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RESEARCH ARTICLE Open Access

Conserved defense responses between
maize and sorghum to Exserohilum
turcicum
Xiaoyue Zhang1, Samuel B. Fernandes1, Christopher Kaiser1, Pragya Adhikari1, Patrick J. Brown2,
Santiago X. Mideros1 and Tiffany M. Jamann1*

Abstract

Background: Exserohilum turcicum is an important pathogen of both sorghum and maize, causing sorghum leaf
blight and northern corn leaf blight. Because the same pathogen can infect and cause major losses for two of the
most important grain crops, it is an ideal pathosystem to study plant-pathogen evolution and investigate shared
resistance mechanisms between the two plant species. To identify sorghum genes involved in the E. turcicum
response, we conducted a genome-wide association study (GWAS).

Results: Using the sorghum conversion panel evaluated across three environments, we identified a total of 216
significant markers. Based on physical linkage with the significant markers, we detected a total of 113 unique
candidate genes, some with known roles in plant defense. Also, we compared maize genes known to play a role in
resistance to E. turcicum with the association mapping results and found evidence of genes conferring resistance in
both crops, providing evidence of shared resistance between maize and sorghum.

Conclusions: Using a genetics approach, we identified shared genetic regions conferring resistance to E. turcicum
in both maize and sorghum. We identified several promising candidate genes for resistance to leaf blight in
sorghum, including genes related to R-gene mediated resistance. We present significant advancements in the
understanding of host resistance to E. turcicum, which is crucial to reduce losses due to this important pathogen.

Keywords: Sorghum leaf blight, Genome-wide association mapping, Quantitative disease resistance, Northern corn
leaf blight, Exserohilum turcicum, Setosphaeria turcica, Sorghum

Background
Translation of host plant resistance from one species to
another facilitates the development of resistant varieties.
Furthermore, knowledge of pathogen evolution can be
informative for disease management, including host re-
sistance. One process by which microbes become patho-
gens of plants is that pathogens jump from one host to a
new species [1]. When a pathogen moves to a new host,
knowledge from the original pathosystem can be trans-
lated to the novel crop species. Sorghum is the world’s
fifth most important cereal crop, and biotic stress limits
sorghum production. Host resistance is vital for the

management of biotic stresses. Sorghum is closely re-
lated to maize, but less is known about biotic stress re-
sistance in sorghum.
The foliar fungal pathogen Exserohilum turcicum

(Pass.) K. J. Leonard & Suggs (syn. Setosphaeria turcica
(Luttr.) K. J. Leonard & Suggs), is a pathogen of both
maize and sorghum, causing northern corn leaf blight
(NCLB) and sorghum leaf blight (SLB). Maize and sor-
ghum are two of the most important cereal crops and
are both susceptible to E. turcicum. In maize, NCLB is
considered one of the most important diseases in the
United States [2]. It was estimated that NCLB caused
the loss of 27.9 million metric tons of maize between
2012 and 2015, the most extensive loss due to a disease.
In sorghum, SLB is considered an important fungal dis-
ease. If infection occurs before emergence of the panicle,
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it may lead to grain yield losses of up to 50% [3]. The dis-
ease is most devastating in areas with high humidity and
moderate temperatures [4]. Of concern, highly susceptible
varieties have been adopted for production in some re-
gions [5]. On maize, the disease first appears as small, tan
flecks on leaves, and on sorghum, as small reddish flecks.
Flecks enlarge and coalesce into long, elliptical lesions
with reddish or brown borders. Borders can vary in color
in both hosts depending on the genotype.
E. turcicum co-evolved with maize in Mexico, and sub-

