
UC San Diego
UC San Diego Previously Published Works

Title
A simplified interventional mapping system (SIMS) for the selection of combinations of 
targeted treatments in non-small cell lung cancer

Permalink
https://escholarship.org/uc/item/07462878

Journal
Oncotarget, 6(16)

ISSN
1949-2553

Authors
Lazar, Vladimir
Rubin, Eitan
Depil, Stephane
et al.

Publication Date
2015-06-10

DOI
10.18632/oncotarget.3741

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/07462878
https://escholarship.org/uc/item/07462878#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Oncotarget14139www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 16

A simplified interventional mapping system (SIMS) for the 
selection of combinations of targeted treatments in non-small 
cell lung cancer
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INTRODUCTION

Lung cancer is one of the most prevalent and deadly 
malignancies, contributing a staggering 1.6 million cases 
diagnosed per year and about 21% of cancer deaths to the 
global cancer burden [1, 2]. The majority of individuals 
with non-small cell lung cancer (NSCLC) present at the 
metastatic stage, and most patients with localized disease 
will relapse. The standard of care in advanced disease- 
mainly cytotoxic chemotherapy and targeted agents for 
selected subsets, has had modest impact on mortality, with 
dismal one- and five-year survival rates of around 15% 
and 4%, respectively, for patients with metastatic disease 
[1, 2]. For patients who have failed first-line therapy, the 
median survival is only about seven months.

Targeted therapies implemented in standard care are 
directed at the activated products of mutated epidermal 
growth factor receptor (EGFR) [3] or ALK translocation 
[4], and have shown high response rates, and improved 
progression-free survival (PFS). However, these 

monotherapies apply to only small subsets of oncogene-
driven patients, and virtually all develop resistance and 
succumb to their disease [5]. Relapse occurs mostly as a 
consequence of the Darwinian selection of tumour clones 
harboring genomic variants that lead to the activation 
of additional signaling pathways and, hence, resistance. 
This is perhaps not unexpected, as tumors often exhibit 
a large variety of molecular abnormalities [6, 7], even at 
diagnosis. Heterogeneity across tumor clones is amplified 
in metastases, and in response to therapeutic pressure. 

Combination of cytotoxic therapies have been 
demonstrated to be effective where single agents provide 
only moderate benefits, as illustrated in Hodgkin’s 
lymphoma. Whether this paradigm applies to targeted 
therapy remains unclear for most diseases. However, 
recently, combinations targeting the same pathway (e.g. 
trametanib (MEK) inhibitor together with dabrafenib 
(BRAF inhibitor) in BRAF-mutant melanoma [8] or 
resistance pathways (combining PIK3CA and MEK 
inhibitors) [9] showed efficacy, either preclinically and/
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AbsTRACT
Non-small cell lung cancer (NSCLC) is a leading cause of death worldwide. 

Targeted monotherapies produce high regression rates, albeit for limited patient 
subgroups, who inevitably succumb. We present a novel strategy for identifying 
customized combinations of triplets of targeted agents, utilizing a simplified 
interventional mapping system (SIMS) that merges knowledge about existent drugs 
and their impact on the hallmarks of cancer. Based on interrogation of matched lung 
tumor and normal tissue using targeted genomic sequencing, copy number variation, 
transcriptomics, and miRNA expression, the activation status of 24 interventional 
nodes was elucidated. An algorithm was developed to create a scoring system that 
enables ranking of the activated interventional nodes for each patient. Based on the 
trends of co-activation at interventional points, combinations of drug triplets were 
defined in order to overcome resistance. This methodology will inform a prospective 
trial to be conducted by the WIN consortium, aiming to significantly impact survival 
in metastatic NSCLC and other malignancies.
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or in the clinic. With the aim of further enhancing clinical 
benefit and increasing survival, we intend to explore the 
efficacy of triple regimen therapy, following the historical 
success in diseases such as acquired immunodeficiency 
syndrome. The major challenges for this effort are 
delineating the scientific rationale for matching agents 
with patients’ tumors, while being cognizant of potential 
toxicity for multi-drug regimens. 

