P < 0.05, one-way ANOVA) or auditory 
(Supplementary Figs. 9 and 10; all comparisons to preferred stimulus, 
P < 0.0001, one-way ANOVA) stimulus intensity respond less strongly to 
other intensities. Notably, these stimulus preferences were graded, and 
across the population, there was considerable variability in the respon-
sivity to nonpreferred stimuli (Fig. 3b–d and Supplementary Fig. 10).

We next tested how GABAergic inhibition regulates stimulus pref-
erences in granule cells. In neocortical cells, there is evidence that 
sensory tuning can be sharpened by local synaptic inhibition in some 
conditions36. For granule cells matched between control and after 
DART infusion (that is, those responsive in both conditions), we find 
that removal of synaptic inhibition partially alters stimulus preferences 
(Fig. 3f,h,j), although mean population preferences remained signifi-
cant when inhibition was blocked (Supplementary Fig. 10; auditory: 
all comparisons to preferred stimulus, P < 0.0001, one-way ANOVA; 
somatosensory: all comparisons to preferred stimulus, P < 0.0001, 
one-way ANOVA). Consistent with enhanced response probabilities in 
DART, which led to an increased fraction of cells responding to more 
than one stimulus (Supplementary Fig. 11), stimulus tuning was broad-
ened modestly by blocking inhibition. Overall, however, these data 
suggest that granule cell stimulus preferences are largely inherited 
from presynaptic mossy fiber input, consistent with the small number 
of mossy fibers that impinge on individual granule cells and the lack of 
recurrent processing among granule cells.

To test how these stimulus preferences establish discrete pop-
ulation responses, we first measured the overlap across activated 

populations. We find that granule cells that respond to each stimulus 
feature establish ensembles with partial overlap (Fig. 4a,b; auditory 
fraction overlap: 0.53 ± 0.02, n = 6 stimulus conditions; somatosensory 
fraction overlap: 0.06 ± 0.01, n = 3 stimulus conditions).

On average, auditory ensembles contained 83.7 ± 14.7 cells, 
whereas somatosensory ensembles contained only 29.4 ± 6.5 cells. 
Therefore, the average overlap for auditory ensembles was 44.3 ± 0.2 
cells, but only 1.8 ± 0.1 cells for somatosensory ensembles. This was 
partly due to the smaller size of somatosensory ensembles and fewer 
stimulus conditions for this modality, but may also be partly due to 
their greater stability (Fig. 4c,d).

In the DART condition, where there is a large number of responsive 
cells that were unresponsive in control conditions, we find significantly 
more overlap between the ensembles that are responsive to each indi-
vidual stimulus (Fig. 4a,b; auditory: 0.90 ± 0.02, n = 6 mice, P < 0.0001, 
paired t test; somatosensory: 0.16 ± 0.03, n = 3 mice, P = 0.03, paired t 
test). Thus, blocking synaptic inhibition decreases the separability of 
the average population response to different sensory stimuli.

Sensory discrimination can also be influenced by trial-over-trial 
variability. Despite representing different stimuli with discrete ensem-
bles, there was significant variability across trials within each ensem-
ble of cells responding to any given stimulus feature (Fig. 4c,d). On 
average, each ensemble of responsive granule cells was only weakly 
correlated across trials (Pearson correlation, auditory: ρ = 0.22 ± 0.00; 
somatosensory: ρ = 0.34 ± 0.08). Thus, while the sparse population 
response allows for discrete granule cell ensembles to represent indi-
vidual stimulus features on average, the ensembles can be somewhat 
stochastic across trials, a feature that may contribute to the relatively 
slow time course cerebellar learning as compared with some other 
forms of associative learning37,38. Notably, despite the smaller ensemble 
sizes, we observed a higher correlation across trials within somatosen-
sory ensembles.

Notably, the large number of newly active cells in DART also added 
variability to ensemble identities, as ensembles became even less cor-
related across trials when inhibition was blocked (Fig. 4c,d; auditory: 
0.12 ± 0.01, 21.9 ± 0.8 trials/ensemble, six mice, P < 0.0001, paired  
t test; somatosensory: 0.24 ± 0.06, 16.7 ± 2.9 trials/ensemble, three 
mice, P = 0.35, paired t test). These results suggest that the higher mean 
response probability in DART (Fig. 1) is not sufficient to counter the 
variability introduced by the large number of additional responsive 
cells when inhibition is blocked. Together, these results indicate that 
inhibition serves to segregate granule cell ensembles representing 
discrete stimulus features largely by thresholding population activity.

By limiting population overlap, we expect that inhibition increases 
granule cell pattern separation and thereby improves the discrimi-
nability of sensory inputs. To determine whether inhibition in fact 
serves to increase the discriminability of sensory ensembles, we used 

Contro
l

DART
0

100

200

300

0

100

200

Auditory Somatosensory

N
um

be
r o

f c
el

ls

N
um

be
r o

f c
el

ls

kHz, dB
1, 68
1, 72
5, 68
5, 72
10, 68
10, 72 

PSI
10 
15 
20 

0

10

20

30

Pe
rc

en
ta

ge
 o

f r
es

po
ns

iv
e 

ce
lls

Auditory

0

10

20

Pe
rc

en
ta

ge
 o

f r
es

po
ns

iv
e 

ce
lls

Somatosensory

Contro
l

DART

Contro
l

DART

Contro
l

DART

a b
**** ****** **

Fig. 2 | Synaptic inhibition restricts the number of granule cells recruited 
by sensory input. a, Number of responsive cells in each mouse before and 
after DART for each auditory (left, n = 6 mice) and somatosensory (right, n = 6 
mice) stimulus. Colors represent specific stimulus conditions. Note that not all 

stimulus conditions were tested in each mouse. Error is s.e.m. across conditions. 
b, Same as a, for fraction of total responsive cells. **P < 0.01, ****P < 0.0001, paired 
t test (a,b).

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01565-4

the mouse with the largest number of trials per stimulus conditions to 
train a decoder to identify presented stimuli (Methods). Under control 
conditions, using a population of 321 granule cells, single-trial auditory 
responses could be correctly categorized above chance according to 
their amplitude, their frequency or the combination of amplitude 
and frequency (Fig. 4e; amplitude P = 0.008, frequency P = 0.003, 
amplitude and frequency P = 6.26 × 10−5, Student’s t test). When syn-
aptic inhibition was blocked with DART, however, categorization was 
significantly impaired for all stimulus conditions (Fig. 4e; control 
versus DART; amplitude P = 4.14 × 10−7, frequency P = 0.004, amplitude 
and frequency P = 1.17 × 10−6, paired t test), falling below chance per-
formance. For somatosensory responses, the smaller ensemble sizes 
prevented robust decoding, but the same trends remained compar-
ing control and DART conditions (control, 51.1% ± 12.9% correct and 
DART, 42.2% ± 12.8% correct (chance = 33% correct); P = 0.2). Thus, 
while a dataset with more trials per stimulus condition is needed for 
a quantitative understanding of how the loss of inhibition alters the 
decoding of granule cell population responses, these results support 
a key role for granule cell synaptic inhibition in maintaining sensory 
pattern separation.

Multiple inhibitory computations shape multisensory 
ensembles
Our data indicate that excitatory inputs from mossy fibers and local 
synaptic inhibition can establish ensembles of granule cells that encode 
individual sensory stimuli. However, it has also been demonstrated 
anatomically and physiologically that some granule cells receive 
mossy fiber input from more than one source7–9, and it is thought that 
integration of these inputs can enhance the diversity of granule cell 
encoding5–7. Therefore, we next tested the principles that govern this 
integration by examining population responses to overlapping stimuli 
of two different modalities (Fig. 5).

