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Tracking what matters: A decision-variable account of human behavior in bandit
tasks
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Pradeep Shenoy (shenoypradeep@google.com)
Google Research India

Abstract

We study human learning & decision-making in tasks with
probabilistic rewards. Recent studies in a 2-armed bandit task
find that a modification of classical Q-learning algorithms,
with outcome-dependent learning rates, better explains behav-
ior compared to constant learning rates. We propose a simple
alternative: humans directly track the decision variable under-
lying choice in the task. Under this policy learning perspective,
asymmetric learning can be reinterpreted as increasing confi-
dence in the preferred choice. We provide specific update rules
for incorporating partial feedback (outcomes on chosen arms)
and complete feedback (outcome on chosen & unchosen arms),
and show that our model consistently outperforms previously
proposed models on a range of datasets. Our model and up-
date rules also add nuance to previous findings of persevera-
tive behavior in bandit tasks; we show evidence of outcome-
dependent choice perseveration, i.e., that humans persevere in
their choices unless contradictory evidence is presented.

Keywords: 2-armed bandits; reinforcement learning;
decision-making; optimism bias; confirmation bias

Introduction
How do humans and other animals learn about actions & re-
wards from probabilistic outcomes? A popular experimental
paradigm for studying this question is the 2-armed bandit task
(Figure 1), involving a repeated choice between two actions
associated with some predetermined (but unknown) probabil-
ity of rewards. Classical reinforcement-learning algorithms
for this task such as the Rescorla-Wagner model (Rescorla,
1972) track running estimates of average rewards associated
with actions, updated using prediction errors with respect to
observed outcomes. However, empirical data and model fits
to behavior (Palminteri et al., 2017) suggest that RW models
do not fully capture human behavior; instead, learning ap-
pears to be biased towards positive outcomes (Sharot et al.,
2011), and towards reinforcing current decisions (Palminteri
et al., 2017).

In this paper, we propose a simple reframing of the learn-
ing goal in 2-armed bandit tasks: Instead of maintaining es-
timates of average rewardability of the two arms, we directly
maintain a decision variable encoding the better choice, in a
manner similar to a large body of work in perceptual decision-
making (see e.g., Platt & Glimcher (1999)). This choice of
representation is both more task-relevant and easier for the
brain to maintain and update over time; indeed, recent work
argues that the brain may represent action policy instead of
value (Hayden & Niv, 2021) over a broad range of contexts.

Figure 1: Experiment protocol: Subjects choose between
two abstract options, and receive a higher or a lower out-
come with predetermined probabilities associated with each
option. In Expt(P), they see an outcome on chosen arm, and
in Expt(C), they see outcomes on both chosen and unchosen
options. Figure adapted from Palminteri et al. (2017)

We provide update rules for incorporating outcomes into the
decision variable, and compare against previous models for
this task on a range of datasets involving feedback on both
factual (chosen action) and counterfactual (unchosen action)
outcomes. Our model consistently outperforms previously
proposed learning rules across all datasets and experiments.

Our proposal for counterfactual learning separates out am-
biguous scenarios (e.g., where both arms get same reward),
from unambiguous scenarios where rewards on the arms are
different. While unambiguous feedback moves the decision-
variable in the relevant direction, we show that in equal re-
ward situations, the current choice is reinforced. We there-
fore propose a notion of outcome-dependent perseveration of
choice, in contrast to previous proposals that suggest a bias
term tracking choice autocorrelation over time, independent
of outcome (see e.g., Akaishi et al. (2014)).

Tasks and previous models
We summarize key results in the literature on human reward-
based learning in highly controlled laboratory experiments
involving probabilistic rewards, specifically 2-armed ban-
dits involving two possible outcomes (a higher rewarding/
less punishing outcome and a lower rewarding/ more pun-
ishing outcome) (Figure 1). We cover experiments with par-
tial feedback (hereafter referred to as Expt(P)), and com-
plete feedback (factual and counterfactual both, abbreviated
as Expt(C)). Human behavior in this task has been analyzed
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using the following reinforcement learning methods:
Rescorla-Wagner (RW): This model (Rescorla, 1972)

tracks rewards associated with each arm using two Q-values,
which are updated using a delta rule every time an out-
come associated with an arm has been observed. Concretely,
qc← qc +α(r−qc), where arm c has been observed to yield
reward r, and α is a learning rate parameter. The two Q-values
are expected to converge to average reward of the arms. The
following modifications to this classical Q-learning approach
have been shown to better fit human behaviour.

