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Abstract

It is shown that the limiting distribution of the augmented Dickey-Fuller (ADF) test
under the null hypothesis of a unit root is valid under a very general set of assumptions
that goes far beyond the linear AR(∞) process assumption typically imposed. In essence,
all that is required is that the error process driving the random walk possesses a spectral
density that is strictly positive. Given that many economic time series are nonlinear, this
extended result may have important applications. Furthermore, under the same weak
assumptions, the limiting distribution of the ADF test is derived under the alternative
of stationarity, and a theoretical explanation is given for the well-known empirical fact
that the test’s power is a decreasing function of the autoregressive order p used in the
augmented regression equation. The intuitive reason for the reduced power of the ADF
test as p tends to infinity is that the p regressors become asymptotically collinear.

Key words: Autoregressive Representation, Hypothesis Testing, Integrated Series, Unit
Root.

1 Introduction

Testing for the presence of a unit root is a widely investigated problem in econometrics;

cf. Hamilton (1994) or Patterson (2011) for extensive treatments of this topic. Given a
stretch of time series observations X1, X2, . . . , Xn, one of the commonly used tests for the

null hypothesis of a unit root, is the so-called augmented Dickey-Fuller (ADF) test. This
test decides about the presence of a unit root in the data generating mechanism by using the

ordinary least squares (OLS) estimator ρ̂n of ρ, obtained by fitting the regression equation

Xt = ρXt−1 +
p∑

j=1

aj,p∆Xt−j + et,p, (1.1)

to the observed stretch of data. In the above notation, ∆Xt = Xt − Xt−1, while the order p
is allowed to depend on n, p = p(n), and its value is related to the assumptions imposed on

the underlying process. In particular, under the null hypothesis H0 : ρ = 1, it is commonly
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assumed that Xt is obtained by integrating a linear, infinite order autoregressive process,

(AR(∞)), i.e., that
Xt = Xt−1 + Ut, t = 1, 2, . . . , (1.2)

where X0 = 0 and

Ut =
∞∑

j=1

ajUt−j + et. (1.3)

Here {et} is a sequence of independent, identically distributed (i.i.d.) random variables

having mean zero and variance 0 < σ2
e < ∞. Stationarity and causality of {Ut} is ensured

by assuming that
∑∞

j=1 |j|s|aj| < ∞ for some s ≥ 1 and
∑∞

j=1 ajz
j 6= 0 for all |z| ≤ 1.

To test H0, Dickey and Fuller (1979) proposed the studentized statistic

tn =
ρ̂n − 1

Ŝtd(ρ̂n)
, (1.4)

where Ŝtd(ρ̂n) denotes an estimator of the standard deviation of the OLS estimator ρ̂n. The
asymptotic distribution of tn under H0 is non-standard and is well known in the literature.
Dickey and Fuller (1979) and Dickey and Fuller (1981) derived this distribution under the

assumption that the order of the underlying autoregressive process is finite and known. Said
and Dickey (1984) extended this result for the case where the innovation process {Ut} driving

the random walk (1.2) is an invertible autoregressive moving-average (ARMA) process, i.e.,
an AR(∞) process with exponentially decaying coefficients. Ng and Perron (1995) relaxed

the assumptions needed on the rate at which the order p(n) in (1.1) increases to infinity
with n. Chang and Park (2002) established the same limiting distribution of tn by further

relaxing the assumptions regarding the rate at which p increases to infinity, by allowing for a
polynomial decrease of the coefficients aj in the AR(∞) representation (1.3) and by assuming

a martingale difference structure instead of i.i.d. innovations et, that is, by assuming that
E(et|Et−1) = 0 and n−1 ∑n

t=1 E(e2
t |Et−1) → σ2, as n → ∞, where El = σ({et : t ≤ l}) is the

σ-algebra generated by the random variables {el, el−1, . . .}.
To derive the power behavior of the test under the alternative hypothesis H1 : ρ < 1, the

limiting distribution of tn is required under the assumption that {Xt} is a stationary process.

Investigating the power of the ADF-test for fixed (stationary) alternatives, has attracted less
interest in the literature. Nabeya and Tanaka (1990) and Perron (1991) analyzed the limiting

power of unit root tests for sequences of local alternatives. For a first order autoregression,
Abadir (1993) gives closed forms for the distribution of certain statistics leading to the deriva-

tion of the limiting distribution of unit root tests under the null and the alternative. For
the ADF unit root test, Lopez (1997) considered the asymptotic distribution of ρ̂n under the

alternative that {Xt} is a causal and invertible ARMA process. However, apart from the
restrictive process set-up used to derive this distribution, the derivations seem to be incorrect
since Lopez (1997) erroneously replaces regression equation (1.1) by a regression equation

that contains only levels of the Xt’s; see Remark 2.4 for details.
The aim of this paper is twofold. First we show that the established limiting distribution

of the ADF-test under the null hypothesis of a unit root is valid under a most general set
of assumptions regarding the innovation process {Ut} driving the random walk (1.2). These
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assumptions go far beyond the AR(∞) linear process class (1.3). In particular, we prove

validity of the limiting distribution of tn under the general condition that the stationary
process {Ut} possesses a Wold-type, AR-representation with respect to white noise errors εt.

This much wider class of stationary processes should not be confused with the linear AR(∞)
class (1.3) driven by i.i.d. or by martingale difference innovations. In fact, this class consists

of all zero mean, second order stationary (linear or nonlinear) processes having a continuous
and strictly positive spectral density; cf. Pourahmadi (2001) and Section 2 for details.

