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Abstract. In this paper we consider a family of projective embeddings of the geome-
try An,{1,n}(F) of point-hyperplanes flags of PG(n,F). The natural embedding εnat is one
of them. It maps every point-hyperplane flag (p,H) onto the vector-line ⟨x ⊗ ξ⟩, where x
is a representative vector of p and ξ is a linear functional describing H . The other embed-
dings have been discovered more than two decads ago by Thas and Van Maldeghem for
the case n = 2 and recently generalized to any n by De Schepper, Schillewaert and Van
Maldeghem. They are obtained as twistings of εnat by non-trivial automorphisms of F. Ex-
plicitly, for σ ∈ Aut(F)\{idF}, the twisting εσ of εnat by σ maps (p,H) onto ⟨xσ⊗ξ⟩. We
shall prove that, when Aut(F) ̸= {idF}, a geometric hyperplane H of An,{1,n}(F) arises
from εnat and at least one of its twistings or from at least two distinct twistings of εnat if and
only if H = {(p,H) ∈ An,{1,n}(F) | p ∈ A or a ∈ H} for a possibly non-incident point-
hyperplane pair (a,A) of PG(n,F). We call these hyperplanes quasi-singular hyperplanes.
With the help of this result we shall prove that if |Aut(F)| > 1 then An,{1,n}(F) admits no
absolutely universal embedding.
Keywords. Lie geometries, Segre varieties, embeddings, hyperplanes
Mathematics Subject Classifications. 51A45, 20F40, 15A69

1. Introduction

Lie geometries have been intensively studied over the last fifty years. Referring the reader
to [DSSVM24, Section 2] for a precise definition, we only recall that Lie geometries are point-
line geometries obtained from buildings associated with Chevalley groups by choosing as points
the elements of a given type or the flags of a particular type. For instance, flags of size 2
are chosen as points for the Lie geometries An,{1,n}(F) and Dn,{n−1,n}(F), associated with the
groups SL(n+1,F) and Ω+(2n,F) respectively. The points of An,{1,n}(F) are indeed the point-
hyperplane flags of PG(n,F) while the points of Dn,{n−1,n}(F) are the flags of type {n−1, n} of
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the building of type Dn defined over the field F (equivalently, the (n− 2)-dimensional singular
subspaces of the hyperbolic quadric Q+(2n− 1,F)).

Most Lie geometries admit a projective embedding (they are embeddable, for short),
namely they can be realized as full subgeometries of suitable projective spaces. For instance,
both An,{1,n}(F) and Dn,{n−1,n}(F) are embeddable. In particular, An,{1,n}(F) admits in general
several different embeddings. One of them yields the adjoint representation of SL(n+ 1,F).

For many embeddable Lie geometries a projective embedding is known, called the absolutely
universal embedding, such that all projective embeddings of the given geometry can be obtained
as projections from it. The absolutely universal embedding, when it exists, is therefore the best
one, in the sense that in some ways it embodies all information we can derive on the given
geometry from any of its projective embeddings.

Kasikova and Shult [KE01] give far reaching sufficient conditions for the existence of the
absolutely universal embedding of an embeddable point-line geometry. In order to explain what
those conditions mean for a Lie geometry we recall the following general property of Lie geome-
tries: let Γ be a Lie geometry but neither a projective space nor a generalizedm-gon withm > 4;
thenΓ admits a familyS of convex subspaces, isomorphic to non-degenerate polar spaces of rank
at least 2 and called symps, such that if p and q are points of Γ at distance 2 with at least two
common neighbors, then p and q belong to the same member of S. For embeddable Lie geome-
tries other than projective spaces or generalized polygons the conditions found by Kasikova and
Shult ultimately amount to the following: symps are not grids.

This condition fails to hold in An,{1,n}(F) as well as in Dn,{n−1,n}(F). Indeed in both of
these geometries all symps are grids. Of course, this failure is not enough to conclude that in
generalAn,{1,n}(F) andDn,{n−1,n}(F) fail to admit the absolutely universal embedding. However
this is precisely the case for An,{1,n}(F). Indeed, as we shall prove in this paper (Corollary 1.15),
if the field F admits non-trivial automorphisms then An,{1,n}(F) admits no absolutely universal
embedding. We do not know if the same conclusions hold true for Dn,{n−1,n}(F) (n > 3 of
course, since D3,{2,3}(F) is the same as A3,{1,3}(F)).

1.1. Basic properties of the geometry An,{1,n}(F)

Following a well established notation, we denote by An,{1,n}(F) the geometry of point-hyper-
plane flags of the projective geometry PG(n,F), for n ⩾ 2 and F a given field.

Explicitly, An,{1,n}(F) is the point-line geometry the points of which are the ordered
pairs (p,H) where p and H are a point and a hyperplane of PG(n,F) respectively and p ∈ H;
the lines of An,{1,n}(F) are the sets {(p,H) | p ∈ ℓ} for ℓ a line of PG(n,F) and H a hy-
perplane of PG(n,F) containing ℓ and the sets {(p,H) | H ⊋ L} for L a sub-hyperplane
ofPG(n,F) (namely a subspace ofPG(n,F) of codimension 2) and p a point ofL. Accordingly,
two points (p,H) and (q,K) of An,{1,n}(F) are collinear if and only if either p = q or H = K.
Let p ̸= q and H ̸= K. If either p ∈ K or q ∈ H , then (p,H) and (q,K) are at distance 2,
otherwise they are at distance 3. Thus, the diameter of the collinearity graph of An,{1,n}(F) is
equal to 3.
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1.1.1 Maximal singular subspaces

Given a point a of PG(n,F), let Ma be the set of pairs (a,H) with H a hyperplane of PG(n,F)
containing a. This set is a maximal singular subspace of An,{1,n}(F), namely a subspace of the
point-line geometry An,{1,n}(F) all points of which are mutually collinear and maximal with re-
spect to this property. Dually, for a hyperplane A of PG(n,F), the set MA := {(p,A) | p ∈ A}
is a maximal singular subspace of An,{1,n}(F). We say that Ma and MA are based at a and A
respectively. Every maximal singular subspace of An,{1,n}(F) admits one of these two descrip-
tions. Thus, the maximal singular subspaces of An,{1,n}(F) are partioned in two families: those
which are based at a point and those based at a hyperplane. Two distinct maximal singular sub-
spaces have at most one point in common; they meet in a point only if they do not belong to the
same family. Moreover, if M is a maximal singular subspace of An,{1,n}(F) and (p,H) a point
of An,{1,n}(F) exterior to M, then (p,H) is collinear with at most one point of M.

1.1.2 The natural embedding and its twistings

It is well known that An,{1,n}(F) admits a (full) projective embedding in the projective
space PG(M0

n+1(F)) of the vector space M0
n+1(F) of null-traced square matrices of order n+1

with entries in F, which yields the adjoint representation of the special linear group SL(n+1,F).
We call it the natural embedding of An,{1,n}(F) and we denote it by the symbol εnat.

Explicitly, recall that M0
n+1(F) is a hyperplane of the vector space Mn+1(F) of square matri-

ces of order n + 1 with entries in F and the latter is canonically isomorphic to the tensor prod-
uct V ⊗V ∗, where V = V (n+1,F) and V ∗ is the dual of V . The pure tensors x⊗ ξ of V ⊗V ∗,
with x and ξ non-zero vectors of V and V ∗ respectively, yield the matrices of Mn+1(F) of rank 1.
With x and ξ as above, let [x] and [ξ] be the point and the hyperplane of PG(n,F) represented
by x and ξ. Then ([x], [ξ]) is a point of An,{1,n}(F) if and only if ξ(x) = 0. The pure tensor x⊗ξ,
regarded as a square matrix of Mn+1(F) of rank 1, is null-traced if and only if ξ(x) = 0. The
natural embedding

εnat : An,{1,n}(F) → PG(M0
n+1(F))

maps the point ([x], [ξ]) of An,{1,n}(F) onto the point [x⊗ ξ] of PG(M0
n+1(F)).

Suppose now that F admits non-trivial automorphisms and let σ be one of them. We can
define a twisted version εσ of εnat as follows (De Schepper, Schillewaert and Van Maldeghem
[DSSVM24]; also Thas and Van Maldeghem [TVM00a, Part III]):

εσ : An,{1,n}(F) → PG(Mn+1(F))
([x], [ξ]) → [xσ ⊗ ξ]

where if x = (xi) = (xi)
n
i=0 then xσ = (xσ

i )
n
i=0. This mapping is indeed a projective embedding

of An,{1,n}(F) in PG(Mn+1(F)). Note that dim(εσ) = dim(εnat) + 1.
A dual ε∗σ of εσ can also be defined, which maps every point ([x], [ξ]) of An,{1,n}(F) onto

the point [x ⊗ ξσ] of PG(Mn+1(F)). However, as ε∗σ ∼= εσ−1 , we can safely ignore these dual
twistings.
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1.1.3 Quasi-singular hyperplanes of An,{1,n}(F)

Given a point a and a hyperplane A of PG(n,F), possibly a ̸∈ A, let Ha,A be the set of
points (p,H) of An,{1,n}(F) collinear with at least one point of the union Ma ∪ MA of the
maximal singular subspaces Ma and MA. In other words, (p,H) ∈ Ha,A if and only if ei-
ther p ∈ A or a ∈ H . It is proved in [Pas24] that Ha,A is a geometric hyperplane of An,{1,n}(F).
Following [Pas24], we call the hyperplanes as Ha,A quasi-singular hyperplanes. When a ∈ A
then Ha,A is the set of points of An,{1,n}(F) at non-maximal distance from the point (a,A). We
call it a singular hyperplane.

1.2. Embeddings and hyperplanes of point-line geometries

In this subsection we recall some basics on projective embeddings and geometric hyperplanes of
point-lines geometries. We will stick to what is necessary in order to understand the remaining
parts of this introduction. A little more of information on this matter will be given in Section 2.3.

Throughout this subsection Γ is an arbitrary point-line geometry as defined in Shult [Shu11],
but we assume that the lines of Γ are subsets of the set of points of Γ, henceforth denoted by P .
We also assume Γ to be connected.