Valence-driven learning (VM): Here, separate learning
rates are associated with positive and negative prediction er-
rors (equivalently higher and lower outcomes respectively).
The update rule in VM is:

qc← qc +(r−qc)∗

{
αp if (r−qc)> 0
αn if (r−qc)< 0

(1)

Model fits confirm that VM better explains behavior in the ban-
dit task compared to RW (Lefebvre et al., 2017). The asymme-
try in learning (αp > αn) has also been interpreted as “op-
timism” (see e.g., Sharot et al. (2011)). Importantly, the Q-
values no longer converge to true reward probabilities of the
arms.

Confirmation-disconfirmation (CD): Palminteri et al.
(2017) argue that VM is only a partial explanation, due to a
limitation of experimental design where only chosen options’
outcomes are shown. When counterfactual evidence (Fig 1,
Expt(C)) is presented on each trial, there is an interaction
between chosen-unchosen arms, and higher-lower outcome
(equivalently, prediction error). The update equation for CD
is:

qc← qc +(rc−qc)∗

{
αcon if (rc−qc)> 0
αdis if (rc−qc)< 0

qu← qu +(ru−qu)∗

{
αdis if (ru−qu)> 0
αcon if (ru−qu)< 0

(2)

Specifically, they find αcon significantly higher than αdis,
i.e. learning rates are higher on higher outcome for cho-
sen arms (rc−qc > 0) but lower outcome for unchosen arms
(ru−qu < 0). This is interpreted by the authors as a confirma-
tory update to the Q-values: outcomes confirming the validity
of the choice (higher outcome on chosen or lower outcome on
unchosen arm) show a higher learning rate than disconfirma-
tory outcomes.

Estimation under nonstationarity (DBM): In recent work,
Zhou et al. (2020) propose a dynamic belief updating model
where reward probabilities are estimated under an assumption
that at any instant, with fixed probability, the reward proba-
bility associated with each arm may be “reset”, i.e., redrawn
from a fixed prior distribution over reward probabilities. They
only model Expt(P), i.e., partial feedback experiments.
Let p(θi), be the probability density function (pdf) for the
random variable θi denoting the probability of arm i giving

the higher outcome in some particular arm-pairing context.
Suppose an arm c is chosen in a particular trial, and its out-
come is observed. The pdf for unseen arms (unchosen arm in
the current trial, as well as arms not included in the present
trial) are “reset” as,

p(θi)← (1−αp0(θ))+αp(θi) ∀i 6= c (3)

where p0(θ) is the fixed prior distribution to which arms are
reset. The pdf for seen (or chosen) arm is updated based on
Bayes rule, incorporating the seen outcome (rc) as,

p(θc)← λp(rc|θc)p(θc) (4)

where λ is the normalizing constant. The final Q-values for
making a choice are estimated as the expected value of each
pdf, i.e. qi = E[p(θi)]. For the prior p0(θ), the authors use
a beta distribution, Beta(s · p,s · (1− p)) with a fixed scale
parameter s for all participants, and a free parameter p (mean
of the beta distribution) for each participant.

The authors show that this model is a better fit than VM
for one experiment from Lefebvre et al. (2017) where fac-
tual evidence alone is presented; they also remark that in the
specific experiment modeled, this model mimics choice per-
severation (a tendency to continue choosing previously cho-
sen options (Akaishi et al., 2014)). We note in passing that
this formulation and finding are closely related to previous
proposals of forgetting rates in Q-value estimation (see e.g.,
Barraclough et al. (2004); Ito & Doya (2009)). They do not
analyze other open source datasets with similar experimental
conditions, or experiments where counterfactual evidence is
presented.