Secondly, under the same set of general assumptions on the underlying stationary process

{Ut}, we establish the limiting distribution of the ADF-test tn under the alternative hypoth-
esis in which {Xt} is stationary. It turns out that under the alternative, the estimator ρ̂n is

only
√

n/pn–consistent, and therefore, its convergence rate is considerably smaller compared
with the n–consistency of the same estimator under the null, and to the

√
n convergence

rate of other test statistics under the alternative, like for instance the well-known test of
Philips and Perron (1988). We make the case that the underlying reason for the slow rate

of convergence of ρ̂n under the alternative is that the regressors in equation (1.1) become
asymptotically collinear as p increases to infinity. We explain this phenomenon, and show

how/why this collinearity problem is responsible for the reduced power of the ADF-test, and
explains theoretically the empirically observed fact that the power of this test is a decreasing
function of the order p—see e.g. Figure 9.5 of Patterson (2011).

The remaining of the paper is organized as follows. Section 2 states the main assumptions
imposed on the underlying process {Ut} and derives the asymptotic distribution of the ADF

test tn under the null hypothesis of a unit root. The asymptotic behavior of tn under the
alternative of stationarity is also derived in Section 2, and its consequences for the power

properties of the ADF test are discussed. Section 3 showcases a real data example where the
reduced power of the ADF test is manifested, and underscores the importance of properly

choosing the order p in practice. All technical proofs are deferred to Section 4.

2 Asymptotic Properties of the ADF test

2.1 Assumptions

We first state the conditions we impose on the dependence structure of the underlying second
order stationary process {Ut} that drives the random walk under the null. Assuming that

{Ut} is purely non-deterministic, i.e., that it possesses as spectral density whose logarithm is
integrable, then the Wold representation yields

Ut =
∞∑

j=1

αjεt−j + εt (2.5)

where
∑∞

j=1 α2
j < ∞ and εt is a zero mean, uncorrelated process with 0 < V ar(εt) = σ2

ε < ∞.

We slightly restrict the above class of stationary processes to the one satisfying the following
assumption.

Assumption 1
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(i) The autocovariance function γU(h) = Cov(Ut, Ut+h), h ∈ ZZ, of U = {Ut, t ∈ ZZ} satisfies∑
h∈ZZ

|γU(h)| < ∞, and the spectral density fU of U is strictly positive, i.e., fU (λ) > 0
for all λ.

(ii) E(ε4
t) < ∞ and the process {εt} satisfies the following weakly dependent condition:∑∞

n=1 n‖P1(εn)‖ < ∞, where Pt(Y ) = E(Y |Ft) − E(Y |Ft−1) and Fs = (. . . , εs−1, εs).

The Wold representation (2.5) is an MA(∞) equation for Ut with respect to its innovations
εt. Assumption 1(i) allows for an alternative representation of Ut with respect to the same

white noise given in (2.5). In fact, because of the summability of the autocovariance function,
the process {Ut} has a continuous spectral density fU (λ) = (2π)−1 ∑

h∈ZZ
γU(h) cos(λh). This

together with the strict positivity of fU (λ) implies that {Ut} possesses a so-called Wold-type
AR-representation, that is, Ut can be expressed as

Ut =
∞∑

j=1

bjUt−j + εt, (2.6)

where εt is the same white noise innovation process as the one appearing in the Wold repre-
sentation (2.5). Furthermore, the coefficients bj are absolutely summable, i.e.,

∑∞
j=1 |bj| < ∞

and b(z) = 1 − ∑∞
k=1 bjz

j 6= 0 for |z| ≤ 1; see Pourahmadi (2001), Lemma 6.4.
The Wold-type AR-representation (2.6) of Ut with respect to the white noise process εt

should not be confused with the rather strong assumption of a linear AR(∞) process with
respect to i.i.d. innovations. For example, one important difference between the class of

process obeying a Wold-type AR-representation and the class of linear AR(∞) processes
(1.3) is the linearity of the optimal predictor. In fact, for processes in the class (1.3) with
i.i.d. or with martingale difference errors, the optimal k-step ahead predictor, is always the

linear predictor. That is, for positive k, the general L2-optimal predictor of Ut+k based on its
past Ut, i.e., the conditional expectation E(Ut+k|Us, s ≤ t), is for processes (1.3) with i.i.d. or

with martingale difference innovations, identical to the best linear predictor PMt
(Ut+k). Here

PC(Y ) denotes orthogonal projection of Y onto the set C and Mt = span{Uj : j ≤ s}, i.e.,

the closed linear span generated by the random variables {Uj : j ≤ s}. This linearity property
of the L2-optical predictor is not shared by processes having a Wold-type AR-representation

with respect to white noise innovations.
It is apparent that the class of processes having a Wold-type AR-representation is very

large, and includes basically all linear or nonlinear time series that possess a strictly positive
and continuous spectral density. The difference between the Wold-type AR-representation
and the linear AR(∞) property (1.3) is further illustrated by means of the following two

examples.

Example 1: (Non causal linear processes) Consider the process Ut = φUt−1 + et, with
|φ| > 1, and et a zero mean i.i.d. process with variance σ2

e . Notice that {Ut} is stationary

but it does not belong to the linear AR(∞) class (1.3) since it is not causal (the root of
1− φz = 0 lies outside the unit disc). However, for εt = φ−2(et − (φ2 − 1)

∑
j≥1 φ−jet+j), Ut

has the AR-representation Ut = bUt−1+εt with b = 1/φ and the (causal) Wold representation
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Ut =
∑∞

j=1 bjεt−j with respect to the white noise process {εt}, where E(εt) = 0 and V ar(εt) =

φ−2σ2
e .

