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The computational de novo protein design is increasingly
applied to address a number of key challenges in biomedicine
and biological engineering. Successes in expanding applica-
tions are driven by advances in design principles and methods
over several decades. Here, we review recent innovations in
major aspects of the de novo protein design and include how
these advances were informed by principles of protein archi-
tecture and interactions derived from the wealth of structures
in the Protein Data Bank. We describe developments in de novo
generation of designable backbone structures, optimization of
sequences, design scoring functions, and the design of the
function. The advances not only highlight design goals reach-
able now but also point to the challenges and opportunities for
the future of the field.

The “de novo” protein design describes the generation of
new proteins with sequences unrelated to those in nature
based on physical principles of intramolecular and intermo-
lecular interactions (1). Although most current contributions
to the de novo design focus on new structures, efforts in the
field are increasingly directed toward designing new biological
functions and their applications (1, 2). Designer proteins are
beginning to impact biomedical and synthetic biology
research. Exciting recently designed functions include in-
hibitors of viral infections (3, 4), immune system modulators
(5, 6), self-assembling biomaterials (7–9), sense-and-respond
signaling systems (10–13), and protein logic gates (14, 15).

Underlying these successful applications are developments
of computational design principles over the last decades. Many
such principles have been learned from the wealth of existing
architectures in the Protein Data Bank (PDB) (16). While many
computational design applications modify existing proteins
(12, 17–20), it is becoming possible to design both structures
and functions entirely de novo (1). It was recognized early that
variations of helical architectures could be designed based on
parametric equations (21). Helical bundle proteins have indeed
proven to be very “designable” (22) and have consequently
been adapted to many functions (13–15, 23–27). More recent
developments have expanded the structural repertoire of de
* For correspondence: Xingjie Pan, xingjiepan@gmail.com; Tanja Kortemme,
tanjakortemme@gmail.com.

© 2021 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY license (http://creativecommons.org/licenses/by/4.0/).
novo proteins to other fold classes (28–32). The first new
alpha-beta protein, with a fold not previously observed in
nature, was assembled from fragments from the PDB (33).
Subsequent careful analyses of natural protein architectures
led to the design of different alpha-beta proteins (30),
including a symmetrical artificial TIM barrel (34), and all-beta
proteins (29, 31).

Toward new functions, recent computational advances have
led to the ability to generate precise geometric variations in de
novo–designed protein families, mimicking the ability of evo-
lution to precisely tune the shapes of the members of protein
families for new activities (28, 32). Although these designed
proteins are not close in sequence to any naturally occurring
proteins, principles from structures in the PDB are still the
guiding design. Such principles are useful for generating new
protein structures through assembly from continuous (33, 35)
or discontinuous (25, 36, 37) three-dimensional elements, as
well as for the development (38) and optimization (39, 40) of
design energy functions used to rank design candidates.
Moreover, the most recent developments of deep learning for
protein structure prediction (41–43) foreshadow new methods
in the design, taking advantage of learned principles of the
protein structure (44, 45).

Computational methods have addressed a number of key
challenges in the protein design and will continue to play a
major role in advancing applications. Computational pro-
tein design is typically defined as at optimization problem:
given a user-defined structure and function, find one or a
few low-energy amino acid sequences stably adopting the
desired structure and performing the targeted function.
Ongoing challenges for designing de novo functional pro-
teins arise from all major aspects of this process (Fig. 1):
generation of designable protein backbone conformations,
sampling of sequences optimal for these structures, scoring
functions that are sufficiently accurate to distinguish correct
from incorrect solutions, and design of functional sites with
the desired activities. In this review, we discuss develop-
ment of design principles and methods in these aspects and
will highlight the role played by the structural data in the
PDB in informing these principles, in the context of this
special issue of the Journal of Biological Chemistry cele-
brating the 50th anniversary of the PDB. We focus on ad-
vances made in the past 5 years. For readers interested in
J. Biol. Chem. (2021) 296 100558 1
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Tanja Kortemme, Professor of Bioengi-
neering and Therapeutic Science, University
of California San Francisco, has played a
leading role in the field of protein design,
with a focus on the invention of new ap-
proaches to engineer new biological func-
tions at multiple scales.
the history of de novo protein design, we refer to a recent
review (46).

Sampling of de novo backbone structures for the
protein design

Backbone structures determine the overall shapes of pro-
teins and therefore play a critical role in protein functions.
Even small proteins (100 residues or less) have hundreds of
backbone degrees of freedom, making it impossible to sample
the backbone structure space by brute force. Moreover,
because folded proteins need to have well-packed cores and
satisfied hydrogen bonds, only a small fraction of the backbone
structure space can stably exist, that is, is “designable” (47, 48).
In the following sections, we describe different levels of sam-
pling backbone conformations for the design, starting from
variation of existing structures and ranging to the design of
novel folds, fold families, and constrained peptides, and ending
with a perspective on the backbone design by emerging ma-
chine learning methods.

Variation of existing structures

A workaround to the difficulty of de novo backbone design is
redesigning native backbone structures from the PDB for new
functions (18–20). Because proteins are not static, state-of-
100558
the-art design methods typically consider small structural
adjustments in response to sequence changes, or to diversify
native backbones. In particular, several approaches have been
developed to mimic “back-rub” motions (49, 50), a common
mechanism for interconverting between alternate backbone
conformations observed in high-resolution (≤1 Å) crystal
structures (51). A back-rub motion involves internal backbone
rotations about axes between C-alpha atoms. Incorporating
such back-rub moves into design simulations has led to
considerable improvements in modeling structural changes in
point mutants (49, 50, 52), protein dynamics on fast timescales
(53, 54), prediction of molecular recognition specificity (55),
and the sequence design (56).