The nosologic segmentation of NSCLC based 
mainly on genomics heralded a new era, enabling 
successful development of targeted monotherapy for 
selected molecular subsets [3, 4, 10, 11]. The recent report 
of the Cancer Genome ATLAS Research Network shows 
that 62% of lung adenocarcinomas harbored activating 
mutations in known driver oncogenes; cancer-associated 
mutations in KRAS (32%), EGFR (11%) and BRAF (7%), 
were common [12]. Despite this progress, many patients 
still have no identified druggable genomic alterations and, 
as previously mentioned, most of those who do rapidly 
relapse. Strategies to delineate rational combinations 
of targeted therapy, using multi-platform, advanced 
omics technologies that move beyond genomics alone in 
NSCLC are lacking. Using novel tools and paradigms, 
the complexity of molecular aberrations in cancer may 
be better understood in terms of critical convergence 
pathways. In the present report, we propose a pragmatic 
approach using a simplified interventional points matching 
system (SIMS) that will produce customized triple therapy 
regimens for individual patients based on the most 
common abnormalities found in a genomic/transcriptomic 
analysis of matched tumor and normal biopsies from 121 
patients with lung cancer.

REsULTs

Overview of the Simplified Interventional Points 
Matching System (SIMS) strategy

Our objective was to establish a realistic framework 
that would allow useful drug combinations to be identified 
in a personalized way (i.e. matching the combination to the 
patient based on the tumor characteristics). This strategy 
involved three steps: (i) find interventional points/ nodes/ 
markers for common classes of drugs. (We delineated 24 
markers covering 183 genes (Table 1 and Supplemental 
Tables 1-7); (ii) find a score that summarizes the behavior 
of these markers in a given patient. The score should be 
proportional to the probability that the cognate drug(s) 
would produce salutary effects; and (iii) delineate a set 
number of triple drug combinations that could be tested 
clinically, and that would maximize the number of patients 
whose activated interventional nodes would be impacted.

Based on these assumptions, we proposed the 
SIMS (simplified interventional points mapping system) 

framework for precision combinational cancer medicine 
(Figure 1). 

First, we reduced the enormous complexity of 
biological pathways and signaling cross talk by devising 
a simplified map that concentrates only on the genes 
that are most indicative of drug/target status. We defined 
“intervention points,” which consist of drug targets or 
groups of targets, as well as genes upstream of the targets, 
that together reflect a specific biological activity that is 
actionable through therapeutic interventions. For example, 
pan-HER therapies define the HER group of receptors and 
their ligands as a single intervention point (Figure 1A). 

The second part of the work proposed a simplified 
approach for prioritizing intervention points for a specific 
patient. The basic premise behind the proposed score 
is that when the genes associated with an intervention 
point are more “disturbed” as compared to their status 
in normal cells (in terms of sequence and/or expression 
level), the more likely it is that this intervention point will 
be crucial to the tumor. From this it follows that the more 
disturbed the genes of an intervention point, the higher 
the probability that therapeutics targeted at that point will 
impact the viability of tumor cells, and hence benefit the 
patient. 

In the present work, we first developed a family of 
simple scores that combine somatic mutations found in 
the intervention point genes with copy number variations 
(CNVs) and expression changes in protein-coding 
transcripts and in miRNAs. The rank normalization (in 
our example, using deciles) is used to make the scores of 
different intervention points comparable. We evaluated 
these scores in silico on our 121 patient NSCLC dataset.

Finally, a method is needed for integrating the 
scores and choosing combinations that are likely to benefit 
the patients. Here we used an algorithmic approach. 
We described the status of 24 intervention points in a 
panel of 121 patients with lung cancer as an example. 
From this foundation, we applied a knowledge-driven 
strategy to look for three-drug combinations that might 
complementarily or synergistically benefit the patient. We 
identified those pathways that co-occur frequently in the 
patients and are mechanistically independent. To further 
improve the efficacy of the proposed combinations, 
we propose to add immunomodulating therapies (i.e. 
anti-PD1L or anti-CTLA4) to the triplet regimens, with 
the additional aim of reducing the chance of drug/drug 
interactions and side effects (from combining, for instance, 
three tyrosine kinase inhibitors), while maintaining/
enhancing predicted efficacy.

Scoring of integrated genomic/transcriptomic 
data

After processing of the genomic data, a score was 
generated for all the 24 interventional points as shown 
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Table 1: Summary of the interventional points or nodes (N=24) defined by the genes involved (N 
= 183) and examples of drugs that can impact these nodes. 

Interventional points are defined by genes/group of genes that, when activated, could be blocked by a customized therapy 
combination.
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Figure 1: The framework for combinatorial personalized cancer medicine. The SIMS strategy has three steps: A: Mapping 
therapeutic efficacy to cellular components and identification of interventional nodes. The example outlines the HER interventional point, 
constituted by four receptors (EGFR, Her2, Her3 and Her4) and their major ligands (EGF, TGFA, NRG1, NRG2, NRG4 and NRG4). 
Activation of this node can be induced by receptor mutations or overexpression of receptors and or ligands in tumor as compared with the 
normal counterpart, and this activation can be efficiently blocked by a panHer inhibitor, such as a fatinib; b: Scoring the status of specific 
nodes in the interventional maps defined, and predicting combination efficacy. Interventional points scored over 5 (6 to 10) are high priority. 
C. Finding the most frequent co-existing interventional nodes and hence suggesting combinations. Frequently co-occurring, high priority 
interventional points are determined, and cognate drugs are identified based on literature reviews. 

