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Abstract The Cdc45/Mcm2-7/GINS (CMG) helicase separates DNA strands during replication in 
eukaryotes. How the CMG is assembled and engages DNA substrates remains unclear. Using 
electron microscopy, we have determined the structure of the CMG in the presence of ATPγS and a 
DNA duplex bearing a 3′ single-stranded tail. The structure shows that the MCM subunits of the 
CMG bind preferentially to single-stranded DNA, establishes the polarity by which DNA enters into 
the Mcm2-7 pore, and explains how Cdc45 helps prevent DNA from dissociating from the helicase. 
The Mcm2-7 subcomplex forms a cracked-ring, right-handed spiral when DNA and nucleotide are 
bound, revealing unexpected congruencies between the CMG and both bacterial DnaB helicases 
and the AAA+ motor of the eukaryotic proteasome. The existence of a subpopulation of dimeric 
CMGs establishes the subunit register of Mcm2-7 double hexamers and together with the spiral 
form highlights how Mcm2-7 transitions through different conformational and assembly states as it 
matures into a functional helicase.
DOI: 10.7554/eLife.03273.001

Introduction
The faithful copying of DNA requires the correct spatial and temporal assembly of replication machin-
eries at specific chromosomal loci known as origins. In eukaryotes, origins are licensed for replication 
by recruitment of the Mcm2-7 complex, a ring-shaped helicase that serves as the principal unwinding 
activity for separating parental DNA strands (Blow, 1993; Bochman and Schwacha, 2008; Costa 
et al., 2011; Lyubimov et al., 2012). Mcm2-7 is initially loaded around duplex DNA as an inactive 
double hexamer by the origin recognition complex (ORC), Cdc6, and Cdt1 in the G1 phase of the cell 
cycle (Evrin et al., 2009; Remus et al., 2009), forming a stable intermediate known as the pre-replicative 
complex (pre-RC, Diffley et al., 1994; Donovan et al., 1997; Maiorano et al., 2000; Sun et al., 2013; 
Yanagi et al., 2002). Upon entry into S phase, Mcm2-7 associates with the GINS complex and Cdc45 
generating an 11-member assembly termed the CMG (Kanemaki et al., 2003; Gambus et al., 2006; 
Moyer et al., 2006; Pacek et al., 2006; Ilves et al., 2010). GINS/Cdc45 assembly is dependent on 
the CDK kinase (Zegerman and Diffley, 2007), while post-translational modification of Mcm subunits 
2, 4, and 6 by the Cdc7/Dbf4 kinase (DDK) further contributes to CMG activation (Labib, 2010; Sheu 
and Stillman, 2010). Following the assembly of replicative polymerases and replisomal scaffolding 
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factors (Gambus et al., 2009; Muramatsu et al., 2010), the two CMG particles split apart into discrete 
complexes that have been proposed to each encircle a single DNA strand during translocation 
(Yardimci et al., 2010; Boos et al., 2012).

At present, multiple aspects of the Mcm2-7 loading and activation cycle remain poorly understood. 
Although the six homologous subunits of one Mcm2-7 complex are known to pair with a second 
Mcm2-7 complex through their N-terminal domains in the context of a double-hexamer (Evrin et al., 
2009; Remus et al., 2009), the precise register by which these subunits interact with each other across 
the two rings is not known. How DDK phosphorylation of the Mcm2, Mcm6, and Mcm4 N-termini 
(Labib, 2010), or how a DDK-bypass mutation in the N-terminus of either Mcm4 (Sheu and Stillman, 
2010) or Mcm5 (Jackson et al., 1993), might aid in the switch from an inactive Mcm2-7 double hex-
amer state to a functional CMG is similarly unclear, particularly as Mcm4 is spatially segregated from 
Mcm2 and Mcm5 (Costa et al., 2011).

During unwinding and fork progression, the CMG translocates 3′→5′ along DNA. How the various 
components of the CMG engage nucleic acid strands during this process has remained ill-defined. 
Cdc45 has recently been shown to contain a RecJ exonuclease domain that can bind DNA but that is 
catalytically inactive (Petojevic et al., unpublished data, as well as Sanchez-Pulido and Ponting, 2011; 
Krastanova et al., 2012; Szambowska et al., 2014). Whether or how the Cdc45 RecJ fold might bind 
single DNA strands formed in the context of the CMG has not been established. Conflicting models 
likewise exist for how Mcm2-7 engages substrate DNAs as it moves 3′→5′ during strand separation, 
with biochemical data from archaeal MCMs and phylogenetic relationships to superfamily III (SFIII) 

eLife digest Before a cell divides, it must duplicate its DNA so that each new cell inherits 
its own copy of the genome. To do this, the DNA double helix must be unwound so that the 
two individual strands of DNA can serve as templates for making new DNA molecules. Unwinding 
begins when two helicase complexes, termed the Mcm2-7 rings, are loaded together onto  
the DNA.

At first, the two Mcm2-7 rings encircle the double-stranded DNA and remain bound together in 
an inactive form. Activating the Mcm2-7 rings requires the binding of five other proteins to each 
ring, which forms two larger complexes called CMG helicases. When the CMG helicases form, the 
two DNA strands separate and an individual Mcm2-7 ring ends up encircling each of the single DNA 
strands. However, how an activated CMG complex is assembled, and how it binds to and unwinds 
DNA, is not fully understood.

Now, Costa et al. have determined the three-dimensional structure of the fruit fly CMG helicase 
bound to a DNA double helix with a single-stranded overhang at one end. The activated Mcm2-7 
ring binds to the overhang, which confirms previous findings indicating that the activated helicase 
prefers single-stranded over double-stranded DNA. The structure also shows that, as a CMG 
helicase slides along the single-stranded DNA towards the double-stranded DNA, it is the ring 
complex's ‘motor domains’ that lead the way, while its DNA-binding domains trail behind.