Consistent with previous single-cell recordings showing enhanced 
spiking in response to convergent multisensory mossy fiber input7,9, 
we find that some cells exhibit larger responses to combined auditory 
and somatosensory input than to somatosensory input alone (Supple-
mentary Fig. 12; ‘facilitated,’ n = 161 cells, P < 0.01, repeated measures 
(RM) ANOVA with Tukey’s multiple comparisons). Thus, part of the 
population code representing multisensory stimulus combinations 
is reflected by increased activity within the same cells that respond to 
each stimulus in isolation.

We also find, however, that the identity of cells that define multi-
sensory ensembles differ with respect to the ensembles representing 
each stimulus in isolation in two important ways. First, we find that 
many granule cells with no significant responses to either stimulus 
alone became active in response to combined auditory and somatosen-
sory stimulation (Fig. 5a,b,g and Supplementary Fig. 19; ‘emergent,’ 
n = 488 cells, tone or puff versus puff + tone: P < 0.0001, RM ANOVA 
with Tukey’s multiple comparisons). These data suggest that the inte-
gration of both stimulus modalities is necessary to drive these granule 
cells above the spike threshold. These ‘emergent’ cells thus generate a 
new multisensory ensemble by adding new cells that are not present 

in the ensembles representing each stimulus in isolation. Second, we 
also observed a large population of granule cells that are suppressed 
in response to combined somatosensory and auditory stimulation  
(Fig. 5c,d,g and Supplementary Fig. 19; ‘suppressed,’ n = 355 cells, puff 
versus puff + tone: P < 0.0001, RM ANOVA with Tukey’s multiple com-
parisons). Many of these cells are completely silenced, thus subtracting 
them from the ensembles representing individual stimuli in isolation. 
This effect therefore further separates the new, multisensory ensemble 
from the unisensory ensembles. Together, the emergent and sup-
pressed populations of granule cells represent the vast majority of total 
granule cells in our measurements (Fig. 5g), suggesting that whatever 
mechanism is responsible for these computations is critical for the 
encoding of complex multisensory stimuli in the granule cell layer.

To test whether local synaptic inhibition provides the necessary 
mechanism to establish suppressed and emergent populations, we 
again used the DART system to acutely block inhibition. An analysis of 
matched cells between control and DART conditions revealed that inhi-
bition powerfully shapes both the emergent and suppressed granule 
cell populations (Fig. 5e,f,g). Specifically, although emergent cells had 
no significant response to either stimulus alone in control conditions, 
we find that blocking synaptic inhibition revealed responses to each 
individual stimulus (Fig. 5e; tone = 0.8% ± 2.9% ΔF/F, puff = 2.1% ± 0.6% 
ΔF/F, n = 79 cells, P < 0.0001, paired t test), again consistent with a 
spike thresholding effect. These data also contextualize the strategy 
of using widespread subthreshold input instead of sparse, high-fidelity 
suprathreshold input, as it would not be possible to generate these 
unique emergent multisensory ensembles with the latter strategy.

We also find that the suppressed population was dependent on 
synaptic inhibition, as suppression was abolished in the presence of 
DART (Fig. 5f; n = 43 cells, puff versus puff + tone: P = 0.38, RM ANOVA 
with Tukey’s multiple comparisons). These data indicate that inhibi-
tion can be recruited in a stimulus-specific manner, where in this case, 
auditory input can recruit inhibition that suppresses responses to 
somatosensory input, but does not directly excite these granule cells 
even in the absence of inhibition. In this manner, local inhibition can 
mediate subtractive stimulus integration, operating to suppress the 
response of one input when another is present. Consistent with theo-
retical work, which has hypothesized that such a mechanism could 
act to diversify granule cell representations by reducing ensemble 
overlap during combined stimulus presentations39, our data indicate 
that stimulus-specific suppression provides a widespread and powerful 
means to generate unique multisensory ensembles.

To further explore this computation, we varied the features of 
copresented stimuli. We find that suppression can be specific even 
within the same modality during copresentation of stimuli with differ-
ent features (Fig. 5h,i and Supplementary Fig. 19). These data suggest 
that local synaptic inhibition is a crucial source for generating diversity 
in granule cell population responses during complex sensory input, 
segregating multisensory ensembles from each other and from those 
representing each stimulus in isolation (Fig. 5j).

To test this directly, we trained a decoder to categorize a stimulus 
as either unisensory (auditory or somatosensory) or multisensory. 

Fig. 3 | Cerebellar granule cells exhibit stimulus feature preferences that 
are not abolished by blocking synaptic inhibition. a, Average change in 
fluorescence (ΔF/F) for an example cell in response to pure tones at 1 kHz (light 
blue), 5 kHz (dark blue) and 10 kHz (magenta). Note that the cell responds 
preferentially to a 1 kHz tone before (left) and after (right) DART infusion.  
b, Maximum responses for cells significantly responsive to 72 dB tones that 
prefer 1 kHz. Error is s.e.m. across cells (control, n = 184 cells and DART, n = 170 
cells; n = 3 mice). c, Same as b, for cells preferring 5 kHz (control, n = 141 cells and 
DART, n = 331 cells). d, Same as b, for cells preferring 10 kHz (control, n = 313 and 
DART, n = 224). e, Normalized responses in control conditions for all granule cells 
responsive to 72 dB tones, grouped according to the frequency that drove the 
maximum response: 1 kHz, n = 184 cells; 5 kHz, n = 141 cells and 10 kHz, n = 313 

cells; n = 3 mice. Error is s.e.m. across cells. f, Same as e, for tone-responsive 
granule cells before and after DART infusion (red): 1 kHz, n = 170 cells; 5 kHz, 
n = 331 cells and 10 kHz, n = 224 cells. g, Same as e, for granule cells responsive to 
68 dB tones preferring: 1 kHz, n = 227 cells; 5 kHz, n = 211 cells and 10 kHz, n = 166 
cells; n = 3 mice. h, Same as e, for tone-responsive granule cells before and after 
DART infusion (red): 1 kHz, n = 250 cells; 5 kHz, n = 297 cells and 10 kHz, n = 169 
cells. i, Same as e, for all puff responsive cells preferring: 10 PSI, n = 45 cells; 15 PSI, 
n = 47 cells and 20 PSI, n = 74 cells; n = 3 mice. j, Same as i, for puff responsive cells 
before and after DART infusion (red): 10 PSI, n = 100 cells; 15 PSI, n = 69 cells and 
20 PSI, n = 202 cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, one-way 
ANOVA. NS, not significant.
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Stimuli were correctly categorized in 70% of trials (Fig. 5k; decoding 
521 granule cell responses from 30 unisensory and 30 multisensory 
trials, three mice). To determine how stimulus-specific inhibition 

and thresholding of emergent cells contribute to the discrimination 
of multisensory ensembles, we synthesized multisensory popula-
tion responses that consisted exclusively of the linear summation 
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of measured unisensory responses (Methods). We find that these 
synthetic multisensory responses are significantly less discriminable 
from the unisensory responses as compared to measured multisen-
sory responses (Fig. 5k; P = 0.0023). This reveals that the population 
diversity generated by the new multisensory interactions identified 
here (stimulus-specific suppression and emergent responses) serve 
to significantly enhance pattern separation in the granule cell layer.

Sensory responses can exhibit temporal variability
In addition to population identity, the timing of granule cell activity 
has been hypothesized to have an important role in behavior and learn-
ing4,40,41. Therefore, we also tested how granule cells represent the timing 
of sensory input and how this depends on local synaptic inhibition.  