sequently jumped to cause disease on sorghum [6]. A sin-
gle locus underlies host specificity on maize and a second
single locus underlies host specificity on sorghum [7]. The
pathogen is capable of sexual reproduction in the field,
and uses a mixed reproductive strategy [8, 9]. The simple
genetic architecture of host specificity and the incidence
of sexual reproduction in the field makes host jumps
highly likely. While genetic differentiation was observed
between maize and sorghum E. turcicum isolates, gene
flow has been observed between isolates from the two
hosts, indicating that maize- and sorghum-specific isolates
mate in nature [9].
The high evolutionary potential for this pathogen, charac-

terized by the ability to undergo sexual reproduction in the
field and large population sizes, emphasizes the importance
of developing durable resistance, in particular, resistance
that is effective in both maize and sorghum. While chemical
control and cultural methods exist to control leaf blight,
planting resistant cultivars is the most economically and en-
vironmentally friendly method of disease control [10]. Host
resistance in maize has been well studied [11–16], but the
relationship between resistance in the two crops is not well
understood.
Both qualitative and quantitative resistance have been

described in maize. Several major genes effective against
NCLB have been identified, including Ht1, Ht2, Ht3,
HtN and ht4 [17]. Quantitative resistance has also been
well-studied for NCLB with several genes being impli-
cated including pan1, ZmREM6.3, and a caffeoyl-CoA
O-methyltransferase [11–13]. However, resistance to E.
turcicum in sorghum is not well understood. Few studies
have been conducted in sorghum on host resistance to
E. turcicum [18, 19]. Previous work has hypothesized
shared resistance mechanisms between maize and sor-
ghum, namely a highly conserved CC-NB-LRR encoding
gene cluster on sorghum chromosome 5 that conferred
resistance to E. turcicum [20]. However, no previous
studies have explored genetic variation conferring resist-
ance in both maize and sorghum.
The sorghum conversion panel (SCP) is a collection of

lines where exotic lines were backcrossed for several
generations to an elite line [21]. This panel includes ap-
proximately 800 converted lines that have been back-
crossed with Tx406 so that the genome is largely the

exotic parent with introgressions conferring early maturity
and dwarfing [22]. The SCP consists of individuals from
all five sorghum subpopulations. The SCP is well-suited
for mapping disease resistance, as the lines are photo-
period insensitive and dwarfed, creating homogeneity to
standardize disease resistance evaluations, yet sufficient al-
lelic diversity to identify novel alleles for resistance.
Our central hypothesis is that maize and sorghum

share resistance mechanisms. The objectives of this
study were to i) identify loci associated with host resist-
ance to SLB in sorghum; ii) identify candidate genes for
SLB resistance; iii) compare the genetic architecture of
maize and sorghum; iv) identify shared resistance mech-
anisms between maize and sorghum.

Results
Evaluation of the resistance to E. turcicum
We evaluated the SCP for SLB in 2016 and 2017 in the
field and in 2018 in the greenhouse. Line was highly sig-
nificant for all field environments (P < 0.0001) and
greenhouse incubation period (P = 0.0464), but not for
the greenhouse DLA measurements (P = 0.2187)
(Table 1). Thus, we did not include greenhouse DLA
data in any further analyses. In all field environments,
we observed positive skewness, and some lines were
completely resistant. For the 2018 IP data, we observed a
bimodal distribution. Despite the differences in distribu-
tion between the field and greenhouse data, we found
significant correlations (P < 0.05) between the field and
greenhouse IP data, as well as a significant positive cor-
relation (coefficient = 0.52; P < 0.01) between the two
field-collected datasets (Table 2). Because SLB pro-
gresses after flowering, we divided the population into
five sets based on flowering time to control for the rela-
tionship between maturity and disease severity. We did
not find a significant correlation between flowering time
and disease severity in the field environments, but there
was a weak positive correlation (coefficient = 0.07;
P < 0.10) between incubation period and flowering time.
Sorghum consists of five subpopulations, and we ex-

amined the average resistance in each group. We did not
detect significant differences between subpopulations
(Additional file 3: Figure S1). Kafir had the highest aver-
age resistance. All groups had highly susceptible lines,
indicating that there is no single race that is uniformly
resistant. Instead, all races contain alleles that contribute
both resistance and susceptibility.