Costa et al. also found that disrupting some of the interactions between two of the five proteins 
that bind to the Mcm2-7 ring either prevented the replicative helicase from forming or made it 
unstable. Furthermore, it was revealed that one of these two proteins—called Cdc45—was ideally 
placed to capture the strand of DNA that might be accidentally released from the Mcm2-7 ring. It 
was also discovered that when the complex is bound to DNA, the motor domains of the Mcm2-7 
complex change shape from a flat ring to a spiral structure; the DNA-binding domains, however, 
remain in a flat ring. Costa et al. note that this structure is similar to that adopted by many viral and 
bacterial helicases, and that it even shares many features with the molecular machinery that breaks 
down unneeded or damaged proteins inside cells.

Finally, Costa et al. were able to image a structure composed of two CMG complexes bound 
together. This reveals the relative orientation of the two Mcm2-7 rings before they separate and 
move in opposite directions to unravel the DNA. The findings of Costa et al., combined with 
previous structural work in this field, demonstrate that the Mcm2-7 helicase complex can adopt 
many different shapes as it is assembled on DNA and activated to support DNA replication.
DOI: 10.7554/eLife.03273.002
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helicases (such as the SV40 Large T antigen and the papillomavirus E1 protein) predicting mutually 
exclusive binding orientations (McGeoch et al., 2005; Enemark and Joshua-Tor, 2006; Rothenberg 
et al., 2007; Lee et al., 2014).

To begin to understand several extant questions surrounding how the CMG is formed and oper-
ates at molecular level, we have determined structure of the full-length complex from Drosophila 
melanogaster in the presence of a 3′-tailed DNA duplex and the non-hydrolyzable ATP analog, ATPγS, 
using negative-stain electron microscopy and single-particle reconstruction methods. The structure 
establishes that: 1) the CMG preferentially associates with single-stranded DNAs over double-stranded 
substrates, 2) the C-terminal ATPase domains of Mcm2-7 form the leading edge of the motor as it 
advances on a duplex, and 3) the RecJ domain of Cdc45 is oriented to favor the capture of DNA seg-
ments that might accidently escape the Mcm2-7 pore. Comparison of the new structure with a previ-
ously-determined apo CMG model (Costa et al., 2011) shows that the Mcm2-7 ATPase domains of 
the complex transition from a planar, open ring into a closed, right-handed spiral in the presence of 
both DNA and nucleotide. Analysis of this state alongside other ring-ATPases shows that the MCM 
spiral is most similar to that adopted by the bacterial DnaB helicase upon engaging single-stranded 
DNA (Itsathitphaisarn et al., 2012), and that the GINS•Cdc45 complex bridges the junction between 
the ends of the spiral in a manner similar to that by which the Rpn1 accessory subunit spans a spiral 
Rpt1-6 ATPase assembly in the eukaryotic proteasome (Lander et al., 2012). Interestingly, examina-
tion of a subpopulation of CMG dimers present in our EM data shows how two Mcm2-7 complexes 
associate within a double hexamer and suggests that this dimerized state persists during CMG 
formation, prior to separation during fork progression (Ilves et al., 2010; Yardimci et al., 2010). 
Collectively, our observations establish that Mcm2-7 unwinds DNA using an approach distinct from 
that of superfamily III helicases and highlight several new Mcm2-7 ring configurations and assembly 
states accessed by the motor during the initiation of DNA replication.

Results and discussion
Determination of a higher-resolution CMG model
In a previous study, we determined the medium-resolution (28 Å) structures of the Drosophila 
melanogaster CMG helicase in both an apo state and bound to a non-hydrolyzable ATP analog (Costa 
et al., 2011). Though sufficient for mapping individual subunits within the CMG, both models revealed 
a planar structure for Mcm2-7, with GINS and Cdc45 spanning a gap that appeared between Mcm2 
and Mcm5 when nucleotide was omitted. Since insights into where DNA might bind to the CMG or 
how binding might potentially alter the structure of complex were unclear, we set out to trap and 
image a prospective translocation intermediate of the CMG using 3D single-particle electron micros-
copy. A purified solution of the CMG was first mixed with a 20 bp duplex DNA substrate bearing a 
single-stranded 3′-dT(40) tail and passed over a sizing column in the presence of the non-hydrolyzable ATP 
analog, ATPγS, to form a ternary complex. The complex did not behave well during cryo-preservation 
attempts using holey-carbon EM grids, so samples were instead deposited onto continuous carbon 
grids and exposed to uranyl formate for negative staining. A total of 29,913 particles were selected 
from EM micrographs acquired with JADAS automated data collection software (JEOL, Zhang et al., 
2009) on a JEM2100 electron microscope. Following particle picking and 2D averaging, a 3D model 
was generated by projection matching using a low-pass filtered (60 Å), free-hand test-validated, nucle-
otide-bound structure of the CMG as a starting model (‘Materials and methods’; Rosenthal and 
Henderson, 2003; Lyubimov et al., 2012).

CMG particles imaged with DNA and ATPγS turned out to be quite uniform, permitting structure 
determination to a higher resolution than that obtained previously (18 Å vs 28 Å resolution, Figure 1—
figure supplement 1). The resultant model (Figure 1A) in turn allowed for a more accurate fitting of 
the Mcm2-7 and GINS subunits (Figure 1B,C), revealing several new features. For instance, the loca-
tion of Psf1 C-terminus, which was previously not visible, was now clearly evident, and could be readily 
fit to a recently-published full-length structure of Psf1 from an archaeal ortholog (Oyama et al., 2011; 
Figure 1C). Flexing within the Mcm2-7 ring was also apparent with the C-terminal lobes of different 
MCM subunits displaying markedly distinct degrees of movement with respect to their associated 
N-terminal regions (Figure 1D,E). Asymmetric positioning between the two tiers of an MCM ring has 
not been reported previously, demonstrating that these elements are conformationally independent 
of each other to some extent in the presence of DNA substrates.

http://dx.doi.org/10.7554/eLife.03273
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The CMG advances on duplex DNA from the C-terminal, ATPase side  
of Mcm2-7
The increase in resolution obtained for the CMG in the presence of DNA provided initial, support 
evidence for nucleic acid binding to the complex. More concrete evidence for DNA association 

