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ABSTRACT OF THE DISSERTATION

Thermal and Power Management for Network and Data Center Applications

by

Chih-Hsun Chou

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2017

Dr. Laxmi N. Bhuyan, Chairperson

The last decade has brought an explosive growth of delay-sensitive interactive

services that have become an integral part of our lives and constituted an increasingly

high portion of network and data center workloads. To attract users and generate revenue,

interactive services require high-quality and timely responses. Further, these applications

are typically deployed over a large set of high performance servers consuming a significant

amount of power/energy. The high power/energy consumption not only directly impacts

the operation cost, it also results in high operating temperature, which incurs exponentially

increased cooling cost and performance degradation.

In this thesis, we focus on developing power management techniques for network

and data center applications. We propose various techniques to reduce the power/energy

consumption while satisfying different performance constraints. First, we propose a per-core

power management technique based on CPU sleep states for various network applications.

The packets are queued in a buffer so that the core can sleep longer. In order to limit

the operating temperature, we control the duration that a core can be active and inactive.

vi



Moreover, we develop a heterogeneous load distribution algorithm to achieve better trade-

off between thermal behavior and power saving. Second, due to random nature of packet

arrivals and packet processing times, satisfying the packet delay constraint is challenging.

By developing statistical performance models, we develop a runtime technique to determine

when, how long and which cores should be inactive to reduce the power consumption.

Unlike network applications, performance of interactive applications is defined by

strict tail latency constraints. With the fast-varying traffic patterns, to satisfy the tail

latency constraint, we first propose a dynamic sleep scheme which adjusts the wakeup time

of the CPU cores based on request arrivals. Followed by a detailed performance analysis,

we conclude that the state transition overhead is another source of energy inefficiency. We

propose an all-encompassing power management technique, called µDPM, which coordinates

sleep, speed scaling and request dispatching to reduce active, idle and state transition energy

consumption all together. Finally, we consider a web search application and observe that

the result quality and tail latency together determine the system-wide performance and

energy consumption. We explore the application characteristics and propose a quality and

latency aware power management technique by judiciously discarding long query executions

with ISN-aggregator coordination. Through extensive experiments, we conclude that our

schemes significantly reduce the energy consumption while satisfying both the quality and

tail latency constrains.
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Chapter 1

Introduction

With the explosive growth in the amount of data over the Internet, the network

infrastructure and content providers require orders-of-magnitude increase in the capability

to meet the throughput and QoS requirement of users. The applications range from network

packet processing to the servers in data centers that serve the users requests. The general

purpose multicore processors provide the flexibility and high performance to deploy various

packet processing algorithms, such as IP forwarding [41], packet classification [89] and deep

packet inspection [101], and are commonly deployed in the network infrastructure. Similarly,

they form the basic server architecture for data center applications, such as memcached [7,

47] and web search [1,47]. Usually, the network and data center infrastructures are designed

with over provisioning to meet the QoS demands, giving rise to low energy proportionality.

Thus, increasing the performance and decreasing the power consumption are first-order

design goals of modern network and datacenter servers.

We consider network packet processing and data center applications under the
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same umbrella because the requests arrive at a server and are served non-deterministically.

The service time and arrival pattern vary from request to request and application to applica-

tion. Along with the high throughput, power consumption plays an increasingly important

role in network and datacenter applications. Due to the varying traffic load and non-

deterministic request arrival pattern, current multicore servers for these applications lack

energy proportionality – the power consumption does not scale down proportionally with

the traffic load. Because the service capability is provisioned with peak traffic demand,

significant amount of energy is wasted during the medium and low traffic periods.

Both network and datacenter applications exhibit ON/OFF patterns [23], as shown

in figure 1.1. The x-axis shows the random packet arrivals to a server and y-axis shows

the work in queue. The power consumption of the server is shown in dotted red line.