As in Shult [Shu95], a projective embedding of Γ (an embedding of Γ for short) is an injective
mapping ε from the point-set P of Γ to the point-set of a desarguesian projective space Σ such
that ε(P) spans Σ and ε(ℓ) := {ε(p)}p∈ℓ is a line of Σ, for every line ℓ of Γ. The dimension of Σ
is the dimension dim(ε) of ε.

1.2.1 Morphisms of embeddings

We refer to Faure and Frölicher [FF00, Definition 6.2.1] for the definition of morphisms of
projective geometries. Given two projective spaces Σ1 and Σ2 and embeddings ε1 : Γ → Σ1

and ε2 : Γ→Σ2 ofΓ, a morphism from ε1 to ε2 is morphism of projective geometriesϕ : Σ1→Σ2

such that ε2 = ϕ · ε1. If ϕ is a morphism from ε1 to ε2 we write ϕ : ε1 → ε2, we say that ε1
covers ε2 and we write ε1 ⩾ ε2, also ε2 ⩽ ε1. Note that, as Γ is connected by assumption, if
a morphism ϕ : ε1 → ε2 exists then ϕ is uniquely determined by the condition ε2 = ϕ · ε1.
This condition also forces ϕ : Σ1 → Σ2 to be surjective. So, if ϕ is injective then it is an
isomorphism. If this is the case then we say that ε1 and ε2 are isomorphic and we write ε1 ∼= ε2.
Note that ε1 ∼= ε2 if and only if ε1 ⩾ ε2 ⩾ ε1.

1.2.2 Relatively and absolutely universal embeddings

Following Shult [Shu95], we say that an embedding ε of a point-line geometry Γ is relatively
universal if every morphism from an embedding of Γ to ε is an isomorphism. An embedding ε
is said to be absolutely universal if it covers all embeddings of Γ. Clearly, the absolutely uni-
versal embedding, if it exits, is unique up to isomorphisms and it is relatively universal. The
converse is false in general. Indeed, as proved by Ronan [Ron87], every embedding ε of a point-
line geometry Γ is covered by a relatively universal embedding, uniquely determined by ε up
to isomorphisms and characterized by the property of covering all covers of ε. We call it the
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universal cover of ε. So, Γ admits the absolutely universal embedding if and only if it admits a
unique relatively universal embedding (unique up to isomorphisms, of course).
Remark 1.1. The previous definition of the absolutely universal embedding is more restrictive
than in [Shu95], where an embedding of Γ is said to be absolutely universal if it covers all
embeddings of Γ defined over the same division ring as ε itself. If Γ admits embeddings defined
over different division rings then it cannot admit the absolutely universal embedding as we have
defined it but some of its embeddings could be absolutely universal in the sense of Shult [Shu95].

1.2.3 Hyperplanes and embeddings

A subspace of a point-line geometry Γ is a subset X of the point-set P of Γ such that, for ev-
ery line ℓ of Γ, if |ℓ ∩ X| > 1 then ℓ ⊆ X . A proper subspace of Γ is said to be a geometric
hyperplane of Γ (a hyperplane of Γ for short) if every line of Γ meets it non-trivially. Equiva-
lently, a hyperplane of Γ is a proper subset H of P such that, for every line ℓ of Γ, either ℓ ⊆ H
or |ℓ ∩H| = 1.

Assuming that Γ is embeddable, let ε : Γ → Σ be an embedding of Γ in a projective space Σ.
We say that a hyperplane H of Γ arises from ε if ε(H) spans a projective hyperplane H of Σ
and H = ε−1(H). Conversely, if H is a projective hyperplane of Σ then ε−1(H) is a hyperplane
of Γ and ε(ε−1(H)) = H ∩ ε(P), but in general ε−1(H) does not arise from ε. Indeed ε−1(H)
arises from ε if and only if ⟨H∩ε(P)⟩ = H . The following is proved in [Pas24, Proposition 1.1].

Proposition 1.2. Given an embedding ε : Γ → Σ of Γ and a hyperplane H of Γ, if H is a
maximal subspace of Γ then either H arises from ε or ε(H) spans Σ. In particular, given a
projective hyperplane H of Σ, suppose that ε−1(H) is a maximal subspace of Γ. Then H ∩ε(P)
spans H .

Remark 1.3. A subspace S of Γ is said to arise from an embedding ε : Γ → Σ
if S = ε−1(⟨ε(S)⟩). A hyperplane H of Γ arises from ε as a hyperplane precisely when it
arises from ε as a subspace of Γ and ε(H) spans a hyperplane of Σ.

1.2.4 Generating rank and relatively universal embeddings

The intersection of an arbitrary family of subspaces of Γ is still a subspace of Γ. For a subset X
of P , let ⟨X⟩ be the smallest subspace of Γ containing X , namely ⟨X⟩ is the intersection of all
subspaces of Γ which contain X . If ⟨X⟩ = Γ then we say that X generates Γ. The generating
rank grk(Γ) of Γ is the minumum cardinality of a generating set of Γ. Clearly, if ε is a projective
embedding of Γ then dim(ε) + 1 ⩽ grk(Γ). Consequently,

Proposition 1.4. If dim(ε) + 1 = grk(Γ) < ∞ then ε is relatively universal.

1.3. Back to embeddings and hyperplanes of An,{1,n}(F)

1.3.1 Absolutely and relatively universal embeddings of An,{1,n}(F)

As we shall prove in this paper (Corollary 1.15), when |Aut(F)| > 1 the geometry An,{1,n}(F)
admits no absolutely universal embedding. We might wonder if εnat and its twistings are rela-
tively universal and the condition |Aut(F)| = 1 is sufficient for εnat to be absolutely universal.
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The answer is negative in general for both these questions (see below, Result 1.8). We mention
below what is known about these two issues.

Result 1.5 (Blok and Pasini [BP03]). If F is a prime field and n > 2 then εnat is absolutely
universal.

Result 1.6 (Thas and Van Maldeghem [TVM00a]). Let F be finite and n = 2. Then both εnat
and its twistings are relatively universal. Accordingly, if F is non-prime then A2,{1,2}(F) admits
no absolutely universal embedding. On the other hand, if F is prime then εnat is absolutely
universal.

Result 1.7 (Völklein [Völ89]). Let n ⩾ 2 and suppose that F is either perfect of positive char-
acteristic or algebraic over the field Q of rational numbers. Then εnat is relatively universal.

Result 1.8 (Smith and Völklein [SV89]). Let n = 2. Then εnat is relatively universal if and only
if the field F is either perfect of positive characteristic or algebraic over Q.

Result 1.8 makes it clear that the triviality of Aut(F) is not sufficient for εnat to be relatively
universal. For instance, the automorphism group of the field R of real numbers is trivial. Nev-
ertheless, in view of Result 1.8, the natural embedding of A2,{1,2}(R) is not relatively universal.

An explicit description of the universal cover of the natural embedding εnat of A2,{1,2}(F) is
missing in [SV89]. We have lately obtained such a description, also proving that the conclusions
of Result 1.8 hold true for any n ⩾ 2. We shall devote an appropriate paper to these results.

Finally, suppose that F is a simple extension of its prime subfield. Then grk(An,{1,n}(F)) ⩽
(n+ 1)2, as proved in [BP01]. However dim(εσ) = (n+ 1)2 − 1 for every non trivial automor-
phism σ of F. Proposition 1.4 thus implies the following:

Result 1.9. Let F be a simple (possibly non-algebraic) extension of its prime subfield. Then
all twistings of εnat are relatively universal and either εnat itself is relatively universal or its
universal cover has dimension just one unit more than dim(εnat).

Accordingly, if F is a simple algebraic extension of its prime subfield then both εnat and all
of its twistings are relatively universal, as we see by combining Result 1.9 with Result 1.7. On
the other hand, let F be a simple trascendental extension of its prime subfield. Then all twistings
of εnat are relatively universal but εnat is not.

1.3.2 Hyperplanes and embeddings of An,{1,n}(F)

The following is proved in [Pas24, Theorem 1.5]:

Result 1.10. All hyperplanes of An,{1,n}(F) are maximal subspaces.

Therefore, in view of Proposition 1.2,

Corollary 1.11. For every projective embedding ε : An,{1,n}(F) → Σ, the hyperplanes
of An,{1,n}(F) which arise from ε are precisely the ε-preimages of the projective hyperplanes
of Σ.
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1.4. Main results

In view of the next theorem it is convenient to slightly modify our notation. The natural em-
bedding εnat of An,{1,n}(F) can be regarded as a borderline case of twisting, namely the twisting
of εnat by the identity automorphism idF of F. Accordingly, henceforth we will also denote εnat
by the symbol εidF . With this notation, εnat = εidF is a member of the set {εσ}σ∈Aut(F).

Theorem 1.12. Suppose that |Aut(F)| > 1 and let H be a geometric hyperplane of An,{1,n}(F).

(1) If H is quasi-singular then H arises from εσ for every σ ∈ Aut(F).

(2) If H is not quasi-singular then H arises from εσ for at most one σ ∈ Aut(F).

Claim (1) of Theorem 1.12 will be proved at the end of Section 3. Claim (2) will be proved
in Section 4.

As we shall see in Section 3, for every σ ∈ Aut(F) many hyperplanes of An,{1,n}(F) exist
which arise from εσ but are not quasi-singular. Therefore Theorem 1.12 implies the following.

Corollary 1.13. Let |Aut(F)| > 1. Then εσ ̸∼= ερ for any choice of distinct automorphism σ
and ρ of F.

The following is the second main result of this paper. We shall prove it in Section 5 with the
help of Theorem 1.12.

Theorem 1.14. For any two distinct autmorhisms σ and ρ of F, no projective embedding
of An,{1,n}(F) covers both εσ and ερ.

The next corollary immediately follows from Theorem 1.14.

Corollary 1.15. If |Aut(F)| > 1 then An,{1,n}(F) admits no absolutely universal embedding.

Organization of the paper. In Section 2 we fix some notation for vectors, tensors, matrices
and projective points, we recall some basics on semi-polynomials and we add some information
on embeddings and hyperplanes of point-line geometries, as a completion of Section 1.2.

