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Abstract

Introduction.—Multifactorial biological processes underpin dysregulation over several 

individual physiological systems. However, it is challenging to characterize and model this 

multisystemic dysregulation and its relationship with individual physiologic systems. We 

operationalized a theory-driven measure of multisystem dysregulation and empirically tested for 

measurement differences by key characteristics.

Methods.—We used the Women’s Health and Aging Studies (WHAS) I and II (N=649), and the 

Health ABC study (N=1,515). Twelve biomarkers representing multiple systems including stress 

response (e.g., inflammation), endocrine system, and energy regulation were identified. A series of 
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confirmatory factor analyses (CFA) were conducted to evaluate the interplay between 

physiological systems and underlying multisystem dysregulation. We evaluated convergent 

criterion validity of a score for multisystem dysregulation against the physical frailty phenotype, 

and predictive criterion validity with incidence of walking difficulty and mortality.

Results.—A bifactor CFA, a model in which dysregulation of individual systems proceeds 

independently of generalized dysregulation, fit data well in WHAS (RMSEA: 0.019; CFI: 0.977; 

TLI: 0.961) and Health ABC (RMSEA: 0.047; CFI: 0.874; TLI: 0.787). The general dysregulation 

factor was associated with frailty (OR: 2.2, 95% CI: 1.4, 3.5), and elevated risk of incident 

walking difficulty and mortality. Findings were replicated in Health ABC.

Discussion.—Biomarker data from two epidemiologic studies support the construct of 

multisystem physiological dysregulation. Results further suggest system-specific and system-wide 

processes have unique and non-overlapping contributions to dysregulation in biological markers.

Keywords

biomarkers; frailty; psychometrics

Introduction

Dysregulation in a single physiological system can lead to recognized, diagnosable diseases 

such as hypo or hyperthyroidism, which in turn can result in adverse health conditions such 

as atrial fibrillation (1). While individual biomarkers, and sets thereof, can be used to 

characterize dysregulation in specific physiological systems (2–6), it is increasingly 

recognized that dysregulation in tandem across a constellation of physiological systems may 

have deleterious health effects, as well as implications for the development of aging 

phenotypes (7). Dysregulation across multiple systems, measurable using multiple 

biomarkers from different systems, is thought to result from a loss of complexity of 

interactions among individual physiological systems in addition to their own deterioration 

(8–9). Multisystemic physiological dysregulation may then lead to the body’s inability to 

adequately compensate for stressors. Indeed, studies have demonstrated individual 

biomarkers interact with other biomarkers in complex physiological networks to maintain 

homeostasis (10–11). Research over the past 20 years has coalesced around the notion of 

physical frailty as a manifestation of multisystem dysregulation at the physiological level 

(6,12).

This study’s motivating premise is that multifactorial biological processes underpin 

dysregulation which spans multiple physiological systems; the question is, how should this 

dysregulation be modeled? To drive research and development of prevention and treatment 

regimens, it is important to characterize and to empirically model the underlying, potentially 

multifactorial, mechanisms by which dysregulation in biomarkers across multiple body 

systems are connected. How best to juxtapose multisystemic physiological dysregulation 

and individual dysregulated systems remains understudied. (1) Does an overarching process 

of general dysregulation manifest directly in individual component physiological systems, 

which in turn results in dysregulation of biomarkers specific to the individual component 

systems (described in panel B of Figure 1)? (2) Alternatively, is there a major component of 
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physiological dysregulation unique to individual systems, independent of the overarching 

multisystem dysregulation, which also contributes to variation in dysregulated levels of 

biomarkers (described in panel C of Figure 1)? (3) Or, is there no need to account for 

component systems when empirically representing multisystemic physiological 

dysregulation (described in panel A of Figure 1)?

In this study, we evaluated these contrasting hypotheses by fitting several alternative theory-

driven structural equation models of biomarkers representing multiple physiological 

systems. Based on theory, previous research, and data availability, we chose to study 

physiological systems related to stress response (e.g., inflammation), those related to 

interconnections among endocrine systems, and energy and nutrient metabolism. We 

empirically evaluated criterion validity of a resulting measure of multisystemic 

dysregulation, derived from the best-fitting structural equation model, using clinical frailty, 

time to incident mobility difficulty, and time to death. We further tested for measurement 

differences in multisystem dysregulation by background demographic characteristics (age, 

race) and study membership. We developed models and replicated findings using two 

cohorts.

Materials and Methods

We used data from the Women’s Health and Aging Studies (WHAS) I and II, as well as the 

Health, Aging and Body Composition (Health ABC) study. The WHAS studies are 

population-based observational studies that initially recruited from Medicare eligibility lists 

in Baltimore, Maryland (13–14). They are complementary in that WHAS I recruited 

N=1,002 women who represented the one third most disabled women living in the 

community, while WHAS II recruited N=436 women who represented the two thirds least 

disabled. Exclusion criteria for WHAS I comprised of Mini Mental State Examination 

(MMSE)<19 (15) and self-reported difficulties in less than two of four functional domains 

related to mobility, upper extremity function, household management, and self-care. 

Exclusion criteria for WHAS II comprised of MMSE<24 and self-reported difficulty in more 

than one aforementioned functional domain. At baseline, WHAS I recruited women aged 65 

years and older, while WHAS II recruited women who were 70 to 79 years of age. WHAS I 

participants were examined in their homes at baseline and semi-annually for up to 3 years. 