Significant SNPs associated with disease resistance to E.
turcicum in sorghum
We found that many loci are involved in resistance to
SLB. We identified 3, 152, 66 and 43 significant markers
using the 2016 AUDPC, 2017 AUDPC, 2016 and 2017
combined and the 2018 IP datasets, respectively (Fig. 1).
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We dectected significant SNPs (FDR < 0.10) on all chro-
mosomes. The region on chromosome 4 spanning from
62,185,882 to 62,289,470 bp harbored the most signifi-
cant associations in the combined dataset (Fig. 2).
Chromosome 6 harbored the most significant hit in the
2017 dataset. Most significant SNPs from the IP analysis
were located on chromosome 5, approximately 2Mb
from significant associations from the 2017 dataset.

Genes involved in sorghum resistance to E. turcicum
Using the BTx623 reference sequence, candidate genes
were identified based on the physical locations of signifi-
cant SNPs. In total, we identified 113 unique genes
(Additional file 1: Table S1). The top 10 genes, based on
FDR-adjusted P-values, are shown in Table 3. A total of
23 significant SNPs were identified on chromosome 4 at
approximately 62Mb. The implicated region is 103 Kb
and contains 11 genes. It was implicated by both the 2017
and the combined datasets. We examined LD within the
region and found there are two LD blocks that had signifi-
cant associations within the region (Fig. 2). There are sev-
eral genes possibly involved in plant defense located
within the 103 Kb region, including the sorghum ortholog
of oxidative stress 3 (Sobic.004G279700.1), tobamovirus
multiplication protein 3, a heavy metal-associated domain
containing protein, and a protein phosphatase. There are
significant SNPs in the oxidative stress 3 ortholog and the
protein phosphatase.

Several of the candidate genes in other regions are impli-
cated in plant defense, including a wound-responsive family
protein, as well as a glutathione S-transferase-encoding gene.
Auxin response was implicated with an auxin efflux carrier
protein and an auxin response factor included in the list. Sig-
naling is also implicated with a mitogen-activated protein kin-
ase, among several other protein kinases. Among the protein
kinases implicated, one had a leucine-rich domain and a sec-
ond had a wall-associated kinase-encoding domain. Also, a
gene encoding an NB-ARC domain containing disease resist-
ance protein was included. The oxidative stress-related
process is implicated with a peroxidase superfamily protein-
encoding gene. A phytoene desaturase-encoding gene, which
is key in carotenoid, chlorophyll, and gibberellic acid (GA)
biosynthesis, is implicated.
The SEA to assess the functional significance of the candi-

date genes identified 30 significantly enriched GO terms in
the GWAS, which included 8 in biological processes and 22
in molecular function. GO terms enriched in biological pro-
cesses mostly included protein phosphorylation, protein
modification process, protein metabolic process, and phos-
phorous metabolic process (Fig. 3). GO terms enriched in
molecular function included kinase activity, phosphotransfer-
ase activity, ATP binding, heterocyclic compound binding,
and catalytic activity (Fig. 3).

Comparison between maize and sorghum resistance to E.
turcicum
The genetic architecture of resistance in sorghum is simi-
lar to that of maize, with many loci involved. We curated
a list of 36 maize genes with the strongest support for a
role in E. turcicum resistance based on previous mapping
studies (Additional file 2: Table S2) [12–14, 16, 23–26].
We identified the sorghum orthologs of these maize genes
and compared them with our association mapping results.
We observed long-distance linkage disequilibrium in the
SCP of up to 1Mb and so considered any associations
within 1Mb of a maize-derived candidate gene (Add-
itional file 4: Figure S2). Of the 36 candidate sorghum
genes based on synteny with maize candidates, 12 were

Table 1 Significance of factors in mixed model for resistance to E. turcicum in the sorghum conversion panel