We find that the average responses of individual granule cells during a 1-s 
auditory stimulus form a population response that tiles the duration of 
the stimulus (Fig. 6a)42. Surprisingly, however, we find that many granule 
cells do not respond with reproducible timing across trials (Fig. 6a).  
Because the peak of mean ΔF/F responses can be biased by a small num-
ber of trials with large responses, we also computed response timing 
according to the onset of fluorescence responses during the stimulus 
window on individual trials (Fig. 6b,c). This measure again supports the 
conclusion that the timing of most granule cell responses is not repro-
ducible across trials (Fig. 6c). To quantify this variability, we measured 
the jitter in response onset across trials (Fig. 6d). Although a subset of 
granule cells (17.6%) responded with relatively low jitter, exhibiting an 
s.d. less than 100 ms across trials, we found that most granule cells have 
an onset time that varies by hundreds of milliseconds across trials (Fig. 6f;  
control onset s.d. = 0.77 ± 0.02). These results suggest that a large frac-
tion of granule cells do not exhibit a high degree of across-trial consist-
ency during a 1-s stimulus, which is in the longer range for stimuli that 
drive robust cerebellar learning. Notably, however, we did find that 
earlier responding granule cells exhibited higher response probabili-
ties and less jitter on average (Supplementary Fig. 13), supporting the 
hypothesis that they may receive stronger inputs. In line with this idea, 
earlier responding cells were also less sensitive to blocking inhibition 
(Supplementary Fig. 13). Together, these results may support the idea 
that reduced across-trial consistency of granule cell responses at longer 
intervals could degrade learning for prolonged stimuli43.

We find that blocking synaptic inhibition shifts the distribution 
of response onset times earlier (Fig. 6d,e and Supplementary Figs. 
14 and 15; first event times: control, n = 1,631 cells and DART, n = 3,718 
cells; Kolmogorov–Smirnov P < 0.0001). Surprisingly, however, we 
do not observe a corresponding reduction in response jitter (Fig. 6f; 
Kolmogorov–Smirnov P = 0.9859). This was due to the higher response 
probability across trials in the DART condition, where there were many 
more total trials with significant stimulus responses (Fig. 6d). As a 
result, while there were more trials with earlier response times when 
inhibition was blocked, there were also more trials with late responses, 
preventing an overall change in mean response jitter (Fig. 6d,f). These 
data are consistent with previous results suggesting that response 
timing in granule cells is not exclusively regulated by synaptic inhibi-
tion44 and must, therefore, also reflect parameters such as variability 
in input timing, as well as cellular properties such as short-term plas-
ticity of mossy fiber input7 and the intrinsic membrane properties of 
granule cells45.

In control conditions, we also find that many granule cells respond 
at or near the offset of the auditory stimulus (Figs. 1c and 6a,g). These 
‘off’ cells represented 5.4% of the responsive population. When inhi-
bition was blocked, these cells responded much earlier during the 
auditory stimulus (Fig. 6g,h; n = 47 cells, P < 0.0001, paired t test). This 
indicates that, under control conditions, recruitment of inhibition 
during the sensory stimulus prevents these cells from responding 
immediately, although they receive sufficient excitation during the 
stimulus to drive spiking if inhibition is removed. Together, these data 
suggest that inhibition serves to diversify the temporal responses of 
granule cells by both limiting the number of early responses during 
a stimulus presentation and establishing a population of cells that 
selectively represent the late component of sensory input.

Inhibition is required for cerebellum-dependent behavior
Our data reveal that synaptic inhibition powerfully restricts the popu-
lation of granule cells recruited by sensory input and shapes many 
features of the population ensembles that encode sensory stimuli. In 
principle, these effects may support the predictions of classical and 
recent computational models5,6,46 proposing that granule cell inhibition 
acts to segregate the population codes necessary for both learning and 
the expression of learned behaviors. To test this hypothesis directly, 
we used the cerebellum-dependent task delay eyelid conditioning.  
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t tests (a–d). e, Classification performance for an example mouse under control 
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correctly identifying the sound amplitude only (left, P = 4.14 × 10−7), frequency 
only (middle, P = 0.0039) and amplitude and frequency (right, P = 1.17 × 10−6). 
Dashed lines indicate chance performance. Error bars are s.e.m. estimated using 
the Wald method for binomial distributions. P values were calculated from the 
Wald test (one-sided). *P < 0.01, ****P < 0.0001.
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For this task, mice were trained on a freely moving treadmill47 to associ-
ate a brief corneal air puff (unconditioned stimulus (US)) with a cotermi-
nating neutral auditory tone (5 kHz, 250 ms; conditioned stimulus 
(CS+); Fig. 7a–d). We first trained mice until the probability of condi-
tioned responses (CRs) in each session had plateaued (0.80 ± 0.06, 
n = 8 mice; Fig. 7d). In a subset of mice, infusion of muscimol into the 
eyelid conditioning region of the cerebellar cortex at the floor of the 
primary fissure, which spread into the anterior interpositus47, abol-
ished CRs, confirming cerebellar dependence (n = 3 mice; Fig. 7c and 
Supplementary Fig. 16). Notably, this is a different area than we used 
for our imaging experiments because it is too deep for optical access. 
We expect, however, that the principles by which synaptic inhibition 
influences sensory integration are conserved, given the stereotyped 
circuitry of the granule cell layer.

To test whether mice could discriminate between the learned 
CS+ and similar auditory stimuli that had not been paired with the 

US during learning (CS−), we next measured responses in a cohort of 
mice for which two different CS− tones (1 and 10 kHz) and the CS+ tone 
were presented on randomly interleaved trials. In these experiments, 
consistent with previous work in rabbits48,49 and mice50, we find that 
the response probability and amplitude of CRs were significantly and 
equivalently reduced for both CS− tones as compared to the CS+ tone 
(Supplementary Fig. 17; n = 4 mice; CR probability: CS+ versus CS− (1 or 
10 kHz), P < 0.005; RM ANOVA with Dunnett’s multiple comparisons; CR 
amplitude: CS+ versus CS− (1 or 10 kHz), P < 0.05). Because we obtained 
the same result for two different CS− tones, we moved forward in test-
ing a single CS− for DART experiments to maximize trial numbers.