Figure 1. 18 Å resolution of a CMG–DNA–ATPγS complex. (A) Top-down view (N-terminal MCM face) of the CMG 
highlighting subunit positions. (B) Docking of homology models into the assembly. (C) Docked structures into 
segmented density for: top—a near-full-length, archaeal MCM monomer Mcm4 (PDB ID 3F9V); middle—the GINS 
complex (PDB ID 2Q9Q and 3ANW, ‘Materials and methods’); bottom—the archaeal Mcm N-terminal domain 
hexamer (PDB ID 1LTL and 2VL6, ‘Materials and methods’). (D) The N- and C-terminal domains of Mcm2-7 (colors) 
differentially flex around the helicase ring, with GINS–Cdc45 (white) wedging open Mcm5 in particular. (E) The 
N-terminal domains of Mcm2-7 are relatively planar, and are fit best by a hexameric, DNA-free structure of the 
archaeal MCM NTDs, indicating the observed intra-subunit flexing derives from ATPase domain movement.
DOI: 10.7554/eLife.03273.003
The following figure supplement is available for figure 1:

Figure supplement 1. Overview of EM data. 
DOI: 10.7554/eLife.03273.004
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http://dx.doi.org/10.7554/eLife.03273.003
http://dx.doi.org/10.7554/eLife.03273.004


Biochemistry | Biophysics and structural biology

Costa et al. eLife 2014;3:e03273. DOI: 10.7554/eLife.03273 5 of 17

Research article

was apparent in electron density maps generated for the CMG, which showed a rod-shaped fea-
ture jutting away from the C-terminal face of Mcm subunits 2 and 5 (Figure 2A)—this feature is 
absent in DNA-free 3D reconstructions of the CMG (Costa et al., 2011). Because negative-stains are 
non-ideal for visualizing nucleic acids (Grob et al., 2012), we further assessed DNA binding by biotin-
labeling the duplex end of the oligonucleotide, mixing the CMG–DNA samples with streptavidin, and 
collecting new single-particle EM data. Inspection of the resultant 2D class averages from this approach 
revealed clear additional density compared to the unlabeled CMG–DNA particles (Figure 2B), dem-
onstrating that the tailed substrate indeed associates with the complex particles. Given the electron 
density features seen for the DNA and the distance the streptavidin ‘pointer’ resides from the com-
plex, the EM data show that the CMG binds to the single-stranded end of the 3′-tailed DNA substrate, 
corroborating biochemical data indicating that the complex preferentially associates with and translo-
cates along single-stranded DNA over duplex substrates (Ilves et al., 2010; Fu et al., 2011).

The ability to visualize not only DNA binding to the CMG but also the position of the duplex end 
with respect to the particle, resolves a key question concerning the polarity by which MCM helicases 
engage a presumptive translocation strand. MCMs and viral SF3 helicases, such as SV40 LTag and the 
papilloma virus E1 protein, are both AAA+ ATPases (Neuwald et al., 1999). This relationship, coupled 
with shared ability of MCMs and SF3 enzymes to translocate along DNA in a 3′→5′ direction (Kelman 
et al., 1999; Chong et al., 2000; Bochman and Schwacha, 2008; Moyer et al., 2006), has suggested 
that members of two helicase families might operate by a common translocation mechanism. However, 
studies of E1 and archaeal MCMs bound to DNA substrates have yielded conflicting data concerning 
the direction by which DNA threads through the helicase pore. In E1, the 3′ end of DNA has been 
observed by X-ray crystallography to lie proximal to the C-terminal motor domains of the helicase 
(Enemark and Joshua-Tor, 2006). By contrast, based on FRET measurements between a dye-labeled 
DNA/MCM pair, the converse has been reported for Sulfolobus solfataricus MCM (McGeoch et al., 
2005; Rothenberg et al., 2007). In the new CMG structure, the streptavidin appended to the duplex 
DNA end can be clearly seen to localize next to the C-terminal, AAA+ domain face of the particle 
(Figure 2B). This finding not only demonstrates that a DNA segment bound by an MCM runs from 
the N-terminal collar to the ATPase motor region in a 3′ to 5′ direction, but also indicates that MCM 
and SF3 helicases bind substrates with opposing polarities.

The RecJ domain of Cdc45 is poised to assist in the capture of DNA 
that might escape the Mcm2/5 gate
When the structure of the CMG was first reported, the fold of the associated Cdc45 subunit was 
unknown. As a consequence, although the general location of Cdc45 could be identified in both apo 
and ATP-bound forms of the CMG, the orientation and role of this subunit was left unresolved 
(Costa et al., 2011). Recently, however, the N-terminus of Cdc45 was shown to belong to the RecJ 
family of ssDNA exonucleases (Sanchez-Pulido and Ponting, 2011). Interestingly, within this grouping, 
Cdc45 belongs to an offshoot branch that can still bind DNA, but that also possesses natural amino 
acid substitutions which would appear to inactivate any native hydrolase functions (Krastanova  
et al., 2012).

To understand how the RecJ fold of Cdc45 interfaces with Mcm2-7 and GINS, we built a homology 
model for DmCdc45 based on Thermus thermophilus RecJ and docked it into the higher-resolution, 
DNA-bound CMG reconstruction. The catalytic core and DNA tracking domain of the homology model 
fit unambiguously into only one region of the Cdc45 density (Figure 3A), leaving only a single, unac-
counted for region (most likely corresponding to the C-terminal segment of Cdc45 outside the defunct 
exonuclease core, or possibly to the N-terminal extension present in Mcm2) that interdigitates between 
the N-terminal ‘A-domains’ of Mcm5 and Mcm2 (Figure 3B, Figure 3—figure supplement 1). Notably, 
in placing the Cdc45 RecJ domain, we found that this element appeared to contact the now-apparent 
C-terminal ‘B-domain’ of Psf1 (Figure 3A). To test whether this interaction might be real or fortuitous, 
we subjected the Psf1 B-domain surface to site-directed mutagenesis and tested the ability of the 
mutant subunits to support binding to both Mcm2-7 and Cdc45 (‘Materials and methods’). Ablation of 
either the Psf1 B-domain region (residues 185–202) or Cdc45 N-terminal region (residues 1–99) pre-
vented CMG formation under the conditions used to purify the intact assembly (Figure 3—figure 
supplement 2). Likewise, while point mutations were unable to disrupt CMG formation as judged by 
co-immunoprecipitation, a quadruple Psf1 mutant (E190A/L192A/V193A/R194A) proved unable to 
interact with Cdc45. Together, these data indicate that the Cdc45–Psf1 interaction evident from the EM 

http://dx.doi.org/10.7554/eLife.03273
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data plays a critical role in CMG formation and/
or stability.