Dataset 2016 field 2017 field 2016 & 2017 combined 2018 Greenhouse 2018 Greenhouse

AUDPC AUDPC AUDPC AUDPC IP

Line < 0.0001 < 0.0001 < 0.0001 0.2187 0.0464

Set 0.2238 0.1532 0.1031 0.7344 0.252

Repa 0.1187 0.2854 0.0862 – –

Blockb < 0.0001 0.1240 < 0.0001 0.1853 0.1699

Enc – – 0.4955 – –

Line*Env – – 0.0923 – –
a Rep- replication nested within set
b Block is nested within replication within set
c Env- environment

Table 2 Pearson correlation coefficients between the area
under the disease progress curve, incubation period and
flowering time

Correlation 2017AUDPC 2018IP Flowering Time

2016AUDPC 0.52*** −0.18*** 0.03

2017AUDPC −0.09** 0.01

2018IP 0.07*
***Significant at P < 0.01
**Significant at P < 0.05
*Significant at P < 0.10
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within 1Mb of a significant association (Additional file 2:
Table S2). To determine whether that was significantly
more genes than expected by chance, we conducted a per-
mutation test. We selected 36 random genes and found
how many of those genes were near significant associa-
tions. Based on the permutation test, we concluded that
our finding of 12 genes within 1Mb of a significant associ-
ation is highly significant (P < 0.01).
In the comparative analysis, the closest candidate ortholog

gene was a zinc finger that was 195 kb from the closest sor-
ghum association [23]. A remorin (SORBI_3001G460300)

that was implicated in maize for resistance to NCLB [12]
was 394 Kb from a significant association in sorghum. Add-
itionally, the same gene classes that have been implicated in
maize were implicated in sorghum as well. A GST-encoding
(Sobic.006G085100) gene was implicated in sorghum, and a
GST has been implicated in maize for its involvement in
multiple disease resistance [14].

Discussion
We developed a robust high-throughput method to
screen sorghum in the field for SLB. Using this method

Fig. 1 Manhattan plots for genome-wide association mapping. The panels show the results from the 2016 AUDPC, 2017 AUDPC, 2016 and 2017
combined, and the 2018 incubation period datasets
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we identified significant differences among genotypes
and several significant associations, hence demonstrating
its utility. We found that kafir was, on average, the most
resistant, which is consistent with a previous study
where kafir types were the most resistant [5].
Environmental conditions affected disease develop-

ment, in particular, field versus greenhouse. We found
agreement in the significant associations between the
field-based datasets. In 2016, the weather was more
conducive to disease development, and more disease
was observed. This may account for some of the

differences we observed between the 2016 and the
2017 results. Incubation period was the more robust
phenotypic measure from the greenhouse study. We
did not conduct a combined greenhouse field GWAS
because of the inherent differences between the
phenotypic measures and lack of correlation between
the two environments. The lack of correspondence
between field and greenhouse has also been observed
in other studies involving E. turcicum, specifically in
maize where there are NCLB QTL that are effective
in the field but not in the greenhouse [27].

Fig. 2 Linkage disequilibrium (LD) plot for the significant SNPs in the chromosome 4 62 Mb region. The Manhattan plot for the region is shown
above and the linkage disequilibrium shown below. Only the significant SNPs from the association mapping analysis in the region are shown in
the Manhattan plot. In the LD plot, the R2 values between significant SNPs are shown. Red indicates high amounts of linkage disequilibrium,
while yellows indicates low linkage disequilibrium

Table 3 The top 10 most significant genes from the genome-wide association mapping

Chr Position P-value Dataset Type Gene ID Arabidopsis annotation

4 62,234,452 1.67E-08 16&17 Intergenic Sobic.004G279601 Histone superfamily protein