Table 2: The frequencies of activation of actionable interventional points in three groups of NSCLC 
patients. 
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in Supplemental Table 5. While somatic mutations 
automatically generated a score of 10, only a subset of 
tumors carried activating mutations. Most of the scores 
were obtained based on gene expression and penalized by 
miRNA expression. miRNA induced a significant penalty 
of scores for mTor, AKT, PTEN, RAS, ERK , PI3K and 
surprisingly PDL1, whereas impact on other interventional 
points was not significant. In this data set, CNV also had a 
non -significant impact on the score.

Assuming that preferred combinations will include 
two targeted therapies and an immunomodulator to 
attenuate risk of toxicity, we investigated the frequency 
of activation of PDL1 and CTLA4 (Table 2). PDL1 is 

activated in 63 (out of 121 patients), CTLA4 is activated 
in 58 (out of 121 patients) and PDL1 and CTLA4 are co-
activated in 36 patients out of 121. In total 87 patients (out 
of 121) (71%) have one of two immune-related targets 
activated (PDL1 or CTLA4), whereas 36 patients (of 121) 
do not have activation of immune targets.

Interventional node activation/co-activation

In the next step, we made the selection of all 
activated interventional points. Scores 8, 9 and 10 were  
designated high activation, whereas scores 6 and 7 were  
designated medium activation. Scores <6 were designated 

Figure 2: A: Flowchart of the scoring system: The principles of the score are the followings: A Score is designed to correlate 
with the likelihood that an interventional node is abnormally active in the tumor. It ranges from 1 to 10. The score combines 
evidence from 3 data sources: mutations, meanfold change in gene over expression (mRNA and miRNA) in the tumor versus normal and 
copy number variation. Different data sources will trigger different weights in the score: i) activating mutations (e.g. KRAS in the RAS 
path) have decisive weight. The maximal score of 10 is given to every node with an activating mutation; ii) in the absence of a mutation, 
the score is based on weighted sum of the mRNA meanfold changes corrected by an adjustment based on miRNAs and to a lesser extent 
on CNV abnormalities. b: Principle of the calibrator: In Y: Fold change (Fc) of differential gene expression between tumor (T) and normal 
(N) in each patient. In X: number of patients (No): for each graph, the order of patients is different. This series serves as a calibrator for 
calculation of deciles. For every new measurement in each patient, the meanfold change for mRNA is plotted against the calibrator curve, 
and the deciles partition of the curve enables assignment of a score from 1 to 10. The score obtained based on the mRNA is corrected by 
miRNA, and is considered in the absence of mutations. 
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as non-activated interventional points. This threshold was 
determined based on the distribution of values for each 
interventional point in the data set of 121 patients. Figure 
2B shows this distribution for three nodes; however all the 
other points had a similar trajectory.

Supplemental Tables 6 and 7 show trends of co-
activations of the 24 interventional points, and provide 
new insights into the biology of NSCLC, demonstrating 
the complexity of co-activation of interventional 
points. Figure 3 illustrates that each patient has a large 
number of activated nodes, and thus will have multiple 
therapeutic choices. Overall, the most commonly activated 
interventional points in all 121 patients were CDK4/6, 

Ras/Raf, anti-apoptosis, Her, Notch and Polokinase-
Aurora-Kinase. 

Activation of immunomodulator-related 
interventional nodes appears to be relevant to over half of 
NSCLC. Focusing on prevalence of activation of PDL1 
and CTLA4, we analyzed specifically the frequency of 
activation of the other interventional points, as shown in 
Tables 2 and 3. Interestingly, RAS and RAF nodes are co-
activated in a majority of patients, as are mTOR and PI3K. 

The frequency of activated interventional points in 
patients with activated immune-modulator targets is quite 
similar (Ras/Raf>Mek>Angiogenesis), whilst patients 
without their activation display a different profile: Her> 

Table 3: Summary of the most frequent triple combinations and summary of the most frequent 
combinations involving the PD1L immunomodulator. (Bolded rows indicate the six most frequent 
combinations involving the PD1L immunomodulator)
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mTor>, PARP> Polo-Aurora kinase. 
Based on the magnitude and frequency of activation 

of interventional points and trends of co-activation, we 
indentified all possible triple combinations of targeted 
therapies, available for selection for an individualized 
therapeutic decision (Table 3 and Supplemental Table 8).