The CPU core consumes active power during the ON period (also known as busy period)

when requests are being processed. During the OFF period (or idle period), where no

request arrives, the CPU consumes idle power, which is less than the active power, but still

quite high. The OFF period between batches of requests provides opportunities to perform

Figure 1.1: The packet/request processing and power consumption pattern.
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power management. It is important to note that the length of ON/OFF period is not

deterministic, and depends on the request arrival and service rates. At the hardware level,

two main techniques are used for reducing the energy consumption: (1) Dynamic Voltage

and Frequency Scaling and (2) CPU Sleep. The first technique, Dynamic Voltage and

Frequency Scaling (DVFS), reduces or increases processor voltage/frequency just enough

to meet the performance requirement. DVFS can be either chip-wide, where the entire

chip is scaled as one unit, or per-core, where individual cores on the chip can be scaled at

different rates. Per-core DVFS adjusts the frequency of each core individually at runtime

with on-chip voltage regulators. Although it is more complex to implement, per-core DVFS

achieves greater power savings with its fine-grain control over individual cores. DVFS has

been applied for network packet processing and data center applications [23, 76, 78, 80, 92].

However, two main physical limitations greatly affect the effectiveness of DVFS. First, the

operating voltage approaches the transistor threshold voltage as technology advances, hence

decreasing the room for voltage down-scaling [93]. Second, DVFS focuses on reducing the

dynamic power consumption only, but static power consumption has become more dominant

in today’s multicore processors with more advanced manufacturing process [66, 72]. These

limitations can not be overcome without some breakthrough in the transistor design.

The second technique, CPU sleep, minimizes leakage current when a core is idle

by powering down different CPU components. Modern CPUs provide succession of per-core

idle states (called sleep states or C-states), where different CPU core components are turned

off. The transition time of a sleep state depends on the degree of sleep. The deeper the

sleep state, the more time it takes to enter/exit. Because of the state transition overhead,

3



it only makes sense to enter a C-state if inactive time is beyond a certain threshold. Some

work proposed to put the entire processor/device into idle states during periods of inactiv-

ity [76, 91]. Also, a few papers considered switching off a few CPU cores depending on the

throughput requirement [48,80,92]. While it is promising on reducing energy consumption,

some application execution characteristics limit the use of CPU sleep state for energy re-

duction. First, for parallel network/datacenter applications, the idle periods of individual

cores, each serving independent jobs, hardly ever align. As a result, the effectiveness of

processor idle low-power modes is reduced because of the needs of frequent waking up. The

processor-wide idleness rapidly vanishes as the traffic load or number of cores grows. Also,

waking up the cores from processor level idle states takes a long time for which the OS does

not drive them to switch off modes during normal operation. Second, because of the state

transition energy overhead, the natural idle periods are not long enough for the OS to put

cores into the processor level deep sleep states.

Several researches have been done on reducing the energy consumption by turning

off the servers. In [100], “buffer and burst” is proposed to turn off the network router

for a fixed amount of time and its impact on the energy consumption and packet latency

is investigated. However, this approach focuses on a single device and does not address

the problem in multiple cores/servers scenario. Also, it still suffers from the limitation of

long state transition latency. In [48], a similar situation of multiple servers with active and

inactive states is analyzed. This work focuses on developing various policies to determine

when and which sleep states the server should enter. However, they focus on the centralized

queue scheme, where off state is a natural extension of the sleep states. The multicore packet

4



processing is usually modeled as distributed queue scheme, where off and sleep states differ

significantly. Second, they did not incorporate various C-states in the CPU that suffers

from long transition overhead or practically verify the analysis.

Besides power and energy, temperature and thermal constraints also pose a sig-

nificant challenge to future system design. As the size of the multicore chip decreases with

the advancement of the manufacture process, the power density increases significantly. This

poses a major challenge toward thermal management in order to maintain the chip tem-

perature within the operating limit. It is known that high operating temperature adversely

affects not only the system performance and leakage power, but also the throughput [43],

circuit reliability and chip lifetime [111]. In addition, the cooling and packaging cost for

heat dissipation increases exponentially with the peak temperature [110]. In the “run-to-

finish” scientific applications, the CPU always consumes active power and generates heat

while running, and its temperature simply rises to saturation point until it stabilizes. The

ON/OFF pattern of network applications exhibit a sawtooth temperature behavior, where

the CPU core temperature rises during the ON period, and falls during the idle period.

