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Abstract 

Two models are presented that compute a quasi-regular 
mapping. One was based on localist representations of items 
in the quasi-regular domain, the other was based on 
distributed representations. In each model, a control 
parameter termed input gain was modulated over the one and 
only level of representation that mapped inputs to outputs. 
Input gain caused both models to shift between regularity-
based and item-based modes of processing. Performance on 
irregular items was selectively impaired in the regularity-
based modes, whereas performance on novel items was 
selectively impaired in the item-based modes. Thus, each 
model exhibited a double dissociation without separable 
processing components. These results are discussed in the 
context of analogous dissociations found in language domains 
such as word reading and inflectional morphology. 

Introduction 
The quasi-regular nature of language has played a central 
role in theories of language processing in the mind and 
brain. On the one hand, language processes must be able to 
handle novel inputs, e.g., skilled readers can give reasonable 
pronunciations and conjugations to verbs that they have 
never encountered before. These abilities demonstrate how 
language usage can be generative on the basis of 
regularities. On the other hand, irregular items often exist 
for which the regularities do not apply. Thus, language 
processes must be able to override the regularities, when 
appropriate, with knowledge that is applicable to only a few 
items, or even to just one. How are language processes 
structured to handle both regularities, and the exceptions to 
those regularities? 

One answer to this question is that any given quasi-
regular domain is processed by two complementary routes. 
A regularity-based route is specialized to capture the 
regularities that span across linguistic items in the domain, 
and an item-based route is specialized to capture knowledge 
that is specific to items in the domain. For instance, in the 
words-and-rules theory (Pinker, 1999), rules are used to 
process regular inflectional morphologys (e.g., WALK-
WALKED), and a lexicon is used to process irregular 
inflections (e.g., GO-WENT). In the dual-route cascaded 
(DRC) theory of word reading (Coltheart, Curtis, Atkins, & 
Haller, 93; Coltheart et al., 2001), a set of grapheme-to-
phoneme correspondence rules is used to capture 

regularities between the spellings and sounds of words, and 
a system of lexical knowledge serves to override the rules 
when necessary (e.g., PINT does not rhyme with MINT).  

Alternatively, single-route theories have been proposed in 
which the mechanisms and representations for handling 
regularities and irregularities are inseparable. For instance, 
Rumelhart and McClelland (1986) proposed a theory in 
which a single route of processing was used to generate the 
past tense of both regular and irregular verbs (also see, e.g., 
Joanisse & Seidenberg, 1999). Kello and Plaut (2003) 
proposed a theory of word reading in which the mapping 
from spelling to sound is mediated by a single level of 
learned representations (also see Plaut & Gonnerman, 
2000). 

A wide variety of evidence has been brought to bear on 
dual-route and single-route theories of language processing 
(for reviews, see Coltheart et al., 2001; McClelland & 
Patterson, 2002; Pinker, 1999; Pinker & Ullman, 2002; 
Plaut, McClelland, Seidenberg, & Patterson, 1996). Much of 
this evidence speaks to one or another particularity of a 
given theory. Every piece of evidence contributes to the 
overall debate, but here we focus on one kind of evidence 
that is relevant to all theories in question: dissociations 
between regularity-based and item-based processing. 

Double dissociations have been observed in language 
processing, and some have been interpreted as evidence for 
separable regularity-based and item-based components of 
the language system. In the area of inflectional morphology, 
Ullman and his colleagues (Ullman et al., 1997) reported 
evidence for a dissociation between the past tense formation 
of regular and irregular verbs in English. They found that 
Alzheimer’s patients, as well as aphasics with posterior 
lesions, were poor at generating the past tense of verbs with 
irregular inflections, but relatively normal with regular 
inflections. They found the opposite pattern for Parkinson’s 
patients and aphasics with anterior lesions. Marslen-Wilson 
and Tyler (1997; 1998) found a similar dissociation in a 
priming paradigm with language-impaired patients.  

In the area of word reading, deficits found in surface and 
phonological dyslexia have been interpreted analogously to 
those found in posterior versus anterior aphasics. For 
instance, Berhmann and Bub (1992) reported on a surface 
dyslexic patient MP for whom the ability to read exception 
words (particularly of low frequency) was greatly impaired, 
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whereas the ability to read both regular words and nonwords 
was mostly intact. By contrast, Funnell (1983) reported on a 
phonological dyslexic patient WB for whom the ability to 
read nonwords (even simple CVC nonwords) was greatly 
impaired, whereas the ability to read both easy and difficult 
words was mostly intact.  