In Section 3 we describe the hyperplanes of An,{1,n}(F) which arise from εσ for σ ∈ Aut(F).
We will do it with the help of a symmetric bilinear form, called the saturation form in [Pas24].
We have exploited that form in [Pas24, Section 1.3.1] in order to describe the hyperplanes
of An,{1,n}(F) which arise from εnat. Section 3 is indeed a survey of Sections 1.3.1 and 2.2
of [Pas24], with the addition of a straightforward generalization to εσ for σ ̸= idF.

A proof of Claim (1) of Theorem 1.12 will also be given at the end of Section 3. Claim (2)
of Theorem 1.12 will be proved in Section 4. Section 5 is devoted to the proof of Theorem 1.14.

In the last section of this paper we shall consider quotients (namely morphic images) of εnat
and its twistings, focusing on the polarized ones, an embedding of An,{1,n}(F) being called po-
larized when all singular hyperplanes of An,{1,n}(F) arise from it. In particular, we shall gener-
alize a little piece of the main result of the triad of papers [TVM00a] by J. A. Thas and H. Van
Maldeghem.
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2. Preliminaries

2.1. Notation to be used throughout this paper

We denote the vectors of V = V (n+1,F) by low case boldface roman letters and the vectors of
its dual V ∗ by low case greek letters, but we denote both the null-vector of V and the null-vector
of V ∗ by the symbol 0. Most of the matrices to be considered in this paper are square matrices of
order n+ 1. We denote them by capital roman letters. In particular, O and I are the null square
matrix and the identity matrix of order n+ 1, respectively. Scalars will be denoted by roman or
greek low case letters.

The symbols Mn+1(F) and M0
n+1(F) denote respectively the vector space of all square ma-

trices of order n+1 with entries in F and the hyperplane of Mn+1(F) formed by the null-traced
matrices, as in Section 1.1.2.

Recall thatMn+1(F) ∼= V ⊗V ∗. Explicitly, for every pure tensor x⊗ξ, let f(x⊗ξ) : V → V
be the linear mapping which maps every vector w ∈ V onto x · ξ(w). The function which maps
every pure vector x ⊗ ξ ∈ V ⊗ V ∗ onto f(x ⊗ ξ) extends by linearity to an isomorphism f
from V ⊗ V ∗ to the vector space L(V ) of the linear mappings from V to V . For every choice
of a basis E = (ei)

n
i=0 of V , the mapping µE : L(V ) → Mn+1(F) which maps every linear

mapping of V onto its representative matrix with respect to E is an isomorphism of vector
spaces from L(V ) to Mn+1(F) and composition νE := µE · f is an isomorphism from V ⊗ V ∗

to Mn+1(F).
With E as above, let E∗ = (ηi)

n
i=0 be the basis of V ∗ dual to E. So, ηi(ej) = δi,j (Kronecker

symbol) for any choice of i, j = 0, 1, . . . , n. The pure tensors ei ⊗ ηj form a basis of V ⊗ V ∗,
henceforth denoted by E ⊗ E∗. The isomorphism νE maps ei ⊗ ηj onto the matrix Ei,j with
all null entries but the (i, j) entry, which is 1. In short, νE maps E ⊗ E∗ onto the natural
basis (Ei,j)

n
i,j=0 ofMn+1(F). Accordingly, νE maps a generic vector

∑n
i,j=0 mi,jei⊗ηj of V ⊗V ∗

onto the matrix M = (mi,j)
n
i,j=0 =

∑n
i,j=0mi,jEi,j .

For the sake of accuracy, V ⊗ V ∗ and Mn+1(F) are different objects. However henceforth,
stressing on the isomorphism νE : V ⊗ V ∗ → Mn+1(F), we will take the liberty of regard-
ing V ⊗ V ∗ and Mn+1(F) as the same thing, thus freely switching from the matrix notation to
the tensor notation and conversely, whenever these changes of notation will be convenient.

We also assume that E = (ei)
n
i=0 is the natural basis of V . Accordingly, a vector

x =
∑n

i=0 eixi of V is the same as the (n + 1)-tuple (xi)
n
i=0 of its coordinates with respect

to E, this (n + 1)-tuple being regarded as a column, namely an (n + 1) × 1 matrix. Similarly,
every vector ξ =

∑n
i=0 ξiηi ∈ V ∗ is the 1× (n+1) matrix (ξ0, ξ1, . . . , ξn). Thus, the scalar ξ(x)

is the same as the row-times-column product ξx and, for a matrix M ∈ Mn+1(F), the prod-
uct ξMx is the product of the row ξ times M times the column x. The tensor x⊗ ξ is the same
as the column-times-row product xξ.

We denote by Pure(V ⊗ V ∗) (= Pure(Mn+1(F))) the set of pure tensors
of V ⊗ V ∗ = Mn+1(F), with the convention that the null vector O of V ⊗ V ∗ is not included
in that set. So, Pure(Mn+1(F)) is the set of matrices of Mn+1(F) of rank 1. The hyper-
plane M0

n+1(F) of Mn+1(F) will also be denoted by (V ⊗ V ∗)0 and we set Pure((V ⊗ V ∗)0) :=
Pure(V ⊗V ∗)∩ (V ⊗V ∗)0. So, Pure(M0

n+1(F)) (= Pure((V ⊗V ∗)0)) is the set of null-traced
matrices of Mn+1(F) of rank 1, namely the set of pure tensors x⊗ ξ with ξ(x) = 0.
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Given two non-zero vectors x,y ∈ V , if x and y are proportional we write x ≡ y. We
use that same notation for vectors of V ∗ and matrices of Mn+1(F). For instance, for a
matrix M ∈ Mn+1(F) \ {O}, when writing M ≡ I we mean that M is a scalar matrix.

When we need to distinguish between a non-zero vector x of V and the point
of PG(V ) = PG(n,F) represented by it, we denote the latter by [x]. We extend this con-
vention to subsets of V : if X ⊆ V \ {0} then [X] := {[x] | x ∈ X}. The same conventions will
be adopted for vectors and subsets of V ∗ and V ⊗ V ∗. In particular, if ξ ∈ V ∗ \ {0} then [ξ] is
the point of PG(V ∗) which corresponds to the hyperplane [Ker(ξ)] of PG(V ). In the sequel we
shall freely take [ξ] as a name for [Ker(ξ)].

2.2. Semi-polynomials

Let M(F) be the module over the ring Z of integers with Aut(F) as a basis, namely the elements
of M(F) are finite formal combinations

∑
σ∈Aut(F) kσσ with kσ ∈ Z for every σ ∈ Aut(F)

and kσ = 0 for all but at most a finite number of choices of σ ∈ Aut(F). Put

M+(F) := {
∑

σ∈Aut(F)

kσσ | kσ ⩾ 0 for every σ ∈ Aut(F)}.

The sum w(γ) :=
∑

σ∈Aut(F) kσ will be called the weight of an element γ =
∑

σ∈Aut(F) kσσ

of M+(F). Given γ =
∑r

i=1 kiσi ∈ M+(F) and t ∈ F, the exponentiation tγ stands
for

∏r
i=1(t

ki)σi .
Note that, regarded M(F) as an additive monoid, M+(F) is a submonoid of M(F). How-

ever M+(F) is not yet the structure we need. Indeed it can happen that M+(F) contains distinct
elements γ1 and γ2 such that tγ1 = tγ2 for every t ∈ F. (This is indeed always the case when F
is finite.) In view of what we are going to do in the sequel, this possibility would cause some
troubles. We need to counteract its effects.

So, let ∼ be the relation defined on M+(F) by the following clause: γ1 ∼ γ2 if and only
if tγ1 = tγ2 for every t ∈ F. Then ∼ is a congruence relation of M+(F), namely it is an equiv-
alence relation and it is preserved when taking sums. The quotient M[+](F) := M+(F)/ ∼ is
the structure we need. The elements of M[+](F) are the equivalence classes of ∼.
For γ ∈ M+(F), we denote by [γ] the class of ∼ which contains γ. The sum of M[+](F)
is defined as follows: [γ1] + [γ2] := [γ1 + γ2], for any two elements γ1, γ2 of M+(F). The
weight w(X) of a class X of ∼ is the minimum among the weights of its elements. For instance,
if X contains k · idF for 0 ⩽ k < |F| then k = w(X). Note that if F is finite then w(X) < |F|,
for every X ∈ M[+](F).

We are now ready to define semi-monomials and semi-polynomials. A (non-null) semi-
monomial (over F) in the unknowns t1, . . . , tm is a formal product

M = a · tX1
1 . . . tXm

m

where X1, . . . , Xm ∈ M[+](F) and a ∈ F \ {0}. The type of M is the m-tuple (X1, . . . , Xm).
We allow X = 0 (the null element of M[+](F)) and we put t0 := 1, as usual. We alo admit the
null monomial as a semi-monomial in whatever set of unknown we like, giving it ∅ as its type.
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A (non-null) semi-polynomial (over F) in the unknowns t1, . . . , tm is a formal
sum P = M1 + · · · +Ms of non-null semi-monomials (over F) in those unknowns, no two of
which have the same type. The degree deg(P ) of P is defined as the maximum maxsi=1deg(Mi).
We allow P to be the null semi-monomial, henceforth also called the null semi-polynomial.

The following statement will be freely used troughout Section 4.2. We believe this statement
is well known. However, as we couldn’t find any mention of it in the literature, we shall provide
a proof here, so that the reader can save the trouble of looking for it in the literature.

Theorem 2.1 (Identity Principle). Let P = P (t1, . . . , tm) be a non-null semi-polynomial over F
in the unknowns t1, . . . , tm. Then P (c1, . . . , cm) ̸= 0 for at least one m-tuple (c1, . . . , cm) ∈ Fm.

Proof. The proof exploits a double induction, on the number m of unknowns of P and the num-
ber s of semi-monomials of P . Let m = 1. If s = 1 there is nothing to prove. Suppose s = 2.
So P = P (t) = atX + btY with X, Y distinct elements of M[+](F) and a, b ∈ F \ {0}. By way
of contradiction, suppose that P (c) = 0 for every c ∈ F. Then with c = 1 we get a + b = 0. It
follows that cX = cY for every c ∈ F. Hence X = Y by the definition of M[+](F), contradicting
the assumption that no two semi-monomials of the same semi-polynomial have the same type.
This fixes the case m = 1 and s = 2.