Example 2: (Non invertible linear processes) Consider the process Ut = θet−1 +et, with
|θ| > 1, and et a zero mean i.i.d. process with variance σ2

e . Notice that {Ut} is stationary but it

does not belong to the linear AR(∞) class (1.3) since it is not invertible (the root of 1−θz = 0
lies outside the unit disc). Now, for εt = et+(θ−1−θ)

∑∞
j=1 θ−j+1et−j we get Ut = εt−θ−1εt−1

and therefore, Ut has the AR-representation Ut =
∑∞

j=1 bUt−j +εt, bj = −(1/θ)j, with respect
to the white noise process {εt}. Here E(εt) = 0 and V ar(εt) = σ2

e (1 + θ2 − θ4).

Assumption 1(ii) is imposed in order to control the dependence structure of the innovation

process {εt} and consequently of Ut; cf. Wu and Min (2005). It is based on the concept of
weak dependence introduced by Wu (2005) and allows together with (2.5) for a very broad

class of possible processes. Wu and Min (2005) give many examples of processes belonging
to this class, including many well-known processes like, ARCH, GARCH processes, threshold
autoregressive processes, bilinear processes and random coefficient autoregressive processes.

Notice that instead of the weak dependence assumption above, other measures could be also
used to control the dependence structure of the innovations process {εt} as well. For instance,

the results presented in this paper can be derived also under the alternative assumption
that the innovation process {εt} in (2.5) is strong mixing with strong mixing coefficient αm

satisfying
∑∞

m=1 α
1/2
m < ∞. In any case, Assumption 1(ii) extends considerably the class

of stationary process allowed and goes far beyond linear autoregressive processes with i.i.d.

innovations or innovations that form martingale differences.
Based on Assumption 1 regarding the class of stationary process {Ut}, Assumption 2 below

specifies the generation mechanism of the underlying and observable process X = {Xt, t ≥ 0}.
Assumption 2 The process X satisfies one (and only one) of the following two conditions:

(i) (Unit root case:) X0 = 0 and Xt = Xt−1 + Ut for t = 1, 2, . . ..

(ii) (Stationary case:) Xt = Ut, for t = 0, 1, 2, . . .,

where {Ut} is the second order stationary process specified in Assumption 1.

The assumption X0 = 0 simplifies notation and does not affect the asymptotic results of
this paper for the unit root case. It can be replaced by other assumptions concerning the

starting value X0 provided this random variable remains bounded in probability. Assumption
2 simply states that Xt is either a stationary process satisfying Assumption 1 or it is obtained

by integrating such a stationary process.
Notice that if Assumption 2 is true, then Xt obeys also the useful representation

Xt = ρXt−1 +
∞∑

j=1

aj∆Xt−j + εt, (2.7)

with εt the white noise process discussed in Assumption 1. To see this, notice that (2.7)
is obviously true if Assumption 2(i) is satisfied with the choices ρ = 1 and ∆Xt−1 = Xt −
Xt−1 = Ut. Furthermore, if Assumption 2(ii) is true then it is easily verified that Xt =
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(
∑∞

j=1 bj)Xt−1 − ∑∞
j=1(

∑∞
s=j+1 bs)∆Xt−j + εt, which implies that also in this case (2.7) is

true with

ρ =
∞∑

j=1

bj, and aj = −
∞∑

s=j+1

bs, j = 1, 2, . . . .

Now, let

ρmin = inf
{
ρ =

∞∑

j=1

bj : bj, j = 1, 2, . . . and b(z) = 1 −
∞∑

j=1

bjz
j 6= 0 for |z| ≤ 1

}
.

The null and alternative hypothesis of interest can then be stated as

H0 : ρ = 1, H1 : ρ ∈ (ρmin, 1). (2.8)

Notice that H0 is equivalent to Assumption 2(i) while H1 to Assumption 2(ii). The range

of values of ρ under the alternative H1 is an interval since B = {bj, j = 1, 2, . . . : b(z) 6=
0 for |z| ≤ 1} is a convex set and the mapping g : B → IR with g(b1, b2, . . .) =

∑∞
j=1 bj ≡ ρ

is continuous. Notice that ρmin < −1 is also possible, for instance if Ut = εt − θεt−1 with

θ ∈ (0.5, 1).

Remark 2.1 It is common in the econometric literature to state Assumption 2 in the
following different form:

Xt = aXt−1 + Ut, (2.9)

where {Ut} is some zero mean, second order stationary process satisfying certain conditions.

In this formulation, the case a = 1 is associated with the null hypothesis of unit root, while
the case |a| < 1 with the alternative; see among others Ng and Perron (1995) and Chang and

Park (2002). It is easily seen that the above formulation is a restatement of Assumption 2 in
the sense that in both cases the same conditions are imposed on the underlying process {Xt}.
If a = 1 this is obviously true while for |a| < 1, using the backshift operator LsXt = Xt−s

we have that Xt = (1 − aL)−1Ut =
∑∞

j=0 ajUt−j and {Xt} is stationary. However, if (2.9) is

considered as a model for Xt, then identifiability and interpretability problems occur for the
parameter a unless, of course, a = 1. To see why, let Xt be a stationary series, and define
the new stationary series Vt = Xt − bXt−1 where b is arbitrary; i.e., in the stationary case,

eq. (2.9) holds true for any value of the parameter a as long as it is not one. To make the
parameter a identifiable in the stationary case, an additional condition must be imposed, e.g.,

that the series Ut is the innovation series of Xt. Our Assumption 2 avoids these difficulties.

