
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Nonconvex Models and Algorithms for Sparse Regularization in Deep Learning and Image
Segmentation

Permalink

https://escholarship.org/uc/item/0744b3fp

Author

Bui, Kevin

Publication Date

2022

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0744b3fp
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Nonconvex Models and Algorithms for Sparse Regularization in Deep Learning and Image
Segmentation

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Kevin Bui

Dissertation Committee:
Professor Jack Xin, Chair

Professor Long Chen
Professor Knut Sølna

2023

© 2023 Kevin Bui

DEDICATION

To all my colleagues, mentors, friends, and family who have supported me.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

ACKNOWLEDGMENTS xii

VITA xvii

ABSTRACT OF THE DISSERTATION xviii

I Compression of Deep Learning Models 1

1 Introduction 2
1.1 Motivation . 2
1.2 Compression Techniques for CNN . 3
1.3 Organization of Part I . 5

2 Structured Sparsity of Convolutional Neural Networks via Nonconvex Sparse
Group Regularization 7
2.1 Model and Algorithm . 8

2.1.1 Preliminaries . 8
2.1.2 Nonconvex Sparse Group Lasso . 12
2.1.3 Notations and Definitions . 15
2.1.4 Numerical Optimization . 15
2.1.5 Convergence Analysis . 19

2.2 Numerical Experiments . 21
2.2.1 Application to Deep Neural Networks 21
2.2.2 Algorithm Comparison . 34

2.3 Proofs . 37
2.3.1 Proof of Theorem 2.1 . 37
2.3.2 Proof of Theorem 2.2 . 41

3 Nonconvex Regularization for Network Slimming 42
3.1 Regularization Penalty . 43

iii

3.2 Proposed Method . 46
3.2.1 Batch Normalization Layer . 46
3.2.2 Network Slimming with Nonconvex Sparse Regularization 48

3.3 Experimental Results . 50
3.3.1 Datasets . 50
3.3.2 Implementation Details . 51
3.3.3 Channel Pruning Results . 53
3.3.4 Retraining After Pruning . 62
3.3.5 Scaling Factor Analysis . 65
3.3.6 Comparison with Variational CNN Pruning 70

4 A Proximal Algorithm for Network Slimming 75
4.1 Proposed Algorithm . 76

4.1.1 Batch Normalization Layer . 76
4.1.2 Numerical Optimization . 77

4.2 Convergence Analysis . 81
4.3 Numerical Experiments . 84

4.3.1 CIFAR 10/100 Datasets . 84
4.3.2 Implementation Details . 84
4.3.3 Results . 85

4.4 Proofs . 87

5 Conclusion 95

II Image Segmentation 97

6 Introduction 98
6.1 Motivation and Related Works . 98
6.2 Weighted Anisotropic–Isotropic Total Variation 102
6.3 Organization of Part II . 104

7 A Weighted Difference of Anisotropic and Isotropic Total Variation for
Relaxed Mumford-Shah Image Segmentation 105
7.1 Notations . 106
7.2 Anisotropic-Isotropic Chan-Vese Model . 107

7.2.1 Numerical Algorithm . 109
7.2.2 Convergence Analysis . 114

7.3 Fuzzy Extension of the AICV Model . 123
7.4 Extension to Color Images . 127
7.5 Numerical Results . 128

7.5.1 Synthetic Images . 131
7.5.2 Real Images . 141

iv

8 An Efficient Smoothing and Thresholding Image Segmentation Framework
with Weighted Anisotropic-Isotropic Total Variation 146
8.1 Preliminaries . 147

8.1.1 Notations . 147
8.1.2 Review of SaT/SLaT . 148

8.2 Smoothing with AITV Regularization . 151
8.2.1 Model Analysis . 151
8.2.2 Numerical Scheme . 153
8.2.3 Convergence Analysis . 156

8.3 Experimental Results . 165
8.3.1 Two-Phase Segmentation on Synthetic Images 168
8.3.2 Real Grayscale Images with Intensity Inhomogeneities 172
8.3.3 Real Color Images . 174

9 Conclusion 179

Bibliography 181

v

LIST OF FIGURES

Page

2.1 Comparison between lasso, group lasso, and sparse group lasso applied to a
weight matrix. Entries in white are zero’ed out or removed; entries in gray
remain. 11

2.2 Mean results of algorithms applied to SGL1 for Lenet-5 models trained on
MNIST for 200 epochs across 5 runs when varying the regularization param-
eter λ = α/60000 when α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. (A) Mean test error. (B)
Mean weight sparsity. (C) Mean neuron sparsity. 37

2.3 Mean results of algorithms applied to SGL1 for Lenet-5 models trained on
MNIST with lowest test errors across 5 runs when varying the regularization
parameter λ = α/60000 when α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. (A) Mean test
error. (B) Mean weight sparsity. (C) Mean neuron sparsity. 38

3.1 Contour plots of sparse regularizers. 43
3.2 Visualization of batch normalization on a feature map. The mean and variance

of the values of the pixels of the same colors corresponding to the channels
are computed and are used to normalize these pixels. 47

3.3 Effect of channel pruning on the mean test accuracy of five runs of VGG-19
on CIFAR 10/100 and SVHN. Baseline refers to the mean test accuracy of
the unregularized model that is not pruned. Baseline accuracies are 93.83%
for CIFAR 10, 72.73% for CIFAR 100, and 97.91% for SVHN. 55

3.4 Effect of channel pruning on the mean test accuracy of five runs of DenseNet-
40 on CIFAR 10/100 and SVHN. Baseline refers to the mean test accuracy of
the unregularized model that is not pruned. Baseline accuracies are 94.25%
for CIFAR 10, 74.58% for CIFAR 100, and 98.16% for SVHN. 58

3.5 Effect of channel pruning on the mean test accuracy of five runs of ResNet-164
on CIFAR 10/100 and SVHN. Baseline refers to the mean test accuracy of
the unregularized model that is not pruned. Baseline accuracies are 95.04%
for CIFAR 10, 77.10% for CIFAR 100, and 98.21% for SVHN. 61

3.6 Histogram of scaling factors γ in VGG-19 trained on CIFAR 10. The x-axis
is log10(|γ|). 68

3.7 Histogram of scaling factors γ in DenseNet-40 trained on CIFAR 10. The
x-axis is log10(|γ|). 69

3.8 Histogram of scaling factors γ in ResNet-164 trained on CIFAR 10. The x-axis
is log10(|γ|). 70

vi

3.9 Histogram of scaling factors γ in VGG-19 trained on CIFAR 100. The x-axis
is log10(|γ|). 71

3.10 Histogram of scaling factors γ in DenseNet-40 trained on CIFAR 100. The
x-axis is log10(|γ|). 72

3.11 Histogram of scaling factors γ in ResNet-164 trained on CIFAR 100. The
x-axis is log10(|γ|). 73

3.12 Histogram of scaling factors γ in VGG-19 trained on SVHN. The x-axis is
log10(|γ|). 73

3.13 Histogram of scaling factors γ in DenseNet-40 trained on SVHN. The x-axis
is log10(|γ|). 74

3.14 Histogram of scaling factors γ in ResNet-164 trained on SVHN. The x-axis is
log10(|γ|). 74

6.1 Contour lines of ∥x∥0 (L0) and ∥x∥1 − α∥x∥2 (L1 − αL2), where x ∈ R2 and
α ∈ {0, 0.25, 0.5, 0.75, 1.0}. As α increases, the contour lines of L1 − αL2 are
closer to the ones of L0. 103

7.1 Synthetic images for image segmentation. (a) Grayscale image for two-phase
segmentation. Size: 385 × 385. (b) Color image for two-phase segmentation.
Size: 385 × 385. (c) Color image for four-phase segmentation. Size: 100 × 100. 131

7.2 Reconstruction results on Figure 7.1a corrupted with 60% SPIN. 133
7.3 Reconstruction results on Figure 7.1a corrupted with 60% RVIN. 134
7.4 Reconstruction results on Figure 7.1b corrupted with 40% SPIN (top) and

40% RVIN (bottom). 136
7.5 Reconstruction results on Figure 7.1c corrupted with 40% SPIN (top) and

40% RVIN (bottom). 139
7.6 Real images for image segmentation. (a) Close-up of a target board in a video.

Size: 89×121. (b) Image of a hawk. Size: 318×370. (c) Image of a butterfly.
Size: 321× 481. (d) Image of a flower. Size: 321× 481. (e) Image of peppers.
Size: 481 × 321. 140

7.7 Segmentation results on Figure 7.6a. (The images may need to be zoomed in
on a pdf reader to see the differences.) . 143

7.8 Reconstruction results on Figure 7.6b. 144
7.9 Reconstruction results on Figure 7.6c. 144
7.10 Reconstruction results on Figure 7.6d. 145
7.11 Reconstruction results on Figure 7.6e. 145

8.1 Synthetic images for two-phase segmentation. (a) Grayscale image and (b)
Color image. Size: 385 × 385. 166

8.2 Segmentation results of Figure 8.1a corrupted with 65% RV noise. 169
8.3 Segmentation results of Figure 8.1a corrupted with average blur followed by

50% RV noise. 169
8.4 Segmentation results of Figure 8.1b corrupted with 60% SP noise. 170
8.5 Segmentation results of Figure 8.1b corrupted with motion blur followed by

45% SP noise. 170

vii

8.6 Real, grayscale images for image segmentation. (a) Caterpillar. Size: 200 ×
300. (b) Egret. Size: 200 × 300. (c) Swan. Size: 225 × 300. (d) Leaf. Size:
203 × 300. 171

8.7 AITV SaT results on real grayscale images. 172
8.8 Segmentation results of Figures 8.6a-8.6b. 173
8.9 Segmentation results of Figures 8.6c-8.6d. 173
8.10 Real color images for image segmentation. (a) Garden. Size: 321 × 481. (b)

Man. Size: 321×481. (c) House. Size: 321×481. (d) Building. Size: 481×321. 175
8.11 Segmentation results into k = 3 regions. 176
8.12 Segmentation results into k = 5 regions. 177
8.13 Segmentation results into k = 6 regions. 177
8.14 Segmentation results into k = 6 regions. 178

viii

LIST OF TABLES

Page

2.1 Regularization penalties and their corresponding proximal operators with λ > 0. 18
2.2 Average test error, weight sparsity, and neuron sparsity of Lenet-5 models

trained on MNIST after 200 epochs across 5 runs. Standard deviations are in
parentheses. 23

2.3 Average test error, weight sparsity, and neuron sparsity of Lenet-5 models
trained on MNIST with lowest test errors across 5 runs. Standard deviations
are in parentheses. 24

2.4 Average test error, weight sparsity, and neuron sparsity of 4-layer CNN models
trained on MNIST after 200 epochs across 5 runs. Standard deviations are in
parentheses. 25

2.5 Average test error, weight sparsity, and neuron sparsity of 4-layer CNN models
trained on MNIST with lowest test errors across 5 runs. Standard deviations
are in parentheses. 26

2.6 Average test error, weight sparsity, and neuron sparsity of Resnet-40 models
trained on CIFAR 10 with lowest test errors across 5 runs. Standard deviations
are in parentheses. 29

2.7 Average test error, weight sparsity, and neuron sparsity of Resnet-40 mod-
els trained on CIFAR 100 with lowest test errors across 5 runs. Standard
deviations are in parentheses. 30

2.8 Average test error, weight sparsity, and neuron sparsity of WRN-28-10 models
trained on CIFAR 10 with lowest test errors across 5 runs. Standard deviations
are in parentheses. 31

2.9 Average test error, weight sparsity, and neuron sparsity of WRN-28-10 mod-
els trained on CIFAR 100 with lowest test errors across 5 runs. Standard
deviations are in parentheses. 32

2.10 Average test error, weight sparsity, and neuron sparsity of SGL1-regularized
Lenet-5 models trained on MNIST after 200 epochs across 5 runs. The models
are trained with different algorithms. Standard deviations are in parentheses.
(SGD is stochastic gradient descent.) . 35

2.11 Average test error, weight sparsity, and neuron sparsity of SGL1-regularized
Lenet-5 models trained on MNIST with lowest test errors across 5 runs.
The models are trained with different algorithms. Standard deviations are
in parentheses. (SGD is stochastic gradient descent.) 36

ix

3.1 Sparse regularizers and their (limiting) subgradients. 50
3.2 Effect of channel pruning on the mean pruned parameter / FLOPs percentages

(%) on VGG-19 trained on (a) CIFAR 10, (b) CIFAR 100, and (c) SVHN.
The mean is computed from five runs for each regularizer. For each channel
pruning ratio, bold indicates outperforming ℓ1; * indicates best value; and
NA indicates at least one of the five models is over-pruned. 54

3.3 Effect of channel pruning on the mean pruned parameter / FLOPs percentages
(%) on DenseNet-40 trained on (a) CIFAR 10, (b) CIFAR 100, and (c) SVHN.
The mean is computed from five runs for each regularizer. For each channel
pruning ratio, bold indicates outperforming ℓ1; * indicates best value; and
NA indicates at least one of the five models is over-pruned. 57

3.4 Effect of channel pruning on the mean pruned parameter / FLOPs percentages
(%) on ResNet-164 trained on (a) CIFAR 10, (b) CIFAR 100, and (c) SVHN.
The mean is computed from five runs for each regularizer. For each channel
pruning ratio, bold indicates outperforming ℓ1; * indicates best value; and
NA indicates at least one of the five models is over-pruned. 60

3.5 Results from five retrained VGG-19 on CIFAR 10/100 after pruning. Baseline
refers to the VGG-19 model trained without regularization on the scaling factors. 63

3.6 Results from five retrained DenseNet-40 on CIFAR 10/100 after pruning.
Baseline refers to the DenseNet-40 model trained without regularization on
the scaling factors. 66

3.7 Counts of scaling factors that are averaged across five runs per model and
regularizer. 67

3.8 Comparisons between network slimming with Tℓ1(a = 0.5, 1.0) and variational
channel pruning. The results are immediately obtained after channel pruning. 71

4.1 The average number of scaling factors equal to zero at the end of training.
Channels are pruned when their corresponding scaling factors γi are exactly
equal to 0. Each architecture is trained five times per dataset. 83

4.2 Results between the different NS methods on CIFAR 10. Note that we train
the baseline architectures and original NS five times to obtain the average
statistics, while the results for variational NS are originally reported from [252]. 85

4.3 Results between the different NS methods on CIFAR 100. Note that we train
the baseline architectures and original NS five times to obtain the average
statistics, while the results for variational NS are originally reported from [252]. 85

7.1 DICE indices of various segmentation models applied to Figure 7.1a corrupted
with different levels of impulsive noise. 132

7.2 DICE indices of various segmentation models applied to Figure 7.1b corrupted
with different levels of impulsive noise. 137

7.3 DICE indices of various segmentation models applied to Figure 7.1c corrupted
with different levels of impulsive noise. 138

7.4 PSNR values of segmentation methods applied to real color images. NA stands
for “not applicable.” . 140

x

7.5 Computational time (seconds) of segmentation methods applied to real color
images. NA stands for “not applicable.” . 141

8.1 Comparison of the DICE indices and computation times (seconds) between
the segmentation methods applied to Figure 8.1a corrupted in four cases.
Number in bold indicates either the highest DICE index or the fastest time
among the segmentation methods for a given corrupted image. 169

8.2 Comparison of the DICE indices and computation times (seconds) between
the segmentation methods applied to Figure 8.1b corrupted in four cases.
Number in bold indicates either the highest DICE index or the fastest time
among the segmentation methods for a given corrupted image. 170

8.3 Comparison of the DICE indices and computation times (seconds) between
the segmentation methods applied to Figure 8.6. Number in bold indicates
either the highest DICE index or the fastest time among the segmentation
methods for a given image. 173

8.4 Comparisons of computational times in seconds among the segmentation meth-
ods applied to the images in Figure 8.10 corrupted with Gaussian noise with
mean zero and variance 0.025. 176

xi

ACKNOWLEDGMENTS

There are many people whom I am deeply grateful for because they have helped me lead a
very fulfilling life that allows me to earn my Ph.D. in Mathematics at UC Irvine. Hence, the
acknowledgement will be very long to read.

First, I would like to thank Professor Jack Xin for being my adviser. Back in beginning
of 2018 when I was deciding between Ph.D. programs to attend, Professor Xin personally
reached out to me and did his best to convince me to come to UC Irvine. He helped me obtain
the UC Irvine Diversity Recruitment Fellowship to supplement my first-year Ph.D. stipend.
Moreover, he persuaded me to do deep learning research with him when I was initially
dubious of the success and practicality of deep learning at the time. His persistence broke
through my doubts and stubbornness that I ultimately decided to attend UC Irvine, where
I never would have thought to be a comfortable, conducive environment for my academic
and professional growth. As my Ph.D. adviser, Professor Xin provided me great starting
ideas that I explored and worked on. As a result, I became heavily invested in researching
novel optimization methods to better compress deep learning architectures. Moreover, I
am grateful that he has allowed me to pursue other research endeavors, such as in image
processing. Together with him, we wrote more than five papers, and I will continue to
collaborate with him on many more projects after my Ph.D. Recently, I am most thankful
for his career advice in Summer 2022 when I was unsure about accepting the full-time job offer
as a data scientist at Lacework. Professor Xin was very grounded, practical, and reasonable
that he helped influence my decision to accept the offer for a possibly better future for myself.
Without him as my adviser, my achievements throughout my Ph.D. would not have existed.
Moreover, because of him, I met some of my most valuable research collaborators.

One of the most important collaborators whom Professor Xin introduced me to was Pro-
fessor Fredrick Park from Whittier College. We collaborated on various deep learning and
image segmentation projects. In our deep learning projects, Professor Park was helpful in
implementing some of the deep learning codes that needed to be run and having more GPUs
available when I ran out of Professor Xin’s GPUs. Without his help, I would not have been
able to publish some of the deep learning papers on time. I truly hope that his electricity
bill was not too expensive because of me. Besides the deep learning research, he inspired the
image segmentation half of my thesis. He reignited my interest in image processing with his
research presentation at UC Irvine Computer Science AI/ML Seminar in November 2018.
In July 2019, he gave me access to his previous image segmentation work and code that I
extended them to the multiphase and color cases while developing algorithms for them. This
work eventually led to my first publication in SIAM Journal on Imaging Sciences, which
is one of my proudest achievements as a computational mathematician. Professor Park
also introduced me to Professor Yifei Lou from UT Dallas, who became another valuable
collaborator.

Professor Lou was also important in regards to the segmentation half of my thesis. She is one
of the most hardworking people I know because sometimes she worked on weekends revising
some of the papers we wrote together in order to provide me edits and feedback on time.

xii

In her revisions, she was very thorough and careful with the clarity and style of our papers.
Working with Professor Lou immensely improved the cogency of the image processing papers
we wrote together, especially after several email exchanges, that journal reviewers praised
how well written they were. I truly respect her writing and editing abilities as a researcher.
Moreover, Professor Lou was influential in my research taste in computational mathematics.
Reading many of her research papers shaped my interest in nonconvex regularization and
optimization that I picked up many ideas and techniques, inspiring new deep learning and
image processing projects to pursue. Working with her, I am definitely an expert in weighted
anisotropic–isotropic total variation that she and Professor Jack Xin devised several years
ago.

Thanks to Professor Xin’s connections, I had the opportunity to collaborate with Dr. Shuai
Zhang and Dr. Yingyong Qi from Qualcomm. They were helpful in their feedback and
editing in my deep learning papers. Most importantly, they were critical in helping me win
the Best Paper Award at ISVC’20. Moreover, I am grateful for the email exchanges I had
with Professor Qi, especially in introducing me to some interesting deep learning papers.

At UC Irvine Mathematics Department, I would like to thank my following classmates
for enriching my time at UC Irvine in one way or another: Thomas Beardsley, William
Black, Eric Carmody, Jinghao Chen, Matthew Cheung, David Clausen, Kathryn Dover,
Liam Hardiman, Matthew Hirning, Omar Hurtado, Vignesh Iyer, Joshua Jordan, Hannah
Knight, Jesse Kreger, Long-sin “Joe” Li, David Lin, Samuel Lopez, Daniel Morrison, Bao
Nguyen, Jennifer Pi, Matthew Powell, Fernando Quintino, Jessica Schirle, Ashley Shade,
Jiayi Shen, Daniel Shvartsman, Yonathan Stone, Alex Sutherland, Tin Yau “Whisky” Tsang,
Dong Yan, and Maureen Zhang. I want to personally thank Jorge Silva Guzman for being
my study partner for the Real Analysis qualifying exam when I somehow had no one else to
study with and for bringing together our algebra classmates to overcome the horribly taught
Math 230 sequence in the 2019-2020 school year. I also want to personally thank Michael
Hehmann for introducing me to the food scene in Irvine and outside of it and inviting me
along with our other classmates to many foodie adventures. Also his sense of humor is truly
unforgettable. Lee Fisher is another person I want to thank personally because he helped me
with some very difficult homework problems and projects in Math 270AB, Math 225C, and
Math 226A. Despite being one of the most intelligent people I met, he is also one of the most
down-to-earth and easygoing people to work with. Next I want to thank Jingrong Wei for
the fruitful discussion I had about her research in optimization. There aren’t many students
in the department who research optimization, so I was happy to find someone to talk about
optimization with. Elisha Dayag is a recent collaborator I want to thank, especially for
helping me start the transformed ℓ1 segmentation research project that I did not have time
to work on myself. Despite being a second-year, he has the drive and enthusiasm to be a
budding computational mathematician. I want to thank Xiaowen Zhu for being an amazing
TA for Math 210 that because of her, I was able to pass the Real Analysis qualifying exam
in my first try. Moreover, she is one of the most amazing Splatoon players I played with
and I enjoyed learning about her research in mathematical physics. Lastly, I want to thank
my Ph.D. brothers: Carson Hu, Thu Dinh, Ziang Long, Wesley Whiting, Biao Yang, and
Yunling Zheng. I want to especially thank my Ph.D. brothers Zhijian Li, Nhat Thanh Van

xiii

Tran, and Fanghui Xue. I enjoyed my times hanging out with them and talking about our
research together. Zhijian Li is also a great Splatoon player to play with, who is a vastly
better than I am. Nhat Thanh Van Tran helped me start a new deep learning project on
image processing and he was fun to talk with about random Vietnamese food and culture.
Fanghui Xue is one of the most considerate people I met and he is an important collaborator
for one of my deep learning projects.

In addition to my classmates, I want to thank some of the professors at UC Irvine Math
Department. First, I want to thank Professor Peyam Ryan Tabrizian. He was one of the
most outgoing postdocs I met in the department and we went on several foodie adventures
together with Michael Hehmann. I also enjoyed the teaching lunches he hosted, where we
talked about our students. The department felt like it was missing something after he left in
2020. Next I want to thank Professor Anna Ma. I first met her when we were undergraduates
at UCLA and I never would have thought to see her again at UC Irvine. Her personality
definitely lightens up the department culture and it was fun discussing with her about her
research. I was happy that the mathematics department hired her as an assistant professor
because she is a competent applied mathematician and the department needs more people
like her to be a more conducive environment for applied and computational mathematics. I
also want to thank Professor Svetlana (Lana) Jitomirskaya and Professor Roman Vershynin.
Despite her unconventional teaching method, Lana taught measure theory very well that I
fully understood the subject much better than any other math classes I took at UC Irvine.
Moreover, her stories about famous mathematicians were a delight to listen to during lectures.
Professor Vershynin was one of the best lecturers I had in the Math 270 sequence and Math
271A. I was utterly amazed by how lucidly he teaches probability theory with a perfect
balance of both rigor and intuition. Even during COVID, his online lectures were as good
as his in-person lectures. It was also an honor to have him serve as a committee member
for my candidacy exam. Both professors solidified my love for real analysis and its related
branches. Lastly, I want to thank Professor Long Chen and Professor Knut Sølna for serving
on both my candidacy and Ph.D. defense committees. I want to thank Professor Long Chen
even more for being a lecturer in my Math 225BC and Math 226A classes. He supplemented
my knowledge in convex optimization and deep learning and he introduced me to numerical
PDEs. I also picked up some neat MATLAB tricks from him.

There are some more people I met at UC Irvine whom I want to thank. I want to thank
my students Abhishek Devarajan and Xinhan Huang for attending my convex optimiza-
tion classes under the Directed Reading Program in the Mathematics Department. Within
the SIAM Journal Club on Machine Learning, I want to thank the following members for
their attendance, participation, and discussion: Ahyeon Hwang, Axel Almet, Eric Bourgain-
Chang, Katrina Lee Bartas, Matthew Duong, Muhammad Hasan Celik, and Yueqi Ren. I
also want to give a shout out to Pieter Derdeyn for advertising the club when he was SIAM
president and Vincent Zaballa for presenting interesting, advanced machine learning papers
and succeeding me as organizer.

During my Ph.D., I was fortunate to have three internships, where I met new friends and
mentors. First, I want to thank my mentor Dr. Zichao Wendy Di from Argonne Na-

xiv

tional Laboratory. During my internship as a Givens Associate in Summer 2021, she was
a great research mentor who introduced me to image ptychography and encouraged me to
learn stochastic optimization algorithms. Together we were able to devise a novel stochastic
ADMM algorithm for image ptychography, but unfortunately I did not include our work into
this thesis or else this already long thesis will have fifty more pages. However, I will present
our work at SIAM CSE 2023 that Dr. Di invited me to. Next, I want to thank my internship
mentor Dr. Alessandro Panella from Lacework. During my data science internship in Spring
2022, he fostered my growth as a budding data scientist by having me work on impactful
projects and collaborate with various employees outside our team. Moreover, he was pivotal
in helping me obtain the full-time offer at Lacework. Finally, I want to thank my colleagues
at my Summer 2022 internship at InterDigital, Inc. I thank my fellow intern colleagues Eric
Lei and Pranav Kadam for the enlightening conversations about deep learning, point cloud
processing, and their respective research areas. Moreover, I thank my senior colleagues Dr.
Junghyun Ahn for his feedback and questions on my project and Dr. Muhammad Asad
Lodhi for helping me become familiar with the computing environment. Lastly, I thank
my mentors Dr. Dong Tian for teaching me about point cloud compression and providing
me motivation for my project and Dr. Jiahao Pang for closely supervising my point cloud
processing project. Especially because of Jiahao Pang, I became a lot more familiar with
programming deep learning architectures in Pytorch than before I started my internship.

One of the most important people I want to thank is Professor Sanjay Mehrotra from North-
western University. I am greatly indebted to him because he is one of the most compassionate
people I met in my life. After I was dismissed from the Ph.D. program at Northwestern Uni-
versity, he took a huge risk by hiring me as his research assistant because he still saw potential
in me, thereby saving me from my darkest moments. Burdened by my failures in the Ph.D.
program at Northwestern University, I was provided various research opportunities by Pro-
fessor Mehrotra to redeem myself. As a result, I became hardworking and determined and
I learned so much about machine learning methodologies and techniques and applied them
in healthcare engineering. Together we wrote five papers, which boosted my confidence and
solidified my work ethics necessary for the Ph.D. program at UC Irvine. Furthermore, we
continue to collaborate in writing a healthcare engineering textbook together with Profes-
sor Hari Balasubramanian from University of Massachusetts, Amherst, whom I thank for
writing the chapters I did not have time to write during my Ph.D. at UC Irvine and for
providing me constructive feedback for the machine learning chapters I wrote. After my first
year at UC Irvine, Professor Mehrotra invited me to work for his startup Medecipher, Inc.,
as a once-in-a-lifetime opportunity. I accepted the offer to not only to supplement my Ph.D.
stipend but also to earn valuable industry experience. At Medecipher, Inc., I worked with
some amazing people, such as the CEO Stephanie Gravenor, CTO Steve Tinsley, COO Rada
Yovovich, software engineers Parker Eischen and Connor Graflund, and data science intern
James Vongphasouk. I am extremely grateful to Professor Mehrotra for fostering my growth
as a researcher, healthcare engineer, and data scientist.

I would like to thank my following friends for enriching my Ph.D. life in one way or another:
Joshua Chan, Rodrick Dass, Nikhat Elias, Mo Emish, Andrea Treveño Gavito, Kyung Ha,
Absaar Javed, Nicolas Jeung, Zeyad Kelani, David Kes, Brianna Bohyun Kim, Vikram Kil-

xv

ambi, Cheolmin Kim, Wonjun Lee, Christina Luu, Binh K. Nguyen, Peter Nguyen, Nhi Minh
Nguyen, Xuan Nguyen, David Renteria, Mark Semelhago, Alto Senda, Hao-Jun Michael Shi,
Amy Tang, Courtney Tran, Kimberly Tran, Navin Velazco, Victor Wong, John Wu, and
Yiben Yang. I want to especially thank one of my best friends Nicolas Bravo for not only
supporting me throughout my Ph.D. journey but also leading me there by inspiring me to
become a mathematics major and to learn programming in my first year of college. Lastly,
I want to thank my girlfriend Tham Minh Thi Bui for her everlasting support and love and
being there for me at my best and worst of times. She was the only person willing to listen
to my research presentations when I needed to practice, even if it is a hundred times and
she does not understand what my research is about. Moreover, she showed me that there
is more to life than research and academics and helped me reconnect with my Vietnamese
heritage.

I want to thank my relatives Khoa Dinh, Duc Ho, Hoa Ho, Thu Thao Hoang Ho, Hieu
Hoang, Huy Hoang, Kim Hoang, Phuc Hoang, Phuong Hoang, Toan Hoang, Trung Hoang,
Tung Hoang, Dinh Tran Huyen, Vi Le, and Cynthia Rubi.

Last and not least, I want to thank my parents Tan Bui and Huong Hoang and my sister
Cathleen Bui for their unconditional love and support. Striving to be the best mother
possible, Huong Hoang has always loved and cared for me by doing many things to ensure
that nothing impedes my Ph.D. research. However, as her son, I feel guilty that she might
end up forgetting to take care of herself. That is why I thank my father Tan Bui for keeping
my mother in check and reminding her that I can fully take care of myself. Also he is
the reason why I am a computational mathematician today because he fosters my interest
in math at an early age by teaching me how to add when I was four years old. Despite
being younger than me, Cathleen Bui is someone whom I viewed as an equal and my best
friend. She gives valuable personal advice when I need it and she calls me out for my stupid
moments. She helps me become an empathetic and caring person.

Funding Acknowledgement: This dissertation was partially supported by NSF grants
IIS-1632935, DMS-1854434, DMS-1924548, DMS-1952644, and DMS-2151235 and the Data
Science Fellowship at the UCI School of Physical Sciences.

xvi

VITA

Kevin Bui

EDUCATION

Doctor of Philosophy in Mathematics 2023
University of California, Irvine Irvine, CA

Master of Science in Mathematics 2020
University of California, Irvine Irvine, CA

Master of Science in Industrial Engineering & Management Sciences 2016
Northwestern University Evanston, IL

Bachelor of Science in Mathematics of Computation 2011
University of California, Los Angeles Los Angeles, CA

WORK EXPERIENCE

Research & Innovation Intern Jun. 2022 - Sept. 2022
InterDigital

Data Science Intern Mar. 2022 - Jun. 2022
Lacework

Givens Associate Jun. 2021 - Sept. 2021
Argonne National Laboratory

Operations Researcher Jul. 2019 - Jun. 2022
Medecipher, Inc.

Research Technologist Aug. 2016 - Jun. 2019
Northwestern University

xvii

ABSTRACT OF THE DISSERTATION

Nonconvex Models and Algorithms for Sparse Regularization in Deep Learning and Image
Segmentation

By

Kevin Bui

Doctor of Philosophy in Mathematics

University of California, Irvine, 2023

Professor Jack Xin, Chair

In this thesis, we propose sparse, nonconvex optimization models in both areas of deep

learning and image segmentation and develop algorithms to solve them. To be more specific,

we design optimization algorithms that perform channel pruning of convolutional neural

networks (CNNs) in order to compress them without deteriorating their accuracy, while we

investigate a nonconvex alternative of total variation (TV) to obtain sharper segmentation

results. Various numerical experiments are conducted to showcase the effectiveness and

performance of the proposed nonconvex models.

In Part I, we follow the direction of sparse optimization to perform channel pruning of over-

parametrized CNNs. In one class of models, we propose a family of nonconvex sparse group

lasso that blends nonconvex regularization (e.g., transformed ℓ1, ℓ1 − ℓ2, and ℓ0) that in-

duces sparsity onto the individual weights and ℓ2,1 regularization onto the output channels

of a layer. Next, we provide two directions to improve network slimming, a channel prun-

ing method that applies ℓ1 regularization on the scaling factors in the batch normalization

layers. In one direction, we replace ℓ1 regularization with nonconvex alternatives, such as

transformed ℓ1 and ℓp, 0 < p < 1, and derive their subgradient formulas to perform sub-

gradient descent during training. In another direction, because subgradient descent is used

xviii

for network slimming as the default optimization algorithm with theoretical and numerical

flaws, we propose a theoretically convergent algorithm called proximal network slimming

that trains CNNs to be more robust against channel pruning. As a result, fine tuning CNNs

after channel pruning becomes optional by training with our proposed proximal network

slimming.

In Part II, we examine the applications of the weighted anisotropic–isotropic total variation

(AITV), the ℓ1 − αℓ2 variant of TV, in image segmentation. In one direction, we replace

the TV regularization in the Chan–Vese segmentation model and a fuzzy region competition

model by AITV. To deal with the nonconvex nature of AITV, we apply the difference-of-

convex algorithm (DCA), in which the subproblems can be minimized by the primal-dual

hybrid gradient method with linesearch. In another direction, we design an efficient, multi-

stage image segmentation framework that incorporates AITV. The segmentation framework

generally consists of two stages: smoothing and thresholding. In the first stage, a smoothed

image is obtained by an AITV-regularized Mumford-Shah model, which can be solved effi-

ciently by the alternating direction method of multipliers with a closed-form solution of a

proximal operator of the ℓ1−αℓ2 regularizer. In the second stage, we threshold the smoothed

image by k-means clustering to obtain the final segmentation result.

xix

Part I

Compression of Deep Learning

Models

1

Chapter 1

Introduction

1.1 Motivation

In the past years, convolutional neural networks (CNNs) have evolved into superior models

for various computer vision tasks, such as image classification [89, 111, 192], image segmen-

tation [51, 135, 185], and object detection [75, 96, 183]. These models often contain millions

of weight parameters that often exceed the number of training data. This is a double-edged

sword since on one hand, large models allow for high accuracy, while on the other, they

contain many redundant parameters that lead to overparametrization. Overparametriza-

tion is a well-known phenomenon in CNN models [59, 11] that results in overfitting, learning

useless random patterns in data [243], and having inferior generalization. Additionally, train-

ing a highly accurate CNN is computationally demanding. State-of-the-art CNNs such as

ResNet [89] can have up to at least a hundred layers and thus require millions of parameters

to train and billions of floating-point-operations to execute. Consequently, deploying CNNs

in low-memory devices, such as mobile smartphones, is difficult, making their real-world

applications limited.

2

To make CNNs more practical, many works suggest several different directions to compress

large CNNs or to learn smaller, more efficient models from scratch. Low-rank approxima-

tion [59, 98, 215, 220, 221] minimizes network redundancy by approximating the network’s

weight matrices with low-rank matrices. Weight quantization [52, 57, 121, 255, 232] re-

places the floating-point weights with quantized weights, such as binary weights {−1,+1}

and ternary weights {−1, 0,+1}. Pruning [2, 84, 122, 92] determines which weights, filters,

and/or channels are unnecessary and removes them from the network. Lastly, another pop-

ular direction is to sparsify the CNN while training it [6, 47, 189, 214]. Sparsity can be

imposed on various types of structures existing in CNNs, such as filters and channels [214].

In the following section, we review the recent literature for the aforementioned directions.

1.2 Compression Techniques for CNN

Low-rank decomposition. Low-rank decomposition aims to reduce weight matrices to

their low-rank structures for faster computation and more efficient storage. One set of

methods focuses on decomposing pre-trained weight tensors. Denton et al. [59] compressed

the weight tensors of convolutional layers using singular value decomposition to approximate

them. Jaderberg et al. [98] exploited the redundancy between different feature channels and

filters to approximate a full-rank filter bank in CNNs by combinations of a rank-one filter

basis. On the other hand, there are methods that train CNNs with low-rank weight matrices

from scratch. Tai et al.[198] incorporated low-rank tensor decomposition into their CNN

training algorithm. Wen et al. [215] proposed force regularization to train a CNN towards

having a low-rank representation. Xu et al. [220, 221] developed trained rank pruning, an

optimization scheme that incorporates low-rank decomposition into the training process.

Trained rank pruning was further strengthened by nuclear norm regularization.

Weight Quantization. Quantization aims to represent weights with low-precision values

3

(≤8 bits arithmetic). The simplest form of quantization is binarization, constraining weights

to only two values. Courbariaux et al. [57] proposed BinaryConnect, a method that trains

deep neural networks (DNNs) with strictly binary weights. Neural networks with ternary

weights have also been developed and investigated. Li et al. [121] created ternary weight

networks, where the weights are only −1, 0, or +1. Zhu et al. [255] proposed Trained Ternary

Quantization that constrains the weights to more general values −W n, 0, and W p, where W n

and W p are parameters learned through the training process. For more general quantization,

Yin et al. [232] developed BinaryRelax, which relaxes the quantization constraint into a

continuous regularizer for the optimization problem needed to be solved in CNNs. Later,

Bai et al.[15] proposed Proxquant, a stochastic proximal gradient method for quantizing

networks while training them.

Pruning. Pruning methods identify which weights, filters, and/or channels in CNNs are

redundant and remove them from the networks. Early works focus on pruning weights. Han

et al. [84] proposed a three-step framework to first train a CNN, prune weights if their norms

are below a fixed threshold, and retrain the compressed CNN. Aghasi et al. [2, 3] proposed

using convex optimization to determine which weights to prune while preserving model

accuracy. For CNNs, channel or filter pruning is preferred over individual weight pruning

since the former significantly eliminates more unnecessary weights. Many works [6, 27, 122,

160, 189, 214, 234] have imposed group regularization onto various CNN structures, such

as filters and channels. Li et al.[125] incorporated a sparsity-inducing matrix corresponding

to each feature map and imposed group regularization row-wise and column-wise onto this

matrix to determine which filters to remove. Lin et al.[132] pruned filters that generate

low-rank feature maps. Hu et al.[92] devised network trimming that iteratively removes

zero-activation neurons from the CNN and retrains the compressed CNN. Luo et al.[145,

146] developed the Thinet framework, which formulates channel pruning as an NP-hard

optimization problem that is solved by a greedy approach combined with fine tuning the

optimization problem itself. Rather than regularizing the weight parameters, Liu et al.[134]

4

developed network slimming, where they applied ℓ1 regularization on the scaling factors in

the batch normalization layers in a CNN to determine which of their corresponding channels

are redundant to remove and then they retrained the pruned CNN to restore its accuracy.

Zhao et al.[252] applied probabilistic learning onto the scaling factors to identify which

redundant channels to prune with minimal accuracy loss, making retraining unnecessary.

Instead of regularizing the inherent scaling factors of the batch normalization layers, Lin et

al.[133] introduced an external soft mask as a set of parameters corresponding to the CNN

structures (e.g., filters and channels) and regularized the mask by adversarial learning.

Sparse optimization. Sparse optimization methods introduce a sparse regularizer term to

the loss function of the CNN so that the CNN is trained to have a compressed structure from

scratch. BinaryRelax [232] and network slimming [134] are examples of sparse optimization

methods for CNNs. Alvarez and Salzmann [6] and Scardapane et al. [189] applied group

lasso [238] and sparse group lasso [189] to CNNs to obtain group-sparse networks. Non-

convex regularizers have also been examined recently. Xue and Xin [225] used ℓ0 and Tℓ1

regularization in three-layer CNNs that classify shaky vs. normal handwriting. Both Ma et

al. [153] and Pandit et al.[170] proposed a regularizer that combines group sparsity and Tℓ1

and applied it to CNNs for image classification. Li et al.[125] introduced sparsity-inducing

matrices into CNNs and imposed group sparsity on the rows or columns via ℓ1 or other

nonconvex regularizers to prune filters and/or channels.

1.3 Organization of Part I

In Part I, we propose three methods to compress CNNs. These methods are in line with

channel pruning and sparse optimization. In Chapter 2, we propose a family of sparse

regularizers called nonconvex sparse group lasso to jointly prune channels and individual

weights in CNNs. This chapter is derived from [27]. In Chapter 3, we improve network

5

slimming by replaing ℓ1 regularization on the scaling factors in the batch normalization layers

with nonconvex, sparse regularization to potentially prune more channels. This chapter is

adapted from [25, 26]. Lastly, in Chapter 4, we propose an alternative algorithm to perform

network slimming so that fine tuning becomes optional. We conclude Part I in Chapter 5.

6

Chapter 2

Structured Sparsity of Convolutional

Neural Networks via Nonconvex

Sparse Group Regularization

In this chapter, we propose a family of group regularization methods that balances both

group lasso for group-wise sparsity and nonconvex regularization for element-wise sparsity.

The family extends sparse group lasso by replacing the ℓ1 penalty term with a nonconvex

penalty term. The nonconvex penalty terms considered are ℓ0, ℓ1−αℓ2, transformed ℓ1, and

SCAD. The proposed family is supposed to yield a more accurate and/or more compressed

network than sparse group lasso since ℓ1 suffers various weaknesses due to being a convex

relaxation of ℓ0. We develop an algorithm to optimize loss functions equipped with the

proposed nonconvex, group regularization terms for DNNs.

7

2.1 Model and Algorithm

2.1.1 Preliminaries

Given a training dataset consisting of N input-output pairs {(xi, yi)}Ni=1, the weight param-

eters of a DNN are learned by optimizing the following objective function:

min
W

1

N

N∑
i=1

L(h(xi,W), yi) + λR(W), (2.1)

where

• W is the set of weight parameters of the DNN.

• h(·, ·) is the output of the DNN used for prediction.

• L(·, ·) ≥ 0 is the loss function that compares the prediction h(xi,W) with the ground-

truth output yi. Examples include cross-entropy loss function for classification and

mean-squared error for regression.

• R(·) is the regularizer on the set of weight parameters W .

• λ > 0 is a regularization parameter for R(·).

The most common regularizer used for DNNs is ℓ2 regularization ∥ · ∥22, also known as weight

decay. It prevents overfitting and improves generalization because it enforces the weights

to decrease proportionally to their magnitudes [112]. Sparsity can be imposed by pruning

weights whose magnitudes are below a certain threshold at each iteration during training.

However, an alternative regularizer is the ℓ1 norm ∥·∥1, also known as the lasso penalty [199].

The ℓ1 norm is the tightest convex relaxation of the ℓ0 penalty [64, 71, 203] and it yields

a sparse solution that is found on the corners of the 1-norm ball [87, 139]. Theoretical

8

results justify the ℓ1 norm’s ability to reconstruct sparse solution in compressed sensing.

When a sensing matrix satisfies the restricted isometry property, the ℓ1 norm recovers the

sparse solution exactly with high probability [32, 71, 203]. On the other hand, the null

space property is a necessary and sufficient condition for ℓ1 minimization to guarantee exact

recovery of sparse solutions [55, 71]. Being able to yield sparse solutions, the ℓ1 norm

has gained popularity in other types of inverse problems such as compressed imaging [103,

148] and image segmentation [105, 104, 120] and in various fields of applications such as

geoscience [188], medical imaging [103, 148], machine learning [30, 199, 107, 166, 228], and

traffic flow network [231]. Unfortunately, element-wise sparsity by ℓ1 or ℓ2 regularization in

CNNs may not yield meaningful speedup as the number of filters and channels required for

computation and inference may remain the same [214].

To determine which filters or channels are relevant in each layer, group sparsity using the

group lasso penalty [238] is considered. The group lasso penalty has been utilized in various

applications, such as microarray data analysis [154], machine learning [13, 159], and EEG

data [128]. Suppose a DNN has L layers, so the set of weight parameters W is divided

into L sets of weights: W = {Wl}Ll=1. The weight set of each layer Wl is divided into Nl

groups (e.g., channels or filters): Wl = {wl,g}Nl
g=1. The group lasso penalty applied to Wl is

formulated as

RGL(Wl) =

Nl∑
g=1

√
#wl,g∥wl,g∥2 =

Nl∑
g=1

√
#wl,g

√√√√#wl,g∑
i=1

w2
l,g,i, (2.2)

where wl,g,i corresponds to the weight parameter with index i in group g in layer l and the

term #wl,g denotes the number of weight parameters in group g in layer l. Because group

sizes vary, the constant
√

#wl,g is multiplied in order to rescale the ℓ2 norm of each group

with respect to the group size, ensuring that each group is weighed uniformly [238, 191, 159].

The group lasso regularizer imposes the ℓ2 norm on each group, forcing weights of the same

groups to decrease altogether at every iteration during training. As a result, the groups of

9

weights are pruned when their ℓ2 norms are negligible, resulting in a highly compact network

compared to element-sparse networks.

As an alternative to group lasso that encourages feature sharing, exclusive sparsity [254]

enforces the model weight parameters to compete for features, making the features discrimi-

native for each class in the context of classification. The regularization for exclusive sparsity

is

1

2

Nl∑
g=1

∥wl,g∥21 =
1

2

Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|

2

. (2.3)

Now, within each group, sparsity is enforced. Because exclusivity cannot guarantee the

optimal features since some features do need to be shared, exclusive sparsity can be combined

with group sparsity to form combined group and exclusive sparsity (CGES) [234]. CGES is

formulated as

RCGES =

Nl∑
g=1

(1 − µl)

√√√√#wl,g∑
i=1

w2
l,g,i +

µl

2

#wl,g∑
i=1

|wl,g,i|

2
 , (2.4)

where µl ∈ (0, 1) is a parameter for balancing exclusivity and sharing among features.

To obtain an even sparser network, element-wise sparsity and group sparsity can be combined

and applied together to the training of DNNs. One regularizer that combines these two types

of sparsity is the sparse group lasso penalty [191], which is formulated as

RSGL1(Wl) = RGL(Wl) + ∥Wl∥1 (2.5)

where

∥Wl∥1 =

Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|.

10

Figure 2.1: Comparison between lasso, group lasso, and sparse group lasso applied to a
weight matrix. Entries in white are zero’ed out or removed; entries in gray remain.

Sparse group lasso simultaneously enforces group sparsity by having the regularizer RGL(·)

and element-wise sparsity by having the ℓ1 norm. This regularizer has been used in machine

learning [205], bioinformatics [130, 253], and medical imaging [129].

Figure 2.1 demonstrates the differences between lasso, group lasso, and sparse group lasso

applied to a weight matrix connecting a 5-dimensional input layer to a 10-dimensional output

layer. In white, the entries are zero’ed out; in gray; the entries are not. Unlike lasso, group

11

lasso results in a more structured method of pruning since three of the five neurons can be

zero’ed out. Combined with ℓ1 regularization on the individual weights, sparse group lasso

allows for more weights in the remaining two neurons to be pruned.

2.1.2 Nonconvex Sparse Group Lasso

We recall that the ℓ1 norm is the tightest convex relaxation of the ℓ0 penalty, given by

∥Wl∥0 =

Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|0 (2.6)

where

|w|0 =


1 if w ̸= 0

0 if w = 0

when applied to the weight set Wl of layer l. The ℓ0 penalty is non-convex and discontinuous.

In addition, any ℓ0-regularized problem is NP-hard [71]. These properties make developing

convergent and tractable algorithms for ℓ0-regularized problems difficult, thereby making

ℓ1-regularized problems better alternatives to solve. However, the ℓ0-regularized problems

have been shown to recover better solutions in terms of sparsity and/or accuracy than do

ℓ1-regularized problems in various applications, such as compressed sensing [144], image

restoration [16, 40, 63, 251, 143], MRI reconstruction [202], and machine learning [144, 239].

In particular, ℓ0-regularized inverse problems were demonstrated to be more robust against

Poisson noise than are ℓ1-regualarized inverse problems [249].

A continuous alternative to the ℓ0 penalty is the SCAD penalty term [69, 149], given by

λ∥Wl∥SCAD(a) =

Nl∑
g=1

#wl,g∑
i=1

λ|wl,g,i|SCAD(a) (2.7)

12

where

λ|w|SCAD(a) :=


λ|w| if |w| < λ

2aλ|w|−w2−λ2

2(a−1)
if λ ≤ |w| < aλ

(a + 1)λ2/2 if |w| ≥ aλ

for λ > 0 and a > 2. This penalty term enjoys three properties – unbiasedness, sparsity, and

continuity – while the ℓ1 norm, on the other hand, has only sparsity and continuity [69]. In

linear and logistic regression, SCAD was shown to outperform ℓ1 in variable selection [69].

SCAD has been applied to wavelet approximation [8], bioinformatics [22, 209], and com-

pressed sensing [158].

The transformed ℓ1 penalty term [167] also enjoys the properties of unbiasedness, sparsity,

and continuity [149]. In fact, the regularizer is not just continuous but Lipschitz continu-

ous [247]. The term is given by

∥Wl∥TL1(a) =

Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|TL1(a) (2.8)

where

|w|TL1(a) =
(a + 1)|w|
a + |w|

.

In addition, it interpolates the ℓ0 and ℓ1 penalties through the parameter a [247] because

lim
a→0+

|w|TL1(a) = |w|0 and lim
a→∞

|w|TL1(a) = |w|.

The transformed ℓ1 penalty term was investigated and was shown to outperform ℓ1 in com-

pressed sensing [246, 247, 200], deep learning [153, 225, 127], matrix completion [248], and

epidemic forecasting [127].

13

Another Lipschitz continous, nonconvex regularizer is the ℓ1 − αℓ2 penalty given by

∥Wl∥ℓ1−αℓ2 = ∥Wl∥1 − α∥Wl∥2 =

Nl∑
g=1

#wl,g∑
i=1

|wl,g,i| − α

√√√√ Nl∑
g=1

#wl,g∑
i=1

|wl,g,i|2, (2.9)

where α ∈ (0, 1]. In a series of works [139, 230, 137, 138], the penalty term ℓ1−ℓ2 with α = 1

yields better solutions than does ℓ1 in various compressed sensing applications especially

when the sensing matrix is highly coherent or it violates the restricted isometry property

condition. To guarantee exact recovery of sparse solution, ℓ1 − ℓ2 only requires a relaxed

variant of the null space property [200]. Furthermore, ℓ1 − αℓ2 is more robust against

impulsive noise in yielding sparse, accurate solutions for inverse problems than is ℓ1 [123].

Besides compressed sensing, it has been utilized in image denoising and deblurring [141],

image segmentation [172], image inpainting [155], and hyperspectral demixing [67]. In deep

learning application, the ℓ1 − ℓ2 regularization was used to learn permutation matrices [150]

for ShuffleNet [250, 152].

Due to the advantages and recent successes of the aforementioned nonconvex regularizers,

we propose to replace the ℓ1 norm in (2.5) with nonconvex penalty terms. Hence, we propose

a family of group regularizers called nonconvex sparse group lasso. The family includes the

following:

RSGL0(Wl) = RGL(Wl) + ∥Wl∥0 (2.10)

RSGSCAD(a)(Wl) = RGL(Wl) + ∥Wl∥SCAD(a) (2.11)

RSGTL1(a)(Wl) = RGL(Wl) + ∥Wl∥TL1(a) (2.12)

RSGL1−αL2(Wl) = RGL(Wl) + ∥Wl∥ℓ1−αℓ2 . (2.13)

Using these regularizers, we expect to obtain a sparser and/or more accurate network than

14

from using the original sparse group lasso. The ℓ1 norm can also be replaced with other

nonconvex penalties not mentioned in this paper. Refer to [4, 213] to see other nonconvex

penalties. However, we focus on the aforementioned nonconvex regularizers because they

have closed-form proximal operators required by our proposed algorithm described in the

next section.

2.1.3 Notations and Definitions

Before discussing the algorithm, we summarize notations that we will use to save space.

They are the following:

• If V = {Vl}Ll=1 and W = {Wl}Ll=1, then

(V,W) := ({Vl}Ll=1, {Wl}Ll=1) = (V1, . . . , VL,W1, . . . ,WL).

• V + := V k+1.

• L̃(W) := 1
N

∑N
i=1 L(h(xi,W), yi).

In addition, we define the proximal operator for the regularization function r(·) as follows:

proxλr(y) = arg min
x

λ r(x) +
1

2
∥x− y∥22

for λ > 0.

2.1.4 Numerical Optimization

We develop a general algorithm framework to solve

min
W

L̃(W) + λ
L∑
l=1

R(Wl) = L̃(W) +
L∑
l=1

(λRGL(Wl) + λr(Wl)) (2.14)

15

where W = {Wl}Ll=1, R is either RSGL1 or one of the nonconvex regularizers (2.10)-(2.13),

and r(·) is the corresponding sparsity-inducing regularizer. Throughout the paper, our as-

sumption on (2.14) is the following:

Assumption 2.1. The function L̃ is continuously differentiable with respect to Wl for each

l = 1, . . . , L.

By introducing an auxiliary variable V = {Vl}Ll=1 for (2.14), we have a constrained optimiza-

tion problem:

min
V,W

L̃(W) +
L∑
l=1

(λRGL(Wl) + λr(Vl))

s.t. Vl = Wl l = 1, . . . , L.

(2.15)

The constraints can be relaxed by adding the quadratic penalty terms with β > 0 so that

we have

min
V,W

Fβ(V,W) := L̃(W) +
L∑
l=1

[
λRGL(Wl) + λr(Vl) +

β

2
∥Vl −Wl∥22

]
. (2.16)

With β fixed, (2.16) can be solved by alternating minimization:

W k+1 = arg min
W

Fβ(V k,W) (2.17a)

V k+1 = arg min
V

Fβ(V,W k+1). (2.17b)

To solve (2.17a), we simultaneously update Wl for l = 1, . . . L by gradient descent

W k+1
l = W k

l − γ
(
∇Wl

L̃(W k) + λ∂Wl
RGL(W k

l) − β(V k
l −W k

l)
)

(2.18)

where γ > 0 is the learning rate and ∂Wl
RGL is the subdifferential of RGL with respect to

Wl. In practice, (2.18) is performed using stochastic gradient descent (or one of its variants)

16

Algorithm 1: Algorithm for Nonconvex Sparse Group Lasso Regularization

1 Initialize V 1 and W 1 with random entries; learning rate γ; regularization parameters
λ and β; and multiplier σ > 1.

2 Set j := 1.
3 while stopping criterion for outer loop not satisfied do
4 Set k := 1.
5 Set W j,1 = W j and V j,1 = V j.
6 while stopping criterion for inner loop not satisfied do
7 Update W j,k+1 by Eq. (2.18).
8 Update V j,k+1 by Eq. (2.19).
9 k := k + 1

10 end
11 Set W j+1 = W j,k and V j+1 = V j,k.
12 Set β := σβ.
13 Set j := j + 1.

14 end
15 Output: W j and V j.

with mini-batches due to the large-size computation dealing with the amount of data and

weight parameters that a typical DNN has.

To update V , we see that (2.17b) can be rewritten as

V k+1 = arg min
V

L∑
l=1

(
λ

β
r(Vl) +

1

2
∥Vl −Wl∥22

)
=
(

proxλ
β
r(W1), . . . , proxλ

β
r(WL)

)
. (2.19)

The proximal operators for the considered regularizers are thresholding functions as their

closed-form solutions, and as a result, the V update simplifies to thresholding W . The

regularization functions and their corresponding proximal operators are summarized in Table

2.1.

Incorporating the algorithm that solves the quadratic penalty problem (2.16), we now develop

a general algorithm to solve (2.14). We solve a sequence of quadratic penalty problems (2.16)

with β ∈ {βj}∞j=1 where βj ↑ ∞. This will yield a sequence {(V j,W j)}∞j=1 so that W j ↑ W ∗,

a solution to (2.14). This algorithm is based on the quadratic penalty method [168] and the

penalty decomposition method [144]. The algorithm is summarized in Algorithm 1.