Still with m = 1, suppose now that s > 2. Now P (t) = a1t
X1 + · · · + ast

Xs where ai ̸= 0
for every i = 1, . . . , s and Xi ̸= Xj for any choice of i, j = 1, 2, . . . , s with i ̸= j. With no
loss, we can assume that as = 1. For a contradiction, suppose that P (c) = 0 for every c ∈ F.
Then cXs = −

∑s−1
i=1 aic

Xi for every c ∈ F. Therefore, for every choice of c, d ∈ F we have

(
s−1∑
i=1

aic
Xi)(

s−1∑
i=1

aid
Xi) = cXsdXs = (cd)Xs = −

s−1∑
i=1

ai(cd)
Xi .

Put f(d) :=
∑s−1

i=1 aid
Xi . Then, for every choice of d, we have aif(d) = −aid

Xi by the inductive
hypothesis on the semi-polynomial

∑s−1
i=1 ai(f(d) + dXi)tXi . Equivalently, since ai ̸= 0 by

assumption, f(d) = −dXi . This holds for every d ∈ F and every i = 1, . . . , s− 1. Accordingly,
dXi = dXj for every d ∈ F and every i, j = 1, . . . , s− 1 with i ̸= j. This forces Xi = Xj by the
definition of M[+](F), contradicting the assumption that Xi ̸= Xj if i ̸= j. By induction, the
statement of the theorem holds true when m = 1.

Let now m > 1. Then P (t1, . . . , tm) =
∑r

j=1 Pj(t1, . . . , tm−1)t
Xj
m for suitable semi-po-

lynomials P1, . . . , Pr in the unknowns t1, . . . , tm−1 and suitable pairwise distinct elements
X1, . . . , Xr ∈ M[+](F).

For a contradiction, supposeP (c1, . . . , cm−1, cm) = 0 for every choice of (c1, . . . , cm) ∈ Fm.
For every (m− 1)-tuple c = (ci)

m−1
i=1 ∈ Fm−1, put Pc(t) = P (c1, . . . , cm−1, t). Then Pc(c) = 0

for every c ∈ F. Hence Pj(c1, . . . , cm−1) = 0 for every j = 1, . . . , r, by the previous paragraph.
However c is an arbitrary (m− 1)-tuple in Fm−1. Therefore, by the inductive hypothesis, Pj is
null for every j = 1, . . . , r. Hence P is null as well, contradicting the assumption that P is not
the null semi-polynomial.
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2.3. Addendum to Section 1.2

As in Section 1.2, throughout this subsection Γ is a connected point-line geometry and P is its
point-set.

2.3.1 Morphisms and quotients of embeddings

Given two projective embeddings ε1 : Γ → Σ1 and ε2 : Γ → Σ2, suppose that ε1 ⩾ ε2 and
let ϕ : Σ1 → Σ2 be the morphism from ε1 to ε2. Let K := Ker(ϕ) be the kernel of ϕ (defined as
in [FF00, Definition 6.1.1]) and πK the projection of Σ1 onto the star Σ1/K of K in Σ1. Then K
satisfies the following property

K ∩ ⟨ε1(p), ε1(q)⟩ = ∅,∀p, q ∈ P (2.1)

and the mapping ε1/K := πK · ε1 is an embedding of Γ isomorphic to ε2. We call ε1/K the
quotient of ε1 over K. Following a well established custom, we also say that ε2 is a quotient
of ε1, as if ε2 was the same as ε1/K. Admittedly, this is an abuse, but it is harmless.

Note that (2.1) characterizes the subspaces K of Σ such that the mapping ε1/K = πK · ε1 is
an embedding of Γ. We say that a subspace K of Σ1 defines a quotient of ε1 if it satisfies (2.1).

2.3.2 More information on hyperplanes and embeddings

Let ε1 and ε2 be two projective embeddings of Γ. Clearly, if ε1 ∼= ε2 then a hyperplane of Γ
arises from ε1 if and only if it arises from ε2. More generally the following holds.

Proposition 2.2. Given a projective embedding ε : Γ → Σ let K be a subspace of Σ defining a
quotient of ε. Then all hyperplanes of Γ which arise from ε/K and are maximal as subspaces
of Γ also arise from ε.

Proof. Let H be a hyperplane of Γ such that H is a maximal subspace of Γ and its ε/K-image
(ε/K)(H) spans a projective hyperplane H of Σ/K. As H is a maximal subspace of Γ, the
ε/K-preimage of H is equal to H. The preimage H ′ := π−1

K (H) = ⟨ε(H) ∪ K⟩ of H by the
projection πK of Σ onto Σ/K is a hyperplane of Σ and H = ε−1(H ′). It remains to prove
that H ′ = ⟨ε(H)⟩. For a contradiction, suppose that ⟨ε(H)⟩ ⊊ H ′. Hence ⟨ε(H∪{p})⟩ ⊊ Σ for
every point p of Γ. This holds even if p ̸∈ H. However, if p ̸∈ H then H ∪ {p} generates Γ, by
the maximality of H. So, ε(P) does not span Σ. This contradicts the definition of embedding.
Therefore H ′ = ⟨ε(H)⟩.

Proposition 2.3. Given a projective embedding ε : Γ → Σ of Γ and a subspace K of Σ, suppose
thatK defines a quotient of ε. A hyperplaneH of Γ arises from ε/K if and only if it arises from ε
and the span of ε(H) in Σ contains K.

Proof. The ‘only if’ part is implicit in the proof of Proposition 2.2. The ’if’ part is obvious.
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3. The saturation form

Let f : Mn+1(F)×Mn+1(F) → F be the symmetric bilinear form defined as follows:

f(X, Y ) := trace(XY ) for any two matrices X, Y ∈ Mn+1(F), (3.1)

where XY is the usual row-times-column product. So, with X = (xi,j)
n
i,j=0 and Y = (yi,j)

n
i,j=0

we have
f((xi,j)

n
i,j=0, (yi,j)

n
i,j=0) =

∑
i,j

xi,jyj,i. (3.2)

In particular, when X and Y have rank 1, namely they are pure tensors, say X = x ⊗ ξ
and Y = y ⊗ υ, then

f(x⊗ ξ,y ⊗ υ) = υ(x)ξ(y). (3.3)

Following [Pas24], we call f the saturation form of Mn+1(F).
As noticed in [Pas24, Section 2.2], the form f is non-degenerate. We denote by Sf the set of

f -isotropic vectors of Mn+1(F), namely the set of matrices X∈Mn+1(F) such that f(X,X)=0.
If rank(X) = 1, namely X = x ⊗ ξ ∈ Pure(V ⊗ V ∗), then f(X,X) = (ξ(x))2 by

formula (3.3). Hence f(X,X) = 0 if and only if ξ(x) = 0, namelyX ∈ M0
n+1(F). Accordingly,

Sf ∩ Pure(V ⊗ V ∗) = Pure((V ⊗ V ∗)0).

Pure((V ⊗ V ∗)0) spans (V ⊗ V ∗)0. Note also that [Pure((V ⊗ V ∗)0)] = εnat(P), where
P stands for the set of points of An,{1,n}(F). On the other hand, let σ ∈ Aut(F) \ {idF}.
Then εσ(P) = [Pσ] where

Pσ := {xσ ⊗ ξ | x⊗ ξ ∈ Pure((V ⊗ V ∗)0)}.

The set Pσ contains ei ⊗ ηj and (ei + ej) ⊗ (ηi − ηj) for every choice of i ̸= j. These vectors
span (V ⊗ V ∗)0. However Pσ also contains pure tensors exterior to (V ⊗ V ∗)0. For instance,
(e0t

σ +e1)⊗ (η0− tη1) with t ∈ F such that tσ ̸= t is one of them. Therefore Pσ spans V ⊗V ∗,
namely εσ(P) spans PG(Mn+1(F)).

Let ⊥f be the orthogonality relation associated to f . As f is non-degenerate, the hyper-
planes of Mn+1(F) are the perps M⊥f for M ∈ Mn+1(F) \ {O} and, for two matrices M,N ∈
Mn+1(F) \ {O}, we have M⊥f = N⊥f if and only if M ≡ N . It is clear from formula (3.1)
that I⊥f = M0

n+1(F). Therefore, for M ∈ Mn+1(F) \ {O}, we have M⊥f = M0
n+1(F) if and

only if M ≡ I .
Every hyperplane of M0

n+1(F) is the intersection of M0
n+1(F) with a hyper-

plane M⊥f of Mn+1(F) for a suitable matrix M ̸∈ ⟨I⟩. Of course the equality
M⊥f ∩M0

n+1(F) = N⊥f ∩M0
n+1(F) does not imply that M ≡ N . The next statement fol-

lows from well known properties of the polarities associated to non-degenerate reflexive bilinear
forms.

Proposition 3.1. For M,N ∈ Mn+1(F) \ {O}, we have M⊥f ∩M0
n+1(F) = N⊥f ∩M0

n+1(F)
if and only if ⟨M, I⟩ = ⟨N, I⟩.
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When X ∈ Pure(V ⊗ V ∗), namely X ∈ Mn+1(F) has rank equal to 1, the orthogonality
condition X ⊥f M admits an easy formulation. Indeed formula (3.2) yields the following.

Proposition 3.2. Let x ∈ V \ {0}, ξ ∈ V ∗ \ {0} and M ∈ Mn+1(F). Then (x ⊗ ξ) ⊥f M if
and only if ξMx = 0.

3.1. The hyperplanes of An,{1,n}(F) which arise from εnat

For M ∈ Mn+1(F) \ {λI}λ∈F, we put

HM,idF := ε−1
nat([M

⊥f ∩M0
n+1(F)])

= {([x], [ξ]) ∈ P | ξMx = 0}. (3.4)

(Note that M⊥f ∩ Pure(V ⊗ V ∗) = {x⊗ ξ ̸= 0 | ξMx = 0}, by Proposition 3.2.) So, HM,idF

is a geometric hyperplane of An,{1,n}(F). By Corollary 1.11, it arises from εnat.
In particular, let rank(M) = 1, say M = a ⊗ α for a pure tensor a ⊗ α ∈ Pure(V ⊗ V ∗).