Helical bundles

Helical bundles were the first type of protein fold designed
de novo at atomic accuracy (22, 57). Owing to their regularity,
backbone structures of coiled-coil helical bundles can be
sampled near exhaustively by Crick’s parameterization (21).
The availability of a method to systematically sample helical
bundle backbones and the high stability (58) of the fold make
helical bundles a good model system for designing a broad
scope of functions such as ligand binding (25), ion transport
(24), and switches (15). More details on recent progress of the
coiled-coil design can be found in a review by Woolfson (59).

De novo design by assembling local structures

De novo backbones beyond helical bundles can be designed
by a fragment assembly strategy originally used in structure
prediction (35, 60). Typically, the first step in design is defining
a blueprint that specifies the lengths and relative orientations
of secondary structure elements. Short fragments with desired
secondary structures are then extracted from the PDB and
assembled into a three-dimensional protein model (Fig. 2A).
Top7 was the first protein designed by this method and has a
fold topology not observed in nature (33).
Figure 1. Major aspects of the de novo protein
design. The design of a functional de novo protein,
for example, a binder (middle, magenta) to a target
protein (middle, gray), requires sampling of the
backbone structure space to find a backbone
compatible with the function, sequence optimiza-
tion to stabilize the backbone, and designing the
functional site interactions. A scoring function is
necessary to select designs with desired properties,
typically by identifying low-energy sequence–
structure combinations.



Figure 2. Advances in de novo backbone generations. A, methods to build de novo proteins by assembling local structures. The blueprint method
assembles fragments of three or nine residues into idealized structures with different fold topologies (29–31, 33, 61, 62, 64). Modular leucine-rich motifs are
connected into repeat proteins with defined curvatures (65). The SEWING method (36) connects local structural elements into helical proteins with novel
folds. Overlapping regions are colored. B, the Foldit game (71) and TopoBuilder (72) let players or experts rationally design the atomic details of backbone
structures. C, symmetry reduces the complexity of backbone generation. Symmetry was used to design a 4-fold (colors) symmetric TIM barrel (34) and
repeat proteins (67). D, de novo protein fold families can be generated by sampling the geometries (length, as well as relative position and orientation) of
secondary structure elements (28, 32). E, generative machine learning methods (red) build novel backbone structures by latent space sampling (81). The
hallucination method (45) (red) uses the TR-Rosetta neural network to predict the structure distribution of a sequence. The sequence is optimized using
Monte Carlo–simulated annealing by maximizing the divergence between the predicted structure distribution and a background distribution representing
unstructured proteins. SEWING, structure extension with native-substructure graphs; TR, transform-restrained.
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The blueprint strategy was subsequently generalized to
design de novo backbones for a number of different fold to-
pologies. Notably, each fold topology required specific design
rules derived from native structures in the PDB. For instance,
idealized alpha-beta fold proteins favor certain β-hairpin
chirality, relative orientations of alpha-beta and beta-alpha
units, and ranges for the values of backbone torsion angles
in the connecting loops (30, 61). Proteins with curved β-sheets
need bulges and register shifts to enable defined β-sheet cur-
vatures (62). The jelly roll fold topology is constrained by loop
conformations, side-chain directionality, and β-strand length
(31). β-Barrel proteins require glycine kinks and β-bulges to
reduce Lennard–Jones repulsive interactions (29). Tradition-
ally, de novo–designed proteins were validated using low
throughput assays. Recent developments in large-scale DNA
synthesis (63) now enable high-throughput stability screening
of de novo–designed small proteins (64). A recent screen
identified thousands of sequences encoding stable designs with
four different target structures and identified features of the
models associated with design success.

Other strategies for de novo backbone generation do not use
blueprints but still use assembly of protein fragments bor-
rowed from nature. Proteins with controllable curvatures can
be designed by combinations of modular leucine-rich-repeat
units (65) (Fig. 2A). The structure extension with native-
substructure graphs (SEWING) method (36) combines
continuous or discontinuous helical building blocks from
existing proteins (Fig. 2A). SEWING first extracts small
J. Biol. Chem. (2021) 296 100558 3
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substructures from proteins in the PDB. Substructures that
share high similarity in local regions are overlapped and
combined. Finally, loops are designed to close the gaps be-
tween discontinuous elements. Notably, previous applications
of Crick’s parameterization to the design were restricted to the
coiled-coil topology, while SEWING allows the exploration of
more diverse helical topologies.

A recent method called AbDesign (66) seeks to mimic
natural homologous recombination. In contrast to other
methods, Abdesign uses larger segments and relies on the
similarity between members of the same protein family to
facilitate backbone sampling. In particular, AbDesign breaks
proteins from a structure family into a few modular segments
based on structural alignments and then recombines these
segments into new backbones. AbDesign is able to build large
numbers of similar structures even for moderately sized fam-
ilies of homologs.