To test whether granule cell inhibition is critical for sensory inte-
gration in this cerebellum-dependent task, we again used the DART 
system to block GABAARs. In a well-trained cohort expressing HTP in 
granule cells in the eyelid conditioning region of the cerebellar cortex 
(Fig. 7e), mice were subjected to three test sessions, each 1 week apart 
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(puff + tone, green) stimuli for an example emergent cell (puff, n = 17 trials; tone, 
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as a, for all emergent cells (n = 79 cells, subset matched to DART condition, n = 3 
mice). Right, amplitude of responses to tone, puff and puff + tone for all matched 
emergent cells. Error is s.e.m. across cells. c,d, Same as a and b, for matched 
suppressed cells (n = 43 cells and n = 3 mice). e,f, Same as b and d, for matched 
cells after DART infusion. g, Pie charts illustrating the relative prevalence of 
each response category before (top: facilitated, n = 161; unchanged, n = 158; 
suppressed, n = 355 and emergent, n = 488) and after (bottom: facilitated, n = 172; 
unchanged, n = 93; suppressed, n = 63 and emergent, n = 676) DART infusion. 
h,i, Example cells illustrating stimulus-specific suppression. Both cells respond 
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combination of puff and tone of a given frequency and amplitude (dark green), 
but not a different frequency and amplitude (light green; h, puff (n = 17 trials), 
puff + 1 kHz, 72 dB (n = 24 trials) and puff + 10 kHz, 72 dB (n = 24 trials); i, puff 
(n = 17 trials), puff + 1 kHz, 68 dB (n = 24 trials) and puff + 10 kHz, 68 dB (n = 24 
trials)). Error is s.e.m. across trials. j, Granule cell layer circuit motif that would 
produce emergent responses (left) and stimulus-specific suppression (right).  
k, Black line indicates unisensory versus multisensory discrimination 
performance from granule cell population responses. Distribution shows 
discrimination performance for 200 sets of simulated multisensory responses 
generated by linearly combining random draws from two unimodal responses 
(one auditory and one somatosensory). The classification performance indicated 
by the black line has a z score of 3.21, corresponding to P = 0.0023. ***P < 0.001, 
****P < 0.0001, RM ANOVA with Tukey’s multiple comparisons (b,d,e,f). GoC, 
Golgi cell; GrC, granule cell; P, puff; T, tone.
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with daily CS+-only training in between (Fig. 7f). Test sessions with con-
trol infusions of saline or nbDART into the eyelid conditioning region 
revealed that trained mice effectively distinguished the CS+ from a 
single tone with a different frequency (10 kHz, 250 ms; ‘CS−’; Fig. 7g,h; 
n = 5 mice; CS+ versus CS− in saline: CR probability, P < 0.005, paired 
t test and CR amplitude, P < 0.0005; CS+ versus CS− in nbDART: CR 
probability, P = 0.03, paired t test and CR amplitude, P = 0.03, paired t 
test). However, blocking synaptic inhibition to granule cells in the eyelid 
conditioning region with functional DART reduced CR probability and 
amplitude during CS+ trials such that behavior was indistinguishable 
from CS− trials (Fig. 7i; n = 5 mice; CS+ versus CS− in DART: CR probabil-
ity, P = 0.19, paired t test and CR amplitude, P = 0.25). DART infusion did 
not significantly impact responses to the CS− (saline versus DART: CR 
probability, P = 0.89, paired t test and CR amplitude, P = 0.69). Interest-
ingly, we did not observe an effect on the trajectory of CRs when granule 
cell inhibition was blocked (Supplementary Fig. 18), suggesting that 
response kinematics may be largely shaped downstream, perhaps by 
inhibition and excitation onto Purkinje cells or elsewhere in the circuit. 
Together, these data indicate that granule cell inhibition is necessary 
for accurate cerebellum-dependent sensorimotor responses by shap-
ing the contextual representations that are harnessed for behavior.

Discussion
By imaging granule cell responses to discrete sensory input while 
manipulating local synaptic inhibition, we have revealed multiple key 
computations that extend classical Marr–Albus models of granule cell 
layer processing. First, we find that local synaptic inhibition can enforce 
sparse granule cell population activity in terms of both response prob-
ability and cell number. Moreover, consistent with its role as a pattern 
separation layer, we find that granule cells represent sensory stimuli 
as discrete ensembles that also depend on inhibition to limit overlap. 

For multisensory ensembles, inhibition defines population codes by 
establishing multisensory-only cells and suppressing responses of 
unisensory cells in a stimulus-specific manner. In these ways, which 
extend the predictions of classical models, inhibition can generate new 
multisensory granule cell ensembles that enhance pattern separation. 
Finally, in agreement with our imaging data suggesting that inhibition 
serves a central role in establishing discrete sensory representations, we 
find that granule cell inhibition is required for accurate sensorimotor 
behavior in a cerebellum-dependent task.

Recent work has shown that, during complex behaviors, gran-
ule cell activity can be denser than was predicted by classical Marr–
Albus models15–18. In contrast, our goal was to isolate discrete sensory 
responses, independent of motor-related signals and contextual modu-
lation26. With this experimental design, population responses were 
relatively sparse for auditory and somatosensory stimuli. It is possible 
that when combined with motor inputs, these stimuli would activate 
denser sensory representations as seen during complex behavior. 
However, the cells recruited during whisking were largely distinct 
from those activated by tones and orofacial puffs. This supports an 
alternative interpretation, where the density of responses observed 
during complex behaviors may represent the joint activity of different 
motor and sensory ensembles.

The sparsity of sensory ensembles depended on synaptic inhibi-
tion. For unisensory stimuli, inhibition acted primarily via spike thresh-
olding, as blocking inhibition dramatically increased the responsive 
population, producing large-scale overlap across ensembles. Spike 
thresholding also had a key role in generating multisensory ensembles 
by establishing cells that only respond to specific input combinations. 
Notably, this would not be possible with sparse mossy fiber input that 
instead drove high-fidelity granule cell spiking. Thus, we speculate 
that it may be more appropriate to consider thresholding inhibition 
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Fig. 6 | Cerebellar granule cells respond with temporal variability to auditory 
stimuli. a, Left, mean tone-evoked responses on the first half of trials for all cells 
ordered by peak response time (n = 478 cells, n = 3 mice). Right, same as on left 
for the second half of trials, ordered according to peak responses during the 
first half. b, Example calcium traces (ΔF/F) from a granule cell during sequential 
tone presentation trials. Arrow notes the first event following tone onset. c, Left, 
first event times for all cells during the first half of trials ordered by timing of the 
earliest first event. Right, first event times during the second half of trials ordered 
the same as on left. d, First event times for significant trials of an example cell 
in control (top) and after DART infusion (bottom). e, Cumulative distribution 

of mean first event times for all cells in control (black; n = 1,631) and after DART 
infusion (red; n = 3,718; Kolmogorov–Smirnov, P < 0.0001). f, Same as e, for mean 
s.d. of first event times (Kolmogorov–Smirnov, P = 0.9859). g, Example traces in 
control (black) and after DART infusion (red) for two example cells. Note the cell 
on the top has an increase in peak activity without a change in onset, whereas the 
cell on the bottom responds to tone offset in control but tone onset in DART. h, 
Mean response time in control (black) and after DART (red) for cells with a mean 
first peak time at or after tone offset in control conditions (n = 47; paired t test, 
****P < 0.0001).
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as a mechanism to enhance combinatorial diversity of granule cell 
responses than to enforce population sparsity per se.

Although the thresholding effects of calcium indicators might 
artificially sparsen representations and enhance the effects of blocking 
inhibition, the stimulus-specific inhibition we observe is not sensitive 
to this caveat. This subtractive mechanism regulated a large fraction of 
cells in our multisensory experiments, representing a powerful addi-
tional means of pattern separation. Such lateral inhibition may explain 
early measurements showing that inhibition can vary according to the 
specific combination of vestibular nerve stimulation51 and is supported 
by in vitro measurements suggesting that Golgi cells can be recruited 
in a pathway-specific manner52. Moreover, recent experiments have 
revealed that, while many Golgi cells are coordinated during behav-
ior, a large fraction can also display diverse activity patterns that may 
reflect stimulus-specific drive53. Indeed, our measurements reveal that 
stimulus-specific recruitment of inhibition is a widespread mechanism 
that shapes multisensory population activity in vivo. Notably, this 
mechanism is in direct opposition to the concept of Golgi cell inhibition 
of granule cells acting exclusively as a broad, general feedback system 
proposed by classical Marr–Albus theories.

Together, these findings suggest that inhibition can provide the 
granule cell layer with an even greater capacity for pattern separation 
than was described by classical Marr–Albus models. Based on these 

properties, we speculate that inhibition may serve to counteract the 
intrinsic limitations on combinatorial diversity that are imposed by 
the anatomical architecture of mossy fiber input to granule cells54. Our 
simple decoders argue that inhibition is important for pattern separa-
tion. However, future work is needed to test whether inhibition shapes 
higher dimensional activity structures55, for instance, by decorrelat-
ing sensory representations56,57. Together, these computations have 
the potential to support effective pattern separation even if granule 
cell activity exceeds the levels proposed in classical models during 
behaviors involving diverse cerebellar input.