4 62,235,175 1.67E-08 16&17 Intergenic Sobic.004G279700 Oxidative stress 3

4 62,241,862 1.67E-08 16&17 Genic Sobic.004G279800 N/A

1 53,698,562 2.92E-08 16&17 Intergenic Sobic.001G276000 Peptide transporter 2

6 60,634,058 3.17E-08 16&17 Intergenic Sobic.006G275100 Manganese tracking factor for mitochondrial SOD2

4 62,217,921 4.13E-08 16&17 Intergenic Sobic.004G279400 Regulator of chromosome condensation (RCC1) family with
FYVE zinc finger domain

4 62,219,598 4.13E-08 16&17 Intergenic Sobic.004G279500 N/A

10 57,920,894 4.87E-08 16&17 Intergenic Sobic.010G236400 Ubiquitin C-terminal hydrolases superfamily protein

6 45,334,706 6.01E-08 16&17 Genic Sobic.006G084300 P-loop containing nucleoside triphosphate hydrolases superfamily protein

6 45,346,069 1.36E-07 16&17 Intergenic Sobic.006G084400 Thylakoidal ascorbate peroxidase
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Several resources have been developed for genome-
wide association mapping in sorghum [22, 28, 29]. Asso-
ciation mapping has been used in sorghum for diverse
traits and has been successfully used to identify genes
that are known to underlie given traits [30, 31]. Here we
used the SCP because all lines flower in central Illinois,
and plant height is relatively uniform. These are import-
ant factors in evaluating the panel for a disease that is
foliar and intensifies after flowering. It is important to
note that the design of the SCP prevents the detection of
some genomic regions because of the crossing scheme
that was used to generate the SC lines [22]. Thus, we
would not have detected associations near those loci that
are fixed in this population.
There is preliminary evidence that suggests there may

be a major gene segregating in the SCP. The bimodal dis-
tribution of the IP data suggests that there may be genes
in this population acting to delay the onset of disease
symptoms. The NCLB major gene HtN1 prolongs incuba-
tion time and latent period [32]. HtN1 has been cloned in
maize and encodes a wall-associated kinase [24]. The clos-
est significant association near the sorghum ortholog of
the wall-associated kinase was 459 Kb from the wall-
associated kinase [24]. Martin et al. found that maize
major genes are present in sorghum [20], and race struc-
ture has been observed in sorghum E. turcicum isolates
[5]. It is important to note that not all the major genes
have been cloned in maize and the uncloned genes may

be conferring resistance in this panel. Further investiga-
tion in biparental populations where the parents differ for
incubation period is warranted to determine whether a
major gene delaying disease onset is present in this popu-
lation and whether HtN1 is present in sorghum.
We identified 113 candidate genes in this study (Add-

itional file 1: Table S1) using a stringent threshold and
had highly significant FDR-adjusted P-values, indicating
they are likely to be true positive results. Furthermore,
regions were indicated with several significant associa-
tions clustering within an interval, which could be indi-
cative of long-range LD or multiple genes underlying the
QTL. It is common for multiple genes physically linked
to underlie resistance to this disease [12, 13]. Interesting
candidate genes in the chromosome 4 region include a
protein phosphatase and the sorghum ortholog of oxida-
tive stress 3. Further work is needed to follow up on
these genes and discern their role in SLB resistance.
Several interesting candidate genes were identified

through the GWAS, and several biological processes in-
cluding protein phosphorylation known to be involved in
plant defense were implicated through the SEA. A phytoene
desaturase (PDS)-encoding gene (Sobic.006G177400) was a
candidate based on the mapping. Disruption of a PDS en-
hanced viral accumulation [33], and further investigation of
this gene is merited. An NB-ARC domain containing dis-
ease resistance protein (Sobic.002G053300) was identified
as a candidate gene. Resistance genes often contain a NB-