2.2 Limiting Distribution under the Null

The following theorem establishes the limiting distribution of the test statistic tn under H0 in
(2.8). It shows that this limiting distribution is identical to that obtained under the AR(∞)

linearity or weak linearity assumption for {Ut}; cf. Dickey and Fuller (1981) and Chang and
Park (2002).
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Theorem 2.1 Let Assumption 1 and Assumption 2(i) be satisfied and suppose that pn → ∞
as n → ∞ such that pn/

√
n → 0. Then

tn ⇒
∫ 1

0
W (t)dW (t)

/( ∫ 1

0
W 2(t)dt

)1/2
,

where {W (t), t ∈ [0, 1]} is the standard Wiener process on [0, 1].

By the above theorem, an asymptotic α-level test of the null hypothesis of a unit root is

given by rejecting H0 whenever tn is smaller than Cα, where Cα is the lower α-percentage

point of the distribution of
∫ 1
0 W (t)dW (t)

/√∫ 1
0 W 2(t)dt. Notice that since the class of sta-

tionary processes satisfying Assumption 1 is very rich and contains as special case many
linear and nonlinear processes including the commonly used linear AR(∞) process driven by
i.i.d. innovations or by martingale differences, Theorem 2.1 generalizes considerably previous

results regarding the limiting distribution of the ADF-test under the null hypothesis of a unit
root.

Remark 2.2 Theorem 2.1 can be also extended to cover the case of a deterministic trend.

In particular, if the process under H0 is generated by the equation Yt = Xt + a + bt , where
(Xt) satisfies Assumption 2(i) and the regression equation

Yt = ρYt−1 + a + bt +
p∑

j=1

aj,p∆Xt−j + et,p,

is fitted to the observed time series Y1, Y2, . . . , Yn, then the distribution of the least squares

estimator ρ̂n of ρ is the same as the one given in Thorem 2.1 with the standard Brownian
motion W (t) replaced by

W̃ (t) = W (t) + (6t − 4)

∫ 1

0
W (s)ds − (12t − 6)

∫ 1

0
sW (s)ds.

2.3 Behavior Under the Alternative

Before stating the distribution of the least squares estimator ρ̂n under the alternative of sta-
tionarity, we discuss an asymptotic collinearity problem that occurs when regression equation

(1.1) is fitted to a time series stemming from a stationary process. This collinearity problem
is essential for understanding the effects of choosing the truncation parameter p on the power

behavior of the test. The following proposition summarizes this behavior and is of interest
on its own.

Proposition 2.1 Let {Wt, t ∈ ZZ} be a zero mean, second order stationary process with
autocovariance function γW (h) = E(WtWt+h) and spectral density fW satisfying fW (0) > 0.
Denote by Mt,t−p = sp{∆Wt, ∆Wt−1, · · ·∆Wt−p} the closed linear span generated by the

differences ∆Wt−j, j = 0, 1, . . . , p and by PA(Y ) the orthogonal projection of Y onto the
closed set A.
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(i) If γW (h) → 0 as h → ∞ then E(Wt −PMt,t−p
(Wt))

2 → 0 as p → ∞.

(ii) If
∑∞

h=−∞ |γW (h)| < ∞ then p ·E(Wt−PMt,t−p
(Wt))

2 → 2πfW (0) as p → ∞ where
fW (·) denotes the spectral density of {Wt}.

What the above proposition essentially says is that if Wt is a second order station-
ary process, then Wt−1 can be expressed as a linear combination of it own differences
∆Wt−j, j = 1, 2, . . .. Now, this proposition has serious consequences for the power behav-

ior of the ADF-test under the alternative H1. In particular, it implies a severe asymptotic
collinearity problem that shows up when regression (1.1) is fitted to a stationary time series

X1, X2, . . . , Xn. To elaborate, under the alternative of stationarity, the random variables Xt−1

and ∆Xt−j, j = 1, 2, . . . appearing on the right hand side of (2.7) are perfectly collinear. Con-

sequently, in fitting (the truncated) equation (1.1), the random variables Xt−1 and ∆Xt−j,
j = 1, 2, . . . , p which appear as regressors, become asymptotically collinear as the truncation

parameter p increases to infinity. Furthermore, the corresponding mean square prediction
error E(Xt−1−PMt−1,t−p

(Xt−1))
2 converges at the rate 1/p as p → ∞. This could be a severe

problem even for small values of p, as in our data example, especially when the covariance
structure of the process is significant only at small lags. This asymptotic collinearity prob-
lem occurs even if the underlying process {Ut} is a finite, p-th order stationary autoregressive

process and equation (1.1) is fitted to the observed time series using an truncation order pn

which is allowed to increase (to infinity) as the sample size n increases.

The next theorem establishes the limiting distribution of the least squares estimator ρ̂n

under the alternative H1 in (2.8).

Theorem 2.2 Let Assumption 1 and Assumption 2(ii) be satisfied and suppose that p =
pn → ∞ as n → ∞ such that p4

n/n1/2 → 0 and
√

n
∑∞

j=p+1 |aj| → 0. Then, as n → ∞,

(i) n
pV ar(ρ̂n) → (1 − ρ)2, in probability, and

(ii)
√

n
p (ρ̂n − ρ) ⇒ N (0, (1− ρ)2),

where ρ =
∑∞

j=1 bj.

Remark 2.3 Notice that because in regression (1.1) we are interested in estimating the
parameter ρ only, we would expect, under the alternative of stationarity, that the estimator

ρ̂n will be
√

n-consistent. However, the lower
√

n/p convergence rate of ρ̂n is due to the fact
that estimating ρ is tantamount to estimating the spectral density of {Xt} at frequency zero.