Although reducing the busy/idle period power consumption through DVFS and CPU sleep

will help slow down the temperature rise and speed up the CPU cooling, the length of

busy/idle period will also need to be considered while designing thermal aware scheduling

algorithm. Moreover, in multicore CPU, since the cores are densely packed, the tempera-

ture variation of a core will have great impact on its neighboring core due to the horizontal

heat flows. These complex thermal interactions make the problem challenging in multicore

thermal management.
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In chapter 3, we present a novel power aware thermal management algorithm to

achieve power saving in multicore processors by employing a vacation scheme. In vaca-

tion scheme, we focus on controlling the duration of both active and sleep periods. We

force the core to sleep for a fixed amount of time in different sleep states. We implement

the scheme through the idle states (C-state) provided by the OS in the CPU and show

their effectiveness both through analysis and experimental data. Then, we apply thermal

constraint to our scheme. To predict the performance, we develop the multicore thermal

RC models considering the temperature coupling among cores. Moreover, we derive the

power consumption model considering the CPU C-states, and latency model through va-

cation queuing theory [113]. By combining these models, we can accurately depict the

performance with our multicore vacation scheme. Due to the non-linear performance be-

haviour with different traffic loads, we propose a heterogeneous load distribution, which

creates more opportunities for power saving. Besides maintaining processor temperature

below the temperature constraint, our technique achieves higher sustainable load and bet-

ter power saving with minimum latency increase compared to existing thermal management

techniques. In chapter 4, we propose a multicore idle period power management scheme

by dynamically adjusting the per-core sleep time with different traffic. During the sleep

period, the core can enter deep idle state without being waken up prematurely. We call

this “smart sleep”, when the core sleeps and the arriving requests are queued. Moreover,

we explore the possibility of completely turning off some CPU cores by redistributing the

traffic onto a subset of cores. By doing so, minimizing the power consumption becomes

a two-dimensional optimization problem with both time (sleep) and space (off) variations.
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We derive the expected idle and busy periods by considering the length of the core sleep,

the number of inactive cores, request service time and the traffic load. By combining these

models, we can find the behavior of power consumption under our proposed scheme. Also,

we derive the response time model using the M/G/1 queuing model with vacation [113]. Our

proposed technique overcomes the limitations that currently exist in the CPU sleep power

management scheme, and provide better power-performance trade-offs compared with the

existing techniques. The experimental results show that our proposed technique can achieve

more than 35% power saving and 60% increase in energy proportionality under real world

traffic trace compared with the existing power management techniques.

While throughput remains critical performance requirement for network appli-

cations, latency-critical applications are becoming increasingly common in current data

centers and pose new challenges for system designers. They exhibit similar ON/OFF char-

acteristics as network applications. Moreover, tail latency, not average latency, determines

the quality of service for these applications. Servers running latency-critical workloads are

kept lightly loaded to meet strict latency targets, with typical utilization between 10% and

50% [21,91]. This low utilization wastes billions of dollars annually because servers are not

energy-proportional and have poor energy efficiency at low server utilization [21,69,86,117].

Although servers are usually kept lightly loaded, peak load is considered when

setting the proper target tail latency. Thus, the tail latency of servers running under low

load will be far lower than the target tail latency. Figure 1.2 shows the tail latency (95th

percentile latency) of a server running the Memcached application [7] under different loads.

We can see that there exists a ”latency slack” between the tail latency of the server (solid
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Figure 1.2: Significant Latency Gap Exists

black) and the target tail latency as defined in the service level agreement (SLA)(dotted

red line). This latency slack provides opportunities for achieving energy proportionality.

Several DVFS-based techniques [69,85,86,114] have been proposed to exploit this

latency slack to slow down processing so that the requests finish just before the target

tail latency. However, their benefits are limited due to the ”floor” of frequency scaling.