The impairments of these and other patients have a 
straightforward explanation in terms of separable item-
based and regularity-based processing components. The 
deficits in Alzheimer’s patients, posterior aphasics, and 
surface dyslexics all reflect damage to an item-based 
component of processing (e.g., a lexicon) that is responsible 
for irregular items (not necessarily the same component 
across types of deficits). The deficits in Parkinson’s 
patients, anterior aphasics, and phonological dyslexics all 
reflect damage to a regularity-based component of 
processing (e.g., rules) that is responsible for novel items. 

These double dissociations appear to challenge single-
route theories because item-based and regularity-based 
processes are not separable in single-route theories. 
Proponents of single-route theories have responded to this 
evidence in a number of ways. In some cases, 
methodologies or interpretations of data have been called 
into question (e.g., McClelland & Patterson, 2002). In other 
cases, the data have been explained in terms of dissociations 
between semantic and phonological components of 
processing, rather than item-based and regularity-based 
components (e.g., Joanisse & Seidenberg, 1999). The 
research to date has left open the question of whether 
dissociations between the processing of novel and irregular 
items can be explained without reference to an architectural 
dichotomy in the language system. 

Current Work 
The primary aim of the current study was to demonstrate 
how a dissociation between item-based and regularity-based 
processing can occur in a single-route architecture without 
any manipulation of separable processing components, i.e., 
without reference to separable semantic and phonological 
contributions to processing. The basic idea is that a single 
component of processing can shift between two 
qualitatively different “modes” of processing as a function 
of one control parameter. Specifically, we present two 
different kinds of connectionist models that possess a 
control parameter termed input gain. We show that, in both 
types of models, input gain can cause a shift in processing 
between an item-based mode and a regularity-based mode. 
Furthermore, we show how this shift can give rise to a 
double dissociation in performance on irregular versus 
novel inputs. 

The models were built to process an abstract, quasi-
regular mapping. Properties of the mapping were analogous 
to basic properties of quasi-regularity in language domains. 
However, items did not correspond to any particular words 
in a particular language domain. The mapping was created 
primarily to facilitate analysis of the models, rather than to 
simulate a particular language phenomenon such as the past 

tense formation in English. Therefore, the models are 
intended and reported only as proofs-of-concept.  

The first model used a single level of localist nodes to 
map input patterns onto output patterns. Each node 
represented one item in the training corpus, and the 
activation of each node was a function of the similarity 
between the item it represented, and the current input to the 
model. Thus, this model could be considered as analogy-
based because both known and novel inputs were explicitly 
processed in terms of the similarity of their input patterns to 
that of all items in the corpus (see Albright & Hayes, 2003; 
Nakisa, Plunkett, & Hahn, 2000). 

The second model used a distributed level of 
representation to map input patterns onto output patterns. 
Hidden representations were learned via backpropagation 
(Rumelhart, Hinton, & Williams, 1985), and each hidden 
unit contributed to the processing of many, if not all, items 
in the training corpus. Representations learned through 
backpropagation tend to map similar inputs onto similar 
outputs (Rumelhart et al., 1995). Thus, as in the analogy 
model, the distributed model processed both known and 
novel inputs in terms of their similarity to items in the 
corpus. But unlike the analogy model, hidden 
representations were shaped by similarities among both 
input and output patterns in the corpus, as well as the 
relationships between inputs and outputs. 

In both models, input gain is a multiplicative scaling 
parameter on the net inputs to units, be they localist nodes 
or hidden units. The current simulation results show that the 
modulation of input gain at testing caused similar effects in 
both models. At low levels of input gain, both models failed 
to map irregular items to their appropriate outputs, but 
succeeded in mapping regular items and novel inputs. At 
high levels of input gain, both models succeeded at mapping 
both regular and irregular items, but performed poorly with 
novel inputs. 

The reason why input gain caused this double dissociation 
was different for each model. In the analogy model, input 
gain modulated the intensity of competition for activation 
among localist nodes. Low levels of competition caused 
outputs to be based on the summed contributions from many 
partially activated nodes. Regularities across nodes were 
extracted in these summations to the point of overriding any 
exceptions to the regularities. By contrast, high levels of 
competition caused a winner-take-all mode of processing in 
which a known input correctly activated its corresponding 
node, whereas a novel input incorrectly activated a node 
corresponding to a similar, known item. 