17

Table 2.1: Regularization penalties and their corresponding proximal operators with λ > 0.
Regularizer Name Penalty Formulation Proximal Operator

ℓ1

λ∥x∥1 = λ
n∑

i=1

|xi|
proxλ∥·∥1 (x) = (Sλ(x1), . . . ,Sλ(xn)) ,

with

Sλ(t) = sign(t)max{|t| − λ, 0}

ℓ0

λ∥x∥0 = λ
n∑

i=1

|xi|0
proxλ∥·∥0 (x) = (Hλ(x1), . . . ,Hλ(xn)) ,

with

Hλ(t) =

{
0 if |t| ≤

√
2λ

t if |t| >
√
2λ

SCAD(a) λ∥x∥SCAD(a) =
n∑

i=1

λ|xi|SCAD(a)

with

λ|t|SCAD(a) =


λ|t| if |t| < λ

2aλ|t|−t2−λ2

2(a−1)
if λ ≤ |t| < aλ

(a + 1)λ2/2 if |t| ≥ aλ

proxλ∥·∥SCAD(a)
(x) =

(
Sa,λ(x1), . . . , Sa,λ(xn)

)
,

with

Sa,λ(t) =


Sλ(t) if |t| ≤ 2λ
(a−1)t−sign(t)aλ

a−2
if 2λ < |t| ≤ aλ

t if |t| > aλ.

TL1(a)

λ∥x∥TL1(a) = λ
n∑

i=1

(a + 1)|xi|
a + |xi| proxλ∥·∥TL1(a)

(x) =
(
Ta,λ(x1), . . . ,Ta,λ(xn)

)
,

with

Ta,λ(t) =

{
0 if |t| ≤ τ(a, λ)

ga,λ(t) if |t| > τ(a, λ)

where

ga,λ(t) = sign(t)

(
2

3
(a + |t|) cos

(
ϕa,λ(t)

3

)
−

2a

3
+

|t|
3

)
,

ϕa,λ(t) = arccos

(
1 −

27λa(a + 1)

2(a + |t|)3

)
,

and

τ(a, λ) =


√

2λ(a + 1) − a
2

if λ > a2

2(a+1)

λ a+1
a

if λ ≤ a2

2(a+1)

ℓ1 − ℓ2

λ∥x∥ℓ1−ℓ2
= λ

 n∑
i=1

|xi| −

√√√√ n∑
i=1

x2
i


proxλ∥·∥ℓ1−ℓ2

(x) =

{ ∥z1∥2+λ
∥z1∥2

z1 if ∥x∥∞ > λ

z2 if 0 ≤ ∥x∥∞ ≤ λ

with z1 = Sλ(x) and

(z2)i =

{
0 if i ̸= k

sign(xi)∥x∥∞ if i = k,

where k = argmin
1≤k≤n

{|xi| = ∥x∥∞}.

18

An alternative algorithm to solve (2.14) is proximal gradient descent [171]. By this method,

the update for Wl, l = 1, . . . , L, is

W k+1
l = proxγλr

(
W k

l − γ
(
∇Wl

L̃(W k) + λ∂Wl
RGL(W k

l)
))

. (2.20)

Using this algorithm results in weight parameters with some already zero’ed out.

However, the advantage of our proposed algorithm lies in (2.17a), written more specifically

as

W k+1
l = arg min

Wl

L̃(W) + RGL(Wl) +
β

2
∥Vl −Wl∥22 (2.21)

= arg min
Wl

L̃(W) + RGL(Wl) +
β

2

#Wl∑
i=1

(vl,i − wl,i)
2.

We see that this step performs exact weight decay or ℓ2 regularization on weights wl,i when-

ever vl,i = 0. On the other hand, when vl,i ̸= 0, the effect of ℓ2 regularization is mitigated on

the corresponding weight wl,i based on the absolute difference |vl,i − wl,i|. Using ℓ2 regular-

ization was shown to give superior pruning results in terms of accuracy by Han et al. [84].

Our proposed algorithm can be perceived as an adaptive ℓ2 regularization method, where

(2.17b) identifies which weights to perform exact ℓ2 regularization on and (2.17a) updates

and regularizes the weights accordingly.

2.1.5 Convergence Analysis

To establish convergence for the proposed algorithm, the results below state that the accu-

mulation point of the sequence generated by (2.17a)-(2.17b) is a block-coordinate minimizer,

and an accumulation point generated by Algorithm 1 is a sparse feasible solution to (2.15).

19

Proofs are provided in Section 2.3. Unfortunately, the feasible solution generated may not

be a local minimizer of (2.15) because the loss function L(·, ·) is nonconvex. However, it was

shown in [62] that a similar algorithm to Algorithm 1, but for fixed β in a bounded interval,

generates an approximate global solution with high probability for a one-layer CNN with

ReLu activation function.

Theorem 2.1. Let {(V k,W k)}∞k=1 be a sequence generated by the alternating minimization

algorithm (2.17a)-(2.17b), where r(·) is ℓ0, ℓ1, transformed ℓ1, ℓ1−αℓ2, or SCAD. If (V ∗,W ∗)

is an accumulation point of {(V k,W k)}∞k=1, then (V ∗,W ∗) is a block-coordinate minimizer

of (2.16). that is

V ∗ ∈ arg min
V

Fβ(V,W ∗)

W ∗ ∈ arg min
W

Fβ(V ∗,W).

Theorem 2.2. Let {(V k,W k, βk)}∞k=1 be a sequence generated by Algorithm 1. Suppose that

{Fβk
(V k,W k)}∞k=1 is uniformly bounded. If (V ∗,W ∗) is an accumulation point of {V k,W k)}∞k=1,

then (V ∗,W ∗) is a feasible solution to (2.15), that is V ∗ = W ∗.

Remark : To safely ensure that {Fβk
(V k,W k)}∞k=1 is uniformly bounded in practice, we can

find a feasible solution (V feas,W feas) to (2.15) and impose a bound M such that

M ≥ max

{
L̃(W feas) + λ

L∑
l=1

R(W feas
l),min

W
Fβ0(V

1,W)

}
.

If minW Fβk+1
(V k,W) > M , then we set V k+1 = W feas. This strategy is based on [144].

However, in our numerical experiments, we have not yet encountered Fβk
(V k,W k) to diverge.

20

2.2 Numerical Experiments

2.2.1 Application to Deep Neural Networks

We compare the proposed nonconvex sparse group lasso against four other methods as base-

lines: group lasso, sparse group lasso (SGL1), CGES proposed in [234], and the group variant

of ℓ0 regularization (denoted as ℓ0 for simplicity) proposed in [142]. SGL1 is optimized using

the same algorithm proposed for nonconvex sparse group lasso. For the group terms, the

weights are grouped together based on the filters or output channels, which we will refer

to as neurons. We trained various CNN architectures on MNIST [116] and CIFAR 10/100

[110]. The MNIST dataset consists of 60k training images and 10k test images. MNIST is

trained on two simple CNN architectures: LeNet-5-Caffe [101, 116] and a 4-layer CNN with

two convolutional layers (32 and 64 channels, respectively) and an intermediate layer of 1000

fully connected neurons. CIFAR 10/100 is a dataset that has 10/100 classes split into 50k

training images and 10k test images. It is trained on Resnets [89] and wide Resnets [241].

Throughout all of our experiments, for SGSCAD(a), we set a = 3.7 as suggested in [69];

for SGTL1(a), we set a = 1.0 as suggested in [248]; and for SGL1 − L2, we set α = 1.0 as

suggested by the literatures [139, 230, 137, 138]. For CGES, we have µl = l/L. Because

the optimization algorithms do not drive most, if not all, the weights and neurons to ze-

roes, we have to set them to zeroes when their values are below a certain threshold. In our

experiments, if the absolute weights are below 10−5, we set them to zeroes. Then, weight

sparsity is defined to be the percentage of zero weights with respect to the total number of

weights trained in the network. If the normalized sum of the absolute values of the weights

of the neuron is less than 10−5, then the weights of the neuron are set to zeroes. Neuron

sparsity is defined to be the percentage of neurons whose weights are zeroes with respect to

the total number of neurons in the network.

21

MNIST Classification

MNIST is trained on Lenet-5-Caffe, which has four layers with 1,370 total neurons and

431,080 total weight parameters. All layers of the network are applied with strictly the

same type of regularization. No other regularization methods (e.g., dropout and batch

normalization) are used. The network is optimized using Adam [108] with initial learning

rate 0.001. For every 40 epochs, the learning rate decays by a factor of 0.1. We set the

regularization parameter to the following values: λ = α/60000 for α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

For SGL1 and nonconvex sparse group lasso, we set β = 25α/60000, and for every 40 epochs,

β increases by a factor of σ = 1.25. The network is trained for 200 epochs across 5 runs.

Table 2.2 reports the mean results for test error, weight sparsity, and neuron sparsity

across five runs of Lenet-5-Caffe trained after 200 epochs. We see that although CGES

has the lowest test errors at α ∈ {0.1, 0.3, 0.4} and the largest weight sparsity for all

α ∈ {0.1, 0.2, . . . , 0.5}, nonconvex sparse group lasso’s test errors and weight sparsity are

comparable. Additionally, nonconvex sparse group lasso’s neuron sparsity is nearly two

times larger than the neuron sparsity attained by CGES. Across all parameters and meth-

ods, SGL0 with α = 0.5 attains the best average test error of 0.630 with average weight

sparsity 95.7% and neuron sparsity 80.7%. Furthermore, its test error is lower than the

test errors of other nonconvex sparse group lasso regularization methods for all α’s tested.

Generally, SGL1 and nonconvex sparse group lasso outperform ℓ0 regularization proposed

by Louizos et al. [142] and group lasso by average weight and neuron sparsity.

Table 2.3 reports the mean results for test error, weight sparsity, and neuron sparsity of

the Lenet-5-Caffe models with the lowest test errors from the five runs. According to the

results, the best test errors are attained by SGL0 at α = 0.3, 0.5; SGL1−L2 at α = 0.2; and

CGES at α = 0.1, 0.4. For average weight sparsity, SGL0 attains the largest weight sparsity

at α ∈ {0.2, 0.3, 0.4, 0.5}. For average neuron sparsity, the largest values are attained by

22

Table 2.2: Average test error, weight sparsity, and neuron sparsity of Lenet-5 models trained
on MNIST after 200 epochs across 5 runs. Standard deviations are in parentheses.
Avg.
Test
Error
(%)

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.816
(0.024)

0.644
(0.039)

0.742
(0.030)

0.722
(0.028)

0.682
(0.044)

0.734
(0.039)

0.716
(0.048)

0.688
(0.034)

α = 0.2 0.914
(0.029)

0.718
(0.044)

0.772
(0.031)

0.704
(0.031)

0.712
(0.042)

0.788
(0.045)

0.718
(0.025)

0.746
(0.031)

α = 0.3 1.032
(0.045)

0.678
(0.007)

0.782
(0.035)

0.732
(0.045)

0.686
(0.048)

0.760
(0.037)

0.728
(0.034)

0.712
(0.061)

α = 0.4 1.062
(0.030)

0.662
(0.024)

0.820
(0.054)

0.792
(0.034)

0.704
(0.033)

0.786
(0.045)

0.766
(0.045)

0.756
(0.014)

α = 0.5 1.098
(0.035)

0.696
(0.016)

0.834
(0.033)

0.720
(0.039)

0.630
(0.024)

0.728
(0.044)

0.684
(0.024)

0.750
(0.017)

Avg.
Weight
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 2.12×10−4

(1.54×10−5)
0.940
(1.51×10−3)

0.885
(2.25×10−3)

0.889
(4.30×10−3)

0.894
(3.81×10−3)

0.894
(3.61×10−3)

0.901
(1.57×10−3

0.893
(2.77×10−3)

α = 0.2 2.16×10−4

(3.76×10−6)
0.952
(1.51×10−3)

0.922
(2.07×10−3)

0.926
(1.19×10−3)

0.926
(1.75×10−3)

0.926
(3.31×10−3)

0.930
(2.37×10−3)

0.923
(2.86×10−3)

α = 0.3 2.24×10−4

(5.35×10−6)
0.956
(1.41×10−3)

0.933
(1.03×10−3)

0.945
(1.43×10−3)

0.941
(1.73×10−3)

0.941
(2.52×10−3)

0.941
(1.28×10−3)

0.943
(1.04×10−3)

α = 0.4 2.06×10−4

(6.27×10−6)
0.960
(1.05×10−3)

0.943
1.63×10−3)

0.952
(1.21×10−3)

0.951
(1.82×10−3)

0.950
(1.64×10−3)

0.952
(1.91×10−3)

0.952
(1.14×10−3)

α = 0.5 2.27×10−4

(1.53×10−5)
0.963
(1.85×10−3)

0.946
(1.43×10−3)

0.954
(1.63×10−3)

0.957
(9.21×10−4)

0.956
(1.37×10−3)

0.956
(2.00×10−3)

0.956
(2.43×10−3)

Avg.
Neuron
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.531
(3.79×10−4)

0.387
(9.13×10−3)

0.696
(2.42×10−3)

0.691
(7.38×10−3)

0.682
(6.27×10−3)

0.704
(3.94×10−3)

0.703
(5.09×10−3)

0.697
(3.93×10−3)

α = 0.2 0.578
(1.19×10−3)

0.449
(1.26×10−2)

0.756
(3.39×10−3)

0.754
(2.72×10−3)

0.740
(4.01×10−3)

0.758
(5.78×10−3)

0.757
(3.93×10−3)

0.749
(6.50×10−3)

α = 0.3 0.602
(4.42×10−4)

0.476
(1.17×10−2)

0.776
(3.18×10−3)

0.787
(2.55×10−3)

0.769
(4.44×10−3)

0.785
(4.97×10−3)

0.774
(4.11×10−3)

0.783
(3.78×10−3)

α = 0.4 0.616
(7.58×10−4)

0.518
(9.72×10−3)

0.795
(3.44×10−3)

0.805
(3.89×10−3)

0.791
(5.40×10−3)

0.803
(3.35×10−3)

0.799
(3.56×10−3)

0.804
(2.69×10−3)

α = 0.5 0.626
(1.07×10−3)

0.539
(1.27×10−2)

0.799
(2.59×10−3)

0.811
(4.07×10−3)

0.807
(3.15×10−3)

0.819
(2.79×10−3)

0.811
(6.29×10−3)

0.815
(6.10×10−3)

23

Table 2.3: Average test error, weight sparsity, and neuron sparsity of Lenet-5 models trained
on MNIST with lowest test errors across 5 runs. Standard deviations are in parentheses.
Avg.
Test
Error
(%)

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.682
(0.023)

0.532
(0.031)

0.568
(0.026)

0.568
(0.021)

0.576
(0.027)

0.602
(0.027)

0.582
(0.028)

0.554
(0.056)

α = 0.2 0.846
(0.033)

0.584
(0.038)

0.630
(0.017)

0.582
(0.035)

0.584
(0.049)

0.616
(0.021)

0.592
(0.026)

0.578
(0.032)

α = 0.3 0.980
(0.033)

0.590
(0.028)

0.642
(0.013)

0.600
(0.030)

0.588
(0.019)

0.618
(0.037)

0.594
(0.022)

0.596
(0.039)

α = 0.4 1.014
(0.019)

0.562
(0.015)

0.680
(0.038)

0.652
(0.025)

0.604
(0.033)

0.630
(0.035)

0.630
(0.048)

0.628
(0.020)

α = 0.5 1.066
(0.024)

0.598
(0.027)

0.682
(0.043)

0.616
(0.052)

0.572
(0.012)

0.654
(0.015)

0.586
(0.034)

0.670
(0.026)

Avg.
Weight
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 2.38×10−4

(1.97×10−5)
0.541
(0.024)

0.661
(0.073)

0.757
(0.015)

0.768
(0.019)

0.680
(0.167)

0.773
(7.48×10−3)

0.719
(0.066)

α = 0.2 2.26×10−4

(9.43×10−6)
0.583
(0.017)

0.728
(0.170)

0.845
(4.79×10−3)

0.857
(6.15×10−3)

0.821
(0.041)

0.854
(5.60×10−3)

0.836
(6.76×10−3)

α = 0.3 2.19×10−4

(1.36×10−5)
0.603
(0.020)

0.810
(0.078)

0.886
(3.69×10−3)

0.889
(3.62×10−3)

0.878
(9.43×10−4)

0.827
(0.115)

0.879
(3.97×10−3)

α = 0.4 2.22×10−4

(1.47×10−5)
0.627
(0.019)

0.845
(0.040)

0.896
(3.57×10−3)

0.905
(3.66×10−3)

0.846
(0.097)

0.899
(4.23×10−3)

0.852
(0.097)

α = 0.5 2.24×10−4

(1.02×10−5)
0.633
(0.013)

0.886
(6.40×10−3)

0.905
(2.87×10−3)

0.922
(0.015)

0.902
(2.64×10−3)

0.871
(0.084)

0.848
(0.080)

Avg.
Neuron
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.1 0.363
(0.047)

0.315
(0.030)

0.389
(0.120)

0.497
(0.014)

0.496
(0.030)

0.426
(0.172)

0.513
(9.57×10−3)

0.440
(0.107)

α = 0.2 0.574
(2.22×10−3)

0.392
(0.016)

0.498
(0.185)

0.627
(0.011)

0.631
(0.012)

0.549
(0.169)

0.634
(9.30×10−3)

0.608
(0.015)

α = 0.3 0.599
(2.61×10−3)

0.418
(0.021)

0.570
(0.154)

0.697
(9.73×10−3)

0.692
(8.19×10−3)

0.684
(5.69×10−3)

0.613
(0.154)

0.686
(8.60×10−3)

α = 0.4 0.614
(1.71×10−3)

0.482
(0.020)

0.586
(0.184)

0.721
(8.16×10−3)

0.725
(9.97×10−3)

0.642
(0.151)

0.724
(0.015)

0.655
(0.150)

α = 0.5 0.625
(1.55×10−3)

0.492
(0.024)

0.708
(8.94×10−3)

0.735
(3.73×10−3)

0.759
(0.020)

0.733
(8.59×10−3)

0.683
(0.143)

0.570
(0.216)

24

Table 2.4: Average test error, weight sparsity, and neuron sparsity of 4-layer CNN models
trained on MNIST after 200 epochs across 5 runs. Standard deviations are in parentheses.
Avg.
Test
Error
(%)

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.962
(0.041)

0.470
(0.036)

0.486
(0.030)

0.418
(0.010)

0.432
(0.023)

0.408
(0.013)

0.418
(0.026)

0.436
(0.012)

α = 0.4 1.454
(0.070)

0.486
(0.030)

0.502
(0.035)

0.436
(0.026)

0.49
(0.017)

0.456
(0.016)

0.47
(0.035)

0.446
(0.031)

α = 0.6 2.396
(0.066)

0.512
(0.035)

0.510
(0.028)

0.494
(0.031)

0.500
(0.023)

0.488
(0.019)

0.498
(0.025)

0.522
(0.019)

α = 0.8 3.396
(0.096)

0.502
(0.020)

0.544
(0.026)

0.542
(0.025)

0.536
(0.037)

0.524
(0.015)

0.536
(0.014)

0.524
(0.015)

α = 1.0 4.74
(0.148)

0.524
(0.26)

0.568
(0.004)

0.566
(0.041)

0.576
(0.014)

0.544
(0.024)

0.552
(0.017)

0.556
(0.022)

Avg.
Weight
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 5.99×10−5

(9.28×10−6)
0.655
(4.10×10−3)

0.284
(6.47×10−3)

0.302
(6.68×10−3)

0.306
(0.014)

0.297
(5.42×10−3)

0.298
(8.63×10−3

0.299
(7.74×10−3)

α = 0.4 5.84×10−5

(7.95×10−6)
0.710
(2.45×10−3)

0.489
(7.38×10−3)

0.510
(1.85×10−3)

0.502
(8.01×10−3)

0.507
(8.80×10−3)

0.510
(0.011)

0.505
(7.25×10−3)

α = 0.6 6.06×10−5

(1.22×10−5)
0.737
(2.13×10−3)

0.593
(5.67×10−3)

0.606
(5.41×10−3)

0.603
(7.61×10−3)

0.605
(5.46×10−3)

0.599
(0.012)

0.609
(6.96×10−3)

α = 0.8 7.18×10−5

(6.24×10−6)
0.755
(5.67×10−3)

0.661
(6.11×10−3)

0.660
(6.42×10−3)

0.663
(7.30×10−3)

0.661
(8.74×10−3)

0.665
(3.95×10−3)

0.661
(5.72×10−3)

α = 1.0 6.90×10−5

(7.33×10−6)
0.767
(2.92×10−3)

0.695
(5.08×10−3)

0.696
(4.68×10−3)

0.697
(2.38×10−4)

0.698
(6.51×10−3)

0.699
(4.27×10−3)

0.689
(9.47×10−3)

Avg.
Neuron
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.472
(7.10×10−4)

0.299
(2.40×10−3)

0.153
(4.06×10−3)

0.160
(4.54×10−3)

0.164
(8.58×10−3)

0.158
(3.68×10−3)

0.158
(5.20×10−3)

0.159
(5.87×10−3)

α = 0.4 0.494
(1.01×10−3)

0.329
(2.10×10−3)

0.280
(5.64×10−3)

0.287
(7.55×10−4)

0.280
(6.57×10−3)

0.281
(5.05×10−3)

0.285
(8.48×10−3)

0.284
(7.22×10−3)

α = 0.6 0.506
(7.23×10−4)

0.343
(1.78×10−3)

0.351
(4.72×10−3)

0.354
(2.47×10−3)

0.35
(7.17×10−3)

0.352
(3.99×10−3)

0.347
(9.65×10−3)

0.353
(5.88×10−3)

α = 0.8 0.516
(6.72×10−4)

0.355
(8.23×10−3)

0.404
(6.20×10−3)

0.391
(4.66×10−3)

0.396
(7.60×10−3)

0.395
(9.59×10−3)

0.399
(3.89×10−3)

0.398
(6.39×10−3)

α = 1.0 0.526
(9.45×10−4)

0.361
(5.36×10−3)

0.432
(5.02×10−3)

0.424
(5.62×10−3)

0.427
(2.64×10−3)

0.427
(7.36×10−3)

0.430
(6.37×10−3)

0.417
(0.011)

25

Table 2.5: Average test error, weight sparsity, and neuron sparsity of 4-layer CNN mod-
els trained on MNIST with lowest test errors across 5 runs. Standard deviations are in
parentheses.
Avg.
Test
Error
(%)

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.916
(0.010)

0.452
(0.033)

0.440
(0.021)

0.384
(0.015)

0.404
(0.019)

0.384
(0.020)

0.392
(0.023)

0.398
(0.015)

α = 0.4 1.414
(0.073)

0.448
(0.012)

0.456
(0.024)

0.414
(0.021)

0.426
(0.016)

0.426
(0.017)

0.428
(0.034)

0.412
(0.012)

α = 0.6 1.890
(0.033)

0.464
(0.022)

0.472
(0.013)

0.434
(0.010)

0.460
(0.026)

0.440
(0.017)

0.452
(0.016)

0.454
(0.024)

α = 0.8 1.966
(0.010)

0.478
(0.007)

0.506
(0.014)

0.484
(0.019)

0.504
(0.015)

0.482
(0.019)

0.488
(0.016)

0.492
(0.007)

α = 1.0 2.046
(0.019)

0.492
(0.024)

0.530
(0.014)

0.514
(0.026)

0.520
(0.035)

0.506
(0.019)

0.514
(0.014)

0.492
(0.016)

Avg.
Weight
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 5.86×10−5

(4.32×10−6)
0.384
(0.112)

0.201
(0.005)

0.248
(0.012)

0.249
(0.017)

0.254
(0.013)

0.250
(0.013)

0.244
(0.006)

α = 0.4 6.45×10−5

(9.15×10−6)
0.541
(0.155)

0.424
(0.006)

0.467
(0.007)

0.449
(0.012)

0.466
(0.011)

0.460
0.020)

0.468
(0.015)

α = 0.6 1.41×10−4

(1.74×10−5)
0.502
(0.157)

0.541
(0.010)

0.563
(0.016)

0.563
(0.016)

0.568
(0.011)

0.559
(0.015)

0.565
(0.008)

α = 0.8 1.39×10−4

(1.06×10−6)
0.576
(0.166)

0.619
(0.012)

0.620
(0.012)

0.625
(0.014)

0.624
(0.014)

0.628
(0.007)

0.626
(0.012)

α = 1.0 1.47×10−4

(7.84×10−6)
0.518
(0.169)

0.658
(0.010)

0.661
(0.007)

0.658
(0.007)

0.664
(0.006)

0.659
(0.007)

0.653
(0.008)

Avg.
Neuron
Spar-
sity

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.2 0.470
(5.97×10−4)

0.293
(2.61×10−3)

0.099
(3.77×10−3)

0.122
(7.25×10−3)

0.123
(9.71×10−3)

0.126
(8.39×10−3)

0.123
(7.86×10−3)

0.120
(4.93×10−3)

α = 0.4 0.494
(6.51×10−4)

0.328
(1.43×10−3)

0.224
(4.23×10−3)

0.243
(6.85×10−3)

0.231
(0.011)

0.241
(3.74×10−3)

0.238
(0.015)

0.249
(0.014)

α = 0.6 0.198
(6.25×10−5)

0.343
(4.82×10−3)

0.296
(9.94×10−3)

0.305
(0.013)

0.307
(0.014)

0.311
(6.32×10−3)

0.303
(0.010)

0.306
(9.24×10−3)

α = 0.8 0.217
(2.03×10−5)

0.353
(3.37×10−3)

0.357
(0.012)

0.343
(0.015)

0.350
(0.011)

0.348
(0.013)

0.356
(4.78×10−3)

0.358
(0.016)

α = 1.0 0.229
(3.98×10−5)

0.359
(2.78×10−3)

0.387
(0.010)

0.379
(3.75×10−3)

0.382
(5.85×10−3)

0.385
(6.37×10−3)

0.383
(4.66×10−3)

0.373
(9.97×10−3)

26

SGTL1 at α = 0.1, 0.2; by SGL1 at α = 0.3; and by SGL0 at α = 0.4, 0.5. Although SGL0

does not outperform all the other methods across the board, its results are still comparable

to the best results. Overall, we see that nonconvex sparse group lasso outperforms ℓ0 in test

error, weight sparsity, and neuron sparsity and group lasso in weight and neuron sparsity.

MNIST is also trained on a 4-layer CNN with two convolutional layers with 32 and 64

channels, respectively, and an intermediate layer with 1000 neurons. Each convolutional

layer has a 5×5 convolutional filters. The 4-layer CNN has 2,120 total neurons and 1,087,010

total weight parameters. All layers of the network are applied with strictly the same type of

regularization. The network is optimized with the same settings as Lenet-5-Caffe. However,

the regularization parameter is different: we have λ = α/60000 for α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.

For SGL1 and nonconvex sparse group lasso, we set β = 5α/60000 and for every 40 epochs,

β increases by a factor of σ = 1.25. The network is trained for 200 epochs across 5 runs.

Table 2.4 reports the mean results for test error, weight sparsity, and neuron sparsity across

five runs of the 4-layer CNN models trained after 200 epochs. Although CGES consistently

has the highest weight sparsity, it does not yield the most accurate models until when α ≥ 0.8.

Moreover, its neuron sparsity is smaller than the neuron sparsity by group lasso, SGL1, and

nonconvex group lasso when α ≥ 0.6. ℓ0 has the highest neuron sparsity for all α’s given,

but its test errors are much greater. When α ≤ 0.6, SGSCAD yields the most accurate

models at α = 0.2, 0.6 while SGL1 yields one at α = 0.4. Overall, we see that nonconvex

group lasso has comparable weight sparsity and neuron sparsity as group lasso and SGL1.

Table 2.5 reports the mean results for test error, weight sparsity, and neuron sparsity of the

4-layer CNN models with the lowest test errors from the five runs. At α = 0.2, SGL1 and

SGSCAD have the lowest test errors, but their weight sparsity are exceeded by CGES and

their neuron sparsity are exceed by ℓ0. At α = 0.4, SGL1 − L2 has the lowest test error,

but its weight sparsity and neuron sparsity are exceeded by CGES and ℓ0, respectively. At

α = 0.6, SGL1 has the lowest test error, but SGSCAD has the largest weight sparsity with

27

comparable test error. At α ≥ 0.8, CGES has the lowest test error, but its weight sparsity

is exceeded by group lasso, SGL1, and the nonconvex group lasso regularizers, which all

have slightly higher test error. At α = 0.8, the neuron sparsity of CGES is comparable to

the neuron sparsity of group lasso, SGL1, and the nonconvex group lasso regularizers. At

α = 1.0, group lasso has the highest neuron sparsity, but nonconvex group lasso has slightly

lower neuron sparsity. In general, weight sparsity of nonconvex group lasso is comparable to

or larger than the weight sparsity of group lasso and SGL1.

CIFAR Classification

CIFAR 10/100 is trained on Resnet-40 and wide Resnet with depth 28 and width 10 (WRN-

28-10). Resnet-40 has approximately 570,000 weight parameters and 1520 neurons while

WRN-28-10 has approximately 36,500,000 weight parameters and 10,736 neurons. The net-

works are optimized using stochastic gradient descent with initial learning rate 0.1. After

every 60 epochs, learning rate decays by a factor of 0.2. Strictly the same type of reg-

ularization is applied to the weights of the hidden layer where dropout is utilized in the

residual block. We vary the regularization parameter λ = α/50000. For Resnet-40, we

have α ∈ {1.0, 1.5, 2.0, 2.5, 3.0} for CIFAR 10 and α ∈ {2.0, 2.5, 3.0, 3.5, 4.0} for CIFAR

100. For SGL1 and nonconvex sparse group lasso, we set β = 15α/50000 for Resnet-40 and

β = 25α/50000 for WRN-28-10. For every 20 epochs, β increases by a factor of σ = 1.25.

The networks are trained for 200 epochs across 5 runs. We excluded ℓ0 regularization by

Louizos et al. [142] because it was unstable for the provided α’s. Furthermore, we only

analyze the models with the lowest test errors since the test errors did not stabilize by the

end of the 200 epochs in our experiments.

Table 2.6 reports mean test error, weight sparsity, and neuron sparsity across the Resnet-40

models trained on CIFAR 10 with the lowest test errors from the five runs. Group lasso has

the lowest test errors for all α’s provided while CGES, SGL1, and nonconvex sparse group

28

Table 2.6: Average test error, weight sparsity, and neuron sparsity of Resnet-40 models
trained on CIFAR 10 with lowest test errors across 5 runs. Standard deviations are in
parentheses.
Avg.
Test Er-
ror (%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 1.0 6.932
(0.154)

6.154
(0.199)

6.442
(0.065)

6.456
(0.176)

6.618
(0.128)

6.500
(0.158)

6.512
(0.126)

α = 1.5 7.248
(0.145)

6.504
(0.122)

6.850
(0.078)

7.108
(0.084)

6.948
(0.124)

6.958
(0.158)

6.820
(0.177)

α = 2.0 7.306
(0.206)

6.860
(0.174)

7.494
(0.092)

7.642
(0.176)

7.450
(0.192)

7.388
(0.140)

7.384
(0.122)

α = 2.5 7.590
(0.148)

7.298
(0.105)

7.760
(0.079)

8.146
(0.178)

8.026
(0.196)

8.096
(0.137)

7.968
(0.190)

α = 3.0 7.672
(0.082)

7.542
(0.135)

8.424
(0.081)

8.740
(0.166)

8.426
(0.192)

8.624
(0.083)

8.598
(0.144)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 1.0 0.350
(0.009)

0.201
(0.018)

0.189
(0.007)

0.191
(0.008)

0.213
(0.015)

0.205
(0.015)

0.224
(0.016)

α = 1.5 0.371
(0.012)

0.322
(0.008)

0.345
(0.013)

0.313
(0.008)

0.354
(0.029)

0.330
(0.020)

0.343
(0.008)

α = 2.0 0.385
(0.009)

0.431
(0.013)

0.457
(0.012)

0.422
(0.014)

0.466
(0.015)

0.428
(0.013)

0.451
(0.012)

α = 2.5 0.386
(0.010)

0.509
(0.017)

0.525
(0.010)

0.507
(0.011)

0.534
(0.012)

0.522
(0.026)

0.537
(0.013)

α = 3.0 0.401
(0.008)

0.551
(0.015)

0.594
(0.009)

0.568
(0.009)

0.598
(0.012)

0.569
(0.014)

0.585
(0.006)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 1.0 0.035
(0.003)

0.096
(0.011)

0.087
(0.004)

0.082
(0.005)

0.102
(0.008)

0.093
(0.010)

0.105
(0.012)

α = 1.5 0.040
(0.006)

0.154
(0.006)

0.159
(0.008)

0.144
(0.009)

0.168
(0.013)

0.151
(0.009)

0.155
(0.004)

α = 2.0 0.048
(0.004)

0.207
(0.005)

0.203
(0.008)

0.188
(0.006)

0.217
(0.015)

0.195
(0.009)

0.209
(0.009)

α = 2.5 0.045
(0.005)

0.247
(0.010)

0.232
(0.010)

0.225
(0.017)

0.245
(0.011)

0.233
(0.008)

0.244
(0.006)

α = 3.0 0.048
(0.007)

0.274
(0.012)

0.271
(0.008)

0.249
(0.004)

0.272
(0.016)

0.259
(0.008)

0.268
(0.011)

29

Table 2.7: Average test error, weight sparsity, and neuron sparsity of Resnet-40 models
trained on CIFAR 100 with lowest test errors across 5 runs. Standard deviations are in
parentheses.
Avg.
Test Er-
ror (%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 2.0 30.102
(0.234)

28.636
(0.140)

29.260
(0.306)

29.610
(0.275)

29.044
(0.155)

29.316
(0.154)

29.274
(0.249)

α = 2.5 30.326
(0.272)

29.322
(0.144)

30.140
(0.180)

30.454
(0.295)

30.180
(0.175)

30.426
(0.253)

30.204
(0.159)

α = 3.0 30.378
(0.154)

29.750
(0.258)

31.134
(0.099)

31.482
(0.361)

31.048
(0.118)

31.164
(0.236)

31.108
(0.129)

α = 3.5 30.666
(0.267)

30.588
(0.285)

31.966
(0.260)

32.438
(0.272)

31.930
(0.156)

31.984
(0.182)

31.822
(0.365)

α = 4.0 30.982
(0.277)

31.436
(0.069)

33.106
(0.281)

33.210
(0.230)

32.758
(0.279)

33.240
(0.171)

33.094
(0.219)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 2.0 0.286
(0.002)

0.129
(0.024)

0.182
(0.018)

0.164
(0.010)

0.198
(0.012)

0.162
(0.017)

0.187
(0.015)

α = 2.5 0.299
(0.005)

0.233
(0.010)

0.283
(0.005)

0.251
(0.021)

0.292
(0.010)

0.271
(0.015)

0.284
(0.016)

α = 3.0 0.303
(0.003)

0.321
(0.008)

0.365
(0.009)

0.355
(0.018)

0.377
(0.012)

0.363
(0.023)

0.372
(0.010)

α = 3.5 0.306
(0.004)

0.409
(0.013)

0.441
(0.014)

0.418
(0.012)

0.444
(0.014)

0.418
(0.016)

0.442
(0.006)

α = 4.0 0.313
(0.010)

0.456
(0.014)

0.511
(0.015)

0.461
(0.011)

0.501
(0.013)

0.480
(0.017)

0.507
(0.012)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 2.0 0.001
(0.001)

0.054
(0.007)

0.074
(0.007)

0.064
(0.008)

0.083
(0.005)

0.063
(0.004)

0.078
(0.007)

α = 2.5 0.003
(0.001)

0.092
(0.005)

0.113
(0.004)

0.093
(0.010)

0.116
(0.005)

0.103
(0.004)

0.111
(0.005)

α = 3.0 0.004
(0.001)

0.126
(0.004)

0.140
(0.005)

0.133
(0.007)

0.145
(0.003)

0.138
(0.009)

0.146
(0.003)

α = 3.5 0.002
(0.001)

0.157
(0.006)

0.166
(0.005)

0.158
(0.005)

0.182
(0.017)

0.156
(0.004)

0.171
(0.005)

α = 4.0 0.005
(0.002)

0.177
(0.007)

0.195
(0.005)

0.176
(0.007)

0.193
(0.004)

0.180
(0.011)

0.193
(0.004)

30

Table 2.8: Average test error, weight sparsity, and neuron sparsity of WRN-28-10 models
trained on CIFAR 10 with lowest test errors across 5 runs. Standard deviations are in
parentheses.
Avg.
Test Er-
ror (%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 3.822
(0.054)

4.092
(0.159)

4.050
(0.058)

4.036
(0.074)

4.004
(0.104)

3.994
(0.039)

4.152
(0.089)

α = 0.05 3.856
(0.089)

3.946
(0.106)

3.874
(0.029)

3.838
(0.067)

3.862
(0.076)

3.812
(0.097)

3.872
(0.110)

α = 0.1 4.000
(0.076)

3.960
(0.062)

3.784
(0.082)

3.824
(0.088)

3.832
(0.047)

3.800
(0.082)

3.792
(0.113)

α = 0.2 4.146
(0.092)

3.928
(0.115)

3.824
(0.034)

3.874
(0.093)

3.780
(0.096)

3.764
(0.129)

3.962
(0.078)

α = 0.5 4.524
(0.090)

4.486
(0.077)

4.444
(0.086)

4.408
(0.063)

4.448
(0.084)

4.340
(0.115)

4.382
(0.068)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.362
(0.016)

0.045
(0.001)

0.040
(0.002)

0.044
(0.002)

0.039
(0.002)

0.040
(0.001)

0.043
(0.001)

α = 0.05 0.464
(0.003)

0.117
(0.003)

0.145
(0.006)

0.156
(0.005)

0.145
(0.007)

0.145
(0.004)

0.161
(0.006)

α = 0.1 0.483
(0.003)

0.417
(0.005)

0.438
(0.004)

0.450
(0.005)

0.441
(0.005)

0.428
(0.004)

0.446
(0.013)

α = 0.2 0.495
(0.003)

0.673
(0.002)

0.669
(0.005)

0.672
(0.003)

0.679
(0.003)

0.666
(0.004)

0.688
(0.003)

α = 0.5 0.503
(0.003)

0.868
(0.001)

0.864
(0.002)

0.857
(0.001)

0.865
(0.001)

0.858
(0.002)

0.867
(0.001)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.033
(0.002)

0.018
(0.001)

0.015
(0.001)

0.018
(0.001)

0.014
(0.001)

0.015
(0.001)

0.017
(0.001)

α = 0.02 0.050
(0.002)

0.056
(0.001)

0.068
(0.003)

0.074
(0.003)

0.069
(0.004)

0.069
(0.003)

0.077
(0.002)

α = 0.1 0.055
(0.002)

0.178
(0.002)

0.189
(0.002)

0.190
(0.002)

0.188
(0.002)

0.182
(0.003)

0.191
(0.006)

α = 0.2 0.059
(0.001)

0.297
(0.002)

0.294
(0.005)

0.293
(0.001)

0.299
(0.001)

0.289
(0.002)

0.307
(0.003)

α = 0.5 0.061
(0.001)

0.440
(0.002)

0.434
(0.002)

0.428
(0.001)

0.435
(0.001)

0.429
(0.003)

0.436
(0.001)

31

Table 2.9: Average test error, weight sparsity, and neuron sparsity of WRN-28-10 models
trained on CIFAR 100 with lowest test errors across 5 runs. Standard deviations are in
parentheses.
Avg.
Test Er-
ror (%)

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 18.696
(0.184)

19.792
(0.084)

19.494
(0.241)

19.498
(0.189)

19.368
(0.188)

19.474
(0.051)

19.632
(0.182)

α = 0.05 18.714
(0.203)

19.284
(0.134)

18.816
(0.141)

19.106
(0.277)

18.936
(0.085)

18.846
(0.082)

19.094
(0.272)

α = 0.1 19.120
(0.387)

19.168
(0.067)

18.648
(0.268)

18.690
(0.181)

18.446
(0.108)

18.680
(0.292)

18.724
(0.084)

α = 0.2 20.298
(0.078)

18.902
(0.130)

18.440
(0.115)

18.694
(0.150)

18.502
(0.108)

18.290
(0.107)

18.614
(0.326)

α = 0.5 21.370
(0.259)

19.604
(0.107)

19.648
(0.203)

19.732
(0.147)

19.488
(0.262)

19.552
(0.186)

19.732
(0.156)

Avg.
Weight
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.281
(0.017)

0.013
(0.001)

0.011
(0.001)

0.013
(<0.001)

0.011
(0.001)

0.011
(0.001)

0.013
(0.001)

α = 0.05 0.412
(0.004)

0.014
(0.001)

0.015
(0.002)

0.017
(0.001)

0.014
(0.001)

0.015
(0.001)

0.018
(0.001)

α = 0.1 0.440
(0.013)

0.054
(0.002)

0.070
(0.003)

0.069
(0.001)

0.073
(0.002)

0.066
(0.002)

0.080
(0.001)

α = 0.2 0.458
(0.016)

0.332
(0.004)

0.356
(0.005)

0.346
(0.002)

0.355
(0.004)

0.345
(0.003)

0.361
(0.003)

α = 0.5 0.478
(0.003)

0.697
(0.001)

0.693
(0.004)

0.685
(0.002)

0.700
(0.002)

0.686
(0.001)

0.698
(0.002)

Avg.
Neuron
Sparsity

CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1−L2

α = 0.01 0.008
(0.001)

0.002
(<0.001)

0.002
(<0.001)

0.003
(<0.001)

0.001
(<0.001)

0.002
(<0.001)

0.002
(<0.001)

α = 0.02 0.030
(0.001)

0.003
(<0.001)

0.005
(0.001)

0.006
(<0.001)

0.005
(0.001)

0.005
(0.001)

0.006
(<0.001)

α = 0.1 0.037
(0.001)

0.033
(0.001)

0.044
(0.002)

0.041
(<0.001)

0.046
(0.001)

0.040
(0.001)

0.050
(0.001)

α = 0.2 0.043
(0.003)

0.153
(0.002)

0.157
(0.002)

0.150
(0.001)

0.157
(0.002)

0.148
(0.001)

0.160
(0.001)

α = 0.5 0.052
(0.001)

0.303
(0.001)

0.298
(0.001)

0.294
(0.004)

0.304
(0.002)

0.293
(0.002)

0.303
(0.001)

32

lasso are higher by at most 1.1%. When α ≤ 1.5, CGES has the largest weight sparsity

while SGSCAD, SGTL1 SGL1 − SGL2 have larger weight sparsity than does group lasso.

At α = 2.0, 2.5, SGSCAD has the largest weight sparsity. At α = 3.0, SGL1 has the largest

weight sparsity with comparable test error as the nonconvex group lasso regularizers. For

neuron sparsity, SGL1 − L2 has the largest at α = 1.0 while SGSCAD has the largest at

α = 1.5, 2.0. However, at α = 2.5, 3.0, group lasso has the largest neuron sparsity. For all

α’s tested, SGSCAD has higher weight sparsity and neuron sparsity than does SGL1 but

with comparable test error.

Table 2.7 reports mean test error, weight sparsity, and neuron sparsity across the Resnet-40

models trained on CIFAR 100 with the lowest test errors from the five runs. Group lasso has

the lowest test errors for α ≤ 3.5 while CGES has the lowest test error at α = 4.0. However,

the weight sparsity and the neuron sparsity of group lasso are lower than the sparsity of

SGL1 and some of the nonconvex sparse group lasso regularizers. CGES has the lowest

neuron sparsity across all α’s. Among the nonconvex group lasso penalties, SGSCAD has

the best test errors, which are lower than the test errors of SGL1 for all α’s except 2.5.

Table 2.8 reports mean test error, weight sparsity, and neuron sparsity across the WRN-

28-10 models trained on CIFAR 10 with the lowest test errors from the five runs. The

best test errors are attained by SGTL1 at α = 0.05, 0.2, 0.5; by CGES at α = 0.01; and

by SGL1 at α = 0.1. Weight sparsity of CGES outperforms the other methods only when

α = 0.01, 0.05, 0.1, but it underperforms when α ≥ 0.2. Weight sparsity levels between group

lasso and nonconvex group lasso are comparable across all α. For neuron sparsity, SGL1−L2

attains the largest values at α = 0.02, 0.1, 0.2. Nevertheless, the other nonconvex sparse

group lasso methods have comparable neuron sparsity. Overall, SGL1, SGL0, SGSCAD,

and SGTL1 outperform group lasso in test error while having similar or higher weight and

neuron sparsity.

Table 2.9 reports mean test error, weight sparsity, and neuron sparsity across the WRN-28-

33

10 models trained on CIFAR 100 with the lowest test errors from the five runs. According

to the results, the best test errors are attained by CGES when α = 0.01, 0.05; by SGSCAD

when α = 0.1, 0.5; and by SGTL1 when α = 0.2. Although CGES has the largest weight

sparsity for α = 0.01, 0.05, 0.1, 0.2, we see that its test error increases as α increases. When

α = 0.5, the best weight sparsity is attained by SGSCAD, but the other methods have

comparable weight sparsity. The best neuron sparsity is attained by CGES at α = 0.01, 0.02;

by SGL1 − L2 at α = 0.1, 0.2; and by SGSCAD at α = 0.5. The neuron sparsity among

the nonconvex sparse group lasso methods are comparable. For α ≤ 0.2, we see that SGL1

and nonconvex sparse group lasso outperform group lasso in test error across α while having

comparable weight and neuron sparsity.

2.2.2 Algorithm Comparison

We compare the proposed Algorithm 1 with direct stochastic gradient descent, where the

gradient of the regularizer is approximated by backpropagation, and proximal gradient de-

scent, discussed in Section 2.1.4, by applying them to SGL1 on Lenet-5 trained on MNIST.

The parameter setting for this CNN is discussed in Section 2.2.1. Table 2.10 reports the

mean results for test error, weight sparsity, and neuron sparsity across five models trained

after 200 epochs while Figure 2.2 provides visualizations. Table 2.11 and Figure 2.3 record

mean statistics for models with the lowest test errors from the five runs. According to the

results, proximal stochastic gradient descent attains the highest level of weight sparsity and

neuron sparsity for models trained after 200 epochs and models with the lowest test error.

However, their test errors are the highest amongst the three algorithms. On the other hand,

our proposed algorithm attains the lowest test errors. For models trained after 200 epochs,

the weight sparsity and neuron sparsity attained by Algorithm 1 are comparable to the spar-

sity attained by direct stochastic gradient descent. For models with the lowest test errors

generated from their respective runs, the weight sparsity and neuron sparsity by the proposed

34

Table 2.10: Average test error, weight sparsity, and neuron sparsity of SGL1-regularized
Lenet-5 models trained on MNIST after 200 epochs across 5 runs. The models are trained
with different algorithms. Standard deviations are in parentheses. (SGD is stochastic gra-
dient descent.)
Avg.
Test Error (%)

direct SGD proximal
SGD

proposed

α = 0.1 0.758
(0.029)

1.306
(0.031)

0.722
(0.028)

α = 0.2 0.760
(0.006)

2.954
(0.051)

0.704
(0.031)

α = 0.3 0.798
(0.023)

4.992
(0.161)

0.732
(0.045)

α = 0.4 0.836
(0.034)

7.304
(0.147)

0.792
(0.034)

α = 0.5 0.772
(0.019)

9.610
(0.170)

0.720
(0.039)

Avg.
Weight Spar-
sity

direct SGD proximal
SGD

proposed

α = 0.1 0.935
(0.001)

0.994
(<0.001)

0.889
(0.004)

α = 0.2 0.951
(0.002)

0.997
(<0.001)

0.926
(0.001)

α = 0.3 0.960
(<0.001)

0.998
(<0.001)

0.945
(0.001)

α = 0.4 0.963
(0.001)

0.998
(<0.001)

0.952
(0.001)

α = 0.5 0.966
(0.001)

0.998
(<0.001)

0.954
(0.002)

Avg.
Neuron Spar-
sity

direct SGD proximal
SGD

proposed

α = 0.1 0.735
(0.003)

0.784
(0.004)

0.691
(0.007)

α = 0.2 0.778
(0.004)

0.902
(0.005)

0.754
(0.003)

α = 0.3 0.802
(0.001)

0.960
(0.002)

0.787
(0.003)

α = 0.4 0.813
(0.003)

0.972
(0.001)

0.805
(0.004)

α = 0.5 0.821
(0.004)

0.976
(0.002)

0.811
(0.004)

35

Table 2.11: Average test error, weight sparsity, and neuron sparsity of SGL1-regularized
Lenet-5 models trained on MNIST with lowest test errors across 5 runs. The models are
trained with different algorithms. Standard deviations are in parentheses. (SGD is stochastic
gradient descent.)
Avg.
Test Er-
ror (%)

direct SGD proximal
SGD

proposed

α = 0.1 0.594
(0.032)

1.152
(0.026)

0.568
(0.021)

α = 0.2 0.634
(0.031)

2.320
(0.042)

0.582
(0.035)

α = 0.3 0.692
(0.028)

3.360
(0.075)

0.600
(0.030)

α = 0.4 0.684
(0.014)

4.272
(0.051)

0.652
(0.025)

α = 0.5 0.636
(0.022)

5.020
(0.094)

0.616
(0.052)

Avg.
Weight
Sparsity

direct SGD proximal
SGD

proposed

α = 0.1 0.449
(0.172)

0.939
(0.011)

0.757
(0.015)

α = 0.2 0.531
(0.012)

0.971
(0.005)

0.845
(0.005)

α = 0.3 0.451
(0.217)

0.992
(<0.001)

0.886
(0.004)

α = 0.4 0.449
(0.213)

0.989
(0.005)

0.896
(0.004)

α = 0.5 0.559
(0.007)

0.994
(<0.001)

0.905
(0.003)

Avg.
Neuron
Sparsity

direct SGD proximal
SGD

proposed

α = 0.1 0.317
(0.139)

0.698
(0.024)

0.497
(0.014)

α = 0.2 0.444
(0.015)

0.743
(0.021)

0.627
(0.011)

α = 0.3 0.382
(0.185)

0.863
(0.003)

0.697
(0.010)

α = 0.4 0.399
(0.196)

0.828
(0.061)

0.721
(0.008)

α = 0.5 0.519
(0.013)

0.883
(0.003)

0.735
(0.004)

36

Figure 2.2: Mean results of algorithms applied to SGL1 for Lenet-5 models trained on MNIST
for 200 epochs across 5 runs when varying the regularization parameter λ = α/60000 when
α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. (A) Mean test error. (B) Mean weight sparsity. (C) Mean
neuron sparsity.

algorithm are better than the sparsity by direct stochastic gradient descent. Therefore, our

proposed algorithm generates the most accurate model with satisfactory sparsity among the

three algorithms for sparse regularization.

2.3 Proofs

We provide proofs for the results discussed in Section 2.1.5.

2.3.1 Proof of Theorem 2.1

By (2.17a)-(2.17b), for each k ∈ N, we have

Fβ(V k,W k+1) ≤ Fβ(V k,W) (2.22)

37

Figure 2.3: Mean results of algorithms applied to SGL1 for Lenet-5 models trained on MNIST
with lowest test errors across 5 runs when varying the regularization parameter λ = α/60000
when α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. (A) Mean test error. (B) Mean weight sparsity. (C) Mean
neuron sparsity.

for all W , and

Fβ(V k+1,W k+1) ≤ Fβ(V,W k+1) (2.23)

for all V . By (2.23), we have

Fβ(V +,W+) ≤ Fβ(V k,W+) (2.24)

for each k ∈ N. Altogether, we have

Fβ(V +,W+) ≤ Fβ(V k,W k) (2.25)

38

for each k ∈ N, so {Fβ(V k,W k)}∞k=1 is nonincreasing. Since Fβ(V k,W k) ≥ 0 for all k ∈ N,

its limit lim
k→∞

Fβ(V k,W k) exists. From (2.22)-(2.24), we have

Fβ(V +,W+) ≤ Fβ(V k,W+) ≤ Fβ(V k,W k).

Taking the limit gives us

lim
k→∞

Fβ(V k,W+) = lim
k→∞

Fβ(V k,W k). (2.26)

Since (V ∗,W ∗) is an accumulation point of {(V k,W k)}∞k=1, there exists a subsequence K

such that

lim
k∈K→∞

(V k,W k) = (V ∗,W ∗). (2.27)

Because r(·) is lower semicontinuous and lim
k∈K→∞

V k = V ∗, there exists k′ ∈ K such that

k ≥ k′ implies r(V k
l) ≥ r(V ∗

l) for each l = 1, . . . , L. Using this result along with (2.23), we

obtain

Fβ(V,W k) ≥ Fβ(V k,W k)

= L̃(W k) +
L∑
l=1

[
λ
(
RGL(W k

l) + r(V k
l)
)

+
β

2
∥V k

l −W k
l ∥22
]

≥ L̃(W k) +
L∑
l=1

[
λ
(
RGL(W k

l) + r(V ∗
l)
)

+
β

2
∥V k

l −W k
l ∥22
]

for k ≥ k′. As k ∈ K → ∞, we have

Fβ(V,W ∗) ≥ L̃(W ∗) +
L∑
l=1

[
λ (RGL(W ∗

l) + r(V ∗
l)) +

β

2
∥V ∗

l −W ∗
l ∥22
]

= Fβ(V ∗,W ∗) (2.28)

by continuity, so it follows that V ∗ ∈ arg min
V

Fβ(V,W ∗).

39

For notational convenience, let

R̃λ,β(V,W) :=
L∑
l=1

[
λRGL(Wl) +

β

2
∥Vl −Wl∥22

]
. (2.29)

By (2.22), we have

L̃(W) + R̃λ,β(V k,W) = Fβ(V k,W) − λ
L∑
i=1

r(V k
l)

≥ Fβ(V k,W+) − λ
L∑
i=1

r(V k
l) = L̃(W+) + R̃λ,β(V k,W+).

(2.30)

Because lim
k∈K→∞

V k exists, the sequence {V k}k∈K is bounded. If r(·) is ℓ0, transformed ℓ1, or

SCAD, then {r(V k)}k∈K is bounded. If r(·) is ℓ1, then r(·) is coercive. If r(·) is ℓ1−αℓ2, then

r(·) is bounded above by ℓ1. Overall, this follows that {r(V k)}k∈K bounded as well. Hence,

there exists a further subsequence K ⊂ K such that lim
k∈K→∞

r(V k) exists. So, we obtain

lim
k∈K→∞

L̃(W+) + R̃λ,β(V k,W+) = lim
k∈K→∞

Fβ(V k,W+) − λ
L∑
i=1

r(V k
l)

= lim
k∈K→∞

Fβ(V k,W+) − lim
k∈K→∞

λ
L∑
i=1

r(V k
l)

= lim
k∈K→∞

Fβ(V k,W k) − lim
k∈K→∞

λ

L∑
i=1

r(V k
l)

= lim
k∈K→∞

Fβ(V k,W k) − λ

L∑
i=1

r(V k
l)

= lim
k∈K→∞

L̃(W k) + R̃λ,β(V k,W k)

= L̃(W ∗) + R̃λ,β(W ∗, V ∗)

(2.31)

after applying (2.26) in the third inequality and by continuity in the last equality.

40

Taking the limit over the subsequence K in (2.30) and applying (2.31), we obtain

L̃(W) + R̃λ,β(V ∗,W) ≥ L̃(W ∗) + R̃λ,β(W ∗, V ∗) (2.32)

by continuity. Adding
∑L

l=1 r(V ∗
l) on both sides yields

Fβ(V ∗,W) ≥ Fβ(V ∗,W ∗), (2.33)

which follows that W ∗ ∈ arg minW Fβ(V ∗,W). This completes the proof.

2.3.2 Proof of Theorem 2.2

Because (V ∗,W ∗) is an accumulation point, there exists a subsequence K such that lim
k∈K→∞

(V k,W k) =

(V ∗,W ∗). If {Fβk
(V k,W k)}∞k=1 is uniformly bounded, there exists M such that Fβk

(V k,W k) ≤

M for all k ∈ N. Then we have

M ≥ Fβk
(V k,W k) = L̃(W) +

L∑
l=1

[
λRGL(Wl) + λr(Vl) +

βk

2
∥Vl −Wl∥22

]
≥ βk

2

L∑
l=1

∥Vl −Wl∥22

As a result,

L∑
l=1

∥V k
l −W k

l ∥22 ≤
2

βk

M. (2.34)

Taking the limit over k ∈ K, we have

L∑
l=1

∥V ∗
l −W ∗

l ∥22 = 0,

which follows that V ∗ = W ∗. As a result, (V ∗,W ∗) is a feasible solution to (2.15).