The complexity of the backbone design problem can be
reduced by symmetry (Fig. 2C). A 4-fold symmetric TIM barrel
was designed using the blueprint fragment assembly strategy
described above (34). Experimental characterization of the
designs revealed important hydrogen bonds defining the
strand register between repeat units. Tandem repeat proteins
made of a series of identical helix–loop–helix–loop structural
motifs can be systematically assembled (67). The designed
repeat proteins span a broad range of curvatures. By modu-
lating the curvature, alpha tandem repeat proteins can form
closed toroid structures (68). A large number of proteins with
diverse shapes can be generated by designing rigid junctions to
connect helical repeat proteins (69).
Backbone design by fragment assembly using human
intuition

Human rationale can design the atomic details of de novo
proteins (Fig. 2B). The developers of the online game Foldit
(70) crowd-sourced solutions for the challenge of de novo
protein design (71). Online Foldit players were provided with a
set of tools to generate, mutate, move, and score protein
structures. Starting from a fully extended peptide chain,
players were able to fold the chain into de novo structures and
stabilize the structures by sequence optimization. The players
designed more than ten million models. The Foldit developers
experimentally tested 146 top designs and identified 56 designs
that adopted well-folded monomeric structures. The experi-
mentally solved structures of four of these designs closely
agreed with the computational models.

A different strategy incorporates human expert knowledge
into the process of backbone generation for design. The
TopoBuilder (72) protocol lets designers build proteins in a
bottom-up approach starting from functional motifs (e.g., a
helix in a binding interface). Designers define the sizes and
three-dimensional coordinates of secondary structure ele-
ments. The coordinates are then transformed into constraints
for the Rosetta FunFolDes (73) method to build all-atom
models. The TopoBuilder protocol successfully designed pro-
tein binders (72).
4 J. Biol. Chem. (2021) 296 100558
Fold family design

Naturally occurring proteins with the same fold topology
can have distinct functions because of fine-tuned differences in
the precise geometries of structural elements (74, 75). The
ability to explore such geometric variation within fold families
is critical for design of new protein functions that require
precise three-dimensional conformations of active sites. The
recently developed loop-helix-loop unit combinatorial sam-
pling method systematically samples loop-helix-loop geome-
tries in arbitrary protein folds by near exhaustive testing of
combinations of short loops (32) (Fig. 2D). The generated
protein geometries had similar distributions to those observed
in native structures in the PDB but also included thousands of
new structures. Experimentally solved structures spanned a
wide range of the sampled distribution. Using a different
approach to geometric variation, an enumerative algorithm
was developed to sample diverse pocket structures of nuclear
transport factor 2 fold proteins (28). Parameters such as sheet
curvatures, loop types, and secondary structure lengths were
sampled during a hierarchical backbone assembly process.
Thousands of stable designs with diverse pocket geometries
were identified by a high-throughput yeast surface display
experiment.

Constrained peptides

Naturally occurring constrained peptides can have strong
pharmacological activities. The GenKIC method (76) adapted
the robotics-inspired kinematic closure algorithm (77, 78)
from loop modeling, generalized the approach to sample
noncanonical backbone degrees of freedom, and applied it to
cyclic peptides and peptides constrained by disulfide bonds.
The designed peptides closely matched the experimentally
solved structures and showed high stability against thermal
and chemical denaturation. Kinematic closure methods in
Rosetta (76, 78) can be used to enumerate backbones of cyclic
peptides with seven to ten residues nearly exhaustively (79).
GenKIC was also applied to design meso-size proteins stabi-
lized by multivalent cross-linkers (80).

Backbone design by machine learning

Machine learning models trained with the rich structural
data from the PDB are able to generate novel protein backbone
structures (Fig. 2E). A generative adversarial network (81)
model builds protein structures represented as pairwise dis-
tances between all backbone atoms. A pretrained deep con-
volutional neural network then recovers the three-dimensional
backbone structure from pairwise distances. Some of the
designed structures could be recapitulated by fragment-based
structure prediction methods (82). Another variational
autoencoder–based model focused on generating immuno-
globulin structures (83). The model learned the distribution of
immunoglobulin structures and compressed the distribution
into a low-dimensional space termed latent space. Immuno-
globulins with defined complementarity determining regions
can then be generated through latent space sampling. A new
method used the idea of neural network “hallucination”
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(generation of structures) for the protein design (45). The
model repurposes the neural network from transform-
restrained (TR)-Rosetta (42). The TR-Rosetta network is a
fast method to predict the inter-residue contact map of an
arbitrary sequence. A loss function is defined as Kullback-
Leibler divergence (84) between the TR-Rosetta neural
network–predicted contact map and a background distribu-
tion. Novel sequences and structures can be designed simul-
taneously by optimizing the loss function through Monte
Carlo–simulated annealing. Diverse structures were designed
by the model and shown to be folded by experimental
characterization.

Sequence optimization

After generation of protein backbones, the second step in a
typical de novo protein design protocol is selection of amino
acid side-chain types and conformations to stabilize the
backbone conformation and to adopt specific three-
dimensional active site geometries optimized for function.
Early de novo design studies used amino acids that favor
specific secondary structure types (85) or binary polar/hydro-
phobic patterns (86) to define protein structures. Because side-
chain conformations are clustered as rotamers (87, 88), the
side-chain design can be formulated as a discrete optimization
problem (89), that is, find a combination of rotamers that
minimize the energy of a structure. The complexity of the
problem grows exponentially with the increase of the number
of residues. Small-scale side-chain design problems can be
solved deterministically by the dead-end elimination algorithm
(90), but many de novo protein side-chain optimization
problems are too large to be solved deterministically. Instead,
amino acid sequences and side-chain conformations are often
optimized using Monte Carlo methods (91, 92), which do not
guarantee to find the global minimum, but the solutions are
often sufficiently accurate for applications.