Figure 1.2 shows the tail latency at minimum frequency(dotted green) and at maximum

frequency(solid black). Clearly, DVFS can close the latency slack at higher load above

∼50%. However, there still exists a significant ”latency gap” at 10%∼50% even under the

minimum frequency. This low utilization range is where most data center servers spend

most of their time [21, 91]. Clearly, there exists significant opportunity for power savings

by targeting this latency gap. Other prior works exploit CPU sleep states by batching and

delaying the processing of requests to create idleness [44,91,93]. However, these techniques

do not adhere to strict SLA levels and are not suitable for latency-critical applications.

In data centers, traffic pattern often exhibits high short-term variability. Requests

arrive at unpredictable times and are often bursty. These short-term spikes dominate tail
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latency [64, 69] and must be accounted for. To address these issues, in chapter 5, we

focus on developing the power management techniques with the consideration of this traffic

variability. To exploit the opportunities of power saving with latency slacks, First, we

propose a dynamic sleep scheme, a fine-grain power management scheme that exploits

latency slack by dynamically postponing request processing. By doing so, the idle periods

between two active periods will be prolonged, and the CPU core can efficiently enter deep

sleep states to save power. Unlike previous works that require some hardware changes,

such as per-core DVFS with nanosecond level transition time [69] and fast sleep state

transition techniques [91,93], our proposed technique uses the commonly supported per-core

sleep state. Then, we perform a detailed analysis for both sleep and DVFS based power

management schemes and find out that the existing dynamic power management techniques

are largely ineffective because of the high state transition overhead, short request service

time and strict tail latency constraint. Our analysis also shows that sleep or DVFS alone

can not fully exploit the latency slack for power saving. We take the lessons learned here to

design µDPM, an all encompassing power management framework that coordinates request

delaying, per-core sleep states, voltage frequency scaling and load distribution. µDPM

extends our dynamic sleep scheme by taking into the account of request processing speed.

Also, we develop an novel request redirection algorithm which aims to minimize the both

sleep and DVFS state transitions, which are the major sources of energy inefficiency while

applying sleep and DVFS power management.

In the data centers, hundreds of thousands of servers work together to achieve strict

performance requirements. Instead of per server performance, the system-wide performance
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is becoming more and more important for online data-intensive applications (OLDI), such

as Web Search, social networking and e-commerce. Needless to say, these applications need

to meet strict performance constraints, which directly affect users satisfaction as well as rev-

enues [108]. These applications need to process tens of thousands of requests every second

over billions of documents, but users expect the response time to be under a few hundred

milliseconds. Although high-quality to users queries are crucial in search results, the service

provider may often have to compromise the quality in order to meet the stringent latency re-

quirement. Additionally, the system-wide power consumption is also a critical performance

metric. With hundreds of thousands of machines, significant power consumption is already

leading to a soaring operating cost for the search service provider. As a result, reducing

power consumption while meeting the quality and latency constraints is a major challenge

in designing OLDI system.

Query processing in OLDI applications often share a common characteristic: They

employ a multi-level tree-like software architecture where each query first goes to the aggre-

gator and then goes to all or many index serving nodes (ISN). Since the aggregator needs

to wait for all responses from the ISNs, the response time depends on the slowest ISN. Due

to significant response time variation among the ISNs, a long latency at any ISN manifests

as a slow query response at the aggregator level [18, 37, 71]. At each ISN, returning top-

K results requires exhaustively computing the relevance score for each indexed document.

This is time consuming and often unnecessary since most of the evaluated documents will

not make to the ISN-level top-K results. Moreover, most of the results at ISNs are not used

because only the top-K results from the aggregator will be sent back to the user. Clearly,
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these unnecessary computations, albeit useful for producing high-quality search results, lead

to long query response time and power wastage.