Selection of triplet combinations

Focusing on the PDL1-activated group of patients, 
we determined the most frequent possible combinations. 
The six triplets that encompassed the greatest proportion 
of patients (>15% NSCLC) are described in Table 3.  

The most frequent combinations that include PDL1 
are activation of RAS/RAF, mTOR/PI3K and PDL1 (28% 
of all NSCLC) (Table 3). The other combinations are 
presented in the Discussion and as shown in Supplemental 
Tables 5 and 6, these combinations are overlapping in 
different patients, meaning that a given patient could 
potentially benefit from two or even more combinations. 
Overall, the six most frequent combinations that include 
PDL1 cover 63 out of 121 NSCLC patients, with no 

specific relationship to adenocarcinoma or squamous cell 
cancer histological types.

Combinations for patients with EGFR mutations 
or ALK rearrangements were less common because 
only a small proportion of our NSCLC displayed such 
aberrations. 

Of interest, all the most commonly aberrantly 
activated interventional nodes can be targeted by drugs 
currently available in clinical trials or approved (as 
described in Table 1).

DIsCUssION

We describe here a novel, simplified intervention 
mapping system (SIMS) method to efficiently identify 
the key activated pathways in a given cancer. The aim 
is to provide treatment guidance in the clinic in the form 
of a combination of three agents directed against the 
three intervention points most critical to the individual 
neoplasm.

In NSCLC, as well as in many cancer types, 
molecular characterization of the tumors has resulted 

Figure 3: 3D representation of the scoring system. Axis Z shows score from 1 to 10 of each interventional point. Axis X represents 
examples of interventional points. Axis Y represents each patient. Four subjects are shown to demonstrate the complexity of co-activation of 
interventional points. Abbreviations used to designate interventional points are described in Table 1. Each patient’s tumor shows numerous 
activations, suggesting multiple possibilities for combinations. S1, S2, S3, and S4 each represent an individual patient.
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in segmentation of nosological classifications, based 
previously on the organ of origin and histology, into a 
variety of molecular subtypes, often characterized by 
one specific driver molecular genetic alteration [3-14]. 
These driver alterations have successfully guided the 
development of novel targeted therapies for subsets of 
patients with NSCLC and EGFR mutations, as well as 
ALK or ROS translocations, and now a variety of other 
small subsets (BRAF mutations, HER2 mutations, etc). 
However, this strategy has several limitations: (i) only 
a portion of tumors have an identified driver mutation, 
and many of these simple models may have been already 
described [15, 20]; (ii) there is no recognized strategy 
to efficiently pinpoint unrecognized drivers within the 
complex and multiple genomic alterations observed in 
most tumors; (iii) targeted treatments are not uniformly 
efficient even in these selected subgroups; (iv) the majority 
of tumors are actually driven by multiple aberrant genes 
[18, 19, 20], making the monotherapy paradigm unsuitable 
for most metastatic cancers; and (v) resistance uniformly 
emerges in a Darwinian manner in patients treated with a 
single targeted therapy. 

The work presented here proposes a novel strategy 
to overcome these major limitations for the development 
of targeted therapies in patients with cancer. Using 
a dataset of 121 patients with NSCLC patients, and 
combining mutation information, CNV, and miRNA 
and mRNA expression in matched tumor and normal 
tissues, 24 intervention points potentially actionable 
by currently available targeted agents were identified, 
and allocated a score for each individual patient. We 
identified specific interventional points/nodes for drugs 
based on the pathways upregulated in each patient’s 
cancer. This approach for prioritizing intervention points 
for a patient is simple. The basic premise is that, when 
the genes associated with an intervention point are more 
disturbed (in terms of sequence and/or expression level), 
the intervention point is more likely to be crucial to the 
tumor. From this, it follows that the more disturbed the 
genes of an intervention point are, the more likely it is that 
therapeutics targeting that point will benefit the patient. 
Accordingly, we have developed a family of simple scores 
that combine the level of gene expression in the tumor 
(relative to matched normal control), the mutations found 
in the intervention points’ genes, CNVs and miRNAs 
expression levels. Intervention points with high scores 
varied across patients, but groups of tumors with similar 
combinations of high scores of activation points were 
identified, leading to a new dimensional classification of 
these tumors with potential predictive value for treatment 
efficacy. The technology described to delineate this score 
requires samples of tumor tissue and corresponding normal 
tissue, and molecular characterization tools that are readily 
available in many modern translational research facilities 
dedicated to cancer research. Its implementation in the 
clinical realm, integrating as well the rapid continuous 

improvements in technology, should therefore be readily 
feasible for the clinical trial setting. 

