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Abstract

Purpose: Standard 4DCT cardiac reconstructions typically include spiraling artifacts that depend 

not only on the motion of the heart, but also on the gantry angle range over which the data 

was acquired. We seek to reduce these motion artifacts and thereby improve the accuracy of left 

ventricular wall positions in 4DCT image series.

Methods: We use a motion artifact reduction approach (ResyncCT) that is based largely on 

conjugate pairs of partial angle reconstruction images (PARs). After identifying the key locations 

where motion artifacts exist in the uncorrected images, paired subvolumes within the PAR images 

are analyzed with a modified cross correlation function in order to estimate 3D velocity and 

acceleration vectors at these locations. A subsequent motion compensation process (also based on 

PAR images) includes creation of a dense motion field, followed by a backproject-and-warp style 

compensation. The algorithm was tested on a 3D printed phantom which represents the LV and on 

challenging clinical cases corrupted by severe artifacts.

Results: The results from our preliminary phantom test as well as from clinical cardiac scans 

show crisp endocardial edges and resolved double-wall artifacts. When viewed as a temporal 

series, the corrected images exhibit a much smoother motion of the LV endocardial boundary as 

compared to the uncorrected images. In addition, quantitative results from our phantom studies 

show that ResyncCT processing reduces endocardial surface distance errors from 0.9+/−0.8 mm to 

0.2+/−0.1mm.

Conclusions: The ResyncCT algorithm was shown to be effective in reducing motion artifacts 

and restoring accurate wall positions. Some perspectives on the use of conjugate PAR images and 

on techniques for CT motion artifact reduction more generally are also given.
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1. Introduction

This is the first in a series of two papers exploring the feasibility of using CT to produce 

temporally accurate 4D images of the moving heart. This first paper describes the motion 

artifact reduction algorithm we have developed while the second paper [28] focuses on 

the clinical aspects of dyssynchrony analysis [1–3] and evaluates the performance for this 

clinical task.

Modern CT scanners can provide a full 4D dataset from a low dose scan of a single 

heartbeat. Unfortunately, during phases of rapid ventricular motion, CT images of the 

myocardium can be distorted by motion artifacts. If left unchecked, these distortions can 

produce the appearance of a dyssynchronous contraction even for a healthy, functioning 

heart [5, 6]. This paper describes a general cardiac CT motion artifact reduction algorithm 

that leverages the power of conjugate pairs of partial angle reconstruction (PAR) images 

and illustrates the image quality improvement that can result from its use and the improved 

fidelity of LV boundary localization. We use the term “conjugate” to mean “separated by 

180 degrees”, i.e., ignoring the cone angle, this means the same rays are measured in the 

opposite direction.

The remainder of the paper is organized as follows: In section II a survey of recent 

developments in motion artifact reduction technology for CT is given. An introduction to 

and a root-cause analysis of gantry-angle dependent motion artifacts around the LV is also 

given. In section III, the motion artifact reduction method is described in detail. Section 4 

describes the experimental setup used to test applicability of our algorithm to motion of the 

LV and reports on our results. In section 5, a few concluding remarks and perspectives for 

future research are given.

2. Background

2.A Recent Progress in Motion Compensated Reconstruction

Motion artifact reduction is a critical technology for CT. Much of the cost of CT 

scanners can be traced to the need for robust, low-noise, artifact-free cardiac imaging. 

With motion artifact reduction, the cost/quality trade-off for cardiac imaging can be 

greatly improved. Specifically, coronary CT angiography (CCTA), heart valve imaging, 

calcium scoring, synthetic fractional flow reserve estimation, myocardial perfusion imaging, 

pediatric imaging of congenital heart defects, and cardiac wall motion analysis are all most 

effective when the whole heart can be imaged (in some cases repeatedly) during a fraction 

of a heartbeat. In order to perform such scans effectively, a 3rd-generation CT scanner 

must have a high-power x-ray source and a large detector mounted on a gantry that is 

engineered to withstand the g-forces associated with rotating at a rate of 3–5 times every 

second. Furthermore, dual-source CT scanners have two source/detector imaging subsystems 
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mounted on the same gantry in order to further improve temporal resolution by a factor of 

two. All this hardware is quite expensive. Robust motion artifact reduction algorithms can 

provide superior image quality even when several of these design considerations are relaxed. 

For example, a slower gantry rotation can be tolerated on a single-source system. Using a 

slower gantry rotation not only relaxes the engineering considerations for the gantry, but also 

reduces the tube power specifications needed to reach a prescribed mAs level during a scan 

(alternatively, it allows more flux to be delivered for high BMI patients, thus reducing image 

noise).

The most widely prescribed cardiac CT imaging protocol is the CCTA, which is being 

used extensively to avoid invasive conventional coronary angiography (CA) scans that are 

diagnostic in nature (billions of dollars are spent annually on diagnostic CA procedures). 

However, there is growing interest in several other cardiac CT imaging capabilities. In 

particular, wall motion analysis can be done using CT by scanning over an entire heart 

cycle. Such a scan can produce a high quality 4D dataset for analyzing dyssynchrony in the 

left ventricle (LV). While the resulting CT image volumes have very low noise and clear 

detail compared to echo images that are often used for the same purpose, 4DCT images of a 

healthy beating LV can (falsely) appear to have dyssynchrony due only to motion artifacts, 

which rotate in a gantry angle dependent way in a 4D dataset. Such false dyssynchrony can 

corrupt measurements of local timing of LV wall contraction [6]. In this paper, a method for 

motion artifact reduction of the heart within the context of wall motion analysis is described 

and evaluated.