Decision Variable Tracking
In all experiments studied here, arms have binary outcomes:
a higher reward and a lower reward. In our models, we repre-
sent these binary outcomes as 1 and −1, respectively.1

Instead of maintaining an estimate of average rewards of
the two arms, we propose to track a decision variable, d ∈
[−1,1] encoding the identity of the higher rewarding arm,
with d > 0 (or < 0) signaling that arm 1 (resp., arm 2) is
more rewarding than the other arm. To preserve symmetry in
the mathematical form of the update equations, we show up-
date equations for d in terms of d1,d2 ∈ [−1,1], where d1,d2,
and d are related as follows: d def

= d1
def
= −d2. d2 is simply the

reverse of d1, i.e. positive when arm 2 is believed to be bet-
ter. The choice on the next trial depends on the softmax of
d1,d2. The magnitude of d can also be interpreted as the de-
gree of confidence that a specific arm is more rewarding than
the other.

Partial feedback experiment
We start with the update equation for incorporating an ob-
served outcome rc after having chosen arm c ∈ {1,2}. Evi-
dence for the chosen arm being better (dc) is updated towards

1This representation of relative valuation instead of absolute val-
ues of outcomes does not affect quality-of-fit of previous models
(RW, VM, CD and DBM) in the experiments modeled here.
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−1 on seeing an outcome of −1, and towards 1 on an out-
come of 1. The update equation for the model, which we call
DV1, are:

dc← dc +

{
αp(1−dc) : rc = 1
αn(−1−dc) : rc =−1

(5)

We model separate rates for positive and negative out-
comes. When αp > αn, there is a tendency towards certainty
in the current choice, i.e., for d to converge towards one of
the choices. Indeed, in asymptote, it is desirable for a deci-
sion variable such as d to converge towards a particular choice
regarding which arm is better. If αp were set equal to αn, the
decision variable would converge to E(r1− r2), i.e., the same
as the mean value of (q1− q2) from a basic Q-learning (RW)
model; this would gain lesser reward in asymptote under a
stochastic policy (also see Lefebvre et al. (2020)). We find
in our experiments that fitted αp > αn for most subjects (see
Figure 3).

Differences with VM: DV1 is different from VM, since it
only represents one quantity at any given time. In contrast,
the choice in VM depends on ∆q = qc−qu, which depends on
both qc and qu, and cannot be represented by a single equiv-
alent update. One possible interpretation of DV1 in terms of
prior work is that it is mathematically equivalent to CD up-
date rule with a hallucinated outcome on unchosen arm that
is perfectly anti-correlated with chosen arm outcome (i.e.,
ru =−rc).

Complete feedback experiment

In Expt(C), there are 4 possible outcomes for the paired out-
comes on chosen and unchosen arms (rc,ru). When the two
arms have opposite outcomes, the decision variable should
naturally reinforce towards the arm with higher one. In these
two cases, the update is similar to DV1; towards 1 with a learn-
ing rate αp, or towards −1 with a learning rate αn, depend-
ing on which arm had higher outcome. But what should the
update be, when both the outcomes are same? We consider
two hypotheses – update dc either towards t = 1 or −1, i.e.
“increase” or “decrease” confidence with respect to current
choice:

dc← dc +α0(t−dc) : rc = ru, t ∈ {−1,1} (6)

Model comparison between the two version showed 100%
support for t = 1 (for each participant, t = 1 version had lower
NLL compared to t = −1), a finding we term as outcome-
dependent choice perseveration: increased confidence in cur-
rent choice in the absence of unambiguous reward signals
from the environment. Additionally, we find αp > αn,α0
for each participant, again reflecting tendency towards cer-
tainty. Finally, there was a significant correlation between
the three parameters indicating degeneracy, with mean value
of α0 very close to mean value of (αp−αn). So, we choose
α0 ≡ αp−αn, and t = 1, and refer to the reduced model as

DVc.

dc← dc +


αp(1−dc) rc > ru

αn(−1−dc) rc < ru

(αp−αn)(1−dc) rc = ru

(7)

Differences with CD: We note that CD and DVc differ pri-
marily on same-outcome trials; if outcomes were perfectly
anti-correlated, DVc CD models would become exactly equal.
However, on same-outcome trials, the CD updates for (qc,qu)
cannot be reduced to an update of ∆q. In fact, unlike DVc,
the quantity ∆q in the CD model may reduce, or increase,
after same-outcome trials depending on the actual values of
(qu,qc) before that trial.