The aim of this tool is to guide treatment decisions. 
We propose a new therapeutic approach of triple regimen 
therapies aimed at simultaneously blocking different 
biologic pathways and reducing the chance of developing 
secondary resistance. This simplified interventional 
mapping system (SIMS) identifies within the hallmarks 
of cancer [20] only signaling and regulatory pathways 
that can be targeted with available therapeutic agents. The 
principle of simplification is based on the activating signal 
that can be blocked by a class of drugs.

We therefore propose that combinations of three 
different classes of targeted agents acting on three 
independent intervention nodes will be necessary to 
derive a significant survival advantage for a given patient. 
One of these agents should ideally target the immune 
checkpoints, such as PDL1/PD1, or CTLA-4. The 
selection of a combination of three drugs derives from 
several considerations: (i) combinations of two drugs 
have shown modest improvements in survival compared 
to monotherapy; (ii) combinations of four or more agents 
will likely be excessively toxic [21]; and (iii) large enough 
subgroups of patients with the same three intervention 
points with high scores were identified in this work.

Focusing on the PDL1-activated group of patients, 
we determined the most frequent possible combinations 
(Table 5). Interest in PDL1-targeting agents is due to 
toxicity that differs from that of targeted agents, with 
less chance of overlap and hence amplified side effects 
when given together with two targeted agents such as 
tyrosine kinase inhibitors [21]. By far the most frequent 
combination involves activation of Ras/Raf, mTor/PI3K 
and PD1L, accounting for 28% of all NSCLCs. This major 
finding is consistent with the ATLAS report [12]: showing 
that recurrent aberrations in multiple key pathways and 
processes characterize lung adenocarcinoma. Among 
these were RTK/RAS/ RAF pathway activation (76% 
of cases), PI(3)K-mTOR pathway activation (25%), p53 
pathway alteration (63%), and alteration of cell cycle 
regulators (64%). Our data, obtained in an independent 
cohort, (representative for all NSCLC and not only 
adenocarcinoma), shows very similar results : Ras/Raf 
activated in 73% and CDK4,6 activated in 51% [Table 
3]. However, while previous reports affirm molecular 
segmentation of lung cancers, our data presents, for 
the first time, trends of coactivations in each individual 
patient, enabling definition and selection of combinations 
of therapies. 

In addition to RAS/RAF, mTOR/PI3K and PDL1, 
other frequently co-activated pathways involving PDL1 
are as follows [Supplemental Table 8]: (i) angiogenesis, 
RAS/RAF and PDL1 (20% NSCLC); (ii) PDL1, mTOR/
PI3K and DNA Repair (19%); (iii) Ras/Raf, Met and 
PDL1 (18%); (iv) PDL1, mTor/PI3K and CDK4,6 (17%) 
and (v) PDL1, mTOR/PI3K, angiogenesis (17%). Overall, 
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these six combinations cover 63 out of 121 patients with 
NSCLC regardless of histology. These combinations 
are overlapping in many patients, implying that each 
individual patient could potentially benefit from two 
or more combinations. Nevertheless, when taking into 
account all the possible combinations described in Table 
3, it is worthwhile to mention that each patient may benefit 
from a therapeutic solution based on targeted agents 
available today. The finding is related to the new way of 
defining activated interventional nodes.

Integration of a variety omic datasets is advocated 
by many recently published opinions [13, 22, 23]. 
Consistent with the necessity of an integrative view, we 
used the power of multiple omic investigations in a novel 
way, defining a methodology and tools of integration 
focused on selection of combined therapies, which meets 
an urgent clinical need. This method aims to advance 
the paradigm of investigating individualized therapeutic 
options, in order to improve clinical outcome of patients 
with metastatic NSCLC.

Our system suggests that the combinations of 
three targeted treatments aimed at three intervention 
points with high scores enables selection of subgroups 
of patients of sufficient size so that clinical trials may be 
practically feasible. Although the analogy remains limited, 
it is noteworthy that tri-therapies with different modes of 
actions have previously been demonstrated to efficiently 
provide long-term control and/or cure for viral (HIV) 
and bacterial (TB) infections, Childhood leukemias also 
required combination therapy for long-term remission and 
cure. None of these ailments were cured with single agent 
treatment.