WHAS II participants were examined in a clinic setting at baseline and 1.5, 3, 6, 7.5, and 9 

years thereafter. Further details are available elsewhere (13,16–17). Trained phlebotomists 

collected nonfasting blood samples, which were processed using standardized protocols at 

the Core Genetics Laboratory of the Johns Hopkins School of Medicine, then shipped to 

Quest Diagnostics the same day for assays.

Health ABC is a longitudinal study of body composition and functional changes among 

older adult men and women recruited from Medicare beneficiary lists and the community. 

Enrollment criteria included 70–79 years of age, no reported ADL difficulty, and no 

difficulties walking a quarter mile or climbing steps. Additional details of the study’s 

recruitment and composition are available elsewhere (17).

Gross et al. Page 3

Mech Ageing Dev. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WHAS I and II were comprised of women only, so in primary analyses we excluded men 

from Health ABC. Participants in WHAS II and Health ABC were aged 70–79 years at 

baseline, so we excluded participants who were younger than 70 years old or over 79 years 

old at baseline in WHAS I. We further excluded participants with missing data on all 

biomarkers. Final sample sizes were N=265 women in WHAS I, N=384 women in WHAS 

II, and N=1,515 women in Health ABC.

All participants provided written informed consent for each study, and the studies were 

approved by appropriate Institutional Review Boards.

Variables

Direct examination of physiological systems in older adults can be challenging, however 

biomarkers measurable in serum can provide insights, albeit gross and error-prone, into 

physiological function. We used such biomarkers representing physiological systems related 

to stress response (e.g., inflammation), interconnections among endocrine systems, and 

energy and nutrient metabolism. Because frailty has been characterized as resulting from 

multisystemic physiological dysregulation, research on the former as a manifestation of the 

latter guided our selection of biomarkers for each system (6,12). Markers of chronic 

inflammatory pathway activation, including elevated interleukin-6 (IL-6) (5,18–19), c-

reactive protein (CRP) (5,20–21), and TNF-alpha receptor 1 (22), have been associated with 

frailty status via catabolic effects on muscles both individually (23) and collectively (24). 

Additionally, high levels of white blood cells (19,25), in particular monocytes (25), have 

been associated with frailty in the WHAS studies. Because TNF-alpha receptor 1 was 

assayed and available in Health ABC but not in WHAS I and II, we did not include it in the 

present study. We also considered two ubiquitous metabolic markers, HDL cholesterol and 

albumin, for this study (26). These markers are often considered as nutritional variables. 

However, their levels are more likely to be influenced by underlying metabolic processes 

such as chronic inflammation rather than nutritional intake per se in population studies of 

older adults (27–28). Hormones in the endocrine system implicated in frailty onset and 

progression include low levels of estradiol (29), testosterone (29–31), insulin growth factor 

(IGF) (18,25), thyroid stimulating hormone (TSH) (32), and DHEA-S (18,33). Biomarkers 

related to glucose metabolism include fasting levels of glucose and HbA1c (34–35).

For the present study, from the assayed biomarkers we identified 12 serum biomarkers of 

stress response, endocrine systems, and energy metabolism that were measured in a 

comparable way across the cohorts (Supplemental Table 1). All biomarkers were assayed in 

serum using protocols specific to the WHAS and Health ABC studies, and were 

prospectively collected within two years of each other in each study. Cutoffs to define 

abnormal levels of each biomarker, provided in Supplemental Table 1, were based either on 

widely accepted criteria or, when no established absolute cutoffs were available, on top/

bottom tertiles (12). Dysregulated biomarker levels were coded as 1 and normal levels were 

coded as 0 (in some cases this was the upper tertile, and in other instances lower tertile). We 

selected a bidirectional cutoff for free testosterone because both low and high levels in 

women can have adverse consequences. In a sensitivity check, we reran analyses using 

cutoffs based on deciles instead of tertiles. We chose to use cutoffs for biomarkers to more 
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clearly articulate the indicators as markers of abnormality or dysregulation, rather than as 

continuous physiologic measures that assume dysregulation may be due to deviation in 

either direction from average. While that is a reasonable alternative approach (e.g., 11), 

bidirectional dysregulation might not make sense for all systems important in frailty and 

aging. For example, high levels of pro-inflammatory markers such as IL-6 and TNF-alpha 

exhibit unidirectional dysregulation. It is unreasonable to assume that both low and high 

values indicate dysregulation; this is why the body has both pro- and anti-inflammatory 

markers.

Analysis plan

The analysis plan involved three stages. First, we estimated a series of confirmatory factor 

analyses (CFA) to evaluate evidence of, and the interplay among, specific factors 

representing biological systems and a general factor representing multisystem dysregulation 

using combined WHAS I and II data, then in Health ABC. Second, we evaluated convergent 

criterion validity against clinical frailty, and predictive criterion validity with incidence of 

walking difficulty and mortality. Third, we tested for measurement invariance of the factor 

solution by age, race, and study membership (WHAS I, WHAS II, Health ABC).

Confirmatory factor analyses.—The relationship between physiological systems and 

multisystemic dysregulation described earlier in the conceptual framework is unclear. We 

compared three theoretically distinct confirmatory factor analysis models. These models test 

different hypotheses about the relationship between multisystemic dysregulation and 

dysregulation in individual systems (36). In a unidimensional model (Figure 1, panel A), 

multisystem dysregulation is presumed to lead directly to dysregulation in individual 

biomarkers; there is no representation of individual physiological systems. As this model 

cannot fit better than alternatives, we considered at least comparable fit of it compared to 

other models as evidence of no need to account for dysregulation in individual physiological 

systems after accounting for multisystemic dysregulation.