The efficiency of side chain sampling methods can be
improved by constraining the amino acid types allowed at each
residue position. LayerDesign is a common strategy (17, 31, 32,
62, 64) to constrain designable amino acid types (Fig. 3A).
Residue positions are divided into three categories: core,
boundary, and surface. The core region allows only hydro-
phobic amino acids, the surface region allows only polar amino
acids, and the boundary region allows all amino acids. The
LayerDesign method increases sampling speed and reduces
artifacts, such as buried polar residues, which may result from
insufficient sampling or scoring errors. To further eliminate
flawed designs, the results from Monte Carlo samplers are
often filtered by a set of properties such as core packing (93)
and hydrogen bond satisfaction (32) (Fig. 3B). A high-
throughput stability screen of designed small proteins
showed that buried nonpolar surface area and local sequence-
structure compatibility had strong correlations with the sta-
bilities of designs (64).

Sequence optimization with flexible backbones

Solutions of fixed backbone side-chain design problems are
sensitive to the backbone structures used as input. Because the
Lennard-Jones potential term in scoring functions (see the
Figure 3. Advances in side-chain design. A,
in layer design, polar residues (cyan) are only
allowed at surface and boundary positions,
while hydrophobic residues (yellow) are only
allowed at boundary and core positions. B,
structures generated by side chain design
methods can be evaluated by a set of filters,
such as core packing quality, hydrogen bond
satisfaction and local sequence/structure
compatibility. C, side chain design methods
that exploit backbone flexibility outperform
fixed backbone methods (98). D, the HBNet
method (100) designs hydrogen bond net-
works. E, neural networks can predict the
probabilities of sequences given a backbone
structure (102, 103) (red). Generative machine
learning models design sequences by latent
space sampling (104–108) (green). The TR-
Rosetta neural network predicts the probabil-
ity of the structure of a given sequence. The
difference between the desired structure and
the predicted structure can be back-
propagated through the neural network to
optimize the sequence (109) (blue). TR-Rosetta,
transform-restrained Rosetta.

J. Biol. Chem. (2021) 296 100558 5
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section below) scales as the 12th power of distance when two
atoms are close to each other, a small adjustment to the
backbone structure may result in a considerable energy
change. To address these problems, state-of-the-art side-chain
design methods sample both side-chain rotamers and local
backbone conformations (50, 52, 94, 95) (Fig. 3C). Typically,
methods that exploit backbone flexibility or use backbone
ensembles outperform the fixed backbone design (96, 97). A
study benchmarked (98) several flexible backbone side-chain
design methods including CoupledMoves (94), Back-
rubEnsemble (56), and FastDesign compared with a fixed
backbone design method using the same scoring function.
Methods that simultaneously, rather than sequentially, opti-
mize sequence and backbone structure, such as CoupledMoves
(94), may be advantageous (98).

Hydrogen-bonding networks

Hydrogen bonds play an important role in the specificity of
protein–ligand and protein–protein interactions. The forma-
tion of a hydrogen bond only allows narrow ranges of distances
and orientations between the donor and acceptor groups (38).
Almost all hydrogen bond donor or acceptor groups in a
protein must form hydrogen bonds within the protein or with
solvent molecules to avoid large energetic penalties of unsat-
isfied hydrogen bonds (99). The HBNet method addresses the
challenges for the hydrogen bond design by systematically
searching for possible hydrogen-bond networks (100)
(Fig. 3D). HBNet constructs a graph whose nodes are rotamers
that have hydrogen bond donors or acceptors. Two nodes are
connected by an edge if the rotamers of the nodes can form
hydrogen bonds. Hydrogen bond networks can be generated
by traversing the graph. HBNet was successfully applied to
design helical bundle homo-oligomers with specificity medi-
ated by hydrogen bond networks. A Monte Carlo version of
the HBNet method uses a stochastic algorithm to traverse the
HBNet graph (101). This new approach significantly improves
the sampling speed and makes larger design problems possible.

Sequence design using machine learning methods

A number of machine learning methods for protein
sequence design were developed recently (Fig. 3E). Deep
neural network methods were trained to predict probabilities
of amino acids at each residue position of a backbone structure
(102, 103). Generative models learn distributions of protein
sequences and can generate new native-like protein sequences
with or without input backbone structures. A number of
generative models were developed for sequence design,
including generative adversarial networks (104), variational
autoencoders (105, 106), and graph-based (107, 108) models.
Notably, the structure prediction neural network from TR-
Rosetta (42) can be repurposed for sequence optimization
(109). For a protein sequence, the TR-Rosetta neural network
predicts distances, angles, and dihedrals for every pair of res-
idues. A loss function is defined as the difference between the
prediction and the target structure. The gradient of the loss is
then back-propagated through the TR-Rosetta neural network
6 J. Biol. Chem. (2021) 296 100558
to optimize the sequence. Combining machine learning
models and traditional Monte Carlo samplers improves per-
formance over every single method (103, 109).

Scoring functions for the design

Scoring functions in the computational protein design aim
to distinguish designs with desired properties from those not
adopting the intended structures and functions, typically by
identifying low-energy sequence–structure combinations.
Early protein energy functions (110) used harmonic terms for
bond energies and a Lennard–Jones potential for van der
Waals interactions. Modern physics–based energy functions
(111–113) account for additional energy terms such as elec-
trostatics and desolvation. An alternative approach to physics-
based energy terms is using statistics from known structures to
derive potential functions (114). The first version of the
scoring function in the Rosetta program for structural
modeling, and the design was developed for protein structure
prediction (115) and was a statistical potential function derived
from structures in the PDB (16, 116) using Bayesian statistics
(35). To adapt Rosetta for the protein design, all-atom detail
and physics-based terms were incorporated (33, 38), which in
turn led to considerable advances in both protein structure
prediction and protein design (82, 117). The current version of
the Rosetta force field used for design is similar to modern
molecular mechanics force fields (40, 118), but including
orientation dependency of hydrogen-bonding interactions
based on PDB statistics and electronic structure calculations
(38, 119); the orientation dependence of hydrogen bonding is
important for designing interaction specificity critical to many
functions (14, 100, 120). In the following, we highlight recent
developments in scoring functions for membrane proteins and
for interactions with nonprotein molecules, as well as scoring
approaches that learn from structures in the PDB.