Fig. 3 Singular enrichment analysis (SEA). The SEA was conducted using agriGO v2.0. The number of genes in significantly enriched categories in
biological processes (blue) and molecular functions (red) are shown
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ARC signaling domain [34], and the complete resistance
observed in some lines in our population could indicate
that there are major genes present in the population. One
of the most significant candidate genes implicated by the IP
association mapping is an F-box encoding gene. F-box
genes are known to regulate R gene expression [35].
There were several other interesting associations in
the IP dataset, including the sorghum ortholog of
chloroquine-resistance transporter-like transporter 2.
In Arabidposis, mutants lacking this gene were hyper-
sensitive to Phytophthora infection [36].
We found that genetic architecture of resistance in

sorghum to be similar to that of maize, with many loci
involved. Complete resistance in maize to E. turcicum is
rare [14, 37], but in this study, we found several lines
that were completely resistant. This may be due to
pathogen strains used in this study or the environment
being less conducive to infection. In any case, sorghum
may be more resistant to E. turcicum than maize and
harbors alleles for resistance.
We found evidence of shared genetic regions for re-

sistance between maize and sorghum for diseases
caused by E. turcicum. This is contrast to studies in
other systems. For example, resistance QTL in rye-
grass and cereals for fungal pathogens did not coin-
cide on a genome-wide level [38]. However, it is
important to note that in this study we were examin-
ing resistance to the same fungal species across plant
hosts. At the gene level, there are examples of quanti-
tative disease genes, such as POQR that underwent
convergent evolution and confer resistance in multiple
hosts [39] and Lr34 that conferred resistance to sev-
eral diseases in wheat, maize, and sorghum [40–43].
Further work is required to determine whether the
same genes underlie resistance to E. turcicum in
maize and sorghum.

Conclusions
In summary, this is the first study using genome-wide
association mapping to identify genomic regions asso-
ciated with SLB resistance. The SCP includes lines
highly resistant to SLB. This will help improve breed-
ing for resistance in sorghum, as markers were identi-
fied that could be used to breed resistant varieties.
We identified 113 candidate genes, including genes
with known roles in plant defense and several genes
that are implicated in major gene resistance. We
compared resistance in maize and sorghum and found
a similar genetic architecture of resistance in both
crops. We find evidence of shared resistance mecha-
nisms between maize and sorghum with 12 candidate
sorghum genes falling within 1Mb of sorghum ortho-
logs of known maize resistance gene.

Methods
Phenotyping
Plant materials
We evaluated the SCP [22] for SLB at the Crop Sciences
Research and Education Centers in Urbana, IL in the
field in 2016 and 2017 and at the Plant Care Facility in
Urbana, IL in 2018 in the greenhouse. The conversion
lines were initially generated by backcrossing an elite
donor to exotic progenitor lines four times with selec-
tion at the F2 generation for dwarfed and photoperiod-
insensitive plants [21]. Seed for SC lines was initially ob-
tained from the USDA-ARS Cropping Systems Research
Laboratory (Lubbock, TX, USA). Each line of the SCP
was assigned to five sets based on flowering times, as a
strong relationship has been reported between flowering
time and resistance to E. turcicum [14]. Sets were inde-
pendent of subpopulation.

Experimental design
For the field experiments, an incomplete block design
with two replicates was created for each set using the R
package “agricolae” [44, 45], and each block was aug-
mented with one susceptible check line (Tx623) in a
random position. Each line was planted in a single-row
plot and standard agronomic practices for central Illinois
were followed. Before planting seed was treated with
Apron (mefenoxam; Syngenta, Switzerland) and Concep
(Fluxofenim; Syngenta, Switzerland). Plots were machine-
planted at a density of 50 seeds/row and were with 3.65m
long with 0.91-m alleys. We planted a total of 705 and 679
lines in 2016 and 2017, respectively. Fewer lines were eval-
uated in 2017 due to seed availability.
For the greenhouse experiment, one replication was

evaluated in an augmented design with two check lines,
Tx623 (susceptible) and SC0283 (resistant), included in
each block. The greenhouse evaluations were carried out
in Urbana, IL in 2018, using 596 lines with one plant per
line in a one-gallon pot filled with general purpose pot-
ting mix. The conditions were set to a 12/12-h light-
dark cycle and 30/20 °C day-night temperature.