In a second-order CFA model (Figure 1, panel B), individual physiological systems are 

responsible for correlations among biomarkers within that system, and in turn, 

intercorrelations among individual physiological systems are explained by multisystemic 

dysregulation. The specific factors representing physiological systems mediate the 

relationship between multisystemic dysregulation and individual biomarkers. Considerably 

better fit of the second-order model relative to other models would be consistent with the 

hypothesis that multisystemic dysregulation is manifested through dysregulation in 

individual systems.

In a bifactor CFA model (Figure 1, panel C), each biomarker is influenced directly both by a 

general multisystemic dysregulation factor and a system-specific physiological factor. This 

model acknowledges that common covariation among all biomarkers represents underlying 

multisystemic dysregulation, and also that system-specific factors influence specific 

biomarkers beyond the influence of multisystemic dysregulation. Bifactor models have been 

used in prior to model multidimensionality in physiology (36) and psychopathology (48). 

The general and system-specific factors are independent of each other to empirically identify 
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the model. Considerably better fit of the bifactor model would suggest both multisystemic 

and systemic-specific dysregulation each have distinct, independent effects on physiology. 

The second-order model is nested within the bifactor model (37), facilitating direct 

comparison via a likelihood ratio test.

We estimated, using the expected a posteriori method (38), continuously distributed factor 

scores from the best-fitting model. We evaluated model fit using the root mean square error 

of approximation (RMSEA), Comparative Fit Index (CFI), and Tucker-Lewis Index (TLI). 

The RMSEA is an absolute fit index of model fit that takes into account the complexity, via 

degrees of freedom, of a model; values ≤0.05 indicate excellent fit. The CFI and TLI capture 

incremental fit relative to a null model in which all variables are uncorrelated; values of at 

least 0.95 are considered excellent (39).

Criterion validity.—To describe the concurrent criterion validity of multisystem 

dysregulation with respect to physical frailty, we estimated a logistic regression of physical 

frailty status on the factor score for multisystem dysregulation in WHAS data, adjusting for 

age and race.

To assess predictive criterion validity for future disability and for mortality, in both WHAS 

and Health ABC we modeled time to onset of major mobility difficulty or death using Cox 

proportional hazards models with the Efron method for handling ties (40). Separately for 

WHAS I and II, we estimated three models for each outcome. All models adjusted for age 

and race. First, we tested the association of the physiological factor with the time to event 

outcome. Second, we tested the association of physical frailty. Third, we entered the 

physiological factor and physical frailty into the same model. Because the physical frailty 

phenotype could not be precisely reproduced in Health ABC, we estimated just the first 

model. We evaluated the proportional hazards assumption in each dataset by visually 

inspecting Kaplan-Meier curves and also by testing for non-zero slopes in the regression of 

Schoenfeld residuals on time.

Evaluation of measurement invariance.—Biomarkers from different studies may be 

nonequivalent due to differences in assay techniques or storage methods. Biomarkers might 

also have different inter-relationships in different demographically defined groups. Thus, we 

estimated multiple-group versions of the best-fitting CFA model to evaluate whether patterns 

of dysregulation vary over age (grouped into 70–73 years, 74–79 years), race (white, non-

white), or study membership (WHAS, Health ABC).

We tested three levels of invariance: configural, metric, and scalar (39). Configural 

invariance is met when the same biomarkers are related to the same physiological factors 

across groups. Metric invariance tests whether the magnitude of correlations, or factor 

loadings, of biomarkers with the general multisystemic and system-specific factors are equal 

across groups. Satisfaction of metric invariance implies the biomarkers have comparable 

levels of random error across groups, or more precisely that relationships with their 

underlying physiological systems and with multisystem dysregulation are similar across 

groups. Scalar invariance tests whether the severity of impairment in biomarkers, where 

severity is defined relative to other biomarkers, is the same across groups. Satisfaction of 
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scalar invariance implies metric invariance and further that biomarker thresholds for 

impairment are comparable across groups (e.g., that there are no systematic measurement 

differences).

Sensitivity analyses.—We conducted five sets of sensitivity analyses. First, we 

conducted criterion validity testing using scores representing general factors from the 

alternative models that did not fit the data as well (see Figure 1). Second, to test that the 

factors do not depend on any single biomarker, e.g., that multisystem dysregulation can be 

represented in a measurement model regardless of specific biomarkers used, we re-estimated 

factor analyses in WHAS after leaving out individual biomarkers one at a time. Third, to 

evaluate whether results are driven by individuals who are diabetic, we re-estimated factor 

analyses in WHAS after excluding people with diabetes (and the HbA1c indicator). Fourth, 

to explore whether results are similar in men, we estimated factor analyses in Health ABC 

among men aged 70–79 years (N=1,425) (cutpoints used for men are provided in 

Supplemental Table 1). Fifth, to verify that the measured scores were comparable between 

WHAS and Health ABC studies, we used factor loadings and thresholds from WHAS to 

estimate CFAs in Health ABC and evaluated criterion validity using those scores.