In fact, using 2πfX(λ) = σ2
ε/|1− ∑∞

j=0 bj exp{iλj}|2, we get that ρ = 1 − σε/
√

2πfX(0).
This makes it clear that although ρ appears to be a single parameter in the regression equation

(1.1), estimating ρ is essentially a nonparametric estimation problem. This behavior of the
estimator ρ̂n is regression (1.1) is different compared to the least squares estimator ân in

regression (2.9) considered by Phillips and Perron (1988) that is
√

n-consistent under H1.
The reason for the different convergence rates of the two estimators under H1 lies in the fact

that ρ̂n in regression (1.1) estimates a function of the spectral density of {Xt} at frequency
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zero, while ân in regression (2.9) estimates the first order autocorrelation, see also Remark

2.1. Note, however, that the Phillips and Perron (1988) test suffers from a difficulty of its
own in that its estimated critical value is typically not

√
n–consistent as it is itself a function

of the underlying spectral density.

Remark 2.4 For the alternative of stationary ARMA processes, Lopez (1997) claimed that
he has derived the asymptotic distribution of n1/2p−1/2(ρ̂n − ρ) under the weaker condition
that p3/n → 0 as n → ∞. Apart from the more restrictive ARMA process set-up, this state-

ment seems to be wrong. To derive the asymptotic distribution of n1/2p−1/2(ρ̂n − ρ) for this
class of alternatives, Lopez (1997) proceeds by first replacing the ADF regression equation

(1.1) by an autoregression containing only the levels of the Xt’s, that is he considers instead
of equation (1.1), the autoregression equation Xt = φ1,pXt−1+φ2,pXt−2+. . .+φp,pXt−p+vt,p;

see equation (9) in Lopez (1997). Instead of the estimator ρ̂n he then investigates the esti-
mator φ̂n =

∑p
i=1 φ̂i,p, where φ̂i,p is the least squares estimator of φi,p in the aforementioned

autoregression containing only levels. Using results obtained by Berk (1974), the limiting
distribution of φ̂n is then easily established allowing for the turncation lag p to increase to

infinity such that p3/n → 0. However, the important step missing in this proof is the theo-
retical justification for the validity of this replacement in the regression problem considered.
In fact, what one needs to show is that under the assumptions made,

√
n

p
(φ̂n − ρ̂n) → 0, in probability.

We strongly doubt the validity of such a statement, since the regression equation using
only levels of the Xt’s does not suffer from the collinearity problems that are present in the

regression equation (1.1) which contains also differences, see Proposition 2.1. The collinearity
problems under the alternative, are those that force the truncation lag p in regression (1.1) to

increase to infinity much slower compared to n in order to obtain consistency and asymptotic
normality of the estimator ρ̂n; compare Theorem 2.2.

Remark 2.5 Theorem 2.2 allows for the following approximative expression for the power
function of the ADF-test for fixed alternatives,

PH1
(tn < Cα) ≈ Φ

(√n Ŝtd(ρ̂n)√
p(1− ρ)

Cα +

√
n

p

)
≈ Φ

(
Cα +

√
n

p

)
, (2.10)

where Cα denotes the upper α-percentage point of the limiting distribution given in Theo-
rem 2.1 and the second approximation follows since under H1, Ŝtd(ρ̂n) =

√
p(1 − ρ)/

√
n +

oP (
√

p/n). Therefore, and since n1/2/p1/2 → ∞, the test is consistent but with a rate which
is smaller than the parametric rate n1/2. Furthermore, as it is seen from (2.10), asymptoti-

cally the power of the test is not affected by the distance between ρ and its value under the
null hypothesis (ρ = 1) and the dominating

√
n/p-term is a decreasing function of p. This

last property of the power function explains the empirically observed fact that increasing the
truncation parameter p in (1.1) leads to a drop of power of the ADF-test; see e.g. Figures

9.2 and 9.5 of Patterson (2011).
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3 A real data example and some practical issues

We now turn to a real data example that shows the power issues associated with the ADF
test in practice. To this end, consider the dataset of Figure 1 that is extensively discussed in

Example 1.2 of the well-known textbook by Shumway and Stoffer (2010). The data represent
yearly average global temperatures deviations from 1880 to 2009 where the deviations are

measured in degrees Celcius from the 1951-1980 average.
A familiar question is whether the data are trending and/or is temperature taking a

‘random walk’, i.e., does the temperature dataset have a unit root? Indeed, a linear trend

can be readily noticed in the temperature dataset, and can help explain (at least in part)
the strong autocorrelation characterizing the data pictured in Figure 2. However, we do not

wish to focus on the Global Warming hypothesis here that would amount to checking the
statistical significance of the linear trend. Rather, we want to test if there is a unit root

process superimposed on the estimated trend whether the latter is negligible or not.
Using the tseries package in the R language, the P-values of the two aforementioned

unit root tests were computed via fitting an equation that includes estimating a linear trend
as in Remark 2.2. The P-value of the Phillips and Perron (1988) test was 0.01 while the

P-value of the ADF test was 0.70. Obviously, this tremendous difference in the P-values
raises serious concerns.

From the documentation of the tseries package it is made apparent that the adf.test

function uses a default value for the order p given by the formula p = b(n−1)1/3c; this implies
a choice of p = 5 for our dataset where n = 130. We first note that this formula gives an

acceptable rate for p under H0 (where it is just needed that p/
√

n → 0) but the rate is not
acceptable under H1 where it is needed that p4/

√
n → 0. In other words, the default formula

gives a value for p that is too large for the asymptotics to work in the stationary case; indeed,
we would need p << n1/8 ≈ 1.8 when n = 130.