Disease screening
We used the three E. turcicum isolates 15st003, 15st008,
and 16st001, obtained from sorghum leaves in Illinois, to
inoculate field-grown plants using solid inoculum. To
generate the solid inoculum, isolates were transferred
from glycerol stocks stored at − 80 °C to lactose-casein
hydrolysate agar (LCA) and incubated at room
temperature with a 12/12-h light-dark cycle for 2–3
weeks. The solid sorghum substrate was prepared by
mixing 2200ml untreated sorghum grain with 1375ml
distilled water in autoclave bags. The grain was soaked
overnight and then autoclaved twice, for 20 min each
time. The autoclaved grain was inoculated with an E.
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turcicum spore suspension prepared by flooding each
LCA plate with about 8 ml of ddH2O, dislodging spores
with glass rods and pipetting approximately 5 ml of un-
diluted spore suspension into each bag. Each bag was
cultured with a single isolate. The inoculum was incu-
bated at room temperature for 2–3 weeks with a 12/12-h
light-dark cycle. Grain was redistributed daily to avoid
the formation of clumps. Bags with different isolates
were mixed immediately preceding inoculations to
equalize spore concentrations across bags. Plants were
inoculated at the 5–6 leaf stage by applying approxi-
mately ¼ teaspoon (1.5 mL) of sorghum grains colonized
with E. turcicum in the whorl.
For the greenhouse experiment, four-week-old plants

were inoculated with 0.5 ml of E. turcicum liquid inocu-
lum placed in the whorl [27]. We cultured the same fun-
gal strains on LCA plates, as described above, but
adjusted the suspension to a concentration of 4 × 103 co-
nidia per ml. Following inoculation, we placed plants in
a mist chamber and high humidity was maintained over-
night with overhead misting for 10 s every 15 min.

Disease assessment
Diseased leaf area (DLA) was assessed visually and rat-
ings ranged from 0 to 100 with 5% increments [46]. A
score of 0 indicated that all plants in the plot were
healthy and no lesions were observed, while 100 denoted
that all plants in the plot were completely necrotic. Dis-
eased leaf area (DLA) was evaluated on a per-plot basis
three times after flowering with an interval of 7 days. For
the greenhouse, we evaluated the primary DLA [47] on
the inoculated leaf at 14, 21 and 28 days post-
inoculation. Additionally, plants were checked for lesion
formation on a daily basis and incubation period (IP)
was recorded as the number of days post inoculation
when the first lesion appeared.

Genotyping
A dataset of 107,421 SNPs (hereafter referred to as tar-
get set) scored using genotyping-by-sequencing was ob-
tained from Fernandes et al. [48] and Thurber et al. [22].
In order to increase the marker density for the target
panel, a whole-genome re-sequencing dataset (hereafter
referred to as the reference genotype set) was used for
imputing un-typed SNPs [49]. The reference set was
composed of 239 individuals and 5,512,653 SNPs an-
chored to the Sorghum bicolor reference genome version
3.1 (https://phytozome.jgi.doe.gov) [50]. We filtered the
reference set for heterozygosity (> 10%), SNP coverage
(<4X) and missing genotypes (> 40%). Additionally, SNPs
with minor allele count < 3 and depth < 3 were also fil-
tered out before the imputation. The final reference set
included 239 individuals and 4,268,905 SNPs.