CFA models were estimated with Mplus software version 8 using maximum likelihood 

estimation. Descriptive analyses and all other modeling were conducted using Stata version 

13.1. For all analyses that combined WHAS I and II data, we used inverse probability 

weights to weight the sample to be representative of community-living older women in the 

sampling frame (41). We scaled factor scores from CFA models to a half standard deviation 

so that when examining criterion validity, we could compare coefficients for a continuously 

distributed factor score with the binary frailty status (46).

Results

WHAS and Health ABC samples of older women aged 70–79 years were predominantly 

white (77% in WHAS, 54% in Health ABC) and most (73% in WHAS, 77% in Health 

ABC) had at least a high school education.

Confirmatory factor analyses.

Results of factor analyses are shown in Table 1 for WHAS and Table 2 for Health ABC. 

Standardized loadings in Tables 1 and 2 have a range between −1 and 1 and are interpretable 

as correlations between biomarkers and the factors denoted in column headers. Because 

factors are orthogonal to others in the same model, squared values of loadings describe the 

proportion of variability in a biomarker explained by the given factor in the model.

Unidimensional CFA models of physiological dysregulation demonstrated moderate to poor 

absolute fit to the data in WHAS (RMSEA: 0.061; CFI: 0.678; TLI: 0.607) and Health ABC 

(RMSEA: 0.075; CFI: 0.451; TLI: 0.329). Using WHAS data and likelihood ratio tests, the 

model had considerably worse fit relative to both the second-order (χ2=84, df=2, p<0.001) 

and bifactor models (χ2=137, df=15, p<0.001). The same was true of the unidimensional 

CFA in Health ABC (fit relative to the second-order model: χ2=207, df=2, p<0.001; fit 

relative to the bifactor model: χ2=338, df=12, p<0.001).
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Although second-order models fit better than unidimensional solutions in each study, 

bifactor solutions provided notably the best fit in both WHAS (RMSEA: 0.019; CFI: 0.977; 

TLI: 0.961) and Health ABC (RMSEA: 0.047; CFI: 0.874; TLI: 0.787). The bifactor 

solution fit substantially better than a second-order model in WHAS (χ2=52, df=12, 

p<0.001) and in Health ABC (χ2=131, df=12, p<0.001). Considering the bifactor solution in 

Tables 1 and 2, standardized factor loadings on the general factor represent the correlation 

between a biomarker and the latent variable representing multisystem dysregulation; most 

loadings in WHAS were of a reasonable absolute magnitude (between 0.14 and 0.66) (42). 

These results are consistent with the hypothesis that both a common multisystemic 

physiological dysregulation factor and system-specific factors contribute independently to 

variation in individual biomarkers that represent dysregulation. The proportion of the 

variability for each biomarker explained by the model, as evidenced by squares of the 

standardized loadings, also tended to be greater in the bifactor model compared with the 

unidimensional or second-order models. For example, in the WHAS bifactor solution, 

squared values of coefficients show that between 0 % and 94% of variability in individual 

biomarkers are explained by system-specific factors, and between 0.3% and 43% of 

variability in markers are explained by the general factor. For most biomarkers in both 

studies, loadings on the general factor tend to be smaller in absolute magnitude than 

loadings on the system-specific factors, underscoring the substantial roll of system-specific 

factors among biomarkers. Some loadings on the general factor, such as for HDL 

cholesterol, were even negative but not statistically significantly so.

Criterion validity.

Using WHAS I and II data, a half-standard deviation elevated level of the general factor 

from the bifactor solution representing multisystem dysregulation was associated with a 2.2-

fold increased odds of frailty (95% confidence interval, CI: 1.4, 3.5).

Table 3 presents hazard ratios (HR) for the association of the physiological factor and 

physical frailty with time to onset of incident mobility difficulty. Adjusting for age and race, 

greater levels of continuous the physiological dysregulation factor were associated with 

onset of mobility difficulty in WHAS I (HR=2.16, 95% confidence interval, CI: 1.42, 3.27), 

WHAS II (HR=1.33, 95% CI: 1.01, 1.76), and Health ABC (HR=1.59, 95% CI: 1.40, 1.80). 

Except for energy metabolism in Health ABC, secondary factor scores from the bifactor 

solution were also statistically significantly associated with onset of mobility difficulty, 

albeit less strongly than the general factor representing physiological dysregulation. As 

expected, physical frailty also was associated with time to onset of mobility difficulty (Table 

3, model 2), independently of the physiological factor (Table 3, model 3).

Table 4 presents analyses of time to death. Elevated levels of the physiological dysregulation 

factor was associated with time to death in WHAS I (HR=1.82, 95% CI: 1.13, 2.95), WHAS 

II (HR=1.57, 95% CI: 1.16, 2.14), and Health ABC (HR=1.45, 95% CI: 1.24, 1.71), even 

after adjustment for physical frailty status.
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Evaluation of measurement invariance.

To evaluate whether relationships between biomarkers and the specific and general factors in 

the bifactor model are comparable across data source, age, and race, we tested for 

measurement invariance using multiple-group bifactor models according to dataset, age 

groupings, and race. Parameter estimates for invariance testing by data source, age, and race 

are shown in Supplementary Tables 2, 3, and 4, respectively.