Most motion artifact reduction methods can be split into two major steps: motion estimation 

and motion compensation. The motion compensation problem has at least two solutions that 

work remarkably well. The first is the warp-then-backproject approach [7, 8] and the second 

is the backproject-then-warp approach [9–12]. The backproject-then-warp approach also has 

a variation which does not require explicit backprojection of each view subset, but instead 

uses 2D image filters to produce partial angle reconstructions [13, 14].

The motion estimation problem is more challenging and has been an active area of research 

for some time. As detailed in [15], a number of different estimation approaches have been 

used over the last several years. Motion can be estimated by iteratively updating motion 

fields until the warped, forward projected volume matches the measured projection data 

[25]. Other algorithms (e.g., MAM and PAMoCo) use various image metrics to iteratively 

refine motion estimates [18, 19]. Some approaches use (image and/or feature) registration 

between a series of half-scan reconstructions [10, 26]. Recently, deep learning networks 

have also been used effectively to estimate and correct for motion in CT [15, 16, 17]. 

Finally, the concept of using partial angle reconstructions (PARs) has been used to facilitate 

robust motion estimation, with correspondences being found in conjugate pairs of PAR 

images [14, 20].

It is interesting to note that backproject-then-warp motion compensation as well as PAR-

based motion estimation both rely on essentially breaking up the sinogram data into smaller 

sections in time and representing these in the image domain as PAR images. The key insight 

driving both of these innovations is that the CT motion artifact problem is not necessarily 
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a hardware problem. The data coming from a CT scanner actually has excellent temporal 

resolution since each sinogram view is acquired in a fraction of a millisecond. Instead, the 

CT motion artifact problem can be considered a reconstruction software problem because 

the traditional reconstruction does not account for the fact that the various views are 

acquired at different motion states, yielding a full sinogram dataset that is inconsistent. 

By subdividing the sinogram data used in reconstruction into smaller chunks and handling 

each correctly (e.g., warping according to the relevant object motion state), motion artifacts 

can be dramatically reduced. PAR-based motion estimation and compensation has been 

successfully used in commercially-available motion artifact reduction technology for nearly 

a decade now [21, 22].

There are at least three different ways that PAR images can be generated. In one approach 

[20], the actual sinogram data are segmented into chunks (the chunks usually overlap 

and a weighting function is used to compensate for the overlap) and these chunks are 

reconstructed (e.g,) by filtered backprojection with band-pass filtering. In a second approach 

[19], the reconstructed image volume can be forward projected to produce synthetic 

sinogram data and this synthetic sinogram can then be reconstructed, thus avoiding the 

need for the original projection data altogether. This second approach (as well as the third 

approach below) has a potential limitation due to the fact that with a Parker-style view 

weighting function, some lines through the origin of 2D Fourier space contain data from 

two different views that are separated in time by ~1/2 the gantry period, thus limiting the 

angular range of views that can be accurately generated to less than 180 degrees. This 

can be overcome by using multiple image volumes reconstructed from overlapping view 

angle ranges [13]. The amount of overlap depends on the effective view weighting used in 

the reconstruction, but for a typical cardiac reconstruction, the temporal sampling interval 

should not be much larger than the time it takes to rotate ~130 degrees. The third approach 

[13] (which also only requires images) is to apply 2D image filters representing wedges in 

the Fourier domain. Any of these three approaches can work well, though the choice can 

have important implications for data requirements and computational speed.

2.B CT Motion Artifact Characteristics

Artifacts that result from motion during a CT scan have different characteristics 

than artifacts that result from motion during other imaging acquisitions. These unique 

characteristics can be better understood by analyzing the order in which Fourier data is 

acquired in CT as a result of the Fourier slice theorem. A good understanding of these 

unique characteristics can help to guide development of motion artifact reduction algorithms 

and can also help to understand the clinically relevant problem of false dyssynchrony [6] that 

can arise in the analysis of non-motion corrected 4DCT images of the LV.

To motivate this discussion, consider figure 1. The images in the left column show snapshots 

of four dynamically changing objects with the corresponding motion fields overlaid as 

vectors. The top two rows contain a small disc that is moving with constant velocity to the 

right (similar to a moving coronary artery). The third row is a much larger disc (perhaps 

representing a heart chamber or aorta) that is also moving to the right. The fourth row is 

a large disc that is contracting (like the LV during systole). The second column shows a 
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snapshot of each of the four images from the first column that is later in time. The time 

elapsed between the image pair in the top row corresponds to the time it takes a CT gantry 

to complete a full rotation, while the time interval for the image pairs in rows 2–4 is the 

time it takes the gantry to rotate by 210 degrees (similar to the data range used in many 

cardiac reconstruction algorithms). The third column shows an average of multiple time 

frames within the temporal window bounded by the times of the first two sets of images. The 

blurring in column 3 is very severe—the motion either severely attenuates or even eliminates 

some of the higher frequency structures (e.g. edges). An attempt at deblurring with a linear 

filter would require strong amplification of these frequencies and would, therefore, yield 

very high noise amplification. In contrast, the images in the fourth column, though they are 

also spatially distorted retain all high frequency information. The third column represents 

what would happen if all spatial frequencies were measured continuously and then averaged 

over a time window.