Typically, models of cerebellar learning assume consistency of 
individual granule cell timing across trials, at least for stimulus dura-
tions that are appropriate for learning43. Here we find that a minority of 
granule cells (~20%) exhibited low temporal jitter across trials, with the 
remainder exhibiting higher temporal variability. While previous meas-
urements have shown that the timing of mossy fiber input can be highly 
reproducible across trials58, this may not translate into a consistency 
of granule cell spike timing due to presynaptic or postsynaptic regu-
lation44,45,59,60. The reliability of inputs may also be modality specific61, 
as different mossy fibers can have different strengths and short-term 
plasticity, and likely have different temporal consistency depending on 
source. Our data support this possibility, as somatosensory ensembles 
exhibited less variability than auditory ensembles, despite their smaller 
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size. Moreover, we found that earlier responding granule cells exhibited 
less temporal variability, perhaps related to the inverse relationship 
between cerebellar learning and stimulus duration62.

We find that granule cell spike timing variability was not dramati-
cally altered when inhibition was blocked. While feedforward inhibition 
can have a powerful role in establishing spike timing in some circuits63, 
the mossy fiber recruitment of Golgi cell inhibition onto granule cells is 
relatively weak and inconsistent64. Moreover, inhibitory postsynaptic 
currents onto granule cells often occur before the arrival of excitatory 
input in vivo65. Such inhibition evoked before or during excitation likely 
serves primarily to increase granule cell spike thresholds13,35,66 rather 
than as a timing mechanism, consistent with our current observations. 
As such, refinement of spike timing may not be a primary function of 
synaptic inhibition in the granule cell layer.

In addition to temporal variability, we observed variability in 
the identity of granule cell ensembles representing sensory stimuli 
across trials, an effect primarily due to the relatively low probability 
of responses on single trials. This low response probability may pro-
vide part of the explanation for why cerebellar learning can be slow 
to accumulate across trials, at least as compared to the requirements 
for induction of synaptic plasticity in the cerebellum when inputs are 
highly reproducible67. Behavioral states that accelerate the acquisi-
tion of cerebellar learning, such as locomotion, may therefore act by 
increasing the reliability of granule cell responses. Investigating how 
granule cell sensory responses are modulated by the behavioral state 
is thus an important future direction.

While our measurements support mechanisms of pattern sepa-
ration, most analogous learning circuits are also thought to involve a 
secondary process called pattern completion that stabilizes represen-
tations. Notably, our observations have been made in the absence of 
learning, and we speculate that pattern completion processes in the 
cerebellum could serve to stabilize representations in space and time 
during learning. Indeed, the cerebellar cortex includes sites of plasticity 
at almost every node in the circuit, as well as a feedback pathway that 
provides the type of recurrent structure necessary for pattern comple-
tion circuits68,69. Future measurements will be necessary to test how 
granule cell representations are altered across learning.

We have also demonstrated that sensorimotor behavior in a 
cerebellum-dependent eyelid conditioning task relies on granule cell 
inhibition. Specifically, CRs to a CS+ and CS− become indistinguish-
able when inhibition is blocked. If this change were simply due to mice 
equally associating the CS+ and CS−, one might expect an increase in 
the probability of CRs to the CS−. Instead, we observed only a decrease 
in the response probability to the CS+. This result is consistent with 
several observations from our imaging data.

First, granule cell tuning was only partly reduced when inhibition 
was blocked, suggesting that the impairment of sensory discrimination 
is not solely due to a loss of tuning of the ‘learned’ granule cell popu-
lation. However, our data also show that blocking inhibition greatly 
increases the number of responsive cells (Fig. 1). Because these emer-
gent cells were not active during conditioning, they were not part of 
the circuit pathway modified during learning. In addition, spontaneous 
activity is greatly enhanced when inhibition is blocked, degrading the 
signal-to-noise ratio of granule cell sensory encoding35. We, therefore, 
speculate that the enhanced spontaneous activity and the emergent, 
unlearned CS+ responding cells act to bombard downstream Purkinje 
cells with nonspecific signals that dilute those from the pathways 
modified during learning. Such results are consistent with a model in 
which the cerebellum implements a probabilistic binary choice to rec-
ognize learned patterns70, producing fewer CRs as the learned pattern 
becomes less discernable. Such a decreased discriminability of the new 
CS+ ensemble from the learned CS+ ensemble is consistent with the 
observation that the behavior does not revert to the unlearned condi-
tion (that is, where there is no CR), but instead becomes more similar 
to the CS− response. Loss of synaptic inhibition therefore leads to both 

a degraded CS+ representation and a decrease in discriminability with 
the CS−, both of which likely contribute to the behavioral effect.

Our inferences about the circuit responses that mediate behavior 
rely on recordings from a nearby part of the cerebellum to the one 
necessary for this behavior47,71. Given the highly conserved anatomical 
and physiological properties of the cerebellum, we expect that the 
function of inhibition will also be conserved. Nonetheless, new tools 
will be needed to investigate the activity of large populations of granule 
cells in the region of the cerebellum required for eyelid conditioning 
and to track their activity across learning.

Together, our results reveal several mechanisms of cerebellar gran-
ule cell layer sensory encoding that depend on local synaptic inhibi-
tion. In addition, we find that behavior associated with these patterns 
is highly dependent on inhibitory tone, consistent with findings that 
chronic hyperexcitability of granule cells can lead to diverse behavioral 
changes72–74. These findings thus substantially extend long-standing 
predictions of classical Marr–Albus models for how the cerebellar cortex 
establishes and uses discrete sensory representations to guide behavior.
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Methods
Mice
All experimental procedures using animals were performed with the 
approval of the Duke University Animal Care and Use Committee. 
Experiments were conducted during the light cycle with both male and 
female adult mice (>P60). All mice were housed in an animal facility with 
standardized temperature and humidity, with 12 h light/dark cycles 
with food and water ad libitum. Imaging experiments were performed 
with Ai148 (TIT2L-GC6f-ICL-tTA2)-D ( Jackson Laboratory, 030328) 
mice crossed with BACα6Cre-A22 (n = 21, n = 12 females and n = 9 males). 
Eyelid conditioning experiments used BACα6Cre-A mice (n = 5, n = 3 
females and n = 2 males). C57/B6J ( Jackson Laboratory, 000664) was 
the primary background for all mice, with up to 50% CBA/CaJ ( Jackson 
Laboratory, 000654) for eyelid conditioning experiments.

Surgical procedures
Animals received dexamethasone (3 mg kg−1) 3–4 h before surgery. 
All surgeries were performed under anesthesia, using an initial dose 
of ketamine/xylazine (50 mg kg−1 and 5 mg kg−1) 5 min before, and 
1.0–2.0% isoflurane throughout the surgery. Breathing rate and toe 
pinch responsivity were continuously monitored during surgeries. 
A heating pad (TC-111 CWE) was used to maintain body temperature. 
For imaging and eyelid conditioning mice, titanium headplates (HE 
Parmer) were attached to the skull with Metabond (Parkell). Animals 
received Buprenex (0.05 mg kg−1) and cefazolin (50 mg kg−1) twice daily 
for 2 d after surgeries.

For imaging experiments, adult mice (P50–60) were given a 3-mm 
diameter craniotomy over Crus I at ~3.0 mm lateral and 4.3 mm pos-
terior to lambda. Crus I was injected (WPI UltraMicroPump3 (UMP3)) 
with 150 nl of either AAV7m8-X0117-CAG-DIO-(+HTP-GGSGG8-GPI-
2A-dTomato)-WPRE-pA (HTPGPI; 1 × 1012; Duke Viral Vector Core) or 
AAV7m8-6360D-CAG-DIO-(ddHTP-GGSGG8-GPI-2A-dTomato)-WPRE-pA 
(ddHTP; 1 × 1012; Duke Viral Vector Core) at a rate of 30 nl min−1 and a 
depth of 350 µm at 2–3 sites. Glass windows consisting of two 3-mm 
coverslips bonded to a 5-mm coverslip (Warner Instruments, 1) with 
index-matched adhesive (Norland, 1) were installed in the craniotomy 
using Metabond. Imaging mice receiving saline and drug infusions 
received a plastic cannula (Plastics One; C315GS/PK length 0.5 mm) 
positioned immediately rostral to the imaging window and attached 
with Metabond. All mice were given 8 weeks to allow viral expression, 
including 1–2 weeks of habituation to head restraint.