In the distributed model, input gain modulated the 
sharpness of a sigmoidal activation function. Low levels of 
input gain caused hidden units to operate mostly in their 
linear range, thereby emphasizing the componential (i.e., 
regular) relationships that were learned between inputs and 
outputs. High levels of input gain caused hidden units to 
operate mostly in their asymptotic range, thereby 
emphasizing the conjunctive relationships that were learned 
between inputs and outputs (for a discussion of 
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componential and conjunctive coding, see O’Reilly, 2001). 
Componential relationships supported only the processing 
of regular and novel items, whereas conjunctive 
relationships supported only the processing of known items. 

Simulation Methods 
Input and Output Representations were constructed from 
a 12 dimensional binary space. Out of 212 = 4096 possible 
input patterns, one fourth (1024) were chosen at random to 
constitute the corpus of items. Each chosen input pattern 
was associated with one output pattern. Output patterns 
were created in two steps. First, each input pattern was 
copied to its corresponding output pattern (i.e., the identity 
mapping. Note, however, that the results apply to all linearly 
separable mappings). Second, the bit value of each 
dimension, for each output pattern, was flipped with a 5% 
probability. Thus, the identity mapping was a regularity, and 
flipped values were exceptions to that regularity. This 
procedure resulted in 563 fully regular items (no flipped 
bits), and 461 irregular items with one to four flipped bits 
per item. The 3072 remaining patterns served as novel items 
during testing. 

For the analogy model, there were 12 input units 
corresponding to the 12 input dimensions, and dimension 
values were coded as activations of ±1 on the inputs. For the 
distributed model, there were 24 input units, half of which 
coded the 12 dimension values as activations of 0 or 1. The 
other half were activated as flipped values of the first half, 
i.e., 1–x, where x was each of the first 12 activations. The 
x|1–x coding scheme was used because the distributed 
model was trained via backpropagation (this scheme was 
not necessary in the analogy model because it was not 
trained; see next two sections). In backpropagation, no 
learning will occur on a unit’s sending weights when the 
activation value of that unit is zero. Therefore, the x|1–x 
coding scheme ensured that weight derivatives were 
generated for every input dimension, on every training 
episode. 

For both models, there were 12 output units 
corresponding to the 12 output dimensions, and dimension 
values were coded as targets of 0 or 1 on the outputs. 
 
Analogy Model Architecture. In the analogy model, input 
units were fully connected to 1024 “logogen” units. Each 
logogen represented one item in the corpus, and the weights 
on incoming connections from input units were set 
according to each logogen’s input pattern, i.e., +1 weights 
for positive input dimensions, and -1 weights for negative 
dimensions. Each logogen projected outgoing connections 
to all 12 output units, and the weights on outgoing 
connections were set according to each logogen’s output 
pattern (as for incoming connections). 

To process a given item, input units were first set to the 
item’s input pattern. Logogen activations were then 
calculated with the normalized exponential function (see 
Nosofsky, 1990), 

∑=
i

II
j

ij eea γεγε
, 

where I was the net input to a unit, calculated as the dot 
product between the input vector and the incoming weight 
vector, γ  was input gain, ε  was noise sampled evenly in the 
range ±0.1, and i spanned all logogens. Each output unit was 
then calculated as the sigmoid of the dot product between 
the logogen vector and its incoming weight vector. Noise 
was included to break perfect ties between very small (e.g., 
two or three) numbers of activated logogens. Such ties 
occurred more often at high levels of input gain. 

 
Distributed Model Architecture. In the distributed model, 
the input units were fully connected to 200 hidden units, and 
the hidden units were fully connected to the output units 
The number of hidden units was determined through pilot 
testing to be about 50 units more than the minimum needed 
to learn the mapping. However, results were very similar 
over a range of hidden unit numbers. Hidden units were 
calculated with the hyperbolic tangent function, 

( )jj Ia γεtanh= , 

which is analogous to the logistic, except it has asymptotes 
at ±1 instead of 0 and 1. Input gain (γ ) was fixed at 1 during 
training, and varied during testing (see next section). Noise 
(ε ) was fixed at 0.1 (as in the analogy model) during both 
training and testing. Output units were calculated as in the 
analogy model. 