The fourth column of images is representative of what happens in CT. To produce each 

of these images, the corresponding time series of images were each transformed to the 

Fourier domain and only the Fourier data that would have been acquired during the small 

temporal window of that particular snapshot was preserved. This was done by applying a 

wedge-shaped filter in the Fourier domain since the Fourier slice theorem indicates that a 

small set of adjacent views (those acquired in a small time-window) correspond to a set of 

angularly adjacent diameters in 2D Fourier space. This process is illustrated in figure 2 (only 

the real part of the Fourier data is displayed). By accumulating these images, the Fourier 

data of the images in the original image series is preserved, provided that the time window 

corresponds to less than 180 degrees of gantry rotation. For a typical “half-scan” acquisition 

used in cardiac imaging, a small portion of the Fourier data in the image obtained from the 

summation of the temporal views is corrupted by mixing with information from conjugate 

views (because the scan typically uses views from 180 degrees + a relatively small angle). 

In regions of Fourier space that are sampled only once, each Fourier transform of the object 

is merely phase shifted (the magnitude is unchanged from the original). This means that a 

linear process can deblur the image successfully without noise amplification (unlike in the 

case of a continuous Fourier measurement described above for column three in figure 1).

There are several observations that can be made from the motion artifacts seen in the fourth 

column of figure 1. First, as noted by others [27], the small disc does not appear to be 

moving in a straight line. In fact, it appears to be moving on a cycloid. This fact will 

be revisited later in the paper as motivation for using non-adjacent (180-degree-conjugate) 

time frames for motion estimation. A second observation is that the motion artifact of the 

large disc in rows 3 and 4 are not obvious. For a local region of a large (low-curvature) 

surface, the Fourier information that is relevant for localizing that region of the surface 

is acquired by x-ray paths tangent to that surface. This means that there is effectively a 

temporal skew in the final reconstructed image that is dependent not only on the orientation 

of the surface, but also on the gantry angle of the scanner relative to a selected motion 

state. Consider, for example, what happens if we regenerate image d4 (fig 1) for a series of 

different starting gantry angles (while keeping the motion and time window identical). Such 

images are shown in figure 3 for four starting gantry angles with a 45 degree increment. For 

each location on the boundary of the object, we find that the reconstructed position of the 
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edge of the boundary is dependent on the starting gantry angle. We refer to this effect as the 

starting-gantry-angle (or SGA) dependence effect [24].

An illustration of the SGA dependence of motion artifacts is given in figure 4. Since (as 

mentioned above) the edge locations in a CT image are defined based on the time at which 

the tangent x-ray paths are acquired, this figure shows these surface-tangent ray paths at a 

series of times for two different starting gantry angles separated by 45 degrees. There is 

a clear resemblance between the union of these tangential ray paths and the shape of the 

corresponding motion artifact images in figure 3.

Clinically, the SGA dependent spatial skew produces prominent dynamic spiraling artifacts 

when a 4DCT dataset is viewed in a cine loop (as a movie). Furthermore, the positional 

errors that result near the endocardial contour can cause errors in the estimation of the 

time to onset of shortening in functional analysis of the left ventricle. Our motivation for 

applying motion artifact reduction in this paper is to resolve these SGA dependent motion 

artifacts in order to produce more reliable metrics for measuring the relative timing of 

local LV contraction, leading to an improvement in cardiac resynchronization therapy (CRT) 

procedure planning.

3. ResyncCT Method

In order to perform local cardiac functional analysis of the left ventricle, motion corrected 

images are required at a series of phases throughout the heart cycle. For a heart-rate of 

60 bpm and a temporal reconstruction spacing of 70 ms, for example, it takes 15 image 

volumes to cover the heart cycle. This is different from what is typically done for a CCTA 

image volume, where the goal is to produce a single high quality “frozen” snapshot of 

the heart for the purpose of visualizing the coronary arteries. In particular, motion must 

be estimated over a much longer time interval for functional analysis. A motion model 

(e.g., polynomial in time) that is appropriate for estimating local cardiac motion over the 

short time period required for CCTA (<200 milliseconds) will not be ideal to model the 

local motion of the heart over an entire heart cycle. One option for dealing with this 

condition is to estimate motion for the entire temporal window with a complex model by 

considering data from all time windows. Another option (chosen for the work presented 

here) is to process each phase separately with lower order models. Not only does the second 

option allow the reuse of existing motion models, but it also enables parallelization of 

the processing for computational performance purposes since each output image volume is 

computed separately. For the remainder of the paper, the method that is used to produce 

a single output volume in the time sequence is described, bearing in mind that the full 

algorithm requires repeating this process for each prescribed output phase.

For each output phase, the motion artifact reduction algorithm (ResyncCT), estimates 

motion over a field of image locations (points) and then interpolates these motions to build 

a dense 4D motion field, which is then used for motion compensation. Both the motion 

estimation and the motion compensation are based on partial angle images as described in 

the background above. The steps of the method are listed below:

1. Generation of PAR images
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2. Automated positioning of motion estimation points

3. Motion Estimation with Conjugate cross correlation

4. Construction of dense motion field from point motion estimates

5. PAR based motion compensation

A. Generation of PAR images

Since methods for PAR image generation (step 1 above) and PAR-based motion 

compensation (step 5) have been published previously as described in Sec. 2.A 

[9,12,13,14,19,20], these are addressed only very briefly here so as to focus on the 

implementation of steps 2–4. Three different PAR image generation approaches were 

described in Sec. 2.A. For ResyncCT, an image domain filtering method [13] for PAR 

generation is used whenever PAR images are needed (this includes steps 2, 3, and 5).