Partial feedback: an alternate model
Finally, we consider another model for Expt(P) which we
refer to as DV2,

dc← dc +α1(rc−dc)+α2(1−dc) (8)

(Also, α1 +α2 ≤ 1 because |dc| ≤ 1).
This model can be understood as a simplification of the DVc
model proposed for Expt(C). If the unchosen arm was re-
vealed, and its outcome were opposite to the factual out-
come rc, the update in DVc is towards rc. These cases (rc ∈
{1,−1},ru 6= rc) are reflected in the above update equation as
the first term, α1(rc−dc). In case the two outcomes are equal,
the update should be towards 1, and is captured by the second
term above, α2(1−dc). As in DVc, this second term reflects a
tendency towards certainty, since for α2 > 0, the decision is
reinforced towards the current choice, and the mean value of
dc moves closer to 1. The DV2 model combines both of these
update terms into a single update equation shown above.

Results
Datasets
We used open-source data from previous studies (Palminteri
et al., 2017; Chambon et al., 2020; Lefebvre et al., 2017; Le-
breton et al., 2019)2. The datasets covered a range of different
experimental conditions where a number of factors were var-
ied, including: 1) the probability of reward associated with
each arm, and their pairing, e.g., both high, both low, or con-
trasting, 2) the nature of reinforcement – reward, punishment
or both, 3) presence of a reversal condition (arm reward prob-
abilities swapped in the middle of the block), etc. The ex-
periments are summarized in Table 1. We do not break down
our analyses or customize models to each specific condition;
the details are presented for completeness, and to demonstrate
the wide range of scenarios under which model comparisons
show consistent gains.

2In some studies (Chambon et al., 2020; Lebreton et al., 2019),
trials related to Expt(P) and Expt(C) paradigms were interleaved
(with different arm pairs & visual stimuli for each), so we separated
trials out into Expt(P) and Expt(C) datasets. Also, from Chambon
et al. (2020) we ignore “forced-choice” blocks that involved imple-
menting a computer chosen choice.
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Table 1: Summary of datasets. The two possible outcomes for any arm are ≥ 0 in Pos and ≤ 0 in Neg. In Mix, the higher
outcome is > 0 and the lower is < 0. Reward probabilities (contingencies): one arm > 0.5 and other < 0.5 in C, both arms
> 0.5 in H, equal to 0.5 in S, equal but > 0.5 in sH, equal but < 0.5 in sL. Contingencies of the two arms are contrasting but
are reversed in the middle of the block in R. “Length” is # trials per pair of arms in a single learning sequence (or block).

Dataset #subjects #trials Length Outcomes Contingencies Reference
Palm-E1 20 192 24 Pos C, S, R Expt 1, (Palminteri et al., 2017)
Cham-E1 24 240 40 Pos H, L Expt 1, (Chambon et al., 2020)
Cham-E3 24 120 20 Pos H, L Expt 3, (Chambon et al., 2020)
Lefe-E1 50 96 24 Pos sH, sL, C Expt 1, (Lefebvre et al., 2017)
Lefe-E2 35 96 24 Mix sH, sL, C Expt 2, (Lefebvre et al., 2017)
Lebr-E1a 18 144 24 Pos, Neg C Expt 1, (Lebreton et al., 2019)
Lebr-E2a 18 144 24 Pos, Neg C Expt 2, (Lebreton et al., 2019)
Lebr-E3 48 360 30 Pos, Neg C, R Expt 3, (Lebreton et al., 2019)

Total Expt(P) 237 43,104
Palm-E2 20 192 34 Pos C, S, R Expt 2, (Palminteri et al., 2017)
Lebr-E1b 18 144 24 Pos, Neg C Expt 1, (Lebreton et al., 2019)
Lebr-E2b 18 144 24 Pos, Neg C Expt 2, (Lebreton et al., 2019)

Total Expt(C) 56 9,024

Model fits
We compare the previously proposed models (VM, CD, DBM)
and our proposed models (DV1, DV2, DVc) on the datasets &
experiments described above. For each model, the free pa-
rameters were estimated to minimize Negative Log Likeli-
hood (NLL) under a softmax decision policy, using matlab’s
fmincon function, in a manner similar to that described in
Palminteri et al. (2017)3. The softmax policy computes the
probability for a model selecting the same arm (c) as the par-
ticipant as,