Connection weights were initialized to random values in 
the range ±0.1, and weights were learned by gradient 
descent, 

( )ijij wEw ∂∂=∆ η , 

where wij was the connection weight from unit j to i, η  was 
the learning rate (fixed at 0.001), and E was cross-entropy 
error (Rumelhart et al., 1995). Weight changes were made 
each time after weight derivatives had been accumulated 
over all 1024 items in the corpus. Weight derivatives were 
calculated for each item as follows: input units were set to 
the item’s input pattern, activation was propagated forward 
through the network, an error signal was calculated from the 
difference between actual and target outputs, and the error 
signal was backpropagated to generate the weight 
derivatives. Weight updates were repeated until every 
output unit was with 0.1 of its target for every item in the 
training corpus. This criterion was reached after 3000 passes 
through the corpus. 
 
Testing Procedure. For both models, performance was 
assessed on each test item by setting the input units to the 
item’s input pattern, and then determining whether the 
activation of each output unit was within 0.5 of its target 
(which was either 0 or 1). Model outputs were correct only 
when the activations of all 12 output units were within 
range. Targets for items in the corpus were set according to 
each item’s output pattern. Targets for the 3072 novel items 
were set according to each item’s input pattern, i.e., the 
identity mapping. 
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To dissociate item-based and regularity-based processing, 
input gain was varied as a single control parameter over the 
logogen units in the analogy model and over the hidden 
units in the distributed model. The reported levels of input 
gain were between 0.5 and 3 for the analogy model, and 
0.333 and 3 for the distributed model. These ranges were 
chosen to show asymptotic performance at the lower and 
upper ends, i.e., the patterns of behavior did not change 
substantially beyond these ranges. 

Simulation Results 
Mean accuracies for the analogy model are graphed in 
Figure 1 as a function of input gain and item type (regular, 
irregular, or novel). The same are graphed for the distributed 
model in Figure 2. 
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Figure 1: Mean accuracies for the analogy model 
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Figure 2: Mean accuracies for the distributed model 

 
Figures 1 and 2 show that both models exhibited a clear 

dissociation in performance on irregular items compared 
with novel items. At low levels of input gain, generalization 
of the identity mapping to novel inputs was essentially 
perfect, as was performance on regular items. By contrast, 
performance on irregular items dropped to 0%, at which 
point all inputs resulted in the identity mapping. For 
irregular items, application of the identity mapping can be 

considered as a regularization error because, for the quasi-
regular domain constructed here, the identity mapping is the 
regular mapping. 

At high levels of input gain, performance on all items in 
the corpus was near perfect in both models. By contrast, 
mean accuracies for the novel items dropped to as low as 
16% for the analogy model, and 46% for the distributed 
model. Of all the analogy model’s erroneous responses to 
novel items at the highest level of input gain, 97% were 
output patterns that corresponded to output patterns in the 
training corpus. These responses can be considered as 
lexicalization errors because they are responses for other 
items in the model’s “lexicon”.  The same analysis of errors 
made by the distributed model showed only 27% 
lexicalization errors (where the chance rate was 25%). 

These results show that the manipulation of input gain as 
a single control parameter, over a single level of 
representation, caused a clear double dissociation in both 
models. To better understand the similarities and differences 
in processing between these models, three visualizations of 
the input-output mappings for each model are shown in 
Figure 3.  

In each visualization, all 4096 points in the 12 
dimensional input space are arranged on a grid such that all 
adjacent vertices differ by only one bit. To illustrate, near 
the lower left-hand corner of each plot is the vertex where 
all 12 input dimensions are negative. The next vertex up and 
the next vertex to the right each have one positive input 
dimension, and so on. Each grid “wraps around” such that 
vertices on the left edge are adjacent to the corresponding 
vertices on the right edge, and likewise for the top and 
bottom edges. Thus, the 2D space of each grid represents a 
portion of the similarity structure in the 12D input space.  In 
addition, 10 evenly spaced points are interpolated in each 
space between each pair of vertices. Given that each side 
has 64 vertices (642 = 4096), there are 6402 = 409,600 
points of the input space represented in each plot. 

At each point, a gray scale value is plotted that represents 
the summed activation of four output units for the 
corresponding input pattern. The same four output units 
(chosen arbitrarily) are shown at all points in all plots. The 
gray scale values are calculated such that, the darker the 
point, the closer the outputs were to 0.5. Conversely, whiter 
points indicate where the outputs were at their asymptotes 
(0 or 1). Thus, the dark borders in each plot represent the 
decision boundaries in each model, that is, where one or 
more of the four outputs crossed the middle point between 
asymptotes as a function of change in the input space. 