It should also be noted that our method for selecting 
triple-agent customized therapy for a patient assumes that 
impacting the three most “disturbed “ intervention points 
in a tumor would induce the best response. However, the 
SIMS framework can be used to test alternative hypotheses 
as well. For instance, one such alternative hypothesis is 
that simultaneous vertical targeting of a critical pathway 
by distinct types of drugs (such as antibodies and small 
molecule kinase inhibitors etc.) would more effectively 
extinguish the pathway.

One of the key forthcoming steps will be the 
implementation of clinical trials with innovative phase I/
II telescoped designs in order to validate this strategy, and 
the delineation of the recommended doses of the combined 
targeted treatments. It will be particularly important 
to establish whether the treatments should be given 
simultaneously or sequentially, in order to both maximize 
antitumor effect and optimize tolerance. 

Our work suggests a feasible prospective clinical 
trial that would benefit from several major assets. First, 
we identified at least six possible combinations of two 
targeted therapies together with an immune-modulator, 
applicable to at least half of NSCLC patients. Second, 
interrogation of dual biopsies of tumor and its normal 

counterpart, combined with a comprehensive systems 
biology investigation and innovative bioinformatics and 
scoring systems, may enable matching each individual 
patient with the most appropriate combination. Moreover, 
each patient will potentially benefit from different 
combinations, conferring a high chance of impacting 
survival of metastatic NSCLC. 

One of the cornerstones of this new methodology is 
use of dual matched tumor and normal biopsies from the 
same patient, enabling the subtraction of transcriptomic 
background noise in each patient [13, 23]. Dual matched 
biopsies were implemented, for the first time in a clinical 
setting, in the WINTHER trial (http://clinicaltrials.gov/
show/NCT01856296) of the Worldwide Innovative 
Networking (WIN) consortium (www.winconsortium.org) 
for personalized cancer therapy, and have proved feasible.

Nevertheless, this work does have several 
limitations. The number of patients with NSCLC was 
relatively small, and the data was collected retrospectively. 
Some important targets, such as EGFR and ALK, were 
not highlighted in the current results, mainly because 
they affected small numbers of our patients, and the 
effort here was to impact larger subgroups of individuals 
with NSCLC who may not benefit from EGFR and ALK 
inhibitors. It is probable that other populations, such as 
Asians, might have distinct patterns of aberrations, e.g., 
higher proportions with EGFR mutations. Fortunately, 
the algorithm permits adaptations to various populations 
and even to individuals. Many of the patients in our 
dataset had early-stage disease raising the question of 
extrapolation of the observations to late-stage patients. 
However, interestingly, our patients’ tumors still expressed 
multiple perturbed interventional nodes, consistent with 
the concept that, by the time lung cancer is diagnosed, 
it already exhibits significant molecular heterogeneity. 
Additionally, we know of no other database of lung tumor 
and matched normal tissue from the same patient being 
comprehensively evaluated for mutations, gene expression, 
miRNA expression and CNV, enabling a comparison with 
the CHEMORES unique retrospective collection [13, 14]. 
In comparison, when analysing ATLAS sources [12], while 
the collection of 236 adenocarcinomas included matched 
tumor and normal tissues, only sequencing was performed 
on tumor and normal DNA; gene expression was done in 
a classic fashion, with microarrays investigating only the 
tumor RNA. However the frequencies of occurrence of 
major interventional points such as Ras/Raf, mTor/PI3K, 
and cell cycle regulators appear to be similar to that in our 
study.

Another limitation of our work is the challenge 
it presents for pre-clinical validation. Validation of the 
SIMS tool requires matched tumor and normal tissues 
from the same individual. Current preclinical models 
(cell lines in two or three dimensional culture, and 
xenografts in nude mice) cannot address this concept. 
Moreover, it is increasingly unclear as to the extent that 
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these cell line or animal models can predict behavior in 
vivo, especially with immunomodulators that require 
an intact immune system, perhaps partially explaining 
the high attrition rate of drugs in development. Another 
limitation of the study relates to the targeted genomic 
sequencing that was performed. With the rapid evolution 
in technologies, more complete genomic sequencing 
should be applied to the next version of this analysis. 
Furthermore, next generations of the algorithm may 
also recognize distinctions between anomalies even 
within the same gene. For instance, not all p53 mutations 
behave as loss of function. Further, our understanding 
of the clinically relevant cut offs for expression of gene 
products such as PDL1 is still evolving, and correlating 
transcript expression to protein levels is in a nascent 
phase. Importantly, therefore, prospective validation of the 
algorithm and patterns of pathway abnormalities will be 
crucial. Furthermore, with the startling pace of advances 
in molecular methodological capabilities, algorithmical 
approaches to molecular complexity may need to be 
viewed as an iterative process, with prototypes being 
built and tested, and learning through the life cycle of the 
validation procedures. 