41

Chapter 3

Nonconvex Regularization for

Network Slimming

One interesting yet straightforward approach in sparsifying CNNs is network slimming [134].

This method imposes ℓ1 regularization on the scaling factors in the batch normalization

layers. Due to ℓ1 regularization, scaling factors corresponding to insignificant channels are

pushed towards zeroes, narrowing down the important channels to retain, while the CNN

model is being trained. Once the insignificant channels are pruned, the compressed model

may need to be retrained since pruning can degrade its original accuracy. Overall, network

slimming yields a compressed model with low run-time memory and number of computing

operations. Since its inception, network slimming helps develop lightweight CNNs for various

image classification tasks, such as traffic sign classification [245], facial expression recognition

[151], and semantic segmentation. [90].

To improve the performance of network slimming, we propose replacing ℓ1 regularization with

an alternative regularization that promotes better sparsity and/or accuracy. Typically, better

sparsity-promoting regularizers are nonconvex. Hence, we examine the ℓp penalty [48, 50,

42

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) ℓ0

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) ℓ1

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(c) ℓ1/2

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(d) Tℓ1, a = 1

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(e) MCP, λ = 1, a = 3

-5 0 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(f) SCAD, λ = 1, a = 3

Figure 3.1: Contour plots of sparse regularizers.

222], transformed ℓ1 (Tℓ1) penalty [246, 247], the minimax concave penalty (MCP) [244], and

the smoothly clipped absolute deviation (SCAD) penalty [69] due to their recent successes

and popularity. These four regularizers have explicit formulas for their subgradients, which

allow us to directly perform subgradient descent [190] when training CNNs.

3.1 Regularization Penalty

Let z = (z1, . . . , zn) ∈ Rn. The ℓ1 penalty is described by

∥z∥1 =
n∑

i=1

|zi|, (3.1)

43

while the ℓ0 penalty is described by

∥z∥0 =
n∑

i=1

1{zi ̸=0}, where 1{zi ̸=0} =


1 if zi ̸= 0

0 if zi = 0.

(3.2)

Although ℓ1 regularization is popular in sparse optimization in various applications such as

compressed sensing [32, 31, 233] and compressive imaging [103, 148], it may not actually

yield the sparsest solution [48, 139, 137, 222, 247]. Moreover, it is sensitive to outliers and

it may yield biased solutions [69].

A nonconvex alternative to the ℓ1 penalty is the ℓp penalty

∥z∥p =

(
n∑

i=1

|zi|p
)1/p

(3.3)

for p ∈ (0, 1). The ℓp penalty interpolates ℓ0 and ℓ1 because as p → 0+, we have ℓp → ℓ0,

and as p → 1−, we have ℓp → ℓ1. It recovers sparser solution than ℓ1 for certain compressed

sensing problems [50, 49]. Empirical studies [50, 223] demonstrate that for p ∈ [1/2, 1),

as p decreases, the solution becomes sparser by ℓp minimization, but for p ∈ (0, 1/2), the

performance becomes no longer significant. Moreover, it is used in image deconvolution [109,

33], hyperspectral unmixing [181], computed topography reconstruction [162], and image

segmentation [126, 216]. Numerically, in compressed sensing, a small value ϵ is added to

zi to avoid blowup in the subgradient when zi = 0. In this work, we will examine across

different values of p since ℓp regularization may work differently in deep learning than in

other areas.

Although ℓp may yield sparser solutions than ℓ1, it is still biased because parameters with

large weights could be overpenalized [70]. Hence, a better regularizer should also be un-

biased. In fact, Fan and Li [69] suggested three properties that a regularizer should have:

(1) continuity to avoid model instability; (2) sparsity to reduce model complexity; and (3)

44

unbiasedness to avoid modeling bias due to overpenalization of large parameters. Hence, we

consider regularizers that have all three properties, such as Tℓ1, MCP, and SCAD.

The Tℓ1 penalty is formulated as

Pa(z) =
n∑

i=1

(a + 1)|zi|
a + |zi|

(3.4)

for a > 0. Tℓ1 interpolates ℓ0 and ℓ1 because as a → 0+, we have Tℓ1 → ℓ0, and as a → +∞,

we have Tℓ1 → ℓ1. It was validated to have the three aforementioned properties [149]. The

Tℓ1 penalty outperforms ℓ1 and ℓp in compressed sensing problems with both coherent and

incoherent sensing matrices [246, 247]. Additionally, the Tℓ1 penalty yields satisfactory,

sparse solutions in matrix completion [248] and deep learning [153].

The MCP penalty [244] is provided by

pλ,a(z) =
n∑

i=1

[(
λ|zi| −

z2i
2a

)
1{|zi|≤aλ} +

aλ2

2
1{|zi|>aλ}

]
, (3.5)

where λ ≥ 0 and a > 1. The parameter λ acts as a regularization parameter while the

parameter a controls the level of sparsity, where the smaller a is, the sparser the solution

becomes. In fact, a allows MCP to roughly interpolate between ℓ0 and ℓ1. Originally, MCP

is developed for variable selection [244], but it has been utilized in various other applications

such as image restoration [235] and matrix completion [102].

Lastly, the SCAD penalty [69] is given by

p̃λ,a(z)

=
n∑

i=1

[
λ|zi|1{|zi|≤λ} +

2aλ|zi| − z2i − λ2

2(a− 1)
1{λ<|zi|≤aλ} +

λ2(a + 1)

2
1{|zi|>aλ}

]
,

(3.6)

where λ ≥ 0 is the regularization parameter and a > 2 controls the level of sparsity sim-

45

ilarly to MCP. In both linear and logistic regression problems, SCAD outperforms ℓ1 in

variable selection [69]. Beyond variable selection, it is applied in compressed sensing [158],

bioinformatics [22, 209], image processing [80], and wavelet approximation [8].

Figure 3.1 displays the contour plots of the aforementioned regularizers. With ℓ1 regulariza-

tion, the solution tends towards one of the corners of the rotated squares, making it sparse.

Compared with ℓ1, the level lines of the nonconvex regularizers bend more inward towards the

axes, encouraging the solutions to coincide with one of the corners. In addition, the contour

plots of the nonconvex regularizers appear more similar to the contour plot of ℓ0. Therefore,

solutions tend to be sparser with nonconvex regularization than with ℓ1 regularization.

Throughout the rest of the chapter, we define λp1,a(·) := pλ,a(·) and λp̃1,a(·) := p̃λ,a(·).

3.2 Proposed Method

3.2.1 Batch Normalization Layer

Batch normalization [97] has been instrumental in speeding the convergence and improving

generalization of many deep learning models, especially CNNs [197, 89]. In most state-

of-the-arts CNNs, a convolutional layer is always followed by a batch normalization layer.

Within a batch normalization layer, features generated by the preceding convolutional layer

are normalized by their mean and variance within the same channel. Afterward, a linear

transformation is applied to compensate for the loss of their representative abilities.

We mathematically describe the process of the batch normalization layer. First we suppose

that we are working with 2D images. Let x′ be a feature computed by a convolutional

layer. Each entry of x′ is denoted by x′
i, where i = (iN , iC , iH , iW) indexes the features

in (N,C,H,W) order. Here, N is the batch axis, C is the image channel axis, H is the

46

𝜇1, 𝜎1
2

𝜇2, 𝜎2
2

𝜇3, 𝜎3
2

𝜇4, 𝜎4
2

One Batch (batch size = N)

H
eigh

t

Width

Figure 3.2: Visualization of batch normalization on a feature map. The mean and variance
of the values of the pixels of the same colors corresponding to the channels are computed
and are used to normalize these pixels.

image height axis, and W is the image width axis. We define the index set Si = {k =

(kN , kC , kH , kW) : kC = iC}, where kC and iC are the respective subindices of k and i along

the C axis. In other words, the index set consists of pixels that belong to the same channel.

The mean µi and variance σ2
i are computed as follows:

µi =
1

|Si|
∑
k∈Si

x′
k, σ2

i =
1

|Si|
∑
k∈Si

(x′
k − µi)

2 + ϵ (3.7)

for some small value ϵ > 0, where |A| denotes the cardinality of the set A. Then we normalize

x′
i by x̂i =

x′
i−µi

σi
for each index i. In short, the mean and variance are computed from pixels

of the same channel index and are used to normalize them. Visualization is provided in

Figure 3.2. Lastly, the output of the batch normalization layer is computed as a linear

transformation of the normalized features:

zi = γiC x̂i + βiC , (3.8)

where γiC , βiC ∈ R are trainable parameters. Additionally, γiC is defined to be the scaling

factor related to the channel iC .

47

Algorithm 2: Algorithm for minimizing (3.9)

Input: Regularization parameter λ, learning rate η, sparse regularizer R
Initialize W0, excluding {γl}Ll=1, with random values.
Initialize {γ0

l }Ll=1 with entries 0.5.
1: for each epoch t = 1, . . . , T do

2: W t = W t−1 − η

N

N∑
i=1

∇L(h(xi,W t−1), yi) by stochastic gradient descent or variant.

3: γt
l = γt−1

l − ηλ∂R(γt−1
l) for l = 1, . . . , L.

4: end for

3.2.2 Network Slimming with Nonconvex Sparse Regularization

Since the scaling factors γiC ’s in (3.8) are associated with the channels of a convolutional

layer, we aim to penalize them with a sparse regularizer in order to identify which channels

are irrelevant to the compressed CNN model. Suppose we have a training dataset that

consists of N input-output pairs {(xi, yi)}Ni=1 and a CNN with L convolutional layers, where

each is followed by a batch normalization layer. Then we have two sets of vectors {γl}Ll=1

and {βl}Ll=1, where γl = (γl,1, . . . , γl,Cl
) and βl = (βl,1, . . . , βl,Cl

) with Cl being the number of

channels in the lth convolutional layer. Let W be the weight parameters that include {γl}Ll=1

and {βl}Ll=1. Hence, the trainable parameters W of the CNN are learned by minimizing the

following objective function:

1

N

N∑
i=1

L(h(xi,W), yi) + λ

L∑
l=1

R(γl), (3.9)

where h(·, ·) is the output of the CNN used for prediction, L(·, ·) is a loss function, R(·) is

a sparse regularizer, and λ > 0 is a regularization parameter for R(·). When R(·) = ∥ · ∥1,

we have the original network slimming method. As mentioned earlier, since ℓ1 regularization

may not yield the sparsest solution and it could potentially be biased, we investigate the

method with a nonconvex regularizer, where R(·) is ∥ · ∥pp, Pa(·), p1,a(·), or p̃1,a(·).

To minimize (3.9), stochastic gradient descent is applied to the loss function term while

48

subgradient descent is applied to the regularizer term [190]. The algorithm is summarized

in Algorithm 2. Subgradient descent is applicable to the nonconvex regularizers R(z) for

z ∈ Rn as it is for ℓ1. Like ℓ1, the nonconvex regularizers are of the form
∑n

i=1 r(zi), where

r : R → R has the following properties:

i) r(0) = 0;

ii) r is an even, proper, and continuous function;

iii) r is increasing on [0,+∞);

iv) r is differentiable on (−∞, 0) ∪ (0,+∞).

These properties ensure that r is differentiable everywhere except at 0 and 0 is the global

minimum of r while being its only local minimum. As a result, the regularizers are differen-

tiable when zi ̸= 0 for all i = 1, . . . , n. Hence, subgradient descent becomes gradient descent

at these points. If zi = 0 for at least one index i, then we need to compute its (limiting) sub-

gradient [173, Definition 6.1] and decide a candidate descent direction. Fortunately, because

R(z) =
∑n

i=1 r(zi), we have

∂R(z) = (∂r(z1), ∂r(z2), . . . , ∂r(zn))

by [173, Proposition 6.17(e)]. This means that at each component r(zi), we can compute its

subgradient ∂r(zi) individually and select a descent direction from the set. Since 0 is a local

minimum of r, we have 0 ∈ ∂r(0), so we can select 0 as a descent direction for simplicity.

Table 1 presents the subgradients of the regularizers.

After the CNN is trained with (3.9) using Algorithm 2, we prune the channels whose scaling

factors are small in magnitude, giving us a compressed model. However, the compressed

model may lose its original accuracy, so it may need to be retrained but without the sparse

regularizer in order to attain its original accuracy or better.

49

Table 3.1: Sparse regularizers and their (limiting) subgradients.
Name R(z) ∂R(z)

ℓ1 ∥z∥1 =
n∑

i=1

|zi| ∂∥z∥1 =

{
ζ ∈ Rn : ζi =

{
sgn(zi) if zi ̸= 0

ζi ∈ [−1, 1] if zi = 0

}

ℓp ∥z∥pp =
n∑

i=1

|zi|
p

∂∥z∥pp =

ζ ∈ Rn : ζi =


p · sgn(zi)
|zi|1−p

if zi ̸= 0

ζi ∈ R if zi = 0


Tℓ1 Pa(z) =

n∑
i=1

(a + 1)|zi|
a + |zi|

∂Pa(z) =

ζ ∈ Rn : ζi =


a(a + 1)sgn(zi)

(a + |zi|)2
if zi ̸= 0

ζi ∈
[
− a+1

a
, a+1

a

]
if zi = 0


MCP pλ,a(z) =

n∑
i=1

[(
λ|zi| −

z2i

2a

)
1{|zi|≤aλ} +

aλ2

2
1{|zi|>aλ}

]
∂pλ,a(z) =

ζ ∈ Rn : ζi =


0 if |zi| > aλ

λsgn(zi) −
zi

a
if 0 < |zi| ≤ aλ

ζi ∈ [−λ, λ] if zi = 0



SCAD

p̃λ,a(z) =
n∑

i=1

[
λ|zi|1{|zi|≤λ} +

2aλ|zi| − z2i − λ2

2(a − 1)
1{λ<|zi|≤aλ}

+
λ2(a + 1)

2
1{|zi|>aλ}

] ∂p̃λ,a(z) =


ζ ∈ Rn : ζi =



0 if |zi| > aλ
aλsgn(zi) − zi

a − 1
if λ < |zi| ≤ aλ

λsgn(zi) if 0 < |zi| ≤ λ

ζi ∈ [−λ, λ] if zi = 0



3.3 Experimental Results

We apply the proposed nonconvex network slimming using ℓp(0 < p < 1), Tℓ1, MCP, and

SCAD regularization on various networks and datasets and compare their results against the

original network slimming with ℓ1 regularization as the baseline.

Code for the experiments is available at

https://github.com/kbui1993/NonconvexNetworkSlimming.

3.3.1 Datasets

CIFAR 10/100. The CIFAR 10/100 dataset [110] consists of 50k training color images and

10k test color images with 10/100 classes total. The resolution of each image is 32 × 32. To

preprocess the dataset, we apply the data augmentation techniques (horizontal flipping and

translation by 4 pixels) that have been standard in practice [95, 131, 79, 89, 134] followed

by global contrast normalization and ZCA whitening [79]. These preprocessing techniques

help improve the classification accuracy of CNNs on CIFAR 10 and 100 as demonstrated in

[79, 131].

SVHN. The SVHN dataset [164] consists of 32 × 32 color images. The entire training set

50

https://github.com/kbui1993/NonconvexNetworkSlimming

has 604,388 images and the test set has has 26,032 images. Before training on the dataset,

each image is normalized by the channel means and standard deviations.

We evaluate the proposed methods on VGG-19 [192], DenseNet-40 [94], and ResNet-164 [89],

three networks that were examined in [134]. More specifically, we use a variation of VGG-19

from https://github.com/szagoruyko/cifar.torch, a 40-layer DenseNet with a growth

rate of 12, and a 164-layer pre-activation ResNet with a bottleneck structure.

3.3.2 Implementation Details

Training the Network. To perform a fair comparison between the original network slim-

ming and the proposed nonconvex network slimming, we emulate most of the training settings

in the original work [134]. All networks are trained from scratch using stochastic gradient de-

scent. The initial learning rate is set at 0.1, and it is reduced by a factor of 10 at the 50% and

75% of the total number of epochs. In addition, we use weight decay of 10−4 and Nesterov

momentum [196] of 0.9 without dampening. On CIFAR 10/100, we train for 160 epochs,

while on SVHN, we train for 20 epochs. On both datasets, the training batch size is 64.

Weight initialization is based on [88] and scaling factor initialization is set to 0.5 as done in

[134]. We examine the following regularizers for network slimming: ℓ1, ℓp(p = 0.25, 0.5, 0.75),

Tℓ1(a = 0.5, 1.0, 10.0), MCP (a = 5000, 10000, 15000), and SCAD (a = 5000, 10000, 15000).

The examined parameter values for these regularizers are chosen because they attain similar

model accuracy as the baseline model without scaling factor regularization and they can

prune a model by at least 40% of its channels. Lastly, we have the regularization parameter

λ = 10−4 for VGG-19 and DenseNet-40 and λ = 5×10−5 for ResNet-164. The regularization

parameter is chosen by trying to balance between model accuracy and channel sparsity.

Pruning the Network. After a model is trained, its channels are pruned globally. For

example, we specify a channel pruning ratio to be 0.35 or a channel pruning percentage to

51

https://github.com/szagoruyko/cifar.torch

be 35% and determine the 35th percentile among all magnitudes of the scaling factors of the

model. The 35th percentile is set as the threshold. Any channels whose scaling factors are

below the threshold in magnitude are pruned.

Since the channels are pruned globally, there is a threshold specific for each model: if the

pruning ratio is above a certain value, a model becomes over-pruned. That is, the model

cannot be used for inference because at least one of its layers has all of its channels removed.

Retraining the Network. We retrain the pruned model without regularization on the

scaling factors with the same optimization setting as the first time training it. The purpose

of retraining is to at least recover the compressed model’s original accuracy prior to pruning.

Performance Metrics. We compare the regularizers’ performances based on test accuracy

and compression of their respective models.

After pruning a network by its channels, we measure its compression by the remaining

number of parameters and floating point operations (FLOPs). The number of parameters

relates to the storage cost while the number of FLOPS relates to the computational cost. In

our experiments, we report the following percentages:

Percentage of parameters pruned =

(
1 − # parameters remaining

total # network parameters

)
× 100%

and

Percentage of FLOPs pruned =

(
1 − # FLOPs remaining

total # network FLOPs

)
× 100%.

Since CNNs are highly nonconvex, each run of the same model and regularizer with the

same hyperparameters will give a different result. Hence, we train each model of one reg-

ularizer five times and compute the mean. Therefore, the mean test accuracies and mean

52

ratios/percentages of parameters/FLOPs pruned are computed from five runs each.

3.3.3 Channel Pruning Results

VGG-19. VGG-19 has about 20 million parameters and 7.97 × 108 FLOPs. Table 3.2

shows the relationships between channel pruning ratios and mean percentages of parame-

ters/FLOPs pruned. Figure 3.3 shows the effect of channel pruning on mean test accuracies.

On CIFAR 10, according to Table 3.2a, most of the nonconvex regularizers prune more

parameters than ℓ1 up to channel pruning ratio 0.50. Although more parameters are pruned,

MCP and SCAD require more FLOPs in general compared to ℓ1. On the other hand, ℓp and

Tℓ1 outperform ℓ1 with respect to percentages of parameters/FLOPs pruned for channel

pruning ratio at least 0.60. Additionally, the models trained with ℓ1/2 and ℓ3/4 can have

at least 80% of its channels pruned and still be used for inference even though their test

accuracies are low. However, their test accuracies can be improved if the models were

retrained. According to Figure 3.3, ℓ3/4, Tℓ1, MCP, and SCAD are more robust than ℓ1 to

channel pruning since their accuracies drop at higher channel pruning ratios. Although both

ℓ1/2 and ℓ1/4 compress the model significantly compared to other regularizers, they are very

sensitive to channel pruning.

On CIFAR 100, according to Table 3.2b, ℓp and Tℓ1(a = 0.5, 1.0) require less parameters

and FLOPs compared to ℓ1 when the channel pruning ratios are at least 0.40. MCP and

SCAD have comparable number of parameters and FLOPs pruned as ℓ1. Figure 3.3 shows

that Tℓ1 is robust against channel pruning, especially when a = 0.5. At channel pruning

ratio 0.6, the accuracy for Tℓ1(a = 0.5) does not drop as much compared to other values

of a and also other nonconvex regularizers. For the other regularizers, ℓ1 is outperformed

by ℓ3/4, ℓ1/2, MCP, and SCAD (a = 10000, 15000). Like for CIFAR 10, models trained with

either ℓ1/2 or ℓ1/4 are still sensitive to channel pruning.

53

T
ab

le
3.

2:
E

ff
ec

t
of

ch
an

n
el

p
ru

n
in

g
on

th
e

m
ea

n
p

ru
n

ed
p

ar
am

et
er

/
F

L
O

P
s

p
er

ce
n
ta

ge
s

(%
)

on
V

G
G

-1
9

tr
ai

n
ed

on
(a

)
C

IF
A

R
10

,
(b

)
C

IF
A

R
10

0,
an

d
(c

)
S

V
H

N
.

T
h

e
m

ea
n

is
co

m
p

u
te

d
fr

om
fi

ve
ru

n
s

fo
r

ea
ch

re
gu

la
ri

ze
r.

F
or

ea
ch

ch
an

n
el

p
ru

n
in

g
ra

ti
o,

b
o
ld

in
d

ic
at

es
ou

tp
er

fo
rm

in
g
ℓ 1

;
*

in
d

ic
at

es
b

es
t

va
lu

e;
an

d
N

A
in

d
ic

at
es

at
le

as
t

on
e

of
th

e
fi

ve
m

o
d

el
s

is
ov

er
-p

ru
n

ed
.

(a
)

C
IF
A
R

1
0

C
h
an

n
el

P
ru
n
in
g

R
at
io

0.
10

0.
20

0.
3
0

0.
4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

ℓ 1
21

.1
0%

/
11

.8
3%

39
.3
4%

/
2
2.
18

%
54

.8
8%

/
31

.0
9
%

6
7.
5
6%

/
3
8.
5
1%

7
7.
5
3
%

/
4
4.
7
8
%

84
.7
1
%

/
4
9.
6
8
%

88
.8
1%

/
51

.9
5%

N
A

N
A

ℓ 3
/
4

2
1
.1
4
%

/
1
2
.1
1
%

3
9
.5
5
%

/
2
2
.7
1
%

5
5
.1
3
%

/
3
2
.0
6
%

6
7
.9
6
%

/
3
9
.9
7
%

7
7
.9
9
%

/
4
6
.0
8
%

8
5
.2
4
%

/
5
1
.3
7
%

8
9
.6
9
%

/
5
4
.9
6
%

N
A

N
A

ℓ 1
/
2

2
1
.1
2
%

/
1
2
.3
8
%

3
9
.6
2
%

/
2
2
.6
5
%

5
5
.2
9
%
*
/
3
2
.0
6
%

6
8
.0
9
%
*
/
3
9
.7
5
%

7
8
.1
0
%

/
4
6
.4
5
%

8
5
.4
3
%

/
5
2
.0
2
%

9
0
.0
1
%

/
5
6
.1
2
%

9
3
.6
6
%

/
6
5
.5
2
%

N
A

ℓ 1
/
4

19
.9
5%

/
1
5
.4
9
%
*

37
.6
6%

/
2
9
.8
2
%
*

5
2.
99

%
/
4
2
.9
3
%
*

66
.2
0
%

/
5
4
.3
9
%
*

77
.0
7
%

/
6
4
.4
7
%
*

8
5
.7
6
%

/
7
3
.4
4
%
*

9
2
.1
4
%
*
/
8
1
.8
9
%
*

9
6
.5
4
%
*
/
9
1
.0
7
%
*

9
9
.0
5
%
*
/
9
8
.3
2
%
*

T
ℓ 1
(a

=
10
.0
)

2
1
.1
5
%

/
1
1
.9
2
%

3
9
.4
1
%

/
2
2
.5
9
%

5
4
.9
5
%

/
3
1
.8
5
%

6
7
.7
1
%

/
3
9
.3
9
%

7
7
.6
9
%

/
4
5
.7
7
%

8
4
.8
9
%

/
5
0
.4
7
%

8
9
.0
6
%

/
5
2
.7
5
%

N
A

N
A

T
ℓ 1
(a

=
1.
0)

2
1
.1
6
%

/
1
2
.1
2
%

3
9
.3
5
%

/
2
3
.1
3
%

5
4
.9
4
%

/
3
2
.6
0
%

6
7
.8
8
%

/
4
0
.6
9
%

7
8
.0
6
%

/
4
7
.9
4
%

8
5
.5
5
%

/
5
3
.4
0
%

9
0
.3
4
%

/
5
7
.4
3
%

N
A

N
A

T
ℓ 1
(a

=
0.
5)

20
.9
4%

/
1
2
.5
9
%

39
.2
9%

/
2
3
.6
6
%

5
4
.9
2
%

/
3
3
.6
1
%

6
7
.8
3
%

/
4
2
.3
4
%

7
8
.2
2
%
*
/
4
9
.5
8
%

8
5
.9
2
%
*
/
5
5
.3
6
%

9
0
.8
8
%

/
5
9
.8
4
%

N
A

N
A

M
C
P
(a

=
15

00
0)

2
1
.1
8
%

/
11

.5
6%

3
9
.4
8
%

/
21

.4
3%

5
4
.9
6
%

/
3
0
.3
1
%

6
7
.6
2
%

/
3
7
.7
5%

7
7.
5
3
%

/
4
3.
7
6
%

84
.5
8
%

/
4
8.
0
5
%

88
.5
8%

/
50

.6
9%

N
A

N
A

M
C
P
(a

=
10

00
0)

20
.9
9%

/
11

.2
4%

3
9
.3
5
%

/
21

.2
3%

5
4
.9
7
%

/
2
9
.9
4
%

6
7
.6
4
%

/
3
7
.7
1%

7
7
.5
5
%

/
4
3
.4
2
%

84
.6
1
%

/
4
7.
8
8
%

88
.6
3%

/
50

.4
9%

N
A

N
A

M
C
P
(a

=
50

00
)

2
1
.2
0
%

/
10

.9
7%

3
9
.7
1
%
*
/
20

.9
2%

5
5
.2
4
%

/
2
9
.3
1
%

6
7
.8
7
%

/
3
6
.3
2%

7
7
.6
1
%

/
4
1
.9
7
%

84
.5
3
%

/
4
6.
0
8
%

88
.5
6%

/
49

.4
9%

N
A

N
A

S
C
A
D
(a

=
15

00
0)

21
.1
0%

/
11

.7
0%

3
9
.4
2
%

/
21

.8
3%

5
4
.9
7
%

/
3
0
.7
5
%

6
7
.6
8
%

/
3
7
.8
3%

7
7
.5
6
%

/
4
3
.6
2
%

84
.6
6
%

/
4
8.
0
9
%

88
.7
1%

/
50

.7
0%

N
A

N
A

S
C
A
D
(a

=
10

00
0)

2
1
.2
1
%

/
11

.2
3%

3
9
.4
5
%

/
20

.9
5%

5
4
.9
5
%

/
2
9
.8
9
%

6
7
.6
0
%

/
3
7
.3
3%

7
7.
4
4
%

/
4
3.
2
3
%

84
.5
3
%

/
4
7.
5
2
%

88
.5
7%

/
50

.4
3%

N
A

N
A

S
C
A
D
(a

=
50

00
)

2
1
.2
4
%
*
/
11

.2
5%

3
9
.6
5
%

/
21

.0
8%

5
5
.1
6
%

/
2
9
.6
4
%

6
7
.7
7
%

/
3
6
.7
7%

7
7
.5
8
%

/
4
2
.6
9
%

84
.5
8
%

/
4
6.
9
6
%

88
.6
2%

/
50

.1
9%

N
A

N
A

(b
)

C
IF
A
R

1
0
0

C
h
an

n
el

P
ru
n
in
g

R
at
io

0.
10

0.
20

0.
3
0

0.
4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

ℓ 1
21

.9
1%

/
12

.4
4%

40
.3
6%

/
22

.8
9%

*
55

.8
3%

/
28

.1
9
%

6
7.
4
5%

/
3
1.
7
5%

7
5.
3
5
%

/
3
6.
0
8
%

N
A

N
A

N
A

N
A

ℓ 3
/
4

2
1
.9
8
%

/
10

.9
2%

4
0
.6
4
%

/
20

.7
5%

5
6
.0
4
%

/
2
8
.6
4
%

6
8
.0
1
%

/
3
4
.7
7
%

7
6
.5
4
%

/
3
8
.4
0
%

N
A

N
A

N
A

N
A

ℓ 1
/
2

2
2
.0
2
%

/
10

.8
9%

4
0
.8
5
%
*
/
20

.0
4%

5
6
.2
9
%
*
/
2
7.
8
3%

6
8
.4
1
%

/
3
4
.2
3
%

7
7
.1
9
%

/
3
9
.4
0
%

8
3
.0
7
%

/
4
3
.8
2
%

N
A

N
A

N
A

ℓ 1
/
4

2
2
.0
0
%

/
10

.8
0%

4
0
.7
1
%

/
20

.5
2%

5
6
.2
1
%

/
2
9
.1
0
%

6
8
.5
3
%
*
/
3
6
.5
9
%

7
8
.1
6
%
*
/
4
4
.2
8
%
*

8
5
.7
1
%
*
/
5
4
.1
5
%
*

9
1
.4
8
%
*
/
6
8
.9
4
%
*

9
6
.5
4
%
*
/
8
6
.8
6
%
*

N
A

T
ℓ 1
(a

=
10
.0
)

21
.8
3%

/
12

.4
1%

40
.3
4%

/
2
2.
62

%
55

.6
2%

/
2
9
.7
1
%

6
7
.8
0
%

/
3
2
.9
7
%

7
6
.0
7
%

/
3
7
.0
0
%

N
A

N
A

N
A

N
A

T
ℓ 1
(a

=
1.
0)

21
.8
7%

/
11

.2
1%

4
0
.4
7
%

/
20

.8
5%

5
5
.9
9
%

/
2
9
.0
4
%

6
8
.2
2
%

/
3
6
.2
2
%

7
7
.1
8
%

/
4
0
.4
7
%

8
2
.9
0
%

/
4
3
.9
4
%

N
A

N
A

N
A

T
ℓ 1
(a

=
0.
5)

21
.6
7%

/
11

.4
2%

40
.3
3%

/
2
1.
52

%
5
5
.9
7
%

/
3
0
.1
6
%
*

6
8
.4
9
%

/
3
7
.5
2
%
*

7
7
.9
9
%

/
4
3
.2
4
%

8
4
.0
9
%

/
4
7
.1
5
%

N
A

N
A

N
A

M
C
P
(a

=
15

00
0)

21
.8
6%

/
12

.3
7%

40
.2
8%

/
2
2.
40

%
55

.6
7%

/
28

.1
7
%

6
7.
2
9%

/
3
1.
6
2%

7
5
.3
8
%

/
3
5
.9
1
%

N
A

N
A

N
A

N
A

M
C
P
(a

=
10

00
0)

21
.9
0%

/
12

.4
0%

40
.2
4%

/
2
2.
60

%
55

.7
3%

/
27

.9
4
%

6
7.
2
8%

/
3
1.
6
0%

7
5.
2
0
%

/
3
5.
9
5
%

N
A

N
A

N
A

N
A

M
C
P
(a

=
50

00
)

2
2
.0
3
%
*
/
11

.9
0%

4
0
.4
9
%

/
21

.4
5%

5
5
.9
4
%

/
2
6
.4
6
%

6
7.
3
5%

/
3
0.
4
3%

7
5.
0
3
%

/
3
4.
7
8
%

N
A

N
A

N
A

N
A

S
C
A
D
(a

=
15

00
0)

2
1
.9
6
%

/
1
2
.4
8
%
*

4
0
.4
2
%

/
22

.3
6%

55
.8
3%

/
28

.0
4
%

6
7
.5
0
%

/
3
1
.7
0%

7
5.
3
4
%

/
3
5.
9
1
%

N
A

N
A

N
A

N
A

S
C
A
D
(a

=
10

00
0)

21
.9
0%

/
11

.7
6%

40
.2
8%

/
2
1.
82

%
55

.7
1%

/
27

.3
4
%

6
7.
1
8%

/
3
1.
0
7%

7
5.
0
2
%

/
3
5.
5
6
%

N
A

N
A

N
A

N
A

S
C
A
D
(a

=
50

00
)

2
2
.0
1
%

/
11

.5
9%

4
0
.4
9
%

/
20

.6
0%

55
.7
5%

/
25

.6
3
%

6
6.
9
1%

/
2
9.
9
1%

7
4.
5
0
%

/
3
4.
4
7
%

N
A

N
A

N
A

N
A

(c
)

S
V
H
N

C
h
an

n
el

P
ru
n
in
g

R
at
io

0.
10

0.
20

0.
3
0

0.
4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

ℓ 1
19

.9
2%

/
15

.9
0%

37
.5
1%

/
3
0.
99

%
52

.9
1%

/
43

.8
5
%

6
6.
0
8%

/
5
5.
2
5%

7
6.
9
8
%

/
6
5.
0
6
%

85
.6
0
%

/
7
3.
6
3
%

92
.0
0%

/
80

.8
0%

96
.1
2%

/
86

.3
9%

N
A

ℓ 3
/
4

1
9
.9
6
%

/
1
6
.0
4
%

3
7
.6
0
%

/
30

.9
1%

5
2
.9
6
%

/
4
3
.8
2
%

66
.0
0
%

/
5
5
.7
4
%

7
6.
8
4
%

/
6
5
.9
3
%

8
5
.5
2
%

/
7
4
.4
9
%

9
2.
00

%
/
8
1
.5
3
%

9
6
.2
3
%

/
8
7
.2
3
%

N
A

ℓ 1
/
2

19
.8
0%

/
1
6
.8
0
%

37
.3
5%

/
3
1
.7
0
%

52
.7
4%

/
4
4
.8
9
%

65
.8
4
%

/
5
6
.7
0
%

7
6.
7
9
%

/
6
7
.0
0
%

8
5
.5
2
%

/
7
5
.7
5
%

9
2
.0
1
%

/
8
3
.1
4
%

9
6
.3
1
%

/
8
8
.3
6
%

9
8
.9
4
%

/
9
5
.4
5
%

ℓ 1
/
4

19
.3
6%

/
1
7
.7
2
%
*

36
.7
7%

/
3
2
.9
6
%
*

5
2.
07

%
/
4
7
.0
2
%
*

65
.1
3
%

/
5
9
.1
7
%
*

76
.0
1
%

/
7
0
.5
7
%
*

8
4
.8
6
%

/
7
9
.9
2
%
*

91
.5
9%

/
8
7
.8
5
%
*

9
6
.3
6
%

/
9
3
.7
2
%
*

9
9
.0
8
%
*
/
9
8
.1
5
%
*

T
ℓ 1
(a

=
10
.0
)

1
9
.9
4
%

/
15

.9
0%

37
.3
9%

/
3
0.
91

%
52

.7
1%

/
4
4
.1
8
%

65
.9
4
%

/
5
5
.6
4
%

7
6.
8
3
%

/
6
5
.6
8
%

8
5
.5
3
%

/
7
3
.9
9
%

9
1.
96

%
/
8
0
.9
6
%

9
6
.1
9
%

/
8
6
.7
0
%

9
8
.6
0
%

/
9
3
.7
0
%

T
ℓ 1
(a

=
1.
0)

19
.7
1%

/
1
7
.0
1
%

37
.1
7%

/
3
2
.3
4
%

52
.5
5%

/
4
5
.7
4
%

65
.7
0
%

/
5
7
.4
3
%

7
6.
7
0
%

/
6
7
.2
1
%

8
5
.4
4
%

/
7
6
.1
9
%

9
2
.0
2
%
*
/
8
3
.1
1
%

9
6
.3
8
%

/
8
8
.5
8
%

N
A

T
ℓ 1
(a

=
0.
5)

1
9
.9
9
%

/
1
6
.2
0
%

3
7
.5
2
%

/
3
1
.2
7
%

52
.7
0%

/
4
4
.9
5
%

65
.7
0
%

/
5
7
.2
9
%

7
6.
6
8
%

/
6
7
.6
0
%

8
5
.4
0
%

/
7
6
.6
6
%

9
1.
98

%
/
8
3
.7
9
%

9
6
.4
3
%
*
/
8
9
.5
3
%

9
8
.7
3
%

/
9
4
.4
1
%

M
C
P
(a

=
15

00
0)

2
0
.1
4
%

/
15

.4
3%

3
7
.8
6
%

/
29

.5
2%

5
3
.1
5
%

/
4
2
.4
6
%

6
6
.2
3
%

/
5
3
.7
6%

7
7
.0
7
%

/
6
3
.4
0
%

8
5
.6
7
%

/
7
1
.6
8
%

91
.9
2%

/
78

.9
8%

95
.8
7%

/
84

.3
3%

9
8
.6
1
%

/
9
3
.6
4
%

M
C
P
(a

=
10

00
0)

2
0
.1
3
%

/
15

.6
0%

3
7
.9
1
%

/
29

.6
2%

5
3
.4
1
%

/
4
1
.8
5
%

6
6
.4
0
%

/
5
2
.9
6%

7
7
.2
0
%

/
6
2
.4
7
%

8
5
.7
2
%

/
7
0
.8
4
%

91
.8
8%

/
77

.9
1%

95
.6
8%

/
83

.6
3%

N
A

M
C
P
(a

=
50

00
)

2
0
.3
4
%
*
/
14

.9
1%

3
8
.2
0
%
*
/
28

.6
4%

5
3
.6
3
%

/
4
0
.9
6
%

6
6
.7
2
%

/
5
1
.9
7%

7
7
.4
6
%

/
6
1
.0
3
%

8
5
.7
6
%

/
6
8
.5
1
%

91
.6
8%

/
75

.0
1%

95
.4
1%

/
82

.7
9%

N
A

S
C
A
D
(a

=
15

00
0)

19
.9
2%

/
1
6
.2
5
%

3
7
.5
5
%

/
30

.2
7%

5
3
.1
1
%

/
4
2
.7
5
%

6
6
.1
9
%

/
5
4
.2
3%

7
7
.0
6
%

/
6
3
.8
1
%

85
.5
7
%

/
7
2.
4
7
%

91
.9
1%

/
79

.3
8%

95
.8
8%

/
84

.8
1%

N
A

S
C
A
D
(a

=
10

00
0)

1
9
.9
7
%

/
15

.3
2%

3
7
.6
0
%

/
29

.4
1%

5
3
.2
2
%

/
4
1
.8
8
%

6
6
.3
1
%

/
5
2
.8
0%

7
7
.1
5
%

/
6
2
.5
8
%

8
5
.6
6
%

/
7
0
.7
3
%

91
.8
1%

/
77

.6
3%

95
.6
5%

/
83

.8
5%

N
A

S
C
A
D
(a

=
50

00
)

2
0
.2
8
%

/
15

.0
7%

3
8
.1
0
%

/
28

.7
2%

5
3
.6
6
%
*
/
4
0.
7
5%

6
6
.8
2
%
*
/
5
1.
5
6%

7
7
.5
0
%
*
/
6
1
.0
9
%

8
5
.7
9
%
*
/
6
9
.0
9%

91
.7
3%

/
75

.8
0%

95
.4
7%

/
83

.1
2%

N
A

54

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, CIFAR10

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

T 1, CIFAR10

1
T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MCP, CIFAR10

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SCAD, CIFAR10

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, CIFAR100

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

T 1, CIFAR100

1
T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MCP, CIFAR100

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SCAD, CIFAR100

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, SVHN

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

T 1, SVHN

1
T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MCP, SVHN

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SCAD, SVHN

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

Figure 3.3: Effect of channel pruning on the mean test accuracy of five runs of VGG-19 on
CIFAR 10/100 and SVHN. Baseline refers to the mean test accuracy of the unregularized
model that is not pruned. Baseline accuracies are 93.83% for CIFAR 10, 72.73% for CIFAR
100, and 97.91% for SVHN.

55

Lastly, for SVHN, according to Table 3.2c, MCP and SCAD generally outperform ℓ1 in

parameter pruning percentages for channel pruning ratios up to 0.60, but they do not save

more on FLOPs. However, FLOPs are reduced more by ℓp and Tℓ1 in general across all

channel pruning ratios. By Figure 3.3, ℓ3/4, ℓ1/2, and Tℓ1 have higher test accuracies than ℓ1

when the channel pruning ratio is at 0.85.

In general, nonconvex regularizers save more on parameters, FLOPs, or both. It is important

to note that Tℓ1, especially a = 0.5, helps preserve model accuracy against channel pruning,

and ℓ1/4 is very sensitive to channel pruning.

DenseNet-40. DenseNet-40 has about 1 million parameters and 5.33 × 108 FLOPs. Ta-

ble 3.3 shows the relationships between channel pruning ratios and mean percentages of

parameters/FLOPs pruned. Figure 3.4 shows the effect of channel pruning on mean test

accuracies.

On CIFAR 10, by Table 3.3a, ℓp and Tℓ1 compress the model more in terms of number of

parameters and FLOPs than ℓ1 after channel pruning across the various levels of channel

pruning ratios. In general, MCP and SCAD require slightly more FLOPS than ℓ1, but they

require similar number of parameters as ℓ1. According to Figure 3.4, ℓp(p = 1/2, 3/4) and

Tℓ1 are more robust to channel pruning than ℓ1 since their accuracies drop at higher channel

pruning ratios, while MCP and SCAD are worse.

For CIFAR 100, Table 3.3b demonstrates that ℓp and Tℓ1 generally reduce more parameters

and FLOPs required than ℓ1 after channel pruning. At channel pruning ratios 0.60 and

above, MCP and SCAD reduce only more FLOPs than ℓ1. In addition, models with MCP

and SCAD regularization remain usable for inference after 90% of their channels are pruned,

unlike models with ℓ1 regularization. However, their test accuracies are unacceptable so that

the models will need to be retrained to recover its original accuracies. According to Figure

3.4, ℓp(p = 1/2, 3/4), Tℓ1, and MCP (a = 15000) are more robust to channel pruning than

56

T
ab

le
3.

3:
E

ff
ec

t
of

ch
an

n
el

p
ru

n
in

g
on

th
e

m
ea

n
p

ru
n

ed
p

ar
am

et
er

/
F

L
O

P
s

p
er

ce
n
ta

ge
s

(%
)

on
D

en
se

N
et

-4
0

tr
ai

n
ed

on
(a

)
C

IF
A

R
10

,
(b

)
C

IF
A

R
10

0,
an

d
(c

)
S

V
H

N
.

T
h

e
m

ea
n

is
co

m
p

u
te

d
fr

om
fi

ve
ru

n
s

fo
r

ea
ch

re
gu

la
ri

ze
r.

F
or

ea
ch

ch
an

n
el

p
ru

n
in

g
ra

ti
o,

b
o
ld

in
d

ic
at

es
ou

tp
er

fo
rm

in
g
ℓ 1

;
*

in
d

ic
at

es
b

es
t

va
lu

e;
an

d
N

A
in

d
ic

at
es

at
le

as
t

on
e

of
th

e
fi

ve
m

o
d

el
s

is
ov

er
-p

ru
n

ed
.

(a
)

C
IF
A
R

1
0

C
h
an

n
el

P
ru
n
in
g

R
at
io

0.
10

0.
20

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

ℓ 1
9.
22
%

/
8.
40
%

18
.3
5%

/
16
.6
3%

27
.5
7%

/
2
4
.9
1
%

3
6
.7
3
%

/
3
3
.0
2
%

4
5
.9
5
%

/
4
1
.4
9
%

5
5
.1
5
%

/
4
9
.7
5
%

6
4
.3
8
%

/
5
8
.1
0
%

7
3
.7
5
%

/
6
8
.1
8
%

8
3
.7
6
%

/
7
9
.7
5
%

ℓ 3
/
4

9
.3
2
%

/
8
.5
3
%

1
8
.6
4
%

/
1
6
.7
9
%

2
7
.8
7
%

/
2
5
.6
2
%

3
7
.1
4
%

/
3
4
.1
0
%

4
6
.4
2
%

/
4
2
.8
5
%

5
5
.6
2
%

/
5
1
.2
7
%

6
4
.9
0
%

/
5
9
.7
1
%

7
4
.2
5
%

/
6
8
.6
3
%

8
4
.0
2
%

/
8
0
.0
7
%

ℓ 1
/
2

9
.3
3
%

/
8
.6
5
%

1
8
.5
9
%

/
1
7
.0
8
%

2
7
.9
7
%

/
2
5
.9
6
%

3
7
.2
6
%

/
3
4
.7
1
%

4
6
.6
2
%

/
4
3
.3
3
%

5
5
.8
8
%

/
5
1
.8
5
%

6
5
.1
2
%

/
6
0
.3
2
%

7
4
.4
7
%

/
6
9
.1
4
%

8
4
.3
6
%

/
8
0
.1
3
%

ℓ 1
/
4

9
.3
5
%
*
/
8
.8
3
%
*

1
8
.7
1
%

/
1
7
.6
3
%
*

2
8
.1
3
%
*
/
2
6
.3
9
%
*

3
7
.5
2
%
*
/
3
5
.2
7
%
*

4
7
.0
5
%
*
/
4
4
.7
4
%
*

5
6
.6
9
%
*
/
5
4
.3
3
%
*

6
6
.5
6
%
*
/
6
4
.3
4
%
*

7
7
.0
2
%
*
/
7
5
.4
2
%
*

N
A

T
ℓ 1
(a

=
10
.0
)

9.
20
%

/
8.
31
%

18
.3
4%

/
1
6
.8
3
%

2
7
.5
9
%

/
2
5
.3
2
%

3
6
.8
2
%

/
3
3
.6
5
%

4
6
.0
8
%

/
4
1
.9
7
%

5
5
.2
7
%

/
5
0
.1
7
%

6
4
.5
4
%

/
5
8
.1
9
%

7
3
.8
9
%

/
6
8
.0
1
%

8
3
.8
9
%

/
7
9
.7
2
%

T
ℓ 1
(a

=
1.
0)

9
.3
5
%
*
/
8
.6
7
%

1
8
.6
3
%

/
1
7
.0
9
%

2
7
.8
5
%

/
2
5
.3
9
%

3
7
.1
7
%

/
3
4
.0
4
%

4
6
.4
1
%

/
4
2
.3
2
%

5
5
.7
3
%

/
5
0
.9
3
%

6
5
.1
4
%

/
5
9
.7
0
%

7
4
.4
6
%

/
6
8
.5
7
%

8
4
.2
3
%

/
8
0
.1
9
%

T
ℓ 1
(a

=
0.
5)

9
.3
5
%
*
/
8
.4
5
%

1
8
.7
2
%
*
/
1
6
.9
9
%

2
8
.0
8
%

/
2
5
.8
2
%

3
7
.3
9
%

/
3
4
.4
7
%

4
6
.7
3
%

/
4
3
.1
3
%

5
6
.1
6
%

/
5
2
.1
8
%

6
5
.4
9
%

/
6
0
.6
0
%

7
4
.8
8
%

/
6
9
.2
8
%

8
4
.4
5
%

/
8
0
.7
0
%

M
C
P
(a

=
15
00
0)

9.
19
%

/
8.
01
%

1
8
.3
7
%

/
16
.2
1%

2
7
.5
9
%

/
2
4
.4
7
%

3
6
.7
9
%

/
3
2
.9
6
%

4
5
.9
7
%

/
4
0
.9
7
%

5
5
.1
5
%

/
4
9
.2
4
%

6
4
.3
5
%

/
5
7
.6
4
%

7
3
.7
7
%

/
6
8
.1
3
%

8
3
.7
2
%

/
7
9
.3
7
%

M
C
P
(a

=
10
00
0)

9
.2
9
%

/
8.
23
%

1
8
.4
5
%

/
16
.2
8%

2
7
.7
1
%

/
2
4
.6
0
%

3
6
.9
3
%

/
3
3
.0
5
%

4
6
.0
7
%

/
4
1
.2
6
%

5
5
.2
2
%

/
4
9
.3
2
%

6
4
.4
0
%

/
5
7
.5
7
%

7
3
.9
1
%

/
6
8
.2
3
%

8
3
.8
5
%

/
7
9
.3
9
%

M
C
P
(a

=
50
00
)

9.
17
%

/
8.
19
%

18
.2
5%

/
16
.1
1%

27
.4
5%

/
2
4
.2
5
%

3
6
.5
7
%

/
3
2
.2
2
%

4
5
.7
5
%

/
4
0
.3
9
%

5
4
.9
4
%

/
4
8
.5
6
%

6
4
.1
3
%

/
5
6
.7
0
%

7
3
.7
5
%

/
6
7
.5
9
%

8
3
.9
2
%

/
7
9
.1
7
%

S
C
A
D
(a

=
15
00
0)

9.
21
%

/
8.
11
%

1
8
.3
6
%

/
16
.2
1%

27
.5
4%

/
2
4
.4
3
%

3
6
.7
5
%

/
3
2
.5
7
%

4
5
.9
4
%

/
4
0
.9
0
%

5
5
.1
2
%

/
4
9
.1
8
%

6
4
.4
1
%

/
5
7
.6
8
%

7
3
.8
5
%

/
6
8
.1
0
%

8
3
.8
0
%

/
7
9
.4
2
%

S
C
A
D
(a

=
10
00
0)

9.
18
%

/
8.
16
%

1
8
.3
6
%

/
16
.5
4%

2
7
.6
0
%

/
2
4
.8
3
%

3
6
.7
7
%

/
3
2
.7
7
%

4
5
.9
4
%

/
4
1
.0
5
%

5
5
.1
0
%

/
4
9
.0
4
%

6
4
.3
0
%

/
5
7
.2
1
%

7
3
.7
9
%

/
6
7
.9
8
%

8
3
.7
5
%

/
7
9
.2
7
%

S
C
A
D
(a

=
50
00
)

9.
06
%

/
7.
78
%

18
.2
2%

/
15
.8
8%

27
.4
0%

/
2
3
.9
7
%

3
6
.5
4
%

/
3
2
.0
7
%

4
5
.6
6
%

/
3
9
.8
7
%

5
4
.8
7
%

/
4
8
.0
2
%

6
4
.0
8
%

/
5
6
.0
1
%

7
3
.7
1
%

/
6
7
.2
5
%

8
3
.8
4
%

/
7
8
.7
6
%

(b
)

C
IF
A
R

1
0
0

C
h
an

n
el

P
ru
n
in
g

R
at
io

0.
10

0.
20

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

ℓ 1
9.
18
%

/
7.
46
%

18
.3
4%

/
15
.2
1%

27
.5
3%

/
2
2
.9
1
%

3
6
.6
9
%

/
3
0
.4
4
%

4
5
.8
4
%

/
3
7
.8
4
%

5
4
.9
8
%

/
4
5
.3
6
%

6
4
.1
2
%

/
5
4
.0
9
%

7
3
.3
9
%

/
6
5
.9
2
%

ℓ 3
/
4

9
.1
9
%

/
8
.2
0
%

1
8
.3
9
%

/
1
6
.1
2
%

2
7
.5
7
%

/
2
4
.0
4
%

3
6
.7
6
%

/
3
1
.8
8
%

4
5
.9
5
%

/
3
9
.9
1
%

5
5
.1
3
%

/
4
7
.7
4
%

6
4
.3
3
%

/
5
5
.8
4
%

7
3
.5
6
%

/
6
6
.3
0
%

8
3
.3
4
%

/
7
9
.8
9
%

ℓ 1
/
2

9
.2
0
%

/
8
.2
3
%

1
8
.4
1
%

/
1
6
.4
1
%

2
7
.6
2
%

/
2
4
.3
7
%

3
6
.8
5
%

/
3
2
.3
4
%

4
6
.0
6
%

/
4
0
.5
8
%

5
5
.2
6
%

/
4
8
.9
1
%

6
4
.4
4
%

/
5
6
.9
7
%

7
3
.6
7
%

/
6
6
.9
8
%

N
A

ℓ 1
/
4

9
.2
6
%
*
/
8
.3
3
%
*

1
8
.5
3
%
*
/
1
6
.7
6
%
*

2
7
.8
5
%
*
/
2
5
.0
0
%
*

3
7
.1
7
%
*
/
3
3
.7
0
%
*

4
6
.5
1
%
*
/
4
3
.0
3
%
*

5
5
.9
4
%
*
/
5
2
.7
5
%
*

6
5
.7
3
%
*
/
6
3
.5
9
%
*

7
6
.2
8
%
*
/
7
6
.0
2
%
*

N
A

T
ℓ 1
(a

=
10
.0
)

9
.1
9
%

/
7
.8
0
%

1
8
.3
5
%

/
15
.1
9%

2
7
.5
5
%

/
2
3
.0
1
%

3
6
.7
2
%

/
3
0
.6
0
%

4
5
.9
2
%

/
3
8
.4
2
%

5
5
.0
8
%

/
4
5
.8
2
%

6
4
.2
4
%

/
5
3
.9
4
%

7
3
.4
9
%

/
6
5
.9
0
%

N
A

T
ℓ 1
(a

=
1.
0)

9
.2
6
%
*
/
8
.0
0
%

1
8
.4
6
%

/
1
5
.9
2
%

2
7
.7
2
%

/
2
3
.7
9
%

3
6
.9
1
%

/
3
1
.4
9
%

4
6
.1
5
%

/
3
9
.4
9
%

5
5
.3
5
%

/
4
7
.3
4
%

6
4
.5
5
%

/
5
5
.6
2
%

7
3
.7
8
%

/
6
6
.2
4
%

8
3
.4
8
%

/
8
0
.0
1
%

T
ℓ 1
(a

=
0.
5)

9
.2
5
%

/
8
.1
1
%

1
8
.4
9
%

/
1
5
.9
8
%

2
7
.7
5
%

/
2
4
.1
5
%

3
6
.9
8
%

/
3
2
.2
2
%

4
6
.2
4
%

/
4
0
.4
4
%

5
5
.4
6
%

/
4
8
.3
3
%

6
4
.7
1
%

/
5
6
.3
9
%

7
3
.9
2
%

/
6
6
.2
0
%

8
3
.6
0
%
*
/
8
0
.1
5
%
*

M
C
P
(a

=
15
00
0)

9
.1
9
%

/
7
.7
2
%

1
8
.3
5
%

/
1
5
.5
2
%

27
.5
2%

/
2
3
.2
9
%

3
6
.6
7
%

/
3
0
.9
9
%

4
5
.8
1
%

/
3
8
.4
2
%

5
4
.9
9
%

/
4
6
.0
2
%

6
4
.1
4
%

/
5
5
.1
7
%

7
3
.4
6
%

/
6
6
.3
0
%

8
3
.3
5
%

/
7
9
.7
2
%

M
C
P
(a

=
10
00
0)

9.
16
%

/
7
.5
0
%

18
.3
1%

/
15
.0
9%

27
.4
6%

/
2
2
.8
4
%

3
6
.6
1
%

/
3
0
.6
1
%

4
5
.7
9
%

/
3
8
.3
6
%

5
4
.9
4
%

/
4
5
.9
2
%

6
4
.1
0
%

/
5
5
.7
6
%

7
3
.3
7
%

/
6
6
.9
4
%

8
3
.1
9
%

/
7
9
.6
8
%

M
C
P
(a

=
50
00
)

9.
16
%

/
7
.5
3
%

18
.3
2%

/
15
.0
0%

27
.4
6%

/
2
2
.5
1
%

3
6
.6
4
%

/
3
0
.0
1
%

4
5
.7
8
%

/
3
7
.8
7
%

5
4
.9
3
%

/
4
6
.0
0
%

6
4
.1
2
%

/
5
6
.8
1
%

7
3
.4
2
%

/
6
7
.3
4
%

8
3
.4
6
%

/
7
9
.5
2
%

S
C
A
D
(a

=
15
00
0)