For eyelid conditioning experiments, adult mice (P50–60) were 
given 0.3-mm diameter craniotomies at ~1.8 mm lateral and 5.85 mm 
posterior to bregma. Three equidistant 80 nl injections of either 
AAV-DIO-+HTPGPI (1 × 1012) or AAV-DIO-ddHTPGPI (1 × 1012) were performed 
at a rate of 30 nl min−1 and a depth of 4.0 mm. Mice receiving saline and 
drug infusions were implanted with a plastic cannula (Plastics One; 
C315GS/PK length 3.0 mm) over the injection site that was secured with 
Metabond. A subset of wild-type mice (n = 3) received cannulas but no 
virus injection at the same location. Mice were given 8 weeks to allow 
viral expression, including a minimum of 2 weeks for recovery before 
habituation to head restraints and training.

Calcium imaging
Two-photon imaging was performed with a resonant scanning micro-
scope (Neurolabware) using a ×16 water immersion objective (Nikon, 
CFI175 LWD 16×W 0.8NA). A polymer (MakingCosmetics, 0.4% Carbomer 
940) was used to stabilize the immersion solution during imaging. For 
GCaMP and TdTomato imaging, a Ti:Sapphire laser tuned to 920 nm 
(Spectra-Physics, Mai Tai eHP DeepSee) was raster scanned via a resonant 
galvanometer (8 kHz; Cambridge Technology) onto the cerebellum at a 
frame rate of 30 Hz and a field of view of 278 µm × 117 µm (796 × 264 pix-
els; Supplementary Video). Scanbox software (Neurolabware) was used 
to collect data through a green filter (510 ± 42 nm band filter (Semrock)) 
onto GaAsP photomultipliers (Hamamatsu, H10770B-40).

Behavior
During imaging, animals were head-fixed in a custom sled atop a piezo-
electric sensor (C.B. Gitty; 41 mm ‘jumbo’ piezo) read from and trig-
gered through a multifunction data acquisition device (90 Hz; National 
Instruments, USB X) to measure animal movement33,34. In a subset 
of experiments, whole-body motion was simultaneously recorded 
from a complementary metal–oxide–semiconductor (CMOS) camera 
(60 Hz; Teledyne Dalsa, Genie Nano M640 NIR) with a fixed focal length 
lens (6 mm f/2.8; Edmund Optics). During imaging, frame-by-frame 
whisker and facial movements were monitored with the aid of infrared 
light-emitting diodes (IR LEDs; Swann) from a CMOS camera (60 Hz; 
Teledyne Dalsa, Genie Nano M640 NIR) with a fixed focal length lens 
(6 mm f/2.8; Edmund Optics) positioned 13 cm above the animal’s head. 
Piezoelectric and video data were acquired and aligned to imaging 
data using Scanbox software (Neurolabware) and custom code written 
in MATLAB (MathWorks). For imaging experiments, sensory stimuli 
were delivered in pseudorandomized 167 s blocks with randomized 
intertrial intervals (ITI) using Mworks (http://mworks-project.org). For 
somatosensory stimulation, low-intensity air puffs (10, 15 or 20 PSI, a 
range of intensities found to produce little or no behavioral response 
after habituation, delivered block-wise) were delivered from a metal 
tube 5 cm from the center of the vibrissae (5,630–10,200 ms ITI; 18–29 
trials/block). Pure tones of either 68 or 72 dB with frequencies of 1, 5 or 
10 kHz were delivered individually block-wise or in randomized pairs 
for single auditory stimulation (3,800–15,000 ms ITI; 9–23 trials/
block). While we did not detect audible responses from somatosensory 
air puffs or reliable movements such as inspiration during stimula-
tion, we cannot rule out possible contributions of these or other such 
effects in our measured granule cell responses. Imaging sessions lasted 
between 1.25 and 2.25 h.

For eyelid conditioning, the behavioral setup was constructed 
according to ref. 47. Before experiments, all mice were habituated to 
head restraints on the same wheel used for training for 30–60 min d−1 
until they calmly entered head restraints and walked comfortably 
on the wheel (5–10 d). Stimulus delivery and frame acquisition for 
video monitoring were triggered with an Arduino Uno microcontroller 
board (Arduino) controlled with modified Arduino and MATLAB code 
written for Neuroblinks software (Medina Lab). Mice were trained dur-
ing daily sessions of 100–300 trials in which a 50-ms air puff (30 PSI) 
was delivered 3 mm from the mouse’s cornea (US) and paired with a 
coterminating 250 ms, 5 kHz, 70 dB tone (CS). Each session contained 
one randomly delivered CS-only test trial and one US-only test trial. 
Trials were only initiated if the eyelid was open >70–80% for at least 
200 ms and at a minimum of 10 s apart47.

In vivo pharmacological infusions
Saline and drugs were infused into awake, head-fixed mice using an 
automated pump (WPI UMP3), a Hamilton syringe (10 µl Gastight 
model 1701 RN) and a plastic internal cannula (Plastics One, C315IS) 
threaded into the guide cannula. All infusions had a total volume of 
1 µl delivered at a rate of 1 µl min−1. To estimate the spread of pharma-
cological agents under the imaging window, 10 mM fluorescein dye 
(Sigma-Aldrich, F6377) dissolved in sterile artificial cerebrospinal 
fluid (aCSF; 150 nM NaCl, 4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM 
HEPES, 10 mM glucose, pH 7.4) was infused through the cannula rostral 
to the imaging window, followed by a 1 h rest and perfusion. For all 
other imaging and behavior experiments, aCSF only or either 1 µM 
nbDART or 1 µM gabazine.1nbDART.2 was dissolved in sterile aCSF and 
applied, followed by a 20-min rest. Infusions were delivered at least 
1 d apart for each animal. At least 1 d after gabazine.1nbDART administra-
tion, 1 µM Alexa647.1DART.2 was dissolved in sterile aCSF and infused, 
followed by 1 h rest and perfusion. In a subset of eyelid conditioning 
experiments, fluorescent muscimol (1 mM; Invitrogen, BODIPY TMR-X 
muscimol conjugate) was infused in wild-type mice, followed by a 
3-min rest period.
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Histology
Mice were anesthetized with an intraperitoneal (IP) injection of ketamine/
xylazine (200 mg kg−1 and 30 mg kg−1, respectively) before perfusion with 
PBS and 4% paraformaldehyde. Fifty-micrometer sagittal sections were 
cut using a vibrotome (Pelco, 102). Slices were mounted using Southern 
Biotech DAPI-Fluoromount G or Vectashield Vibrance (Vector Labs) and 
then imaged using an upright confocal microscope (Leica, SP8).

Slice electrophysiology
Acute brain slices and associated whole-cell electrophysiological 
recordings (pClamp v10.3) of synaptic inhibition were performed 
as described previously40. Synaptic inhibition was measured at the 
reversal potential for excitation (0 mV).