In previous apo and ATP-bound models of 
the CMG, the particle was seen to transition from 
a conformation in which the Mcm2/5 interface 
was open to one in which it was closed (Costa 
et al., 2011). This transition in turn pinched off the 
large single channel that ran through the parti-
cle into two smaller channels, sealing the inte-
rior of Mcm2-7 away from the inner surface of 
GINS–Cdc45. In the DNA-bound model, the CMG 
still exhibits two channels; however, docking of the 
Cdc45 RecJ domain shows that its exonuclease/
DNA-tracking groove is offset by 90° with respect 
to the central axis of the Mcm2-7 pore (Figure 3C). 
This orientation indicates that, were Cdc45 to 
bind DNA in a manner similar to RecJ, it would 
be poised to capture the leading DNA strand 
that might escape from Mcm5-2 gate (Figure 3D). 
Consistent with this idea, cross-linking data in 
work to be published elsewhere (Petojevic et al.) 
show both that Cdc45 engages the leading 
strand of a fork substrate only in the absence of 
nucleotide and that this interaction is ablated 
by the mutation of residues suggested by the 
model to be important for DNA binding.

DNA and nucleotide remodel the 
Mcm2-7 AAA+ ATPase subunits 
into a right-handed spiral
How ATP-dependent physical movements within 
hexameric helicases are coupled to DNA binding 
and unwinding has long been a central question 
in the field (Singleton et al., 2007; Enemark 
and Joshua-Tor, 2008; Lyubimov et al., 2011). 
Notably, when comparing the new DNA-bound 
CMG model to the prior substrate-free state, we 
found that the AAA+ ATPase ring is no longer 
flat, but instead adopts a clear right-handed spiral 
(Figure 4A,B). This change in conformation does 
not propagate into the N-terminal domains, which 
maintain a roughly planar character (Figure 1E), 
but is instead offset by the variable flexing seen 
for the C-terminal domains in different positions 

around the ring (Figure 1D). The observed asymmetry between the two MCM tiers indicates that the 
N-terminal domains form a relatively stable collar that likely helps to coordinate and restrain move-
ments of the associated C-terminal ATPase regions.

Closer analysis of the AAA+ spiral reveals several features that have important implications for the 
action of MCM subunits during DNA unwinding. First, the largest inter-subunit shifts within the Mcm2-7 
ring, which occur between Mcm subunits 2 and 5, also correspond to the point where the GINS–Cdc45 
complex docks against the helicase. Inspection of the DNA-bound model reveals that GINS–Cdc45 
does not simply straddle the Mcm2/5 interface, but that portions of the accessory subunits actually 
wedge themselves between the N- and C-terminal tiers of the Mcm2-7 ring (Figure 1D). This action 
widens the exterior groove between the MCM N- and C-terminal domains at their points-of-contact 
with GINS–Cdc45, and is offset by a concomitant narrowing of the groove on the exterior MCM face 
opposite the GINS–Cdc45 binding site (i.e., Mcm4, Figure 1D). The structural consequences resulting 
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Figure 2. Polarity of DNA binding by the CMG.  
(A) Observed experimental density seen at low contours 
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that extends from the Mcm C-terminal motor domain. 
This feature is absent in DNA-free CMG reconstruc-
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substrate used for the present studies is shown at 
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Note how the streptavidin density sits at a distance 
from the body of the CMG, indicating that the 
majority of the duplex region of the substrate is not 
bound by the CMG.
DOI: 10.7554/eLife.03273.005
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from GINS–Cdc45 binding suggests that these accessory subunits not only play a role in blocking 
access through the Mcm2/5 gate, as has been seen previously (Costa et al., 2011), but that they also 
help stabilize a spiral configuration of ATPase centers when DNA is present. Since the mutation of 
active site residues at the Mcm2/5 interface ablates helicase activity (Bochman et al., 2008; Ilves 
et al., 2010), it is likely that the spiral state observed here, which positionally offsets the ATP-binding 
site of Mcm5 from the arginine-finger residue of Mcm2, inter-converts with another conformation in 
which the Mcm2/5 interface is remodeled to form a catalytically functional ATPase center during 
the translocation cycle. Hence, a need for GINS–Cdc45 in preventing DNA from escaping Mcm2-7 
would likely be infrequent and limited to instances when the Mcm2/5 gate accidentally opens for an 
extended period of time, such as at a roadblock created by other nucleoprotein complexes or DNA 
damage.