The detrended data are shown in Figure 3, and their correlogram of Figure 4 does not
show particularly strong dependence. Indeed, the estimated lag-1 autocorrelation is about 0.6

which does not give strong evidence for a unit root. Furthermore, the partial autocorrelation
of the detrended data shown in Figure 5 suggests that a stationary AR(1) model might
be quite appropriate—at least if one is ready to treat the lag-4 value as negligible for the

purposes of parsimony. Running the ADF regression with the choice p = 1 actually results in
a P-value just slightly under 0.01 that is in close agreement with the P-value of the Phillips

and Perron (1988) test.
The above discussion helps underscore both the claimed loss of power associated with

even a moderately large value of p in the ADF test, as well as the need to scrutinize the
choice of p in practice as the implications can be quite severe.

4 Proofs

Proof of Theorem 2.1: Using the notation ∆Xt,p = (∆Xt, ∆Xt−1, . . . , ∆Xt−p+1)
′

, εt,p =
Xt − ρXt−1 −

∑p
j=1 aj,p∆Xt−j and εt,p = Xt − ρ̂nXt−1 −

∑p
j=1 âj,p∆Xt−j with least squares

10
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Figure 1: Yearly average global temperatures deviations with superimposed fitted linear trend; sample
size n = 130.
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Figure 2: Correlogram of yearly average global temperatures deviations.
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Figure 3: The dataset of yearly average global temperatures deviations after removal of a linear
trend.
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Figure 4: Correlogram of the detrended dataset of yearly average global temperatures deviations.
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Figure 5: Partial autocorrelation of the detrended dataset of yearly average global temperatures
deviations.

estimators ρ̂n and âj,p, j = 1, 2, . . . , p, it is easily verified that

tn = (ρ̂n − 1)/Ŝtd(ρ̂n) = LnR−1
n /(σ̂2

nR−1
n )1/2,

where

Ln =
n∑

t=p+1

Xt−1εt,p − (
n∑

t=p+1

Xt−1∆X
′

t−1,p)(
n∑

t=p+1

∆Xt−1,p∆X
′

t−1,p)
−1(

n∑

t=p+1

∆Xt,pεt,p),

(4.11)

Rn =
n∑

t=p+1

X2
t−1 − (

n∑

t=p+1

Xt−1∆X
′

t−1,p)(
n∑

t=p+1

∆Xt−1,p∆X
′

t−1,p)
−1(

n∑

t=p+1

∆Xt,pXt−1)

(4.12)
and σ̂2

n = (n − p)−1 ∑n
t=p+1 ε̂2

t,p is the error variance estimator. Now, for i, j ∈ {1, 2, . . . , p}
we have that, as n → ∞, n−1 ∑n

t=p+1 ∆Xt−i∆Xt−j → γU(i − j) in probability, and that, by
the same arguments as in Berk (1974), p.493,

‖n−1
n∑

t=p+1

∆Xt−1,p∆X
′

t−1,p‖ = OP (1), (4.13)

where for a matrix C, the norm ‖C‖ = sup‖x‖≤1 ‖Cx‖ is used and ‖x‖ denotes the Euclidean

norm of the vector x. Furthermore,

1

np1/2
‖

n∑

t=p+1

∆Xt−1,pXt−1‖ =
(
p−1

p∑

j=1

(n−1
n∑

t=p+1

∆Xt−jXt−1)
2
)1/2

= OP (1) (4.14)
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since n−1 ∑n
t=p+1 ∆Xt−jXt−1 = n−1 ∑n

t=p+1

∑t−1
l=1 Ut−jUl = OP (1). Finally, since

n−1/2 ∑n
t=p+1 ∆Xt−jεt,p = n−1/2 ∑n

t=p+1 Ut−jεt,p = OP (1) we get that

√
p n−1‖

n∑

t=p+1

∆Xt−1,pεt,p‖ =
p√
n

(
p−1

p∑

j=1

(
1√
n

n∑

t=p+1

∆Xt−jεt,p)
2
)1/2

=
p√
n

OP (1) → 0 (4.15)

as n → ∞. Now, equations (4.13) to (4.15) implies that n−1Ln = n−1 ∑n
t=p+1 Xt−1εt,p+oP (1).

Furthermore, because

n−1
n∑

t=p+1

Xt−1(εt,p − εt) =
p∑

j=1

(aj,p − aj)n
−1

n∑

t=p+1

Xt−1Ut−j +
∞∑

j=p+1

ajn
−1

n∑

t=p+1

Xt−1Ut−j ,

if follows using n−1 ∑n
t=p+1 Xt−1Ut−j = OP (1) and Baxter’s inequality, cf. Lemma 2.2 of

Kreiss et al. (2011), that

|n−1
n∑

t=p+1

Xt−1(εt,p − εt)| ≤ OP (
∞∑

j=p+1

|aj|) → 0,

as p → ∞. Thus,

n−1Ln = n−1
n∑

t=p+1

Xt−1εt + oP (1). (4.16)

Similarly, using (4.13) and (4.14) we obtain that

n−2Rn = n−2
n∑

t=p+1

X2
t−1 + oP (1). (4.17)

Now, as in the proof of Theorem 3.1 in Phillips (1987) and using the invariance principle

for the partial sum process S[nr] = n−1/2 ∑[nr]
j=1 εj of zero mean weakly dependent random

variables satisfying Assumption 1(ii), established in Theorem 1 of Wu and Min (2005), we
get that

n−1Ln ⇒ σ2
ε

∫ 1

0
W (t)dW (t), and n−2Rn ⇒ σ2

ε

∫ 1

0
W 2(t)dt.

2

Proof of Proposition 2.1: Let δj,p, j = 0, 1, . . . , p be the coefficients of ∆Xt−j in the best

linear prediction of Xt based on ∆Xt−j and define lj,p = (1 − j/p), j = 0, 1, . . . , p. We have