Multiphoton imaging analysis
All acquired two-photon images were processed using the open-source 
Python toolbox for large-scale calcium imaging data analysis CaImAn75. 
First, images were corrected for motion over 60 × 60-pixel patches 
using a piecewise rigid motion correction algorithm (NoRMCorre76). 
All videos were manually screened to ensure adequate motion correc-
tion. Whole experiments that could not be made to produce a stable 
averaged image were excluded from further analysis. Images collected 
before and after drug infusions, without displacing the objective, were 
motion registered and segmented together to enable reliable com-
parison between conditions. Then, source separation was performed 
using constrained non-negative matrix factorization (CNMF77). This 
algorithm includes exclusion of fluorescence changes originating in 
the neuropil. ROIs identified by CNMF were then sorted according 
to spatial stability, transient signal-to-noise ratio and performance 
in a CNN-based classifier75 (Supplementary Fig. 20). ROIs were then 
excluded based on their proximity to the edge of the field of view (FOV) 
and overlap with nonspecifically labeled structures (that is, anything 
other than putative granule cells) in motion-registered, averaged 
images using custom MATLAB code. Remaining raw Ca2+ time courses 
computed by CNMF were screened for periods in which the signal 
exceeded 6 s.d. from the mean of either the first or last 20,000 imag-
ing frames for >2 s, as such changes were noted to occur in cells that 
become bright and swell over the course of an experiment and were 
presumed to be unhealthy/dying. ROIs with this fluorescence signa-
ture and a bright, swollen appearance in motion-registered, averaged 
images were excluded from further analysis. Additionally, raw Ca2+ 
time courses lacking stability by (1) slowly drifting in magnitude or 
(2) transiently or permanently losing all signals were excluded from 
further analysis to allow reliable comparison of responses throughout 
each experiment. Fluorescence changes (ΔF) were normalized to a 1-s 
window of baseline fluorescence before stimulus onset for each trial. 
Individual cell responses were considered significant if they surpassed 
2 s.d. from the baseline period between 90 and 180 ms after stimulus 
onset (somatosensory stimulation), or if any sliding window begin-
ning at stimulus onset and ending 0.1 s after stimulus offset surpassed  
2 s.d. of any equal-length window during the baseline period (auditory 
stimulation). Although we do not make any corrections for multiple 
comparisons, this 2 s.d. threshold puts our false positive rate below 
5%. Some cells with significant responses in the control condition no 
longer achieved significance after DART infusions due to high levels 
of activity in the baseline period, despite having activity during the 
stimulus windows. Because this reduced signal-to-noise impaired 
accurate measurement of sensory responses, cells that lost significance 
in DART were not included in condition-matched analyses (Figs. 3 and 
5 and Supplementary Figs. 9–13). The fraction of responsive granule 
cells (% responsive) for each condition was estimated by calculating 
the number of granule cell-sized ROIs (~14.7-pixel diameter) that would 
tile the FOV (796 × 264 pixels) without overlap. First and peak event 
times and amplitudes during individual trials were calculated using 
trapezoidal numerical integration, identifying peaks ≥120 ms. ‘Off’ cells 

were defined as cells having a mean first peak time at or after stimulus 
offset. Response probability was calculated as the fraction of trials in 
which a cell was significantly responsive to the sensory stimulus. Frac-
tion overlap quantifies the proportion of responsive cells that respond 
to multiple stimulus conditions.

Unisensory stimulus classification
To classify auditory stimuli, calcium signals from populations of granule 
cells were used. First, noise was removed in the following two steps: 
(1) smoothing—calcium signals were first smoothed by a three-frame 
boxcar filter and (2) threshold—after smoothing, baseline noise was 
estimated from 25 frames (30 Hz sampling) preceding the stimulus. 
Events that exceeded 2-s.d. above the baseline noise were retained, and 
signals below this threshold were set to zero. A granule cell response 
was defined as the peak calcium signal (between the initiation of the 
sound and five frames after it ended) on each trial after smoothing and 
thresholding. A population response was defined by accumulating this 
peak calcium signal across all granule cells for a given trial. This created 
a matrix of responses that was (cells × trials). Given a limited number of 
trials in many experiments (~20) and a large population response (~300 
cells), response classification was performed using a nonparametric 
nearest-neighbor approach78. This approach computed the distance 
of a test trial to all training trials. While the correlation structure of the 
data was preserved in this analysis, the decoder assumes no trial-by-trial 
correlations and therefore is insensitive to this structure. The test trial 
was classified according to the stimulus condition that produced the 
nearest response among the training trials. Test trials were selected from 
a ‘hold-one-out’ approach, and the remainder of the data were used for 
training. Three classification tasks were run: (1) identify the frequency of 
the stimulus (three categories; Fig. 4e (left)), (2) identify the amplitude 
of the stimulus (two categories; Fig. 4e (middle)) and (3) identify the 
amplitude and frequency of the stimulus (six categories; Fig. 4e (right)). 
Classification was performed across all trials. For stimulus classification 
under control conditions, responses from 328 granule cells were used 
with 23 trials for each condition. For the gabazine.1DART.2 discrimination, 
319 granule cells were used with 22 trials for each condition.

Several control analyses were run to ensure that the discrimination 
results were not overly sensitive to changes in the procedure described 
above. First, half the number of cells were tested in each condition, to 
make sure the results were relatively insensitive to this parameter. The 
results in Fig. 4 were qualitatively similar; none of the trends or statisti-
cally significant differences changed. Second, we defined responses 
in several different ways. In addition to using the peak amplitude 
(described above), we also used the following: (1) the time of the peak 
response, (2) the time and amplitude of the peak response, (3) the time 
the response initially crossed 2-s.d. above baseline, (4) the time and 
amplitude the response initially crossed baseline, (5) the integrated 
calcium signal between frame 30 (when tone was initiated) and 65 
(five frames after it ceased) and (6) the integrated calcium signal from 
point ‘5’ and the initial time it crossed the significance threshold. The 
results in Fig. 4 were qualitatively similar; none of the trends changed, 
but under some response definitions, some differences failed to clearly 
reject the null hypothesis (P values were >0.05).

In Fig. 4, error bars represent s.e.m. and were computed by using 
the Wald method of confidence interval estimation for binomial 
distributions.

The same procedures were used to classify puff stimuli. Responses 
were classified using a population of 275 granule cells with 15 trials for 
each stimulus amplitude under control and DART conditions. Decod-
ing was performed on the peak response between frames 27 and 37 
on each trial.

Unisensory versus multisensory response discrimination
Actual multisensory (sound and puff) responses were not the linear 
combination of unisensory (sound or puff) responses. To examine 
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the consequences of this deviation from linear signal summation on 
stimulus discrimination (multisensory versus unisensory), we simu-
lated linear multisensory responses by summing unisensory responses 
sampled from responses to either auditory stimulus with responses to 
the puff stimulus for each cell. Discrimination performance (correctly 
discriminating between unisensory and multisensory responses) was 
then measured using multisensory responses or the simulated linear 
multisensory responses (Fig. 5). Response classification was performed 
using a nonparametric nearest-neighbor approach78. Responses were 
derived from 521 granule cells and 30 multisensory and 30 unisensory 
trials (ten auditory trials at two frequencies and ten puff). Calcium 
signals were smoothed and thresholded as described in the previous 
subsection. Responses were defined as the integrated calcium signal 
starting at the time the signal crossed the threshold after the initiation 
of the auditory stimulus until five frames (30 Hz sampling) after the ter-
mination of the auditory stimulus. Qualitative results and significance 
tests were robust to halving the number of cells and/or using other 
definitions of ‘response,’ such as the amplitude of the peak response 
and the time-of-peak response. Notably, our resampling approach 
for simulating multisensory responses has the added consequence 
of disrupting the correlation structure. Thus, it could be either the 
loss of nonlinear interactions or the correlation structure that impairs 
discrimination. However, given that the nearest-neighbor decoder 
has limited knowledge of the correlation structure, it is more likely 
that the impaired decoding is due to the decrease in the sparsity of 
responses in DART.