Membrane scoring functions

Scoring functions for soluble proteins take advantage of
the large number of solved structures in the PDB to validate
and fit the parameters of the score function (121, 122).
Transmembrane proteins make up about 30% of ORFs in
known genomes but are currently underrepresented in the
PDB, complicating the development of membrane protein
scoring functions. An early version of the Rosetta membrane
scoring function (123) used statistics from 28 trans-
membrane proteins to fit parameters and was validated by ab
initio structure prediction of 12 multipass membrane pro-
teins. Recently, a new membrane scoring model (124) was
developed, which aims to better capture the heterogeneous
membrane environment (Fig. 4A). The interface between
bulk water and bulk lipid is modeled as a continuous tran-
sition of hydration fraction, with water-filled pores modeled
using a convex-hull algorithm (125). The water-to-bilayer
transfer energy is then calculated using the hydration frac-
tion and the Moon and Fleming hydrophobicity scale (126).
This membrane model improves performance in several
computational tests, including prediction of membrane



Figure 4. Advances in scoring functions. A, a
membrane scoring function (124) uses a contin-
uous hydration fraction to calculate the free en-
ergy change of residues from water to the lipid
environment. Water pores in membrane proteins
are explicitly modeled. B, protein design scoring
functions are generalized to model small mole-
cules (132) and carbohydrates (131). C, the
TERMs-based scoring function (133) breaks pro-
teins into tertiary structure motifs and evaluates
the fitness of the sequence for any local structure
using the sequence profiles of the tertiary motifs.
D, machine learning methods predict the prob-
ability of sequences given a structure (102) or the
probability of structures given a sequence (109).
The predicted probabilities can be used as scores
for the compatibility between sequences and
structures. TERMs, tertiary structural motifs.
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protein orientation, calculation of changes in membrane
protein stability upon mutation, discrimination of native
structures from incorrect models, and the extent to which
the native sequence is recovered in design simulations.

Scoring interactions with nonprotein molecules

Many protein functions involve interactions with other
types of molecules such as DNA, RNA, saccharides, or small
molecules. Expanding the types of molecules supported by
scoring functions is critical for designing such protein func-
tions. Scoring functions for DNA (127) and RNA (128) have
been successfully applied to structure prediction and design
(129, 130). Recently, a scoring function was developed for
saccharide and glycoconjugate structures (131) (Fig. 4B).
Benchmarking results on docking problems showed that the
scoring function has the ability to predict binding of glycan
ligands. Small molecules have highly diverse combinations of
chemical groups, making it challenging to transfer parameters
calculated for representative molecules to other molecules. A
new approach (132) simultaneously optimized all parameters
in a small-molecule energy function guided by thousands of
small-molecule crystal structures. The resulting scoring func-
tions significantly improved docking success rate.

TERM-based scoring

Protein design methods typically seek to find low-energy
sequences for a given target structure, but this approach
does not consider if there are alternative structures a sequence
can adopt that have even lower free energies. One way to
overcome this limitation is by directly calculating the fitness
for a given structure in the protein sequence space. Protein
structures can be broken up into three-dimensional local
pieces called tertiary structural motifs (TERMs) (133) (Fig. 4C).
Half of the structures in the PDB can be described by only
about 600 TERMs (37), indicating that the sequence prefer-
ences of each TERM could be used to calculate the fitness of a
sequence for a given local structure. A strong correlation (133)
was observed between the TERM-derived scores and protein
structure model accuracies from the Critical Assessment of
Structure Prediction. Recently, the TERM score was used to
predict protein–peptide binding energies and design peptide
binders of antiapoptotic proteins Bfl-1 and Mcl-1 (134).

Protein scoring functions by machine learning methods

The power of machine learning models to learn the sta-
tistical representations underlying rich sequence and struc-
tural data provides new perspectives for protein structure
prediction and design (41, 42, 44, 135) (Fig. 4D). Neural
network models trained with evolutionary sequence data and
structures from the PDB outperform traditional methods in
structure prediction (41, 42, 135). Most recently, it has been
proposed that neural networks that predict inter-residue
orientations (defined by three dihedral and two planar an-
gles) can be inverted for assessing the probability of the
desired structure for a given sequence; in principle, such an
approach could be used as a scoring function for protein
design to evaluate the fitness of a sequence across an entire
structural landscape (109). Another approach using a deep
convolutional neural network scoring function seeks to
predict the probability distribution of amino acid types at
each residue position conditioned on the local environment
(102).
J. Biol. Chem. (2021) 296 100558 7



Figure 5. Advances in design of new protein functions. A, a apixaban
(yellow) binder designed by the Convergent Motifs for Binding Sites
(COMBS) algorithm (25). B, A de novo protein (green) binds the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (gray) (4). C,
de novo proteins self-assemble into heterodimers (120), two-dimensional
materials (9), filaments (8), cages (140), and alpha amyloids (143). D, a de
novo–designed multipass transmembrane protein that has a defined
membrane orientation (148). E. the designed DANCER protein has a tryp-
tophan side chain that switches between predicted conformational states
on the millisecond timescale (152).
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Design of new protein functions