9
.1
9
%

/
7
.8
5
%

1
8
.3
6
%

/
1
5
.5
0
%

27
.5
2%

/
2
3
.1
2
%

3
6
.6
8
%

/
3
0
.6
5
%

4
5
.8
4
%

/
3
8
.3
3
%

5
4
.9
9
%

/
4
6
.0
3
%

6
4
.1
6
%

/
5
5
.3
7
%

7
3
.4
5
%

/
6
6
.8
1
%

8
3
.3
3
%

/
7
9
.7
2
%

S
C
A
D
(a

=
10
00
0)

9.
15
%

/
7
.7
2
%

18
.3
0%

/
1
5
.4
6
%

27
.4
7%

/
2
3
.1
5
%

3
6
.6
3
%

/
3
0
.6
6
%

4
5
.7
6
%

/
3
8
.4
3
%

5
4
.9
4
%

/
4
6
.1
4
%

6
4
.1
4
%

/
5
6
.1
0
%

7
3
.4
4
%

/
6
7
.2
2
%

8
3
.3
6
%

/
7
9
.6
1
%

S
C
A
D
(a

=
50
00
)

9.
15
%

/
7.
37
%

18
.3
1%

/
14
.9
6%

27
.4
4%

/
2
2
.2
7
%

3
6
.5
9
%

/
2
9
.7
9
%

4
5
.7
6
%

/
3
7
.5
0
%

5
4
.9
1
%

/
4
5
.4
0
%

6
4
.1
1
%

/
5
5
.9
3
%

7
3
.4
2
%

/
6
7
.1
9
%

8
3
.5
3
%

/
7
9
.7
5
%

(c
)

S
V
H
N

C
h
an

n
el

P
ru
n
in
g

R
at
io

0.
10

0.
20

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

ℓ 1
9.
51
%

/
9.
29
%

19
.1
2%

/
18
.8
6%

28
.6
1%

/
2
7
.8
3
%

3
8
.2
5
%

/
3
7
.3
8
%

4
7
.8
4
%

/
4
6
.8
2
%

5
7
.4
8
%

/
5
5
.8
8
%

6
7
.0
9
%

/
6
5
.5
4
%

7
6
.6
7
%

/
7
5
.3
0
%

8
6
.1
5
%

/
8
5
.0
6
%

ℓ 3
/
4

9
.6
3
%

/
9
.6
9
%

1
9
.2
7
%

/
1
9
.4
2
%

2
8
.7
9
%

/
2
8
.8
8
%

3
8
.4
2
%

/
3
8
.2
5
%

4
8
.0
4
%

/
4
7
.9
5
%

5
7
.6
9
%

/
5
7
.7
1
%

6
7
.2
5
%

/
6
7
.1
1
%

7
6
.7
9
%

/
7
6
.5
1
%

8
6
.3
8
%

/
8
5
.8
7
%

ℓ 1
/
2

9
.6
2
%

/
9
.3
8
%

1
9
.2
1
%

/
1
9
.2
0
%

2
8
.8
1
%

/
2
8
.6
8
%

3
8
.4
4
%

/
3
8
.4
6
%

4
8
.0
8
%

/
4
7
.8
5
%

5
7
.7
5
%

/
5
7
.5
4
%

6
7
.4
3
%

/
6
7
.4
0
%

7
7
.0
5
%

/
7
6
.9
6
%

8
6
.6
8
%

/
8
6
.4
1
%

ℓ 1
/
4

9
.6
8
%
*
/
9
.8
8
%
*

1
9
.3
4
%

/
1
9
.4
6
%
*

2
9
.0
5
%
*
/
2
9
.4
0
%
*

3
8
.7
4
%
*
/
3
9
.3
3
%
*

4
8
.4
2
%
*
/
4
9
.0
0
%
*

5
8
.1
2
%
*
/
5
8
.7
1
%
*

6
7
.9
2
%
*
/
6
8
.6
9
%
*

7
7
.8
1
%
*
/
7
8
.9
6
%
*

8
7
.8
1
%
*
/
8
9
.4
4
%
*

T
ℓ 1
(a

=
10
.0
)

9
.5
7
%

/
9
.4
8
%

1
9
.1
3
%

/
1
9
.0
5
%

2
8
.7
2
%

/
2
8
.7
3
%

3
8
.3
6
%

/
3
8
.1
3
%

4
7
.8
7
%

/
4
7
.4
9
%

5
7
.5
1
%

/
5
6
.9
1
%

6
7
.0
6
%

/
6
6
.3
2
%

7
6
.6
4
%

/
7
5
.7
4
%

8
6
.2
9
%

/
8
5
.5
4
%

T
ℓ 1
(a

=
1.
0)

9
.5
8
%

/
9
.3
3
%

1
9
.2
4
%

/
1
9
.2
6
%

2
8
.9
2
%

/
2
8
.7
7
%

3
8
.5
8
%

/
3
8
.5
9
%

4
8
.2
0
%

/
4
8
.0
3
%

5
7
.8
2
%

/
5
7
.6
6
%

6
7
.4
4
%

/
6
6
.9
7
%

7
7
.0
1
%

/
7
6
.5
0
%

8
6
.5
7
%

/
8
6
.1
7
%

T
ℓ 1
(a

=
0.
5)

9
.6
2
%

/
9.
29
%

1
9
.1
9
%

/
18
.8
2%

2
8
.8
1
%

/
2
8
.3
7
%

3
8
.5
1
%

/
3
7
.9
8
%

4
8
.1
6
%

/
4
7
.6
4
%

5
7
.8
3
%

/
5
7
.7
6
%

6
7
.4
6
%

/
6
7
.2
7
%

7
7
.0
3
%

/
7
7
.0
1
%

8
6
.7
0
%

/
8
6
.5
5
%

M
C
P
(a

=
15
00
0)

9
.6
5
%

/
9
.5
2
%

1
9
.3
1
%

/
1
9
.0
9
%

2
8
.8
9
%

/
2
8
.7
3
%

3
8
.4
0
%

/
3
8
.0
3
%

4
7
.8
8
%

/
4
7
.5
3
%

5
7
.4
4
%

/
5
6
.8
1
%

6
7
.0
5
%

/
6
6
.6
2
%

7
6
.6
0
%

/
7
6
.0
5
%

N
A

M
C
P
(a

=
10
00
0)

9.
51
%

/
9
.4
2
%

19
.0
2%

/
1
8
.9
2
%

28
.6
0%

/
2
8
.3
6
%

3
8
.2
2
%

/
3
7
.6
7
%

4
7
.7
3
%

/
4
7
.1
5
%

5
7
.2
6
%

/
5
6
.5
9
%

6
6
.9
5
%

/
6
5
.9
9
%

7
6
.6
1
%

/
7
5
.7
1
%

8
6
.1
4
%

/
8
5
.2
9
%

M
C
P
(a

=
50
00
)

9
.5
5
%

/
9
.4
4
%

1
9
.1
4
%

/
1
8
.8
9
%

2
8
.7
0
%

/
2
8
.3
6
%

3
8
.2
5
%

/
3
7
.6
6
%

4
7
.8
9
%

/
4
7
.2
6
%

5
7
.4
8
%

/
5
6
.5
7
%

6
7
.0
2
%

/
6
6
.1
0
%

7
6
.5
8
%

/
7
5
.6
9
%

8
6
.1
0
%

/
8
4
.9
7
%

S
C
A
D
(a

=
15
00
0)

9
.5
5
%

/
9
.3
1
%

19
.0
9%

/
18
.7
5%

2
8
.7
1
%

/
2
8
.5
2
%

3
8
.2
6
%

/
3
8
.0
2
%

4
7
.8
4
%

/
4
7
.3
0
%

5
7
.4
7
%

/
5
6
.4
9
%

6
7
.1
3
%

/
6
6
.2
7
%

7
6
.5
7
%

/
7
5
.6
2
%

N
A

S
C
A
D
(a

=
10
00
0)

9
.6
6
%

/
9
.8
2
%

1
9
.3
7
%
*
/
1
9
.2
5
%

2
8
.8
8
%

/
2
8
.9
9
%

3
8
.4
6
%

/
3
8
.3
6
%

4
8
.0
6
%

/
4
7
.8
7
%

5
7
.5
3
%

/
5
7
.3
1
%

6
7
.1
3
%

/
6
6
.9
5
%

7
6
.6
1
%

/
7
6
.5
5
%

N
A

S
C
A
D
(a

=
50
00
)

9
.5
5
%

/
9
.3
1
%

19
.0
9%

/
18
.7
5%

2
8
.7
1
%

/
2
8
.5
2
%

3
8
.2
6
%

/
3
8
.0
2
%

4
7
.8
4
%

/
4
7
.3
0
%

5
7
.4
7
%

/
5
6
.4
9
%

6
7
.1
3
%

/
6
6
.2
7
%

7
6
.5
7
%

/
7
5
.6
2
%

N
A

57

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, CIFAR10

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

T 1, CIFAR10

1
T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MCP, CIFAR10

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SCAD, CIFAR10

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, CIFAR100

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

T 1, CIFAR100

1
T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

MCP, CIFAR100

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SCAD, CIFAR100

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, SVHN

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

T 1, SVHN
1

T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.974

0.976

0.978

0.980

0.982

Te
st

 A
cc

ur
ac

y

MCP, SVHN

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.974

0.976

0.978

0.980

0.982
Te

st
 A

cc
ur

ac
y

SCAD, SVHN

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

Figure 3.4: Effect of channel pruning on the mean test accuracy of five runs of DenseNet-40
on CIFAR 10/100 and SVHN. Baseline refers to the mean test accuracy of the unregularized
model that is not pruned. Baseline accuracies are 94.25% for CIFAR 10, 74.58% for CIFAR
100, and 98.16% for SVHN.

58

ℓ1 because their test accuracies drop at higher channel pruning ratios than ℓ1’s.

For SVHN, Table 3.3c shows that ℓp and Tℓ1 have larger parameter/FLOPs pruning per-

centages than ℓ1 across different levels of the channel pruning ratios. In general, MCP also

saves more on parameters and FLOPs for channel pruning ratio up to 0.50. After 0.50, MCP

saves more on only FLOPs. SCAD also generally saves more on FLOPs than ℓ1. According

to Figure 3.4, the test accuracy remains nearly constant for channel pruning ratio up to 0.90

for all regularizers except for ℓ1/4 and ℓ1/2. We also observe that across different channel

pruning ratios, Tℓ1 has slightly worse test accuracy than ℓ1 while MCP and SCAD mostly

have better test accuracies than ℓ1.

In summary, we observe that ℓp and Tℓ1 reduce more parameters and FLOPs required than

ℓ1 after channel pruning, while MCP and SCAD save more on only FLOPs specifically for

CIFAR 100 and SVHN. Like for VGG-19, Tℓ1(a = 0.5) is the most robust against channel

pruning, whereas ℓ1/4 is the most sensitive to it.

ResNet-164. ResNet-164 has about 1.70 million parameters and requires 5.00×108 FLOPs.

Table 3.4 records the mean percentages of parameters/FLOPs pruned for different channel

pruning ratios. Figure 3.5 shows the effect of channel pruning on the test accuracies of the

regularized models.

On CIFAR 10, Table 3.4a shows a quite noticeable difference in the numbers of parameters

and FLOPs pruned between ℓ1 and ℓp or Tℓ1(a = 0.5, 1.0). For example, ℓ1/2 saves at least

10% more weight parameters and at least 8% more FLOPs than ℓ1 at channel pruning ratio

0.40 and above. On the other hand, SCAD and MCP are outperformed by ℓ1 in percentages

of parameters/FLOPs pruned. According to Figure 3.5, most of the regularizers do not suffer

a significant drop in test accuracy when large number of channels are pruned.

On CIFAR 100, according to Table 3.4b, ℓp(p = 1/4, 1/2) and Tℓ1(a = 0.5, 1.0) prune at

least 3% more parameters and at least 1% more FLOPs than ℓ1. However, MCP and SCAD

59

T
ab

le
3.

4:
E

ff
ec

t
of

ch
an

n
el

p
ru

n
in

g
on

th
e

m
ea

n
p

ru
n

ed
p

ar
am

et
er

/
F

L
O

P
s

p
er

ce
n
ta

ge
s

(%
)

on
R

es
N

et
-1

64
tr

ai
n

ed
on

(a
)

C
IF

A
R

10
,

(b
)

C
IF

A
R

10
0,

an
d

(c
)

S
V

H
N

.
T

h
e

m
ea

n
is

co
m

p
u

te
d

fr
om

fi
ve

ru
n

s
fo

r
ea

ch
re

gu
la

ri
ze

r.
F

or
ea

ch
ch

an
n

el
p

ru
n

in
g

ra
ti

o,
b
o
ld

in
d

ic
at

es
ou

tp
er

fo
rm

in
g
ℓ 1

;
*

in
d

ic
at

es
b

es
t

va
lu

e;
an

d
N

A
in

d
ic

at
es

at
le

as
t

on
e

of
th

e
fi

ve
m

o
d

el
s

is
ov

er
-p

ru
n

ed
.

(a
)

C
IF
A
R

1
0

C
h
a
n
n
el

P
ru

n
in
g

R
a
ti
o

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

ℓ 1
8
.5
7
%

/
8
.3
7
%

1
6
.6
7
%

/
1
6
.6
2
%

2
4
.4
4
%

/
2
4
.2
9
%

3
1
.3
9
%

/
3
1
.5
7
%

3
8
.5
0
%

/
3
8
.3
1
%

4
6
.4
3
%

/
4
5
.5
4
%

N
A

ℓ 3
/
4

1
0
.8
7
%

/
1
0
.0
7
%

2
1
.5
1
%

/
1
9
.5
4
%

3
1
.2
3
%

/
2
8
.3
2
%

4
0
.0
7
%

/
3
6
.6
6
%

4
7
.8
6
%

/
4
3
.9
6
%

5
5
.1
5
%

/
5
0
.7
1
%

6
2
.8
8
%

/
5
8
.3
6
%

ℓ 1
/
2

1
2
.1
3
%

/
1
0
.9
6
%

2
2
.8
8
%

/
2
1
.4
1
%

3
3
.2
3
%

/
3
1
.0
9
%

4
2
.5
4
%

/
3
9
.8
1
%

5
0
.8
8
%

/
4
8
.0
2
%

5
8
.1
7
%

/
5
5
.1
2
%

6
4
.8
8
%

/
6
1
.4
6
%

ℓ 1
/
4

1
4
.2
6
%

*
/
1
3
.0
0
%

*
2
6
.4
4
%

*
/
2
4
.5
0
%

*
3
7
.6
4
%

*
/
3
4
.9
3
%

*
4
7
.8
2
%

*
/
4
4
.8
9
%

*
5
7
.1
0
%

*
/
5
4
.4
7
%

*
6
5
.5
8
%

*
/
6
4
.2
7
%

*
N
A

T
ℓ 1
(a

=
1
0
.0
)

8
.9
9
%

/
8
.5
6
%

1
7
.9
2
%

/
1
6
.8
8
%

2
5
.8
0
%

/
2
4
.1
8
%

3
3
.2
6
%

/
3
1
.1
4
%

4
0
.5
0
%

/
3
8
.2
7
%

4
7
.5
2
%

/
4
4
.8
8
%

N
A

T
ℓ 1
(a

=
1
.0
)

1
1
.9
9
%

/
1
0
.7
4
%

2
2
.8
6
%

/
2
0
.7
2
%

3
3
.0
8
%

/
2
9
.6
1
%

4
2
.6
4
%

/
3
8
.4
4
%

5
1
.0
3
%

/
4
6
.0
2
%

5
8
.5
2
%

/
5
3
.0
3
%

N
A

T
ℓ 1
(a

=
0
.5
)

1
2
.5
1
%

/
1
1
.2
9
%

2
3
.9
5
%

/
2
1
.6
1
%

3
4
.4
3
%

/
3
1
.0
1
%

4
4
.1
0
%

/
3
9
.8
2
%

5
2
.9
3
%

/
4
7
.6
5
%

6
0
.8
1
%

/
5
4
.8
6
%

6
7
.1
5
%

/
6
1
.2
0
%

M
C
P
(a

=
1
5
0
0
0
)

8
.0
7
%

/
7
.9
0
%

1
6
.0
0
%

/
1
5
.5
4
%

2
3
.4
6
%

/
2
2
.6
9
%

3
0
.5
0
%

/
2
9
.0
8
%

3
6
.8
4
%

/
3
5
.0
5
%

4
7
.7
3
%

/
4
5
.6
3
%

N
A

M
C
P
(a

=
1
0
0
0
0
)

7
.1
0
%

/
7
.6
1
%

1
3
.9
0
%

/
1
4
.4
3
%

2
0
.5
8
%

/
2
1
.0
6
%

2
6
.8
7
%

/
2
7
.3
2
%

3
2
.7
4
%

/
3
3
.2
9
%

N
A

N
A

M
C
P
(a

=
5
0
0
0
)

4
.1
9
%

/
5
.5
5
%

8
.6
4
%

/
1
0
.9
7
%

1
2
.8
5
%

/
1
6
.0
8
%

1
7
.0
6
%

/
2
1
.0
0
%

2
3
.8
9
%

/
2
9
.3
4
%

N
A

N
A

S
C
A
D
(a

=
1
5
0
0
0
)

7
.7
1
%

/
7
.6
5
%

1
5
.5
3
%

/
1
5
.4
4
%

2
2
.5
8
%

/
2
2
.8
3
%

2
9
.5
1
%

/
2
9
.4
4
%

3
6
.4
4
%

/
3
5
.8
2
%

4
7
.4
7
%

/
4
6
.1
5
%

N
A

S
C
A
D
(a

=
1
0
0
0
0
)

7
.1
9
%

/
7
.3
3
%

1
3
.9
9
%

/
1
4
.3
0
%

2
0
.5
1
%

/
2
0
.8
8
%

2
6
.7
1
%

/
2
7
.2
6
%

3
2
.7
9
%

/
3
3
.2
7
%

N
A

N
A

S
C
A
D
(a

=
5
0
0
0
)

4
.6
2
%

/
5
.6
8
%

8
.9
8
%

/
1
1
.0
2
%

1
3
.2
4
%

/
1
6
.2
3
%

1
7
.4
5
%

/
2
1
.3
5
%

2
3
.9
4
%

/
2
9
.4
7
%

N
A

N
A

(b
)

C
IF
A
R

1
0
0

C
h
a
n
n
el

P
ru

n
in
g

R
a
ti
o

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

ℓ 1
4
.0
1
%

/
7
.4
2
%

7
.9
8
%

/
1
4
.4
8
%

1
1
.8
8
%

/
2
0
.9
4
%

1
5
.7
2
%

/
2
6
.8
8
%

N
A

N
A

N
A

ℓ 3
/
4

4
.9
5
%

/
7
.5
5
%

9
.8
4
%

/
1
4
.9
0
%

1
4
.7
0
%

/
2
2
.0
8
%

1
9
.1
5
%

/
2
8
.1
5
%

2
4
.5
8
%

/
3
5
.3
3
%

N
A

N
A

ℓ 1
/
2

5
.7
2
%

/
8
.5
3
%

1
1
.3
5
%

/
1
6
.5
1
%

1
6
.6
6
%

/
2
3
.8
2
%

2
1
.8
6
%

/
3
0
.7
3
%

2
6
.6
4
%

/
3
6
.8
7
%

N
A

N
A

ℓ 1
/
4

1
1
.1
3
%

*
/
1
1
.4
6
%

*
2
0
.9
8
%

*
/
2
1
.8
5
%

*
3
0
.0
0
%

*
/
3
1
.4
8
%

*
3
7
.8
5
%

*
/
4
1
.1
0
%

*
N
A

N
A

N
A

T
ℓ 1
(a

=
1
0
.0
)

4
.0
8
%

/
7
.0
7
%

8
.2
9
%

/
1
3
.8
7
%

1
2
.3
6
%

/
2
0
.0
3
%

1
6
.3
6
%

/
2
5
.9
2
%

N
A

N
A

N
A

T
ℓ 1
(a

=
1
.0
)

6
.0
8
%

/
8
.0
9
%

1
1
.9
6
%

/
1
5
.6
7
%

1
7
.3
8
%

/
2
2
.9
3
%

2
2
.9
9
%

/
2
9
.8
1
%

2
8
.2
7
%

/
3
6
.3
6
%

N
A

N
A

T
ℓ 1
(a

=
0
.5
)

6
.3
7
%

/
9
.2
5
%

1
2
.6
8
%

/
1
7
.3
0
%

1
8
.8
2
%

/
2
5
.1
9
%

2
4
.8
7
%

/
3
1
.8
9
%

3
0
.5
4
%

*
/
3
8
.6
3
%

*
N
A

N
A

M
C
P
(a

=
1
5
0
0
0
)

3
.6
4
%

/
6
.6
4
%

7
.2
5
%

/
1
2
.8
9
%

1
0
.9
2
%

/
1
8
.9
9
%

1
5
.2
2
%

/
2
5
.0
5
%

N
A

N
A

N
A

M
C
P
(a

=
1
0
0
0
0
)

3
.5
1
%

/
6
.6
5
%

7
.0
1
%

/
1
2
.5
3
%

1
0
.4
2
%

/
1
8
.4
8
%

1
4
.4
5
%

/
2
4
.8
1
%

N
A

N
A

N
A

M
C
P
(a

=
5
0
0
0
)

3
.3
2
%

/
6
.3
7
%

6
.5
2
%

/
1
2
.1
3
%

9
.6
7
%

/
1
7
.5
8
%

N
A

N
A

N
A

N
A

S
C
A
D
(a

=
1
5
0
0
0
)

3
.6
2
%

/
6
.5
6
%

7
.2
0
%

/
1
3
.0
1
%

1
0
.8
8
%

/
1
9
.3
6
%

1
5
.1
6
%

/
2
5
.7
9
%

N
A

N
A

N
A

S
C
A
D
(a

=
1
0
0
0
0
)

3
.5
3
%

/
6
.3
6
%

6
.9
9
%

/
1
2
.6
1
%

1
0
.3
6
%

/
1
8
.4
6
%

1
4
.5
4
%

/
2
5
.3
3
%

N
A

N
A

N
A

S
C
A
D
(a

=
5
0
0
0
)

3
.3
1
%

/
5
.9
2
%

6
.5
9
%

/
1
1
.8
3
%

9
.7
7
%

/
1
7
.3
3
%

1
4
.1
5
%

/
2
5
.5
7
%

N
A

N
A

N
A

(c
)

S
V
H
N

C
h
a
n
n
el

P
ru

n
in
g

R
a
ti
o

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

ℓ 1
1
2
.3
2
%

/
1
7
.0
2
%
*

2
2
.7
0
%

/
2
9
.1
9
%

3
2
.6
3
%

/
4
1
.2
6
%

4
1
.8
8
%

/
5
2
.3
9
%

5
0
.1
4
%

/
6
2
.1
4
%

N
A

N
A

ℓ 3
/
4

1
3
.0
9
%

/
1
5
.5
0
%

2
5
.4
9
%

/
2
9
.8
7
%

3
6
.8
4
%

/
4
2
.1
6
%

4
7
.0
2
%

/
5
3
.4
6
%

5
5
.7
7
%

/
6
3
.1
7
%

N
A

N
A

ℓ 1
/
2

1
3
.8
0
%

/
1
5
.2
1
%

2
6
.6
2
%

/
2
9
.5
7
%

3
8
.2
0
%

/
4
2
.2
1
%

4
8
.8
0
%

/
5
3
.6
0
%

5
8
.4
5
%

/
6
3
.9
1
%

*
6
6
.6
5
%

/
7
2
.6
2
%

N
A

ℓ 1
/
4

1
5
.1
6
%

*
/
1
5
.6
1
%

2
9
.0
5
%

*
/
2
9
.7
3
%

4
1
.5
2
%

*
/
4
2
.4
3
%

5
2
.4
7
%

*
/
5
3
.7
3
%

*
6
2
.3
9
%

*
/
6
3
.6
8
%

7
1
.5
0
%

*
/
7
2
.7
9
%

*
N
A

T
ℓ 1
(a

=
1
0
.0
)

1
2
.1
3
%

/
1
6
.6
6
%

2
3
.1
3
%

/
3
0
.1
0
%

*
3
3
.1
1
%

/
4
1
.5
0
%

4
2
.7
0
%

/
5
2
.9
7
%

5
0
.8
7
%

/
6
2
.0
7
%

5
8
.1
6
%

/
6
9
.8
1
%

N
A

T
ℓ 1
(a

=
1
.0
)

1
3
.4
5
%

/
1
5
.3
9
%

2
5
.8
2
%

/
2
9
.9
0
%

3
7
.2
9
%

/
4
2
.5
9
%

4
7
.7
0
%

/
5
3
.8
7
%

5
6
.7
9
%

/
6
3
.4
3
%

N
A

N
A

T
ℓ 1
(a

=
0
.5
)

1
4
.3
5
%

/
1
5
.8
3
%

2
6
.9
4
%

/
2
9
.5
3
%

3
8
.6
9
%

/
4
2
.6
8
%

*
4
8
.8
3
%

/
5
3
.7
0
%

5
8
.3
1
%

/
6
3
.8
1
%

6
6
.4
4
%

/
7
2
.2
8
%

N
A

M
C
P
(a

=
1
5
0
0
0
)

1
2
.0
7
%

/
1
5
.2
5
%

2
3
.1
9
%

/
2
8
.9
9
%

3
2
.8
9
%

/
4
0
.9
6
%

4
1
.6
7
%

/
5
1
.5
0
%

4
9
.8
9
%

/
6
0
.8
9
%

5
7
.2
3
%

/
6
8
.8
4
%

N
A

M
C
P
(a

=
1
0
0
0
0
)

1
1
.3
9
%

/
1
5
.1
9
%

2
2
.0
9
%

/
2
8
.5
6
%

3
2
.3
3
%

/
4
0
.6
7
%

4
1
.3
2
%

/
5
1
.2
3
%

4
9
.0
8
%

/
6
0
.1
4
%

N
A

N
A

M
C
P
(a

=
5
0
0
0
)

9
.9
0
%

/
1
3
.9
8
%

1
9
.1
3
%

/
2
6
.9
9
%

2
7
.8
5
%

/
3
8
.5
1
%

3
5
.8
0
%

/
4
8
.7
3
%

4
3
.2
3
%

/
5
7
.7
7
%

N
A

N
A

S
C
A
D
(a

=
1
5
0
0
0
)

1
1
.4
5
%

/
1
5
.7
0
%

2
2
.0
1
%

/
2
8
.8
2
%

3
2
.1
4
%

/
4
0
.6
5
%

4
1
.0
5
%

/
5
1
.6
1
%

4
9
.4
7
%

/
6
1
.0
2
%

5
6
.7
6
%

/
6
8
.8
3
%

N
A

S
C
A
D
(a

=
1
0
0
0
0
)

1
2
.3
0
%

/
1
6
.8
6
%

2
2
.6
3
%

/
2
9
.3
6
%

3
2
.3
9
%

/
4
0
.8
9
%

4
1
.2
3
%

/
5
1
.7
5
%

N
A

N
A

N
A

S
C
A
D
(a

=
5
0
0
0
)

1
0
.4
2
%

/
1
5
.0
4
%

1
9
.8
2
%

/
2
7
.8
0
%

2
8
.5
2
%

/
3
8
.8
1
%

3
6
.7
6
%

/
4
9
.4
4
%

N
A

N
A

N
A

60

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, CIFAR10

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

T 1, CIFAR10
1

T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

MCP, CIFAR10
1

MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

SCAD, CIFAR10
1

SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, CIFAR100
1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

T 1, CIFAR100
1

T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

MCP, CIFAR100
1

MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

SCAD, CIFAR100

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

p, 0 < p < 1, SVHN

1
3/4

1/2

1/4
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

T 1, SVHN
1

T 1(a = 10)
T 1(a = 1.0)
T 1(a = 0.5)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

MCP, SVHN
1

MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)
Baseline

0.0 0.2 0.4 0.6 0.8
Channel Pruning Ratio

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000
Te

st
 A

cc
ur

ac
y

SCAD, SVHN
1

SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)
Baseline

Figure 3.5: Effect of channel pruning on the mean test accuracy of five runs of ResNet-164
on CIFAR 10/100 and SVHN. Baseline refers to the mean test accuracy of the unregularized
model that is not pruned. Baseline accuracies are 95.04% for CIFAR 10, 77.10% for CIFAR
100, and 98.21% for SVHN.

61

are outperformed by ℓ1 again for percentages of parameters and FLOPs pruned. In Figure

3.5, we observe that most of the regularizers are robust against channel pruning since the

test accuracies do not drop severely at higher channel pruning ratios.

On SVHN, Table 3.4c reports that ℓp and Tℓ1 save more parameters and FLOPs than ℓ1

for channel pruning ratio at least 0.20, while that MCP and SCAD do not. Like for CIFAR

10 and CIFAR 100, most regularizers yield models whose test accuracies are robust against

channel pruning according to Figure 3.5.

In general, the test accuracies of ResNet-164 models with any regularizers, except for ℓ1/4, are

stable against channel pruning. In addition, ℓp and Tℓ1(a = 0.5, 1.0) prune more parameters

and FLOPs than ℓ1. Overall, MCP and SCAD do not perform well on ResNet-164.

3.3.4 Retraining After Pruning

Because the test accuracy drops after channel pruning for VGG-19 and DenseNet-40 trained

on CIFAR 10/100, we retrain the models without regularization on the scaling factors and

examine whether or not the original test accuracy is recovered. For brevity, we analyze ℓ1

and the nonconvex regularizers whose possible channel pruning percentages are at least the

same as ℓ1’s.

VGG-19. The results for VGG-19 on CIFAR 10/100 are presented in Table 3.5. Generally,

we observe that the test accuracy after retraining is better than the original test accuracy

before channel pruning and retraining. For CIFAR 10, after the models are retrained with

70% of their channels pruned, only ℓ1 ℓ3/4, Tℓ1(a = 1.0, 10.0), MCP (a = 10000, 15000),

and SCAD (a = 10000, 15000) exceed the baseline test accuracy of 93.83%. Among the

nonconvex regularizers, ℓ3/4 and Tℓ1(a = 1.0, 10.0) yield more compressed models in terms

of both parameters and FLOPS but have slightly lower test accuracies than ℓ1. On the other

62

Table 3.5: Results from five retrained VGG-19 on CIFAR 10/100 after pruning. Baseline
refers to the VGG-19 model trained without regularization on the scaling factors.

Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%)
Mean Test Accuracy
before Retraining (%)

Mean Test Accuracy
after Retraining (%)

Baseline 20.04M/7.97 × 108 0.00/0.00 93.83 N/A

ℓ1 (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.63 N/A

ℓ1 (70% Pruned) 2.24M/3.83 × 108 88.81/51.93 28.28 93.91

ℓ3/4 (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.53 N/A

ℓ3/4 (70% Pruned) 2.07M/3.59 × 108 89.69/54.96 88.87 93.90

ℓ3/4 (75% Pruned) 1.79M/3.43 × 108 91.06/57.00 16.18 93.79

ℓ1/2 (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.57 N/A

ℓ1/2 (70% Pruned) 2.00M/3.50 × 108 90.01/56.12 40.07 93.77

ℓ1/2 (75% Pruned) 1.66M/3.25 × 108 91.70/59.20 13.65 93.82

ℓ1/4 (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 86.97 N/A

ℓ1/4 (70% Pruned) 1.58M/1.44 × 108 92.14/81.89 47.59 92.15

ℓ1/4 (90% Pruned) 0.19M/0.13 × 108 99.05/98.32 10.00 81.57

Tℓ1(a = 10.0) (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.64 N/A

Tℓ1(a = 10.0) (70% Pruned) 2.19M/3.77 × 108 89.06/52.75 47.70 93.86

Tℓ1(a = 10.0) (75% Pruned) 1.84M/3.49 × 108 90.82/56.19 10.00 93.72

Tℓ1(a = 1.0) (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.55 N/A

Tℓ1(a = 1.0) (70% Pruned) 1.93M/3.39 × 108 90.35/57.43 93.54 93.86

Tℓ1(a = 1.0) (75% Pruned) 1.66M/3.24 × 108 91.71/59.29 86.83 93.82

Tℓ1(a = 0.5) (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.15 N/A

Tℓ1(a = 0.5) (70% Pruned) 1.83M/3.20 × 108 90.88/59.84 93.14 93.75

Tℓ1(a = 0.5) (75% Pruned) 1.53M/3.05 × 108 92.38/61.74 92.38 93.77

MCP (a = 15000) (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.65 N/A

MCP (a = 15000) (70% Pruned) 2.29M/3.93 × 108 88.58/50.69 47.18 93.97

MCP (a = 15000) (75% Pruned) 1.89M/3.58 × 108 90.58/55.04 10.00 93.68

MCP (a = 10000) (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.69 N/A

MCP (a = 10000) (70% Pruned) 2.28M/3.95 × 108 88.63/50.49 40.24 94.12

MCP (a = 10000) (75% Pruned) 1.89M/3.62 × 108 90.56/54.54 10.00 93.73

SCAD (a = 15000) (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.64 N/A

SCAD (a = 15000) (70% Pruned) 2.26M/3.93 × 108 88.71/50.70 52.72 93.94

SCAD (a = 15000) (75% Pruned) 1.87M/3.59 × 108 90.65/54.97 10.00 93.91

SCAD (a = 10000) (0% Pruned) 20.04M/7.97 × 108 0.00/0.00 93.60 N/A

SCAD (a = 10000) (70% Pruned) 2.29M/3.95 × 108 88.57/50.43 55.25 93.88

(a) CIFAR 10

Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%)
Mean Test Accuracy
before Retraining (%)

Mean Test Accuracy
after Retraining (%)

Baseline 20.08M/7.97 × 108 0.00/0.00 72.73 N/A

ℓ1 (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.57 N/A

ℓ1 (45% Pruned) 5.67M/5.26 × 108 71.78/34.00 51.16 73.44

ℓ1 (55% Pruned) 4.31M/4.89 × 108 78.53/38.66 1.00 72.98

ℓ3/4 (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.14 N/A

ℓ3/4 (45% Pruned) 5.49M/5.04 × 108 72.68/36.75 71.76 73.24

ℓ3/4 (55% Pruned) 4.10M/4.76 × 108 79.59/40.28 3.40 73.26

ℓ1/2 (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.06 N/A

ℓ1/2 (45% Pruned) 5.38M/5.03 × 108 73.21/36.95 71.27 73.34

ℓ1/2 (60% Pruned) 3.40M/4.48 × 108 83.07/43.82 1.08 71.59

ℓ1/4 (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 70.95 N/A

ℓ1/4 (45% Pruned) 5.30M/4.76 × 108 73.59/40.26 22.70 72.50

ℓ1/4 (80% Pruned) 0.69M/1.05 × 108 96.54/86.86 1.00 46.97

Tℓ1(a = 10.0) (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.36 N/A

Tℓ1(a = 10.0) (45% Pruned) 5.53M/5.18 × 108 72.45/34.95 69.35 73.39

Tℓ1(a = 10.0) (55% Pruned) 4.21M/4.85 × 108 79.05/39.19 1.46 73.17

Tℓ1(a = 1.0) (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.07 N/A

Tℓ1(a = 1.0) (45% Pruned) 5.39M/4.87 × 108 73.16/38.89 72.07 73.03

Tℓ1(a = 1.0) (60% Pruned) 3.43M/4.47 × 108 82.90/43.94 1.84 73.06

Tℓ1(a = 0.5) (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 71.63 N/A

Tℓ1(a = 0.5) (45% Pruned) 5.29M/4.74 × 108 73.66/40.48 71.63 72.69

Tℓ1(a = 0.5) (60% Pruned) 3.19M/4.21 × 108 84.09/47.15 66.50 72.81

MCP (a = 15000) (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.26 N/A

MCP (a = 15000) (45% Pruned) 5.66M/5.27 × 108 71.82/33.87 66.14 73.68

MCP (a = 15000) (55% Pruned) 4.30M/4.92 × 108 78.58/38.21 1.00 72.94

SCAD (a = 15000) (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.50 N/A

SCAD (a = 15000) (45% Pruned) 5.64M/5.26 × 108 71.89/33.99 65.72 73.61

SCAD (a = 15000) (55% Pruned) 4.32M/4.90 × 108 78.48/38.49 1.00 72.67

SCAD (a = 10000) (0% Pruned) 20.08M/7.97 × 108 0.00/0.00 72.33 N/A

SCAD (a = 10000) (45% Pruned) 5.72M/5.32 × 108 71.50/33.21 64.98 73.52

SCAD (a = 10000) (55% Pruned) 4.37M/4.94 × 108 78.22/37.99 1.00 71.98

(b) CIFAR 100

63

hand, MCP (a = 15000, 10000) and SCAD (a = 15000) are slightly less compressed than ℓ1

but have better test accuracies. When 75% of the channels are pruned, their retrained test

accuracies decrease slightly due to compressing the models further. Among the nonconvex

regularizers, the test accuracy for SCAD (a = 15000) is better than the baseline. Moreover,

SCAD (a = 15000) with 75% of its channels pruned requires less parameters and FLOPS

than ℓ1 with 70% of its channels pruned. For ℓ1/4, when 90% of the channels are pruned,

at least 98% of parameters and FLOPs are pruned, but the test accuracy after retraining

is 81.57%. For CIFAR 100, with 45% of the channels pruned, all of the regularizers except

for ℓ1/4 and Tℓ1(a = 0.5) attain better test accuracies than the baseline accuracy of 72.73%.

Similar to CIFAR 10, ℓ3/4, ℓ1/2, and Tℓ1(a = 1.0, 10.0) have slightly lower test accuracies than

ℓ1 but have better compression. MCP and SCAD have better test accuracies than ℓ1 with

similar parameter and FLOP compression. When more channels are pruned, most of the

regularizers suffer a slight decrease in retrained test accuracies. Only ℓ3/4 with 55% channels

pruned and Tℓ1(a = 0.5, 1.0) with 60% channels pruned experience a modest improvement

in test accuracy, but their test accuracies exceed the baseline test accuracy and ℓ1’s test

accuracy with 55% channels pruned.

Overall, for ℓp(p = 1/2, 3/4) and Tℓ1(a = 0.5, 1.0), the retrained models, despite being more

compressed than their ℓ1 counterparts, have slightly lower test accuracies. However, MCP

and SCAD have similar compression as ℓ1 but with better test accuracies after retraining.

DenseNet-40. Table 3.6 reports the results for DenseNet-40 on CIFAR 10/100. Overall,

the baseline accuracy is better than all of the retrained test accuracies, but the differences are

at most 3.07% for CIFAR 10 and at most 6.82% for CIFAR 100. For CIFAR 10, when 82.5%

of the channels are pruned, only MCP (a = 10000) and SCAD (a = 10000) have better test

accuracies than ℓ1 with similar compression in parameters and FLOPs. For ℓp(p = 1/2, 3/4)

and Tℓ1(a = 1.0), their retrained test accuracies are only slightly lower by at most 0.20%, but

this is at the cost of better compression. When 90% of the channels are pruned, the retrained

64

test accuracies decrease slightly more into the range of 91%-92%. Only ℓ3/4 and Tℓ1(a =

0.5, 1.0) have better test accuracies than ℓ1 with much better compression. For CIFAR 100,

when 75% of the channels are pruned, ℓ3/4, Tℓ1(a = 10.0), MCP, and SCAD have at least

the same test accuracies as ℓ1 with better compression in parameters and FLOPs. However,

increasing the channel pruning percentage to 90% causes their retrained test accuracies to

deteriorate. As a result, none of the models is able to exceed the test accuracy of the ℓ1-

regularized models retrained with 85% of their channels pruned. For ℓ1/2 and Tℓ1(a = 10.0),

when 85% of the channels are pruned, their test accuracies exceed ℓ1. In general, pruning

channels for DenseNet at the highest percentage possible can be detrimental to the retrained

test accuracy. When channels are pruned at intermediate levels, the nonconvex regularizers

can have better retrained test accuracies and/or better compression than ℓ1.

3.3.5 Scaling Factor Analysis

In order to better understand how ℓ1 and the nonconvex regularizers affect the scaling factors

γ, we plot histograms of the counts of the log10(|γ|) averaged from the five models trained for

each model and regularizer. Figures 3.6-3.14 provide the histograms while Table 3.7 records

the average number of scaling factors whose magnitudes are less than 10−6 and more than

10−6. The value 10−6 is chosen because generally, any value below it has negligible effect on

the numerical computation [1].

For CIFAR 10, Figures 3.6-3.8 show the histograms while Table 3.7a provides the average

counts of the scaling factors based on their magnitudes. For all three networks, we observe

the following phenomena. MCP and SCAD have similar scaling factor distributions as ℓ1

across all given values of a. Moreover, MCP, SCAD, and ℓ1 have similar number of scaling

factors whose magnitudes are less than 10−6 as verified by Table 3.7a. This may explain

why their compression rates are similar to ℓ1 in our earlier analyses. For ℓp, we see that ℓ3/4

65

Table 3.6: Results from five retrained DenseNet-40 on CIFAR 10/100 after pruning. Baseline
refers to the DenseNet-40 model trained without regularization on the scaling factors.

Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%)
Mean Test Accuracy
before Retraining (%)

Mean Test Accuracy
after Retraining (%)

Baseline 1.02M/5.33 × 108 0.00/0.00 94.25 N/A

ℓ1 (0 % Pruned) 1.02M/5.33 × 108 0.00/0.00 93.46 N/A

ℓ1 (82.5% Pruned) 0.24M/1.54 × 108 76.21/71.20 78.27 93.46

ℓ1 (90% Pruned) 0.17M/1.08 × 108 83.76/79.75 17.47 91.42

ℓ3/4 (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.19 N/A

ℓ3/4 (82.5% Pruned) 0.24M/1.53 × 108 76.57/71.34 90.17 93.33

ℓ3/4 (90% Pruned) 0.16M/1.06 × 108 84.02/80.07 15.06 91.54

ℓ1/2 (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.28 N/A

ℓ1/2 (82.5% Pruned) 0.25M/1.51 × 108 76.84/71.76 83.17 93.43

ℓ1/2 (90% Pruned) 0.16M/1.06 × 108 84.36/80.13 13.76 91.31

ℓ1/4 (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 89.48 N/A

ℓ1/4 (82.5% Pruned) 0.21M/1.14 × 108 79.81/78.63 11.29 91.68

ℓ1/4 (85% Pruned) 0.18M/0.98 × 108 82.57/81.64 10.05 91.44

Tℓ1(a = 10.0) (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.30 N/A

Tℓ1(a = 10.0) (82.5% Pruned) 0.24M/1.54 × 108 76.33/71.10 83.24 93.38

Tℓ1(a = 10.0) (90% Pruned) 0.16M/1.08 × 108 83.89/79.72 15.35 91.37

Tℓ1(a = 1.0) (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.16 N/A

Tℓ1(a = 1.0) (82.5% Pruned) 0.24M/1.53 × 108 76.80/71.35 93.17 93.26

Tℓ1(a = 1.0) (90% Pruned) 0.16M/1.06 × 108 84.23/80.19 18.91 91.70

Tℓ1(a = 0.5) (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 92.78 N/A

Tℓ1(a = 0.5) (82.5% Pruned) 0.23M/1.50 × 108 77.21/71.83 92.74 93.05

Tℓ1(a = 0.5) (90% Pruned) 0.16M/1.03 × 108 84.45/80.70 18.12 91.69

MCP(a = 15000) (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.48 N/A

MCP(a = 15000)(82.5% Pruned) 0.24M/1.55 × 108 76.23/71.00 92.74 93.44

MCP(a = 15000) (90% Pruned) 0.17M/1.10 × 108 83.72/79.37 12.92 91.31

MCP(a = 10000) (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.41 N/A

MCP(a = 10000) (82.5% Pruned) 0.24M/1.53 × 108 76.37/71.23 67.36 93.53

MCP(a = 10000) (90% Pruned) 0.16M/1.10 × 108 83.85/79.39 15.08 91.24

SCAD(a = 15000) (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.48 N/A

SCAD(a = 15000) (82.5% Pruned) 0.24M/1.54 × 108 76.28/71.02 71.33 93.42

SCAD(a = 15000) (90% Pruned) 0.17M/1.10 × 108 83.80/79.42 14.21 91.26

SCAD(a = 10000) (0% Pruned) 1.02M/5.33 × 108 0.00/0.00 93.52 N/A

SCAD(a = 10000) (82.5% Pruned) 0.24M/1.55 × 108 76.25/70.93 71.49 93.49

SCAD(a = 10000) (90% Pruned) 0.17M/1.10 × 108 83.75/79.27 12.27 91.18

(a) CIFAR 10

Number of Parameters/FLOPs Percentage of Parameters/FLOPs Pruned (%)
Mean Test Accuracy
before Retraining (%)

Mean Test Accuracy
after Retraining (%)

Baseline 1.06M/5.33 × 108 0.00/0.00 74.58 N/A

ℓ1 (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 73.24 N/A

ℓ1 (75% Pruned) 0.35M/2.14 × 108 68.73/59.89 54.68 73.73

ℓ1 (85% Pruned) 0.23M/1.46 × 108 78.08/72.60 2.94 72.40

ℓ3/4 (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 72.97 N/A

ℓ3/4 (75% Pruned) 0.33M/2.11 × 108 68.93/60.40 68.60 73.75

ℓ3/4 (90% Pruned) 0.18M/1.07 × 108 83.34/79.89 1.23 69.33

ℓ1/2 (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 72.98 N/A

ℓ1/2 (75% Pruned) 0.33M/2.06 × 108 69.03/61.41 68.05 73.39

ℓ1/2 (85% Pruned) 0.23M/1.42 × 108 78.42/73.43 5.05 72.52

ℓ1/4 (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 69.02 N/A

ℓ1/4 (75% Pruned) 0.31M/1.62 × 108 70.81/69.59 1.45 71.62

ℓ1/4 (85% Pruned) 0.19M/0.88 × 108 82.28/83.54 1.00 67.76

Tℓ1(a = 10.0) (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 73.18 N/A

Tℓ1(a = 10.0) (75% Pruned) 0.33M/2.12 × 108 68.84/60.18 66.62 73.78

Tℓ1(a = 10.0) (85% Pruned) 0.23M/1.47 × 108 78.21/72.37 3.17 72.69

Tℓ1(a = 1.0) (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 72.63 N/A

Tℓ1(a = 1.0) (75% Pruned) 0.33M/2.12 × 108 69.16/60.24 72.60 73.42

Tℓ1(a = 1.0) (90% Pruned) 0.18M/1.07 × 108 83.48/80.01 1.24 69.98

Tℓ1(a = 0.5) (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 72.57 N/A

Tℓ1(a = 0.5) (75% Pruned) 0.33M/2.10 × 108 69.33 /60.56 72.59 73.23

Tℓ1(a = 0.5) (90% Pruned) 0.17M/1.06 × 108 83.61/80.16 1.37 70.16

MCP(a = 15000) (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 73.64 N/A

MCP(a = 15000)(75% Pruned) 0.33M/2.10 × 108 68.80/60.61 58.12 73.73

MCP(a = 15000) (90% Pruned) 0.18M/1.08 × 108 83.35/79.73 1.27 69.94

MCP(a = 10000) (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 73.40 N/A

MCP(a = 10000) (75% Pruned) 0.33M/2.06 × 108 68.73/61.36 40.76 73.95

MCP(a = 10000) (90% Pruned) 0.18M/1.08 × 108 83.19/79.68 1.10 69.10

SCAD(a = 15000) (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 73.41 N/A

SCAD(a = 15000) (75% Pruned) 0.33M/2.09 × 108 68.79/60.83 54.71 73.97

SCAD(a = 15000) (90% Pruned) 0.18M/1.08 × 108 83.33/79.72 1.42 69.87

SCAD(a = 10000) (0% Pruned) 1.06M/5.33 × 108 0.00/0.00 73.37 N/A

SCAD(a = 10000) (75% Pruned) 0.33M/2.04 × 108 68.80/61.66 47.70 73.75

SCAD(a = 10000) (90% Pruned) 0.18M/1.09 × 108 83.36/79.61 1.08 69.73

(b) CIFAR 100

66

Table 3.7: Counts of scaling factors that are averaged across five runs per model and regu-
larizer.

VGG-19 DenseNet-40 ResNet-164
|γ| ≤ 10−6 |γ| > 10−6 |γ| ≤ 10−6 |γ| > 10−6 |γ| ≤ 10−6 |γ| > 10−6

ℓ1 3483 2021 7309.2 2050.8 7321.4 4790.6
ℓ3/4 3244.8 2259.2 6261.4 3098.6 7944.2 4167.8

ℓ1/2 263.4 5240.6 490.6 8869.4 898 11214

ℓ1/4 3 5501 4 9356 11.6 12100.4

Tℓ1(a = 10.0) 3559.6 1944.4 7372.8 1987.2 7466.6 4645.4
Tℓ1(a = 1.0) 4021.2 1482.8 7731.4 1628.6 8757.2 3354.8
Tℓ1(a = 0.5) 4216 1288 7839 1521 9192 2920
MCP (a = 15000) 3472.4 2031.6 7180.6 2179.4 6805.8 5306.2
MCP (a = 10000) 3485 2019 7123.6 2236.4 6438.4 5673.6
MCP (a = 5000) 3440.4 2063.6 6880.2 2479.8 5542.6 6569.4
SCAD (a = 15000) 3492.6 2011.4 7204.4 2155.6 6818.4 5293.6
SCAD (a = 10000) 3460.2 2043.8 7121.4 2238.6 6484.6 5627.4
SCAD (a = 5000) 3518.2 1985.8 6947.8 2412.2 5514.6 6597.4

(a) CIFAR 10

VGG-19 DenseNet-40 ResNet-164
|γ| ≤ 10−6 |γ| > 10−6 |γ| ≤ 10−6 |γ| > 10−6 |γ| ≤ 10−6 |γ| > 10−6

ℓ1 1417.2 4086.8 6382 2978 5030.4 7081.6
ℓ3/4 1895.8 3608.2 2208.6 7151.4 5584.6 6527.4

ℓ1/2 151.6 5352.4 94.4 9265.6 430 11682

ℓ1/4 1.6 5502.4 6 9354 6.6 12105.4

Tℓ1(a = 10.0) 1629.6 3874.4 6555.4 2804.6 5192.8 6919.2
Tℓ1(a = 1.0) 2555.6 2948.4 6919.8 2440.2 6250 5862
Tℓ1(a = 0.5) 2802 2702 6889.6 2470.4 6739 5373
MCP (a = 15000) 1495 4009 6192.2 3167.8 4521.8 7590.2
MCP (a = 10000) 1440.4 4063.6 6055.6 3304.4 4191.8 7920.2
MCP (a = 5000) 1378 4126 5627.4 3732.6 3541.8 8570.2
SCAD (a = 15000) 1514.4 3989.6 6190.4 3169.6 4481.6 7630.4
SCAD (a = 10000) 1481.6 4022.4 6034.6 3325.4 4211.6 7900.4
SCAD (a = 5000) 1262 4242 5595.6 3764.4 3484.6 8627.4

(b) CIFAR 100

CIFAR 10 CIFAR 100 SVHN
|γ| ≤ 10−6 |γ| > 10−6 |γ| ≤ 10−6 |γ| > 10−6 |γ| ≤ 10−6 |γ| > 10−6

ℓ1 4447.6 1056.4 8447.4 912.6 10058.8 2053.2
ℓ3/4 3862.2 1641.8 7079 2281 10130.4 1981.6

ℓ1/2 292 5212 543.4 8816.6 1070.4 11041.6

ℓ1/4 3.4 5500.6 7.2 9352.8 12.6 12099.4

Tℓ1(a = 10.0) 4505.4 998.6 8497.4 862.6 10184.8 1927.2
Tℓ1(a = 1.0) 4796.8 707.2 8674 686 10813.2 1298.8
Tℓ1(a = 0.5) 4874 630 8746.4 613.6 11002.4 1109.6
MCP (a = 15000) 4365.6 1138.4 8419.8 940.2 9930.4 2181.6
MCP (a = 10000) 4356.6 1147.4 8390.4 969.6 9841 2271
MCP (a = 5000) 4242.6 1261.4 8330 1030 9333.6 2778.4
SCAD (a = 15000) 4378.2 1125.8 8405.6 954.4 9894.8 2217.2
SCAD (a = 10000) 4361.4 1142.6 8407 953 9858.8 2253.2
SCAD (a = 5000) 4244.4 1259.6 8330.2 1029.8 9353.8 2758.2

(c) SVHN

67

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

200

400

600

800

1000

1200

1400

1600

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

200

400

600

800

1000

1200

1400

1600

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.6: Histogram of scaling factors γ in VGG-19 trained on CIFAR 10. The x-axis is
log10(|γ|).

has most of its scaling factors within the interval (10−6, 10−5). As p decreases, the values

of the scaling factors tend farther away from 0. In fact, majority of the scaling factors

for ℓ1/2 and ℓ1/4 are at least 10−6 in magnitude. Specifically for ℓ1/4, most of the scaling

factors have absolute values at least 0.10. Hence, we can see why ℓ1/4 is sensitive to channel

pruning. Lastly, for Tℓ1, more scaling factors decrease towards 0 in magnitude as a decreases.

Moreover, we observe that most of the scaling factors are accumulated within the interval

(10−7, 10−6). Because Tℓ1 causes more scaling factors to decrease towards 0 in magnitude,

this might explain why Tℓ1 is robust against channel pruning.

For CIFAR 100, Figures 3.9-3.11 show the histograms of the scaling factors while Table

3.7b records the average counts by magnitudes. Because CIFAR 100 is a more difficult

classification dataset compared to CIFAR 10, most of the scaling factors appear to be within

the interval (10−1, 1). However, DenseNet-40 shows bimodal distributions for Tℓ1, MCP,

and SCAD. Table 3.7b shows that more than half of the scaling factors are less than 10−6 in

68

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

3500

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

3500

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.7: Histogram of scaling factors γ in DenseNet-40 trained on CIFAR 10. The x-axis
is log10(|γ|).

magnitudes in DenseNet-40 for most regularizers, but they are more than 10−6 in magnitudes

in VGG-19 and ResNet-164 for all regularizers. The distributions of the scaling factors convey

why DenseNet-40 can be pruned at higher channel pruning ratios than VGG-19 and ResNet-

164, as indicated by the middle rows of Figures 3.3-3.5. Across the three networks, MCP and

SCAD have similar distributions with ℓ1. For ℓ3/4, a considerable amount of scaling factors

are within the interval (10−6, 10−5), but as p decreases, the magnitudes of most scaling factors

increase. Hence, less than a few hundred scaling factors are below 10−6 in magnitudes. As

a result, models regularized with ℓ1/2 and ℓ1/4 become more sensitive to channel pruning

as demonstrated earlier. For Tℓ1(a = 10.0), its distribution of scaling factors is similar to

ℓ1. However, when a = 0.5, 1.0, more scaling factors have magnitudes less than 10−5, which

demonstrates Tℓ1’s robustness to channel pruning when a is small enough.

Figures 3.12-3.14 and Table 3.7c provide statistics about SVHN. For all three networks,

Tℓ1(a = 10.0), SCAD, and MCP have similar distributions as ℓ1. Similar to CIFAR 10 and

69

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.8: Histogram of scaling factors γ in ResNet-164 trained on CIFAR 10. The x-axis
is log10(|γ|).

100, ℓ3/4 has most of its scaling factors to be in the interval (10−6, 10−5), but as p decreases

for ℓp, the magnitudes of the scaling factors increase, resulting in at least 90% of the scaling

factors to be at least 10−6 in magnitudes as shown in Table 3.7c. For Tℓ1(a = 0.5, 1.0) on

the other hand, most of the scaling factors are in the interval (10−7, 10−6).

3.3.6 Comparison with Variational CNN Pruning

We have shown that network slimming with nonconvex regularizers can outperform the

original with ℓ1 regularization. Now we compare our proposed method with variational CNN

pruning (VCP) proposed in [252], a Bayesian version of network slimming. VCP is designed

to be robust against channel pruning, so we compare it with Tℓ1(a = 0.5, 1.0), which is proven

to also be robust against channel pruning in our earlier analyses. The comparisons between

the two methods are shown in Table 3.8, using results from DenseNet-40 and ResNet-164

70

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

3500

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.9: Histogram of scaling factors γ in VGG-19 trained on CIFAR 100. The x-axis is
log10(|γ|).