E(Xt − PMt,t−p
Xt)

2 = E(Xt −
p∑

j=0

lj,p∆Xt−j)
2 + E(

p∑

j=0

(lj,p − δj,p)∆Xt−j)
2

−2E(
p∑

j=0

(lj,p − δj,p)∆Xt−j)(Xt −
p∑

j=0

lj,p∆Xt−j).
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Note first that E(Xt −
∑p

j=0 lj,p∆Xt−j)
2 = p−1[γ(0) + 2

∑p−1
s=1(1 − s/p)γ(s)], which con-

verges to zero if γ(h) → 0. Furthermore, if
∑∞

h=−∞ |γ(h)| < ∞ then p·E(Xt−
∑p

j=0 lj,p∆Xt−j)
2 →

∑∞
h=−∞ γ(h) = 2πfXt

(0) by the dominate convergence theorem. Now, let Xt(p) = (Xt, Xt−1, . . . , Xt−p)
′

,

Γp+1 = E(Xt(p)Xt(p)
′

) and define the (p + 1)-dimensional vectors δ̃(p) = ((1− δ0,p), (δ0,p −
δ1,p), . . . , (δp−1,p − δp,p), δp,p) and l̃(p) = (0, 1/p, 1/p, . . . , 1/p, 0)

′

. Then the following upper

bound is valid,

E(
p∑

j=0

(lj,p − δj,p)∆Xt−j)
2 = (l̃(p) − δ̃(p))

′

Γp+1(l̃(p)− δ̃(p))

≤ max
λ∈[0,π]

fXt
(λ)‖l̃(p)− δ̃(p)‖2

≤ max
λ∈[0,π]

fXt
(λ)

(
2‖l̃(p)‖2 + 2‖δ̃(p)‖2

)
.

It is easily seen that ‖l̃(p)‖2 = O(p−1) → 0. Furthermore, using the following lower bound
for the mean square prediction error

E(Xt − PMt,t−p
Xt)

2 =

∫ π

−π
|

p∑

j=0

δ̃j,pe
−ijλ|2fXt

(λ)dλ ≥ inf
λ∈[0,π]

fXt
(λ)‖δ̃(p)‖2,

we get that ‖δ̃(p)‖2 → 0 as p → ∞ from which it follows that E(
∑p

j=0(lj,p−δj,p)∆Xt−j)
2 → 0

as p → 0. Finally, by the above results and Cauchy-Schwarz’s inequality, it follows that
|E(

∑p
j=0(lj,p − δj,p)∆Xt−j)(Xt −

∑p
j=0 lj,p∆Xt−j)| → 0 which concludes the proof. 2

Proof of Theorem 2.2: Note that
√

n/p (ρ̂n − ρ) = LnR−1
n where Ln and Rn are defined

in (4.11) and (4.12). Let γ̂0 = (n − p)−1 ∑n
t=p+1 X2

t−1,

d̂p =
( 1

n − p

n∑

t=p+1

∆Xt−iXt−1, i = 1, 2, . . . , p
)′

, and Ĉp =
( 1

n − p

n∑

t=p+1

∆Xt−i∆Xt−j

)
i,j=1,2,...,p

.

We have that

n−1Rn = γ̂0 − d̂
′

pĈ
−1
p d̂p

= γ0 − d
′

pC
−1
p dp + OP (p3/n1/2), (4.18)

where d
′

p = (E(Xt−1∆Xt−j), j = 1, 2, . . . , p) and Cp = E(∆Xt−1,p∆X
′

t−1,p). Notice that

the OP (p3/n1/2) term in (4.18) appears because using the notation τ2
p = γ0 − d

′

pC
−1
p dp and

τ̂2
p = γ̂0 − d̂

′

pĈ
−1
p d̂p, we have that

|τ̂2
p − τ2

p | ≤ |γ̂0 − γ0| + ‖δ̂p − δp‖‖dp‖ + ‖d̂p − dp‖‖δ̂p‖

where δ̂p = Ĉ−1
p d̂p and δp = C−1

p dp. Now, ‖d̂p − dp‖ = OP (p1/2/n1/2) and

p−1/2‖d̂p‖ = {p−1
p∑

j=1

((n− p)−1
n∑

t=p+1

∆Xt−jXt−1)
2}1/2 = OP (1).
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Furthermore,

‖δ̂p − δp‖ = OP (p5/2/n1/2), (4.19)

and

p−1‖δ̂p‖ = oP (1), (4.20)

which implies that |τ̂2
p − τ2

p | = OP (p3/n1/2). We show that (4.19) and (4.20) are true.
To see (4.19) notice first that

δ̂p − δp = Ĉ−1
p ((n − p)−1

n∑

t=p+1

∆Xt−1,put−1,p),

where ut−1,p = Xt−1 −
∑p

j=1 δj,p∆Xt−j and δp = (δ1,p, δ2,p, . . . , δp,p) are the coefficients of the
best linear predictor of Xt−1 based on ∆Xt−j, j = 1, 2, . . . , p. Now,

‖δ̂p − δp‖ ≤ ‖Ĉ−1
p ‖‖(n− p)−1

n∑

t=p+1

∆Xt−1,put−1,p‖ = OP (p5/2/n1/2),

since ‖(n − p)−1 ∑n
t=p+1 ∆Xt−1,put−1,p‖ = OP (p1/2/n1/2), and

‖Ĉ−1
p ‖ = OP (p2). (4.21)

To see why ( 4.21) is true notice that for every p ∈ IN the matrix Cp is positive definite,