Across datasets, absolute fit was excellent for models conforming to configural 

(RMSEA=0.037; CFI=0.932), metric (RMSEA=0.040; CFI=0.900), and scalar invariance 

(RMSEA=0.049; CFI=0.841). These absolute fit statistics reflect utility of the bifactor 

model for characterizing correlations in the data. Relative fit statistics, which reflect 

differences in the relative distributions of biomarkers by dataset, were progressively worse 

for increasingly stringent levels of invariance (metric compared to configural invariance: 

χ2=81, df=22, p<0.001; scalar compared to metric invariance: χ2=115, df=9, p<0.001). The 

relatively worse fit of the metric model was mostly attributable to non-invariant loadings 

among the specific factors rather than the general factor for multisystem dysregulation; 

when those were allowed to vary across dataset while the loadings on the general factor were 

fixed across dataset, relative fit was not different from a configural model (χ2=29, df=20, 

p=0.14), suggesting metric invariance was satisfied for the multisystemic dysregulation 

factor.

Tests of measurement invariance with respect to age and race suggested the bifactor solution 

was invariant by age and race. Across age, absolute fit was excellent for configural 

(RMSEA=0.036; CFI=0.936), metric (RMSEA=0.031; CFI=0.942), and scalar 

(RMSEA=0.030; CFI=0.939) invariance. Further, relative fit tests comparing configural to 

metric (χ2=12, df=22, p=0.96) and metric to scalar (χ2=13, df=9, p=0.20) invariance were 

statistically non-significant, implying the distributions and correlation structure of 

biomarkers are comparable across age. Likewise, tests of measurement invariance with 

respect to race demonstrated that models for configural (RMSEA=0.040; CFI=0.911), metric 

(RMSEA=0.034; CFI=0.918; fit relative to a configural model: χ2=11, df=22, p=0.98), and 

scalar (RMSEA=0.042; CFI=0.868; fit relative to a metric model: χ2=10, df=9, p=0.47) 

invariance each provided excellent absolute fit to data and that relative fit was not different 

by race.

Sensitivity analyses.

Relationships of general factor scores from unidimensional and second-order CFAs with 

mobility difficulty (Supplemental Table 5) and mortality (Supplemental Table 6) were 

comparable to those from the bifactor model. Neither results from factor analysis 

themselves, nor inferences from criterion validity, were affected when individual biomarkers 

were excluded from models (Supplemental Table 7). Similarly, results remained similar after 

excluding N=101 participants with diabetes (Supplemental Table 8). When we estimated 

factor analyses in men in Health ABC, the pattern of results was similar: a bifactor solution 

fit best (RMSEA=0.038; CFI=0.938; TLI=0.898) (Supplemental Table 9). Notably, in the 

bifactor solution among men in contrast to the solution for women, IL6 and CRP were more 

strongly correlated with the inflammatory subfactor than the general factor, while 
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testosterone had a greater role in the general factor. Findings with respect to criterion 

validity in Health ABC did not change appreciably when we estimated factor scores using 

item parameters from WHAS (Supplemental Table 10).

Discussion

Frailty is thought to be an emergent property that is due to dysregulation of multiple 

physiological systems governing homeostasis. However, it is challenging to characterize this 

multisystemic dysregulation and its relationship with individual physiologic systems. In this 

study, we combined data from three well-characterized cohorts to evaluate the factor 

structure of biomarkers and how individual physiological systems are related to overall 

multisystemic dysregulation. Findings support a construct of multisystem physiological 

dysregulation defined by the shared variance across biomarkers from many physiological 

systems, after accounting for independent effects of impairment in individual systems. 

Findings suggest both system-specific and system-wide processes have unique and non-

overlapping contributions to dysregulation in biological markers; the large loadings on 

system-specific factors highlight their substantial role. The multisystem dysregulation factor 

is associated with frailty, as well as an elevated hazards of incident mobility difficulty and 

death.

These findings are consistent with previous research. Previous studies using other 

approaches have suggested that overall multi-system physiologic dysregulation is not 

independent of system-specific dysregulation, yet is more than the sum of system-specific 

dysregulation (7). Using data from the Midlife in the United States II Biomarker Project 

(N=1,255), Wiley and colleagues (36) tested alternative factor structures of biomarkers to 

model allostatic load and found a bifactor solution fit the data considerably better than a 

second-order model, and further was invariant across age and sex. Although this study 

considered continuously distributed versions of biomarkers, some of which overlapped with 

the set we evaluated, to model allostatic load, we used binary versions of biomarkers to 

model more explicitly multisystem physiological dysregulation.

Future research at epidemiologic but also biological level is needed to better understand the 

nature of any substrate underlying the multisystemic physiological dysregulation that we 

have operationalized using latent variable modeling, and that others have also hypothesized 

to exist. We used one latent variable approach, based on common correlations shared by 

indicators of dysregulated biomarkers, to model multisystemic physiological dysregulation. 

Other research has approached this goal in other ways. Latent variable models, used here, 

have been applied to multiple biomarkers of particular systems, although there are 

exceptions that have evaluated biomarkers spanning several systems (12,36). An important 

caveat to keep in mind regarding latent variable modeling is that in interpreting from bifactor 

models that both system-specific and system-wide processes have unique and non-

overlapping “contributions” to dysregulation - and that generalized multisystem 

dysregulation “causes” system-specific dysregulations in the second-order model - we are 

invoking a local homogeneity assumption (47). This assumption is that a measurement 

model has the same form within and between people; in other words, correlation based on 

between-persons variation in biomarkers is being modeled to make inferences about within-
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person causal processes. This is an inherent limitation for any statistical attempt to quantify 

causal relationships among bodily processes using between-persons variation, thus careful 

interpretations should be accompanied by appropriate skepticism. Other studies have 

modeled multisystem dysregulation using cross-sectional sum scores (e.g., 43–44) or 

Mahalanobis distance (7,10–11). Belsky and colleagues (45) quantified biological “pace of 

aging” based on longitudinal trajectories of 18 biomarkers among middle-aged adults in 

their 30s and 40s. Unlike other studies, including ours, this study was able to distinguish 

within-person change from between-persons change. Ultimately, evidence for a substrate 

underlying multisystemic physiological dysregulation must come from multiple types of 

models and information.