Table 3.8: Comparisons between network slimming with Tℓ1(a = 0.5, 1.0) and variational
channel pruning. The results are immediately obtained after channel pruning.

Model Dataset Method Test Accuracy Percentage of Channels Pruned Percentage of Parameters Pruned

DenseNet-40

CIFAR 10

VCP [252] 93.16% 60% 59.67%
Tℓ1(a = 1.0) 93.17% 60% 55.73%
Tℓ1(a = 1.0) 93.17% 80% 74.46%
Tℓ1(a = 0.5) 92.78% 60% 56.16%
Tℓ1(a = 0.5) 92.78% 80% 74.88%

CIFAR 100

VCP [252] 72.19% 37% 37.73%
Tℓ1(a = 1.0) 72.63% 40% 36.91%
Tℓ1(a = 1.0) 72.63% 60% 55.35%
Tℓ1(a = 0.5) 72.57% 40% 36.98%
Tℓ1(a = 0.5) 72.58% 60% 55.46%

ResNet-164

CIFAR 10
VCP [252] 93.16% 74% 56.70%

Tℓ1(a = 0.5) 93.41% 75% 70.39%

CIFAR 100
VCP [252] 73.76% 47% 17.59%

Tℓ1(a = 1.0) 74.89% 45% 25.56%
Tℓ1(a = 0.5) 74.72% 45% 27.74%

trained on CIFAR 10/100.

For DenseNet-40 trained on CIFAR 10, Tℓ1 has a minimally better accuracy with less param-

eters pruned than VCP with 60% channels pruned. However, we can increase the percentage

of channels pruned to 80% for Tℓ1 so that the number of parameters are reduced while main-

taining the same accuracy. On CIFAR 100, with similar percentages of channels pruned, Tℓ1

71

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.10: Histogram of scaling factors γ in DenseNet-40 trained on CIFAR 100. The
x-axis is log10(|γ|).

has a much better accuracy than VCP but again with less parameters pruned. Nevertheless,

we can increase the percentage of channels pruned to 60% and the accuracy will remain the

same with more parameters pruned.

On ResNet-164, with similar percentages of channels pruned, Tℓ1 outperforms VCP by a

large margin for both test accuracy and percentage of parameters pruned. For CIFAR 10,

only Tℓ1(a = 0.5) is able to have 75% of the channels pruned, and it saves more parameters

by almost 24% with test accuracy better by 0.25%. For CIFAR 100%, with 2% less channels

pruned, Tℓ1 prunes at least 7.97% more parameters than VCP while having better accuracy

of at least 0.96%.

Overall, network slimming with Tℓ1 is competitive against the latest variant of network

slimming.

72

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

7000

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

7000

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.11: Histogram of scaling factors γ in ResNet-164 trained on CIFAR 100. The x-axis
is log10(|γ|).

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

3500

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

250

500

750

1000

1250

1500

1750

2000

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.12: Histogram of scaling factors γ in VGG-19 trained on SVHN. The x-axis is
log10(|γ|).

73

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

3500

4000

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

500

1000

1500

2000

2500

3000

3500

4000

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.13: Histogram of scaling factors γ in DenseNet-40 trained on SVHN. The x-axis is
log10(|γ|).

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

ts

1
3/4

1/2

1/4

(a) ℓp

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

7000

Co
un

ts

1
T 1(a = 10.0)
T 1(a = 1.0)
T 1(a = 0.5)

(b) Tℓ1

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

7000

Co
un

ts

1
MCP(a = 15000)
MCP(a = 10000)
MCP(a = 5000)

(c) MCP

12 11 10 9 8 7 6 5 4 3 2 1 0 1
log10(| |)

0

1000

2000

3000

4000

5000

6000

7000

Co
un

ts

1
SCAD(a = 15000)
SCAD(a = 10000)
SCAD(a = 5000)

(d) SCAD

Figure 3.14: Histogram of scaling factors γ in ResNet-164 trained on SVHN. The x-axis is
log10(|γ|).

74

Chapter 4

A Proximal Algorithm for Network

Slimming

The original optimization algorithm used for network slimming (NS) is subgradient descent

[190], but it has theoretical and practical issues. Subgradient descent does not necessar-

ily decrease the loss function value after each iteration, even when performed exactly with

full batch of data [18]. Moreover, unless with some additional modifications, such as back-

tracking line search, subgradient descent may not converge to a critical point [169]. When

implemented in practice, barely any of the scaling factors have values exactly at zeroes by the

end of training. Consequently, a threshold value needs to be determined in order to remove

channels whose scaling factors are below it and the resulting compressed model needs to be

retrained to recover its original accuracy.

In this chapter, we design an alternative optimization algorithm for NS. The optimization

algorithm is based on proximal alternating linearized minimization (PALM) [20], which is

friendly to implement for back-propagation training of CNNs. The algorithm has more

theoretical and practical advantages than subgradient descent. Under certain conditions, the

75

proposed algorithm does converge to a critical point. When used in practice, the proposed

algorithm enforces the scaling factors of insignificant channels to be exactly at zero by the

end of training. Hence, there is no need to set a scaling-factor threshold to identify which

channels to remove. Because the model is trained towards an actual sparse structure by

the proposed algorithm, the model accuracy is preserved after the insignificant channels are

pruned, so fine tuning is unnecessary, unlike for other pruning methods [84, 92, 134, 214].

The only trade-off of the proposed algorithm is a slight decrease in accuracy compared to

the original baseline model.

4.1 Proposed Algorithm

In this section, we develop a novel PALM algorithm [20] for NS that consists of two straight-

forward, general steps per epoch: stochastic gradient descent on the weight parameters,

including the scaling factors of the batch normalization layers, and soft-thresholding on the

scaling factors. Because this algorithm automatically trains a CNN towards a sparse struc-

ture, many of the scaling factors are already zero at the end of training, so their associated

channels are safe to remove without damaging the model accuracy. As a result, setting a

scaling-factor threshold for channel pruning and fine tuning a compressed CNN are no longer

needed, especially for practitioners whose time and resources are limited.

4.1.1 Batch Normalization Layer

Let z ∈ RB×C×H×W denote an output feature map, where B is the mini-batch size, C is the

number of channels, and H and W are the height and width of the feature map, respectively.

Recall that for each channel i = 1, . . . , C, the output of a batch normalization (BN) layer

76

on each channel zi is given by

z′i = γi
zi − µB√
σ2
B + ϵ

+ βi, (4.1)

where µB and σB are the mean and standard deviation of the inputs across the mini-batch

B, ϵ is a small constant for numerical stability, and γi and βi are trainable weight parameters

that help restore the representative power of the input zi. The weight parameter γi is defined

to be the scaling factor of channel i. The scaling factor γi determines how important channel

i is to the computation of the CNN as it is multiplied to all pixels of the same channel i

within the feature map z.

4.1.2 Numerical Optimization

Let {(xi, yi)}Ni=1 be a given dataset, where xi is the training input and yi is its corresponding

label or value. Using the dataset {(xi, yi)}Ni=1, we train a CNN with c total channels, where

each of its convolutional layers is followed by a BN layer. Let γ ∈ Rc be the vector of

trainable scaling factors of the CNN, where each entry γi, i = 1, . . . , c, is a scaling factor of

channel i. Moreover, let W ∈ Rn be a vector of all n trainable weight parameters, excluding

the scaling factors, in the CNN. The objective function of the CNN that NS [134] minimizes

is

min
W,γ

1

N

N∑
i=1

L(h(xi,W, γ), yi) + λ∥γ∥1, (4.2)

where h(xi,W, γ) is the output of the CNN predicted on data point xi; L(h(xi,W, γ), yi) is

the loss function between the prediction h(xi,W, γ) and ground truth yi, such as the cross-

entropy loss function; and λ > 0 is the regularization parameter for the ℓ1 penalty on γ.

In [134], (4.2) is solved by the following gradient descent scheme with step size δt for each

77

epoch t:

W t+1 = W t − δt∇W L̃(W t, γt) (4.3a)

γt+1 = γt − δt
(
∇γL̃(W t, γt) + λ∂∥γt∥1

)
, (4.3b)

where L̃(W, γ) := 1
N

∑N
i=1 L(h(xi,W, γ), yi) and

∂∥γ∥1 =

ζ ∈ Rc : ζi =


sign(γi) if γi ̸= 0

ζi ∈ [−1, 1] if γi = 0


is the subgradient of the ℓ1 norm.

By (4.3), we observe that γ is optimized by subgradient descent. Unfortunately, using

subgradient descent can lead to practical issues. When γi = 0 for some channel i, the

subgradient needs to be chosen precisely. Not all subgradient vectors at a non-differentiable

point decrease the value of (4.2) in each epoch [18], so we need to find one that does among

the infinite number of choices. In the numerical implementation of NS 1, the subgradient

ζt is selected such that ζti = 0 by default when γt
i = 0, but such selection is not verified

to decrease the value of (4.2) in each epoch t. Lastly, subgradient descent only pushes the

scaling factors of irrelevant channels to be near zero in value but not at zero. For this reason,

when pruning a CNN, the user needs to determine the appropriate scaling-factor threshold

to remove its channels where no layers have zero channels and then fine tune it to restore its

original accuracy. However, if too many channels are pruned that the fine-tuned accuracy

is significantly less than the original, the user may need to decrease the threshold and fine

tune again, thereby wasting more computational time and resources.

To develop an alternative algorithm that does not possess the practical issues of subgradi-

ent descent, we reformulate (4.2) as a constrained optimization problem by introducing an

1https://github.com/Eric-mingjie/network-slimming

78

https://github.com/Eric-mingjie/network-slimming

auxiliary variable ξ, giving us

min
W,γ,ξ

L̃(W, γ) + λ∥ξ∥1

s.t. ξ = γ.

(4.4)

However, we relax the constraint by a quadratic penalty with parameter β > 0, leading to a

new unconstrained optimization problem:

min
W,γ,ξ

L̃(W, γ) + λ∥ξ∥1 +
β

2
∥γ − ξ∥22. (4.5)

In (4.2), γ is optimized for both model accuracy and sparsity, which can be difficult to

balance when training a CNN. However, in (4.5), γ is optimized for only model accuracy

because it is a variable of the overall loss function L̃(W, γ) while ξ is optimized only for

sparsity because it is penalized by the ℓ1 norm. The quadratic penalty enforces γ and ξ to

be similar in values, thereby ensuring γ to be sparse.

Let (W, γ) be a concatenated vector of W and γ. We minimize (4.5) via alternating mini-

mization, so for each epoch t, we solve the following subproblems:

(W t+1, γt+1) ∈ arg min
W,γ

L̃(W, γ) +
β

2
∥γ − ξt∥22 (4.6a)

ξt+1 ∈ arg min
ξ

λ∥ξ∥1 +
β

2
∥γt+1 − ξ∥22. (4.6b)

Below, we describe how to solve each subproblem in details.

(W, γ)-subproblem

The (W, γ)-subproblem given in (4.6a) cannot be solved in closed form because the loss

function L̃(W, γ) is a composition of several nonlinear functions. Typically, when training a

79

CNN, this subproblem would be solved by (stochastic) gradient descent. To formulate (4.6a)

as a gradient descent step, we follow a prox-linear strategy as follows:

(W t+1, γt+1) ∈ arg min
W,γ

L̃(W t, γt)

+ ⟨∇L̃(W t, γt), (W, γ) − (W t, γt)⟩

+
α

2
∥(W, γ) − (W t, γt)∥22 +

β

2
∥γ − ξt∥22

= arg min
W,γ

L̃(W t, γt) + ⟨∇W L̃(W t, γt),W −W t⟩

+ ⟨∇γL̃(W t, γt), γ − γt⟩

+
α

2
∥W −W t∥22 +

α

2
∥γ − γt∥22 +

β

2
∥γ − ξt∥22

(4.7)

where α > 0. By differentiating with respect to each variable, setting the partial derivative

equal to zero, and solving for the variable, we have

W t+1 = W t − 1

α
∇W L̃(W t, γt) (4.8a)

γt+1 =
αγt + βξt

α + β
− 1

α + β
∇γL̃(W t, γt). (4.8b)

We see that (4.8a) is gradient descent on W t with step size 1
α

while (4.8b) is gradient descent

on a weighted average of γt and ξt with step size 1
α+β

. These steps are straightforward to im-

plement in practice when training a CNN because the gradient (∇W L̃(W t, γt),∇γL̃(W t, γt))

can be approximated by its stochastic gradient estimators obtained from backpropagation.

ξ-subproblem

To solve (4.6b), we perform a proximal update by minimizing the following subproblem:

ξt+1 ∈ arg min
ξ

λ∥ξ∥1 +
α

2
∥ξ − ξt∥22 +

β

2
∥γt+1 − ξ∥22. (4.9)

80

Algorithm 3: Proximal network slimming: proximal algorithm for minimizing (4.5)

Input: Regularization parameter λ, proximal parameter α, penalty parameter β
Initialize W 1 with random values.
Initialize γ1 such that γi = 0.5 for each channel i.

1: for each epoch t = 1, . . . , T do
2: W t+1 = W t − 1

α
∇W L̃(W t, γt) by stochastic gradient descent or variant.

3: γt+1 = αγt+βξt

α+β
− 1

α+β
∇γL̃(W t, γt) by stochastic gradient descent or variant.

4: ξt+1 = S
(

αξt+βγt+1

α+β
, λ
β+α

)
.

5: end for

Expanding it gives

ξt+1 = arg min
ξ

∥ξ∥1 +
β

2λ
∥ξ − γt+1∥22 +

α

2λ
∥ξ − ξt∥22

= arg min
ξ

∥ξ∥1 +
1

2
(

λ
β+α

) ∥∥∥∥ξ − αξt + βγt+1

α + β

∥∥∥∥2
2

= S
(
αξt + βγt+1

α + β
,

λ

β + α

)
,

where S(x, λ) is the soft-thresholding operator defined by

(S(x, λ))i = sign(xi) max{0, |xi| − λ}

for each entry i. Therefore, ξ is updated by performing soft thresholding on the weighted

average between ξt and γt+1. We summarize the proximal algorithm for NS in Algorithm 3.

Throughout the rest of the paper, we will refer to Algorithm 3 as proximal NS.

4.2 Convergence Analysis

To establish global convergence of proximal NS, we present relevant definitions and assump-

tions.

81

Definition 4.1 ([10, 20]). A proper, lower-semicontinuous function f : Rm → (−∞,∞]

satisfies the Kurdyka- Lojasiewicz (KL) property at a point x̄ ∈ dom(∂f) := {x ∈ Rm :

∂f(x) ̸= ∅} if there exist η ∈ (0,+∞], a neighborhood U of x̄, and a continuous concave

function ϕ : [0, η) → [0,∞) with the following properties:

i) ϕ(0) = 0,

ii) ϕ is continuously differentiable on (0, η),

iii) ϕ′(x) > 0 for all x ∈ (0, η),

iv) for any x ∈ U with f(x̄) < f(x) < f(x̄) + η, it holds that

ϕ′(f(x) − f(x̄))dist(0, ∂f(x)) ≥ 1. (4.10)

If f satisfies the KL property at every point x ∈ dom(∂f), then f is called a KL function.

Assumption 4.1. Suppose that

a) L̃(W, γ) is a proper, differentiable, and nonnegative function.

b) ∇L̃(W, γ) is Lipschitz continuous with constant L.

c) L̃(W, γ) is a KL function.

Remark 4.1. Assumption 4.1 (a)-(b) are common in the analysis of nonconvex algorithm

(e.g., [10, 20]). For Assumption 4.1, most commonly used loss functions for CNNs are veri-

fied to be KL functions [242]. Some neural network architectures do not satisfy Assumption

4.1(a) when they contain nonsmooth functions and operations, such as the ReLU activation

functions and max poolings. However, these functions and operations can be replaced with

their smooth approximations. For example, the smooth approximation of ReLU is the softplus

function 1
c

log(1+exp(cx)) for some parameter c > 0 while the smooth approximation the max

82

Table 4.1: The average number of scaling factors equal to zero at the end of training.
Channels are pruned when their corresponding scaling factors γi are exactly equal to 0.
Each architecture is trained five times per dataset.

CIFAR 10 CIFAR 100

Architecture Total Channels/γi
Avg. Number

of γi = 0
Avg. Number

of γi = 0
VGG-19 5504 4005.8 2974
DenseNet-40 9360 6545.8 5710
ResNet-164 12112 7087.4 5533.2

function for max pooling is the softmax function
∑n

i=1
xie

cxi∑n
i=1 e

cxi
for some parameter c > 0.

Besides, Fu et al.[72] made a similar assumption to establish convergence for their algorithm

designed for weight and filter pruning. Regardless, our numerical experiments demonstrate

that our proposed algorithm still converges for CNNs containing ReLU activation functions

and max pooling.

For brevity, we denote

F (W, γ, ξ) = L̃(W, γ) + λ∥ξ∥1 +
β

2
∥γ − ξ∥22.

Now, we are ready to present the main theorem:

Theorem 4.1. Under Assumption 4.1, if {(W t, γt, ξt)}∞t=1 generated by Algorithm 3 is

bounded and we have α > L, then {(W t, γt, ξt)}∞t=1 converges to a critical point (W ∗, γ∗, ξ∗)

of F .

The proof is delayed to Section 4.4. The proof needs tools from variational analysis [18, 184]

and requires satisfying three conditions [10, 20, 178]: (1) sufficient decrease in F , (2) relative

error property of ∂F , and (3) subsequential convergence of the iterates (W t, γt, ξt) to a

critical point of F .

83

4.3 Numerical Experiments

We evaluate proximal NS on VGGNet [192], DenseNet [94, 93], and ResNet [89] trained on

CIFAR 10/100 [110].

4.3.1 CIFAR 10/100 Datasets

The CIFAR 10/100 dataset [110] consists of 60,000 natural images of resolution 32×32 with

10/100 categories. The dataset is split into two sets: a training set of 50,000 images and a

test set of 10,000 images. As done in recent works [89, 134], standard augmentation tech-

niques, such as shifting and mirroring, and normalization, are applied to the images before

they are used for training and testing.

4.3.2 Implementation Details

For CIFAR 10/100, the implementation is mostly the same as in [134]. More specifically,

we train the networks from scratch for 160 epochs using stochastic gradient descent with

initial learning rate at 0.1 that reduces by a factor of 10 at the 80th and 120th epochs. In

addition, the models are trained with weight decay 10−4 and Nesterov momentum of 0.9

without damping. The training batch size is 64. However, the parameter λ is set differently.

For our numerical experiments, we have λ = 0.0025 and β = 100 for VGG-19 and λ = 0.001

and β = 1.0 for DenseNet-40 and ResNet-164. We have initially α = 10 in Algorithm 3, the

reciprocal of the learning rate, and it changes accordingly to the learning rate schedule. A

model is trained five times for each architecture and dataset to obtain the average statistics.

The models are trained on NVIDIA GeForce RTX 2080.

84

Table 4.2: Results between the different NS methods on CIFAR 10. Note that we train the
baseline architectures and original NS five times to obtain the average statistics, while the
results for variational NS are originally reported from [252].

Architecture Method
Avg. Training Time

per Epoch (s)
Pre-Pruned/Fine Tuned

% Channels Pruned % Parameters Pruned % FLOPS Pruned
Test Accuracy (%)

Post Pruned/Fine Tuned

VGG-19
Baseline 38.10/—- N/A N/A N/A 93.83/—-

Original NS [134] 37.70/28.04 72.00 87.13 49.98 17.35/93.89
Proximal NS (ours) 40.39/22.86 72.78 91.45 60.86 93.47/93.74

DenseNet-40
Baseline 117.45/—- N/A N/A N/A 94.25/—-

Original NS [134] 119.49/76.49 70.01 63.24 56.72 61.77/94.06
Variational NS [252] Not Reported 60.00 59.67 44.78 93.16/—-
Proximal NS (ours) 118.34/77.70 69.93 64.12 54.70 93.65/93.87

ResNet-164
Baseline 146.41/—- N/A N/A N/A 94.75/—-

Original NS [134] 151.62/121.52 50.00∗ 22.53 30.46 88.96/95.09
Variational NS [252] Not Reported 74.00 56.70 49.08 93.16/—-
Proximal NS (ours) 149.86/116.52 58.52 45.59 45.80 93.72/94.14

∗ This is the maximum possible for all five networks to remain functional for inference.

Table 4.3: Results between the different NS methods on CIFAR 100. Note that we train the
baseline architectures and original NS five times to obtain the average statistics, while the
results for variational NS are originally reported from [252].

Architecture Method
Avg. Training Time

per Epoch (s)
Pre-Pruned/Fine Tuned

% Channels Pruned % Parameters Pruned % FLOPS Pruned
Test Accuracy (%)

Post Pruned/Fine Tuned

VGG-19
Baseline 37.83 N/A N/A N/A 72.73/—-

Original NS [134] 38.03/29.08 54.00 77.86 38.07 1.00/73.10
Proximal NS (ours) 40.40/24.77 54.04 80.14 49.17 71.61/72.72

DenseNet-40
Baseline 117.17 N/A N/A N/A 74.55/—-

Original NS [134] 119.32/80.31 61.00 55.61 49.16 34.64/74.62
Variational NS [252] Not Reported 37.00 37.73 22.67 72.19/—-
Proximal NS (ours) 118.66/81.88 61.00 55.87 45.42 73.32/73.99

ResNet-164
Baseline 145.37 N/A N/A N/A 76.79/—-

Original NS [134] 150.65/120.21 46.00 17.46 30.96 21.57/77.54
Variational NS [252] Not Reported 47.00 17.59 27.16 73.76/—-
Proximal NS (ours) 149.15/119.21 45.68 25.39 33.97 75.67/76.93

4.3.3 Results

We apply proximal NS on VGG-19, DenseNet-40, and ResNet-164 to train them on CIFAR

10/100. According to Table 4.1, proximal NS drives a significant number of scaling factors

to be exactly at zero for each architecture and dataset. In particular, for VGG-19 and

DenseNet-40, at least 54% of the scaling factors are zeroes while for ResNet-164, at least

45% are zeroes. Hence, we can safely remove the channels with zero scaling factors because

they are unnecessary for inference. Using proximal NS, we do not need to determine a

threshold to figure out how many channels to remove and how much accuracy we need to

sacrifice as a result of pruning, like for the original NS algorithm [134].

We compare proximal NS with the original NS [134] and variational NS [252], a Bayesian

version of NS. To evaluate the drop in accuracy as a result of pruning, we include the baseline

accuracy, where the architecture is trained without any regularization on the scaling factors.

85

The models trained with original NS and proximal NS are fine tuned with the same setting

as the first time training but without ℓ1 regularization on the scaling factors. The results

are reported in Tables 4.2-4.3.

Without fine tuning, proximal NS outperforms both the original and variational NS in test

accuracy while reducing a significant amount of parameters and FLOPs. Because proximal

NS trains a model towards a sparse structure, the model accuracy is less than the baseline

accuracy by at most 1.23% and it remains the same between before and after pruning, a

property that the original NS does not have. Although variational NS is designed to preserve

test accuracy after pruning, it does not compress as well as proximal NS for all architectures

except for ResNet-164 trained on CIFAR 10.

After fine tuning the models trained by the original and proximal NS, their model accuracy

improve. However, the fine-tuned models compressed by proximal NS has lower test accuracy

than the models from original NS by at most 0.95%. Although it might be preferable to

have a more accurate model from original NS, the improvement compared to a pruned model

by proximal NS without fine tuning is at most 2% in test accuracy after a few more hours

of training. For example, for ResNet-164 trained on CIFAR 10, proximal NS takes about 7

hours to attain an average accuracy of 93.72% while the original NS requires about 12 hours

total to achieve 1.37% higher accuracy.

Overall, proximal NS yields a model that is generally more compressed and accurate than

the other methods after the first round of training. Fine tuning is optional for proximal NS

if a few more hours of training is permitted to improve the test accuracy by at most 2%

improvement.

86

4.4 Proofs

Before we prove Theorem 4.1, we introduce important definitions and lemmas from varia-

tional analysis.

Definition 4.2 ([184]). Let f : Rn → (−∞,+∞] be a proper and lower semicontinuouous

function.

(a) The Fréchet subdifferential of f at the point x ∈ dom f := {x ∈ Rn : f(x) < ∞} is the

set

∂̂f(x) =

{
v ∈ Rn2

: lim inf
y ̸=x,y→x

f(y) − f(x) − ⟨v, y − x⟩
∥y − x∥

≥ 0

}
.

(b) The limiting subdifferential of f at the point x ∈ dom f is the set

∂f(x) =
{
v ∈ Rn2

: ∃{(xt, yt)}∞t=1 s.t. xt → x, f(xt) → f(x), ∂̂f(xt) ∋ yt → y
}
.

We note that the limiting subdifferential is closed [184]:

(xt, yt) → (x, y), f(xt) → f(x), yt ∈ ∂f(xt) =⇒ y ∈ ∂f(x).

A point x is a critical point of f if 0 ∈ ∂f(x).

Lemma 4.1 (Strong Convexity Lemma [18]). A function f(x) is called strongly convex with

parameter µ if and only if one of the following conditions holds:

a) g(x) = f(x) − µ
2
∥x∥22 is convex.

b) ⟨∇f(x) −∇f(y), x− y⟩ ≥ µ∥x− y∥22 ∀x, y.

c) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + µ
2
∥y − x∥22 ∀x, y.

87

Lemma 4.2 (Descent Lemma [18]). If ∇f(x) is Lipschitz continuous with parameter L > 0,

then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L

2
∥x− y∥22.

To establish global convergence of Algorithm 3, we need to satisfy three conditions given in

the following theorem:

Theorem 4.2 ([20, 178]). Let Ψ : Rn → (−∞,+∞] be a KL function that is proper, lower

semicontinuous, and lower bounded. Suppose that {xt}∞t=1 is a bounded sequence generated

by an algorithm A such that it satisfies the following conditions:

(a) There exists a scalar ρ1 > 0 such that

ρ1∥xt+1 − xt∥22 ≤ Ψ(xt) − Ψ(xt+1)

for all t ∈ N.

(b) There exists a scalar ρ2 > 0 such that for some yt+1 ∈ ∂Ψ(xt+1), we have

∥yt+1∥2 ≤ ρ2∥xt+1 − xt∥2

for all t ∈ N.

(c) Limiting Continuity: Each limit point of {xt}∞t=1 is a critical point of Ψ.

Then the sequence {xt}∞t=1 converges to a critical point x∗ of Ψ.

Before proving Theorem 4.1, we prove some necessary lemmas.

88

Lemma 4.3 (Sufficient Decrease). Let {(W t, γt, ξt)}∞t=1 be a sequence generated by Algorithm

3. Under Assumption 4.1, we have

F (W t+1, γt+1, ξt) − F (W t, γt, ξt) ≤ L− 2α

2
∥(W t+1, γt+1) − (W t, γt)∥22, (4.11)

F (W t+1, γt+1, ξt+1) − F (W t+1, γt+1, ξt) ≤ −α

2
∥ξt+1 − ξt∥22 (4.12)

for all t ∈ N. In addition, when α > L/2, we have

∞∑
t=1

∥(W t+1, γt+1) − (W t, γt)∥22 + ∥ξt+1 − ξt∥22 =
∞∑
t=1

∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥22 < ∞,

(4.13)

which follows that limt→∞ ∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥2 = 0.

Proof. First we define the function

Lt(W, γ) =

L̃(W t, γt) + ⟨∇L̃(W t, γt), (W, γ) − (W t, γt)⟩ +
α

2
∥(W, γ) − (W t, γt)∥22 +

β

2
∥γ − ξt∥22.

(4.14)

We observe that Lt is strongly convex with respect to (W, γ) with parameter α. Because

∇Lt(W
t+1, γt+1) = 0 by (4.7), we use Lemma 4.1 to obtain

Lt(W
t, γt) ≥Lt(W

t+1, γt+1) + ⟨∇Lt(W
t+1, γt+1), (W t, γt) − (W t+1, γt+1)⟩

+
α

2
∥(W t+1, γt+1) − (W t, γt)∥22

≥Lt(W
t+1, γt+1) +

α

2
∥(W t+1, γt+1) − (W t, γt)∥22,

(4.15)

which simplifies to

L̃(W t, γt) +
β

2
∥γt − ξt∥22 − α∥(W t+1, γt+1) − (W t, γt)∥22 ≥

L̃(W t, γt) + ⟨∇L̃(W t, γt), (W t+1, γt+1) − (W t, γt)⟩ +
β

2
∥γt+1 − ξt∥22.

(4.16)

89

Since ∇L̃(W, γ) is Lipschitz continuous with constant L, we have

L̃(W t+1, γt+1) ≤L̃(W t, γt) + ⟨∇L(W t+1, γt+1), (W t+1, γt+1) − (W t, γt)⟩

+
L

2
∥(W t+1, γt+1) − (W t, γt)∥22

(4.17)

by Lemma 4.2. Combining the previous two inequalities gives us

L̃(W t, γt) +
β

2
∥γt − ξt∥22 +

L− 2α

2
∥(W t+1, γt+1) − (W t, γt)∥22 ≥ L̃(W t+1, γt+1) +

β

2
∥γt+1 − ξt∥22.

Adding the term λ∥ξ∥1 on both sides and rearranging the inequality give us (4.11).

By (4.9), we have

λ∥ξt+1∥1 +
β

2
∥γt+1 − ξt+1∥22 +

α

2
∥ξt+1 − ξt∥22 ≤ λ∥ξt∥1 +

β

2
∥γt+1 − ξt∥22. (4.18)

Adding L̃(W t+1, γt+1) on both sides and rearranging the inequality give (4.12).

Summing up (4.11) and (4.12), we have

2α− L

2
∥(W t+1, γt+1) − (W t, γt)∥22 +

α

2
∥ξt+1 − ξt∥22 ≤ F (W t, γt, ξt) − F (W t+1, γt+1, ξt+1).

(4.19)

Note that the left-hand side is nonnegative because we assume that α > L/2. Summing

from t = 1 to t = N − 1, we have

N−1∑
t=1

2α− L

2
∥(W t+1, γt+1) − (W t, γt)∥22 +

α

2
∥ξt+1 − ξt∥22 ≤ F (W 1, γ1, ξ1) − F (WN , γN , ξN)

≤ F (W 1, γ1, ξ1),

(4.20)

90

where the last inequality is true because F (W, γ, ξ) is nonnegative. Taking N → ∞, we have

∞∑
t=1

∥(W t+1, γt+1) − (W t, γt)∥22 + ∥ξt+1 − ξt∥22 =
∞∑
t=1

∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥22 < ∞.

Lemma 4.4 (Relative error property). Let {(W t, γt, ξt)}∞t=1 be a sequence generated by Algo-

rithm 3. Under Assumption 4.1, for any t ∈ N, there exists some wt+1 ∈ ∂F (W t+1, γt+1, ξt+1)

such that

∥wt+1∥2 ≤ (3α + 2L + β)
∥∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)

∥∥
2
. (4.21)

Proof. We note that

∇W L̃(W t+1, γt+1) ∈ ∂WF (W t+1, γt+1, ξt+1), (4.22a)

∇γL̃(W t+1, γt+1) + β(γt+1 − ξt+1) ∈ ∂γF (W t+1, γt+1, ξt+1), (4.22b)

λ∂ξ∥ξt+1∥1 − β(γt+1 − ξt+1) ∈ ∂ξF (W t+1, γt+1, ξt+1). (4.22c)

By the first-order optimality conditions of (4.7) and (4.9), we obtain

∇W L̃(W t, γt) + α(W t+1 −W t) = 0 (4.23a)

∇γL̃(W t, γt) + α(γt+1 − γt) + β(γt+1 − ξt) = 0 (4.23b)

λ∂ξ∥ξt+1∥1 + α(ξt+1 − ξt) − β(γt+1 − ξt+1) ∋ 0. (4.23c)

Combining (4.22a) and (4.23a), (4.22b) and (4.23b), and (4.22c) and (4.23c), we obtain

∇W L̃(W t+1, γt+1) −∇W L̃(W t, γt) − α(W t+1 −W t) = wt+1
1 ∈ ∂WF (W t+1, γt+1, ξt+1),

(4.24a)

91

∇γL̃(W t+1, γt+1) −∇γL̃(W t, γt) − α(γt+1 − γt) − β(ξt+1 − ξt) = wt+1
2 ∈ ∂γF (W t+1, γt+1, ξt+1),

(4.24b)

− α(ξt+1 − ξt) = wt+1
3 ∈ ∂ξF (W t+1, γt+1, ξt+1), (4.24c)

where wt+1 = (wt+1
1 , wt+1

2 , wt+1
3) ∈ ∂F (W t+1, γt+1, ξt+1). As a result, by triangle inequality

and Lipschitz continuity of ∇L̃, we have

∥wt+1
1 ∥2 ≤ α∥W t+1 −W t∥2 + ∥∇W L̃(W t+1, γt+1) −∇W L̃(W t, γt)∥2

≤ α∥W t+1 −W t∥ + L∥(W t+1, γt+1) − (W t, γt)∥2

≤ (α + L)∥(W t+1, γt+1) − (W t, γt)∥2

≤ (α + L)∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥2,

∥wt+1
2 ∥2 ≤ α∥γt+1 − γt∥2 + β∥ξt+1 − ξt∥2 + ∥∇γL̃(W t+1, γt+1) −∇γL̃(W t, γt)∥2

≤ (α + L)∥(W t+1, γt+1) − (W t, γt)∥2 + β∥ξt+1 − ξt∥2

≤ (α + β + L)∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥2,

and

∥wt+1
3 ∥2 ≤ α∥ξt+1 − ξt∥2 ≤ α∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥2.

Therefore, for all t ∈ N, we have

∥wt+1∥2 ≤ ∥wt+1
1 ∥2 + ∥wt+1

2 ∥2 + ∥wt+1
3 ∥2

≤ (3α + 2L + β)
∥∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)

∥∥
2
.

92

Lemma 4.5 (Subsequential convergence). Under Assumption 4.1, if {(W t, γt, ξt)}∞t=1 gen-

erated by Algorithm 3 is bounded, then any limit point (W ∗, γ∗, ξ∗) of {(W t, γt, ξt)}∞t=1 is a

critical point of F .

Proof. Because {(W t, γt, ξt)}∞t=1 is bounded, there exists a convergent subsequence {(W tk , γtk , ξtk)}∞k=1

such that (W tk , γtk , ξtk) → (W ∗, γ∗, ξ∗). We will show that (W ∗, γ∗, ξ∗) is a critical point of

F . By Lemma 4.4, there exists wt+1 ∈ ∂F (W t+1, γt+1, ξt+1) such that

∥wt+1∥2 ≤ (3α + 2L + β)
∥∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)

∥∥
2
.

In addition, we have

lim
t→∞

∥∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)
∥∥
2

= 0,

so we have ∥wt∥2 → 0. Now we need to show that F (W tk , γtk , ξtk) → F (W ∗, γ∗, ξ∗). By 4.1,

F is overall lower semicontinuous, so we have

F (W ∗, γ∗, ξ∗) ≤ lim inf
t→∞

F (W t, γt, ξt). (4.25)

Because F is continuous, we have

lim
k→∞

F (W tk , γtk , ξtk) = F (W ∗, γ∗, ξ∗).

By closedness of subdifferential, we have 0 ∈ ∂F (W ∗, γ∗, ξ∗), establishing that (W ∗, γ∗, ξ∗)

is a critical point of F .

Proof of Theorem 4.1. By Lemma 6, we obtain (4.11) and (4.12), so combining them gives

93

us

F (W t+1, γt+1, ξt+1) − F (W t, γt, ξt) ≤ L− 2α

2
∥(W t+1, γt+1) − (W t, γt)∥22 −

α

2
∥ξt+1 − ξt∥22

≤ L− α

2
∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥22,

(4.26)

or

α− L

2
∥(W t+1, γt+1, ξt+1) − (W t, γt, ξt)∥22 ≤ F (W t, γt, ξt) − F (W t+1, γt+1, ξt+1).

Because α > L, we satisfy condition (a) in Theorem 4.2. Because of Lemma 4.4, condition

(b) of Theorem 4.2 is satisfied. Lastly, condition (c) is proven by Lemma 4.5. Satisfying

all three conditions means that the sequence {(W t, γt, ξt)}∞t=1 converges to a critical point

(W ∗, γ∗, ξ∗) of F .

94

Chapter 5

Conclusion

In Chapter 2, we propose nonconvex sparse group lasso, a nonconvex extension of sparse

group lasso. The ℓ1 norm in sparse group lasso on the weight parameters is replaced with a

nonconvex regularizer whose proximal operator is a thresholding function. Taking advantage

of this property, we develop a new algorithm to optimize loss functions regularized with

nonconvex sparse group lasso for CNNs in order to attain a sparse network with competitive

accuracy. We compare the proposed family of regularizers with various baseline methods on

MNIST and CIFAR 10/100 on different CNNs. The experimental results demonstrate that

in general, nonconvex sparse group lasso generates a more accurate and/or more compressed

CNN than does group lasso. In addition, we compare our proposed algorithm to direct

stochastic gradient descent and proximal gradient descent on Lenet-5 trained on MNIST.

The results show that the proposed algorithm to solve SGL1 yields a satisfactorily sparse

network with lower test error than do the other two algorithms. According to the numerical

results, there is no single sparse regularizer that outperforms all other on any CNN trained

on a given dataset. One regularizer may perform well in one case while it may perform worse

on a different case. Due to the myriad of sparse regularizers to select from and the various

parameters to tune, especially for one CNN trained on a given dataset, one direction is to

95

develop an automatic machine learning framework that efficiently selects the right regularizer

and parameters. In recent works, automatic machine learning can be represented as a matrix

completion problem [227] and a statistical learning problem [82]. These frameworks can be

adapted for selecting the best sparse regularizer, thus saving time for users who are training

sparse CNNs.

In Chapter 3, we improve NS by replacing the ℓ1 regularizer with a sparse, nonconvex

regularizer for penalizing the scaling factors in the batch normalization layers. In particular,

we investigate ℓp(0 < p < 1), Tℓ1, MCP, and SCAD. We apply the proposed methods

onto VGG-19, DenseNet-40, and ResNet-164 trained on CIFAR 10/100 and SVHN. We

observe that ℓp and Tℓ1 save more on parameters and FLOPs than ℓ1 with a slight decrease

in test accuracy. In addition, Tℓ1, especially a = 0.5, preserves model accuracy against

channel pruning. NS with Tℓ1 is competitive against VCP, another NS variant robust against

channel pruning. To attain better accuracy than ℓ1 while having similar compression, MCP

and SCAD perform the best job after their models are pruned and retrained, especially for

VGG-19 and DenseNet-40.

In Chapter 4, we develop an alternative NS algorithm called proximal NS that trains a

CNN towards a sparse, accurate structure, making fine tuning optional. Our experiments

demonstrate that proximal NS can better compress CNNs with accuracy slightly less than

the original baseline. One limitation of proximal NS is that its fine-tuned accuracy is less

than its original NS counterpart. Hence, we plan to investigate how to improve the algorithm

to yield better fine-tuned accuracy.

For future directions, we aim to generalize the NS algorithms to layer normalization [12]

and group normalization [218]. In addition, we shall study proximal cooperative neural

architecture search [226, 224] and include nonconvex, sparse regularizers, such as ℓ1 − ℓ2

[230] and transformed ℓ1 [247], in proximal NS.

96

Part II

Image Segmentation

97

Chapter 6

Introduction

6.1 Motivation and Related Works

Image segmentation is a prevalent, challenging problem in computer vision, aiming to parti-

tion an image into several regions that represent specific objects of interest. Each partitioned

region has similar features such as edges, colors, and intensities. One segmentation method

is the Mumford-Shah (MS) model [163] well-known for its robustness to noise. It finds the

optimal piecewise-smooth approximation of an input image that incorporates region and

boundary information to facilitate segmentation. Given a bounded, open set Ω ⊂ R2 with

Lipschitz boundary and an observed image f : Ω → [0, 1], the MS model can be expressed

as an energy minimization problem,

min
u,Γ

λ

2

∫
Ω
(f − u)2 +

µ

2

∫
Ω\Γ

|∇u|2 + Length(Γ), (6.1)

where λ, µ > 0 are weighing parameters, Γ ⊂ Ω is a compact curve representing the bound-

aries separating disparate objects, and u : Ω → R is an approximation of f that is smooth

in Ω \ Γ but possibly discontinuous across Γ. The middle term
∫
Ω\Γ |∇u|2 ensures that u is

98

piecewise smooth, or more specifically differentiable on Ω \ Γ. The last term “Length(Γ)”

measures the perimeter of Γ that can be mathematically expressed as H1(Γ), which is the

1-dimensional Hausdorff measure in R2 [17]. It is challenging to solve for the minimization

problem (6.1) due to its nonconvex nature and difficulties in discretizing the unknown set of

boundaries. Pock et al. [177] proposed a convex relaxation of (6.1) together with an efficient

primal-dual algorithm. For the boundary issue, one early attempt involved a sequence of

(local) elliptic variational problems [7] to approximate the energy functional (6.1). Later,

nonlocal approximations were adopted in [76, 34] and a finite element approximation was

developed in [37].

By relaxing u from piecewise smooth to piecewise constant, Chan and Vese (CV) [44] pro-

posed a two-phase model to segment the image domain Ω into two regions that are inside

and outside of the curve Γ. The curve can be represented by a level-set function ϕ that is

Lipschitz continuous and satisfies


ϕ(x) > 0 if x is inside Γ,

ϕ(x) = 0 if x is at Γ,

ϕ(x) < 0 if x is outside Γ.

The Heaviside function H(ϕ) is defined by H(ϕ) = 1 if ϕ ≥ 0 and H(ϕ) = 0 otherwise. The

CV model is given by

min
c1,c2,ϕ

ECV (c1, c2, ϕ) := λ

∫
Ω
|f − c1|2H(ϕ) + λ

∫
Ω
|f − c2|2(1−H(ϕ)) + ν

∫
Ω
|∇H(ϕ)|, (6.2)

where λ, ν are two positive parameters and c1, c2 ∈ R are mean intensity values of the two

regions. Originally, the CV model (6.2) was solved by finite difference methods [43, 74].

99

Chan et al. [42] proposed a convex relaxation of the CV model, formulated as

min
u∈[0,1],c1,c2

λ

∫
Ω

(f − c1)
2u + (f − c2)

2(1 − u) +

∫
Ω

|∇u|. (6.3)

The segmented regions can be defined by thresholding u as follows:

inside(Γ) = {(x, y) ∈ Ω : u(x, y) > τ}, outside(Γ) = {(x, y) ∈ Ω : u(x, y) ≤ τ},

with a chosen constant τ ∈ [0, 1]. Since the objective function in (6.3) is convex with

respect to u, it can be minimized using popular convex optimization algorithms, such as split

Bregman [78], alternating direction method of multipliers (ADMM) [21, 73], and primal-dual

hybrid gradient (PDHG) [38, 68]. As a result, (6.3) inspired various segmentation models

[14, 36, 105, 117, 179, 236, 237, 240] that can be solved by convex optimization. As an

alternative to the level-set formulation (6.2), a diffuse-interface approximation to the CV

model was considered in [66], which can be solved efficiently by the Merrimen-Bence-Osher

scheme [161].

The CV model can be extended to vector-valued images [43] and to multiphase segmentation

[23, 204]. The vector-valued extension is straightforward, i.e., replacing f with a vector-

valued input f : Ω → RC and replacing c1, c2 with vector-valued constants c1, c2 ∈ RC , where

C is the number of channels in an image. The multiphase CV model relies on log2(N) level-

set functions to partition Ω into N regions {Ωi}Ni=1, and hence most CV-based multiphase

segmentation methods are limited to power-of-two number of regions so that log2(N) is an

integer. There are two approaches that can deal with an arbitrary number of regions. One

approach represents each region by a single level-set function [187], which unfortunately

causes vacuums and overlapping regions to appear. The other approach defines regions by

membership functions, referred to as fuzzy region (FR) competition [119].

Another approach of finding a piecewise-constant solution to the MS model is the smoothing-

100

and-thresholding (SaT) framework [29]. In SaT, one first finds a smoothed image u by solving

a convex variant of the MS model:

min
u

λ

2

∫
Ω

(f − Au)2 +
µ

2

∫
Ω

|∇u|2 +

∫
Ω

|∇u|, (6.4)

where λ > 0, µ ≥ 0, and A is a linear operator. Specifically, A is the identity operator if

one wants to segment a noisy image f , while it can be a blurring operator for the desire of

segmenting a blurry and noisy image f . The middle term
∫
Ω
|∇u|2 extends the piecewise-

smooth regularization
∫
Ω\Γ |∇u|2 in (6.1) to the entire image domain Ω. The last term

∫
Ω
|∇u|

is the total variation (TV) that approximates the length term in (6.1) based on the coarea

formula [42]. After obtaining a piecewise-smooth approximation, one segments the image

domain into k regions by thresholding u with k − 1 appropriately selected values. SaT has

several advantages over the MS model (6.1) and the CV model (6.2). First, the smoothing

stage involves a strictly convex problem (6.4) to guarantee a unique solution that can be

found by numerous convex optimization algorithms. Second, the thresholding stage allows

for segmenting any number of regions via a clustering algorithm such as k-means clustering

[86, 9]. Lastly, thresholding is independent of smoothing; in other words, thresholding can be

adjusted to obtain a visually appealing segmentation without going back to smoothing again.

SaT was adapted to segment images corrupted by Poisson or multiplicative Gamma noise

[39]. For color images, SaT evolved into the “smoothing, lifting, and thresholding” (SLaT)

framework [28]. The additional lifting stage in SLaT adds the Lab (perceived lightness,

red-green and yellow-blue) color space to provide more discriminatory information than the

conventional RGB color space with correlated color channels. The idea of lifting can also

improve image segmentation of grayscale images whose pixel intensities vary dramatically,

referred to as intensity inhomogeneity. Traditional methods that deal with inhomogeneity

include preprocessing [91] and intensity correction [118, 210]. By generating an additional

image channel [124], SaT/SLaT yields better segmentation results for grayscale images that

101

suffer from intensity inhomogeneity.

6.2 Weighted Anisotropic–Isotropic Total Variation

In (6.3)-(6.4), the TV term ∥∇u∥1 =
∫
Ω
|∇u| approximates the length of the curves that

partition the segmented regions. Furthermore, it is the tightest convex relaxation of the jump

term ∥∇u∥0, which counts the number of jump discontinuities. When u is piecewise constant,

∥∇u∥0 is exactly the total arc length of the curves [194]. Unfortunately, minimizing ∥∇u∥0 is

an NP-hard combinatorial problem, and it is often replaced by ∥∇u∥1 that is algorithmically

and theoretically easier to work with. Numerically, ∥∇u∥1 can be approximated isotropically

[186] or anisotropically [53, 65]:

Jiso(u) =

∫
Ω

√
|Dxu|2 + |Dyu|2, (6.5)

Jani(u) =

∫
Ω

|Dxu| + |Dyu|, (6.6)

where Dx and Dy denote the horizontal and vertical partial derivative operators, respectively.

In order to better approximate ∥∇u∥0, we consider the weighted anisotropic–isotropic TV

(AITV),

Jani(u) − αJiso(u) =

∫
Ω

|Dxu| + |Dyu| − α
√

|Dxu|2 + |Dyu|2 (6.7)

with α ∈ [0, 1]. The AITV term was inspired by recent successes of L1 − L2 minimization

[61, 138, 139, 140, 229, 230] in compressed sensing. Compared with L1, Lp for p ∈ (0, 1)

[48, 113, 222], and L0 [201], the L1 − L2 penalty was shown to have the best performance

in recovering sparse solutions when the sensing matrix is highly coherent or violates the

restricted isometry property [32]. Figure 6.1 compares L0, L1, and L1−αL2 by their contour

102

Figure 6.1: Contour lines of ∥x∥0 (L0) and ∥x∥1 − α∥x∥2 (L1 − αL2), where x ∈ R2 and
α ∈ {0, 0.25, 0.5, 0.75, 1.0}. As α increases, the contour lines of L1 − αL2 are closer to the
ones of L0.

lines in 2D. We observe that as α increases, the contour lines of L1 − αL2 are bending

more inward and closer to the ones of L0. This phenomenon illustrates that L1 − αL2 can

encourage sparsity, and the constant α acts like a parameter controlling to what extent.

By applying L1 − αL2 on the gradient, Lou et al. [141] proposed AITV with a difference-

of-convex algorithm (DCA) [115, 174, 175] for image denoising, deconvolution, and MRI

reconstruction. Later, Li et al. [123] demonstrated the robustness of AITV with respect to

impulsive noise corruption of the data. Both works [123, 141] showed that AITV preserves

sharper image edges than the anisotropic TV. Moreover, AITV is preferred over the isotropic

TV that tends to blur oblique edges [19, 56].

As edges are defined by gradient vectors, it is expected that AITV (L1−αL2) should produce

sparser gradients and maintain sharper edges compared to TV (L1). A preliminary work

that replaced ∥∇u∥1 by AITV in (6.3) was conducted by Park et al. [172], showing better

segmentation results than TV. However, this approach was limited to pre-determined values

103

of c1/c2, grayscale images, and two-phase segmentation (rather than multiphase).

6.3 Organization of Part II

In Part II, we propose incorporating the AITV regularizer in three classes of image segmen-

tation models. In Chapter 7, we propose and analyze the AITV variant of the CV and FR

models and develop DCAs to solve them. This chapter is based on [24]. Afterward, Chapter

8 proposes an AITV variant of the SaT/SLaT framework. In this chapter, we develop an

efficient ADMM algorithm to solve AITV-regularized MS model. Finally, we conclude in

Chapter 9.

104

Chapter 7

A Weighted Difference of Anisotropic

and Isotropic Total Variation for

Relaxed Mumford-Shah Image

Segmentation

In this chapter, we propose to incorporate the AITV term into both CV and FR models

together with an extension to color image segmentation. To solve these models, we de-

velop an alternating minimization framework that involves DCA and PDHG with linesearch

(PDHGLS) [156]. We provide convergence analysis of the proposed algorithms. Experi-

mentally, we compare the proposed models with the classic convex approaches and other

segmentation methods to showcase the effectiveness and robustness of the AITV penalty.

The major contributions of this work are threefold:

• We study the AITV regularization comprehensively in image segmentation, including

grayscale/color image and multiphase segmentation.

105

• We propose an efficient algorithm that combines DCA and PDHGLS with guaranteed

convergence. To the best of our knowledge, this paper pioneers the implementation of

PDHGLS in image segmentation.

• We conduct extensive experiments to demonstrate the effect of the constant α in AITV

on the segmentation performance and the robustness to impulsive noise. We compare

the results with the two-stage segmentation methods.

7.1 Notations

For simplicity, we adopt the discrete notations for images and related models. The space

Rn is equipped with the standard inner product ⟨x, y⟩ =
∑n

i=1 xiyi and standard Euclidean

norm ∥x∥2 =
√

⟨x, x⟩ for x, y ∈ Rn.

Without loss of generality, an image is represented as an m×n matrix, i.e. the image domain

is Ω = {1, 2, . . . ,m} × {1, 2, . . . , n}. We denote X := Rm×n and the all-ones matrix in X as

1. The vector space X is equipped with following inner product and norm:

⟨u, v⟩X =
m∑
i=1

n∑
j=1

ui,jvi,j, ∥u∥X =

√√√√ m∑
i=1

n∑
j=1

u2
i,j ∀u, v ∈ X.

We denote Dx, Dy by the horizontal and vertical partial derivative operators, respectively,

i.e.,

(Dxu)i,j =


ui,j+1 − ui,j if 1 ≤ j ≤ n− 1,

ui,1 − ui,n if j = n,

(Dyu)i,j =


ui+1,j − ui,j if 1 ≤ i ≤ m− 1,

u1,j − um,j if i = m.

106

Let Y := X ×X. Then the discrete gradient operator D : X → Y is defined as

(Du)i,j = ((Dxu)i,j, (Dyu)i,j) ∈ Y.

For any p = (px, py), q = (qx, qy) ∈ Y , the inner product on Y is defined by

⟨p, q⟩Y = ⟨px, qx⟩X + ⟨py, qy⟩X ,

and the norms on Y are

∥p∥Y =

√√√√ m∑
i=1

n∑
j=1

|(px)i,j|2 + |(py)i,j|2, ∥p∥1 =
m∑
i=1

n∑
j=1

(|(px)i,j| + |(py)i,j|) ,

∥p∥2,1 =
m∑
i=1

n∑
j=1

√
|(px)i,j|2 + |(py)i,j|2 =

m∑
i=1

n∑
j=1

∥((px)i,j, (py)i,j)∥2.

We use a bold letter to denote a 3D tensor, e.g., u = (u1, u2, . . . , uN) ∈ XN . We further

denote u<k := (u1, . . . , uk−1) and u>k := (uk+1, . . . , uN) for 1 ≤ k ≤ N . The notations u≤k

and u≥k are defined similarly by including uk. Note that u<1 and u>N are null or empty

variables.

7.2 Anisotropic-Isotropic Chan-Vese Model

Let f ∈ X be an observed image. Suppose the image domain Ω has N = 2M non-overlapping

regions, i.e. Ω =
⋃N

i=1 Ωi and Ωi ∩ Ωj = ∅ for each i ̸= j. Let u = (u1, . . . , uM) ∈ XM and

c = (c1, . . . , cN) ∈ RN . We propose an AITV-regularized Chan-Vese (AICV) model for

multiphase segmentation as follows:

min
u∈B
c∈RN

M∑
k=1

(∥Duk∥1 − α∥Duk∥2,1) + λ
N∑
ℓ=1

⟨fℓ(c), Rℓ(u)⟩X , (7.1)

107

where B =
{
u ∈ XM : (uk)i,j ∈ {0, 1}∀i, j, k

}
, fℓ(c) = (f − cℓ1)2 with square defined ele-

mentwise, and Rℓ(u) is a function of u related to the region Ωℓ such that

Rℓ(u)i,j =


1 if (i, j) ∈ Ωℓ,

0 if (i, j) ̸∈ Ωℓ,

with
∑N

ℓ=1Rℓ(u) = 1. Specifically when N = 2 (M = 1), we have R1(u) = u1 and R2(u) =

1− u1. When N = 4 (M = 2), we have

R1(u)i,j = (u1)i,j(u2)i,j, R2(u)i,j = (u1)i,j[1 − (u2)i,j],

R3(u)i,j = [1 − (u1)i,j](u2)i,j, R4(u)i,j = [1 − (u1)i,j][1 − (u2)i,j].

When N = 8 (M = 3), we have

R1(u)i,j = (u1)i,j(u2)i,j(u3)i,j , R2(u)i,j = (u1)i,j(u2)i,j [1− (u3)i,j],

R3(u)i,j = (u1)i,j [1− (u2)i,j](u3)i,j , R4(u)i,j = (u1)i,j [1− (u2)i,j][1− (u3)i,j],

R5(u)i,j = [1− (u1)i,j](u2)i,j(u3)i,j , R6(u)i,j = [1− (u1)i,j](u2)i,j [1− (u3)i,j],

R7(u)i,j = [1− (u1)i,j][1− (u2)i,j](u3)i,j ,R8(u)i,j = [1− (u1)i,j][1− (u2)i,j][1− (u3)i,j].

For N = 2M with M ≥ 4, Rℓ depends on ℓ’s binary representation to decide whether to

include uk or 1− uk as a factor in Rℓ.

Due to the binary constraint set B, (7.1) is a nonconvex optimization problem, thus numeri-

cally difficult to solve. We relax the binary constraint {0, 1} by a [0, 1] box constraint, which

in turn has Rℓ(u)i,j ∈ [0, 1]. In particular, we rewrite (7.1) as an unconstrained formulation

108

by introducing the indicator function

χU(u) =


0 if ui,j ∈ [0, 1] for all i, j,

+∞ otherwise.

Hence, a relaxed model of (7.1) can be expressed as

min
u∈XM

c∈RN

F̃ (u, c) :=
M∑
k=1

(
∥Duk∥1 − α∥Duk∥2,1 + χU(uk)

)
+ λ

N∑
ℓ=1

⟨fℓ(c), Rℓ(u)⟩X . (7.2)

7.2.1 Numerical Algorithm

We propose an alternating minimization algorithm to find a solution of (7.2) with the fol-

lowing framework:

ut+1 ∈ arg min
u

F̃ (u, ct), (7.3)

ct+1 ∈ arg min
c

F̃ (ut+1, c), (7.4)

where t counts the (outer) iterations. Below, we discuss how to solve each subproblem.