Proteins perform functions by placing atoms with certain
physicochemical properties at specific positions in the three-
dimensional space. Initial work on the functional protein
design directly borrowed from native functional site “motifs”
(three-dimensional arrangements of functional groups in an
existing active site) (136). Recent developments and suc-
cessful applications of de novo protein structure design
methods are gradually overcoming the limitations imposed
by the use of existing functional sites, beginning to make it
possible to both design the precise placement of arbitrary
functional groups and the protein environment de novo. In
the following sections, we describe advances in the design in
the areas of binding proteins for ligands and other proteins,
large protein assemblies, membrane proteins, and protein
switches.

Ligand-binding sites

Ligand binding is a common function for native proteins.
The de novo ligand-binding site design requires high accu-
racy in sampling and scoring. Specificity of ligand binding is
often realized by polar interactions which are highly sensitive
to the positions and orientations of polar groups. A mis-
aligned hydrogen bond could cause a considerable free en-
ergy penalty and reduce the binding affinity by an order of
magnitude. Early studies designed de novo binding sites by
manually defining side chains that form favorable in-
teractions with ligands (11, 20, 26). An effort that uses
HBNet and a Monte Carlo sequence design algorithm to
design hydrogen bonds resulted in designs that bind to li-
gands, but a crystal structure revealed that the ligand is
rotated 180� in the pocket around a pseudo-two-fold axis in
the compound (137). The authors suggested that the sam-
pling methods failed to model subtle structural changes and
that the scoring function underestimated desolvation en-
ergies for the ligand. This result highlights the challenges
inherent in sampling and energy evaluation in binding-site
designs.

Recent developments in binding site–generation methods
aim to address these challenges. The rotamer interaction
field (RIF) docking method (29) generates an ensemble of
billions of discrete amino acid side chains that make
hydrogen-bonding and hydrophobic interactions with the
target ligand. The method then searches for protein back-
bone scaffolds that are able to present ligand-binding side
chains with the appropriate geometry. RIF docking was
successfully applied to design a binding site for the fluoro-
genic compound DFHBI into a de novo beta barrel scaffold
(29). Two other methods use the structural information in
the PDB to generate binding-site ensembles (25, 138). These
methods break the ligand into smaller substructures (frag-
ments) and find protein residues that interact with the ligand
fragments from the PDB. The interacting residues are
combined into binding sites by Monte Carlo–simulated
annealing (138) or built onto backbone scaffolds by an al-
gorithm called Convergent Motifs for Binding Sites (25). The
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Convergent Motifs for Binding Sites method was applied to
engineer de novo proteins that bind the drug apixaban with
low and submicromolar affinity (Fig. 5A).

Protein binders

Similar to the ligand binding–site design, designing protein
binders to target proteins requires high accuracy scoring and
sampling. A workaround to these challenges is using binding
motifs from known protein–protein interfaces. Proteins that
bind to influenza hemagglutinin and botulinum neurotoxin B
(3) were designed by building known helical motifs that bind
to the intended targets onto de novo designed small protein
scaffolds (64). Several hundred high-affinity binders were
validated by a high-throughput yeast surface display assay.



Table 1
Success rates of designs tested by low- to medium-throughput experiments

Design goal and reference Designs tested Soluble Folded (CD) Correct monomer/oligomer Folded (NMR) Solved structure Functionala

Highly stable helical bundles (58) 9 5 5 5 3
Ideal α-β proteins (30) 54 45 32 17 16 5
Ideal α-β proteins (61) 72 64 47 39 17 6
Proteins with curved β-sheets (62) 66 58 53 54 25 8
Proteins with the jelly roll topology (31) 19 16 2 2 2 1
Novel helical folds (36) 11 8 4 4 2
FoldIt player designed proteins (71) 146 101 56 66 4
4-Fold symmetric TIM barrels (34) 22 22 5 1
Leucine-repeat proteins (65) 29 29 25 22 7
Repeat proteins (67) 83 74 72 53 15
Repeat proteins with closed toroid structures (68) 20 10 4
De novo fold families (32) 45 24 17 17 17 4
Constrained peptides (76) 137 12
Peptide macrocycles (79) 23 11 11
Design by deep network hallucination (45) 129 129 27 32
Helical bundles with hydrogen bond networks (100) 114 101 101 66 10
Fentanyl binding proteins (11) 62 1 3
Digoxigenin binding proteins (20) 17 2 2
Porphyrin binding protein (26) 1 1 1 1 1 1 1
Apixaban binding proteins (25) 6 6 6 1 2
Fluorescence-activating β barrels (29) 56 38 16 22 1 2
IL-2 and IL-15 mimics (6) 12 1 8
Repeat proteins using rigid helical junctions (69) 34 33 33 30 4 28
Cyclic protein homo-oligomers (139) 96 64 21 5 15
Orthogonal protein heterodimers (120) 97 94 85 6 39
60-Subunit protein dodecahedron (141) 17 3 2 1 2
Protein filaments (8) 124 b 6 34
α Amyloid peptides (143) 6 b 6 4 4
Two-dimensional protein arrays (7) 62 b 4 4
Two-dimensional protein arrays (9) 10 b 2
Zn2+ transporter (24) 1 1 1 1 1 1
Multipass transmembrane proteins (148) 7 b 6 6 2 6
Transmembrane pores (150) 23c 17 2 3 2 2
Multistate proteins (150) 4 4 4 4 4 1 3
pH-triggered switches (155) 5 5 5 4 2 4
Metal ion–triggered switches (156) 20 20 15 11 4 2
LOCKR protein system (15) 1 1 1 1 1
Split biosensors (12) 9 1 2