By Proposition 3.1, if Ha⊗α,idF = Hb⊗β,idF then b ⊗ β ∈ ⟨a ⊗ α, I⟩. However, all rank 1
matrices contained in ⟨a ⊗ α, I⟩ are proportional to a ⊗ α. Hence Ha⊗α,idF = Hb⊗β,idF if
and only if a ⊗ α and b ⊗ β are proportional, namely they correspond to the same pair (a,A),
where a = [a] and A = [α] are the point and the hyperplane of PG(n,F) represented by a and α
respectively. In fact, as proved in [Pas24, Proposition 1.3],

Ha⊗α,idF = Ha,A, (3.5)

where Ha,A is the quasi-singular hyperplane associated to the pair (a,A) as defined in Sec-
tion 1.1.3.

3.2. The hyperplanes of An,{1,n}(F) which arise from εσ

Let σ ∈ Aut(F) \ {idF}. Now, for M ∈ Mn+1(F) \ {λI}λ∈F we have

[M⊥f ] ∩ εσ(P) = {[x⊗ ξ] | x ̸= 0 ̸= ξ, ξ(x) = 0 and ξMxσ = 0}.

We put
HM,σ := ε−1

σ ([M⊥f ∩Mn+1(F)])
= {([x], [ξ]) ∈ P | ξMxσ = 0}. (3.6)

The set HM,σ is a geometric hyperplane of An,{1,n}(F). By Corollary 1.11, it arises from εσ.
In particular, let M = a⊗ α for a⊗ α ∈ Pure(V ⊗ V ∗). Put a = [a] and A := [ασ−1

].

Proposition 3.3. With a and A as above, we have Ha⊗α,σ = Ha,A.

Proof. By (3.3) and (3.6) a point ([x], [ξ]) of An,{1,n}(F) belongs to Ha⊗α,σ if and only
if α(xσ)ξ(a) = 0. The latter is equivalent to ασ−1

(x)ξ(a) = 0 which in turn characterizes
the points of Ha⊗ασ−1 ,idF

, by (3.4). Therefore Ha⊗α,σ = Ha⊗ασ−1 ,idF
. However, with a = [a]

and A = [ασ−1
], we have Ha⊗ασ−1 ,idF

= Ha,A by (3.5). Hence Ha⊗α,σ = Ha,A, as claimed.

Proof of Theorem 1.12, Claim (1). Claim (1) of Theorem 1.12 immediately follows from (3.5)
and Proposition 3.3.
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4. Proof of Theorem 1.12, Claim (2)

In view of (3.5) of Section 3.1 and Proposition 3.3, Claim (2) of Theorem 1.12 amounts to the
following:

Proposition 4.1. Let ρ and σ be distinct automorphisms of F with σ ̸= idF and let
M,N ∈ Mn+1(F) \ {O} be such that

ξMxρ = 0 if and only if ξNxσ = 0 (4.1)

for every null-traced pure tensor x⊗ ξ ∈ Pure((V ⊗ V ∗)0). Then rank(N) = 1.

Indeed, (4.1) restricted to the pairs (x, ξ) such that ξ(x) = 0 is equivalent to the equal-
ityHM,ρ = HN,σ. By Proposition 3.3 and since σ ̸= idF by assumption, rank(N) = 1 if and only
ifHN,σ is quasi-singular. If ρ ̸= idF the same holds true forM andHM,ρ. In contrast, let ρ = idF.
Then HM+λI,ρ = HM,ρ for every λ ∈ F. If HM,ρ is quasi-singular then rank(M + λI) = 1 for
exactly one choice of λ.

Condition (4.1) of Proposition 4.1 can be rephrased as follows:

⟨x,Mxρ⟩ = ⟨x, Nxσ⟩,∀x ∈ V. (4.2)

4.1. Proof of Proposition 4.1 in the case n ⩾ 3

In this and the next subsection σ, ρ,M and N satisfy the hypotheses of Proposition 4.1. In the
present subsection we assume that n > 2.

Lemma 4.2. We have dim⟨x,y,Mxρ,Myρ⟩ = dim⟨x,y, Nxσ, Nyσ⟩ ⩽ 3 for every choice
of x,y ∈ V .

Proof. The equality dim⟨x,y,Mxρ,Myρ⟩ = dim⟨x,y, Nxσ, Nyσ⟩ follows from (4.2). We
shall prove that dim⟨x,y,Mxρ,Myρ⟩ ⩽ 3 for every choice of x,y ∈ V . By (4.2), for ev-
ery x ∈ V there exist scalars λx, µx ∈ F such that

Nxσ = xλx +Mxρµx. (4.3)

Hence
N(x+ y)σ = xλx + yλy +Mxρµx +Myρµy

= (x+ y)λx+y +M(x+ y)ρµx+y.
(4.4)

For a contradiction, suppose thatx,y ∈ V exist such that dim⟨x,y,Mxρ,Myρ⟩ = 4. Then (4.4)
implies that λx = λx+y = λy and µx = µx+y = µy. Hence λx = λy and µx = µy. Similarly,
λxt = λy and µxt = µy for every t ∈ F∗ := F \ {0}. Therefore λxt = λx and µxt = µx for
every t ∈ F∗. So, with λ := λx and µ := µx, for every t ∈ F we have

xtλ+Mxρtρµ = xtλxt +Mxρtρµxt = N(xt)σ =
= Nxσtσ = (xλx +Mxρµx)t

σ = xtσλ+Mxρtσµ.

Therefore,
xtλ+Mxρtρµ = xtσλ+Mxρtσµ,∀t ∈ F. (4.5)
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However x and Mxρ are non-proportional, since dim⟨x,y,Mxρ,Myρ⟩ = 4 by assumption.
So, (4.5) implies that

tλ = tσλ and tρµ = tσµ for every t ∈ F. (4.6)

If both λ and µ are null then from the equality Nxσ = xλ + Mxρµ we obtain that Nxσ = 0.
Hence dim⟨x,y, Nxσ, Nyσ⟩ ⩽ 3. However dim⟨x,y, Nxσ, Nyσ⟩ = dim⟨x,y,Mxρ,Myρ⟩
and the latter is equal to 4 by assumption; we end up with a contradiction. In order to avoid
it, we are forced to admit that at least one of λ or µ is different from 0. If λ ̸= 0 then the first
equation of (4.6) yields σ = idF while if µ ̸= 0 then we obtain ρ = σ. In either of these two
cases we contradict the assumptions made on σ and ρ.

Lemma 4.3. Let a ∈ V be such that Naσ ̸∈ ⟨a⟩. Then the 2-supbspace La := ⟨a, Naσ⟩ of V
contains Nxσ for every x ∈ V .

Proof. As La ⊊ V , the set V \La spans V . So, in order to prove that Nxσ ∈ La for every x ∈ V
it is sufficient to prove that this is the case for every x ∈ V \ La.

Let x ∈ V \ La. By Lemma 4.2, there exists a unique scalar λx ∈ F and a unique vec-
tor vx ∈ La such that

Nxσ = xλx + vx. (4.7)

As n ⩾ 3, a vector y ∈ V also exists such that dim⟨x,y, La⟩ = 4. According to (4.7), scalars λy

and λx+y and vectors vy,vx+y ∈ La exist such that

Nyσ = yλy + vy,
N(x+ y)σ = (x+ y)λx+y + vx+y =

= Nxσ +Nyσ = xλx + yλy + vx + vy.
(4.8)

The last two equations of (4.8) yield λx = λy (= λx+y). Similarly, λxt = λy for every t ∈ F∗.
Consequently, λxt = λx for every t ∈ F∗. On the other hand, N(xt)σ = Nxσtσ = xλxt

σ+vxt
σ.

Hence tλxt = λxt
σ, namely λxt = λxt

σ−1. However λxt = λx, as previously proved. So,
if λx ̸= 0 we obtain that tσ−1 = 1 for every t ∈ F∗, namely σ = idF, while σ ̸= idF by
assumption. Therefore λx = 0 and (4.7) implies that Nxσ ∈ La.

Lemma 4.4. Suppose that Naσ ̸∈ ⟨a⟩ for at least one vector a ∈ V \ {0}. Then rank(N) = 1.

Proof. With a as in the hypotheses of the lemma, Lemma 4.3 implies that the image Im(f) of
the semilinear mapping f : x → Nxσ is a subspace of La = ⟨a, Naσ⟩. Hence the kernel
K := Ker(f) of f (which is the σ−1-image of the kernel of N ) has dimension dim(K) ⩾ n− 1
(⩾ 2 since n ⩾ 3 by assumption). We claim that La ̸⊇ K. This is obvious when n > 3.
When n = 3 the claim follows from the fact that Naσ ̸= 0, since Naσ ̸∈ ⟨a⟩ by assumption.

Pick a vector k ∈ K \ La and put b := a + k. Then Nbσ = Naσ ̸≡ b. By Lemma 4.3
with a replaced by b we obtain that Im(f) ⊆ Lb := ⟨b, Nbσ⟩ = ⟨b, Naσ⟩. Therefore Im(f) ⊆
La ∩ Lb = ⟨Naσ⟩. Accordingly, rank(N) = 1.

In order to finish the proof of Proposition 4.1 when n ⩾ 3 the following case
remains to be considered: Naσ ∈ ⟨a⟩ for every a ∈ V . In this case N is diagonal, say
N = diag(n0, n1, . . . , nn). We are assuming that for every vector x = (xi)

n
i=0 of V there
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exists a scalar λ ∈ F such that nix
σ
i = xiλ for every i = 0, 1, . . . , n. It is easily to see that

this can happen only if N = O. However N ̸= O by assumption. Hence the hypothesis of
Lemma 4.4 holds true and rank(N) = 1 by that lemma.