We start with the c-subproblem (7.4), as it is simpler than the other. Notice that we can

solve cℓ separately for each ℓ = 1, . . . , N , i.e.,

ct+1
ℓ ∈ arg min

cℓ

λ⟨fℓ(c), Rℓ(u
t+1)⟩X = arg min

cℓ

λ

m∑
i=1

n∑
j=1

(fi,j − cℓ)
2Rℓ(u

t+1)i,j. (7.5)

If
∑m

i=1

∑n
j=1Rℓ(u

t+1)i,j ̸= 0, we differentiate the objective function in (7.5) with respect to

cℓ, set the derivative equal to zero, and solve for cℓ; otherwise, since the objective function

does not depend on cℓ, the solution can take on any value, so we set the solution to 0 as a

109

default. In summary, there is a closed-form solution to (7.5) for updating ct+1
ℓ , i.e.,

ct+1
ℓ =



m∑
i=1

n∑
j=1

fi,jRℓ(u
t+1)i,j

m∑
i=1

n∑
j=1

Rℓ(u
t+1)i,j

if
m∑
i=1

n∑
j=1

Rℓ(u
t+1)i,j ̸= 0,

0 if
m∑
i=1

n∑
j=1

Rℓ(u
t+1)i,j = 0.

(7.6)

The formula (7.6) implies that ct+1
ℓ is the mean intensity value of the region Ωℓ ⊂ Ω at the

(t + 1)-th iteration.

The u-subproblem (7.3) is separable with respect to each k, i.e.,

ut+1
k ∈ arg min

uk

∥Duk∥1 − α∥Duk∥2,1 + χU(uk) + λ⟨rk(ct,ut+1
<k ,u

t
>k), uk⟩X , (7.7)

where rk(ct,ut+1
<k ,u

t
>k) is a multivariate polynomial of (ut+1

<k ,u
t
>k) obtained by rewriting∑N

ℓ=1⟨fℓ(c), Rℓ(u)⟩X in (7.2) and getting the coefficients in front of uk. Because a general

form of rk is complicated, we provide some specific examples in smaller dimensions. When

N = 2 (M = 1), we have r1(c,u<1,u>1)i,j = (fi,j − c1)
2 − (fi,j − c2)

2; when N = 4 (M = 2),

we have

r1(c,u<1,u>1)i,j =
[
(fi,j − c1)

2 − (fi,j − c2)
2 − (fi,j − c3)

2 + (fi,j − c4)
2
]

(u2)i,j,

+ (fi,j − c2)
2 − (fi,j − c4)

2

r2(c,u<2,u>2)i,j =
[
(fi,j − c1)

2 − (fi,j − c2)
2 − (fi,j − c3)

2 + (fi,j − c4)
2
]

(u1)i,j

+ (fi,j − c3)
2 − (fi,j − c4)

2.

In order to minimize (7.7), we apply a descent algorithm called DCA [115, 174, 175] for

solving a difference-of-convex (DC) optimization problem of the form min
u∈X

g(u)−h(u), where

g and h are proper, lower semicontinuous, and strongly convex functions. The algorithm

110

consists of two steps per iteration with u0 as initialization:


vt ∈ ∂h(ut),

ut+1 ∈ arg min
u∈X

g(u) − ⟨vt, u⟩X .
(7.8)

For each k = 1, . . . ,M , we can express (7.7) as a DC function g(uk) − h(uk) with


g(uk) = ∥Duk∥1 + χU(uk) + λ⟨rk(ct,ut+1

<k ,u
t
>k), uk⟩X + c∥uk∥2X ,

h(uk) = α∥Duk∥2,1 + c∥uk∥2X ,
(7.9)

where c > 0 enforces strong convexity on the functions g and h. Experimentally, c can be

chosen arbitrarily small for better performance. We then compute the subgradient of h(u),

i.e.,

α
D⊤

x Dxu + D⊤
y Dyu√

|Dxu|2 + |Dyu|2
+ 2cu ∈ ∂h(u).

Therefore, the u-subproblem in (7.8) can be expressed as

ut+1
k = arg min

uk

∥Duk∥1 + χU(uk) + λ⟨rk(ct,ut+1
<k ,u

t
>k), uk⟩X + c∥uk∥2X

− α⟨Duk, q
t
k⟩Y − 2c⟨uk, u

t
k⟩X ,

(7.10)

where qtk := ((qx)tk, (qy)
t
k) = (Dxu

t
k, Dyu

t
k)/
√

|Dxut
k|2 + |Dyut

k|2. Note that we compute qtk

elementwise and adopt the convention that if the denominator is zero at some point, the

corresponding qtk value is set to zero, which aligns with the subgradient definition. To

solve the convex problem (7.10), we apply the PDHG algorithm [38, 68, 256] since it was

demonstrated in [38] that PDHG solves imaging models with the TV term [186] efficiently.

111

In general, the PDHG algorithm [38, 68, 256] targets at a saddle-point problem

min
u

max
v

Ψ(u) + ⟨Au, v⟩Y − Φ(v),

where Ψ,Φ are convex functions and A is a linear operator. The PDHG algorithm is outlined

as

uη+1 = (I + τ∂Ψ)−1(uη − τA⊤vη),

ūη+1 = uη+1 + θ(uη+1 − uη),

vη+1 = (I + σ∂Φ)−1(vη + σAūη+1),

with τ, σ > 0, θ ∈ [0, 1]. The inverse is defined by the proximal operator, i.e.,

(I + τ∂Ψ)−1(z) = min
u

(
Ψ(u) +

∥u− z∥2X
2τ

)
,

and similarly for (I + σ∂Φ)−1.

In order to apply PDHG for the uk-problem in (7.10), we define its saddle-point formulation:

min
uk

max
(px)k,(py)k

⟨Dxuk, (px)k⟩X + ⟨Dyuk, (py)k⟩X + χU(uk)

+ λ⟨rk(ct,ut+1
<k ,u

t
>k), uk⟩X + c∥uk∥2X − α⟨Duk, q

t
k⟩Y − 2c⟨uk, u

t
k⟩X

− χP ((px)k) − χP ((py)k),

(7.11)

where (px)k, (py)k are dual variables of Dxuk, Dyuk, and P = {p : |pi,j| ≤ 1 ∀i, j} is a convex

set. Please refer to [35, 38] for the derivation of the saddle-point formulation in more details.

Then we have

Ψk,t(uk) = χU(uk) + λ⟨rk(ct,ut+1
<k ,u

t
>k), uk⟩X + c∥uk∥2X ,

− α⟨Duk, q
t
k⟩Y − 2c⟨uk, u

t
k⟩X ,

112

Auk = (Dxuk, Dyuk)

Φ((px)k, (py)k) = χP ((px)k) + χP ((py)k).

With the initial condition ut,0
k = ut

k, the u-subproblem can be computed as

ut,η+1
k = (I + τ∂Ψk,t)

−1 (ut,η
k − τ

(
D⊤

x (px)ηk + D⊤
y (py)

η
k

))
= min

0≤(uk)i,j≤1

{
λ⟨rk(ct,ut+1

<k ,u
t
>k), uk⟩X + c∥uk∥2X

− α⟨Duk, q
t
k⟩Y − 2c⟨uk, u

t
k⟩X

+
∥uk −

(
ut,η
k − τ

(
D⊤

x (px)ηk + D⊤
y (py)

η
k

))
∥2X

2τ

}
,

(7.12)

where η indexes the inner iteration, as opposed to t for the outer iteration. To solve (7.12),

we derive a closed-form solution that is similar to the one for the u-subproblem of (6.3)

determined in [77]. In particular, we observe that the objective function in (7.12) is proper,

continuous, and strongly convex with respect to uk, so it has a unique minimizer. By

ignoring the constraint and differentiating the objective function in (7.12) with respect to

uk, we obtain

ũt,η+1
k =

2cut
k + 1

τ
ut,η
k

2c + 1
τ

−
λrk(ct,ut+1

<k ,u
t
>k) − αD⊤qtk + (D⊤

x (px)ηk + D⊤
y (py)

η
k)

2c + 1
τ

.

If (ũt,η+1
k)i,j lies in the interval [0, 1], then the (i, j)-entry of the unique minimizer also co-

incides with the minimizer of the constrained problem (7.12). If (ũt,η+1
k)i,j is outside of the

interval, then the (i, j)-entry of the unique minimizer lies at the interval endpoint closest to

the unconstrained minimizer due to the quadratic objective function. As a result, we project

ũt,η+1
k onto [0, 1], leading to a closed-form solution for ut,η+1

k :

ut,η+1
k = min{max{ũt,η+1

k , 0}, 1}, (7.13)

113

where min and max are executed elementwise.

It is straightforward to derive closed-form solutions for (px)k, (py)k in (7.11) given by

(px)η+1
k = ProjP ((px)ηk + σDxū

t,η+1
k),

(py)
η+1
k = ProjP ((py)

η
k + σDyū

t,η+1
k)

(7.14)

with ūt,η+1
k = ut,η+1

k +θ(ut,η+1
k −ut,η

k) and ProjP (p) = p
max{|p|,1} . We see that (7.13) is projected

gradient descent of the primal variable u with entrywise box constraint [0, 1], while (7.14) is

projected gradient ascent of the dual variable (px, py) that is constrained to the set P . The

update order between the primal variable ut,η
k and the dual variables (px)ηk, (py)

η
k does not

matter for PDHG [38, 156]. To further improve the speed and solution quality of PDHG, we

incorporate a linesearch technique [156] that starts with the primal variable, followed by the

dual update. The PDHG algorithm with linesearch is referred to as PDHGLS. Both PDHG

and PDHGLS provide a saddle-point solution (u∗
k, (px)∗k, (py)

∗
k) for (7.11) upon convergence

[38, 156]. Since (7.10) is convex, u∗
k is indeed its solution, independent of the choice between

using PDHG or PDHGLS. We summarize the proposed DCA-PDHGLS algorithm to solve

(7.2) in Algorithm 4.

7.2.2 Convergence Analysis

We analyze the convergence of the sequence

{(ut, ct)}∞t=1 generated by (7.3) and (7.4), which are solved by (7.10) and (7.6), respectively.

We establish in Lemma 7.1 that the sequence {F̃ (ut, ct)}∞t=1 decreases sufficiently, followed

by the convergence result in Theorem 7.1.

Lemma 7.1. Suppose α ∈ [0, 1] and λ > 0. Let {(ut, ct)}∞t=1 be a sequence such that ut is

114

Algorithm 4: DCA-PDHGLS algorithm to solve (7.2)

1 Input:

• Image f

• model parameters α, λ > 0

• strong convexity parameter c > 0

• PDHGLS initial step size τ0 > 0

• PDHGLS primal-dual step size ratio β > 0

• PDHGLS parameter δ ∈ (0, 1)

• PDHGLS step size multiplier µ ∈ (0, 1)

1: Set u0
k = 1 (k = 1, . . . ,M) for some region Σ ⊂ Ω and 0 elsewhere.

2: Compute c0 = (c01, . . . , c
0
N) by (7.6).

3: Set t := 0.
4: while stopping criterion for DCA is not satisfied do
5: for k = 1 to M do
6: Set ut,0

k := ut
k and (px)

0
k = (py)

0
k = 0.

7: Compute ((qx)
t
k, (qy)

t
k) = (Dxu

t
k, Dyu

t
k)/
√
|Dxut

k|2 + |Dyut
k|2.

8: Set θ0 = 1.
9: Set η := 0.
10: while stopping criterion for PDHGLS is not satisfied do
11: Compute ut,η+1

k by (7.13) with τ := τη.
12: Set τη+1 = τη

√
1 + θη.

Linesearch:
13: Compute θη+1 =

τη+1

τη
and ση+1 = βτη+1.

14: Compute ūt,η+1
k = ut,η+1

k + θη+1(u
t,η+1
k − ut,η

k).

15: Compute pη+1
k := ((px)

η+1
k , (py)

η+1
k) by (7.14) with σ := ση+1.

16: if
√
βτη+1∥(D⊤

x (px)
η+1
k , D⊤

y (py)
η+1
k)− (D⊤

x (px)
η
k, D

⊤
y (py)

η
k)∥Y ≤ δ∥pη+1

k − pηk∥Y then
17: Set η := η + 1, and break linesearch
18: else
19: Set τη+1 := µτη+1 and go back to line 13.
20: end if

End of linesearch
21: end while
22: Set ut+1

k := ut,η
k .

23: end for
24: Compute ct+1 by (7.6).
25: Set t := t+ 1.
26: end while

Output: (u, c) := (ut, ct).

generated by (7.10) and ct is generated by (7.6). Then we have

F̃ (ut, ct) − F̃ (ut+1, ct+1) ≥ 2c
M∑
k=1

∥ut
k − ut+1

k ∥2X .

115

Proof. Since ct+1 satisfies (7.6), we have

F̃ (ut+1, ct+1) ≤ F̃ (ut+1, ct). (7.15)

Then we estimate

F̃ ((ut+1
≤k−1,u

t
≥k), ct) − F̃ ((ut+1

≤k ,u
t
≥k+1), c

t)

=∥Dut
k∥1 − ∥Dut+1

k ∥1 − α(∥Dut
k∥2,1 − ∥Dut+1

k ∥2,1) + χU(ut
k) − χU(ut+1

k)

+ λ
N∑
ℓ=1

⟨fℓ(c), Rℓ(u
t+1
≤k−1,u

t
≥k) −Rℓ(u

t+1
≤k ,u

t
≥k+1)⟩X .

(7.16)

It follows from the first-order optimality condition of (7.10) at ut+1
k that there exists pt+1

k ∈

∂
(
∥Dut+1

k ∥1 + χU(ut+1
k)

)
such that

0 = pt+1
k − αD⊤qtk + 2c(ut+1

k − ut
k) + λrk(ct,ut+1

<k ,u
t
>k).

Taking the inner product with ut
k − ut+1

k and rearranging it, we obtain

λ⟨rk(ct,ut+1
<k ,u

t
>k), ut

k − ut+1
k ⟩X

= − ⟨pt+1
k − αD⊤qtk, u

t
k − ut+1

k ⟩X + 2c∥ut+1
k − ut

k∥2X .
(7.17)

The last term in (7.16) can be simplified to

N∑
ℓ=1

⟨fℓ, Rℓ(u
t+1
≤k−1,u

t
≥k) −Rℓ(u

t+1
≤k ,u

t
≥k+1)⟩X = ⟨rk(ct,ut+1

<k ,u
t
>k), ut

k − ut+1
k ⟩X ,

as Rℓ(u) consists of terms with at most one uk, and the terms without ut
k and ut+1

k are

116

cancelled out. Together with (7.16) and (7.17), we get

F̃ ((ut+1
≤k−1,u

t
≥k), ct) − F̃ ((ut+1

≤k ,u
t
≥k+1), c

t)

=∥Dut
k∥1 − ∥Dut+1

k ∥1 − α(∥Dut
k∥2,1 − ∥Dut+1

k ∥2,1)

+ χU(ut
k) − χU(ut+1

k) + λ⟨rk(ct,ut+1
<k ,u

t
>k), ut

k − ut+1
k ⟩X

=∥Dut
k∥1 − ∥Dut+1

k ∥1 − α(∥Dut
k∥2,1 − ∥Dut+1

k ∥2,1)

+ χU(ut
k) − χU(ut+1

k) − ⟨pt+1
k − αD⊤qtk, u

t
k − ut+1

k ⟩X + 2c∥ut+1
k − ut

k∥2X

=
[(
∥Dut

k∥1 − ⟨pt+1
k , ut

k − ut+1
k ⟩X + χU(ut

k)
)
− ∥Dut+1

k ∥1 − χU(ut+1
k)

]
+ α(∥Dut+1

k ∥2,1 − ⟨D⊤qtk, u
t
k − ut+1

k ⟩X − ∥Dut
k∥2,1) + 2c∥ut+1

k − ut
k∥2X .

(7.18)

The definitions of convexity and subgradient yield that

∥Dut
k∥1 + χU(ut

k) − ⟨pt+1
k , ut

k − ut+1
k ⟩X ≥ ∥Dut+1

k ∥1 + χU(ut+1
k), (7.19)

∥Dut+1
k ∥2,1 − ⟨D⊤qtk, u

t+1
k − ut

k⟩X ≥ ∥Dut
k∥2,1. (7.20)

Combining (7.18)-(7.20), we have

F̃ ((ut+1
≤k−1,u

t
≥k), ct) − F̃ ((ut+1

≤k ,u
t
≥k+1), c

t) ≥ 2c∥ut+1
k − ut

k∥2X .

Summing over k = 1, . . . ,M leads to

F̃ (ut, ct) − F̃ (ut+1, ct) =
M∑
k=1

F̃ ((ut+1
≤k−1,u

t
≥k), ct) − F̃ ((ut+1

≤k ,u
t
≥k+1), c

t)

≥ 2c
M∑
k=1

∥ut+1
k − ut

k∥2X .

(7.21)

Therefore, (7.15) and (7.21) establish the desired result.

Theorem 7.1. Suppose α ∈ [0, 1] and λ > 0. Let {(ut, ct)}∞t=1 be a sequence such that ut is

generated by (7.10) and ct is generated by (7.6). We have the following:

117

(a) {(ut, ct)}∞t=1 is bounded.

(b) For k = 1, . . . ,M , we have ∥ut+1
k − ut

k∥X → 0 as t → ∞.

(c) The sequence {(ut, ct)}∞t=1 has a limit point (u∗, c∗) satisfying

0 ∈ ∂∥Du∗
k∥1 − α∂∥Du∗

k∥2,1 + ∂χU(u∗
k) + λrk(c∗,u∗

<k,u
∗
>k) (7.22)

for k = 1, . . . ,M, and

0 ∈ ∂F̃ (u∗, c∗)

∂cℓ
, ℓ = 1, . . . , N. (7.23)

Proof. (a) As each entry of ut
k is bounded by [0, 1] for k = 1, . . . ,M , {ut}∞t=1 is a bounded

sequence. It further follows from (7.6) that 0 ≤ |ct+1
ℓ | ≤ maxi,j |fi,j|. Therefore, {ct}∞t=1 is

also bounded, and altogether so is the sequence {(ut, ct)}∞t=1.

(b) Since α∥Duk∥2,1 ≤ ∥Duk∥1 for α ∈ [0, 1], we have

F̃ (u, c) ≥
M∑
k=1

χU(uk) + λ
N∑
ℓ=1

⟨fℓ, Rℓ(u)⟩X ≥ 0, (7.24)

which implies that F̃ (u, c) is lower bounded. As it is also decreasing by Lemma 7.1, the

sequence {F̃ (ut, ct)}∞t=1 converges. By a telescope summation of (7.21), we obtain

F̃ (u1, c1) − lim
t→∞

F̃ (ut, ct) ≥ 2c
∞∑
t=1

M∑
k=1

∥ut
k − ut+1

k ∥2X = 2c
M∑
k=1

∞∑
t=1

∥ut
k − ut+1

k ∥2X .

Therefore,
∑∞

t=1 ∥ut
k − ut+1

k ∥2X < ∞, leading to lim
t→∞

∥ut
k − ut+1

k ∥2X = 0 for k = 1, . . . ,M .

(c) By Bolzano-Weierstrass Theorem, the bounded sequence {(ut, ct)}∞t=1 has a convergent

subsequence {(utL , ctL)}∞L=1 such that lim
L→∞

(utL , ctL) = (u∗, c∗) . By (b), lim
L→∞

utL+1
k −utL

k = 0.

As lim
L→∞

utL+1
k = lim

L→∞
utL
k = u∗

k, we have lim
L→∞

utL+1 = u∗. Since utL is generated by (7.10), all

118

of its entries are bounded by [0, 1]; otherwise, the objective function would be at +∞. Hence,

χU(utL
k) = 0 and similarly χU(utL+1

k) = 0 for all L, from which follows that χU(u∗
k) = 0. In

short, we have

lim
L→∞

χU(utL
k) = χU(u∗

k) for k = 1, . . . ,M. (7.25)

Now we establish (7.23) by showing that F̃ (u∗, c∗) ≤ F̃ (u∗, c) for all c ∈ Rn. On one hand,

we have

lim
L→∞

F̃ (utL , ctL)

= lim
L→∞

[
M∑
k=1

(
∥DutL

k ∥1 − α∥DutL
k ∥2,1 + χU(utL

k)
)

+ λ
N∑
ℓ=1

⟨fℓ(ctL), Rℓ(u
tL)⟩X

]

=
M∑
k=1

lim
L→∞

(
∥DutL

k ∥1 − α∥DutL
k ∥2,1 + χU(utL

k)
)

+ λ
N∑
ℓ=1

lim
L→∞

⟨fℓ(ctL), Rℓ(u
tL)⟩X

=
M∑
k=1

(∥Du∗
k∥1 − α∥Du∗

k∥2,1 + χU(u∗
k)) + λ

N∑
ℓ=1

⟨fℓ(c∗), Rℓ(u
∗)⟩X = F̃ (u∗, c∗).

(7.26)

We can take the limit as all the terms of F̃ except for χU are continuous with respect to

(u, c). On the other hand, we have

lim
L→∞

F̃ (utL , c)

= lim
L→∞

[
M∑
k=1

(
∥DutL

k ∥1 − α∥DutL
k ∥2,1 + χU(utL

k)
)

+ λ
N∑
ℓ=1

⟨fℓ(c), Rℓ(u
tL)⟩X

]

=
M∑
k=1

lim
L→∞

(
∥DutL

k ∥1 − α∥Duk∥2,1 + χU(utL
k)
)

+ λ
N∑
ℓ=1

lim
L→∞

⟨fℓ(c), Rℓ(u
tL)⟩X

=
M∑
k=1

(∥Du∗
k∥1 − α∥Du∗

k∥2,1 + χU(u∗
k)) + λ

N∑
ℓ=1

⟨fℓ(c), Rℓ(u
∗)⟩X = F̃ (u∗, c).

(7.27)

119

It follows from (7.4) that for all L ∈ N, we have

F̃ (utL , ctL) ≤ F̃ (utL , c) ∀ c ∈ RN . (7.28)

Combined with (7.26)-(7.27),

F̃ (u∗, c∗) = lim
L→∞

F̃ (utL , ctL) ≤ lim
L→∞

F̃ (utL , c) = F̃ (u∗, c) ∀ c ∈ RN

or, equivalently F̃ (u∗, c∗) = inf
c∈RN

F̃ (u∗, c). The minimization with respect to c can be

expressed elementwise for each cℓ, leading to the optimality condition of (7.23).

For the rest of the proof, we establish (7.22). For each k = 1, . . . ,M , the optimality condition

at the (tL + 1)th step of (7.10) is

0 ∈ ∂(∥DutL+1
k ∥1 + χU(utL+1

k)) + λrk(ctL ,utL+1
<k ,utL

>k) + 2c(utL+1
k − utL

k)

− αD⊤qtLk .

(7.29)

Denote sLk := −λrk(ctL ,utL+1
<k ,utL

k) − 2c(utL+1
k − utL

k) + αD⊤qtLk . Then (7.29) implies that

sLk ∈ ∂(∥DutL+1
k ∥1 + χU(utL+1

k)). (7.30)

Since rk(c,u<k,u>k) is continuous in (c,u<k,u>k), we have

lim
L→∞

rk(ctL ,utL+1
<k ,utL

>k) = rk(c∗,u∗
<k,u

∗
>k).

To compute the limit of D⊤qtLk , we recall the multivariate subgradient of

120

∂∥Duk∥2,1 =
∏

(i,j) ∂∥(Duk)i,j∥2, where

∂∥(x1, x2)∥2 =


{

(x1,x2)√
x2
1+x2

2

}
if (x1, x2) ̸= (0, 0) ∈ R2,

{(y1, y2) ∈ R2 : y21 + y22 ≤ 1} if (x1, x2) = (0, 0).

Let ((v∗x,k)i,j, (v
∗
y,k)i,j) := ((Dxu

∗
k)i,j, (Dyu

∗
k)i,j) be the discrete gradient of u∗

k at entry (i, j)

for k = 1, . . . ,M, which satisfies

∂∥(v∗x,k)i,j, (v
∗
y,k)i,j∥2 =
{

((v∗x,k)i,j ,(v
∗
y,k)i,j)√

|(v∗x,k)i,j |2+|(v∗y,k)i,j |2

}
if ((v∗x,k)i,j, (v

∗
y,k)i,j) ̸= (0, 0),

{(y1, y2) ∈ R2 : y21 + y22 ≤ 1} if ((v∗x,k)i,j, (v
∗
y,k)i,j) = (0, 0).

Note that we define qtLk in the following way

(qtLk)i,j =


((Dxu

tL
k)i,j ,(Dyu

tL
k)i,j)√

|(Dxu
tL
k)i,j |2+|(Dyu

tL
k)i,j |2

if ((Dxu
tL
k)i,j, (Dyu

tL
k)i,j) ̸= (0, 0),

(0, 0) if ((Dxu
tL
k)i,j, (Dyu

tL
k)i,j) = (0, 0).

(7.31)

Denote q∗k := lim
L→∞

qtLk . Therefore, by (7.31), when ((v∗x)i,j, (v
∗
y)i,j) ̸= (0, 0), we have

(q∗k)i,j = lim
L→∞

(qtLk)i,j =
((v∗x,k)i,j, (v

∗
y,k)i,j)√

|(v∗x,k)i,j|2 + |(v∗y,k)i,j|2
∈ ∂∥((v∗x,k)i,j, (v

∗
y,k)i,j)∥2,

and when ((v∗x)i,j, (v
∗
y)i,j) = (0, 0), we have

(qtLk)i,j ∈ {(y1, y2) ∈ R2 : y21 + y22 ≤ 1} ⊆ ∂∥((v∗x,k)i,j, (v
∗
y,k)i,j)∥2

for all L ∈ N so that taking the limit L → ∞ yields (q∗k)i,j ∈ ∂∥((v∗x,k)i,j, (v
∗
y,k)i,j)∥2. By the

121

chain rule of the subgradient (Corollary 16 in [85]), we have

∂∥(Du∗
k)i,j∥2 = D⊤∂∥((v∗x,k)i,j, (v

∗
y,k)i,j)∥2.

Since D⊤ is a linear operator (thus continuous), we get

lim
L→∞

D⊤qtLk = D⊤q∗k ∈ ∂∥Du∗
k∥2,1. (7.32)

In short, we obtain that s∗k := lim
L→∞

sLk = −λrk(c∗,u∗
<k,u

∗
>k) + αD⊤q∗k.

It further follows from (7.30) and the subgradient definition that

∥Duk∥1 + χU(uk) ≥ ∥DutL+1
k ∥1 + χU(utL+1

k) + ⟨sLk , uk − utL+1
k ⟩

= ∥DutL+1
k ∥1 + ⟨sLk , uk − utL+1

k ⟩
(7.33)

for all uk ∈ X and L ∈ N. By continuity, we obtain

∥Duk∥1 + χU(uk) ≥ lim
L→∞

(
∥DutL+1

k ∥1 + ⟨sLk , uk − utL+1
k ⟩

)
= ∥Du∗

k∥1 + ⟨s∗k, uk − u∗
k⟩ = ∥Du∗

k∥1 + χU(u∗
k) + ⟨s∗k, uk − u∗

k⟩,

where the last equality is due to χU(u∗
k) = 0. Since both ∥Du∥1 and χU(u) are convex,

s∗k ∈ ∂(∥Du∗
k∥1 + χU(u∗

k)) = ∂∥Du∗
k∥1 + ∂χU(u∗

k). Therefore, we have

0 ∈ ∂∥Du∗
k∥1 + ∂χU(u∗

k) + λrk(c∗,u∗
<k,u

∗
>k) − αD⊤q∗k

⊆ ∂∥Du∗
k∥1 − α∂∥Du∗

k∥2,1 + ∂χU(u∗
k) + λrk(c∗,u∗

<k,u
∗
>k).

This concludes the proof.

Remark 7.1. The limit point (u∗, c∗) is not guaranteed to be a global optimal solution

for (7.2) because the objective function is nonconvex, and (u∗, c∗) may not even satisfy a

122

first-order optimality condition 0 ∈ ∂(u,c)F̃ (u∗, c∗). However, according to Theorem 7.1

(c), each coordinate u∗
k or c∗ℓ satisfies its respective first-order optimality condition, since

(u∗, c∗) = (u∗
1, . . . , u

∗
M , c∗1, . . . , c

∗
N). In convex optimization, if g is convex, a point x∗ is a

critical point if 0 ∈ ∂g(x∗). (7.23) establishes c∗ℓ to be a critical point of the function convex

in cℓ,

m∑
i=1

n∑
j=1

(fi,j − cℓ)
2Rℓ(u)i,j,

which is derived from (7.2) when minimizing for cℓ. In DC optimization, a point x∗ is a

critical point of DC function g − h if 0 ∈ ∂g(u∗) − ∂h(u∗) [115]. However, this optimality

condition is not as strong as the optimality condition 0 ∈ ∂(g−h)(u∗) because ∂(g−h)(u∗) ⊂

∂g(u∗) − ∂h(u∗) in terms of either the Clarke subdifferential or the Fréchet subdifferential

[115]. (7.22) establishes u∗
k to be a DC critical point of the DC function

∥Duk∥1 + χU(uk) + λ⟨rk(c,u<k,u>k), uk⟩X︸ ︷︷ ︸
g(uk)

−α∥Duk∥2,1︸ ︷︷ ︸
h(uk)

,

which is derived from (7.2) when minimizing for uk.

7.3 Fuzzy Extension of the AICV Model

One limitation of the CV models is that they are only applicable for image segmentation

that has specifically power-of-two number (i.e., 2M) of regions. To generalize to an arbitrary

number of regions N , we associate each region Ωℓ with a membership function uℓ for ℓ =

1, . . . , N . A membership function uℓ represents a region Ωℓ in the following way:

(uℓ)i,j =


1 if (i, j) ∈ Ωℓ,

0 if (i, j) ̸∈ Ωℓ.

123

To avoid overlap between uℓ’s, we enforce the constraint
∑N

ℓ=1 uℓ = 1, but we relax it with a

quadratic penalty to make the model numerically tractable. As such, we propose an AITV

extension to the FR model, referred to as AIFR,

min
u∈XN

c∈RN

F̂ (u, c) :=
N∑
ℓ=1

(∥Duℓ∥1 − α∥Duℓ∥2,1 + χU(uℓ)) + λ
N∑
ℓ=1

⟨fℓ(c), uℓ⟩X

+
ν

2

∥∥∥∥∥
N∑
ℓ=1

uℓ − 1

∥∥∥∥∥
2

X

(7.34)

with ν > 0. Similarly to (7.3)-(7.4), we adopt the alternating minimization framework to

solve (7.34), i.e.,

ut+1 ∈ arg min
u

F̂ (u, ct), (7.35)

ct+1 ∈ arg min
c

F̂ (ut+1, c). (7.36)

The c-subproblem (7.36) has a closed-form solution for ℓ = 1, . . . , N ,

ct+1
ℓ =



m∑
i=1

n∑
j=1

fi,j(u
t+1
ℓ)i,j

m∑
i=1

n∑
j=1

(ut+1
ℓ)i,j

if
m∑
i=1

n∑
j=1

(ut+1
ℓ)i,j ̸= 0,

0 if
m∑
i=1

n∑
j=1

(ut+1
ℓ)i,j = 0.

(7.37)

For (7.35), we can find ut+1
ℓ coordinatewise with respect to ℓ by solving

ut+1
ℓ ∈ arg min

uℓ

∥Duℓ∥1 − α∥Duℓ∥2,1 + χU(uℓ) + λ⟨fℓ(c), uℓ⟩X

+
ν

2

∥∥∥∥∥∑
j<ℓ

ut+1
j + uℓ +

∑
j>ℓ

ut
ℓ − 1

∥∥∥∥∥
2

X

.

(7.38)

124

Applying DCA (7.8) to solve for (7.38) gives

ut+1
ℓ = arg min

uℓ

∥Duℓ∥1 + χU(uℓ) + λ⟨fℓ(c), uℓ⟩X

+
ν

2

∥∥∥∥∥∑
j<ℓ

ut+1
j + uℓ +

∑
j>ℓ

ut
ℓ − 1

∥∥∥∥∥
2

X

+ c∥uℓ∥2X

− α⟨Duℓ, q
t
ℓ⟩Y − 2c⟨uℓ, u

t
ℓ⟩X ,

(7.39)

where qtℓ := ((qx)tℓ, (qy)
t
ℓ) = (Dxu

t
ℓ, Dyu

t
ℓ)/
√

|Dxut
ℓ|2 + |Dyut

ℓ|2 if the denominator is not zero.

Similarly to (7.10), we apply PDHGLS to find ut+1
ℓ in (7.39) with the following iteration:

ut,η+1
ℓ = min

max

2cut
ℓ + 1

τ
ut,η
ℓ + ν

(
1−

∑
j<ℓ u

t+1
j −

∑
j>ℓ u

t
ℓ

)
2c + 1

τ
+ ν

(7.40)

−
λfℓ(c) − αD⊤qtℓ + (D⊤

x (px)ηℓ + D⊤
y (py)

η
ℓ)

2c + 1
τ

+ ν
, 0

}
, 1

}
,

ūt,η+1
ℓ = ut,η+1

ℓ + θ(ut,η+1
ℓ − ut,η

ℓ), (7.41)

(px)η+1
ℓ = ProjP ((px)ηℓ + σDxū

t,η+1
ℓ), (7.42)

(py)
η+1
ℓ = ProjP ((py)

η
ℓ + σDyū

t,η+1
ℓ) (7.43)

for ut,0
ℓ = ut

ℓ and τ, σ > 0, θ ∈ [0, 1]. The proposed algorithm is referred to as DCA-PDHGLS,

summarized in Algorithm 5. Convergence analysis of the sequence {(ut, ct)}∞t=1 generated

by (7.39) and (7.37) can be established similarly to the one in Section 2.1.5. Hence, we have

the following theorem, but for the sake of brevity, the proof is omitted.

Theorem 7.2. Suppose α ∈ [0, 1] and λ > 0. Let {(ut, ct)}∞t=1 be a sequence such that ut is

generated by (7.39) and ct is generated by (7.37). We have the following:

(a) {(ut, ct)}∞t=1 is bounded.

(b) For ℓ = 1, . . . , N , we have ∥ut+1
ℓ − ut

ℓ∥X → 0 as t → ∞.

125

Algorithm 5: DCA-PDHGLS algorithm to solve (7.34)

1 Input:

• Image f

• model parameters α, λ > 0

• strong convexity parameter c > 0

• quadratic penalty parameter ν > 0

• PDHGLS initial step size τ0 > 0

• PDHGLS primal-dual step size ratio β > 0

• PDHGLS parameter δ ∈ (0, 1)

• PDHGLS step size multiplier µ ∈ (0, 1)

1: Set u0
ℓ = 1 (ℓ = 1, . . . , N) for some region Σ ⊂ Ω and 0 elsewhere.

2: Compute c0 = (c01, . . . , c
0
N) by (7.37).

3: Set t := 0.
4: while stopping criterion for DCA is not satisfied do
5: for ℓ = 1 to M do
6: Set ut,0

ℓ := ut
ℓ and (px)

0
ℓ = (py)

0
ℓ = 0.

7: Compute ((qx)
t
ℓ, (qy)

t
ℓ) = (Dxu

t
ℓ, Dyu

t
ℓ)/
√

|Dxut
ℓ|2 + |Dyut

ℓ|2.
8: Set θ0 = 1.
9: Set η := 0.
10: while stopping criterion for PDHGLS is not satisfied do
11: Compute ut,η+1

ℓ by (7.40) with τ := τη.
12: Set τη+1 = τη

√
1 + θη.

Linesearch:
13: Compute θη+1 =

τη+1

τη
and ση+1 = βτη+1.

14: Compute ūt,η+1
ℓ = ut,η+1

ℓ + θη+1(u
t,η+1
ℓ − ut,η

ℓ).

15: Compute pη+1
ℓ := ((px)

η+1
ℓ , (py)

η+1
ℓ) by (7.41)-(7.43) with σ := ση+1.

16: if
√
βτη+1∥(D⊤

x (px)
η+1
ℓ , D⊤

y (py)
η+1
ℓ)− (D⊤

x (px)
η
ℓ , D

⊤
y (py)

η
ℓ)∥Y ≤ δ∥pη+1

ℓ − pηℓ ∥Y then
17: Set η := η + 1, and break linesearch
18: else
19: Set τη+1 := µτη+1 and go back to line 13.
20: end if

End of linesearch
21: end while
22: Set ut+1

ℓ := ut,η
ℓ .

23: end for
24: Compute ct+1 by (7.37).
25: Set t := t+ 1.
26: end while

Output: (u, c) := (ut, ct).

(c) The sequence {(ut, ct)}∞t=1 has a limit point (u∗, c∗) satisfying

0 ∈ ∂∥Du∗
ℓ∥1 − α∂∥Du∗

ℓ∥2,1 + ∂χU(u∗
ℓ) + λfℓ(c

∗) + ν

(
N∑
j=1

u∗
j − 1

)
, (7.44)

126

0 ∈ ∂F̂ (u∗, c∗)

∂cℓ
∀ ℓ = 1, . . . , N. (7.45)

7.4 Extension to Color Images

Both AICV (7.2) and AIFR (7.34) models can be extended to color image segmentation. Let

f = (fr, fg, fb) ∈ X3 be a color image and (cℓ,r, cℓ,g, cℓ,b) ∈ R3 for ℓ = 1, . . . , N . By replacing

fℓ(c) with

fℓ(cr, cg, cb) =
∑

ι∈{r,g,b}

(fι − cℓ,ι1)2,

where cι = (c1,ι, . . . , cN,ι) for ι ∈ {r, g, b}, the AICV model for color segmentation is

min
u∈XM

cr,cg ,cb∈RN

M∑
k=1

(∥Duk∥1 − α∥Duk∥2,1 + χU(uk)) + λ
N∑
ℓ=1

⟨fℓ(cr, cg, cb), Rℓ(u)⟩X . (7.46)

Similarly, the AIFR model for color segmentation is

min
u∈XN

cr,cg ,cb∈RN

N∑
ℓ=1

(∥Duℓ∥1 − α∥Duℓ∥2,1 + χU(uℓ)) + λ
N∑
ℓ=1

⟨fℓ(cr, cg, cb), uℓ⟩X

+
ν

2

∥∥∥∥∥
N∑
ℓ=1

uℓ − 1

∥∥∥∥∥
2

X

.

(7.47)

For (7.46) and (7.47), their respective update formulas for cι with ι ∈ {r, g, b} are

cℓ,ι =



m∑
i=1

n∑
j=1

(fι)i,jRℓ(u)i,j

m∑
i=1

n∑
j=1

Rℓ(u)i,j

if
m∑
i=1

n∑
j=1

Rℓ(u)i,j ̸= 0,

0 if
m∑
i=1

n∑
j=1

Rℓ(u)i,j = 0

(7.48)

127

and

cℓ,ι =



m∑
i=1

n∑
j=1

(fι)i,j(uℓ)i,j

m∑
i=1

n∑
j=1

(uℓ)i,j

if
m∑
i=1

n∑
j=1

(uℓ)i,j ̸= 0,

0 if
m∑
i=1

n∑
j=1

(uℓ)i,j = 0.

(7.49)

The update formulas for u are similar to their grayscale counterparts since only fℓ needs to

be replaced with fℓ. Hence, their algorithms are straightforward to derive, thus omitted.

7.5 Numerical Results

In this section, we present extensive experiments on various synthetic and real images to

demonstrate the effectiveness of AITV in image segmentation. In particular, we compare

the AICV and AIFR models for α ∈ {0, 0.25, 0.5, 0.75, 1.0} with the two-stage segmentation

methods that use L1 + L2
2 [28, 29], L0 [193, 219], and real-time Mumford-Shah (RMS) [195]

penalties. When α = 0, the AICV model reduces to the original CV (L1 CV) model [43, 44],

while the AIFR model becomes the fuzzy region competition (L1 FR) model [119]. The

two-stage segmentation methods find a smooth approximation f̄ of the underlying image f

with certain regularization, followed by k-means clustering on f̄ to obtain the segmentation

result. Specifically, Cai et al. [28, 29] proposed an L1 + L2
2 regularization problem1

min
u

λ∥f − u∥2X + γ∥Du∥2Y + ∥Du∥2,1. (7.50)

1Code is available at https://xiaohaocai.netlify.app/download/.

128

https://xiaohaocai.netlify.app/download/

Throughout our numerical experiments, we set γ = 1, which is suggested in [28, 29]. The

L0-regularized model [193, 219] is given by

min
u

λ∥f − u∥2X + ∥Dxu∥0 + ∥Dyu∥0, (7.51)

where ∥ · ∥0 counts the number of nonzero entries of the matrix. The model in (7.51) can be

solved in two different ways. One is by alternating minimization with half-quadratic splitting

[219]2. Another approach [193] incorporates weights for a better isotropic discretizatation

than the original L0 model, followed by ADMM3. The RMS model [195] replaces the L0 norm

in (7.51) by RMS(u) =
∑m

i=1

∑n
j=1 min{γui,j, 1}, thus leading to

min
u

λ∥f − u∥2X + RMS(Dxu) + RMS(Dyu). (7.52)

In our numerical experiments, we consider the piecewise-constant limit case, where γ → ∞.

Its implementation is described in [195, Algorithm 1]. We refer to the models (7.50), (7.51),

and (7.52) as L1 + L2
2, L0, and RMS, respectively.

For the proposed Algorithms 4 and 5, we set c = 10−8, τ0 = 1/8, β = 1.0, δ = 0.9999, and

µ = 7.5 × 10−5, as suggested in [141, 156]. The parameter λ depends on the image, which

will be specified for each testing case. For the stopping criteria, we use the relative error

relerr(u, v) =
∥u− v∥X

max{∥u∥X , ∥v∥X , ϵ}
, (7.53)

where ϵ is the machine’s precision. Following [141], we choose the stopping criterion for the

inner PDHGLS algorithm as relerr(ut,η+1, ut,η) < 10−6. As for the outer iterations, DCA

minimization terminates when relerr(ut+1, ut) < 10−6 and relerr(ut+1, ut) < 10−4 for 2-phase

and 4-phase AICV models, respectively. For the AIFR models, we use the same stopping

2Code is available at http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/.
3Code is available at https://github.com/mstorath/Pottslab.

129

http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/
https://github.com/mstorath/Pottslab

criterion in [120] for the outer iterations, i.e., when all the relative errors of the membership

functions are less than 10−4. We further adjust the maximum number of outer/inner itera-

tions for multiple channels and multiphase segmentation, which are selected empirically for

each image.

We shall apply postprocessing to define the segmented regions. In particular, we convert the

results of Algorithm 4 to a binary output by setting any pixel values greater than or equal

to 0.5 to 1, and 0 otherwise. For the results from Algorithm 5, we set a pixel value (uℓ)i,j

to 1 if it is the maximum among all the membership functions {uk}Nk=1 at pixel (i, j), and 0

otherwise. For a grayscale image f , we define its reconstructed image

f̃ =
N∑
k=1

ck1Ω̃k
, (7.54)

where {ck}Nk=1 and {Ω̃k}Nk=1 are sets of constants and regions obtained by a segmentation

algorithm, respectively, and 1Ω̃k
is a binary image corresponding to the region Ω̃k. The

matrix 1Ω̃k
is obtained by thresholding for Algorithms (4) and (5) or by k-means clustering

for the two-stage segmentation framework. Specifically for Algorithms 4 and 5, the constants

{ck}Nk=1 are the final outputs of (7.6) and (7.37), respectively. For the two-stage segmentation

framework, we compute a smoothed image of f by one of the models (7.50)-(7.52), thus

getting f̄ , and define the constants in (7.54) by

ck =

m∑
i=1

n∑
j=1

f̄i,j(1Ω̃k
)i,j

m∑
i=1

n∑
j=1

(1Ω̃k
)i,j

, k = 1, . . . , N. (7.55)

As k-means clustering applied to f̄ does not produce an empty cluster, the denominator of

130

(a) (b) (c)

Figure 7.1: Synthetic images for image segmentation. (a) Grayscale image for two-phase
segmentation. Size: 385×385. (b) Color image for two-phase segmentation. Size: 385×385.
(c) Color image for four-phase segmentation. Size: 100 × 100.

(7.55) is nonzero. Similarly, the color image f is approximated by f̃ = (f̃r, f̃g, f̃b) given by

f̃ι =
N∑
k=1

ck,ι1Ω̃k
for ι ∈ {r, g, b}, (7.56)

where {ck,ι}Nk=1 is a set of constants for channel ι. For the color versions of Algorithms 4

and 5, the constants are obtained by (7.48) and (7.49), respectively. For the color version

of the two-stage segmentation framework, the constants are computed by (7.55) applied to

each channel of the smoothed image f̄ = (f̄r, f̄g, f̄b).

All the algorithms are coded in MATLAB R2019a and all the computations are performed

on a Dell laptop with a 1.80 GHz Intel Core i7-8565U processor and 16.0 GB of RAM. The

codes are available at https://github.com/kbui1993/L1mL2Segmentation.

7.5.1 Synthetic Images

We apply various segmentation algorithms on the synthetic images presented in Figure 7.1.

We scale the intensity values of all the images to be [0, 1] to ease the parameter tuning.

To demonstrate the robustness of the algorithms with respect to noises, we contaminate

the original images with either salt-and-pepper impulsive noise (SPIN) or random-valued

impulsive noise (RVIN). To evaluate the model performance, we compute the DICE index

131

https://github.com/kbui1993/L1mL2Segmentation

Table 7.1: DICE indices of various segmentation models applied to Figure 7.1a corrupted
with different levels of impulsive noise.

Salt &
Pepper (%)

0 10 20 30 40 50 60 70

L1 − L2 CV 1 0.9977 0.9932 0.9854 0.9594 0.9062 0.8138 0.7643
L1 − 0.75L2CV 1 0.9978 0.9929 0.9853 0.9795 0.9727 0.9678 0.9550
L1 − 0.5L2 CV 1 0.9975 0.9941 0.9893 0.9850 0.9801 0.9726 0.9554
L1 − 0.25L2 CV 1 0.9974 0.9954 0.9910 0.9870 0.9823 0.9711 0.9483
L1 CV 1 0.9981 0.9960 0.9922 0.9877 0.9802 0.9681 0.9338
L1 − L2 FR 1 0.8753 0.7719 0.6833 0.6129 0.5425 0.4702 0.4138
L1 − 0.75L2 FR 1 0.9896 0.9841 0.9693 0.9585 0.9437 0.9183 0.7775
L1 − 0.5L2 FR 0.9998 0.9978 0.9956 0.9923 0.9879 0.9788 0.9495 0.7760
L1 − 0.25L2 FR 0.9995 0.9979 0.9961 0.9925 0.9865 0.9737 0.9347 0.6883
L1 FR 0.9992 0.9978 0.9949 0.9877 0.9812 0.9663 0.8990 0.5053
L1 + L2

2 0.9996 0.9961 0.9925 0.9857 0.9733 0.9328 0.8375 0.6840
L0 [219] 1 0.8731 0.7666 0.6736 0.5943 0.5226 0.4601 0.4035
L0 [193] 0.9995 0.9944 0.9874 0.9792 0.9738 0.9690 0.9605 0.9474
RMS 0.9995 0.9969 0.9947 0.9887 0.9851 0.9784 0.9670 0.9312

Random-
valued (%)

0 10 20 30 40 50 60 70

L1 − L2 CV 1 0.9986 0.9957 0.9909 0.9846 0.9739 0.9534 0.9542
L1 − 0.75L2 CV 1 0.9988 0.9971 0.9948 0.9926 0.9894 0.9840 0.9712
L1 − 0.5L2 CV 1 0.9989 0.9973 0.9958 0.9930 0.9899 0.9816 0.9614
L1 − 0.25L2 CV 1 0.9990 0.9971 0.9957 0.9935 0.9898 0.9808 0.9560
L1 CV 1 0.9984 0.9972 0.9959 0.9928 0.9863 0.9700 0.9332
L1 − L2 FR 1 0.9505 0.9053 0.8578 0.8015 0.7369 0.6478 0.5662
L1 − 0.75L2 FR 1 0.9987 0.9971 0.9945 0.9913 0.9879 0.9715 0.5364
L1 − 0.5L2 FR 0.9998 0.9984 0.9972 0.9955 0.9921 0.9833 0.9538 0.3540
L1 − 0.25L2 FR 0.9995 0.9983 0.9972 0.9940 0.9880 0.9763 0.9299 0.5984
L1 FR 0.9992 0.9983 0.9970 0.9925 0.9833 0.9643 0.8800 0.4503
L1 + L2

2 0.9996 0.9980 0.9960 0.9937 0.9903 0.9858 0.9776 0.9668
L0 [219] 1 0.8753 0.7697 0.6768 0.5981 0.5247 0.4627 0.4054
L0 [193] 0.9995 0.9966 0.9933 0.9904 0.9874 0.9810 0.9688 0.9462
RMS 0.9995 0.9983 0.9971 0.9954 0.9932 0.9850 0.9731 0.9361

132

(a) 60% SPIN (b) L1 + L2
2 (c) L0 [219] (d) L0 [193] (e) RMS

(f) L1 −L2 CV(g) L1−0.75L2

CV
(h) L1 − 0.5L2

CV
(i) L1 − 0.25L2

CV
(j) L1 CV

(k) L1−L2 FR(l) L1 − 0.75L2

FR
(m) L1 − 0.5L2

FR
(n) L1−0.25L2

FR
(o) L1 FR

Figure 7.2: Reconstruction results on Figure 7.1a corrupted with 60% SPIN.

133

(a) 60% RVIN (b) L1 + L2
2 (c) L0 [219] (d) L0 [193] (e) RMS

(f) L1 −L2 CV(g) L1−0.75L2

CV
(h) L1 − 0.5L2

CV
(i) L1 − 0.25L2

CV
(j) L1 CV

(k) L1−L2 FR(l) L1 − 0.75L2

FR
(m) L1 − 0.5L2

FR
(n) L1−0.25L2

FR
(o) L1 FR

Figure 7.3: Reconstruction results on Figure 7.1a corrupted with 60% RVIN.

134

[60] between the segmentation result and the ground truth. The metric is defined by

DICE = 2
#{A(i) ∩ A′(i)}

#{A(i)} + #{A′(i)}
,

where A(i) is the set of pixels with label i in the ground-truth image f or f , A′(i) is the set

of pixels with label i in the segmented image f̃ or f̃ , and #{A} refers to the number of pixels

in the set A. If the DICE index equals 1, it means the perfect alignment of the segmentation

result to the ground truth. For two-phase segmentation, we compute the DICE index only

for the object of interest, not the background. For multiphase segmentation, we compute

the mean of the DICE indices across the regions, including the background.

For the two-phase AICV model, the initialization u0
1 in Algorithm 4 is a binary step function

that represents a circle of radius 10 in the center of the image (i.e., taking the value 1 if inside

the circle and 0 elsewhere). Since the binary step function forms two regions in an image,

it can be used as initialization for the two-phase AIFR model, i.e., u0
1 and u0

2 = 1 − u0
1 for

Algorithm 5. The initialization for the four-phase segmentation requires two step functions,

which are set to be two circles of radius 30 shifted by 5 pixels to the right of the image

center and another by 5 pixels to the left. The circle functions are used here for simplicity.

Contours of the initialization are marked as colored circles in the noisy images.

For Figure 7.1a, we set λ = 2 for all methods, except for L0 [219] in which λ = 50. For

the AIFR models, we set ν = 10. The maximum number of inner iterations for the AITV

models is 300, while the maximum number of outer iterations is 20 for AICV and 40 for

AIFR. Table 7.1 records the DICE indices of the segmentation results for varying levels of

both SPIN and RVIN from 0% to 70%. When the noise level is at least 50%, both L1−0.5L2

and L1 − 0.25L2 CV models outperform L1 CV. For AIFR, L1 − 0.5L2 and L1 − 0.25L2

outperform L1 across all levels of SPIN corruption. In addition, L1 − L2 FR is less robust

than other values of α when the noise level increases. Most of the best results in the cases of

135

(a) 40% SPIN (b) L1−L2 CV (c) L1 CV (d) L1−0.75L2

FR
(e) L1 FR (f) L1 + L2

2

(g) 40% RVIN (h) L1−L2 CV (i) L1 CV (j) L1 − 0.75L2

FR
(k) L1 FR (l) L1 + L2

2

Figure 7.4: Reconstruction results on Figure 7.1b corrupted with 40% SPIN (top) and 40%
RVIN (bottom).

intermediate to high RVIN noise levels are attained by the proposed models. Figures 7.2-7.3

display the segmentation results of Figure 7.1a corrupted with 60% SPIN and 60% RVIN,

respectively. (We note that the contrast of the reconstructed images is different from Figure

7.1a because the impulsive noise in the corrupted image skews the values of the constants

{ck}Nk=1 computed by the segmentation algorithms. This phenomenon repeats for Figures

7.1b-7.1c.) As α decreases in both the AICV and AIFR models, the results become less

noisy, but they have less segmented regions. Therefore, α = 0.5 yields the best compromise

in the case of SPIN. For RVIN, the AICV and AIFR results are not as noisy as in the case of

SPIN, and hence α = 0.75 is the best for RVIN. The two-stage methods generally produce

noisy results in the presence of SPIN and RVIN.

Figure 7.1b is a color version of Figure 7.1a. We corrupt the image by 0% to 50% SPIN/RVIN

for each color channel. When a color image is corrupted with noise, one channel might be

noisier than the others. In addition, image structures may vary with color channels, thus

making the color extension of finding a balanced segmentation across all the color channels

more challenging than for grayscale images. For Figure 7.1b, we set λ = 0.5 for all methods,

136

Table 7.2: DICE indices of various segmentation models applied to Figure 7.1b corrupted
with different levels of impulsive noise.

Salt & Pepper (%) 0 10 20 30 40 50

L1 − L2 CV 1 0.9979 0.9952 0.9920 0.9867 0.9775
L1 − 0.75L2 CV 0.9994 0.9978 0.9957 0.9896 0.9856 0.9737
L1 − 0.5L2 CV 0.9992 0.9970 0.9910 0.9889 0.9826 0.9512
L1 − 0.25L2 CV 0.9982 0.9924 0.9904 0.9829 0.9726 0.9308
L1 CV 0.9938 0.9918 0.9808 0.9755 0.9457 0.9109
L1 − L2 FR 0.9977 0.9960 0.9931 0.9685 0.8187 0.7273
L1 − 0.75L2 FR 0.9979 0.9955 0.9920 0.9873 0.9795 0.9626
L1 − 0.5L2 FR 0.993 0.9908 0.9802 0.9720 0.9635 0.9409
L1 − 0.25L2 FR 0.9818 0.9786 0.9690 0.9462 0.9441 0.9195
L1 FR 0.9774 0.9705 0.9524 0.9383 0.9301 0.8906
L1 + L2

2 0.9931 0.9907 0.9874 0.9794 0.9726 0.9686
L0 [219] 1 0.8734 0.7687 0.6745 0.5945 0.4307
L0 [193] 0.9939 0.9904 0.9823 0.9762 0.9543 0.9266
RMS 0.9853 0.9801 0.9676 0.9444 0.9116 0.8225

Random-valued (%) 0 10 20 30 40 50

L1 − L2 CV 1 0.9987 0.9966 0.9932 0.9887 0.9826
L1 − 0.75L2 CV 0.9994 0.9983 0.9960 0.9915 0.9877 0.9759
L1 − 0.5L2 CV 0.9992 0.9975 0.9916 0.9899 0.9815 0.9535
L1 − 0.25L2 CV 0.9982 0.9928 0.9913 0.9784 0.9748 0.9344
L1 CV 0.9938 0.9920 0.9798 0.9773 0.9493 0.9145
L1 − L2 FR 0.9977 0.9965 0.9943 0.9902 0.9071 0.7154
L1 − 0.75L2 FR 0.9979 0.9960 0.9921 0.9879 0.9815 0.9520
L1 − 0.5L2 FR 0.993 0.9907 0.9797 0.9742 0.9644 0.9526
L1 − 0.25L2 FR 0.9818 0.9781 0.9702 0.9620 0.9534 0.9161
L1 FR 0.9774 0.9656 0.9533 0.9519 0.9316 0.8770
L1 + L2

2 0.9931 0.9912 0.9877 0.9812 0.9755 0.9726
L0 [219] 1 0.9032 0.7991 0.6972 0.6089 0.5312
L0 [193] 0.9939 0.9852 0.9846 0.9786 0.9573 0.9298
RMS 0.9853 0.9797 0.9782 0.9465 0.9074 0.8260

except for L0 [219] in which λ = 50. For the AIFR models, we set ν = 2.5. The maximum

number of inner/outer iterations are the same as the case for Figure 7.1a. The DICE indices

of the segmentation results are reported in Table 7.2, which shows that L1−L2 CV generally

yields the best results and AIFR is slightly worse than its AICV counterpart but better than

L1 FR. Figure 7.4 presents the comparison results of AICV (with optimal α), L1 CV, AIFR

137

Table 7.3: DICE indices of various segmentation models applied to Figure 7.1c corrupted
with different levels of impulsive noise.