Figure 3. Cdc45 is positioned to permit trapping of single-stranded DNA. (A) Top—Segmented electron density 
corresponding to Cdc45. A prominent horseshoe-shaped region fits well to the catalytic core of the homologous 
RecJ exonuclease (PDB ID 1IR6). Bottom—Docked models of RecJ and full-length GINS (generated using an 
archaeal Psf1 homolog, PDB IDs 2Q9Q and 3ANW) into DNA-bound CMG reconstructions highlight a previously 
unobserved interaction between the B-domain of Psf1 and the exonuclease-like domain of Cdc45. (B) An extension 
of the Cdc45 RecJ-like region contacts and interdigitates between the A-domains of the Mcm2 and Mcm5 
N-terminal regions. (C) The Mcm2-7 central channel (black line) and the Cdc45 DNA tracking groove (red arrow) 
are offset by ∼90°. (D) Schematic showing how the single-stranded DNA-binding groove of the Cdc45 RecJ-like 
domain could facilitate the capture of a leading strand segment if the Mcm5-2 DNA gate were to transiently open.
DOI: 10.7554/eLife.03273.006
The following figure supplements are available for figure 3:

Figure supplement 1. Comparison between the open N-terminal domain of Drosophila Mcm2-7 and the closed 
N-terminal region of the CMG. 
DOI: 10.7554/eLife.03273.007

Figure supplement 2. The Psf1 C-terminus and Cdc45 N-terminus are critical for the CMG formation. 
DOI: 10.7554/eLife.03273.008
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A second unexpected feature of the DNA-
bound CMG complex is that the spiral is more 
pronounced than that seen in SF3 helicases, and 
instead more closely approximating the spiral 
evinced by a RecA-family helicase, DnaB, in the 
presence of DNA (Figure 4B–D). The width of 
the Mcm2-7 central channel (as measured from 
homology models of the motor domains docked 
into the EM density) is likewise significantly 
larger (∼30–35 Å) compared to E1 (∼14 Å), and 
more closely approaches that of DnaB (∼22 Å). 
Interestingly, in E1 and DnaB the difference in 
channel diameter and subunit rise between the 
two proteins sculpts the DNA substrate bound by 
each helicase into a single-stranded helix whose 
relative pitches differ significantly; these geo-
metric differences allow each subunit of DnaB to 
engage two nucleotides of DNA (Itsathitphaisarn 
et al., 2012), whereas E1 binds only a single 
nucleotide per protomer (Enemark and Joshua-
Tor, 2006). The similarity of the Mcm2-7 spiral to 
DnaB raises the interesting possibility that the 
helicase might translocate with a step-size greater 
than one nucleotide per ATP consumed; con-
sistent with this notion, a recent study has shown 
that the MCM N-terminal DNA-binding collar of 
Pyrococcus furiosus binds four nucleotides per 
subunit (Froelich et al., 2014).

A third notable attribute of the ternary DNA–
CMG–ATPγS model is that several structural 
features of the complex turn out to be most 
similar not to replicative helicases, but to a com-
pletely orthogonal system, namely, the regula-
tory subcomplex of the eukaryotic proteasome. 
The proteasome consists of several discrete sub-
complexes including a heterohexameric unfol-
dase region, termed the ‘base’, which (like the 
CMG) contains six homologous AAA+ ATPase 
subunits (Rpt1-6) (Forster et al., 2013). Recent 
cryo-EM studies have imaged the complete 26S 
yeast proteasome bound to ATP at ∼9 Å resolu-
tion showing that the AAA+ subunits of the base 
also form a right-handed spiral (Lander et al., 
2012). Comparison of proteasome spiral with 
that seen here for the CMG shows that these 
regions of the two systems exhibit a surprisingly 
similar global architecture (Figure 4E). Moreover, 
the proteasome also contains an accessory sub-
unit (Rpn1) that—as observed here for GINS–
Cdc45 in the context of the CMG—wedges itself 
between a subset of ATPase and OB-fold domains 
present in Rpt1-6 (Lander et al., 2012; Figure 4E). 
The structural congruencies exhibited between 
the CMG and proteasome ATPase subcomplexes 
suggest that, even though the substrates for 
the two systems differ greatly, both motors may 

Figure 4. Global comparison of the DNA-bound 
Mcm2-7 region of the CMG with other hexameric 
helicases and ATPases. (A) Cut-away view (removing 
Mcm5) of the Mcm2-7 central channel highlights  
a spiral organization for the Mcm2-6-4-7-3 AAA+ 
ATPase regions. Colored spheres demarcate the 
approximate center of mass for AAA+ pore loops  
as derived from the docking of MCM AAA+ domain 
as shown in Figure 1B. (B) Top-down view (from the 
N-terminal face) of MCM AAA+ domains docked into 
the DNA-bound CMG reconstruction showing the 
existence of a right-handed spiral. The CMG density 
has been removed for clarity. (C) In the presence of  
a single-stranded DNA, bacterial DnaB can adopt  
a right-handed spiral with a moderately-wide pore 
(PDB ID 4ESV, Itsathitphaisarn et al., 2012). (D) The 
E1 helicase assembles into a right-handed spiral  
with a relatively narrow pore (PDB ID 2GXA, Enemark 
and Joshua-Tor, 2006). (E) Comparison of the AAA+ 
ring of the eukaryotic proteasome with Mcm2-7 
region of the DNA- and ATPγS-bound CMG. The 
non-ATPase subunit Rpn1 binds to the side of the 
Rpt1-6 hetero-hexamer, wedging itself between  
the N-terminal and C-terminal tiers of the ATPase 
ring and helping to promote the formation of a right- 
handed ATPase domain spiral. Similar architectural 
features are apparent within the DNA–ATPγS–CMG 
complex, where GINS–Cdc45 occupy an analogous 
position.
DOI: 10.7554/eLife.03273.009
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share certain commonalities in how ATP turnover is coupled to movements that promote translo-
cation. Such a similarity could underlie both the pronounced asymmetry of the CMG and protea-
some ATPase rings, and the relatively high degree of tolerance shown by both systems toward 
active-site mutations within certain subunits (Moreau et al., 2007; Ilves et al., 2010; Beckwith  
et al., 2013).

Identification of a dimeric CMG configuration
Although the CMG has been observed to operate as a discrete single complex during replication 
(Yardimci et al., 2010), the loading of the Mcm2-7 hexamer onto DNA by ORC, Cdc6, and Cdt1 
during initiation results in the transient formation of a catalytically inactive, head-to-head double hex-
amer intermediate (Evrin et al., 2009; Remus et al., 2009). The MCM N-terminal domains have been 
shown to comprise the dimer interface of the double hexamer (Fletcher et al., 2003; Costa et al., 
2006; Remus et al., 2009), and create a critical target site for the Dbf4-dependent Cdc7 protein 
kinase DDK (Labib, 2010; Sheu and Stillman, 2006, 2010); phosphorylation of the N-terminal tails of 
Mcm2/4/6 alters the configuration of the Mcm2-7 complex, but does not directly promote Mcm2-7 
dissociation (On et al., 2014).