P(a = c) = 1/(1+ exp(−β∆q))

where ∆q= (qc−qu) for value-estimation models VM, CD, and
DBM, and (dc−du)≡ 2 ·dc for decision-variable models DV1,
DV2, and DVc. Log-likelihood of the data (sequence of choices
of arm {ai} taken by a participant) given a model is computed
as

N

∑
i=1

logP(ai = ci)

Since all the models being compared have the same num-
ber of free parameters, i.e. 3 (two parameters in the update
equations, and one parameter (β) in the softmax policy), any
penalty for #parameters such as BIC/AIC would yield the ex-
act same ordering of models in fit quality; we therefore do
not report BIC scores. We present group comparison of mod-
els (Table 5), which is estimated using log likelihood of data
computed from best fitted parameters.

We do not include a random prediction baseline, or the ba-
sic RW model in our results, as RW already performs much

3We used code shared by the authors (Palminteri et al., 2017) in
reproducing the performance of competing models VM and CD and
are able to replicate the exact numbers reported in Palminteri et al.
(2017), as a sanity check on the model fitting process.

better than random, and VM & CD beat RW in Expt(P), and
Expt(C) respectively as shown in Palminteri et al. (2017)4.

Partial Feedback Experiments

Model fits: As shown in Table 2, DV2 shows consistently bet-
ter fits to data across datasets, having clearly better log like-
lihood measure without resort to additional parameters. DV1,
the algorithm structurally most related to VM, outperforms it
in all datasets, and is at par with DBM, whereas DV2, which
is inspired by DVc as an admixture of its update rules, pro-
vides a better fit than both VM and DBM. Table 5 shows a group
analysis of the models with data pooled across all datasets,
showing that exceedance probabilties (XP in the table; the
probability that a given model best fits a majority of subjects)
as well as estimated model frequencies clearly favor our mod-
els. Figure 2 shows model comparison across subjects pooled
over all Expt(P) datasets. We see that DV2 has better average
NLL than DBM and VM for a significant majority of subjects.

Table 6 show mean values of fitted learning rates for our
models. We find mean αp considerably greater than mean αn
in DV1 and α2 greater than 0 in DV2, both reflecting a tendency
towards certainty as described earlier. Figure 3 compares
(αp,αn) for individual subjects pooled across all datasets, and
shows that αp > αn, to a significant degree, for most subjects.

4For reference, a rough calculation for random prediction model
on Palm-E1 gives NLL = -192*log(1/2) = 133, much worse than all
models.
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Table 2: Expt(P) model fit: NLL for best-fit parameters,
averaged across participants. Our models consistently out-
perform previous models on a range of datasets. DV1 is sig-
nificantly better than VM, while DV2 performs best overall.

Dataset VM DBM DV1 DV2
Palm-E1 83.94 80.53 80.16 79.23
Cham-E1 92.10 91.01 91.22 88.57
Cham-E3 52.54 53.99 52.48 51.74
Lefe-E1 40.25 39.44 39.39 38.90
Lefe-E2 40.00 39.40 39.07 38.39
Lebr-E1a 55.94 55.98 55.46 53.15
Lebr-E2a 57.62 57.48 55.67 54.13
Lebr-E3 171.26 164.81 162.28 156.79

Generalization on holdout: Table 3 shows the evaluation
of models on held-out blocks from each dataset, with param-
eters fitted using half of the blocks–this is a measure of gen-
eralization on held-out data commonly used in the machine
learning literature. Not only is DV2 better on all datasets, but
the percentage difference between the models is significantly
magnified, suggesting that the difference between the models
is in fact larger than apparent in Table 2.

Figure 2: Comparison of Negative Log Likelihood (NLL) av-
eraged over number of trials (N) (1/N · log2(P(data|model)))
on our model DV2 and previous models (VM, DBM). Participants
labelled red perform better on DV2.

Table 3: Expt(P) generalization: Train on b n+1
2 c blocks

and test on the remaining blocks. Lefe-E1 and Lefe-E2
dropped from comparison since they only have one block.