4.2. The case n = 2

Throughout this subsection n = 2. In this case condition (4.2) is equivalent to the following two
conditions, where (x,Mxρ, Nxσ) is the 3× 3 matrix with x,Mxρ and Nxσ as the columns:

det(x,Mxρ, Nxσ) = 0, ∀x ∈ V ; (4.9)

Mxρ ∈ ⟨x⟩ if and only if Nxσ ∈ ⟨x⟩,∀x ∈ V. (4.10)

Let mi,j and ni,j be the (i, j)-entries of M and N respectively. For {i, j, k} = {0, 1, 2}, by (4.9)
with x = ek we obtain that

mi,knj,k = mj,kni,k. (4.11)

Equality (4.11) shows that there exist a matrix R = (ri,j)
2
i,j=0 ∈ M3(F) and diagonal matrices

∆M = diag(µ0, µ1, µ2), ∆N = diag(ν0, ν1, ν2),
DM = diag(m0,m1,m2), DN = diag(n0, n1, n2)

such that ri,i = 0 for every i = 0, 1, 2 and

M = R∆M +DM , N = R∆N +DN . (4.12)

So, if rk = (ri,k)
2
i=0, mk = (mi,k)

2
i=0 and nk = (ni,k)

2
i= are the (k + 1)-th columns of R, M

and N respectively, we have mi,k = ri,kµk for every i ̸= k, ni,k = ri,kνk for every i ̸= k,
mk = mk,k and nk = nk,k for every k = 0, 1, 2. Moreover (4.10) implies that we can choose R,
∆M and ∆N in such a way that

rk ̸= 0 if and only if µk ̸= 0 if and only if νk ̸= 0. (4.13)

A matrixR as above will be called a skeleton of the pair (M,N). HenceforthR will always stand
for a given skeleton of (M,N). We warn that if R ̸= O then R is not uniquely determined by M
and N . Indeed M and N determine R up to right multiplication RD with D = diag(λ0, λ1, λ2)
such that, for k ∈ {0, 1, 2}, if rk ̸= 0 then λk ̸= 0.

Suppose firstly that R = O. Then M = DM and N = DN . With the help of the Identity
Principle for semi-polynomials (Theorem 2.1) we see that N ≡ ek ⊗ ηk for some k ∈ {0, 1, 2}.
Hence rank(N) = 1. For the rest of this subsection we assume that R ̸= O.

4.2.1 The case where R ̸= O but two columns of R are null

Suppose R ̸= O but two of its columns are null. To fix ideas, let r0 ̸= 0 = r1 = r2. If r0 ̸= e1,
we can replace the natural basis E = (e0, e1, e2) of V with a new basis E ′ = (e′0, e

′
1, e

′
2) such

that e′0 = e0, e′1 = r0 and ⟨e′1, e′2⟩ = ⟨e1, e2⟩. (Recall that r0 ∈ ⟨e1, e2⟩, since r0,0 = 0).
If C ∈ M3(F) is the matrix of this change of bases, then we must replace M and N in (4.2)
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withC−1MCρ andC−1NCσ respectively. HoweverC−1NCσ andN have the same rank. Hence
there is no loss in assuming that r0 = e1.

So, let r0 = e1. Accordingly, R = E1,0 = e1 ⊗ η0. From (4.9) with x = (xi)
2
i=0 we obtain

det(x,Mxρ, Nxσ) =

= xρ+σ
0 x2(m0ν0 − n0µ0) + x1+ρ

0 xσ
2n2µ0 − x1+σ

0 xρ
2m2ν0+

+xρ
0m0(x

σ
1x2n1 − xσ

2x1n2) + xσ
0n0(x

ρ
2x1m2 − xρ

1x2m1)+
+x0(x

ρ
1x

σ
2m1n2 − xσ

1x
ρ
2m2n1) = 0.

(4.14)

Suppose firstly that ρ ̸= idF. Then from (4.14) and Identity Principle (Theorem 2.1) and re-
calling that µ0 ̸= 0 ̸= ν0 (by (4.13), since r0 ̸= 0), we get m0ν0 = n0µ0, n2 = m2 = 0
and m0n1 = n0m1 = 0. As µ0 ̸= 0 ̸= ν0, either m0 = n0 = 0 or m0 ̸= 0 ̸= n0. In the latter
case m1 = n1 = 0. In both cases rank(M) = rank(N) = 1.

Let now ρ = idF. Then xρ+σ
0 = x1+σ

0 , x1+ρ
0 = x2

0 and xρ
i = xi for i = 0, 1, 2. Ac-

cordingly, some of the semi-monomial that occur in (4.14) group together to form one single
semi-monomial. Thus we obtain the following:

det(x,Mxρ, Nxσ) = x1+σ
0 x2(m0ν0 − n0µ0 −m2ν0)+

+xσ
0x1x2n0(m2 −m1) + x2

0x
σ
2n2µ0+

+x0x
σ
1x2n1(m0 −m2) + x0x1x

σ
2n2(m1 −m0) = 0.

(4.15)

No two of the five semi-monomials which appear in (4.15) have the same type. (This is still the
case when F is perfect of characteristic 2 and σ : t 7→ t2 is its Frobenius automorphism.) The
Identity Principle now yields the following:

(m0 −m2)ν0 = µ0n0,
(mi −m0)nj = 0 for {i, j} = {1, 2},
(mi −mj)n0 = 0 for {i, j} = {1, 2},
µ0n2 = 0.

(4.16)

However µ0 ̸= 0. So, the last condition of (4.16) implies that n2 = 0. Suppose that n1 ̸= 0.
Then m2 = m0 by the second of (4.16). The first equation of (4.16) now yields µ0n0 = 0,
hence n0 = 0 because µ0 ̸= 0. Therefore at least one of n0 or n1 is equal to 0. Conse-
quently rank(N) = 1.
Remark 4.5. It is clear from the above that the relations we can deduce by the Identity Principle
from the equation det(x,Mxρ, Nxσ) = 0 under the assumption that ρ ̸= idF are always stronger
than those we get when ρ = idF. Consequently, whatever constraint we obtain on N under the
hypothesis that ρ = idF, the same and possibly more can be obtained if we assume that ρ ̸= idF.
In view of this, when we aim at proving something on N and the examination of the case ρ = idF
is enough to reach the conclusions we want, then we can safely neglect the case ρ ̸= idF, thus
saving lots of computations. In the next subsection we shall take advantage of this shortcut.

4.2.2 The case where at most one column of R is null

Suppose that at most one column of R is null. To fix ideas, let ri ̸= 0 for i ⩽ s where s ∈ {1, 2}
and r2 = 0 if s = 1. Therefore µi ̸= 0 = µj and νi ̸= 0 = νj for i ⩽ s < j. Accordingly, ni ̸= 0
for every choice of i ⩽ s.
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Lemma 4.6. If ni ≡ nj for every choice of i < j ⩽ s then rank(N) = 1.

Proof. Suppose that ni ≡ nj for every choice of i < j ⩽ s. If s = 2 then clearly rank(N) = 1.
Suppose s = 1. By (4.9) we obtain the following

det(x,Mxρ, Nxσ) =

= n2(r1,0µ0x
ρ+1
0 − r0,1µ1x

ρ+1
1 +m1x0x

ρ
1 −m0x

ρ
0x1)x

σ
2+

+Pρ(x0, x1)x
ρ
2 + P1(x0, x1)x2 + P0(x0, x1) = 0

(4.17)

for suitable semi-polynomials Pρ, P1 and P0 in the unknowns x0 and x1. By the Identity princi-
ple, either n2 = 0 or

r1,0µ0x
ρ+1
0 − r0,1µ1x

ρ+1
1 +m1x0x

ρ
1 −m0x

ρ
0x1 = 0 (4.18)

for every choice of x0 and x1. The Identity Principle applied to (4.18) implies that r1,0 = r0,1 = 0
(recall that µ0 ̸= 0 ̸= µ1 by (4.13), since by assumption neither r0 nor r1 are null). We also
obtain that m1 = m0 (= 0 if ρ ̸= idF), but we are not going to exploit this information.

Summarizing, either n2 = 0 or r0,1 = r1,0 = 0. If n2 = 0 then rank(N) = 1
because n0 ≡ n1. Suppose that n2 ̸= 0. Then r0,1 = r1,0 = 0. Accordingly, n0,1 = n1,0 = 0
and therefore n0 = n1 = 0 since n0 ≡ n1. Consequently, the first two rows of N are null.
Hence rank(N) = 1.

Lemma 4.7. We have n0 ̸≡ n1 if and only if r0 = e1, r1 = e0 and n0n1 ̸= ν0ν1.

Proof. Suppose that ρ = idF. By (4.9) with x ∈ ⟨e0, e1⟩ we obtain the following relations:

r2,1r1,0ν1 = r2,0n1,
r2,0(ν0(m1 −m0) + µ0n0) = r2,1r1,0µ1ν0,
r2,1(ν1(m0 −m1) + µ1n1) = r2,0r0,1µ0ν1,

r2,0r0,1ν0 = r2,1n0.