The role of multisystem dysregulation in physical frailty remains an open question. Part of 

our ultimate goal is to hypothesize and validate an endophenotype for frailty. It remains a 

hypothesis that clinical manifestation of physical frailty results from loss of complex 

interactions among interrelated physiological networks. According to this theory, 

multisystem dysregulation leads to elevated vulnerability to stressors and a decreased ability 

to recover normal homeostasis (12). While rates of deterioration may vary across systems 

and between groups of people, nearly all physiological systems are probably affected by 

frailty to some degree. We do not claim that the current model is exhaustive: we are limited 

by the current state of knowledge and the availability of consistently measured biomarkers 

across the studies used. Indeed, the physiologic factor in our study was associated with 

adverse outcomes independently of clinical frailty. This finding suggests either that the 

physiological basis of frailty we have derived includes factors external to frailty (and even 

that consideration of other systems and other biomarkers is merited), or that the frailty 

phenotype measure is an imperfect measure of frailty. Either hypothesis is reasonable and 

both merit further investigation and measurement refinement.

The findings in our study may be a snapshot of a progressive process of multisystemic 

deterioration in frailty. It may be that individuals presenting with multiple system 

physiological dysregulation may be more downstream in the frailty process, and their first 

dysregulated system occurred several years prior to observation. Pursuant to this reasoning, a 

population of relatively healthy people should not show evidence of multisystemic 

dysregulation via a bifactor solution of biomarkers from diverse body systems. To provide 

direct support for this hypothesis, more extensive data are needed on the longitudinal co-

evolution of multiple biomarkers over a long time span prior to development of frailty. We 

report in this study a cross-sectional correlation between multisystem dysregulation and 

clinical frailty that, while strong, is not causal.

There are several caveats and future directions for this study. First, tests of measurement 

invariance implied that the global cutoffs (either at one or both extremes of a biomarker 

distribution) we used for each biomarker may be sufficient to indicate dysregulation across 

different groups. Future investigations are necessary to evaluate invariance over wider age 

ranges, as well as with respect to sex. Second, we did not consider an exhaustive list of 

biomarkers from all possible physiological systems. Several other physiological systems 

may be altered in multisystem dysregulation, including the autonomic nervous system, 

sympathetic nervous system, and renin angiotensin system (7,36). Because the datasets used 
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in the present study do not have adequate - or comparable - markers of these systems, we 

were unable to include biomarkers of these systems. Other studies have considered different 

biomarkers using varying modeling approaches and have generally concluded that 

multisystemic physiological dysregulation exists separately from dysregulation in individual 

systems (7,11,36). Our findings, while not inclusive of all potential biomarkers from all 

physiological systems, are consistent with these findings and further suggest that system-

specific and general physiological dysregulation should be modeled in tandem to adequately 

represent observed impairment in biomarkers. A final caveat of this study is that 

measurement error in biomarkers is likely pervasive. Such measurement error may arise 

from natural variation (e.g., diurnal changes), assay differences, medications, etc. While 

such errors likely weaken intercorrelations among biomarkers, thereby weakening the 

strength of the general multisystemic dysregulation factor, our factor analysis approach is 

more optimal than incorporating biomarkers into a composite scale (e.g., summation or 

averaging) because the multisystemic dysregulation factor represents the common 

covariation among the biomarkers.

An important future direction that requires not only empirical data analysis but also input 

from substantive theory is what other physiological systems and what other biological 

markers may be salient markers of multisystem dysregulation. We speculate that the 

autonomic nervous system, sympathetic nervous system, and renin angiotensin system may 

be viable critical candidate systems, for example. Biomarkers comprising individual systems 

also needs attention; testosterone was a poor marker of multisystemic dysregulation in 

Health ABC among women but not men, while the markers we selected for energy 

metabolism were more strongly correlated with the specific factor than with the general 

multisystemic factor.
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Highlights

• Multifactorial biological processes underpin dysregulation over multiple 

physiological systems. How best to juxtapose the former in relation to 

individual dysregulated systems remains understudied.

• We operationalized a theory-driven measure of multisystem dysregulation by 

fitting several alternative theory-driven measurement models of biomarkers 

representing multiple physiological systems. Based on theory, previous 

research, and data availability, we chose to represent physiological systems 

related to stress response (e.g., inflammation), those related to 

interconnections among endocrine systems, and energy and nutrient 

metabolism.

• Findings support a construct of multisystem physiological dysregulation as 

the shared variance across biomarkers from many physiological systems, after 

accounting for independent effects of impairment in individual physiological 

systems. Individual systems still account for unique variation in the 

biomarkers, suggesting both system-specific and system-wide processes have 

unique and non-overlapping contributions to dysregulation in biological 

markers.

• The multisystem dysregulation factor is associated with frailty, as well as an 

elevated hazards of incident mobility difficulty and death.
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Figure 1. Path diagrams for alternative hypotheses regarding system-wide and system-specific 
multisystem dysregulation, and their relationship
Legend. This figure depicts three alternative confirmatory factor analysis (CFA) models 

tested in this study to represent multisystem dysregulation; see text for substantive 

interpretations. Observed indicators for dysregulated biomarkers are displayed in squares. 