Dataset VM DBM DV1 DV2
Palm-E1 43.81 40.45 40.11 39.07
Cham-E1 33.98 32.09 32.90 30.95
Cham-E3 38.85 34.91 35.43 34.53
Lebr-E1a 19.57 18.75 19.43 17.75
Lebr-E2a 21.16 18.60 18.03 17.71
Lebr-E3 55.80 52.26 51.28 49.61

Complete Feedback Experiments
Model fits: Table 4 compares various models on the counter-
factual experiment Expt(C). Our model DVc shows a better
fit to data than DBM and VM using the same number of learned

parameters. Interestingly, DBM shows a fairly poor fit to the
data, significantly worse than CD. In factual experiments, as
described in Zhou et al. (2020), the primary advantage of
DBM was the decay of reward estimates for unchosen arms in
the absence of feedback, resulting in a choice-perseveration-
like behavior. However, in the counterfactual evidence sce-
nario, unchosen outcomes are explicitly available, and need
to be incorporated into the belief. We found that DBM-1, a
version we implemented that ignores counterfactual evidence
entirely, shows better fit than DBM, supporting the hypothe-
sis that the gains from DBM come from a tendency towards
choice perseveration that is removed in the face of explicit
counterfactual evidence. Finally, from Table 5, we see that
estimated model frequency (MF) for DVc compared to CD is
0.98, suggesting that for almost all participants DVc better fits
their behavioral data than CD.

Table 4: Expt(C) model fit: DVc outperforms CD on all
three datasets. DBM as noted earlier is unable to generalize to
Expt(C), and performs poorly.

Dataset DBM DBM-1 CD DVc
Palm-E2 82.50 74.91 69.60 68.82
Lebr-E1b 59.54 52.37 50.63 49.31
Lebr-E2b 55.49 45.26 43.99 43.59

Table 5: Pairwise group comparison of our models (DV1,
DV2, DVc) with previous (VM, DBM, CD) on random effects
Bayesian analysis; XP, exceedence probability; PP, posterior
probability; MF, model frequency. Null Hypothesis (differ-
ence due to chance) was not rejected only in DV1 v/s DBM.

DV1
v/s VM

DV2
v/s VM

DV1
v/s
DBM

DV2
v/s
DBM

DVc
v/s CD

XP 1.00 1.00 1.00 1.00 1.00
PP 0.87 0.87 0.58 0.84 0.98
MF 0.87 0.87 0.58 0.84 0.97

Table 6: Fitted Parameters: Learning rates averaged across
all participants (with standard mean error) for our models.

DV1 DVc DV2
αp 0.42 ±0.02 0.42 ±0.02 α1 0.24 ±0.01
αn 0.13 ±0.01 0.11 ±0.01 α2 0.17 ±0.01

Outcome-dependent choice reinforcement: As remarked
in Eq 6, for the specific situations where both factual and
counterfactual outcomes are equal, the choice of t controls
whether current choice is reinforced (t = 1) or has reduction
in confidence (t = −1). We found that t = 1 model was a
better fit in terms of NLL for every single subject in our data
pool.

Further, as discussed earlier, only these equal outcome tri-
als causes DVc and CD to differ–if there were no trials with
equal outcomes on both arms, DVc and CD would behave ex-
actly the same, with the Q-values in CD having the relation-
ship qc ≡−qu. To investigate this difference further, we com-
pared the two models on trials split into two bins: those that
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Figure 3: Fitted Learning rates (αp vs αn) of our models, DV1
and DVc on Expt(P) and Expt(C) respectively.

follow an equal-rewards trial, and those that follow an un-
equal rewards trial (Table 7). The relative NLL gains of DVc
over CD are much larger on trials following equal-rewards tri-
als, thereby validating our choice of update rule in Equation 7.
This choice reinforcement is very different from unbiased Q-
value estimation (RW model) in which decision confidence in
current choice often reduces after same-outcome trials. It is
also different from classically studied perseverative behavior
which typically models autocorrelation in choice independent
of outcomes.
The fitted parameters of DVc (Table 6) also find the mean of
αp −αn considerably greater than 0; this is also seen on a
per-subject level in the scatterplot of Figure 3 where for most
subjects, the fitted parameters show an asymmetry in value.

Table 7: NLL on Expt(C), split into trials following same
(different) outcome trials.