LOCKR, latching orthogonal cage-key proteins.
a Here we use a broad definition of functions, including, for example, membrane localization or formation of defined complex structure.
b Successful designs can be insoluble.
c Designed soluble proteins were converted into transmembrane proteins.
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Figure 6. Advances in the design of protein switches that change conformation in response to diverse signals. A, a designed helical trimer changes
its oligomerization state in response to pH changes (155). B, a designed helical bundle protein changes conformation upon binding to a calcium ion (green)
and a chloride ion (blue) (156). C, a designed artificial chemically induced dimerization system (12) assembles upon binding to a farnesyl pyrophosphate
ligand (spheres), linking ligand binding (sensing) to a modular response through reconstitution of a split output module (gray, magenta). D, in the LOCKR
system, a helical peptide “key” (magenta) can displace and expose a signal peptide (green) (15). LOCKR, latching orthogonal cage-key proteins.

Figure 7. Success rates reported for design studies listed in Table 1. The
success rate is defined as the percentage of reported designs in each study
that adopt the designed structure (folded, blue; experimental structure
determined, orange) or function (green, red). The circle size denotes the
number of folded/functional designs in each study. The success rates for
studies where proteins were de novo–designed to have new structures are
varied but can be high with many designs (blue). In contrast, success rates
and numbers of successful designs for proteins with new functions (green)
are much lower, except in a few cases where functional designs were all-
helical proteins (red). Only studies that reported ten or more experimen-
tally characterized designs (Table 1) are included. “Folded” refers to designs
that were characterized by CD and/or NMR spectroscopy or had an
experimentally determined structure, displayed the expected oligomeriza-
tion state (if measured), and/or were functional (if designed to have a
function).
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Likewise, proteins that bind to the interleukin-2 and
interleukin-15 receptors were designed by building a helical
bundle from interface helices of native interleukin-2 and
interleukin-15 (6).

Although difficult, interaction interfaces can also be
designed without native motifs. Recently, the RIF docking
method originally developed for the small-molecule binding
site design was applied to design small helical bundle pro-
teins that bind to the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) spike protein (4) (Fig. 5B),
yielding binders with affinities ranging from high nano-
molar to micromolar. After experimental optimization, the
most potent design had a 100-pM affinity to spike.

Protein assembly

Several design studies have addressed the problem of the
protein–protein interface design where both sides of each
interface are designed, leading to protein assembly (Fig. 5C).
Homo-oligomers with cyclic symmetries were designed by
systematic enumeration of arrangements of the monomers
followed by the interface design (139). A set of hetero-
dimers that have orthogonal binding specificities were
designed using parametric backbone generation and HBNet
(120). The orthogonal heterodimers can be used to design
protein logic gates (14). Self-assembled nanocages with
higher-order symmetries were designed by symmetric
docking followed by Monte Carlo interface sequence design
(140, 141). Fusing the designed cages to membrane binding
and endosomal sorting recruiting peptides induced the
formation of nanocage-containing extracellular vesicles
(142). The strategy of combining symmetric arrangement of
protein chains and Monte Carlo interface sequence design
10 J. Biol. Chem. (2021) 296 100558
was also successfully applied to design protein filaments (8),
alpha amyloid-like structures (143), or two-dimensional
materials (7, 9).



Table 2
Success rates of designs tested by medium- to high-throughput experiments

Design goal and reference Round Designs screened Stable designs Designs with designed functions Success rate (%)

Mini-proteins (64) 1 3560 206 6
2 2984 231 8
3 4154 496 12
4 3980 1855 47

NTF2 fold family (28) 1 2709 578 21
2 5188 1499 29

Influenza hemagglutinin binders (3) 1 7276 40 0.5
Botulinum neurotoxin B binders (3) 1 3406 874 26
De novo SARS-CoV-2 miniprotein inhibitors (4) 1 100,000 105 0.1
Epitope presenting proteins (72) 1 106–108 201,684a 0.2–20

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
a Stability and binding were selected together.
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Membrane proteins

Proteins that localize to phospholipid bilayer membranes
have been designed since the emergence of the de novo
protein design (144, 145). Membrane-spanning peptides that
self-assemble into helical bundles were designed to perform
functions such as cofactor binding (146) and ion transport
(24). Recent advances have expanded the scope of the
membrane protein design. A study of the driving forces of
membrane protein stability showed that steric packing of
nonpolar side chains alone is sufficient for the folding of
membrane proteins (147). Using a steric packing code
derived from the natural protein phospholamban, the au-
thors were able to design a synthetic membrane protein
stabilized entirely by nonpolar side chains. Accurate multi-
pass transmembrane proteins were designed (148) using a
recently developed framework for membrane protein
modeling (149) (Fig. 5D). Parametrically generated back-
bones were stabilized by hydrogen bond networks designed
with HBNet and Monte Carlo side-chain optimization.
Orientations of the designs were specified by incorporating a
ring of amphipathic aromatic residues at the lipid-water
boundary on the extracellular side and a ring of positively
charged residues on the cytoplasmic side. This strategy was
then applied to design transmembrane pores (150). Although
there was no explicit modeling of ligands that can pass
through the pores, several designs displayed ligand speci-
ficity: a designed 12-helix pore selectively passed potassium
over sodium, and a designed 16-helix pore (but not the 12-
helix pore) enabled the passage of biotinylated Alexa
Fluor 488.