(4.19)

Suppose that r1,0 ̸= 0. Then n2,1 = r2,1ν1 = r2,0n1/r1,0 = r2,0ν0n1/r1,0ν0 = n2,0λ0,1,
where λ0,1 := n1/n1,0. Trivially, n1,1 = n1 = n1,0λ0,1. Therefore

ni,1 = ni,0λ0,1 for i ∈ {1, 2}, where λ0,1 =
n1

n1,0

. (4.20)

Similarly, if r0,1 ̸= 0 then by exploiting the last equation of (4.19) we obtain:

ni,0 = ni,1λ1,0 for i ∈ {0, 2}, where λ1,0 =
n0

n0,1

. (4.21)

By (4.20), if n2,1 ̸= 0 then λ0,1 ̸= 0 and n2,0 ̸= 0. Similarly, by (4.21), if n2,0 ̸= 0
then λ1,0 ̸= 0 ̸= n2,1. So, either λ0,1 ̸= 0 ̸= λ1,0 and n2,1 ̸= 0 ̸= n2,0, or n2,0 = n2,1 = 0,
hence r2,0 = r2,1 = 0. In the latter case, up to replace ν0, ν1, µ0 and µ1 with suitable non-zero
scalars, we can assume that r0 = e1 and r1 = e0.
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Suppose the first case occurs: n2,0 ̸= 0 ̸= n2.1. Then λ1,0 ̸= 0 ̸= λ0,1 and n2,1 = n2,0λ0,1 =
n2,1λ1,0λ0,1. Therefore λ1,0λ0,1 = 1. Hence n1,1 = n1,0 · n0,1/n0 = n1,0λ

−1
1,0 = n1,0λ0,1. So,

ni,1 = ni,0λ0,1 for every i, namely n1 = n0λ0,1. In this case n1 ≡ n0.
In the second case, where r0 = e1 and r1 = e0, we have n1 ≡ n0 if and only if n0n1 =

n0,1n1,0 (= ν1ν0, since r0,1 = r1,0 = 1), as claimed in the statement of the lemma.
Suppose now that at least one of r1,0 or r0,1 is null. Let r1,0 = 0, to fix ideas. Then r2,0 ̸= 0,

since r0 ̸= 0 by assumption. The first and second equation of (4.19) now yield n1 = 0
and m0 −m1 = µ0n0/ν0 respectively. As n1 = 0, the third equation of (4.19) yields

r2,1(m0 −m1) = r2,0r0,1µ0. (4.22)

Suppose that r0,1 ̸= 0. Then m0 ̸= m1, otherwise (4.22) forces r2,0 = 0 while r2,0 ̸= 0.
Hence r2,1 = r2,0r0,1µ0/(m0 − m1). However m0 − m1 = µ0n0/ν0. We claim that n0 ̸= 0
and ri,1 = ri,0r0,1ν0/n0, namely ni,1 = ni,0 · n0,1/n0. This holds for i = 2 as well as for i = 0,
as we already know from (4.21). However this relation also holds for i = 1, as n1,1 = n1 = 0
and n1,0 = r1,0ν0 = 0, since r1,0 = 0 by assumption. So, n1 ≡ n0.

On the other hand, still assuming that r1,0 = 0, suppose that r0,1 = 0. Then r2,1 ̸= 0 since
r1 ̸= 0 and, by the fourth equation of (4.19), we also have n0 = 0. So, r0 = r1 = e2, n0 = e2ν0
and n1 = e2ν1. Again, n0 ≡ n1.

We have proved that the statement of the lemma holds true when ρ = idF. By Remark 4.5,
the same holds when ρ ̸= idF.

Lemma 4.8. Let r0 = e1, r1 = e0 and r2 = 0. Then n0 ≡ n1.

Proof. Suppose firstly that ρ = idF. By (4.9) we obtain that n2 = 0 and

ν0(m0 −m2) = µ0n0, ν1(m1 −m2) = µ1n1.
n0(m1 −m2) = µ1ν0, n1(m0 −m2) = µ0ν1.

(4.23)

The third and fourth equation of (4.23) imply n1 ̸= 0 ̸= n0. From the first and fourth equation
(the second and the third) we obtain m0 −m2 = µ0n0/ν0 = µ0ν1/n1 (respectively m1 −m2 =
µ1n1/ν1 = µ1ν0/n0). Hence n0/ν0 = ν1/n1, namely n0n1 = ν0ν1. Therefore n0 ≡ n1, by
Lemma 4.7. In view of Remark 4.5, we can omit the examination of the case ρ ̸= idF.

Lemma 4.9. We have n0 ≡ n1.

Proof. For a contradiction, suppose that n0 ̸≡ n1. Then r0 = e1 and r1 = e0 by Lemma 4.7.
The column n2, which is non-null by Lemma 4.8, cannot be proportional to both n0 and n1.
Therefore, by Lemma 4.7, either r0 = e2 and r2 = e0 or r1 = e2 and r2 = e1. Each of these
two cases crashes against the fact that r0 = e1 and r1 = e0.

End of the proof of Proposition 4.1. If s = 1 the conclusion rank(N) = 1 follows from Lem-
mas 4.6 and 4.9. When s = 2 the same argument used to conclude that n0 ≡ n1 also
yields n1 ≡ n2. Again, rank(N) = 1 by Lemma 4.6.
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5. Proof of Theorem 1.14

In the proof of the next lemma ⊥ is the collinearity relation of An,{1,n}(F) and, for a point (x,X)
of An,{1,n}(F), (x,X)⊥ = Mx ∪ MX is the set of points of An,{1,n}(F) collinear with (x,X)
or equal to it. Recall that two points (x,X) and (y,X) of An,{1,n}(F) are collinear if and only if
either x = y or X = Y ; they are at distance at most 2 if and only if x ∈ Y or y ∈ X .

Lemma 5.1. Let (a,A) and (b, B) be points of An,{1,n}(F) at distance 3 in the collinearity
graph of An,{1,n}(F). Then Ha,A ∩Hb,B, which is a hyperplane of the singular hyperplane Ha,A

of An,{1,n}(F), is a maximal subspace of Ha,A.

Proof. Put H := Ha,A, I := Ha,A ∩ Hb,B and C := H \ I. We shall prove that ⊥ induces a
connected graph on C. The conclusion will follow from Shult [Shu11, Lemma 4.1.1].

Recall that, for a point (p,H) of An,{1,n}(F), the hyperplane Hp,H is the set of points at dis-
tance at most 2 from (p,H). Accordingly, H is the set of points at distance at most 2 from (a,A)
and I is the set of points at distance at most 2 from both (a,A) and (b, B). Hence (a,A) ∈ C,
as (b, B) has distance 3 from (a,A) by assumption. We shall prove that every point (c, C) ∈ C
can be connected to (a,A) by a path fully contained in C.

If either (c, C) ⊥ (a,A) or (c, C)⊥ ∩ (a,A)⊥ ̸⊆ I there is nothing to prove. Suppose
that (c, C) is at distance 2 from (a,A). Up to duality, we can assume that c ∈ A.
Then (c, A) ∈ (a,A)⊥ ∩ (c, C)⊥. As both (a,A) and (c, C) are at distance 3 from (b, B) (recall
that (c, C) ∈ C), neither b ∈ A nor c ∈ B. Accordingly, (c, A) is at distance 3 from (b, B),
namely (c, A) ∈ C. Hence (c, C) ⊥ (c, A) ⊥ (a,A) is a path in C from (c, C) to (a,A).

Throughout the rest of this section we assume that |Aut(F)| > 1. For σ ∈ Aut(F), if H
is a hyperplane of An,{1,n}(F) which arises from σ, we denote by εσ|H the embedding of H
in ⟨εσ(H)⟩ induced by εσ on H.

Recall that, by Theorem 1.12, the quasi-singular hyperplanes of An,{1,n}(F) arise from εσ for
every σ ∈ Aut(F) while the hyperplanes which are not quasi-singular arise from εσ for at most
one σ ∈ Aut(F). Recall also that εnat = εσ with σ = idF.

Lemma 5.2. For every singular hyperplane H1 of An,{1,n}(F) there exists a hyperlane H2

of An,{1,n}(F) such that:

(1) the intersection H1 ∩ H2 is maximal as a subspace of H1 and, regarded as a hyperlane
of H1, it arises from εσ|H1 for every σ ∈ Aut(F);

(2) the hyperplane H2 arises from ερ for a unique ρ ∈ Aut(F) and H1 ∩ H2, regarded as a
hyperplane of H2, arises from ερ|H2 .

Proof. Given two points (a,A) and (b, B) of An,{1,n}(F) at distance 3, let H1 = Ha,A

and H′
1 = Hb,B. Then H1 and H′

1 arise from εσ for every σ ∈ Aut(F). Moreover
H1 ∩ H′

1 = ε−1
σ (⟨εσ(H1)⟩ ∩ ⟨εσ(H′

1)⟩). By Lemma 5.1 the subspace K := H1 ∩ H′
1 is a

hyperplane as well as a maximal subspace of both H1 and H′
1. Hence K arises from both εσ|H1

and εσ|H′
1

by Proposition 1.2. Explictly, for every σ ∈ Aut(F) we have

⟨εσ(K)⟩ = ⟨εσ(H1)⟩ ∩ ⟨εσ(H′
1)⟩ and K = ε−1

σ (⟨εσ(K)⟩). (5.1)
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Let a and b be representative vectors of a and b respectively and α and β linear functional
describing A and B and choose an automorphism ρ ∈ Aut(F). We know from Section 3.1 and
Proposition 3.3 that H1 = Ha⊗αρ,ρ and H′

1 = Hb⊗βρ,ρ. As we have chosen (a,A) and (b, B) at
mutual distance 3, neither a ≡ b nor α ≡ β. Hence all matrices of ⟨a⊗αρ,b⊗βρ⟩ have rank 2
except those which are proportional to either a ⊗ αρ or b ⊗ βρ. Let M be one of the matrices
of ⟨a ⊗ αρ,b ⊗ βρ⟩ of rank 2 and put H2 := HM,ρ (notation as in Section 3.2). Then H2 is
not quasi-singular. Hence it arises from ερ but it does not arise from εσ for any σ ̸= ρ, by
Theorem 1.12. Moreover H2 ∩ H1 = H2 ∩ H′

1 = H1 ∩ H′
1 = K. These equalities combined

with (5.1) show that the hyperplane H1 ∩H2 of H2 arises from ερ|H2 .

Lemma 5.3. Given H1, H2 and ρ as in the statement of Lemma 5.2 and chosen an automor-
phism σ of F different from ρ, there exists a hyperplane H3 of An,{1,n}(F) which arises from εσ
but not from ερ and such thatH3∩H2 properly containsH1∩H2. Moreover, H1∩H3 = H1∩H2

and εσ(H1 ∩H2) spans ⟨εσ(H1)⟩ ∩ ⟨εσ(H3)⟩ while εσ(H3 ∩H2) spans ⟨εσ(H3)⟩.

Proof. Let Σσ be the codomain of εσ, namely Σσ = PG(M0
n+1(F)) if σ = idF

and Σσ = PG(Mn+1(F)) otherwise.
Let X be the collection of subspaces X of H2 which contain H1 ∩H2 and such that εσ(X)

does not spanΣσ. Note thatH1∩H2 ∈ X . By Zorn’s Lemma we can see that every member ofX
is contained in a maximal member of X . Let X ∈ X be one of them. We claim that X ⊊ H2.
Indeed if otherwise then εσ(H2) is contained in a hyperplane H of Σσ. Hence ε−1

σ (H) is a
hyperplane of An,{1,n}(F) and contains H2. However the hyperplanes of An,{1,n}(F) are maxi-
mal subspaces. Therefore H2 = ε−1

σ (H). Consequently, H2 arises from both ερ and εσ. This
contradicts condition (2) of Lemma 5.2.