B. Automated positioning of motion estimation points

The ResyncCT partial angle-based motion compensation method requires a dense 4D 

motion field in order to warp each of a temporal series of PAR volumes. The full 4D motion 

field has a large number of parameters and it is not possible to robustly estimate them all. 

Thus, if each voxel moved independently, motion estimation would be hopeless. In reality, 

the motion fields are quite smooth spatially, which allows the motion field to be modeled 

with a smaller set of parameters. Hence, for ResyncCT, motion is estimated at a somewhat 

sparse series of points throughout the cardiac volume. Results are best when the set of points 

are customized to the patient anatomy, rather than being predetermined (e.g., on a fixed 3D 

grid). In particular, points can be placed at various features throughout the heart.

Both the strategy for finding the points at which motion is estimated and the motion 

estimation itself are based on conjugate-PAR image pairs. Conjugate-PAR image pairs are 

separated from one another in time by one half gantry rotation. To be more precise, PAR 

images that are reconstructed from parallel rebinned data or which are generated by Fourier 

domain wedge filters represent a snapshot in ray angle rather than in time (these two only 

perfectly line up along the central axis of the scanner). As a result, all motion estimates 

are actually computed as a function of the local ray angle rather than as a function of time. 

Conjugate-PAR image pairs are dissimilar only where there is motion (ignoring temporal 

changes in contrast); therefore, taking a difference of two conjugate PAR-volumes will 

highlight regions of interim motion. Due to high motion gradients near the pericardial 

boundary, before generating the PAR images, the magnitude of the HU drop at the heart-

lung boundary is reduced by applying a simple threshold on low voxel intensities. Three 

conjugate PAR image pairs are generated, with the middle pair being centered around the 

angle of the x-ray source at the current reconstruction phase. We call this angle βc. One 

image of the middle pair is advanced by 90 degrees from βc, while the other precedes βc

by 90 degrees. The other two pairs are shifted in either direction from this middle pair 

by a spacing of roughly 1/8 rotation (see figure 5). For each pair, a high-pass filter is 

applied to remove some of the lowest spatial frequencies (these low frequencies can be 

influenced strongly by any changes in contrast that may occur during the half rotation) and 
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the difference is taken. After filtration, the mean of the absolute value of the three difference 

images is computed. Finally, this mean image is smoothed with a Gaussian kernel. The 

smoothed image is referred to as a difference map and highlights areas of moving features 

(e.g., chamber boundaries, moving vessels, or valves). Figure 6 shows a sample 2D axial 

slice with the corresponding difference map overlaid.

In order to prevent points from being placed outside the heart, a fully automated heart 

segmentation routine is used and the difference map is masked to the resulting cardiac 

region (this masking is reflected in figure 6). Points are placed by repeatedly selecting 

the brightest point in the difference map volume and zeroing out a small neighborhood 

until the global maximum falls below a threshold. The selected points are then formed 

into a minimum-spanning tree using Kruskal’s algorithm [23], which provides connectivity 

between neighboring points. Finally, thinning along the tree ensures neighboring points are 

separated by a distance that is close to a specified value (e.g., 7 mm), while reducing the 

number of points from several thousand to a few hundred for a typical adult heart. Figure 7 

shows a sample 3D tree (with a fairly large point spacing) built from the initial points.

C. Motion Estimation With Conjugate Cross Correlation

Once points are identified, the next step is to estimate the motion of each point 

(displacement from its position at a central reference time) as a function of time. For 

ResyncCT, the motion at each point is modeled with a 3-element velocity vector and a 

3-element acceleration vector. In order to estimate these parameters, a set of N conjugate 

PAR image pairs are produced, similar to what was done for the positioning of motion 

estimation points above. Details of the PAR image generation process including (e.g.) the 

angular “width” of the estimation PAR images impact PAR spatial resolution in the direction 

of the central view rays, temporal sensitivity, noise, and robustness to contrast dynamics. 

While a wide range of values work well, we suggest using an angular width of roughly 

20–60 degrees. We denote the central angle of each PAR image pair as βi, with i being an 

index from 1 to N and βi = βc + Dβ(i − (N + 1)/2) for all i from 1..N. Here Dβ is the angular 

PAR sampling and is chosen such that the (N − 1)Dβ covers the desired angular range. For a 

quadratic motion model, the angular range can be chosen (e.g.) between 50 and 170 degrees, 

with N between 2 and 15 (N = 3 and Dβ = 56 degrees were used to produce results in this 

paper). A brief study illustrating some of the benefit that comes from using multiple PAR 

pairs is detailed in a supplement to this paper. Only the linear component of the motion 

can be estimated when N is one. The two PAR images in each pair are interpolated onto 

a uniform 3D grid centered at the estimation point to produce a pair of subvolumes. The 

nominal size of the subvolumes was 47 mm in each dimension. We denote the subvolume 

built from data near β1 − 90 as Ai and the subvolume built from data near β1 + 90 as Bi. For 

each subvolume pair, a “modified cross-correlation map” is produced that indicates how well 

the local region of Ai matches Bi for each shift in a 3D grid. Ai is limited to a local region 

by applying a spherically symmetric weighting function to the source volume that decays 

with radius. The weighting function used is very smooth and decreases monotonically from 