On trials following
Dataset any rc = ru rc 6= ru
Palm-E2 NLL CD 69.6 24.35 39.7

NLL DVc 68.8 23.77 39.5
∆ NLL 0.78 0.58 0.2

Lebr-E1b+ NLL CD 60.12 20.24 35.03
Lebr-E2b NLL DVc 59.06 19.60 34.61

∆NLL 1.06 0.64 0.42

Discussion & Future Work
We presented a decision-variable account of human behavior
in bandit tasks with factual and counterfactual feedback. Our
model consistently outperforms previous proposals across a
range of datasets and experimental conditions. Some key in-
sights from our model and experiments are that decision vari-
ables (more generally, action policies, see e.g., Hayden & Niv
(2021)) are a parsimonious representation in the task, both
conceptually in terms of maintenance complexity and cost,
and empirically in terms of fit to human behavior. We also
showed strong evidence for outcome-dependent persevera-

tion–the tendency to reinforce current choice in the absence
of directional evidence. We discuss below some implications
of our work and its connection to the broader literature on
decision making & neuroscience.

Biased learning in humans: Asymmetric-update mod-
els such as VM and CD have been interpreted as optimism
bias (Sharot et al., 2011), or confirmation bias (Palminteri
et al., 2017) as they appear to reinforce positive or confir-
matory interpretations of evidence. From an RL perspec-
tive, one could view these algorithms as learning biased Q-
estimates; however, other work has argued that such esti-
mates can be reward-maximizing, in comparison to unbiased
estimates. For instance, Lefebvre et al. (2020) suggest that
the CD update rules sharpen the gap between Q-values, and
allow the learner to overcome “decision noise” inherent in
the brain (e.g., instantiated as the temperature parameter of a
softmax decision function). Similarly, Cazé & van der Meer
(2013) suggest that “optimism” (i.e., higher learning rates for
positive outcomes) increases reward in certain environments,
whereas the reverse would be beneficial in others. Our work
suggests a more straightforward interpretation of the appar-
ent asymmetry as a tendency to update decision variables
towards certainty (see also Hayden & Niv (2021)), as op-
posed to tracking biased individual values, providing robust-
ness against stochasticity in reward distribution. In particular,
this explains the finding (Palminteri et al., 2017) that humans
to converge upon a specific choice when repeatedly offered
two equally rewarding options (Palminteri et al., 2017), in a
manner inconsistent with unbiased Q-estimation. A natural
question for future work is the analytical and empirical eval-
uation of our models in terms of reward maximization, under
a range of environmental conditions.

Representation of value: Taken at face value, our model
suggests that only the decision variable, which measures a
relative valuation between the two options, needs to be main-
tained. However, there is substantial prior work suggesting
value representation and update in brain & behavior. In the
2-armed bandit task we study here, subjects can be probed,
after the experiment, to estimate the actual likelihood of re-
ward of each arm (Lebreton et al., 2019), and appear to have
close-to-veridical representations of these probabilities. Fur-
ther, experiments tracking neural representation of value sug-
gest that individual arm values are estimated and tracked over
trials–see e.g., Pischedda et al. (2020), who also, intrigu-
ingly, suggest that value representations switch from absolute
to relative when comparing factual & counterfactual exper-
iments. More broadly speaking, there is significant recent
debate about whether the brain represent value or action poli-
cies (Hayden & Niv, 2021)–our proposal of a decision vari-
able is directly in line with the hypothesis of policy track-
ing. We plan to explore in future work the computational
and ecological value of a hybrid model that explicitly tracks
decision variables in addition to maintaining individual (or,
indeed, contextual) value estimates.

Relationship to decision-making in general: Perceptual
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decision-making models have largely focused on decision
variables (Platt & Glimcher, 1999; Gold & Shadlen, 2007)
which are primarily veridical representations of integrated
sensory evidence over time. Interestingly, a growing body
of work suggests that a closely related concept termed deci-
sion confidence (Pouget et al., 2016; Bang & Fleming, 2018))
may be explicitly represented in the brain, separate from
probabilistic sensory evidence, for use in subsequent / down-
stream decision making. Other recent work (Yeon & Rah-
nev, 2020) suggests, for instance, that in perceptual decision-
making with multiple alternatives, sensory evidence is not
veridically represented, and instead a demonstrably subopti-
mal “decision-level” representation is used for choice behav-
ior. Another interesting area of future investigation is whether
the kind of decision-variable approach we propose here will
apply to perceptual decision-making, and to multi-alternative
choice & learning scenarios.
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