Salt & Pepper (%) 0 10 20 30 40

L1 − L2 CV 0.9990 0.9762 0.9524 0.9245 0.8548
L1 − 0.75L2 CV 0.9992 0.9763 0.9649 0.9288 0.8978
L1 − 0.5L2 CV 0.9992 0.9789 0.9704 0.9509 0.9292
L1 − 0.25L2 CV 0.9994 0.9852 0.9686 0.9608 0.9448
L1 CV 0.9987 0.9832 0.9788 0.9597 0.9496
L1 − L2 FR 0.9994 0.7869 0.6566 0.5424 0.4552
L1 − 0.75L2 FR 0.9994 0.9328 0.8736 0.8058 0.6541
L1 − 0.5L2 FR 0.9980 0.9905 0.9847 0.9720 0.8976
L1 − 0.25L2 FR 0.9976 0.9921 0.9863 0.9801 0.9753
L1 FR 0.9976 0.9924 0.9869 0.9804 0.9474
L1 + L2

2 0.9984 0.9904 0.9691 0.8984 0.7562
L0 [219] 1 0.7611 0.6284 0.5134 0.4225
L0 [193] 0.9997 0.9245 0.7977 0.6536 0.4884
RMS 1 0.9900 0.9771 0.9649 0.9575

Random-valued (%) 0 10 20 30 40

L1 − L2 CV 0.9990 0.9895 0.9757 0.9594 0.9261
L1 − 0.75L2 CV 0.9992 0.9910 0.9831 0.9755 0.9664
L1 − 0.5L2 CV 0.9992 0.9934 0.9875 0.9797 0.9737
L1 − 0.25L2 CV 0.9994 0.9934 0.9876 0.9798 0.9771
L1 CV 0.9987 0.9941 0.9884 0.9789 0.9761
L1 − L2 FR 0.9994 0.8841 0.7118 0.6604 0.5972
L1 − 0.75L2 FR 0.9994 0.9916 0.9875 0.9353 0.8790
L1 − 0.5L2 FR 0.998 0.9947 0.9912 0.9851 0.9833
L1 − 0.25L2 FR 0.9976 0.9942 0.9912 0.9849 0.9821
L1 FR 0.9976 0.9921 0.9892 0.9851 0.9553
L1 + L2

2 0.9984 0.9949 0.9857 0.9803 0.9705
L0 [219] 1 0.7744 0.6932 0.5302 0.4478
L0 [193] 0.9997 0.9828 0.9614 0.9482 0.9311
RMS 1 0.9953 0.9900 0.9849 0.9831

138

(a) 40% SPIN (b) L1−0.25L2

CV
(c) L1 CV (d) L1−0.25L2

FR
(e) L1 FR (f) RMS

(g) 40% RVIN (h) L1−0.25L2

CV
(i) L1 CV (j) L1 − 0.5L2

FR
(k) L1 FR (l) RMS

Figure 7.5: Reconstruction results on Figure 7.1c corrupted with 40% SPIN (top) and 40%
RVIN (bottom).

(with optimal α), L1 FR, and L1 + L2
2 for 40% SPIN and 40% RVIN, showing that AICV

and AIFR segment more salient regions than their L1 counterparts and L1 + L2
1.

Figure 7.1c is a color image for multiphase segmentation. We set λ = 2.25 for all methods,

except for L0 [219] in which λ = 50. For the AIFR models, we set ν = 5. The maximum

number of inner iterations for the AITV models is 1000, while the maximum number of

outer iterations is 40 for AICV and 160 for AIFR. Table 7.3 presents the DICE indices of the

segmentation results under 0% to 40% SPIN/RVIN contamination for each color channel.

For SPIN, L1 − 0.25L2 FR is comparable to L1 FR and outperforms it when the noise level

is 40% . For RVIN, L1 − 0.5L2 and L1 − 0.25L2 FR give the best results in general. We also

observe that the smaller α is, the more robust AICV/AIFR are with respect to impulsive

noise. The visual results are presented in Figure 7.5 for 40% SPIN/RVIN, clearly showing

that AIFR provides the best segmentation. AICV and L1 CV contain noise along the edges

of the blue region, L1 FR oversegments the red region, and RMS appears slightly worse than

AIFR.

Overall, the proposed AICV/AIFR methods are robust against impulsive noise, unlike the

139

(a) (b) (c) (d) (e)

Figure 7.6: Real images for image segmentation. (a) Close-up of a target board in a video.
Size: 89 × 121. (b) Image of a hawk. Size: 318 × 370. (c) Image of a butterfly. Size:
321 × 481. (d) Image of a flower. Size: 321 × 481. (e) Image of peppers. Size: 481 × 321.

Table 7.4: PSNR values of segmentation methods applied to real color images. NA stands
for “not applicable.”

Figure 7.6b Figure 7.6c Figure 7.6d Figure 7.6e

L1 − L2 CV 23.3949 21.9000 NA NA
L1 − 0.75L2 CV 23.3933 21.9001 NA NA
L1 − 0.5L2 CV 23.4001 21.8976 NA NA
L1 − 0.25L2 CV 23.3913 21.8985 NA NA
L1 CV 23.3690 21.8977 NA NA
L1 − L2 FR 23.4223 22.2574 21.8283 22.2597
L1 − 0.75L2 FR 23.4014 22.2578 21.8383 22.4880
L1 − 0.5L2 FR 23.3814 22.2576 21.8418 22.4901
L1 − 0.25L2 FR 23.3523 22.2575 21.8418 22.4672
L1 FR 23.3173 22.2570 21.8409 21.9482
L1 + L2

2 23.2601 21.6077 21.1802 21.0277
L0 [219] 23.2419 22.2570 21.7914 22.0361
L0 [193] 23.1985 17.7573 21.8129 21.9703
RMS 23.0865 17.7140 21.7832 22.0904

two-stage methods. For the three synthetic images, AICV and AIFR with appropriately

chosen α outperform their L1 counterparts under a high level of impulsive noise. Unfortu-

nately, there is no optimal choice of α that works for all images, as demonstrated by our

experiments. For example, α = 1.0 yields the highest DICE indices for Figure 7.1b according

to Table 7.2, but it does not perform as well for Figure 7.1a according to Table 7.1.

140

Table 7.5: Computational time (seconds) of segmentation methods applied to real color
images. NA stands for “not applicable.”

Figure 7.6a Figure 7.6b Figure 7.6c Figure 7.6d Figure 7.6e

L1 − L2 CV 2.06 16.09 49.27 NA NA
L1 − 0.75L2 CV 1.86 15.91 55.91 NA NA
L1 − 0.5L2 CV 2.08 15.89 70.68 NA NA
L1 − 0.25L2 CV 2.17 16.09 71.23 NA NA
L1 CV 1.78 16.23 54.94 NA NA
L1 − L2 FR 2.51 43.65 66.27 191.30 212.28
L1 − 0.75L2 FR 1.91 46.26 64.98 185.26 233.79
L1 − 0.5L2 FR 1.23 15.29 68.3 175.67 263.52
L1 − 0.25L2 FR 0.92 13.18 69.49 182.08 227.62
L1 FR 0.72 13.18 69.49 182.08 227.62
L1 + L2

2 0.24 1.8 1.2 1.75 2.48
L0 [219] 0.15 0.92 1.71 1.6 1.97
L0 [193] 0.17 2.96 3.06 3.05 4.26
RMS 0.61 6.60 17.71 17.24 20.10

7.5.2 Real Images

We apply the proposed methods and the two-stage methods on real images (all rescaled

to [0, 1] for the pixel values) shown in Figure 7.6 without additive noise. Figure 7.6a is

provided in [136] while Figures 7.6b-7.6e are provided by the Berkeley Segmentation Dataset

and Benchmark [157]. Specifically, Figures 7.6a and 7.6b are for two-phase segmentation,

Figure 7.6c is for four-phase segmentation, and Figures 7.6d and 7.6e are for five-phase and

seven-phase segmentation, respectively. We set the maximum number of inner iterations for

CV/FR methods as 300, and the maximum number of outer iterations for CV as 20. The

maximum outer iteration number of the FR methods depends on images, which is set to 40

for Figures 7.6a-7.6b, 80 for Figure 7.6c, and 160 for Figures 7.6d-7.6e. Following the work

of [104], we compute the peak signal-to-noise ratio (PSNR) between the reconstructed image

f̃ derived by (7.56) and the original image f . PSNR is defined by 10 log10
3mn∑

ι∈{r,g,b} ∥f̃ι−fι∥2X
,

and it quantitatively measures the quality of the segmentation results for real color images

without ground truth. The PSNR values are recorded in Table 7.4. As the CV methods are

141

inapplicable to non-power-of-2 segmentation examples, we indicate by NA (“not applicable”)

their results on Figures 7.6d-7.6e in Table 7.4.

For Figure 7.6a, we set λ = 100 for all methods, except for L0 [219] in which λ = 10000.

For all FR methods, we set ν = 35. The initialization for the CV and FR methods is a step

function of a circle in the image center with radius 10. The segmentation results of these

competing methods are displayed in Figure 7.7, each equipped with a zoomed-in region of the

bottom right of the image. We observe that as α decreases, the CV methods segment lesser

regions, while the FR methods identify lesser gaps. The results of the two-stage methods

are not as detailed as the results provided by L1 − L2 CV and FR.

For Figure 7.6b, we set λ = 50 for L0 [219], λ = 10 for the other methods, and ν = 10.0

for the FR methods. The initialization for the CV and FR methods is the same as Figure

7.6a. Quantitative comparison of these methods is listed in Table 7.4, showing that the

AICV and AIFR methods outperform their L1 counterparts. The visual results in Figure

7.8 demonstrate that AICV and AIFR can segment finer details, especially on the branch

on the left side of the image and on the hawk, than their L1 counterparts, which thereby

explains their higher PSNR values.

For Figure 7.6c, we set λ = 1000 for all methods and ν = 650 for the FR methods. Initial-

ization for the CV methods are two step functions of circles both with radius 10, one shifted

5 pixels to the left of the image center and the other shifted 5 pixels to the right. For the FR

methods, the initialization of the membership functions are uniformly distributed in [0, 1]

and then normalized. Figure 7.9 compares the AIFR and AICV methods (using the optimal

α value that corresponds to the highest PSNR in Table 7.4) with their L1 counterparts. As

PSNR values are all similar, we do not observe much visual differences between the images

in Figure 7.9.

For Figure 7.6d, we set λ = 650 for all methods, except L0 [219] in which λ = 1000. For the

142

(a) Original (b) L1 + L2
2 (c) L0 [219] (d) L0 [193] (e) RMS

(f) L1 −L2 CV(g) L1−0.75L2

CV
(h) L1 − 0.5L2

CV
(i) L1 − 0.25L2

CV
(j) L1 CV

(k) L1−L2 FR(l) L1 − 0.75L2

FR
(m) L1 − 0.5L2

FR
(n) L1−0.25L2

FR
(o) L1 FR

Figure 7.7: Segmentation results on Figure 7.6a. (The images may need to be zoomed in on
a pdf reader to see the differences.)

FR methods, we set ν = 1050. For Figure 7.6e, we set λ = 500 for all methods and ν = 400

for the FR methods. Initialization of the membership functions for the FR methods is the

same as for Figure 7.6c. The segmentation results of the FR methods and the two-stage

methods are shown in Figures 7.10 and 7.11. In Figure 7.10, the results of the FR methods

have better contrast than the result of L1+L2
2 and thus they look more similar to the original

image. In Figure 7.11, L1 − L2 FR, L1 FR, and L0 are unable to identify the yellow/orange

peppers behind the red peppers, which explains their lower PSNR values. Although the

results of the AIFR methods for α = 0.25, 0.5, 0.75 appear similar to L1 + L2
2 and RMS,

L1 − 0.5L2 attains the best segmentation based on its PSNR value.

143

(a) Original (b) L1 − 0.5L2 CV (c) L1 CV (d) L1−0.75L2 FR (e) L1 FR

Figure 7.8: Reconstruction results on Figure 7.6b.

(a) Original (b) L1−0.75L2

CV
(c) L1 CV (d) L1−0.75L2

FR
(e) L1 FR

Figure 7.9: Reconstruction results on Figure 7.6c.

Last, we report the computational times of the segmentation methods in Table 7.5. Admit-

tedly, the proposed methods are slower compared to other segmentation methods. Besides,

our computational times largely depend on the image size, the number of channels, and the

number of uk’s needed to segment. The acceleration of the proposed scheme will be left for

future investigation.

In summary, given particular choices of α, the AITV models outperform their L1 counterparts

and the two-stage methods. For Figure 7.6a, larger values of α provide better segmentation

results, but this may not be the case for other images. Thus, the optimal α value in an

AITV model varies for an individual image. In addition, although the AITV methods tend

to be slower than the two-stage methods, they are consistently more accurate based on their

PSNR values. This observation is apparent in Figures 7.6c-7.6e, the most complex images

tested in this section.

144

(a) Original (b) L1−L2 FR(c) L1−0.75L2

FR
(d) L1 − 0.5L2

FR
(e) L1−0.25L2

FR

(f) L1 FR (g) L1 + L2
2 (h) L0 [219] (i) L0 [193] (j) RMS

Figure 7.10: Reconstruction results on Figure 7.6d.

(a) Original (b) L1−L2 FR(c) L1−0.75L2

FR
(d) L1 − 0.5L2

FR
(e) L1−0.25L2

FR

(f) L1 FR (g) L1 + L2
2 (h) L0 [219] (i) L0 [193] (j) RMS

Figure 7.11: Reconstruction results on Figure 7.6e.

145

Chapter 8

An Efficient Smoothing and

Thresholding Image Segmentation

Framework with Weighted

Anisotropic-Isotropic Total Variation

In this chapter, we propose an efficient ADMM framework to solve the AITV variant of (6.4)

and demonstrate its efficiency and effectiveness in the SaT/SLaT framework through various

numerical experiments. The efficiency lies in the closed-form solution [138] of the proximal

operator for ℓ1 − αℓ2 to avoid nested loops in DCA as considered in [24, 217]. The main

contributions of this paper are summarized as follows:

1. We provide model analysis such as coerciveness and the existence of global minimizers

for the AITV-regularized variant of (6.4).

2. We develop an efficient ADMM algorithm for minimizing the AITV-based MS model

based on the proximal operator of ℓ1 − αℓ2 with a convergence guarantee.

146

3. We conduct extensive numerical experiments to showcase that the SaT/SLaT frame-

work with AITV regularization is a competitive segmentation method, especially using

our proposed ADMM algorithm. The segmentation framework is robust to noise, blur,

and intensity inhomogeneity.

4. We demonstrate experimentally that the proposed ADMM framework is significantly

more efficient than DCA used in [24, 217] in producing segmentation results of com-

parable or even better quality.

8.1 Preliminaries

8.1.1 Notations

For simplicity, we adopt the discrete notations for images and mathematical models. Without

loss of generality, an image is represented as an M × N matrix, so the image domain is

Ω = {1, 2, . . . ,M} × {1, 2, . . . , N}. Then we denote X := RM×N . We adopt the linear index

for 2D image, where for u ∈ X, we have ui,j ∈ R be the ((i − 1)M + j)th component of u.

The gradient operator ∇ : X → X × X is denoted by ∇u = (∇xu,∇yu) with ∇x and ∇y

being the horizontal and vertical forward difference operators, respectively, with the periodic

boundary condition. Specifically, the (i, j)th entry of ∇u is defined by

(∇u)i,j =

(∇xu)i,j

(∇yu)i,j

 ,

where

(∇xu)i,j =


ui,j − ui,j−1 if 2 ≤ j ≤ N,

ui,1 − ui,n if j = 1

147

and

(∇yu)i,j =


ui,j − ui−1,j if 2 ≤ i ≤ M,

u1,j − um,j if i = 1.

For p = (px, py) ∈ X×X, its ((i−1)M + j)th component is pi,j =

(px)i,j

(py)i,j

 ∈ R2. We define

the following norms on X ×X:

∥p∥1 =
M∑
i=1

N∑
j=1

|(px)i,j| + |(py)i,j|,

∥p∥2 =

√√√√ M∑
i=1

N∑
j=1

|(px)i,j|2 + |(py)i,j|2,

∥p∥2,1 =
M∑
i=1

N∑
j=1

√
(px)2i,j + (py)2i,j.

8.1.2 Review of SaT/SLaT

Both SaT and SLaT frameworks consist of two general steps: (1) smoothing to extract

a piecewise-smooth approximation of a given image and (2) thresholding to segment the

regions via k-means clustering. SLaT has an intermediate stage called lifting, which generates

additional color channels as oppposed to the RGB color space for the smoothed image. More

details for each stage are described below.

148

First Stage: Smoothing

Let f = (f1, . . . , fd) ∈ Xd, where d represents the number of color channels of the image f .

The discretized model of (6.4) for each color channel ℓ = 1, . . . , d can be expressed as

min
uℓ

λ

2
∥fℓ − Auℓ∥22 +

µ

2
∥∇uℓ∥22+∥∇uℓ∥2,1, (8.1)

where λ > 0, µ ≥ 0 and ∥∇u∥22 is a smoothing term to reduce the staircase effects caused

by the isotropic TV ∥∇uℓ∥2,1. We assume the same pair of parameters (λ, µ) across color

channels. In summary, we obtain a smooth approximation uℓ for each channel fℓ by solving

(8.1).

Intermediate Stage: Lifting

For a color image f = (f1, f2, f3) ∈ X3, where f1, f2, and f3 are the red, green, and blue

channels, respectively, we can obtain (u1, u2, u3) by applying the smoothing stage to each

channel of f . Instead of using (u1, u2, u3), SLaT transforms (u1, u2, u3) into (ū1, ū2, ū3) in

the Lab space (perceived lightness, red-green, and yellow-blue) [147] and operates on a new

vector-valued image (u1, u2, u3, ū1, ū2, ū3). The rationale is that RGB channels are highly

correlated, while the Lab space relies on numerical color differences to approximate the color

differences perceived by the human eye. As a result, (u1, u2, u3, ū1, ū2, ū3) leads to better

segmentation results compared to (u1, u2, u3).

Final Stage: Thresholding

After rescaling the image obtained after smoothing and/or lifting, we denote the resultant

image by u∗ ∈ [0, 1]D (For SaT, D = 1; for SLaT, D = 6 if the original image is RGB.)

Suppose the number of segmented regions is given and denoted by k. The thresholding stage

149

Algorithm 6: AITV SaT/SLaT

1 Input:

• image f = (f1, . . . , fd)

• blurring operator A

• fidelity parameter λ > 0

• smoothing parameter µ ≥ 0

• AITV parameter α ∈ [0, 1]

• the number of regions in the image k

Output:Segmentation f̃ Stage one: Compute uℓ by solving (8.3) for ℓ = 1, . . . , d.
Stage two: if f is a grayscale image, i.e., d = 1 then

Go to stage three.

else if f is a color image, i.e, d = 3 then
Transfer u = (u1, u2, u3) into Lab space to obtain (ū1, ū2, ū3) and concatenate to
form (u1, u2, u3, ū1, ū2, ū3).

Stage three: Apply k-means to obtain {(cl,Ωl)}kl=1 and compute f̃ by (8.2).

applies k-means clustering to the vector-valued image u∗, providing k centroids c1, c2, . . . , ck.

These centroids are used to form the regions

Ωl =

{
(i, j) ∈ Ω : ∥u∗i,j − cl∥2 = min

1≤κ≤k
∥u∗i,j − cκ∥2

}
,

for l = 1, . . . , k such that Ωl’s are disjoint and
⋃k

l=1 Ωl = Ω. Using the centorids and regions,

we can obtain a piecewise-constant approximation of f , denoted by

f̃ =
k∑

l=1

cl1Ωl
, where 1Ωl

=


1 if (i, j) ∈ Ωl,

0 if (i, j) ̸∈ Ωl.

(8.2)

150

8.2 Smoothing with AITV Regularization

We replace the isotropic TV in (8.1) by a weighted difference of anisotropic and isotropic

TV, i.e.,

min
u

F (u) :=
λ

2
∥f − Au∥22 +

µ

2
∥∇u∥22 + ∥∇u∥1 − α∥∇u∥2,1, (8.3)

with λ > 0, µ ≥ 0, α ∈ [0, 1]. AITV is a more suitable alternative to TV (no matter whether

it is anisotropic or isotropic), since TV typically fails to recover oblique edges [19, 56], which

can be preserved by AITV [24, 141]. To simplify notations, we omit the subscript ℓ in (8.1),

as the smoothing model is applied channel by channel independently. We show that our

model (8.3) admits a global solution in Section 8.2.1. To find a solution to (8.3), we describe

in Section 8.2.2 the ADMM scheme with its convergence analysis conducted in Section 8.2.3.

The overall AITV SaT/SLaT framework for segmentation is summarized in Algorithm 6.

8.2.1 Model Analysis

In Theorem 8.1 we establish the existence of a global solution to (8.3) by showing that its

objective function F is coercive in Lemma 8.1.

Lemma 8.1. If λ > 0, µ ≥ 0, α ∈ [0, 1), and ker(A)∩ ker(∇) = {0}, then F defined in (8.3)

is coercive.

Proof. We prove by contradiction. Suppose there exists a sequence {un}∞n=1 and a constant

C > 0 such that ∥un∥2 → ∞ and F (un) < C for all n ∈ N. We define a sequence {vn}∞n=1

where vn =
un

∥un∥2
and thereby satisfies ∥vn∥2 = 1 for all n ∈ N. Since {vn}∞n=1 is bounded,

there exists a convergent subsequence {vnk
}∞k=1 such that vnk

→ v∗ and ∥v∗∥2 = 1.

151

It follows from ∥∇u∥2,1 ≤ ∥∇u∥1 that

F (u) ≥ λ

2
∥Au− f∥22 + (1 − α)∥∇u∥1 ≥

λ

2
(∥Au∥2 − ∥f∥2)2 + (1 − α)∥∇u∥1.

Since F (un) < C, we have ∥∇un∥1 < C
1−α

and ∥Aun∥2 <
√

2C
λ

+ ∥f∥2. As a result, we have

∥Avnk
∥2 =

∥Aunk
∥2

∥unk
∥2

<

√
2C
λ

+ ∥f∥2
∥unk

∥2

∥∇vnk
∥1 =

∥∇unk
∥1

∥unk
∥2

<
C

(1 − α)∥unk
∥2
.

After taking the limit nk → ∞, we get ∥Av∗∥2 = 0 and ∥∇v∗∥1 = 0, which implies that

v∗ = 0 due to the assumption that ker(A) ∩ ker(∇) = {0}. However, it contradicts with

∥v∗∥2 = 1, and hence F is coercive.

Theorem 8.1. If λ > 0, µ ≥ 0, α ∈ [0, 1), and ker(A) ∩ ker(∇) = {0}, then F has a global

minimizer.

Proof. As F is lower bounded by 0, it has a minimizing sequence {un}∞n=1. Without loss of

generality, we assume u1 = 0. Since F is coercive by Lemma 8.1, we have F (un) ≤ F (0) < ∞,

showing that {∥∇un∥1}∞n=1 and {∥Aun∥2}∞n=1 are bounded. As ker(A) ∩ ker(∇) = {0}, we

have {un}∞n=1 shall be bounded. Then there exists a convergent subsequence {unk
}∞k=1 such

that unk
→ u∗. Since A and ∇ are both bounded, linear operators, we have Aunk

→ Au∗

and ∇unk
→ ∇u∗. Since norms are continuous and thereby lower semi-continuous, we have

∥∇u∗∥1 − α∥∇u∗∥2,1 ≤ lim inf
k→∞

(∥∇unk
∥1 − α∥∇unk

∥2,1) ,

∥∇u∗∥22 ≤ lim inf
k→∞

∥∇unk
∥22,

∥Au∗ − f∥22 ≤ lim inf
k→∞

∥Aunk
− f∥22.

Altogether, we obtain F (u∗) ≤ lim inf
k→∞

F (unk
), which implies that u∗ minimizes F (u).

152

8.2.2 Numerical Scheme

We describe an efficient algorithm to minimize (8.3) via ADMM. In particular, we introduce

an auxiliary variable w = (wx, wy) ∈ X×X and rewrite (8.3) into an equivalent constrained

optimization problem

min
u,w

λ

2
∥f − Au∥22 +

µ

2
∥∇u∥22 + ∥w∥1 − α∥w∥2,1

s.t. ∇u = w,

(8.4)

where wx = ∇xu and wy = ∇yu. Then the corresponding augmented Lagrangian is expressed

by

Lδ(u,w, z) :=
λ

2
∥f − Au∥22 +

µ

2
∥∇u∥22 + ∥w∥1 − α∥w∥2,1

+ ⟨z,∇u− w⟩ +
δ

2
∥∇u− w∥22

=
λ

2
∥f − Au∥22 +

µ

2
∥∇u∥22 + ∥w∥1 − α∥w∥2,1

+
δ

2

∥∥∥∇u− w +
z

δ

∥∥∥2
2
− 1

2δ
∥z∥22,

where δ > 0 is a penalty parameter and z = (zx, zy) ∈ X×X is a dual variable. The ADMM

iterations proceed as follows:

ut+1 ∈ arg min
u

Lδt(u,wt, zt) (8.5a)

wt+1 ∈ arg min
w

Lδt(ut+1, w, zt) (8.5b)

zt+1 = zt + δt(∇ut+1 − wt+1) (8.5c)

δt+1 = σδt, σ ≥ 1. (8.5d)

Note that σ = 1 reduces to the original ADMM framework [21]. We consider an adaptive

penalty parameter δt by choosing σ > 1. In fact, the parameter σ > 1 controls the numerical

convergence speed of the algorithm in the sense that a larger σ leads to a less number of

153

iterations the algorithm needs to run before satisfying a stopping criterion. However, if δt

increases too quickly, the ADMM algorithm will numerically converge within a few iterations,

which may yield a low-quality solution. Thus, a small σ is recommended and we discuss its

choice in experiments (Section 8.3).

Next we elaborate on how to solve the two subproblems (8.5a) and (8.5b). The subproblem

(8.5a) is written as

ut+1 ∈ arg min
u

λ

2
∥f − Au∥22 +

µ

2
∥∇u∥22 + ⟨zt,∇u− wt⟩ +

δt
2
∥∇u− wt∥22.

The first-order optimality condition of (8.5a) is given by

[
λA⊤A− (µ + δt)∆

]
ut+1 = λA⊤f + δt∇⊤

(
wt −

zt
δt

)
,

where ∆ = −∇⊤∇ is the Laplacian operator. If ker(A)∩ker(∇) = {0}, then λA⊤A−(µ+δt)∆

is positive definite. By assuming the periodic boundary condition, A⊤A and ∆ are block

circulant, so we can solve for ut+1 via the fast Fourier transform F [41, 165, 211]. By the

Convolution Theorem, the closed-form solution for ut+1 is

ut+1 = F−1

λF(A)∗ ◦ F(f) + δtF(∇)∗ ◦ F
(
wt −

zt
δt

)
λF(A)∗ ◦ F(A) − (µ + δt)F(∆)

 ,

where F−1 is the inverse Fourier transform, ∗ denotes complex conjugate, ◦ denotes compo-

nentwise multiplication, and division is also componentwise.

Denote wi,j =

(wx)i,j

(wy)i,j

 ∈ R2 as the (i, j)th entry of w. The subproblem (8.5b) can be

expressed as

wt+1 ∈ argmin
w

∥w∥1 − α∥w∥2,1 +
δt
2

∥∥∥∥∇ut+1 +
zt
δt

− w

∥∥∥∥2
2

.

154

Expanding (8.5b), we get

argmin
w

∑
(i,j)∈Ω

(
∥wi,j∥1 − α∥wi,j∥2 +

δt
2

∥∥∥∥(∇ut+1)i,j +
(zt)i,j
δt

− wi,j

∥∥∥∥2
2

)
, (8.6)

which shows that wi,j can be solved elementwise. Specifically, the optimal solution of wi,j ∈

R2 is related to the proximal operator for ℓ1 − αℓ2 defined by

prox(y;α, β) = argmin
x

∥x∥1 − α∥x∥2 +
1

2β
∥x− y∥22. (8.7)

The closed-form solution for (8.7) is given in Lemma 8.2 [138]. By comparing (8.6) and (8.7),

the w-update is given by ∀(i, j) ∈ Ω,

(wt+1)i,j = prox

(
(∇ut+1)i,j +

(zt)i,j
δt

;α,
1

δt

)
.

Lemma 8.2 ([138]). Given y ∈ Rn, β > 0, and α ≥ 0, the optimal solution to (8.7) can be

discussed separately into the following cases:

1. When ∥y∥∞ > β, we have

x∗ = (∥ξ∥2 + αβ)
ξ

∥ξ∥2
,

where ξ = sign(y) ◦ max(|y| − β, 0).

2. When (1 − α)β < ∥y∥∞ ≤ β, then x∗ is a 1-sparse vector such that one chooses

i ∈ arg max
j

(|yj|) and defines x∗
i = (|yi| + (α− 1)β) sign(yi) and the rest of the elements

equal to 0.

3. When ∥y∥∞ ≤ (1 − α)β, then x∗ = 0.

In summary, the ADMM scheme that minimizes (8.3) is presented in Algorithm 7.

155

Algorithm 7: ADMM for minimizing the AITV-Regularized smoothing model

1 Input:

• image f

• blurring operator A

• fidelity parameter λ > 0

• smoothing parameter µ ≥ 0

• AITV parameter α ∈ [0, 1]

• penalty parameter δ0 > 0

• penalty multiplier σ ≥ 1

• relative error ϵ > 0

Output:ut Initialize u0, w0, z0.
Set t = 0.
while ∥ut−ut−1∥2

∥ut∥2 > ϵ do

ut+1 = F−1

λF(A)∗ ◦ F(f) + δtF(∇)∗ ◦ F
(
wt −

zt
δt

)
λF(A)∗ ◦ F(A) − (µ + δt)F(∆)


(wt+1)i,j = prox

(
(∇ut+1)i,j +

(zt)i,j
δt

;α,
1

δt

)
∀(i, j) ∈ Ω

zt+1 = zt + δt(∇ut+1 − wt+1)

δt+1 = σδt

t := t + 1

8.2.3 Convergence Analysis

We aim to analyze the convergence for Algorithm 7. It is true that global convergence of

ADMM has been established in [58] for certain classes of nonconvex optimization problems,

but unfortunately it cannot be applied to our problem (8.4) since the gradient operator ∇

is not surjective. Instead of global convergence, we manage to achieve weaker subsequential

convergence for two cases: σ = 1 and σ > 1. The proof of σ > 1 is adapted from [81, 235].

156

Before providing convergence results for ADMM, we provide a definition of subdifferential for

general functions. For a function h : Rn → R∪{∞}, we denote the (limiting) subdifferential

by ∂h(x) [184, Definition 11.10], which is defined as a set

∂h(x) = {v ∈ Rn : ∃{(xt, vt)}∞t=1 s.t. xt → x, h(xt) → h(x), ∂̂h(xt) ∋ vt → v},

with

∂̂h(x) =

{
v ∈ Rn : lim inf

z→x,z ̸=x

h(z) − h(x) − ⟨v, z − x⟩
∥z − x∥2

≥ 0

}
.

Since ∂̂h(x) ⊂ ∂h(x) where h is finite on x, the graph x 7→ ∂h(x) is closed [54, 184] by

definition:

vt ∈ ∂h(xt), xt → x, h(xt) → h(x), vt → v =⇒ v ∈ ∂h(x).

Lemma 8.3. Suppose that ker(A) ∩ ker(∇) = {0} and α ∈ [0, 1). Let {(ut, wt, zt)}∞t=1 be

generated by (8.5a)-(8.5d) with σ ≥ 1. The following inequality holds,

Lδt+1(ut+1, wt+1, zt+1) − Lδt(ut, wt, zt) ≤
σ + 1

2σtδ0
∥zt+1 − zt∥22 −

ζ

2
∥ut+1 − ut∥22, (8.9)

where ζ > 0 is the smallest eigenvalue of λA⊤A + (µ + δ0)∇⊤∇.

Proof. It is straightforward that u⊤A⊤Au = ∥Au∥22 ≥ 0 and u⊤∇⊤∇u = ∥∇u∥22 ≥ 0 for

any u ∈ X, so ζ ≥ 0. If ζ = 0, then there exists a nonzero vector x ∈ X such that

λ∥Ax∥22 + (µ + δ0)∥∇x∥22 = λx⊤A⊤Ax + (µ + δ0)x
⊤∇⊤∇x = 0. Then we shall have x ∈

ker(A) ∩ ker(∇), contradicting that ker(A) ∩ ker(∇) = {0}. Therefore, ζ > 0 and hence we

get

λ∥Au∥22 + (µ + δ0)∥∇u∥22 ≥ ζ∥u∥22 ∀u ∈ X.

157

As δt+1 ≥ δt (σ ≥ 1), Lδt(u,wt, zt) is a strongly convex function of u with parameter ζ > 0.

Fixing wt, zt, the minimizer ut+1 of Lδt(u,wt, zt) in (8.5a) satisfies the following inequality

[18, Theorem 5.25],

Lδt(ut+1, wt, zt) − Lδt(ut, wt, zt) ≤ −ζ

2
∥ut+1 − ut∥22. (8.10)

As wt+1 is the optimal solution to (8.5b), we have

Lδt(ut+1, wt+1, zt) − Lδt(ut+1, wt, zt) ≤ 0. (8.11)

It follows from the update (8.5c) that

Lδt(ut+1, wt+1, zt+1) − Lδt(ut+1, wt+1, zt) = ⟨zt+1 − zt,∇ut+1 − wt+1⟩

=
1

δt
∥zt+1 − zt∥22.

(8.12)

Similarly, we get

Lδt+1(ut+1, wt+1, zt+1) − Lδt(ut+1, wt+1, zt+1) =
δt+1 − δt

2
∥∇ut+1 − wt+1∥22

=
δt+1 − δt

2δ2t
∥zt+1 − zt∥22.

(8.13)

Combining (8.10)-(8.13) leads to the desired inequality

Lδt+1(ut+1, wt+1, zt+1) − Lδt(ut, wt, zt) ≤
δt+1 − δt

2δ2t
∥zt+1 − zt∥22 +

1

δt
∥zt+1 − zt∥22

− ζ

2
∥ut+1 − ut∥22

=
σ + 1

2σtδ0
∥zt+1 − zt∥22 −

ζ

2
∥ut+1 − ut∥22.

Proposition 8.1. Suppose that ker(A) ∩ ker(∇) = {0} and α ∈ [0, 1). Let {(ut, wt, zt)}∞t=1

158

be generated by (8.5a)-(8.5d). Assume one of the conditions holds:

• σ = 1 and
∞∑
i=0

∥zi+1 − zi∥22 < ∞.

• σ > 1.

Then we have the following statements:

(a) The sequence {(ut, wt, zt)}∞t=1 is bounded.

(b) ut+1 − ut → 0, as t → ∞.

Proof. (a) We start by proving the boundedness of {zt}∞t=1. The optimality condition of

(8.5b) at iteration t is expressed by

0 ∈ ∂ (∥wt+1∥1 − α∥wt+1∥2,1) − δt (∇ut+1 − wt+1) − zt. (8.14)

Together with (8.5c), we have

zt+1 ∈ ∂ (∥wt+1∥1 − α∥wt+1∥2,1) ⊂ ∂∥wt+1∥1 − α∂∥wt+1∥2,1, (8.15)

which implies that there exist two vectors v1 ∈ ∂∥wt+1∥1 and v2 ∈ ∂∥wt+1∥2,1 such that

zt+1 = v1 − αv2. For any v ∈ ∂∥w∥1, we have

(vx)i,j = sign((wx)i,j) and (vy)i,j = sign((wy)i,j), (8.16)

which guarantees that ∥v∥∞ ≤ 1. If z ∈ ∂∥w∥2,1, then

zi,j =


wi,j

∥wi,j∥2
if ∥wi,j∥2 ̸= 0,

∈ {zi,j ∈ R2 : ∥zi,j∥2 ≤ 1} if ∥wi,j∥2 = 0.

(8.17)

159

By (8.17), we have ∥(v2)i,j∥2 ≤ 1, which means that ∥v2∥∞ ≤ 1. As a result, ∥zt+1∥∞ ≤

∥v1∥∞ + α∥v2∥∞ ≤ 2. Altogether, we arrive at an upper bound, i.e.,

∥zt+1∥2 =

√∑
i,j

(|(zt+1,x)i,j|2 + |(zt+1,y)i,j|2) ≤
√

22(2MN) = 2
√

2MN. (8.18)

By telescoping summation of (8.9), we have for all t that

Lδt+1(ut+1, wt+1, zt+1) ≤Lδ0(u0, w0, z0) +
(σ + 1)

2δ0

t∑
i=0

1

σi
∥zi+1 − zi∥22

≤Lδ0(u0, w0, z0) +
(σ + 1)

2δ0

∞∑
i=0

1

σi
∥zi+1 − zi∥22.

Now that {zt}∞t=1 is bounded, then {∥zt+1−zt∥22}∞t=1 is bounded. Denote C := sup
t∈N

∥zt+1−zt∥22.

If σ = 1 and
∞∑
i=0

∥zi+1 − zi∥22 < ∞, then {Lδt(ut, wt, zt)}∞t=1 is uniformly bounded above. On

the other hand, if σ > 1, then we get

Lδt+1(ut+1, wt+1, zt+1) ≤ Lδ0(u0, w0, z0) +
C(σ + 1)

2δ0

∞∑
i=0

1

σi
< ∞,

where the infinite sum converges for σ > 1. In either case, we have that {Lδt(ut, wt, zt)}∞t=1 is

uniformly bounded above, and hence there exists a constant C̃ > 0 such that Lδt(ut, wt, zt) <

C̃.

Since ∥w∥2,1 ≤ ∥w∥1, we have

(1 − α)∥wt∥1 −
1

2δt
∥zt∥22 ≤ ∥wt∥1 − α∥wt∥2,1 −

1

2δt
∥zt∥22 ≤ Lδt(ut, wt, zt) ≤ C̃.

This suggests an upper bound of ∥wt∥1, i.e.,

∥wt∥1 ≤
1

1 − α

(
C̃ +

1

2δt
∥zt∥22

)
≤ 1

1 − α

(
C̃ +

4MN

δ0

)
.

160

It further follows from (8.5c) that

∥∇ut∥2 =

∥∥∥∥zt − zt−1

δt−1

+ wt

∥∥∥∥
2

≤ 4
√

2MN

δ0
+ C̄,

where C̄ is an upper bound of ∥wt∥2 for all t ∈ N. Lastly, we observe that

λ

2
∥f − Aut∥22 −

1

2δt
∥zt∥22 ≤ Lδt(ut, wt, zt) ≤ C̃.

As {zt}∞t=1 is bounded, then {∥f −Aut∥22}∞t=1 is bounded as well. Altogether {F (ut)}∞t=1 is a

bounded sequence, and hence we conclude that {ut}∞t=1 is bounded by coercivity in Lemma

8.1.

(b) By Lemma 8.3, we can derive

Lδt+1(ut+1, wt+1, zt+1) ≤ L0(u0, w0, z0) +
(σ + 1)

2δ0

t∑
i=0

1

σi
∥zi+1 − zi∥22 −

ζ

2

t∑
i=0

∥ui+1 − ui∥22.

By (8.18), we have

Lδt+1(ut+1, wt+1, zt+1) ≥ − 1

2δt+1

∥zt+1∥22 ≥ −4MN

δ0
, ∀t ∈ N. (8.19)

Combining the two inequalities gives us

−4MN

δ0
+

ζ

2

t∑
i=0

∥ui+1 − ui∥22 ≤Lδt+1(ut+1, wt+1, zt+1) +
ζ

2

t∑
i=0

∥ui+1 − ui∥22

≤L0(u0, w0, z0) +
(σ + 1)

2δ0

t∑
i=0

1

σi
∥zi+1 − zi∥22.

As t → ∞, we obtain

0 ≤ ζ

2

∞∑
i=0

∥ui+1 − ui∥22 ≤ Lδ0(u0, w0, z0) +
(σ + 1)

2δ0

∞∑
i=0

1

σi
∥zi+1 − zi∥22 +

4MN

δ0
.

161

Earlier in proving the boundedness of {Lδt(ut, wt, zt)}∞t=1, we show that the summation
∞∑
i=0

1

σi
∥zi+1 − zi∥22 converges. As a result, the summation

∞∑
i=0

∥ui+1 − ui∥22 converges, which

implies that ut+1 − ut → 0.

Proposition 8.1 reveals an advantage of using the adaptive penality parameter with σ > 1.

For σ = 1, we require
∞∑
i=0

∥zi+1 − zi∥22 < ∞ in order for the iterates {(ut, wt, zt)}∞t=1 of

Algorithm 7 to be bounded and to satisfy the relative stopping criterion ∥ut−ut−1∥2
∥ut∥2 < ϵ. The

requirement
∞∑
i=0

∥zi+1 − zi∥22 < ∞ is no longer necessary if σ > 1.

Finally, we establish the subsequential convergence in Theorem 8.2 under stronger conditions

compared to the ones in Proposition 8.1. These conditions are motivated by a series of works

[46, 45, 105, 104, 120, 126] that proved the theoretical convergence of ADMM in solving TV-

based inverse problems.

Theorem 8.2. Let {(ut, wt, zt)}∞t=1 be generated by (8.5a)-(8.5d). Assume one set of the

following conditions holds:

• σ = 1 and
∞∑
i=0

∥zi+1 − zi∥22 < ∞.

• σ > 1, δt(wt+1 − wt) → 0, and zt+1 − zt → 0.

Then there exists a subsequence of {(ut, wt, zt)}∞t=1 whose limit point (u∗, w∗, z∗) is a KKT

point of (8.4) that satisfies

0 = λA⊤(Au∗ − f) − µ∆u∗ + ∇⊤z∗ (8.20a)

z∗ ∈ ∂ (∥w∗∥1 − α∥w∗∥2,1) (8.20b)

∇u∗ = w∗. (8.20c)

Proof. By Proposition 8.1, {(ut, wt, zt)}∞t=1 is bounded, and hence there exists a subsequence

that converges to a point (u∗, w∗, z∗), denoted by (utk , wtk , ztk) → (u∗, w∗, z∗). Proposition 8.1

162

also establishes lim
t→∞

ut+1 − ut = 0, which implies that lim
k→∞

utk+1 = lim
k→∞

utk = u∗. Either set

of assumptions establishes lim
k→∞

ztk+1 = lim
k→∞

ztk = z∗. The optimality conditions at iteration

tk are

0 = λA⊤(Autk+1 − f) − µ∆utk+1 + δtk∇⊤(∇utk+1 − wtk) + ∇⊤ztk (8.21a)

0 ∈ ∂ (∥wtk+1∥1 − α∥wtk+1∥2,1) − δtk (∇utk+1 − wtk+1) − ztk (8.21b)

ztk+1 = ztk + δtk(∇utk+1 − wtk+1). (8.21c)

Next we discuss two sets of assumptions individually.

If σ = 1, then δtk = δ0 for each iteration tk. Together with lim
t→∞

zt+1 − zt = 0, we have

lim
t→∞

∇ut − wt = 0 by (8.5c) and

∇u∗ = lim
k→∞

∇utk = lim
k→∞

(∇utk − wtk) + lim
k→∞

wtk = w∗,

leading to (8.20c). According to (8.21a), the point utk+1 satisfies

0 =λA⊤(Autk+1 − f) − µ∆utk+1 + δ0∇⊤(∇utk+1 − wtk) + ∇⊤ztk

=λA⊤(Autk+1 − f) − µ∆utk+1 + δ0∇⊤(∇utk+1 −∇utk) + δ0∇⊤(∇utk − wtk)

+ ∇⊤ztk .

Then (8.20a) holds after taking k → ∞. Finally, we have

lim
k→∞

wtk+1 = lim
k→∞

(wtk+1 −∇utk+1) + lim
k→∞

∇utk+1 = lim
k→∞

∇utk = w∗.

If σ > 1 and δt(wt+1 − wt) → 0, we substitute (8.21c) into (8.21a) and simplify it to obtain

0 = lim
k→∞

λA⊤(Autk+1 − f) − µ∆utk + δtk∇⊤(wtk+1 − wtk) + ∇⊤ztk+1

163

= λA⊤(Au∗ − f) − µ∆u∗ + ∇⊤z∗.

We need to prove lim
k→∞

wtk+1 = w∗. By (8.5c), we have

∥wt+1 − wt∥2 ≤ ∥wt+1 −∇ut+1∥2 + ∥∇ut+1 −∇ut∥2 + ∥∇ut − wt∥2

=

∥∥∥∥zt+1 − zt
δt

∥∥∥∥
2

+ ∥∇ut+1 −∇ut∥2 +

∥∥∥∥zt − zt−1

δt−1

∥∥∥∥
2

≤ 4C

δt−1

+ ∥∇ut+1 −∇ut∥2.

Taking the limit t → ∞, we obtain ∥wt+1 − wt∥2 → 0 and wt+1 − wt → 0. It follows that

lim
k→∞

wtk+1 − wtk = 0 =⇒ lim
k→∞

wtk+1 = lim
k→∞

wtk = w∗.

Since {zt}∞t=1 is bounded in this case, there exists C > 0 such that ∥zt∥2 ≤ C. Then (8.21c)

implies

∥∇u∗ − w∗∥2 = lim
k→∞

∥∇utk+1 − wtk+1∥2 = lim
k→∞

1

δtk
∥ztk+1 − ztk∥2 ≤ lim

k→∞

2C

δtk
= 0.

As a result, we have ∇u∗ = w∗.

By substituting (8.21c) into (8.21b), we have

ztk+1 ∈ ∂ (∥wtk+1∥1 − α∥wtk+1∥2,1) ∀k ∈ N.

By continuity, we have ∥wtk+1∥1 − α∥wtk+1∥2,1 → ∥w∗∥1 − α∥w∗∥2,1. Together with the fact

that (wtk+1, ztk+1) → (w∗, z∗), we obtain z∗ ∈ ∂ (∥w∗∥1 − α∥w∗∥2,1).

Therefore, if either set of assumptions hold, then (u∗, w∗, z∗) is a KKT point of (8.4).

164

8.3 Experimental Results

We examine the SaT/SLaT framework by comparing the isotropic TV1 [29, 28], TVp(0 <

p < 1) [216], and the AITV. The experiment comparison also includes the AITV-regularized

CV and fuzzy region (FR) model [24] together with the Potts model [180] solved by either

a primal-dual algorithm2 [176] or ADMM3 [193]. In particular, the primal-dual algorithm

solves a convex relaxation of the Potts model [176]:

U∗ = argmin
U∈S

k∑
ℓ=1

[
λ
∑

(i,j)∈Ω

(uℓ)i,j |(uℓ)i,j − cℓ|2 + ∥∇uℓ∥2,1

]
, (8.22)

where k is the number of regions specified in an image, {cℓ}kℓ=1 ⊂ R are constant values, and

S =

{
U = (u1, u2, . . . , uk) ∈ Xk : ∀ (i, j) ∈ Ω,

k∑
ℓ=1

(uℓ)i,j = 1; (uℓ)i,j ∈ [0, 1], ℓ = 1, . . . , k

}
.

Once getting U∗ from (8.22), the regions of an image can be approximated by

Ωκ =

{
(i, j) ∈ Ω : κ = arg max

1≤ℓ≤k
(u∗

ℓ)i,j

}
,

with κ = 1, . . . , k. For short, we refer (8.22) as the convex Potts model. To apply ADMM,

Storath and Weinmann [193] considered the following version of the Potts model:

min
u

λ∥u− f∥22 + ∥∇u∥0. (8.23)

Since it does not admit a segmentation result with a chosen number of regions, we develop

its SaT version called SaT-Potts that solves (8.23), followed by the k-means clustering for

segmentation. Both (8.22) and (8.23) can deal with multichannel input; please refer to

1MATLAB code is available at https://xiaohaocai.netlify.app/download/.
2Python code is available at https://github.com/VLOGroup/pgmo-lecture/blob/master/notebooks/

tv-potts.ipynb and a translated MATLAB code is available at https://github.com/kbui1993/MATLAB_
Potts.

3Code is available at https://github.com/mstorath/Pottslab.

165

https://xiaohaocai.netlify.app/download/
https://github.com/VLOGroup/pgmo-lecture/blob/master/notebooks/tv-potts.ipynb
https://github.com/VLOGroup/pgmo-lecture/blob/master/notebooks/tv-potts.ipynb
https://github.com/kbui1993/MATLAB_Potts
https://github.com/kbui1993/MATLAB_Potts
https://github.com/mstorath/Pottslab

(a) (b)

Figure 8.1: Synthetic images for two-phase segmentation. (a) Grayscale image and (b) Color
image. Size: 385 × 385.

[176, 193] for more details.

To ease the parameter tuning, we scale the pixel intensity of all the testing images in our

experiments to [0, 1]. The fidelity parameter λ and the smoothing parameter µ are tuned

for each image, which will be specified later. Stage 1 of the isotropic TV SaT/SLaT is

solved using the authors’ official code that is implemented by a similar ADMM algorithm

to Algorithm 7 with σ = 1. Stage 1 of TVp and AITV SaT/SLaT is solved by Algorithm

7 with σ = 1.25 using the appropriate proximal operators. We set the penalty parameter

in Algorithm 7 to be δ0 = 1.0, 2.0 for grayscale and multichannel images, respectively. The

stopping criterion for the ADMM algorithms are until ∥ut+1−ut∥2
∥ut+1∥2 < 10−4 with a maximum

number of 300 iterations. We compare the proposed ADMM algorithm with our own DCA

implementation for AITV SaT/SLaT as described in [217]. Note that its inner minimiza-

tion subproblem is solved by semi-proximal ADMM [83], which has more parameters than

ADMM. We use the default parameter setting as suggested in [217].

To quantitatively evaluate the segmentation performance, we use two metrics: DICE index

[60] when the ground truth is available and PSNR when the ground truth is unavailable.

166

The DICE index is given by

DICE = 2
#{R(i) ∩R′(i)}

#{R(i)} + #{R′(i)}
,

where R(i) is the set of pixels with label i in the ground-truth image f , R′(i) is the set of

pixels with label i in the segmented image f̃ , and #{R} refers to the number of pixels in

the set R. Following the work of [104], we use PSNR to determine how well the segmented

image f̃ approximates the original image f . It is computed by 10 log10(1/MSE), where MSE

is the mean square error between f and f̃ .

We tune various parameters in the investigated algorithms to achieve the best DICE indices

or PSNRs for synthetic or real images, respectively. For all methods, we tune the fidelity

parameter λ ∈ [1.0, 3.5]. For TVp SaT/SLaT, we only consider p = 1/2, 2/3 because they

are the only values that have closed-form solutions [33, 222] for their proximal operators.

For the AITV related algorithms, we tune α ∈ {0.2, 0.4, 0.6, 0.8}. For the SaT-Potts model

[193], we use a default setting for the other parameters. For the convex Potts model [176],

we run the algorithm for up to 150 iterations with the same stopping criterion as AITV does.

Lastly, we tune µ ∈ [0.01, 1.0] in all SaT/SLaT methods.

All experiments are performed in MATLAB R2019a on a Dell laptop with a 1.80 GHz

Intel Core i7-8565U processor and 16.0 GB of RAM. In the general SaT/SLaT framework,

we use some MATLAB built-in functions. In Stage 2, makecform(‘srgb2lab’) is used to

convert RGB to Lab. In Stage 3, kmeans is executed to perform k-means clustering ten

times with different initialization and selects the best arrangement among the ten solutions.

We also parallelize Stage 1 for color, or generally multichannel, images to speed up the

computation. To compute DICE and PSNR, we use the MATLAB functions dice and psnr.

The AITV SaT/SLaT codes are available at https://github.com/kbui1993/Official_

AITV_SaT_SLaT.

167

https://github.com/kbui1993/Official_AITV_SaT_SLaT
https://github.com/kbui1993/Official_AITV_SaT_SLaT

8.3.1 Two-Phase Segmentation on Synthetic Images

We compare the proposed ADMM algorithm of AITV SaT/SLaT with the other SaT/SLaT

methods, the Potts models, and the AITV CV model on the synthetic images presented

in Figure 8.1. We corrupt the images with either random-valued (RV) or salt-and-pepper

(SP) impulsive noises. Additionally, we consider blurring the image before adding impulsive

noises. Specifically, we use an average blur fspecial(‘average’, 15) for Figure 8.1a and

a motion blur fspecial(‘motion’, 5, 45) for Figure 8.1b. For the SaT methods applied

to Figure 8.1a, we set the parameters λ = 1.5 and µ = 1.0. For the SLaT methods applied

to Figure 8.1b, we find the optimal parameters λ = 2.5 and µ = 1.0.

Synthetic Grayscale Images

We apply the competing segmentation methods on four types of input data based on Figure

8.1a, i.e., 65% RV noise, 65% SP noise, average blur followed by 50% RV, and average blur

followed by 50% SP. The resulting DICE indices together with computational times are

recorded in Table 8.1. For the noisy inputs, our proposed AITV SaT (ADMM) achieves

the highest DICE indices with the least amount of time no matter which impulsive noise is

added. For the blurry, noisy data, the original SaT yields the highest DICE indices. Although

AITV SaT (ADMM) is the second best, it is two-three times faster than the original SaT.

The AITV CV and the Potts models perform worse than the SaT methods on blurry images

because, unlike the SaT methods, they do not account for blurring. Lastly, we point out

that ADMM yields higher DICE than DCA by using significantly less time for the AITV

SaT model.

Visual segmentation results are presented in Figures 8.2-8.3 under the RV noise with no blur

and average blur, respectively, showing that the AITV SaT (ADMM) method yields binary

segmentations closest to the ground truth. Specifically, AITV SaT (ADMM) identifies the

168

Table 8.1: Comparison of the DICE indices and computation times (seconds) between the
segmentation methods applied to Figure 8.1a corrupted in four cases. Number in bold
indicates either the highest DICE index or the fastest time among the segmentation methods
for a given corrupted image.

65% RV 65% SP Blur and 50% RV Blur and 50% SP
DICE Time (s) DICE Time (s) DICE Time (s) DICE Time (s)

(Original) SaT 0.9670 3.95 0.9584 4.07 0.9552 4.87 0.9497 4.77
TVp SaT 0.9660 1.71 0.9567 1.48 0.9488 2.00 0.9412 1.75
AITV SaT (ADMM) 0.9786 1.43 0.9657 1.30 0.9550 1.66 0.9470 1.57
AITV SaT (DCA) 0.9774 21.46 0.9655 23.01 0.9516 31.10 0.9424 31.97
AITV CV 0.9768 105.55 0.9655 152.65 0.9288 167.24 0.9164 110.14
Convex Potts 0.9665 7.07 0.9604 5.08 0.9101 5.97 0.9132 4.14
SaT-Potts 0.9480 3.49 0.9536 3.86 0.9101 5.97 0.9180 2.70

(a) RV noise (b) (original) SaT
DICE: 0.9670

(c) TV2/3 SaT
DICE: 0.9660

(d) AITV SaT
(ADMM)

DICE: 0.9786

(e) AITV SaT
(DCA)

DICE: 0.9774

(f) AITV CV
DICE: 0.9768

(g) Convex Potts
DICE: 0.9665

(h) SaT-Potts
DICE: 0.9480

Figure 8.2: Segmentation results of Figure 8.1a corrupted with 65% RV noise.