1 to 0 with radius, reaching a value of 0.5 at a distance of roughly 11 mm. Each modified 

cross-correlation is computed as follows:
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χAB[m]: = < w ⊙ M(A), S(B, m) >
max w ⊙ M(A) . w ⊙ M(S(B, m))

(1)

This can be computed simultaneously for all shift vectors (m) on a centered 3D grid using a 

series of 3D FFT operations. In the above equation, the circled dot represents elementwise 

multiplication. Also, w is the local weighting function mentioned above, S B, m  indicates 

the result of shifting B by a 3-element index vector m, and the script M function means that 

a constant is subtracted so as to make the DC value zero after weighting with w. In addition, 

a symmetric operation to the above is done by determining how well the local region of B
matches with A under the opposing shifts (−m) and the two results are averaged. Applying 

both symmetric operations effectively elongates the weighting function w in the direction of 

each candidate motion while preserving the convolutional nature of the computation. The 

result is a correlation map: a quantitative indicator showing how well the conjugate PAR 

images match at the subvolume A under any shift (up to a limit high enough to capture any 

realistic cardiac motion magnitude). Once the N cross correlation maps for each estimation 

point are computed, a velocity vector at each point is found by averaging the N shift vectors 

(one from the peak of each correlation map). Provided that N > 1, an acceleration vector 

at each point can also be found by quantifying how the correlation changes with the angle 

(time) index i (we used the simple difference between the first and last of the three shift 

vectors). The motion estimation process is summarized in figure 8.

D. Construction of the dense motion field from point motion estimates

After motion estimation using conjugate-pair PAR images, an estimate of the velocity 

and acceleration vectors at all selected points in the volume is in hand. The next step 

is to produce a dense, voxelized estimate of the motion, such that each voxel can be 

warped appropriately for each time frame of the PAR-based motion compensation. This 

is accomplished by interpolating the six scalar parameters (3D velocity and acceleration) 

that describe the motion onto a dense grid and then using these parameters to build 

the motion path at each voxel. A 3D interpolation weighting function is defined in the 

neighborhood of each point that defines how strongly each nearby voxel will be influenced 

by the corresponding motion estimate. There are many ways to define these functions (e.g., 

using voroni maps, triangulated irregular networks, splines, inverse distance weighting, etc). 

The method used in ResyncCT involves defining an effective radius for each unit vector 

direction of each point. The value of the weighting function at each voxel is then uniquely 

defined by a 1D tapering function that drops smoothly from 1 to 0 and takes as its input 

the distance of the voxel from the selected point, normalized by the effective radius that is 

defined for the direction from the point to the voxel. The effective radius defines the distance 

at which the tapering function reaches 0.5 and is modulated in a smooth way based on 

the locations of other nearby points. We used a maximum (pre-modulation) value of about 

15 mm. Once every point has a weighting function defined in this way, the functions are 

normalized such that the sum of all weighting functions across the 3D volume is equal to a 

single 3D function we call the compensation weight, which is defined for each voxel. The 
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compensation weight drops smoothly and somewhat quickly to zero outside the heart, which 

helps avoid contamination of the image in areas (such as the liver and chest wall) that border 

the heart, but move much less. Through most of the heart, the compensation weight is very 

close to 1, except in rare areas where all estimation points are too far away to have a reliable 

influence.

E. PAR based motion compensation

After the six motion parameters are interpolated to a voxel grid using the weighting 

functions described above, the final step of ResyncCT (PAR-based motion compensation) 

can be performed. In the compensation step, the six interpolated parameters (3D velocity 

and acceleration vectors) are used to compute the voxel displacement (Δx) at all required 

times based on the prescribed angular (temporal) sampling using the quadratic motion 

model:

Δx = vt + 1
2at2

As mentioned in section 3.B, we used the ray angle θ (relative to a reference θref) for t rather 

than time. For simplicity, we set θref to a constant value (βc) for each output volume, but it 

can alternatively be defined in a voxel dependent way based on the ray angles measured 

at a single time instance. The PAR images are then warped according to these motion 

fields, weighted, and summed. For results herein, the weighting was chosen to match the 

(half-scan) data window of the input images. It turns out that the temporal PAR sampling 

required for good image quality is not high [12], so the motion compensation can be done 

quickly. We used a sampling of one PAR volume every 9 degrees in order to accommodate 

very fast motions and recommend sampling at least every 30 degrees.

As mentioned previously, the entire ResyncCT process is repeated at each desired output 

phase to produce a 4D motion corrected dataset. Despite the fact that the processing is done 

independently for each target time frame, very good temporal consistency in the quality of 

motion artifact reduction is normally achieved.