Plots are shown for each model, at three different levels 
of input gain: the low end (0.5 in the analogy model and 
0.333 in the distributed model; top row), the high end (3 in 
both models; bottom row), and the point at which accuracies 
for irregular items and novel items are equal (1.1 in the 
analogy model and 0.8 in the distributed model; middle 
row). Overall differences in plot densities for the analogy 
model, compared with plot densities for the distributed 
model, were due to differences in the polarity of the output 
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units: outputs in the distributed model tended to be closer to 
0 or 1, i.e., values that corresponded to white points on the 
plots. 

 
Analogy Model         Distributed Model 

  

  

  
Figure 3. Visualizations for each model at low (top), 

medium (middle), and high (bottom) levels of input gain 
 

The grid patterns seen in the top two plots of Figure 3 
show that both models processed the identity mapping at the 
low end of input gain. In fact, if all 12 outputs had been 
represented, each plot would show a 64 by 64 grid pattern, 
where the grid lines fall exactly between the vertices. Thus, 
the grid reflects the finding that, at low input gain, the 
identity mapping was generalized to all inputs, including 
those for novel and irregular items. The grid is a depiction 
of regularity-based processing in each model because the 
identity mapping was the regularity in our quasi-regular 
domain. 

The middle two plots show that the grid pattern became 
distorted for both models at moderate levels of input gain, 
and “pockets” of decision boundaries began to appear. 
Given that mean accuracies were about 80% for irregular 
items at these levels of input gain, one can infer that the 
distortions and pockets reflect the “warping” of the identity 
mapping that was necessary to process the irregular items. 

Moreover, given that mean accuracies were about 80% for 
novel items as well, one can infer that these distortions and 
pockets were mostly isolated to the irregular items. These 
plots show that a balance was struck at moderate levels of 
input gain between item-based and regularity-based 
processing. 

The bottom two plots show that, for each model, the grid 
pattern was mostly replaced by pockets of decision 
boundaries at the high end of input gain. These pockets have 
a fairly simple interpretation for the analogy model. Recall 
that, at the high end of input gain, 97% of the errors for 
novel items were lexicalizations. What this means is that the 
pockets show where known inputs were mapped correctly, 
and where novel items were mapped incorrectly to similar 
known items. These “item pockets” are a depiction of item-
based processing in the analogy model. 

In the distributed model, the pockets cannot be readily 
interpreted as item pockets because a substantial number of 
novel items were mapped correctly at the high end of input 
gain (46%), and the proportion of lexicalization errors for 
novel items was not much above chance (27%). It appears 
that the distortions needed for accurate mappings of 
irregular items had “spread out” at high levels of input gain. 
Because the mapping of regular items is mostly correct at 
the high end of input gain, one can infer that the decision 
boundaries spread out over untrained (novel) regions of the 
space more than they did over trained (known) regions. It is 
this selective spread of decision boundaries that indicates 
item-based processing at the high end of input gain. 

 Conclusions 
The current simulations provide a new demonstration of 
how double dissociations can occur without separable 
processing components (see also Devlin & Gonnerman, 
1998; Juola, 2000). Performance on novel versus irregular 
stimuli was dissociated by shifting between regularity-based 
and item-based modes of processing.  Unlike previous 
demonstrations, these modes existed at the ends of a 
continuum created by one control parameter.   

It is important to acknowledge that the current work only 
opens the door to an alternative to the rules/lexicon and 
phonology/semantics explanations of double dissociations. 
It is unclear whether input gain would provide a satisfying 
account of specific empirical results. For instance, input 
gain would not appear to handle dissociations in which all 
regular items, both novel and known, are impaired 
(Marslen-Wilson & Tyler, 1997, 1998; Ullman et al., 1997). 
Also, the current simulations did not include subregularities 
or variations in the frequency of items. These factors have 
been simulated successfully (Kello, Sibley, & Plaut, 
submitted), but only as demonstrations. Subregularities 
allowed for model errors that were more like patient errors, 
but further work is necessary to test the simulated errors. 

The current simulations also raise a number of larger 
questions, such as: Are there any testable differences 
between the analogy and distributed models presented here? 
Do these simulation results have implications for current 
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theories of word reading and inflectional morphology? Are 
the reported models consistent with the localization of 
regularity-based and item-based processing in the brain, to 
the extent that evidence exists for such localization? What 
might be the neural bases of input gain? These and other 
questions await further research. 
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