At present, it is unclear how the Mcm2, Mcm4, and Mcm6 subunits are aligned with respect to 
one another in the Mcm2-7 double hexamer. However, in the course of our studies, we found a new 
configuration of the CMG that sheds light on this issue. In particular, a small (∼5%) but consistent pop-
ulation of CMG particles was seen to form a clear dimeric species that adopts a distinctive head-to-head 
configuration through its MCM N-terminal regions, and which consistently orients the GINS–Cdc45 sub-
complex toward opposing sides of the two ring (Figure 5A). The abundance and uniformity of CMG 
dimers, which were noted in several independent preparations, suggests that these particles represent 
a naturally occurring state of the assembly.

The observed organization of the CMG dimers has several implications for the formation and func-
tion of the helicase. For example, the 180° offset of GINS and Cdc45 present in the dimer places each 
Mcm2/5 gate on the opposite sides of the complex, facing away from each other (Figure 5B,C). 
During origin melting, this configuration would allow a single DNA strand to escape each Mcm2-7 
hexamer without steric interference from its partner CMG, enabling particle separation and the forma-
tion of two independent replication forks. The organization of the CMG dimer also indicates that the 
N-terminal regions of Mcm2 and Mcm5 of one hexamer associate in trans with the N-terminal regions 
of Mcm6 and Mcm4 of the partner hexamer. Such an interaction would help explain why Mcm4 and 
GINS have been seen to interact in pulldown studies (Ilves et al., 2010), even though the two factors 
map to distal positions of the CMG in the context of a monomer (Costa et al., 2011). Finally, the 
observed arrangement suggests that the ability of DDK to activate Mcm2-7 by phosphorylation of 
Mcm4, 2, and 6 (Labib, 2010) (as well as the ability of the Bob1 mutation in Mcm5 to bypass the require-
ment for DDK [Jackson et al., 1993]) could result from a destabilization of the CMG dimer contacts 
that are symmetrically apposed across the N-terminal collar (Figure 5C). Altogether, our data establish 
that the two Mcm2/5 gates of a double hexamer are spatially segregated from each other and indicate 
that separation of Mcm2-7 double hexamers occurs subsequent to CMG formation. Such a mechanism 
is consistent with recent findings showing that the phosphorylation by DDK is insufficient to promote 
the separation of Mcm2-7 double hexamers on its own (On et al., 2014).

The existence of a dimeric CMG state, coupled with prior views of Mcm2-7 and the DNA-bound 
conformation of the Mcm2-7 ATPase domains seen here, highlights the innate plasticity of the MCM ring 
and the means by which different factors help remodel the helicase to support appropriate loading and 
activation during the initiation of DNA replication (Figure 6). Biochemical studies using Saccharomyces 
cerevisiae proteins first showed that Mcm2-7 on its own possesses a natural discontinuity—the ‘Mcm2/5 
gate’—through which DNA can enter and exit the helicase pore (Bochman and Schwacha, 2007). 
Structural studies have corroborated this observation, additionally showing that metazoan Mcm2-7 rings 
preferentially assume a left-handed lock-washer shape and that ATP alone is incapable of fully inducing 
ring closure (Costa et al., 2011; Lyubimov et al., 2012). Following the action of ORC, Cdc6, and 
Cdt1, two Mcm2-7 hexamers become locked into a planarized co-joined ring (Evrin et al., 2009; 
Remus et al., 2009); in the presence of GINS, Cdc45, and single-stranded DNA, the Mcm2-7 ATPase 
domains shift again, but now into a right-handed spiral conformation (Figure 4). Thus, Mcm2-7 under-
goes a chiral-flip in architectural state as it matures into a functional helicase with loading, activation, 
and DNA binding all appearing to participate in these transitions.

http://dx.doi.org/10.7554/eLife.03273
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Figure 5. The CMG can form head-to-head dimers that establish the interactions between Mcm2-7 double 
hexamers. (A) Experimentally observed 2D class averages showing that the CMG forms a defined double-hexamer 
in which the GINS-Cdc45 subcomplex is rotationally offset toward opposite sides of the Mcm2-7 rings. Arrowheads 
mark the position of GINS/Cdc45. The structure of the archaeal N-terminal double hexamer is shown to depict the 
six possible Mcm2-7 registers that were tested. The class averages show that the interface between the N-terminal 
collars can partially crack open in some instances, suggesting that this region is somewhat unstable when the CMG 
is bound to ssDNA. (B) Computationally derived 2D projections of double-hexameric 3D CMG models in which 
Mcm2-7 N-terminal domain dimers (modeled on an archaeal Mcm crystal structure of this region, PDB ID 1LTL) 
have been manually offset by distinct rotational registers. The reference-free class averages best resemble a model 
in which Mcm5 from ring 1 juxtaposes with Mcm4 from ring 2, although our data cannot formally rule out a configura-
tion where Mcm4 might juxtapose with Mcm3 or Mcm2 (although in these configurations the two Mcm2/5 gates 
would still remain misaligned). Arrowheads mark the position of GINS/Cdc45. (C) Cartoon representation of the 
Mcm2-7 double ring register formed in head-to-head dimers of the CMG.
DOI: 10.7554/eLife.03273.010
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Why might Mcm2-7 traverse through such disparate intermediates? One possibility is that Mcm2-7 
initially assembles into an inactive conformation to prevent inadvertently triggering aberrant replica-
tion events. An alternative possibility, not necessarily incompatible with the first, is that Mcm2-7 might 
transition through different forms as a means to promote the melting of duplex replication origins. 
Interestingly, an important attribute of some of the states adopted by Mcm2-7 is the existence of 
a breach or subunit offset in the ATPase ring between the Mcm2 and Mcm5 subunits. Given the top-
ological barrier that extended DNA segments present to encirclement by toroidal proteins, it is nota-
ble that two MCM-associated factors—Cdt1 and GINS–Cdc45—both appear to occlude the Mcm2/5 
interface (Costa et al., 2011; Sun et al., 2013). Hence, controlled access through the Mcm2/5 gate 
appears useful not only for regulating DNA access into a preformed Mcm2-7 hexamer (Bochman and 
Schwacha, 2007), but also for preventing accidental DNA egress in the apo state and at stalled forks 
(Petojevic et al., unpublished data).