In conclusion, this simplified intervention mapping 
system potentially reduces the enormous complexity of 
biological signals and pathway cross talk by devising 
a streamlined map that focuses only on the genes that 
are most indicative of drug target status, defined as 
“intervention points”. These intervention points consist 
of drug targets or groups of drug targets and some genes 
upstream of the drug targets that together reflect a specific 
biological activity that is actionable through currently 
available therapeutic interventions. This simplified 
mapping and scoring tool provides a new way of 
integrating genomic data, not previously described, even 
in state-of-the art reports [22] SIMS converts thousands 
of genomic measurements into a simple format, that can 
potentially be exploited by clinicians, and may facilitate 
rationally based selection of targeted agents for the 
treatment of individual patients and, most importantly, 
selection of triple therapy combinations. 

To summarize, targeted monotherapies lead 
systematically to resistance. To overcome resistance, 
we present a novel therapeutic interventional mapping 
system and algorithm, based on integration of genomic 
and transcriptomic data that may allow deployment 
of customized combinations of therapy. Therefore, 
the integrative omic approach together with the SIMS 
algorithmic strategy and tools presented herein can be 
realistically exploited to inform the development of 
next generation clinical trials addressing personalized 
combinations of targeted cancer treatments, a strategy with 
the objective of impacting survival and of progress towards 
a curative approach for patients with metastatic NSCLC. 
To this aim, the WIN Consortium has aligned numerous 
stakeholders including academia, the pharmaceutical 

industry, biotechnology, and health payors in order to 
prepare and launch the SPRING (Survival Prolongation 
by Rationale Innovative Genomics) lung cancer clinical 
trial, whose objective will be to prospectively validate the 
SIMS concept. Importantly, the same strategy may also be 
applicable to other deadly malignancies.

MATERIALs AND METHODs

Patients and tissue samples

The present study used in silico data generated 
and published by the CHEMORES initiative (www.
chemores.org), which is an EU funded (FP6) Integrated 
Project. Tissue samples from a cohort of 121 patients 
who underwent complete surgical resection at the Institut 
Mutualiste Montsouris (Paris, France) between 30 January 
2002 and 26 June 2006 were analyzed. 

Characteristics of NSCLC cohort

The median age of patients was 63 years (range, 
41-85 years); 89 patients (73%) were men (Supplemental 
Table 1). The histopathology of all tumors was reviewed 
by the same pathologist. The most common subtypes of 
tumor were adenocarcinoma and squamous cell cancer. 
Using the new 7th edition TNM staging, 56 were stage 
I, 24 stage II, 27 stage III and 4 stage IV. Adjuvant 
platinum based chemotherapy was administered to 61 
patients. Fifty-nine patients experienced a relapse. Two-
year relapse-free survival was 64%, and the median time 
to recurrence for the cohort was 5.2 years. After a median 
follow up of 40 months (range, 0-92 years) 36 patients had 
died and 23 patients were alive with recurrence. 

This study was performed using snap-frozen tumor 
and matched normal lung tissue, from the same patients, 
after curative surgery. Samples were handled according 
to the Tumor Analysis Best Practices Working Group 
[14]. Haematoxylin and eosin stained frozen sections, 
taken before and after the cutting of slides for molecular 
analysis, revealed a median cell content of 85% (an inter-
quartile range of 65% to 95%). All tissues were banked 
after written informed patient consent, and the study was 
approved by the Ethics Committee of Gustave Roussy 
(GR). A full description of the genomic investigation 
is available at Lazar et al. [13], and in Supplemental 
Methods [15-17] and data. [Supplemental Tables 2, 
3, and 4 describe the genes, mutations, and miRNAs 
analyzed]. The microarray data related to this study have 
been submitted to the Array Express data repository 
at the European Bioinformatics Institute (http://www.
ebi.ac.uk/arrayexpress/) under the accession numbers 
E-MTAB-1132 (GE), E-MTAB-1133 (CGH) and 
E-MTAB-1134 (MIR). 
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Scoring/ranking of activated interventional points 

(Figure 2). A score of 1 to 10 is assigned. If a 
mutation is present, a score of 10 is given and the 
transcriptomic information is not used. If there is no 
mutation, the CNV and transcriptomic information 
(mRNA adjusted by miRNA) are scored.

The algorithm

The mathematical modelling and scoring system 
aims to give a score (1 to 10) based on integration of 
omics data, sequencing, gene expression, miRNA and 
copy number variations determined as differences between 
tumor and normal tissues, individually for each patient. 
Scoring enables identification and ranking of activated 
pathways, and the overall concept is that such activated 
pathways should be blocked with combined targeted 
therapies.