4. Experimental Results

he ResyncCT motion artifact reduction algorithm described above has been tested on both 

a moving 3D printed phantom and on clinical data. For phantom tests, a dynamic model 

was created that represents the temporal evolution of a single 2D short axis slice of a 

dyssynchronous LV. This model was 3D printed in such a way that each z-slice of the 

printed phantom is a snapshot of the 2D model in time. The physical design ensured 

that when the phantom was moved perpendicular to the scan plane at a rate of 30 mm/s, 

the effect within the scan plane was the same as a dyssynchronous ventricle beating at 

60 beats per minute. The physical phantom as printed is a hollow shell with just one 

material (proprietary clear photopolymer resin FLGPCL04, Formlabs Inc., Somerville, MA), 

representing the myocardial tissue. The phantom was then filled with a solution of water 

mixed with iodinated contrast agent (10% by volume solution of Visipaque™ 320, General 

Electric Healthcare, Chicago, IL) in order to represent the contrast enhanced blood that fills 
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the LV during a contrast-enhanced cardiac CT scan. A very small bubble of air is visible in 

the phantom (see Fig 9(f)), despite care taken to fill the cavity as full as possible.

The phantom described above was scanned on a Revolution CT™ (General Electric 

Healthcare, Chicago, IL) scanner. The scans were done in wide-cone axial mode with 160 

mm z coverage acquired in a small fraction of a second (the gantry rotation time was 

set to 0.28 s). Figure 9(a) shows a reformatted slice of a reconstruction of the phantom 

from a static (no motion) scan. The horizontal (z) axis corresponds to time and certain 

temporal features of the dyssynchronous contraction are labeled. The phantom was also 

scanned in dynamic mode with a constant linear z-motion at 30 mm/s and a gantry rotation 

rate of 0.28 s. The dynamic data was reconstructed at three overlapping phases with a 

temporal spacing of 62 ms. The second panel (b) shows the central phase reconstruction 

from the dynamic data. In this image, identification of the key temporal landmarks that 

were clearly captured in the static image was very difficult due to poor image quality 

from the motion artifacts. Next, ResyncCT motion artifact reduction was performed on the 

dynamic data. The resulting reformatted image shows a restoration of image quality to the 

point that the temporal landmarks identified in panel (a) are once again readily identifiable. 

The improvement relative to the original motion corrupted image is notable. An axial slice 

through this phantom for all three cases is also shown in panels (d) through (f). Again, the 

morphology of the stationary image is recovered by the ResyncCT processing. In addition, 

the morphology of the motion corrupted axial image is (as expected) reminiscent of the 

motion artifact simulated images of the contracting disk from figures 1 and 3.

A quantitative analysis of the LV endocardial boundary was also performed. First, a finely 

triangulated endocardial surface mesh was generated from each of the three reconstructed 

volumes (ground truth, uncorrected, and ResyncCT) using the marching cubes algorithm 

(isosurface in Matlab). Next, for each point on the motion corrupted mesh, the distance of 

the nearest point on the ground truth mesh was recorded. These distance errors are given in 

histogram form in figure 10a. This process was repeated with the ResyncCT mesh instead of 

the uncorrected mesh, with the resulting (much improved) histogram being given in figure 

10b.

In addition to the phantom experiment above, the ResyncCT algorithm has been tested on 

clinical cardiac scans. In each case, reconstruction volumes were generated for every 90 

degrees of gantry rotation of an entire heart cycle. This allows the local motion of the LV 

wall to be visualized at any point in a view similar to M-mode echocardiography, wherein 

each volume is resampled on a line segment that is roughly perpendicular to the endocardial 

boundary and these resampled 1-D functions are stacked side-by-side to form an image, as 

shown in Fig. 11(a). The y-axis on this image is spatial position along the sampled line 

and extends from a point that is always inside the blood pool to a point that is always 

outside the blood pool. The x-axis is time and is sampled every 70 ms; that is the time for 

the gantry to rotate 90 degrees. Artifact free “M-mode” images show the position of the 

endocardial boundary through time with a smooth, narrow edge, while motion artifacts can 

cause distortions and make the LV boundary appear diffuse and the motion appear jagged or 

uneven. The ResyncCT algorithm removes much of the motion artifacts. Detailed results on 

three illustrative cases are given below, with scan parameters given in Table 1.
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Figure 11 shows a case in which there is a severe “double-wall” artifact at the septal wall 

in selected time frames. Double wall artifacts occur when the rays at the central projection 

angle of the reconstruction are nearly perpendicular to the wall boundary. For these time 

frames, the measured rays near the beginning and the end of the half-scan are parallel to 

the LV boundary and thus contribute strongly to the boundary localization; however, these 

views are temporally delayed from one another. The uncorrected M-mode plot on the left 

(Fig 11(a)) shows an indistinct boundary between the contrast enhanced blood and the 

septal wall, particularly at odd numbered time frames, which in this case were oriented as 

described above. These poorly defined boundaries make it difficult to precisely determine 

the activation time of wall motion. Axial images showing the location of the M-mode profile 

are shown in Fig. 11 (c) and (d) for the third time point. There is a severe double-wall 

motion artifact in this image (Fig. 11(c)) that is corrected by ResyncCT in Fig. 11(d). Other 

severe motion artifacts in Fig 11(c) such as the blurring of the right coronary artery have also 

been corrected, leading to a clearer, higher fidelity image.