Concluding remarks
The structure of the eukaryotic CMG complex bound to nucleotide and a 3′-tailed DNA substrate 
helps resolve many outstanding questions surrounding the mechanism by which this key replication 
assembly forms and operates. The structure reveals that the RecJ domain of Cdc45, which recent data 
have found to bind to escaped leading strand substrates (Petojevic et al., unpublished data), takes up 
a position on the CMG that would aid in capturing a DNA segment that might escape from the 
Mcm2-7 pore. Our EM data show that the nucleotide-loaded CMG orients on single-stranded DNA 
such that the 3′ end enters first through the C-terminal AAA+ domains of Mcm2-7, consistent with 
prior biochemical data indicating that archaeal MCMs move along DNA with the opposite polarity as 
superfamily III helicases (McGeoch and Bell, 2005; Rothenberg et al., 2007). The binding of DNA to 
the CMG also induces the formation of a right-handed spiral in the MCM ATPase domains whose 
overall structure more closely mimics bacterial RecA-family replicative helicases than its viral AAA+ 

Figure 6. Overview of Mcm2-7 organization, remodeling, and gate status during initiation and CMG formation. 
Following synthesis and assembly, the isolated metazoan Mcm2-7 motor forms an inactive left-handed spiral, 
irrespective of nucleotide state, with a discontinuity between Mcm5 and Mcm2. The action of ORC, Cdc6 and Cdt1 
results in the loading of a planar, head-to-head Mcm2-7 double hexamer onto a duplex DNA in which the Mcm2/5 
gates are closed. Following loading, Dpb11-Sld2-Sld3 (11-2-3) chaperone GINS and Cdc45 onto the Mcm2-7 
double hexamer and along with DDK promoted phosphorylation events, help promote both DNA melting, CMG 
formation and replication fork separation. Structural analysis of dimeric CMG particles (Figure 5) indicates that the 
Mcm2/5 gates are localized on the opposing sides of the dodecameric Mcm2-7 complex and that CMG formation 
precedes separation of the double hexamer.
DOI: 10.7554/eLife.03273.011
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cousins, and whose relative arrangement of AAA+ domains and accessory subunits is mirrored by the 
regulatory subcomplex of the eukaryotic proteasome (Lander et al., 2012). Finally, we find that the 
CMG can form head-to-head dimers in which the two Mcm2/5 gates are fully offset from each other, 
helping to fill in key gaps concerning the higher-order organization of the Mcm2-7 double hexamer 
and how the CMG matures from this state into two single particles that encircle complementary single 
strands. Future studies will be needed to definitively establish the full paths of the leading- and lag-
ging-strand DNA bound to the CMG and the extent to which the disparate AAA+ and RecA-family 
ring-translocases share or diverge in coupling ATP turnover to specific subunit movements that drive 
substrate translocation.

Materials and methods
Cloning and construction of baculoviruses
Baculoviruses were constructed as previously described (Ilves et al., 2010). Briefly, the MCM3 gene 
was tagged with FLAG epitope at the amino terminus through 5′ PCR oligonucleotides that inserted 
the epitope in frame. Mcm2, Mcm3, Mcm4, Mcm5, Psf1, Psf2, and Psf3 cDNAs were inserted between 
EcoRI and SpeI restriction sites of the pFastBac1 vector. The cDNA of Mcm6 and Mcm7 was inserted 
between BamHI and SpeI sites, and Cdc45 and Sld5 cDNA between EcoRI and Xba restriction sites. 
These vector templates were used for generation of CMG mutants through PCR based mutagenesis. 
Sequencing was used to verify the entire protein coding regions of all generated pFastBac1 con-
structs. Specific deletion mutants of either the Psf1 C-terminus or Cdc45 N-terminus included Psf11−139, 
Psf11−170, Psf11−176, Psf11−184, and Cdc45Δ1−99. C-terminal deletions were constructed by introducing stop 
codons after the desired residue and by removing any remaining C-terminal sequences present from 
the original cDNA clone. N-terminal deletions were constructed by the removal of the pertinent cDNA 
regions and by introducing a start (ATG) codon in front of the desired residue. The same restriction 
enzyme sites as described above were used to subclone all truncation constructs into the pFastBac1 
vector. To target the Psf1–Cdc45 interface, alanine substitutions in the C-terminus of Psf1 were introduced 
individually or in parallel into for Glu190, Leu192, Val193, and Arg194 by site-directed mutagenesis.

Nucleoprotein complex preparation
The CMG complex was purified as previously described (Ilves et al., 2010), but with the following 
changes. Briefly, after co-infection with 11 distinct baculoviruses, proteins were expressed for 72 hr in 
Hi5 cells (Invitrogen, Carlsbad, CA) by culturing in 500-ml spinner flasks and co-infecting at 1.2^106 
cells/ml density. Cells were lysed by hypotonic shock combined with one freeze–thaw cycle and 
Dounce homogenization. The lysate was clarified by centrifugation, and the protein complex was 
immunoaffinity purified over anti-flag (M2) antibody-conjugated agarose beads (Sigma, St. Louis, MO) 
to bind a FLAG-tag on Mcm3. To isolate the fully intact CMG from incomplete complexes, the protein 
preparation was passed over a Mono S HR 5/5 ion exchange column, followed by a Mono Q HR 5/5 
ion exchange chromatography using an ÄKTA Purifier (GE Healthcare, Piscataway, NJ). Peak fractions 
were collected and then both further purified and concentrated using a Mono Q PC 1.6/5 column 
coupled to a Pharmacia SMART system. The purified material was dialyzed into a buffer containing 
25 mM HEPES (pH 7.6), 50 mM sodium acetate, 10 mM magnesium acetate, and 1 mM DTT. The final 
protein concentration as measured by the Bradford protein assay was 1.2 mg/ml.