Before imputation, the target and reference sets were
compared using conform-gt [51]. This step excluded tar-
get SNPs not present in the reference genotypes and ad-
justed the genomic position and chromosome strand to
match the target and reference sets. Thus, the set of 34,
498 target set SNPs included for imputation had a minor
allele frequency > 1% and positions matching the refer-
ence panel. Un-typed SNPs were imputed by chromo-
some, using option gt, window = 80,000 bp, overlap = 10,
000 bp and ne = 150,000. After filtering, Beagle version
4.1 was used to impute missing genotypes (option
“gtgl”), followed by a phasing (option “gt”) step [52]. We
used a window of 1500 bp and an overlap of 500 bp for
both steps. The genotypic dataset was pruned using
plink based on linkage disequilibrium by removing vari-
ants with r2 values greater than 0.9, using a window size
of 20 and step size of 5 SNPs [53]. The markers were
then filtered for a minor allele frequency of 0.05 using
GAPIT [54]. We conducted the association analysis for
the field datasets using GAPIT version 3.0 [54]. A total
of 338,651 markers were included in the analysis.

Data analysis
Area under disease progress curve (AUDPC) was calcu-
lated from the DLA data using the absolute method with
the “audpc” function from R package ‘agricolae’ [44, 45].
Linear models were run using the PROC MIXED func-
tion implemented in SAS version 9.4 (SAS Institute Inc.,
Cary, NC), and all factors were fit as random effects.
Each year was analyzed individually, as well as the com-
bined field data. Field and greenhouse data were not
combined due to the inherent differences between the
field and greenhouse environments. Initially, models
were fit that included design factors and line (Table 1).
For the field datasets, set was nested within year, replica-
tion was nested within set within year, and block was
nested within replication within set. Significance of ran-
dom factors to include in the models was determined
using Wald’s Z-test statistics implemented using the re-
stricted maximum likelihood (REML) method [55]. Add-
itionally, likelihood ratio tests were conducted to
determine whether to include factors in the models. The
2016 AUDPC model included line, set, block and repli-
cation. The 2017 AUDPC model included line and set.
The combined 2016 and 2017 model included line, year,
set, rep, block, environment, and the year by environ-
ment interaction. Best linear unbiased predictors
(BLUPs) were calculated for the 2016, 2017, 2018 IP and
the combined 2016 and 2017 datasets. Further analysis
was not conducted for 2018 AUDPC, as line was not sig-
nificant in the analysis. The 2018 IP dataset was divided
into two classes based on the BLUPs. Lines with effects
less than 0 were considered as resistant, and lines with
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effects greater than 0 were considered susceptible. The
phenotypic data is available in Additional file 5: File S1.
The “CMLM” method was used to conduct the GWAS

using GAPIT [54], and a total of four principal compo-
nents were included. A false discovery rate of 10% was
used to determine whether associations were significant
[56]. Because the IP dataset was categorical, we
employed logistic regression to conduct association
mapping using plink version 1.9 [53]. The principal
components, as calculated by GAPIT, were included in
the plink analysis.
Pearson correlations for flowering time, plant height

and subpopulation were conducted using the “rcorr”
function in the “Hmisc” package [57] in R. Data for flow-
ering time and plant height were obtained from Thurber
et al. [22]. A Tukey’s HSD test was conducted using the
‘agricolae’ package [44] in R to determine whether there
were significant differences in the combined field data
between different subpopulations.

Candidate gene selection
The physical proximity of significant associations to gen-
omic features was used to identify candidate genes. The
BEDTools toolkit was used to identify candidate genes
based on significant SNP positions [58, 59]. If significant
SNPs were genic, the gene containing the SNP is re-
ported as the candidate gene. If the SNP was intergenic,
the closest gene feature is reported as the candidate
gene. The functional significance of the candidate genes
were determined through singular enrichment analysis
(SEA) using agriGO v2.0 [60].

Maize candidate genes and syntenic sorghum genes
We curated a list of candidate maize resistance genes
based on previous studies [12, 13, 16, 23, 24]. The sor-
ghum syntenic orthologs of the curated maize candidate
genes were obtained using the methodology described in
[61]. To determine whether the number of orthologs
close to associations in sorghum was significant, a per-
mutation test was conducted. We randomly selected 36
genes and determined how many of those genes were
within 1Mb of significant associations. We conducted
1000 iterations of this test.
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