Figure 12 illustrates a clinical case in which the boundaries are sharp but “stationary-wall” 

artifacts corrupt the data. In this case, the temporal sampling happens to be phase shifted by 

about 35 ms relative to the sampling in the clinical case described in Fig. 11. The M-mode 

images prior to ResyncCT processing show a distinctive stair-step pattern in which the wall 

moves every other time frame, which is obviously an artifact. The apparent position of the 

septal wall is once again mostly determined by its position at the time that x-ray paths 

passed tangent to the boundary. In this case adjacent time frames (2,3), (4,5), (6,7)…, are 

reconstructed from projection views that include the same views that sample the edge of the 

septal wall at a single time point. By estimating the true motion and correcting for it, the 

ResyncCT method is able to restore the smooth motion profile shown in Fig 12(b). As in the 

previous example of Fig. 11, the axial images in Fig. 12(c) and (d) also show a reduction in 

other motion artifacts.

Finally, in figure 13, a third clinical example is shown. In this case, the phase offset of the 

sampling is at a point that is intermediate (between that shown in the previous two figures). 

Here there is evidence of both double-wall and stationary-wall artifacts in the uncorrected 

M-mode image. As before, the axial image also shows a clear reduction of motion artifacts 

after ResyncCT processing. It should be noted that the phase offset sampling referred to 

in the discussion above (and the resultant artifact characteristics such as the appearance of 

double-walls and stationary-walls) is dependent on the orientation of the surface and the 

orientation of the gantry during each scan. As a result, if one were to create an M-mode 

image at another wall location with a different relative orientation for any of the above 

clinical cases, one should expect to see the artifact change. The key to controlling the 

artifacts is estimating and correcting for the motion over the entire field as is done by the 

ResyncCT method.

While the above figures are illustrative, the improvement in image quality from ResyncCT 

for clinical cases is, perhaps, most easily appreciated when the volumes are viewed 

dynamically in a cine-loop. When compared to the uncorrected images, the ResyncCT 

images show much more even and consistent LV contraction with a dramatic reduction in 

spiraling/swirling gantry angle motion artifacts.
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5. Discussions and Future Work

There are two key advantages to finding correspondences in conjugate-pairs of images rather 

than trying to track individual features through a temporal series of PAR images. First, 

conjugate-pairs of PAR images share the same spatial frequencies. It is very difficult to 

try to track any but the simplest features (e.g., small, compact, high-contrast objects like a 

localized calcification) with a series of PAR images that do not have conjugate redundancy. 

For example, a cylindrical in-plane object (e.g., a vessel) will nearly disappear in PAR 

images that do not contain the most relevant spatial frequencies (those corresponding to rays 

that are parallel to the cylinder axis), thereby making motion estimation very difficult. As a 

result, motion artifact reduction is most robust when the measured scan data extends beyond 

180 degrees. In fact, if only 180 degrees of parallel data are available, there is no conjugate 

information at all, the reconstructed image is consistent with the measured data (except very 

near DC), and there is no reliable, objective evidence that the true object was moving at 

all. Any motion estimates in this case must be based on a priori assumptions about the 

characteristics of the image. Having redundant (conjugate) data, is therefore important for 

robust motion estimation.

The second key advantage to using correspondences in conjugate-pair images is that such 

correspondences are robust to position distortions that occur in PAR images due to (at 

least) linear motion. To illustrate this point, consider Figure 14: three source positions (Sn) 

are shown at the top of the scan along with the corresponding positions of a small object 

(On) in the image. Backprojecting the data corresponding to the three connecting rays will 

produce an estimate of the location of the small object that does not match with reality. 

Since this does not occur for a static object, one might assume that cutting the temporal 

window between S1 and S3 by a factor of two might reduce the magnitude of this distortion. 

Unfortunately, this is not the case as can be seen by the convergence of the two intermediate 

dashed lines in the same (distorted) location. In fact, no matter how small you make your 

PAR window, the distortion does not change since its magnitude is related only to the 

motion magnitude, the gantry rotation rate, and the sine of the angle between the x-ray 

paths and the motion direction. Fortunately, as the sine function is pi-periodic, the distortion 

is the same in the conjugate PAR image (see figure 14b) except for any changes due to 

variations in the motion direction or magnitude. Tracking the position of the small object 

moving linearly over a scan results in a cycloid path rather than the true linear path (see 

figure 14c). Fortunately, taking the difference between points that are 180 degrees apart on a 

cycloid always yields the same velocity estimate. It turns out that such positional distortions 

are not much of a problem when it comes to motion compensation. This is because the 

difference between the true (linear) path and the apparent (cycloid) path is completely 

constrained to the component of motion that is parallel to the ray path. Errors in motion 

estimates along this direction are largely irrelevant since the PAR images are nearly invariant 

in that direction. Understanding the distortion effect, however, can be relevant for improving 

motion estimation models.

In this paper, a detailed description of the ResyncCT motion artifact reduction algorithm 

was given and placed in context with the many recent scientific advances in the field of 

motion artifact reduction for CT. In addition, the method was discussed in the context of 
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correcting motion around the left ventricle, with the goal of reducing “false dyssynchrony” 

and improving the quality of information leading up to clinical decisions about whether 

and how to perform cardiac resynchronization therapy (CRT). This represents an exciting 

clinical application of 4DCT. Unfortunately, 4DCT is not recognized generally for use in 

myocardial function and there are some technical challenges that need to be addressed to 

make this capability and other 4DCT applications more broadly available. In particular, most 

large, heavily used PACS systems do not currently support cine capability, meaning that the 

review of 4DCT datasets requires a workstation with additional review software.