(a) Average blur
and RV noise

(b) (original) SaT
DICE: 0.9552

(c) TV2/3 SaT
DICE: 0.9488

(d) AITV SaT
(ADMM)

DICE: 0.9550

(e) AITV SaT
(DCA)

DICE: 0.9516

(f) AITV CV
DICE: 0.9288

(g) Convex Potts
DICE: 0.9101

(h) SaT-Potts
DICE: 0.9234

Figure 8.3: Segmentation results of Figure 8.1a corrupted with average blur followed by 50%
RV noise.

169

Table 8.2: Comparison of the DICE indices and computation times (seconds) between the
segmentation methods applied to Figure 8.1b corrupted in four cases. Number in bold
indicates either the highest DICE index or the fastest time among the segmentation methods
for a given corrupted image.

60% RV 60% SP Blur and 45% RV Blur and 45% SP
DICE Time (s) DICE Time (s) DICE Time (s) DICE Time (s)

(Original) SLaT 0.9809 5.66 0.9683 6.85 0.9815 9.91 0.9744 11.22
TVp SLaT 0.9818 2.77 0.9709 3.42 0.9828 6.63 0.9760 5.38
AITV SLaT (ADMM) 0.9827 2.82 0.9684 3.03 0.9867 8.62 0.9776 5.91
AITV SLaT (DCA) 0.9831 26.44 0.9684 25.56 0.9853 65.57 0.9771 55.79
AITV CV 0.9893 58.49 0.9807 77.73 0.9790 77.54 0.9707 81.09
Convex Potts 0.9818 5.34 0.9735 4.98 0.9723 5.12 0.9678 4.95
SaT-Potts 0.9806 4.75 0.6997 4.93 0.9753 4.66 0.8003 7.36

(a) SP noise (b) (original) SLaT
DICE: 0.9683

(c) TV1/2 SLaT
DICE: 0.9709

(d) AITV SLaT
(ADMM)

DICE: 0.9684

(e) AITV SLaT
(DCA)

DICE: 0.9684

(f) AITV CV
DICE: 0.9807

(g) Convex Potts
DICE: 0.9735

(h) SaT-Potts
DICE: 0.6997

Figure 8.4: Segmentation results of Figure 8.1b corrupted with 60% SP noise.

(a) Motion blur
with SP noise

(b) (original) SLaT
DICE: 0.9744

(c) TV2/3 SLaT
DICE: 0.9760

(d) AITV SLaT
(ADMM)

DICE: 0.9776

(e) AITV SLaT
(DCA)

DICE: 0.9771

(f) AITV CV
DICE: 0.9707

(g) Convex Potts
DICE: 0.9678

(h) SaT-Potts
DICE: 0.8003

Figure 8.5: Segmentation results of Figure 8.1b corrupted with motion blur followed by 45%
SP noise.

170

(a) (b) (c) (d)
Figure 8.6: Real, grayscale images for image segmentation. (a) Caterpillar. Size: 200× 300.
(b) Egret. Size: 200 × 300. (c) Swan. Size: 225 × 300. (d) Leaf. Size: 203 × 300.

leftmost rectangle in the top left corner and the two smallest circles above the middle square

of Figure 8.2, and the small circular region above the left side of the square in the middle of

Figure 8.3. These regions are enclosed in red boxes.

Synthetic Color Images

The (original) color image, Figure 8.1b, is corrupted by either 60% impulsive noise or motion

blur followed by 45% noise. Table 8.2 records the DICE indices and the computational times

of various segmentation methods applied on all the four cases. For the noisy images of

Figure 8.1b, AITV SLaT (ADMM) attains comparable DICE indices to the best AITV

CV method but with much less computation time. For the blurry, noisy inputs, AITV

SLaT (ADMM) attains the highest DICE indices. In general, AITV SLaT (ADMM) gives

satisfactory segmentation results under a reasonable amount of time, compared to others;

especially it is much faster than its DCA counterpart.

Figures 8.4-8.5 illustrate the visual results under the SP noise cases. In Figure 8.4, four

methods (the original SLaT, the AITV SLaT (ADMM), the AITV SLaT (DCA), and the

AITV CV) identify most of the three rectangles in the upper left corner, compared to the

other competing methods. Although AITV CV has the highest DICE index, its segmentation

result is slightly noisier upon closer inspection. In Figure 8.5, AITV SLaT (ADMM) is able

to preserve the three rectangular bars, while the other methods can only segment two bars.

171

(a) (b)

Figure 8.7: AITV SaT results on real grayscale images.

8.3.2 Real Grayscale Images with Intensity Inhomogeneities

We examine real images with intensity inhomogeneities [5], as shown Figure 8.6. Inten-

sity inhomogeneities can be problematic for image segmentation because of the dramatically

varying pixel intensities in local regions of an image. For example, we apply AITV SaT

(ADMM) to Figures 8.6a-8.6b to exemplify the challenges of segmenting the object of inter-

est. In Figure 8.7a, no part of the caterpillar is segmented while in Figure 8.7b, most of the

egret’s beak is not segmented.

Following the work of [124], we incorporate an intensity inhomogeneity (IIH) image, ap-

pended as an additional channel of the original image to facilitate segmentation. To generate

the IIH image, one calculates an IIH-indicator D

D =
1

|Ω|
∑

(i,j)∈Ω

 1

|Ω(i,j)|
∑

(i′,j′)∈Ω(i,j)

|ui′,j′ − ūi,j |2
 ,

where Ω(i,j) is a neighborhood centered at pixel (i, j) and ūi,j is the average pixel intensity

in the neighborhood Ω(i,j). Using the IIH-indicator D, the IIH-image is calculated by

uIIH
i,j =

1

|Ω(i,j)|
∑

(i′,j′)∈Ω(i,j)

1Ω(i,j)
(i′, j′),

172

Table 8.3: Comparison of the DICE indices and computation times (seconds) between the
segmentation methods applied to Figure 8.6. Number in bold indicates either the highest
DICE index or the fastest time among the segmentation methods for a given image.

Figure 8.6a Figure 8.6b Figure 8.6c Figure 8.6d
DICE Time (s) DICE Time (s) DICE Time (s) DICE Time (s)

(Original) SaT 0.9268 1.97 0.9863 1.60 0.9768 2.63 0.9468 1.93
TVp SaT 0.9222 0.64 0.9806 0.62 0.9794 1.01 0.9417 0.96
AITV SaT (ADMM) 0.9292 0.51 0.9870 0.62 0.9791 0.75 0.9426 0.60
AITV SaT (DCA) 0.9284 9.25 0.9836 9.21 0.9769 14.35 0.9474 12.44
AITV CV 0.9307 34.44 0.9790 22.83 0.9828 57.10 0.9397 20.79
Convex Potts 0.9302 1.28 0.9797 1.03 0.9784 2.54 0.4522 1.41
SaT-Potts 0.8463 1.18 0.9771 1.18 0.9805 1.46 0.9384 1.36

(a) Ground
truth.

(b) (original)
SaT

(c) TV1/2

SaT

(d) AITV
SaT

(ADMM)

(e) AITV
SaT (DCA)

(f) AITV CV (g) Convex
Potts

(h)
SaT-Potts

(i) Ground
truth.

(j) (original)
SaT

(k) TV2/3

SaT

(l) AITV
SaT

(ADMM)

(m) AITV
SaT (DCA)

(n) AITV
CV

(o) Convex
Potts

(p)
SaT-Potts

Figure 8.8: Segmentation results of Figures 8.6a-8.6b.

(a) Ground
truth.

(b) (original)
SaT

(c) TV2/3

SaT

(d) AITV
SaT

(ADMM)

(e) AITV
SaT (DCA)

(f) AITV CV (g) Convex
Pott

(h)
SaT-Potts

(i) Ground
truth.

(j) (original)
SaT

(k) TV2/3

SaT

(l) AITV
SaT

(ADMM)

(m) AITV
SaT (DCA)

(n) AITV
CV

(o) Convex
Potts

(p) SaT-Pott

Figure 8.9: Segmentation results of Figures 8.6c-8.6d.

173

where

1Ω(i,j)
(i′, j′) =


1 if |ūi,j − ui′,j′ |2 ≥ D,

0 if |ūi,j − ui′,j′ |2 < D.

For our experiments, Ω(i,j) is a 3 × 3 patch centered at pixel (i, j).

When the IIH image is added as a channel to the grayscale image, we smooth each channel,

followed by the k-means clustering, for the SaT methods. For the other segmentation meth-

ods, we consider their multichannel extensions to process the two channels that are composed

of grayscale and IIH. We set the parameters λ = 1.75, 1.9, 1.5, 1.25 and µ = 0.45, 0.01, 0.1, 0.1

for Figures 8.6a-8.6d, respectively, for the SaT methods.

The segmentation results and their ground truths are presented in Figures 8.8-8.9. For

each image, the ground truth is determined from the segmentation results by three human

subjects. A pixel is declared an object of interest in the ground truth if at least two subjects

agree [5]. The DICE indices and computational times of the segmentation algorithms are

recorded in Table 8.3. For all the four images, SaT and AITV CV methods can successfully

segment the objects of interest. As the fastest method, AITV SaT (ADMM) achieves the

highest DICE index for Figure 8.6b, and it is the second best for Figure 8.6a and Figure

8.6c.

8.3.3 Real Color Images

We examine 4 real color images that are provided in [157] for segmentation. We manually

add the Gaussian noise of mean zero and variance 0.025 to the clean images as shown in

Figure 8.10, aiming to segment Figure 8.10a with k = 3 regions, Figure 8.10b with k = 5

regions, and Figures 8.10c-8.10d with k = 6 regions. Because ground truth is unavailable,

174

we use PSNR to evaluate the segmentation result as a piecewise-constant approximation of

the original image. For the SLaT methods, we set the parameters λ = 3.5 and µ = 1.0 for

all the images. In addition, we find that p = 2/3 for TVp and α = 0.8 for AITV SLaT and

FR give the best PSNR values.

(a) (b) (c) (d)
Figure 8.10: Real color images for image segmentation. (a) Garden. Size: 321 × 481. (b)
Man. Size: 321 × 481. (c) House. Size: 321 × 481. (d) Building. Size: 481 × 321.

Visual segmentation results together with PSNR values are presented in Figures 8.11-8.14.

Overall, the AITV SLaT method yields the highest PSNRs and preserves the most details

compared to other methods. Specifically in Figure 8.11, AITV SLaT (ADMM), AITV SLaT

(DCA), and AITV FR are able to segment the sand lines in fine details, but AITV FR

mistakenly identifies the top left corner to be the same group as the middle circular garden.

In Figure 8.12, AITV SLaT ADMM and DCA are the best at preserving the man’s eyes and

palm trees’ foliage. In Figure 8.13, the wheel on the right and the windows on the left house

are best captured by AITV SLaT ADMM and DCA. For the other methods, the wheel is

merged with the grass and the many windowpanes in the left house are absent. Lastly, in

Figure 8.14, AITV SLaT ADMM and DCA have a clear advantage in segmenting windows

and flowers.

The computational times are recorded in Table 8.4, showing that AITV SLaT (ADMM) is

comparable to the original SLaT and nearly 10 times faster than the DCA implementation.

It is true that TVp SaT and SaT-Potts are the fastest methods, but their segmentation

results are less satisfactory.

175

(a) Noisy image. (b) (original) SLaT
PSNR: 18.46

(c) TV2/3 SLaT
PSNR: 18.34

(d) AITV SLaT
(ADMM)

PSNR: 19.39

(e) AITV SLaT (DCA)
PSNR: 19.01

(f) AITV FR
PSNR: 18.51

(g) Convex Potts
PSNR: 18.40

(h) SaT-Potts
PSNR: 18.46

Figure 8.11: Segmentation results into k = 3 regions.

Table 8.4: Comparisons of computational times in seconds among the segmentation methods
applied to the images in Figure 8.10 corrupted with Gaussian noise with mean zero and
variance 0.025.

garden (Figure 8.10a)
k = 3

man (Figure 8.10b)
k = 5

house (Figure 8.10c)
k = 6

man (Figure 8.10d)
k = 6

(original) SLaT 10.64 10.63 12.40 14.35

TV2/3 SLaT 6.77 6.81 8.71 10.08
AITV (α = 0.8) SLaT (ADMM) 7.10 16.17 12.64 11.95
AITV (α = 0.8) SLaT (DCA) 61.90 77.43 74.87 70.08
AITV (α = 0.8) FR 124.79 230.32 347.74 395.11
Convex Potts 7.14 47.03 72.64 92.57
SaT-Potts 6.77 6.81 8.71 10.08

176

(a) Noisy image. (b) (original) SLaT
PSNR: 19.28

(c) TV2/3 SLaT
PSNR: 19.36

(d) AITV SLaT
(ADMM)

PSNR: 20.74

(e) AITV SLaT (DCA)
PSNR: 20.65

(f) AITV FR
PSNR: 19.92

(g) Convex Potts
PSNR: 19.50

(h) SaT-Potts
PSNR: 20.12

Figure 8.12: Segmentation results into k = 5 regions.

(a) Noisy image. (b) (original) SLaT
PSNR: 20.53

(c) TV2/3 SLaT
PSNR: 20.34

(d) AITV SLaT
(ADMM)

PSNR: 21.52

(e) AITV SLaT (DCA)
PSNR: 21.25

(f) AITV FR
PSNR: 19.75

(g) Convex Potts
PSNR: 19.48

(h) SaT-Potts
PSNR: 21.00

Figure 8.13: Segmentation results into k = 6 regions.

177

(a) Noisy image. (b) (original) SLaT
PSNR: 19.37

(c) TV2/3 SLaT
PSNR: 19.11

(d) AITV SLaT
(ADMM)

PSNR: 20.62

(e) AITV SLaT (DCA)
PSNR: 20.40

(f) AITV FR
PSNR: 18.58

(g) Convex Potts
PSNR: 18.78

(h) SaT-Potts
PSNR: 20.02

Figure 8.14: Segmentation results into k = 6 regions.

178

Chapter 9

Conclusion

In Chapter 7, we proposed AICV and AIFR models for piecewise-constant segmentation

that can deal with both grayscale and color images. We developed alternating minimization

algorithms utilizing DCA and PDHGLS to efficiently solve the models. Convergence analyses

were provided to demonstrate that the objective functions were monotonically decreasing and

to validate the efficacy of the algorithms. Numerical results illustrated that the AICV/AIFR

models outperform their anisotropic counterparts on various images in a robust manner.

The segmentation results are comparable and sometimes better than those of the two-stage

segmentation methods.

In Chapter 8, we proposed an efficient ADMM algorithm for the SaT/SLaT framework that

utilizes AITV regularization. When designing the ADMM algorithm, we incorporated the

proximal operator for the ℓ1 −αℓ2 regularization [138]. We provided convergence analysis of

ADMM to demonstrate that the algorithm subsequentially converges to an KKT point under

certain conditions. In our numerical experiments, the AITV SaT/SLaT using our ADMM

algorithm produces high-quality segmentation results within a few seconds.

The aforementioned chapters demonstrate the effectiveness of using nonconvex regulariza-

179

tions in image processing. As for future works, we will explore other nonconvex regulariza-

tions, such as transformed ℓ1 [246, 247] and ℓ1/ℓ2 [182, 208, 207, 206], as alternative options

to AITV to other types of segmentation approaches, such as piecewise-smooth formulations

[104, 114], the Potts models [179, 194, 212], the fuzzy region model [120], and deep learning

techniques [99, 100, 106]. Moreover, the numerical experiments demonstrated that there is

no optimal, universal α for all images, which motivates us to develop an automatic method

to select α for any given image in the future.

180

Bibliography

[1] C. C. Aggarwal. Neural networks and deep learning. Springer, 2018.

[2] A. Aghasi, A. Abdi, N. Nguyen, and J. Romberg. Net-trim: Convex pruning of deep
neural networks with performance guarantee. In Advances in Neural Information Pro-
cessing Systems, pages 3177–3186, 2017.

[3] A. Aghasi, A. Abdi, and J. Romberg. Fast convex pruning of deep neural networks.
SIAM Journal on Mathematics of Data Science, 2(1):158–188, 2020.

[4] M. Ahn, J.-S. Pang, and J. Xin. Difference-of-convex learning: directional stationarity,
optimality, and sparsity. SIAM Journal on Optimization, 27(3):1637–1665, 2017.

[5] S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by probabilistic
bottom-up aggregation and cue integration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, June 2007.

[6] J. M. Alvarez and M. Salzmann. Learning the number of neurons in deep networks.
In Advances in Neural Information Processing Systems, pages 2270–2278, 2016.

[7] L. Ambrosio and V. M. Tortorelli. Approximation of functional depending on jumps
by elliptic functional via t-convergence. Communications on Pure and Applied Math-
ematics, 43(8):999–1036, 1990.

[8] A. Antoniadis and J. Fan. Regularization of wavelet approximations. Journal of the
American Statistical Association, 96(455):939–967, 2001.

[9] D. Arthur and S. Vassilvitskii. K-means++: the advantages of careful seeding. In 2007
ACM-SIAM Symposium on Discrete Algorithms (SODA’07), pages 1027–1035, 2007.

[10] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward–backward splitting, and
regularized gauss–seidel methods. Mathematical Programming, 137(1):91–129, 2013.

[11] J. Ba and R. Caruana. Do deep nets really need to be deep? In Advances in Neural
Information Processing Systems, pages 2654–2662, 2014.

[12] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

181

[13] F. R. Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9(Jun):1179–1225, 2008.

[14] E. Bae, J. Yuan, and X.-C. Tai. Global minimization for continuous multiphase par-
titioning problems using a dual approach. International Journal of Computer Vision,
92(1):112–129, 2011.

[15] Y. Bai, Y.-X. Wang, and E. Liberty. Proxquant: Quantized neural networks via
proximal operators. arXiv preprint arXiv:1810.00861, 2018.

[16] C. Bao, B. Dong, L. Hou, Z. Shen, X. Zhang, and X. Zhang. Image restoration by
minimizing zero norm of wavelet frame coefficients. Inverse Problems, 32(11):115004,
2016.

[17] L. Bar, T. F. Chan, G. Chung, M. Jung, N. Kiryati, R. Mohieddine, N. Sochen, and
L. A. Vese. Mumford and Shah model and its applications to image segmentation and
image restoration. In Handbook of Mathematical Methods in Imaging. Springer, 2011.

[18] A. Beck. First-Order Methods in Optimization. SIAM, 2017.

[19] H. Birkholz. A unifying approach to isotropic and anisotropic total variation denoising
models. Journal of Computational and Applied Mathematics, 235(8):2502–2514, 2011.

[20] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Mathematical Programming, 146(1):459–494,
2014.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends® in Machine Learning, 3(1):1–122, 2011.

[22] P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized
regression, with applications to biological feature selection. The Annals of Applied
Statistics, 5(1):232, 2011.

[23] E. S. Brown, T. F. Chan, and X. Bresson. Completely convex formulation of the
Chan–Vese image segmentation model. International Journal of Computer Vision,
98(1):103–121, 2012.

[24] K. Bui, F. Park, Y. Lou, and J. Xin. A weighted difference of anisotropic and isotropic
total variation for relaxed Mumford–Shah color and multiphase image segmentation.
SIAM Journal on Imaging Sciences, 14(3):1078–1113, 2021.

[25] K. Bui, F. Park, S. Zhang, Y. Qi, and J. Xin. Nonconvex regularization for net-
work slimming: Compressing CNNs even more. In International Symposium on Visual
Computing, pages 39–53. Springer, 2020.

[26] K. Bui, F. Park, S. Zhang, Y. Qi, and J. Xin. Improving network slimming with
nonconvex regularization. IEEE Access, 9:115292–115314, 2021.

182

[27] K. Bui, F. Park, S. Zhang, Y. Qi, and J. Xin. Structured sparsity of convolutional
neural networks via nonconvex sparse group regularization. Frontiers in Applied Math-
ematics and Statistics, 2021.

[28] X. Cai, R. Chan, M. Nikolova, and T. Zeng. A three-stage approach for segmenting de-
graded color images: Smoothing, lifting and thresholding (SLaT). Journal of Scientific
Computing, 72(3):1313–1332, 2017.

[29] X. Cai, R. Chan, and T. Zeng. A two-stage image segmentation method using a convex
variant of the Mumford–Shah model and thresholding. SIAM Journal on Imaging
Sciences, 6(1):368–390, 2013.

[30] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1–37, 2011.

[31] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
information theory, 52(2):489–509, 2006.

[32] E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics,
59(8):1207–1223, 2006.

[33] W. Cao, J. Sun, and Z. Xu. Fast image deconvolution using closed-form thresholding
formulas of Lq(q = 1/2, 2/3) regularization. Journal of Visual Communication and
Image Representation, 24(1):31–41, 2013.

[34] A. Chambolle. Finite-differences discretizations of the Mumford-Shah functional.
ESAIM: Mathematical Modelling and Numerical Analysis, 33(2):261–288, 1999.

[35] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock. An introduction to
total variation for image analysis. Theoretical foundations and numerical methods for
sparse recovery, 9(263-340):227, 2010.

[36] A. Chambolle, D. Cremers, and T. Pock. A convex approach to minimal partitions.
SIAM Journal on Imaging Sciences, 5(4):1113–1158, 2012.

[37] A. Chambolle and G. Dal Maso. Discrete approximation of the Mumford-Shah func-
tional in dimension two. ESAIM: Mathematical Modelling and Numerical Analysis,
33(4):651–672, 1999.

[38] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–
145, 2011.

[39] R. Chan, H. Yang, and T. Zeng. A two-stage image segmentation method for blurry im-
ages with Poisson or multiplicative Gamma noise. SIAM Journal on Imaging Sciences,
7(1):98–127, 2014.

183

[40] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen. Wavelet algorithms for high-resolution
image reconstruction. SIAM Journal on Scientific Computing, 24(4):1408–1432, 2003.

[41] R. H. Chan and M. K. Ng. Conjugate gradient methods for Toeplitz systems. SIAM
Review, 38(3):427–482, 1996.

[42] T. F. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global minimizers
of image segmentation and denoising models. SIAM Journal on Applied Mathematics,
66(5):1632–1648, 2006.

[43] T. F. Chan, B. Y. Sandberg, and L. A. Vese. Active contours without edges for
vector-valued images. Journal of Visual Communication and Image Representation,
11(2):130–141, 2000.

[44] T. F. Chan and L. A. Vese. Active contours without edges. IEEE Transactions on
Image Processing, 10(2):266–277, 2001.

[45] H. Chang, Y. Lou, Y. Duan, and S. Marchesini. Total variation–based phase retrieval
for Poisson noise removal. SIAM Journal on Imaging Sciences, 11(1):24–55, 2018.

[46] H. Chang, Y. Lou, M. K. Ng, and T. Zeng. Phase retrieval from incomplete magnitude
information via total variation regularization. SIAM Journal on Scientific Computing,
38(6):A3672–A3695, 2016.

[47] S. Changpinyo, M. Sandler, and A. Zhmoginov. The power of sparsity in convolutional
neural networks. arXiv preprint arXiv:1702.06257, 2017.

[48] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization.
IEEE Signal Processing Letters, 14(10):707–710, 2007.

[49] R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compres-
sive sensing. Inverse Problems, 24(3):035020, 2008.

[50] R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive sensing.
In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 3869–3872. IEEE, 2008.

[51] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(4):834–848, 2017.

[52] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen. Compressing neural
networks with the hashing trick. In International Conference on Machine Learning,
pages 2285–2294, 2015.

[53] R. Choksi, Y. G. Gennip, and A. Oberman. Anisotropic total variation regularized L1

approximation and denoising/deblurring of 2D bar codes. Inverse Problems & Imaging,
5:591–617, 2011.

184

[54] F. Clarke. Functional analysis, calculus of variations and optimal control, volume 264.
Springer Science & Business Media, Heidelberg, 2013.

[55] A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best k-term approx-
imation. Journal of the American mathematical society, 22(1):211–231, 2009.

[56] L. Condat. Discrete total variation: New definition and minimization. SIAM Journal
on Imaging Sciences, 10(3):1258–1290, 2017.

[57] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, pages 3123–3131, 2015.

[58] W. Deng and W. Yin. On the global and linear convergence of the generalized alternat-
ing direction method of multipliers. Journal of Scientific Computing, 66(3):889–916,
2016.

[59] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. In Advances in Neural
Information Processing Systems, pages 1269–1277, 2014.

[60] L. R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

[61] L. Ding and W. Han. αℓ1 − βℓ2 regularization for sparse recovery. Inverse Problems,
35(12):125009, 2019.

[62] T. Dinh and J. Xin. Convergence of a relaxed variable splitting method for learning
sparse neural networks via ℓ1,ℓ0, and transformed-ℓ1 penalties. In Proceedings of SAI
Intelligent Systems Conference, pages 360–374. Springer, 2020.

[63] B. Dong and Y. Zhang. An efficient algorithm for ℓ0 minimization in wavelet frame
based image restoration. Journal of Scientific Computing, 54(2-3):350–368, 2013.

[64] D. L. Donoho and M. Elad. Optimally sparse representation in general (nonorthogonal)
dictionaries via ℓ1 minimization. Proceedings of the National Academy of Sciences,
100(5):2197–2202, 2003.

[65] S. Esedoglu and S. J. Osher. Decomposition of images by the anisotropic Rudin–Osher–
Fatemi model. Communications on Pure and Applied Mathematics, 57(12):1609–1626,
2004.

[66] S. Esedoglu and Y.-H. R. Tsai. Threshold dynamics for the piecewise constant
Mumford–Shah functional. Journal of Computational Physics, 211(1):367–384, 2006.

[67] E. Esser, Y. Lou, and J. Xin. A method for finding structured sparse solutions to non-
negative least squares problems with applications. SIAM Journal on Imaging Sciences,
6(4):2010–2046, 2013.

185

[68] E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first order
primal-dual algorithms for convex optimization in imaging science. SIAM Journal on
Imaging Sciences, 3(4):1015–1046, 2010.

[69] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

[70] J. Fan, H. Peng, et al. Nonconcave penalized likelihood with a diverging number of
parameters. The Annals of Statistics, 32(3):928–961, 2004.

[71] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.
Springer, 2013.

[72] Y. Fu, C. Liu, D. Li, Z. Zhong, X. Sun, J. Zeng, and Y. Yao. Exploring structural
sparsity of deep networks via inverse scale spaces. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

[73] D. Gabay. Chapter ix applications of the method of multipliers to variational in-
equalities. In Studies in Mathematics and its Applications, volume 15, pages 299–331.
Elsevier, 1983.

[74] P. Getreuer. Chan–Vese segmentation. Image Processing On Line, 2:214–224, 2012.

[75] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 580–587, 2014.

[76] M. Gobbino. Finite difference approximation of the Mumford-Shah functional. Com-
munications on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences, 51(2):197–228, 1998.

[77] T. Goldstein, X. Bresson, and S. Osher. Geometric applications of the split Bregman
method: segmentation and surface reconstruction. Journal of Scientific Computing,
45(1-3):272–293, 2010.

[78] T. Goldstein and S. Osher. The split Bregman method for L1-regularized problems.
SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[79] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout
networks. In International Conference on Machine Learning, pages 1319–1327. PMLR,
2013.

[80] G. Gu, S. Jiang, and J. Yang. A TVSCAD approach for image deblurring with impul-
sive noise. Inverse Problems, 33(12):125008, 2017.

[81] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang. Weighted nuclear norm min-
imization and its applications to low level vision. International Journal of Computer
Vision, 121(2):183–208, 2017.

186

[82] R. Gupta and T. Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992–1017, 2017.

[83] D. Han, D. Sun, and L. Zhang. Linear rate convergence of the alternating direction
method of multipliers for convex composite programming. Mathematics of Operations
Research, 43(2):622–637, 2018.

[84] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, pages
1135–1143, 2015.

[85] A. Hantoute, M. A. López, and C. Zălinescu. Subdifferential calculus rules in convex
analysis: a unifying approach via pointwise supremum functions. SIAM Journal on
Optimization, 19(2):863–882, 2008.

[86] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 28(1):100–108, 1979.

[87] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer Science & Business Media, 2009.

[88] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1026–1034, 2015.

[89] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[90] W. He, M. Wu, M. Liang, and S.-K. Lam. CAP: Context-aware pruning for semantic
segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 960–969, 2021.

[91] Z. Hou. A review on MR image intensity inhomogeneity correction. International
Journal of Biomedical Imaging, 2006, 2006.

[92] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang. Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250, 2016.

[93] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger. Convolutional
networks with dense connectivity. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2019.

[94] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4700–4708, 2017.

187

[95] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with
stochastic depth. In European Conference on Computer Vision, pages 646–661.
Springer, 2016.

[96] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna,
Y. Song, S. Guadarrama, et al. Speed/accuracy trade-offs for modern convolutional
object detectors. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7310–7311, 2017.

[97] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning,
pages 448–456, 2015.

[98] M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural net-
works with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

[99] F. Jia, J. Liu, and X.-C. Tai. A regularized convolutional neural network for semantic
image segmentation. Analysis and Applications, 19(01):147–165, 2021.

[100] F. Jia, X.-C. Tai, and J. Liu. Nonlocal regularized CNN for image segmentation.
Inverse Problems & Imaging, 14(5):891, 2020.

[101] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on Multimedia, pages 675–678.
ACM, 2014.

[102] Z.-F. Jin, Z. Wan, Y. Jiao, and X. Lu. An alternating direction method with continua-
tion for nonconvex low rank minimization. Journal of Scientific Computing, 66(2):849–
869, 2016.

[103] H. Jung, J. C. Ye, and E. Y. Kim. Improved k–t blast and k–t sense using focuss.
Physics in Medicine & Biology, 52(11):3201, 2007.

[104] M. Jung. Piecewise-smooth image segmentation models with L1 data-fidelity terms.
Journal of Scientific Computing, 70(3):1229–1261, 2017.

[105] M. Jung, M. Kang, and M. Kang. Variational image segmentation models involving
non-smooth data-fidelity terms. Journal of scientific computing, 59(2):277–308, 2014.

[106] B. Kim and J. C. Ye. Mumford–Shah loss functional for image segmentation with deep
learning. IEEE Transactions on Image Processing, 29:1856–1866, 2019.

[107] C. Kim and D. Klabjan. A simple and fast algorithm for L1-norm kernel PCA. IEEE
transactions on pattern analysis and machine intelligence, 2019.

[108] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

188

[109] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-laplacian priors. In
Advances in Neural Information Processing Systems, pages 1033–1041, 2009.

[110] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[111] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems,
pages 1097–1105, 2012.

[112] A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In
Advances in neural information processing systems, pages 950–957, 1992.

[113] M.-J. Lai, Y. Xu, and W. Yin. Improved iteratively reweighted least squares for uncon-
strained smoothed ℓq minimization. SIAM Journal on Numerical Analysis, 51(2):927–
957, 2013.

[114] T. M. Le and L. A. Vese. Additive & mutiplicative piecewise-smooth segmentation
models in a functional minimization approach. Contemporary Mathematics, 445:207–
224, 2007.

[115] H. A. Le Thi and T. P. Dinh. DC programming and DCA: thirty years of developments.
Mathematical Programming, 169(1):5–68, 2018.

[116] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[117] J. Lellmann, J. Kappes, J. Yuan, F. Becker, and C. Schnörr. Convex multi-class image
labeling by simplex-constrained total variation. In International Conference on Scale
Space and Variational Methods in Computer Vision, pages 150–162. Springer, 2009.

[118] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding. Minimization of region-scalable fitting
energy for image segmentation. IEEE Transactions on Image Processing, 17(10):1940–
1949, 2008.

[119] F. Li, M. K. Ng, T. Y. Zeng, and C. Shen. A multiphase image segmentation method
based on fuzzy region competition. SIAM Journal on Imaging Sciences, 3(3):277–299,
2010.

[120] F. Li, S. Osher, J. Qin, and M. Yan. A multiphase image segmentation based on
fuzzy membership functions and L1-norm fidelity. Journal of Scientific Computing,
69(1):82–106, 2016.

[121] F. Li, B. Zhang, and B. Liu. Ternary weight networks. arXiv preprint
arXiv:1605.04711, 2016.

[122] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient
convnets. arXiv preprint arXiv:1608.08710, 2016.

189

[123] P. Li, W. Chen, H. Ge, and M. K. Ng. ℓ1 − αℓ2 minimization methods for signal and
image reconstruction with impulsive noise removal. Inverse Problems, 36(5):055009,
2020.

[124] X. Li, X. Yang, and T. Zeng. A three-stage variational image segmentation frame-
work incorporating intensity inhomogeneity information. SIAM Journal on Imaging
Sciences, 13(3):1692–1715, 2020.

[125] Y. Li, S. Gu, C. Mayer, L. V. Gool, and R. Timofte. Group sparsity: The hinge
between filter pruning and decomposition for network compression. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[126] Y. Li, C. Wu, and Y. Duan. The TVp regularized Mumford-Shah model for image
labeling and segmentation. IEEE Transactions on Image Processing, 29:7061–7075,
2020.

[127] Z. Li, X. Luo, B. Wang, A. L. Bertozzi, and J. Xin. A study on graph-structured
recurrent neural networks and sparsification with application to epidemic forecasting.
In World Congress on Global Optimization, pages 730–739. Springer, 2019.

[128] M. Lim, J. M. Ales, B. R. Cottereau, T. Hastie, and A. M. Norcia. Sparse EEG/MEG
source estimation via a group lasso. PloS one, 12(6):e0176835, 2017.

[129] D. Lin, V. D. Calhoun, and Y.-P. Wang. Correspondence between fMRI and SNP data
by group sparse canonical correlation analysis. Medical image analysis, 18(6):891–902,
2014.

[130] D. Lin, J. Zhang, J. Li, V. D. Calhoun, H.-W. Deng, and Y.-P. Wang. Group sparse
canonical correlation analysis for genomic data integration. BMC bioinformatics,
14(1):1–16, 2013.

[131] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

[132] M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao. Hrank: Filter
pruning using high-rank feature map. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1529–1538, 2020.

[133] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann. Towards
optimal structured CNN pruning via generative adversarial learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2790–2799, 2019.

[134] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolu-
tional networks through network slimming. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2736–2744, 2017.

190

[135] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3431–3440, 2015.

[136] Y. Lou, S. H. Kang, S. Soatto, and A. L. Bertozzi. Video stabilization of atmospheric
turbulence distortion. Inverse Problems and Imaging, 7(3):839–861, 2013.

[137] Y. Lou, S. Osher, and J. Xin. Computational aspects of constrained L1 − L2 min-
imization for compressive sensing. In Modelling, Computation and Optimization in
Information Systems and Management Sciences, pages 169–180. Springer, 2015.

[138] Y. Lou and M. Yan. Fast L1 − L2 minimization via a proximal operator. Journal of
Scientific Computing, 74(2):767–785, 2018.

[139] Y. Lou, P. Yin, Q. He, and J. Xin. Computing sparse representation in a highly
coherent dictionary based on difference of L1 and L2. Journal of Scientific Computing,
64(1):178–196, 2015.

[140] Y. Lou, P. Yin, and J. Xin. Point source super-resolution via non-convex L1 based
methods. Journal of Scientific Computing, 68(3):1082–1100, 2016.

[141] Y. Lou, T. Zeng, S. Osher, and J. Xin. A weighted difference of anisotropic and
isotropic total variation model for image processing. SIAM Journal on Imaging Sci-
ences, 8(3):1798–1823, 2015.

[142] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through
l0 regularization. International Conference on Learning Representations, 2018; CoRR,
abs/1712.01312, 2017.

[143] J. Lu, K. Qiao, X. Li, Z. Lu, and Y. Zou. ℓ0-minimization methods for image restoration
problems based on wavelet frames. Inverse Problems, 35(6):064001, 2019.

[144] Z. Lu and Y. Zhang. Sparse approximation via penalty decomposition methods. SIAM
Journal on Optimization, 23(4):2448–2478, 2013.

[145] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neu-
ral network compression. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5058–5066, 2017.

[146] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W. Lin. Thinet: pruning
CNN filters for a thinner net. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(10):2525–2538, 2018.

[147] Q.-T. Luong. Color in computer vision. In Handbook of Pattern Recognition and
Computer Vision, pages 311–368. World Scientific, 1993.

[148] M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed
sensing for rapid MR imaging. Magnetic Resonance in Medicine: An Official Journal
of the International Society for Magnetic Resonance in Medicine, 58(6):1182–1195,
2007.

191

[149] J. Lv, Y. Fan, et al. A unified approach to model selection and sparse recovery using
regularized least squares. The Annals of Statistics, 37(6A):3498–3528, 2009.

[150] J. Lyu, S. Zhang, Y. Qi, and J. Xin. Autoshufflenet: Learning permutation matrices
via an exact lipschitz continuous penalty in deep convolutional neural networks. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, page 608–616, New York, NY, USA, 2020. Association for
Computing Machinery.

[151] H. Ma, T. Celik, and H.-C. Li. Lightweight attention convolutional neural network
through network slimming for robust facial expression recognition. Signal, Image and
Video Processing, pages 1–9, 2021.

[152] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for effi-
cient cnn architecture design. In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss,
editors, Computer Vision – ECCV 2018, pages 122–138, Cham, 2018. Springer Inter-
national Publishing.

[153] R. Ma, J. Miao, L. Niu, and P. Zhang. Transformed ℓ1 regularization for learning
sparse deep neural networks. Neural Networks, 119:286–298, 2019.

[154] S. Ma, X. Song, and J. Huang. Supervised group lasso with applications to microarray
data analysis. BMC bioinformatics, 8(1):60, 2007.

[155] T.-H. Ma, Y. Lou, T.-Z. Huang, and X.-L. Zhao. Group-based truncated L1−2 model
for image inpainting. In 2017 IEEE International Conference on Image Processing
(ICIP), pages 2079–2083. IEEE, 2017.

[156] Y. Malitsky and T. Pock. A first-order primal-dual algorithm with linesearch. SIAM
Journal on Optimization, 28(1):411–432, 2018.

[157] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring eco-
logical statistics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, volume 2, pages 416–423. IEEE, 2001.

[158] A. Mehranian, H. S. Rad, A. Rahmim, M. R. Ay, and H. Zaidi. Smoothly Clipped
Absolute Deviation (SCAD) regularization for compressed sensing MRI using an aug-
mented Lagrangian scheme. Magnetic Resonance Imaging, 31(8):1399–1411, 2013.

[159] L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–
71, 2008.

[160] F. Meng, H. Cheng, K. Li, H. Luo, X. Guo, G. Lu, and X. Sun. Pruning filter in filter.
Advances in Neural Information Processing Systems, 33:17629–17640, 2020.

[161] B. Merriman, J. K. Bence, and S. J. Osher. Motion of multiple junctions: A level set
approach. Journal of Computational Physics, 112(2):334–363, 1994.

192

[162] C. Miao and H. Yu. A general-thresholding solution for lp(0 < p < 1) regularized CT
reconstruction. IEEE Transactions on Image Processing, 24(12):5455–5468, 2015.

[163] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and
associated variational problems. Communications on Pure and Applied Mathematics,
42(5):577–685, 1989.

[164] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits
in natural images with unsupervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

[165] M. K. Ng, R. H. Chan, and W.-C. Tang. A fast algorithm for deblurring models with
Neumann boundary conditions. SIAM Journal on Scientific Computing, 21(3):851–
866, 1999.

[166] F. Nie, H. Wang, H. Huang, and C. Ding. Unsupervised and semi-supervised learning
via ℓ1-norm graph. In 2011 International Conference on Computer Vision. IEEE, nov
2011.

[167] M. Nikolova. Local strong homogeneity of a regularized estimator. SIAM Journal on
Applied Mathematics, 61(2):633–658, 2000.

[168] J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

[169] D. Noll. Convergence of non-smooth descent methods using the Kurdyka– Lojasiewicz
inequality. Journal of Optimization Theory and Applications, 160(2):553–572, 2014.

[170] M. K. Pandit, R. Naaz, and M. A. Chishti. Learning sparse neural networks using
non-convex regularization. IEEE Transactions on Emerging Topics in Computational
Intelligence, 2021.

[171] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and Trends® in Opti-
mization, 1(3):127–239, 2014.

[172] F. Park, Y. Lou, and J. Xin. A weighted difference of anisotropic and isotropic total
variation for relaxed Mumford–Shah image segmentation. In 2016 IEEE International
Conference on Image Processing (ICIP). IEEE, sep 2016.

[173] J.-P. Penot. Calculus Without Derivatives, volume 266. Springer Science & Business
Media, 2012.

[174] T. Pham-Dinh and H. A. Le-Thi. Convex analysis approach to DC programming:
Theory, algorithms and applications. Acta Mathematica Vietnamica, 22(1):289–355,
1997.

[175] T. Pham-Dinh and H. A. Le-Thi. A DC optimization algorithm for solving the trust-
region subproblem. SIAM Journal on Optimization, 8(2):476–505, 1998.

193

[176] T. Pock, A. Chambolle, D. Cremers, and H. Bischof. A convex relaxation approach
for computing minimal partitions. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 810–817. IEEE, 2009.

[177] T. Pock, D. Cremers, H. Bischof, and A. Chambolle. An algorithm for minimizing the
Mumford-Shah functional. In 2009 IEEE 12th International Conference on Computer
Vision, pages 1133–1140. IEEE, 2009.

[178] T. Pock and S. Sabach. Inertial proximal alternating linearized minimization (iPALM)
for nonconvex and nonsmooth problems. SIAM Journal on Imaging Sciences,
9(4):1756–1787, 2016.

[179] T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cremers. A convex formula-
tion of continuous multi-label problems. In European Conference on Computer Vision,
pages 792–805. Springer, 2008.

[180] R. B. Potts. Some generalized order-disorder transformations. In Mathematical pro-
ceedings of the cambridge philosophical society, volume 48, pages 106–109. Cambridge
Univ Press, 1952.

[181] Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly. Hyperspectral unmixing via L1/2

sparsity-constrained nonnegative matrix factorization. IEEE Transactions on Geo-
science and Remote Sensing, 49(11):4282–4297, 2011.

[182] Y. Rahimi, C. Wang, H. Dong, and Y. Lou. A scale-invariant approach for sparse
signal recovery. SIAM Journal on Scientific Computing, 41(6):A3649–A3672, 2019.

[183] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing
Systems, pages 91–99, 2015.

[184] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317. Springer
Science & Business Media, 2009.

[185] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and
Computer-Assisted Intervention, pages 234–241. Springer, 2015.

[186] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

[187] C. Samson, L. Blanc-Féraud, G. Aubert, and J. Zerubia. A level set model for image
classification. International Journal of Computer Vision, 40(3):187–197, 2000.

[188] F. Santosa and W. W. Symes. Linear inversion of band-limited reflection seismograms.
SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

[189] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini. Group sparse regulariza-
tion for deep neural networks. Neurocomputing, 241:81–89, 2017.

194

[190] N. Z. Shor. Minimization Methods for Non-Differentiable Functions, volume 3. Springer
Science & Business Media, 2012.

[191] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal
of Computational and Graphical Statistics, 22(2):231–245, 2013.

[192] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[193] M. Storath and A. Weinmann. Fast partitioning of vector-valued images. SIAM Journal
on Imaging Sciences, 7(3):1826–1852, 2014.

[194] M. Storath, A. Weinmann, J. Frikel, and M. Unser. Joint image reconstruction and
segmentation using the Potts model. Inverse Problems, 31(2):025003, 2015.

[195] E. Strekalovskiy and D. Cremers. Real-time minimization of the piecewise smooth
Mumford-Shah functional. In European Conference on Computer Vision, pages 127–
141. Springer, 2014.

[196] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization
and momentum in deep learning. In International Conference on Machine Learning,
pages 1139–1147, 2013.

[197] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826, 2016.

[198] C. Tai, T. Xiao, Y. Zhang, X. Wang, et al. Convolutional neural networks with low-
rank regularization. arXiv preprint arXiv:1511.06067, 2015.

[199] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[200] H. Tran and C. Webster. A class of null space conditions for sparse recovery via
nonconvex, non-separable minimizations. Results in Applied Mathematics, 3:100011,
2019.

[201] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Transactions on Information theory, 50(10):2231–2242, 2004.

[202] J. Trzasko, A. Manduca, and E. Borisch. Sparse MRI reconstruction via multiscale
L0-continuation. In 2007 IEEE/SP 14th Workshop on Statistical Signal Processing,
pages 176–180. IEEE, August 2007.

[203] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science, volume 47. Cambridge University Press, 2018.

[204] L. A. Vese and T. F. Chan. A multiphase level set framework for image segmenta-
tion using the Mumford and Shah model. International Journal of Computer Vision,
50(3):271–293, 2002.

195

[205] M. Vincent and N. R. Hansen. Sparse group lasso and high dimensional multinomial
classification. Computational Statistics & Data Analysis, 71:771–786, 2014.

[206] C. Wang, M. Tao, C.-N. Chuah, J. Nagy, and Y. Lou. Minimizing L1 over L2 norms
on the gradient. Inverse Problems, 38(6):065011, 2022.

[207] C. Wang, M. Tao, J. G. Nagy, and Y. Lou. Limited-angle CT reconstruction via the
L1/L2 minimization. SIAM Journal on Imaging Sciences, 14(2):749–777, 2021.

[208] C. Wang, M. Yan, Y. Rahimi, and Y. Lou. Accelerated schemes for the L1/L2 mini-
mization. IEEE Transactions on Signal Processing, 68:2660–2669, 2020.

[209] L. Wang, G. Chen, and H. Li. Group SCAD regression analysis for microarray time
course gene expression data. Bioinformatics, 23(12):1486–1494, 2007.

[210] X.-F. Wang, D.-S. Huang, and H. Xu. An efficient local Chan–Vese model for image
segmentation. Pattern Recognition, 43(3):603–618, 2010.

[211] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algorithm
for total variation image reconstruction. SIAM Journal on Imaging Sciences, 1(3):248–
272, 2008.

[212] K. Wei, K. Yin, X.-C. Tai, and T. F. Chan. New region force for variational models
in image segmentation and high dimensional data clustering. Annals of Mathematical
Sciences and Applications, 3(1):255–286, 2018.

[213] F. Wen, L. Chu, P. Liu, and R. C. Qiu. A survey on nonconvex regularization-based
sparse and low-rank recovery in signal processing, statistics, and machine learning.
IEEE Access, 6:69883–69906, 2018.

[214] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep
neural networks. In Advances in Neural Information Processing Systems, NIPS’16,
pages 2074–2082, Red Hook, NY, USA, 2016. Curran Associates Inc.

[215] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li. Coordinating filters for faster
deep neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 658–666, 2017.

[216] T. Wu, J. Shao, X. Gu, M. K. Ng, and T. Zeng. Two-stage image segmentation
based on nonconvex ℓ2−ℓp approximation and thresholding. Applied Mathematics and
Computation, 403:126168, 2021.

[217] T. Wu, Y. Zhao, Z. Mao, L. Shi, Z. Li, and Y. Zeng. Image segmentation via Fischer-
Burmeister total variation and thresholding. Advances in Applied Mathematics and
Mechanics, 14(4):960–988, 2022.

[218] Y. Wu and K. He. Group normalization. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 3–19, 2018.

196

[219] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via L0 gradient minimization. In
Proceedings of the 2011 SIGGRAPH Asia Conference, pages 1–12, 2011.

[220] Y. Xu, Y. Li, S. Zhang, W. Wen, B. Wang, Y. Qi, Y. Chen, W. Lin, and H. Xiong.
Trained rank pruning for efficient deep neural networks. In 2019 Fifth Workshop on En-
ergy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-
NIPS), pages 14–17. IEEE, 2019.

[221] Y. Xu, Y. Li, S. Zhang, W. Wen, B. Wang, Y. Qi, Y. Chen, W. Lin, and H. Xiong.
TRP: Trained rank pruning for efficient deep neural networks. International Joint
Conference on Artificial Intelligence, 2020.

[222] Z. Xu, X. Chang, F. Xu, and H. Zhang. L1/2 regularization: A thresholding represen-
tation theory and a fast solver. IEEE Transactions on Neural Networks and Learning
Systems, 23(7):1013–1027, 2012.

[223] Z. Xu, H. Guo, Y. Wang, and Z. Hai. Representative of L1/2 regularization among
Lq(0 ≤ q ≤ 1) regularizations: an experimental study based on phase diagram. Acta
Automatica Sinica, 38(7):1225–1228, 2012.

[224] F. Xue, Y. Qi, and J. Xin. RARTS: An efficient first-order relaxed architecture search
method. IEEE Access, 10:65901–65912, 2022.

[225] F. Xue and J. Xin. Learning sparse neural networks via ℓ0 and Tℓ1 by a relaxed
variable splitting method with application to multi-scale curve classification. In World
Congress on Global Optimization, pages 800–809. Springer, 2019.

[226] F. Xue and J. Xin. Network compression via cooperative architecture search and
distillation. In IEEE International Conference on AI for Industries, pages 42–43,
2021.

[227] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell. Oboe: Collaborative filtering for
automl model selection. In Proceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages 1173–1183. ACM, July 2019.

[228] Q. Ye, H. Zhao, Z. Li, X. Yang, S. Gao, T. Yin, and N. Ye. L1-norm distance
minimization-based fast robust twin support vector k-plane clustering. IEEE Trans-
actions on Neural Networks and Learning Systems, 29(9):4494–4503, 2017.

[229] P. Yin, E. Esser, and J. Xin. Ratio and difference of ℓ1 and ℓ2 norms and sparse rep-
resentation with coherent dictionaries. Communications in Information and Systems,
14(2):87–109, 2014.

[230] P. Yin, Y. Lou, Q. He, and J. Xin. Minimization of ℓ1−2 for compressed sensing. SIAM
Journal on Scientific Computing, 37(1):A536–A563, 2015.

[231] P. Yin, Z. Sun, W.-L. Jin, and J. Xin. ℓ1-minimization method for link flow correction.
Transportation Research Part B: Methodological, 104:398–408, 2017.

197

[232] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Binaryrelax: A relaxation
approach for training deep neural networks with quantized weights. SIAM Journal on
Imaging Sciences, 11(4):2205–2223, 2018.

[233] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for
ℓ1-minimization with applications to compressed sensing. SIAM Journal on Imaging
sciences, 1(1):143–168, 2008.

[234] J. Yoon and S. J. Hwang. Combined group and exclusive sparsity for deep neural
networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, volume 70 of Proceedings of Machine Learning Research, pages 3958–3966,
International Convention Centre, Sydney, Australia, August 2017. PMLR.

[235] J. You, Y. Jiao, X. Lu, and T. Zeng. A nonconvex model with minimax concave penalty
for image restoration. Journal of Scientific Computing, 78(2):1063–1086, 2019.

[236] J. Yuan, E. Bae, X.-C. Tai, and Y. Boykov. A continuous max-flow approach to Potts
model. In European Conference on Computer Vision, pages 379–392. Springer, 2010.

[237] J. Yuan, K. Yin, Y.-G. Bai, X.-C. Feng, and X.-C. Tai. Bregman-proximal augmented
Lagrangian approach to multiphase image segmentation. In International Conference
on Scale Space and Variational Methods in Computer Vision, pages 524–534. Springer,
2017.

[238] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49–67, 2006.

[239] X.-T. Yuan, P. Li, and T. Zhang. Gradient hard thresholding pursuit. Journal of
Machine Learning Research, 18:166–1, 2017.

[240] C. Zach, D. Gallup, J.-M. Frahm, and M. Niethammer. Fast global labeling for real-
time stereo using multiple plane sweeps. In VMV, pages 243–252, 2008.

[241] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[242] J. Zeng, T. T.-K. Lau, S. Lin, and Y. Yao. Global convergence of block coordinate
descent in deep learning. In International Conference on Machine Learning, pages
7313–7323. PMLR, 2019.

[243] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning
requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

[244] C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

[245] J. Zhang, W. Wang, C. Lu, J. Wang, and A. K. Sangaiah. Lightweight deep network
for traffic sign classification. Annals of Telecommunications, 75(7):369–379, 2020.

198

[246] S. Zhang and J. Xin. Minimization of transformed l1 penalty: Closed form representa-
tion and iterative thresholding algorithms. Communications in Mathematical Sciences,
15(2):511 – 537, 2017.

[247] S. Zhang and J. Xin. Minimization of transformed l1 penalty: theory, difference of
convex function algorithm, and robust application in compressed sensing. Mathematical
Programming, 169(1):307–336, 2018.

[248] S. Zhang, P. Yin, and J. Xin. Transformed Schatten-1 iterative thresholding algorithms
for low rank matrix completion. Communications in Mathematical Sciences, 15(3):839
– 862, 2017.

[249] X. Zhang, Y. Lu, and T. Chan. A novel sparsity reconstruction method from Poisson
data for 3D bioluminescence tomography. Journal of Scientific Computing, 50(3):519–
535, 2012.

[250] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6848–6856. IEEE, 2018.

[251] Y. Zhang, B. Dong, and Z. Lu. ℓ0 minimization for wavelet frame based image restora-
tion. Mathematics of Computation, 82(282):995–1015, 2013.

[252] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian. Variational convolutional
neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2780–2789, 2019.

[253] H. Zhou, M. E. Sehl, J. S. Sinsheimer, and K. Lange. Association screening of common
and rare genetic variants by penalized regression. Bioinformatics, 26(19):2375, 2010.

[254] Y. Zhou, R. Jin, and S. C.-H. Hoi. Exclusive lasso for multi-task feature selection. In
Y. W. Teh and M. Titterington, editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 988–995, Chia Laguna Resort, Sardinia, Italy, May 2010.
JMLR Workshop and Conference Proceedings.

[255] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. arXiv preprint
arXiv:1612.01064, 2016.

[256] M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm for total
variation image restoration. UCLA CAM Report, 34, 2008.

199

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	I Compression of Deep Learning Models
	Introduction
	Motivation
	Compression Techniques for CNN
	Organization of Part I

	Structured Sparsity of Convolutional Neural Networks via Nonconvex Sparse Group Regularization
	Model and Algorithm
	Preliminaries
	Nonconvex Sparse Group Lasso
	Notations and Definitions
	Numerical Optimization
	Convergence Analysis

	Numerical Experiments
	Application to Deep Neural Networks
	Algorithm Comparison

	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.2

	Nonconvex Regularization for Network Slimming
	Regularization Penalty
	Proposed Method
	Batch Normalization Layer
	Network Slimming with Nonconvex Sparse Regularization

	Experimental Results
	Datasets
	Implementation Details
	Channel Pruning Results
	Retraining After Pruning
	Scaling Factor Analysis
	Comparison with Variational CNN Pruning

	A Proximal Algorithm for Network Slimming
	Proposed Algorithm
	Batch Normalization Layer
	Numerical Optimization

	Convergence Analysis
	Numerical Experiments
	CIFAR 10/100 Datasets
	Implementation Details
	Results

	Proofs

	Conclusion

	II Image Segmentation
	Introduction
	Motivation and Related Works
	Weighted Anisotropic–Isotropic Total Variation
	Organization of Part II

	A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed Mumford-Shah Image Segmentation
	Notations
	Anisotropic-Isotropic Chan-Vese Model
	Numerical Algorithm
	Convergence Analysis

	Fuzzy Extension of the AICV Model
	Extension to Color Images
	Numerical Results
	Synthetic Images
	Real Images

	An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation
	 Preliminaries
	Notations
	Review of SaT/SLaT

	Smoothing with AITV Regularization
	Model Analysis
	Numerical Scheme
	Convergence Analysis

	Experimental Results
	Two-Phase Segmentation on Synthetic Images
	Real Grayscale Images with Intensity Inhomogeneities
	Real Color Images

	Conclusion
	Bibliography