The mathematical model

The initial model was established on the basis of 
a retrospective dataset from 121 patients with NSCLC 
for whom sequencing, CNVs, and tumor vs. normal 
gene expression were available. Using these data, an 
algorithm that provides a score of activation for each of 
the simplified pathways for the patient and factors in all 
of the above-mentioned structural and functional results 
has been established. The principle of the algorithm is 
described below:

Scoring

Scoring is performed by using an intuitive algorithm 
that integrates four types of molecular investigations of 
tumor and normal tissues (genomics, mRNA expression, 
miRNA and copy number variations).

Mutations

In version 1, we used a very limited set of 
sequencing data, including only the genes/mutations used 
currently in clinical care of NSCLC: EGFR, KRAS, BRAF, 
PI3KCA, and HER2. Additionally we sequenced p53, the 
most frequently mutated gene in lung (and most other 
solid) tumors. When a mutation is detected, the algorithm 
assigns the maximal score 10 in the corresponding 
simplified pathway.

Gene expression

For each interventional node, mRNA steady state 
level in tumor vs. normal is used to calculate a mean 
fold change of the pathway from the values of individual 
fold change (Fc) of tumor vs normal for each gene of the 
interventional nodes. For calculating the mean/average 
fold change of intervention point k, denoted as Ek, the 
fold changes of differentially expressed genes with a 
fold change of at least 1.3 are used. Based on Agilent 
microarrays specifications, the threshold of 1.3 was 
considered as the lowest conferring accurate detection, 
since all Fc values were obtained by combining two dyes 
swap microarray experiments. In other words, for each 
intervention point, an average fold-change of the genes i 
of the intervention point k is calculated, trimming values 
with a threshold of <1.3. Formally, we calculate Ek as the 
following: let Mk denote the set of genes that belong to 
intervention point k, and mk denote the subset of Mk that 
includes only differential expressed genes with an absolute 
fold change >1.3. Ek is the average of the fold change of 
the genes mk. . We 
then calculate the mean expression level for all the genes 
in mk:  wherein . In other words, the fold 
change for a particular intervention point is the average or 
arithmetic mean of the fold changes of genes belonging to 
the intervention point as defined in Table 1 and having a 
fold change T vs N of 1.3 or more. In particular, in order to 
compare the fold changes of different intervention points, 
a relative scoring, e.g., from 1 to 10, is generated based on 
the decile calculation using as calibrator the data obtained 
from all 121 NSCLC patients. Values of individual mean 
fold changes for each simplified pathway are ranked in 
the retrospective set of data of 121 patients with NSCLC, 
used as a calibrator. As shown in Figure 2B the range of 
changes is different from one pathway to another. In order 
to compare them, we generated a relative scoring from 1 
to 10 based on the decile calculation.

Combining mRNA and miRNA measurements

To adjust for possible miRNA intervention in 
translation, we penalized discordance between miRNA 
and its target mRNA. For each of the genes of Table 1 
(and Supplemental Table 2) that belong to the intervention 
points or a set thereof, we determined the miRNAs most 
likely to be involved in their regulation using Target scan 
{http://www.targetscan.org/}, selecting the top 5 miRNAs 
for each gene. Supplementary Table 4 provides a list of 
the top 5 miRNAs for the genes of Table 1. For each gene 
i, a mean miRNA fold-change can be calculated, which is 
denoted Ai, by averaging the fold changes of the 5 miRNAs 
(or less if less than 5 miRNAs are identified) that are most 
likely to target gene i. Then, for each gene, a mean miRNA 
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TvN fold change is determined. Then, a corrected fold 
change of a gene of an intervention point is calculated by 
dividing the mRNA fold change of tumor versus normal 
of the gene (mRNA TvN fold change) by the mean fold 
change for the miRNAs of the gene (mean miRNA TvN 
fold change). The corrected fold change of a gene is then 
used to calculate the fold change for a particular pathway 
by using it in the calculation of the average fold changes 
of the genes belonging to the pathway as defined in Table 
1 and having a fold change T vs N of 1.3 or more. Based 
on the corrected fold change of pathways, a corrected 
score, e.g., a score 1 to 10 is generated based on deciles.

Copy number variation

When amplification is detected, we multiply the 
value of the mRNA expression fold change for each gene 
by the value of the fold change in copy number. Then we 
generate the corrected mean fold change of pathways and 
the deciles score. However CNV had little impact in our 
analysis of the 183 genes in 121 patients. 
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