‖C−1
p ‖ is the reciprocal of the minimal eigenvalue of Cp. Notice that the spectral density

f∆Xt
(λ) of the differenced process {∆Xt, t ∈ ZZ} satisfies f∆Xt

(λ) = |1− eiλ|2fXt
(λ) and that

for the minimal eigenvalue of Cp we have

inf
‖x‖=1

p∑

j=1

p∑

k=1

xjCov(∆Xt−j, ∆Xt−k)xk = inf
‖x‖=1

1

2π

∫ π

−π

∣∣∣
p∑

j=1

xje
ijλ

∣∣∣
2
fXt

(λ)|1− eiλ|2dλ

≥ inf
λ∈[0,π]

fXt
(λ) inf

‖x‖=1

1

2π

∫ π

−π

∣∣∣
p∑

j=1

xje
ijλ

∣∣∣
2
|1 − eiλ|2dλ

= inf
λ∈[0,π]

fXt
(λ)λ̃min,

where λ̃min denotes the minimal eigenvalue of the p × p covariance matrix of the process

with spectral density (2π)−1|1− eiλ|2 = (2π)−12(1− cos(λ)), i.e. of the noninvertible MA(1)
process Yt = εt − εt−1. For this process the eigenvalues of the p-dimensional correlation

matrix are given by λ̃k = 2(1− cos((kπ)/(p + 1))), k = 1, 2, . . . , p. Thus, ‖C−1
p ‖ ≤ 1/K(1−

cos(π/(p + 1))) = O(p2), where the last equality follows because [1 − cos(π/(p + 1))] ∼ p−2.

Note that ‖C−1
p ‖ → ∞ as p → ∞ since the minimal eigenvalue of Cp approaches zero as

p → ∞. Furthermore, it is easily seen that ‖Ĉp − Cp‖ = OP (p/
√

n) from which we get using
‖C−1

p ‖ = O(p2) that

‖Ĉ−1
p − C−1

p ‖ ≤
‖C−1

p ‖2‖Ĉp − Cp‖
1 − ‖Ĉp − Cp‖‖C−1

p ‖
= OP (p5/2/n1/2).
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Thus,

‖Ĉ−1
p ‖ ≤ ‖C−1

p ‖ + ‖Ĉ−1
p − C−1

p ‖ = OP (p2 + p5/2/n1/2).

To see (4.20) notice that

‖δ̂p‖ ≤ ‖δp‖ + ‖δ̂p − δp‖.

Now, ‖δ̂p − δp‖ = OP (p5/2/n1/2). Furthermore, for lp = (l1,p, l2,p, . . . , lp,p)
′

, lj,p = (1 − j/p),
j = 1, 2, . . . , p we have ‖δp‖ ≤ ‖lp‖ + ‖δp − lp‖. Now, ‖lp‖ = O(

√
p) while ‖lp − δp‖ = o(p)

which follows because

(lp − dp)
′

Cp(lp − dp) ≥ λmin‖lp − δp‖2

≥ inf
λ∈[0,π]

fXt
(λ)2(1− cos(π/(p + 1))‖lp − dp‖2

∼ Kp−2‖lp − δp‖2 ≥ 0,

and as the proof of Proposition 2.1 shows (lp−dp)
′

Cp(lp−dp) = E(
∑p

j=0(lj,p−δj,p)∆Xt−j)
2 →

0, as p → ∞.

This concludes the proof of assertion (4.18).
Now,

pτ2
p → 2πfXt

(0) = σ2
ε (1 − ρ)

−2
, (4.22)

by Proposition 2.1. Thus

p

n
Rn = σ2

ε(1 − ρ)−2 + OP (p4/n1/2). (4.23)

Let V̂t−1,p =
√

p(Xt−1 − d̂
′

pĈ
−1
p ∆Xt−1,p) and Vt−1,p =

√
p(Xt−1 − d

′

pC
−1
p ∆Xt−1,p). Then,

√
p

n
Ln =

1√
n

n∑

t=p+1

V̂t−1,pεt,p

=
1√
n

n∑

t=p+1

Vt−1,pεt +
1√
n

n∑

t=p+1

(V̂t−1,p − Vt−1,p)εt

+
1√
n

n∑

t=p+1

V̂t−1,p(εt,p − εt)

=
1√
n

n∑

t=p+1

Vt−1,pεt + L1,n + L2,n,

with an obvious notation for the remainder terms L1,n and L2,n. For these terms we have

L1,n ≤ √
p‖δ̂ − δ‖‖n−1/2

n∑

t=p+1

∆Xt−1,pεt‖

= OP (p7/2/n1/2) → 0 as n → ∞.
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and

|L2,n| ≤ (n−1
n∑

t=p+1

V̂ 2
t−1,p)

1/2(
n∑

t=p+1

(εt,p − εt)
2)1/2

= OP (
√

n
n∑

j=p+1

|aj|).

Notice that the last equality above follows since under the assumptions made,

n−1
n∑

t=p+1

V̂ 2
t−1,p = n−1

n∑

t=p+1

p(Xt−1 − δ
′

p∆Xt−1,p)
2 + oP (1) = OP (1),

and by Baxter’s inequality, see Kreiss et al. (2011), Lemma 2.2,

E(
n∑

t=p+1

(εt,p − εt)
2) = O(

√
n

∞∑

j=p+1

|aj|).

The proof of the theorem is then concluded since under the assumptions made and by a
central limit theorem for martingale differences, see Theorem 1 of Brown(1971),

1√
n

n∑

t=p+1

Vt−1,pεt ⇒ N (0, σ4
ε(1− ρ)−2). (4.24)
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