Though beyond the scope of this paper, additional experiments have been performed to 

quantify the improvement in the accuracy of timing measurements that results from the 

application of ResyncCT using a 3D printed left ventricle phantom [28]. In addition, plans 

are in place to quantify the ability of 4DCT with motion artifact reduction to better select 

patients for CRT procedures. Finally, additional work on the topic of accelerating the motion 

artifact reduction by leveraging deep convolutional neural networks is also in progress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
CT motion artifact characteristics are illustrated here with four simple dynamic objects, 

including three discs moving with constant velocity (first three rows) and one disc that is 

contracting (bottom row). The first two columns (from left) show snapshots in time at the 

beginning and end of the scan window respectively. The third column is a simple average of 

the images representing each motion state within the time window. Due to the Fourier slice 

theorem and rotational nature of CT data acquisition, the fourth column images are more 

representative of motion artifacts in practice. Further details on the synthesis of these (fourth 

column) images is given in figure 2.
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Figure 2: 
The process used to emulate CT motion artifacts for figure 1 is illustrated here using a subset 

of five time frames. The images that represent snapshots in time are converted to Fourier 

space, where a very small wedge (exaggerated here for clarity) is extracted. These are 

summed together (with an optional weighting function) and then converted back to image 

space using a 2D inverse discrete Fourier transform.
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Figure 3: 
The four images in this figure are generated from the same object motion and the same data 

acquisition duration. The starting gantry angle of the emulated x-ray source is progressively 

shifted by 45 degrees for each image. Gantry angle dependency like this can introduce errors 

in the estimated local wall motion of the left ventricle.
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Figure 4: 
This figure illustrates why a contracting disc results in a spiral shaped object from 

reconstruction of a ~180-degree CT acquisition. Each view defines the position of the 

boundaries that are tangent to rays composing that particular view. The composition of the 

red tangent lines from all views traces out the spiral pattern.
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Figure 5: 
Placement of motion estimation points (as well as motion estimation) is based on the 

analysis of conjugate-PAR image pairs, such as those illustrated above.
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Figure 6: 
After masking the region outside the heart, a series of filters on two separate reconstructions 

can produce a mapping of the regions where features are moving. These regions (shown with 

a red overlay) are good candidate locations for motion estimation.
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Figure 7: 
One example of a coarsely sampled tree built of points that can be used in the ResyncCT 

motion estimation process.
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Figure 8: 
Illustration of the motion estimation process. Conjugate PAR images are processed with a 

modified 3D cross-correlation process (see equation 1) to identify spatial correspondences. 

This is repeated for N pairs of images that are offset in view angle. All of the preceding 

is again repeated for subvolumes centered on each motion estimation point. Finally, a 3D 

velocity and a 3D acceleration vector are chosen for each point that are most consistent with 

the cross correlation maps.
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Figure 9: 
A 3D printed phantom was designed to emulate a beating left ventricle in a central 2D 

slice when the phantom is rigidly translated along its axis. Above are reconstructions of two 

scans of this phantom: one without motion (left) and another with motion (center). Sagittal 

images are shown on the top (a, b, c) and axial images on the bottom (d, e, f). The x-axis 

on the top row images (scanner z-axis) is representative of time. It is difficult to identify 

key contraction features from the reconstruction of the moving phantom. After ResyncCT 

processing, however, the image quality is largely restored (right column) and these features 

are easily discernible.
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Figure 10: 
Comparison between two histograms of endocardial surface distance errors: (left) the 

standard uncorrected reconstruction from dynamic data. (right) the ResyncCT reconstruction 

from the same data. After ResyncCT processing all errors are within ~1 pixel.
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Figure 11: 
A clinical case showing the impact of motion artifact reduction on improving the clarity of 

the left ventricle endocardial boundary. The left images (a) and (b), are similar to “M-mode” 

echo images with each column showing a spatial profile at a given time in the heart 

cycle. The right images, (c) and (d), show the location of the spatial profile in an axial 

slice. Images on the top are uncorrected, while images on the bottom are corrected with 

ResyncCT. A severe “double-wall” artifact is visible on the top right at the position of the 

M-mode profile (red line). This artifact is shown in the M-mode plots as a blurred boundary 

between myocardium and blood pool (blue arrow).
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Figure 12: 
A clinical case showing distinct “stationary-wall” artifacts in the motion of the endocardial 

wall. Figure 12(a) and 12(b) show the M-mode data from the septal LV endocardium. Note 

in Fig 12(a) that the wall appears to remain stationary for every two time frames; after 

ResyncCT correction, the motion has a smoother progression as shown in Fig. 12(b). The 

apparent motion from Fig 12(a) is stair-step like since rays tangent to the surface are only 

measured twice per gantry rotation.
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Figure 13: 
A clinical case in which both “double wall” and “stationary wall” artifacts are present. 

Image layout matches that of figures 11 and 12.
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Figure 14: 
Small objects moving with a constant velocity appear to move on a cycloid path in CT 

images. Fortunately, cross correlations from conjugate PAR images are immune to these 

spatial distortions because they are periodic with a 180 degree gantry rotation.
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Table 1:

Scan details for the clinical cases shown in Figs 11–13.

Figure Protocol HR Kernel Rot (s) DFOV mA kVp

11 CTA Cardiac Morphology, PV 73 Stnd 0.28 178 460 80

12 CTA Cardiac Morphology, TAVR 53 Stnd 0.28 170 595 80

13 CCTA Coronary 62 Stnd 0.28 200 719 100
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