So, X ⊊ H2. Pick x ∈ H2 \ X . Then εσ(X ∪ {x}) spans Σσ, by the maximality of X
in X . This shows that H := ⟨εσ(X)⟩ is a hyperplane of Σσ. Put H3 := ε−1

σ (H). Then H3 is a
hyperplane of An,{1,n}(F) and arises from εσ. As H2 does not arise from εσ, we have H3 ̸= H2.
The intersection H3 ∩ H2 contains X . It cannot be larger than X , otherwise εσ(H3 ∩ H2)
spans Σσ by the maximality of X , while εσ(H3 ∩ H2) is contained in the hyperplane H of Σσ,
by definition of H3. Therefore H3 ∩H2 = X .

We claim that X ⊋ H1 ∩ H2. Indeed εσ(H1 ∩ H2) spans a hyperplane of the hyperplane
⟨εσ(H1)⟩ of Σσ (by (1) of Lemma 5.2) while εσ(X) spans the hyperplane H = ⟨εσ(H3)⟩ of Σσ.

We have ⟨εσ(H3∩H2)⟩ = ⟨εσ(H3)⟩ by definition of H3. On the other hand, ⟨εσ(H3 ∩H1)⟩
contains ⟨εσ(H1 ∩ H2)⟩, which is a hyperplane of ⟨εσ(H1)⟩ by (1) of Lemma 5.2.
As H1 ∩H2 ⊊ H3, the subspace ⟨εσ(H1 ∩ H2)⟩ is also a hyperplane of ⟨εσ(H3)⟩ and must
be the same as ⟨εσ(H1)⟩ ∩ ⟨εσ(H3)⟩. Consequently, H1 ∩H2 = H1 ∩H3.

It remains to prove that H3 does not arise from ερ. Suppose the contrary.
Then H3 = ε−1

ρ (H3) for a projective hyperplane H3 = ⟨ερ(H3)⟩ of Σρ, where Σρ is de-
fined just as Σσ but for replacing σ with ρ. Similarly, H2 = ε−1

ρ (H2) and H1 = ε−1
ρ (H1)

for hyperplanes H2 = ⟨ερ(H2)⟩ and H1 = ⟨ερ(H2)⟩ of Σρ, since H2 arises from ερ by as-
sumption while H1, being singular, arises from εnat and each of its twistings. Accordingly,
H3∩H2 = ε−1

ρ (H3∩H2) and H1∩H2 = ε−1
ρ (H1∩H2). Moreover, H1∩H2 = ⟨ερ(H1∩H2)⟩

by condition (2) of Lemma 5.2. On the other hand, as previously noticed, the hyperplane
X = H3∩H2 of H2 properly contains H1∩H2. Hence ⟨ερ(X)⟩, which is contained in H3∩H2,
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properly contains H1 ∩ H2. It follows that H3 ∩ H2 = H2, namely H3 = H2. Conse-
quently H3 = H2. However this cannot be. Indeed H3 arises from εσ while, by assumption, H2

does not.

End of the proof of Theorem 1.14. For a contradiction, suppose that An,{1,n}(F) admits an em-
bedding ε̃ : An,{1,n}(F) → Σ̃which covers both εσ and ερ for two distinct automorphisms σ and ρ
of F. If a hyperplane H arises from εσ or ερ then it also arises from ε̃, by Proposition 2.2 and
since all hyperplanes of An,{1,n}(F) are maximal subspaces [Pas24, Theorem 1.5]. The restric-
tion ε̃|H of ε̃ to H covers εσ|H. Consequently, if K is a hyperplane of H which arises from εσ|H
and is maximal as a subspace of H, then K also arises from ε̃|H, by Proposition 2.2. Of course,
the same claims hold true for the embedding ερ and the hyperplanes which arise from it.

Let now H1,H2 and H3 be as in Lemmas 5.2 and 5.3. The singular hyperplane H1 arises
from both εσ and ερ, the hyperplaneH2 arises from ερ andH3 arises from εσ. Hence each of these
hyperplanes arises from ε̃. Moreover, the hyperplane K := H1 ∩ H2 of H1 arises from ε̃|H1 ,
by condition (1) of Lemma 5.2. It follows that K := ⟨ε̃(K)⟩ is a hyperplane of the hyper-
plane H1 := ⟨ε̃(H1)⟩ of Σ̃. Moreover K is also contained in the hyperplanes H2 := ⟨ε̃(H2)⟩
and H3 := ⟨ε̃(H3)⟩. Clearly K is a hyperplane of both H2 and H3. Moreover, H2 ̸= H3,
since H2 ̸= H3. Therefore H2∩H3 = K. However this conclusion crashes against the fact that,
as stated in Lemma 5.3, the intersection H2 ∩H3 properly contains K = H1 ∩H2 = H1 ∩H3.
Therefore no embedding of An,{1,n}(F) covers both εσ and ερ.

6. Quotients of εnat and its twistings

Consider εσ : An,{1,n}(F) → PG(W ) with σ ∈ Aut(F), where W = M0
n+1(F) if σ = idF

and W = Mn+1(F) otherwise.

Lemma 6.1. Let S be a subspace of W . If all matrices of S \ {O} have rank at least 3 then
the corresponding subspace [S] of PG(W ) defines a quotient of εσ. When σ = idF the converse
also holds: [S] defines a quotient of εnat only if all matrices of S \ {O} have rank at least 3.

Proof. The εσ-images of the points of An,{1,n}(F) are represented by matrices of rank 1. The
sum of two matrices of rank 1 has rank at most 2. The first claim of the lemma follows from
this remark and condition (2.1) of Section 2.3.1. Turning to the second claim, every null-traced
matrix of rank 1 represents the εnat-image of a point of An,{1,n}(F). The second claim of the
lemma follows from the well known fact that every matrix of rank 2 is the sum of two matrices
of rank 1.

By the first part of Lemma 6.1, for every non-singular matrix M ∈ W , the point [M ]
of PG(W ) defines a quotient of εσ. In particular, εσ/[I] is defined for every σ ̸= idF
while εnat/[I] is defined if and only if char(F) is positive and divides n+1. Indeed trace(I) = 0
if and only if char(F) is positive and divides n+ 1.

Following Steinbach and Van Maldeghem [SVM04] (also Thas and Van Maldeghem
[TVM06]) we say that an embedding of An,{1,n}(F) is polarized if all singular hyperplanes
ofAn,{1,n}(F) arise from it. For instance, as we know from Theorem 1.12, the natural embedding
of An,{1,n}(F) and all of its twistings are polarized.
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Remark 6.2. We warn the reader that the embeddings we say to be polarized are called full weak
embeddings in [TVM00a].

Theorem 6.3. If σ ∈ Aut(F) \ {idF} or σ = idF but either char(F) = 0 or char(F) is positive
and prime to n + 1, then no proper quotient of εσ is polarized. When char(F) is positive and
divides n+ 1 then εnat/[I] is the unique polarized proper quotient of εnat.

Proof. Let S be a subspace of W such that [S] defines a polarized proper quotient of εσ and
let M belong to S. By Proposition 3.3, for every pure tensor a ⊗ α ∈ Pure((V ⊗ V ∗)0) the
matrix M belongs to the hyperplane Ha⊗ασ ,σ of W spanned by the pure tensors x⊗ ξ ∈ W such
that ξ(a)ασ(x) = 0. By Proposition 3.3 we have Ha⊗ασ ,σ = ((a⊗ ασ)⊥f ) ∩W (= (a⊗ ασ)⊥f

when σ ̸= idF). Hence M ∈ Ha⊗ασ ,σ if and only if a ⊗ ασ ⊥f M if and only if ασMa = 0.
When σ ̸= idF the latter condition holds for every a ⊗ α ∈ Pure((V ⊗ V ∗)0) if and only
if M = O.

Let σ = idF. Then αMa = 0 for every a ⊗ α ∈ Pure((V ⊗ V ∗)0) if and only if M ∈ ⟨I⟩.
However M ∈ W and in this case W = M0

n+1(F) = (V ⊗ V ∗)0. Hence M ̸= O only
if trace(I) = 0, namely char(F) is positive and divides n+ 1.

Remark 6.4. The following is implicit in the proof of Theorem 6.3: given two non-null matri-
ces M and N , the hyperplane HN,σ arises from εσ/[M ] if and only if N ⊥f M . In particular, as-
suming that εnat/[I] exists, the hyperplane Ha⊗α,idF arises from εnat/[I] if and only if αIa = 0,
namely α(a) = 0. Consequently, the quasi-singular hyperplanes of An,{1,n}(F) which arise
from εnat/[I] are precisely the singular ones.

The following have also been proved by Thas and Van Maldeghem [TVM00a, TVM00b].

Result 6.5 (Thas and Van Maldeghem [TVM00a]). Let F be finite. Then, up to isomorphisms,
the natural embedding εnat, its twistings and the quotient εnat/[I] (when char(F) = 3) are the
unique polarized embeddings of A2,{1,2}(F).

Result 6.6 (Thas and Van Maldeghem [TVM00b]). Let F be finite. Then:

(1) All 8-dimensional embeddings of A2,{1,2}(F) are polarized (hence all of them are known,
by Result 6.5).

(2) If F is prime then all embeddings of A2,{1,2}(F) are polarized (hence they are known).

(3) Let ε be an embedding of A2,{1,2}(F) with dimension dim(ε) = d ⩾ 7. Suppose more-
over that for every anti-flag (p, L) of PG(2,F) the ε-image of the set of points (x,X)
of A2,{1,2}(F) such that x ∈ L and p ∈ X is contained in a projective plane of PG(d,F).
Then ε is polarized (whence known).

We guess these two results can be generalized to An,{1,n}(F) for any n ⩾ 2 and F taken from
a suitable class of possibly infinite fields. Perhaps, the class of fields which are either algebraic
over their prime subfield or perfect of positive characteristic could meet this requirement.
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