Oligonucleotides used for nucleoprotein complex reconstitution were synthesized by Integrated 
DNA Technology and shipped as lyophilized pellets. Oligo ‘LEAD60’ contained the sequence 5′–GGG-
CAC-TTG-ATC-GGC-CAA-CCT-T39–3′, while ‘3BTNLAG20’ contained the sequence 5′–GGT-TGG-
CCG-ATC-AAG-TGC-CC–biotin–3′. The oligonucleotides were dissolved in the CMG buffer and 
quantified by A260. For annealing, LEAD60 and 3BTNLAG20 were mixed in equimolar amounts, briefly 
heated to 95°C and slow-cooled to 4°C. Previous work has shown that the ATPγS binds to a duplex-
DNA substrate containing a 40mer 3′ single-stranded DNA tail (Ilves et al., 2010). To form helicase/
DNA complexes, 10 nmol of concentrated CMG were mixed with the annealed DNA with a 1.2 molar 
excess of nucleic acid in CMG buffer plus 0.1 mM ATPγS. After incubation at room temperature for 
30 min, the sample was passed over a Superose 6 PC 3.2/30 gel filtration column using an ETTAN 
micropurification system (GE Healthcare). A 50-μl fraction containing the center of the nucleoprotein 
elution peak was collected and immediately used for negative stain grid preparation, either with 
or without co-incubation with 1.2-fold molar excess of streptavidin.

http://dx.doi.org/10.7554/eLife.03273
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Negative stain grid preparation
EM grids were prepared by floating a thin layer of continuous carbon over a 400-mesh copper grid 
(Electron Microscopy Sciences, Hatfield, PA) using a custom-made carbon-floating device. Four micro-
liters (∼40 ng) of the CMG–DNA or CMG–DNA–Streptavidin complex were then applied onto freshly 
glow-discharged grids for 30 s. The grids were laid on top of 75-μl drops of a fresh 2% (wt/vol) uranyl 
formate solution and stirred for five consecutive 10-s staining steps. The staining solution was then 
blotted dry and the grids were stored.

Electron microscopy
Nucleoprotein particles were imaged using a JEM-2100 LaB6 electron microscope (JEOL, Japan) 
operated at 200 kV. Images were recorded at a nominal magnification of 50,000× on a Ultrascan 
4k × 4k CCD camera (Gatan, Pleasanton, CA), resulting in a 2.14 Å pixel size at the specimen level. The 
JEOL Automated Data Acquisition System (JADAS, Zhang et al., 2009) was used to automatically 
collect low-dose images with a 0.5 to 3.5 µm defocus at around 35 electrons per Å2. In addition, 
manual data collection was performed under the same imaging conditions. In total, 579 micrographs 
were collected for the non-labelled and 436 micrographs for the labeled nucleoprotein complex.

Image processing and atomic docking
Particles were semi-automatically picked and phase flipped using the EMAN2 package, version 2.05 
(Tang et al., 2007). Reference free two-dimensional class-sums were obtained using RELION, ver-
sion 1.2 (Scheres, 2012), except for the streptavidin-DNA-bound CMG complex that was processed 
using Imagic (van Heel et al., 1996) and the rotation and classification protocol implemented in 
Costa et al. (2011). Working with the ADP(BeF3) bound CMG as a starting model (Costa et al., 
2011), multi-model three-dimensional refinement was performed with an iterative projection-
matching and back-projection protocol that employs libraries from the EMAN2 and SPARX software 
packages (Hohn et al., 2007; Tang et al., 2007) or, in a parallel effort, using three-dimensional 
classification and refinement routines as implemented in RELION (Scheres, 2012). Refinement of the 
starting models began using an angular increment of 15°, progressing down to 2° with EMAN2/SPARX, 
and default parameters in RELION 1.2 (7.5° angular sampling, 5 pixel search range, and 1 pixel search 
step). The two approaches yielded virtually identical results (Figure 1—figure supplement 1) with 
the best structure containing 7,409 particles (obtained with EMAN2/SPARX and shown in all figures). 
The resolution was estimated by the ‘gold-standard’ Fourier Shell Correlation approach imple-
mented in RELION (Scheres, 2012). 3D-maps were segmented using the Segger program (Pintilie 
and Chiu, 2012) in UCSF Chimera (Pettersen et al., 2004). The Chimera ‘Fit in Map’ option was used 
for rigid-body fitting of crystal structures and to generate all surface renderings included in the figures 
(Pettersen et al., 2004). The full-length Psf1 protein was modelled by superposing the Thermococcus 
kodakaraensis GINS51 (PDB entry 3ANW) onto the human Psf1 structure. The N-terminal Mcm2-7 
collar was modelled by superposing protomers of the Methanothermobacter thermautotrophicus 
MCM (PDB entry 1LTL) or the Sulfolobus solfataricus MCM (PDB entry 2VL6) onto the isolated oli-
gomerization subdomain of the M. thermautotrophicus MCM. The two structures exhibit markedly 
distinct configurations in their N-terminal α-helical region (subdomain A), with the S. solfataricus 
MCM region matching best to the N-terminal domain configuration of Mcm4 and Mcm5. The atomic 
model of the near full-length S. solfataricus MCM (PDB entry 3F9V) was found to fit the entire Mcm4 
electron density region, whereas slight rigid body transformations of the MCM AAA+ domain relative 
to the N-terminal region were allowed to best fit the electron density of Mcms 2, 3, 5, 6, and 7. A 
homology model based on the bacterial RecJ (PDB entry 1IR6) was used for docking of Cdc45. The 
EM map has been deposited in the 3D-EM database (www.emdatabank.org) with accession code 
EMD-2772.
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