Latent variables for general and systemic-specific latent variables, which represent common 

covariation in observed indicators to which arrows point, are shown in circles.
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Table 1.

Factor analysis results in WHAS I and II (N=649)

Variabl e Single-factor Second-order model Bifactor model

Standardized 
loading

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Interleukin-6 
(IL6)

0.39 0.54 0.20 0.48

C-reactive 
protein 
(CRP)

0.47 0.59 0.38 0.47

Monocyte % 0.18 0.21 0.18 0.16

Serum 
albumin

0.68 0.78 0.66 0.56

HDL 
cholesterol

0.39 0.49 −0.18 0.71

Estradiol −0.20 0.43 −0.29 0.46

Free 
testoserone

−0.17 0.64 0.14 0.66

DHEA-S −0.16 0.72 0.06 0.68

Insulin 
growth factor 
1 (IGF1)

0.18 0.16 0.62 0.21

Thyroid 
stimulating 
hormone 
(TSH)

0.20 −0.07 0.36 −0.08

Glucose 0.73 0.91 0.16 0.78

Hemoglobin 0.96 0.91 0.31 0.97

A1C (HbA1 
C)

Inflammatory 
factor

0.74

Endocrine 
factor

−0.17

Metabolic 
factor

0.69

Model fit

 RMSEA 0.061 0.038 0.019

 CFI 0.678 0.881 0.977

 TLI 0.607 0.849 0.961

chi2 188.258 133.626 45.833

df 24 26 39

p-value 0 0

54.632 87.793
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Variabl e Single-factor Second-order model Bifactor model

Standardized 
loading

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

142.425

Variable Single-factor Second-order model Bifactor model

Standardized 
loading

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Interleukin-6 
(IL6)

0.25 0.73 0.08 0.45

C-reactive 
protein 
(CRP)

0.19 0.58 0.77 0.87

Monocyte % −0.09 −0.03 0.17 −0.05

Serum 
albumin

0.00 0.16 0.04 0.09

HDL 
cholesterol

0.23 0.25 −0.23 0.24

Estradiol 0.04 0.92 −0.46 0.96

Free 
testoserone

0.02 0.11 0.08 0.06

DHEA-S −0.09 0.34 −0.04 0.31

Insulin 
growth factor 
1 (IGF1)

−0.04 0.30 0.17 0.35

Thyroid 
stimulating 
hormone 
(TSH)

−0.12 0.04 0.16 0.10

Glucose 0.68 0.81 −0.51 0.67

Hemoglobin 
A1C 
(HbA1C)

0.55 0.95 −0.52 0.73

Inflammatory 
factor

0.707

Endocrine 
factor

−0.076

Metabolic 
Factor

0.591

Model fit

 RMSEA 0.075 0.057 0.047

 CFI 0.451 0.761 0.874

 TLI 0.329 0.691 0.787

267.163 137.78
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Variabl e Single-factor Second-order model Bifactor model

Standardized 
loading

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

chi2 558.384 291.221 153.441

df 36 26 38

p-value 6.39E-137 1.02E-47

Mech Ageing Dev. Author manuscript; available in PMC 2021 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gross et al. Page 21

Table 2.

Factor analysis results in Health ABC (N=1515)

Variable Single-factor Second-order model Bifactor model

Standardized 
loading

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
Metabolism

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Interleukin-6 
(IL6)

0.39 0.54 0.20 0.48

C-reactive 
protein 
(CRP)

0.47 0.59 0.38 0.47

Monocyte % 0.18 0.21 0.18 0.16

Serum 
albumin

0.68 0.78 0.66 0.56

HDL 
cholesterol

0.39 0.49 −0.18 0.71

Estradiol −0.20 0.43 −0.29 0.46

Free 
testoserone

−0.17 0.64 0.14 0.66

DHEA-S −0.16 0.72 0.06 0.68

Insulin 
growth factor 
1 (IGF1)

0.18 0.16 0.62 0.21

Thyroid 
stimulating 
hormone 
(TSH)

0.20 −0.07 0.36 −0.08

Glucose 0.73 0.91 0.16 0.78

Hemoglobin 
A1C 
(HbA1C)

0.96 0.91 0.31 0.97

Inflammatory 
factor

0.74

Endocrine 
factor

−0.17

Metabolic 
factor Model 
fit

0.69

 RMSEA 0.061 0.038 0.019

 CFI 0.678 0.881 0.977

 TLI 0.607 0.849 0.961

chi2 188.258 133.626 45.833

df 24 26 39

p-value 0 0

54.632 87.793

142.425

Variable Single-factor Second-order model Bifactor model
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Variable Single-factor Second-order model Bifactor model

Standardized 
loading

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
Metabolism

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Standardized 
loading

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
Metabolism

Standardized 
loading, 
General 
factor

Standardized 
loading, 
Inflammation

Standardized 
loading, 
Endocrine

Standardized 
loading, 
Energy 
metabolism

Interleukin-6 
(IL6)

0.25 0.73 0.08 0.45

C-reactive 
protein 
(CRP)