Conformational changes

Among the most challenging functions to design are
conformational changes between multiple states. A single-state
design would be successful as long as the designed state re-
sides in a deep energy minimum, so that sizable scoring errors
can often be tolerated (151). However, the multistate design
(MSD) requires considerable accuracy in scoring relative sta-
bilities, such that the probability distributions among multiple
states can be modeled correctly. In addition, the MSD must
simultaneously optimize several objectives, for example, the
energies of each state and the energy differences between states.
This multiple-objective optimization problem adds significant
challenges to the sequence design. A recently developed meta-
MSD protocol designed a protein that has a tryptophan side-
chain switching between defined conformational states on the
millisecond timescale (152) (Fig. 5E). Meta-MSD used a back-
rub ensemble of backbones (56) as the input. Side chains were
then designed by optimizing the Boltzmann-weighted average
energy of all members from the ensemble using the fast and
accurate side chain topology and energy refinement algorithm
(153). The energy landscape of a designed sequence was esti-
mated using energies of each backbone structure from the
ensemble. Sequences with energy landscapes that supported
desired conformational dynamics were selected as final designs.
Protein switches

Protein switches change their conformations when triggered
by external signals, adding a potential extra layer of complexity
over designing proteins that adopt multiple conformations.
However, designing switches could be seen as a more tractable
problem because the external trigger can introduce a large
free-energy bias toward one state, making the design success
less sensitive to scoring errors. An early study described a
protein designed to switch between two distinct target folds
triggered by the addition of Zn2+ (154). The authors used a
Monte Carlo side-chain design method to optimize the sum of
energies of the two folded states, showing that it is possible to
design protein switches by solving a single-objective optimi-
zation problem. Following similar principles, other proteins
were designed to change the oligomerization state in response
to a pH change (155) (Fig. 6A) or change conformations in the
presence of Ca2+ (156) (Fig. 6B). A modular protein switch that
senses a small molecule was designed through an induced
dimerization mechanism (12) (Fig. 6C). A ligand binding site
for farnesyl pyrophosphate was designed de novo at the
interface of a protein–protein heterodimer complex. The
designed proteins dimerized in the presence of the farnesyl
pyrophosphate ligand and were able to transduce several
modular downstream signals such as the enzyme activity,
fluorescence, or luminescence. Latching orthogonal cage-key
proteins is another recently designed protein switch system
(15), consistent of a helical bundle and a helical peptide called
key (Fig. 6D). The key peptide can displace a helix in the
bundle and expose a signal on the displaced helix. The latching
orthogonal cage-key proteins system was used to induce
J. Biol. Chem. (2021) 296 100558 11
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protein degradation and localization (15), target cells with
precise combinations of surface antigens (23), and detect viral
proteins (13).

Future perspectives

The development of computational methods for de novo
protein design in the last two decades has expanded the scope
of designable protein structures and functions considerably.
Automatic computational tools have enabled nonexperts to
accurately design well-folded de novo proteins (71). However,
the de novo protein design is not a solved problem. Because
proteins have highly diverse structures and functions, the
difficulties of design problems also have great variations (Fig. 7,
Tables 1 and 2). While robust protocols exist for designing
helical bundles and small, idealized proteins with certain
alpha-beta fold topologies (30, 58, 64), the success rates for
other proteins such as beta barrels can be low (29, 31, 34).
Addressing those challenging problems still requires signifi-
cant amount of expertise, and sometimes trial and error.
Challenges are particularly apparent in the design of proteins
with new functions (Fig. 7). New protein structures can be
designed with considerable success rates without experimental
optimization (Table 1), but the activities of proteins derived
directly from the computational design are often weaker than
achievable activities of naturally evolved proteins. Therefore,
computational designs are often (although not always) opti-
mized by experimental methods such as site saturation
mutagenesis (4, 20).

There are many areas in the field of the computational de
novo protein design where significant progress is needed. To
make large sequence optimization problems computationally
tractable, scoring functions use a number of approximations
such as implicit solvation models and pairwise decomposable
energy terms. Improving scoring accuracy and speed will
continue to be an important direction. Current backbone ge-
ometry sampling methods are limited to certain secondary
structures and fold topologies. Developing methods that
expand the space of designable backbones will greatly expand
reachable functions. Although a variety of de novo protein
functions have been designed, most functions cannot be
designed routinely. Methodological advances are needed to
design the intricate geometries of protein functional sites with
increasing precision, such that subsequent experimental opti-
mization can be minimal. Such developments are particularly
important for fine-tuned and controllable conformational
changes, and highly polar functional sites. Applying design
protocols on different problems and testing the methods sys-
tematically can be valuable for identifying and addressing
limitations. Emerging machine learning methods provide op-
portunities and challenges in this relatively new subfield.
Machine learning methods can not only synthesize existing
data into statistical models that generate novel proteins but
also iteratively integrate experimental data to guide the protein
design (157). The best design strategies for many problems
might be combinations of machine learning models and ad-
vances in existing design methods. Recent advances in
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designing basic functions including ligand binding, protein–
protein interaction, membrane localization, and induced
switching are making it possible to envision the design of more
complex and composite functions such as artificial cellular
signaling systems, motors, and controllable molecular ma-
chines built from elementary components designed de novo.
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