Behavior analysis
For imaging experiments, a machine-learning-based algorithm (Dee-
pLabCut32) was used to automatically track components of the face, 
whiskers and head in accompanying high-speed videos. Tracked fea-
tures were initially labeled manually in a small portion of frames (30) 
to train the algorithm, and then x and y locations of each feature were 
automatically determined for all remaining frames. Motion was evalu-
ated as cumulative displacement of these coordinates during aligned 
calcium imaging frames.

To validate the effectiveness of the piezo sensor at detecting 
motion, the same sensory stimuli used in imaging experiments were 
delivered while collecting high-speed video of each mouse’s head and 
limbs. Machine-learning-based motion tracking with DeepLabCut32 
revealed that the sensor reliably detects limb motion and other move-
ments such as grooming (Supplementary Fig. 5). Specifically, limb and 
facial movements were aligned with piezo traces, revealing that piezo 
measurements reliably reflect movements of all four limbs, as well 
as fine movements of the ears and face. Video-detected motion and 
piezo recordings do not have a one-to-one relationship; however, some 
changes in piezo voltage do not correspond with any visible move-
ment detected by video. We interpret these changes in piezo voltage 
as likely to reflect muscle tension as the mouse prepares to move, as 
they generally occur immediately preceding video-detected move-
ments. However, nearly all video-detected movements are less than five 
frames away from piezo deflections that are >1 s.d. from the mean, so 
this threshold was used to segregate imaging frames recording during 
movement. Trials were excluded from analysis if movement occurred 
anytime between the second before stimulus onset and 300 ms after 
stimulus offset.

In addition to removing signals related to movement, piezo voltage 
traces identify frames in which substantial animal movement causes 
failures of imaging motion correction. Two-color imaging of both 
neural activity with GCaMP6f and tdTomato indicates that instances 
of tdTomato fluorescence fluctuations (indicating z motion or another 
motion correction failure) are also excluded from analysis using the 
above criteria (Supplementary Fig. 5).

Because mice whisk frequently and granule cells in Crus I can 
be tuned to whisker movements27,29, we used a different approach to 

segregate cells that are modulated during whisking. During imaging, 
videos of the head and whiskers were used to align whisker movements 
to changes in granule cell activity. Because some granule cells can be 
tuned for whisker deflection angle27, whisker movements were then 
parsed according to movement amplitude, and whisks that occurred 
between trials and in the absence of whole-body movement were used 
to identify granule cells that were modulated specifically by whisking. 
Whisk-modulated cells overlapped very modestly with ensembles 
responsive to auditory or somatosensory stimulation (7.7 ± 4.5% of 
sensory and whisking-responsive cells). Accordingly, inclusion of 
whisk-modulated cells had no significant effect on auditory (unpaired 
t test, P = 0.9686) and somatosensory (unpaired t test, P = 0.4864) 
responses on average (Supplementary Fig. 4).

For eyelid conditioning experiments, behavioral data were ana-
lyzed using modified MATLAB code written for Neuroblinks software 
(Medina Lab). Briefly, fraction of eyelid closure was calculated for each 
video frame by generating a binary image of a region of interest sur-
rounding the eye, thresholded to provide maximal discriminability for 
each experiment, and then summing pixel counts for each frame. CRs 
were defined by eyelid closure >10%. CR probability for a given session 
was calculated according to all paired trials during that session. CR 
amplitudes were calculated as the mean closure during a four-frame 
window preceding the US.

Statistics and reproducibility
Sample sizes were similar to sample sizes used for comparable studies 
in the field15,34—three mice or more per condition were used for imag-
ing and eyelid conditioning experiments, with the exception of only 
two mice used for ddHTP imaging experiments. Each imaging experi-
ment included over 150 active cells. No statistical methods were used 
to select sample sizes. Data exclusions and rationale are indicated in 
the ‘Multiphoton imaging analysis’ and ‘Behavior analysis’ sections 
above. Data distributions were assumed to be normal, but this was 
not formally tested. All paired and unpaired t tests were two-sided. 
The Student’s t test in Fig. 4e was one-sided. Adjustments for multiple 
comparisons were performed for ANOVAs. Exact P values for all tests 
are reported in Supplementary Table 1. All major results were replicated 
in multiple mice. Additionally, major results were replicated in mice 
with viral, rather than transgenic, calcium indicator expression and 
using different analytical approaches. Mice were randomly selected 
for experimental groups. Trial types were pseudorandomized during 
imaging experiments and randomized by behavioral software for eyelid 
conditioning experiments. Investigators were not blinded to the mouse 
group during experiments or analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Due to the large size of these datasets, data that support the findings of 
this study are available from the corresponding author upon request.

Code availability
Codes that support the findings of this study are available at
https://github.com/Glickfeld-And-Hull-Laboratories/Imaging 
Code-Glickfeld-Hull/tree/master/court/Manuscripts/Fleming_ 
NatureNeurosci.
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- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Due to the large size of these datasets, data that support the findings of this study are available from the corresponding author upon request.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Not Applicable

Population characteristics Not Applicable

Recruitment Not Applicable

Ethics oversight Not Applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were similar to sample sizes used for comparable studies in the field (Heffley and Hull, 2019, Wagner et al 2017): 3 mice or more 

per condition were used for all experiments, with the exception of only 2 mice used for ddHTP imaging experiments. Each imaging experiment 

included over 150 active cells, allowing statistical comparisons across conditions. No statistical methods were used to select sample sizes.

Data exclusions Whole imaging experiments that could not be made to produce a stable averaged image after motion registration were excluded from further 

analysis. Imaging regions of interest (ROIs) were excluded based on their proximity to the edge of the field of view and overlap with 

nonspecifically-labelled structures (i.e., anything other than putative granule cells) in motion-registered, averaged images. ROIs with an 

aberrant fluorescence signature and a bright, swollen appearance in motion-registered, averaged images were excluded from further analysis. 

Additionally, cells with calcium time courses lacking stability by 1) slowly drifting in magnitude or 2) transiently or permanently losing all signal 

were excluded from further analysis to allow reliable comparison of responses throughout each experiment. Exclusion criteria were not pre-

established.

Replication All major results were replicated in multiple mice, and each mouse was an independent replicant. n's (mice) are reported for each 

experiment. Additionally, major results were replicated in mice with viral, rather than transgenic, calcium indicator expression and 

using different analytical approaches.

Randomization Mice were randomly selected for experimental groups. Trial types were pseudo-randomized during all experiments.

Blinding Investigators were not blinded to mouse group during experiments or analysis. Our analysis stream was identical for all experiments of a 

given type, regardless of manipulation or stimulus condition.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Experiments were conducted during the light cycle with both male and female adult mice (>P60). All mice were housed in an animal 

facility with standardized temperature and humidity, with 12 h light/dark cycles with food and water ad libitum. Imaging experiments 

were performed with Ai148 (TIT2L-GC6f-ICL-tTA2)-D (Jackson Labs 030328) mice crossed with BACα6Cre-A22 (n = 21, female n = 12, 

male n = 9). Eyelid conditioning experiments used BACα6Cre-A mice (n = 5, female n = 3, male n = 2). C57/B6J (Jackson Labs 000664) 

was the primary background for all mice, with up to 50% CBA/CaJ (Jackson Labs 000654) for eyelid conditioning experiments.

Wild animals No wild animals were used in the study.

Reporting on sex Each experiment was performed on comparable numbers of male and female animals. Imaging: total n = 21, female n = 12, male n = 

9; Eyelid conditioning: total n = 5, female n = 3, male n = 2

Field-collected samples No field collected samples were used in the study.

Ethics oversight All experimental procedures using animals were performed with approval of the Duke University Animal Care and Use 

Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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