0.19 0.58 0.77 0.87

Monocyte % −0.09 −0.03 0.17 −0.05

Serum 
albumin

0.00 0.16 0.04 0.09

HDL 
cholesterol

0.23 0.25 −0.23 0.24

Estradiol 0.04 0.92 −0.46 0.96

Free 
testoserone

0.02 0.11 0.08 0.06

DHEA-S −0.09 0.34 −0.04 0.31

Insulin 
growth factor 
1 (IGF1)

−0.04 0.30 0.17 0.35

Thyroid 
stimulating 
hormone 
(TSH)

−0.12 0.04 0.16 0.10

Glucose 0.68 0.81 −0.51 0.67

Hemoglobin 
A1C 
(HbA1C)

0.55 0.95 −0.52 0.73

Inflammatory 
factor

0.707

Endocrine 
factor

−0.076

Metabolic 
factor

0.591

Model fit

 RMSEA 0.075 0.057 0.047

 CFI 0.451 0.761 0.874

 TLI 0.329 0.691 0.787

267.163 137.78

chi2 558.384 291.221 153.441

df 36 26 38

p-value 6.39E-137 102E-47
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Table 3.

Predictive criterion validity: Results from survival analyses for mobility difficulty in WHAS and Health ABC

WHAS I WHAS II Health ABC

Sample size 263 380 1499

Incident mobility difficulty 73 202 992

Person-years at risk 680.8 3009.6 10313.7

Model 1. Physiologic factor, HR (95% CI) 2.16 1.42, 3.27 1.33 1.01, 1.76 1.59 1.40, 1.80

Model 2. Frailty, HR (95% CI) 2.80 1.69, 4.63 2.09 0.97, 4.48

Model 3. Physiologic factor, HR (95% CI) 2.23 1.45, 3.43 1.35 1.02, 1.79

Model 3. Frailty, HR (95% CI) 2.54 1.54, 4.19 2.21 1.03, 4.76

Model 4. Physiologic factor, HR (95% CI) 1.85 1.04, 3.31

Model 4. Frailty, HR (95% CI) 2.28 1.26, 4.14

Model 4. Interaction of frailty and physiologic factor, HR (95% CI) 0.95 0.41, 2.19

WHAS I WHAS II Health ABC

Sample size 262 384 1499

Deaths 53 156 567

Person-years at risk 1159. 3710.7 16283.7

6

Model 1. Physiologic factor, HR (95% CI) 1.82 1.13, 2.95 1.57 1.16, 2.14 1.45 1.24, 1.71

Model 2. Frailty, HR (95% CI) 1.74 0.95, 3.20 2.16 0.95, 4.91

Model 3. Physiologic factor, HR (95% CI) 1.88 1.15, 3.09 1.61 1.18, 2.18

Model 3. Frailty, HR (95% CI) 1.60 0.87, 2.93 2.35 1.03, 5.35

Model 4. Physiologic factor, HR (95% CI) 1.66 0.85, 3.24

Model 4. Frailty, HR (95% CI) 0.88 0.40, 1.92

Model 4. Interaction of frailty and physiologic factor, HR (95% CI) 0.36 0.13, 1.01

Legend. All models are adjusted for age and race. Coefficients for the physiologic factor are interpretable as the hazard ratio for mobility difficulty 
per half standard deviation increase in the physiologic factor. Coefficients for frailty are interpretable as a hazard ratio between frail and nonfrail 
participants.
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Table 4.

Predictive criterion validity: Results from survival analyses for mortality in WHAS and Health ABC

WHAS I WHAS II Health ABC

Sample size 263 380 1499

Incident mobility difficulty 73 202 992

Person-years at risk 680.8 3009.6 10313.7

Model 1. Physiologic factor, HR (95% CI) 2.16 1.42, 3.27 1.33 1.01, 1.76 1.59 1.40, 1.80

Model 2. Frailty, HR (95% CI) 2.80 1.69, 4.63 2.09 0.97, 4.48

Model 3. Physiologic factor, HR (95% CI) 2.23 1.45, 3.43 1.35 1.02, 1.79

Model 3. Frailty, HR (95% CI) 2.54 1.54, 4.19 2.21 1.03, 4.76

Model 4. Physiologic factor, HR (95% CI) 1.85 1.04, 3.31

Model 4. Frailty, HR (95% CI) 2.28 1.26, 4.14

Model 4. Interaction of frailty and physiologic factor, HR (95% CI) 0.95 0.41, 2.19

WHAS I WHAS II Health ABC

Sample size 262 384 1499

Deaths 53 156 567

Person-years at risk 1159.6 3710.7 16283.7

Model 1. Physiologic factor, HR (95% CI) 1.82 1.13, 2.95 1.57 1.16, 2.14 1.45 1.24, 1.71

Model 2. Frailty, HR (95% CI) 1.74 0.95, 3.20 2.16 0.95, 4.91

Model 3. Physiologic factor, HR (95% CI) 1.88 1.15, 3.09 1.61 1.18, 2.18

Model 3. Frailty, HR (95% CI) 1.60 0.87, 2.93 2.35 1.03, 5.35

Model 4. Physiologic factor, HR (95% CI) 1.66 0.85, 3.24

Model 4. Frailty, HR (95% CI) 0.88 0.40, 1.92

Model 4. Interaction of frailty and physiologic factor, HR (95% CI) 0.36 0.13, 1.01

Legend. All models are adjusted for age and race. Coefficients for the physiologic factor are interpretable as the hazard ratio for mortality per half 
standard deviation increase in the physiologic factor. Coefficients for frailty are interpretable as a hazard ratio between frail and nonfrail 
participants.
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