Several techniques have been proposed to reduce request processing time at the

ISN level. For example, dynamic pruning (or early termination) reduces the number of

documents to be evaluated by skipping the documents that can not make to the top-K

results [39,40]. Although the pruning methods reduce some unnecessary computations and

improve the average query processing time at the ISN, the query processing time variation

among ISNs is still high [65]. As a result, the improvement of the query response time at the

aggregator level is limited. Another method is proposed to employ an aggregator timeout,

which determines how long the aggregator waits for its ISNs before sending the results back

to users [120]. The key idea is to trade off the result quality and the response time: the

shorter the aggregator waits, the less ISN response it collects, which improves responsiveness

but potentially degrades the quality due to missing of results from certain ISNs. The

aggregator policies improve the response time subject to a quality constraint, but does

not address the power consumption issue since the ISNs still perform the query processing

for all queries with unnecessary power wastage. Further, [120] defines the quality as the

number of responses received from the ISNs, but this does not capture the characteristic of

a distributed search engine that different ISN responses may contribute to the final result

differently due to ISN heterogeneity.

To satisfy quality and latency constraint in the search system, in chapter 6,we

develop a cooperative aggregator-ISN policy that cuts out the slow ISN responses for fast

response time and reduces energy consumption. First, at the aggregator, a “time budget”
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is assigned to the ISNs for request processing based on the expected quality level. Based

on the budget, each ISN serves the request only if the predicted processing time is within

the time budget, and disregards the request for energy saving otherwise. Furthermore, the

aggregator may choose to re-send the query for full execution in case the response quality

is not satisfactory. By doing so, we essentially reduce the ISN processing workload and

aggregator level latency, while still meeting the quality constraint. Since the time budget

is known to the ISNs, we propose to proactively put selected ISNs to sleep state to save

power when the time budget cannot be met.

The rest of this thesis is organized as follows. Chapter 2 presents related work

and motivation for our work. In chapter 3, we introduce thermal-aware power management

scheme. In chapter 4, we propose a statistical model based latency constrained power man-

agement scheme. Chapter 5 focuses on latency-constrained power management technique

for data center applications. We propose a system-wide quality and latency-aware schedul-

ing scheme for distributed OLDI applications in chapter 6. Finally, chapter 7 concludes this

thesis.
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Chapter 2

Related Work

2.1 Power Management Techniques

Much work has been done on reducing power/energy consumption of computer

systems. Based on the techniques, we can classify these works into three categories: (1)

Dynamic Voltage Frequency Scaling (DVFS), (2) CPU sleep state and (3) Dynamic resource

provisioning.

The first group utilize the DVFS to slow down the processor processing speed to

reduce power/energy consumption. [50] minimizes energy usage by choosing the best com-

bination of voltages for each task based on the task dependency. [107] applies genetic list

scheduling algorithms (GLSA) to schedule and map tasks, considering the processor’s power

profile during a refined voltage section. Some works focus on differentiating program exe-

cution phases based on different CPU/memory-bound ratios and apply DVFS accordingly,

because reducing processor frequency when the program is in the memory-bound phase

will not affect performance. Specifically, [60] analyzes various global power management
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policies using per-core DVFS to maximize performance for a given power budget. In [61],

they propose a runtime phase predictor that works cooperatively with DVFS. [35] regu-

lates concurrency and changes processors/threads configuration as the program executes

by hardware event driven profiling. In [78], Kuang et al. use DVFS for scheduling of net-

working applications. This scheme allocates frequencies to the pipeline stages statically and

is not aimed at exploiting different traffic variations. However, two main physical limita-

tions greatly affect the effectiveness of DVFS. First, the operating voltage approaches the

transistor threshold voltage as technology advances, hence decreasing the room for voltage

and frequency down-scaling [93]. Second, DVFS focuses on reducing the dynamic power

consumption only, but static power consumption has become more dominant in today’s

multicore processors with more advanced manufacturing process [66,72]. These limitations

drive the research communities to develop the power management technique without relying

on DVFS.

In the second category, CPU sleep reduces static power when a core is idle by

powering down different CPU components. Some works proposed to forced the core into

deep sleep state when idle. In [76,91], the authors proposed to put the network devices into

power saving mode during the idle period, and wake up the processor when a packet arrives.

In [91, 93], the CPU enters the deep sleep state when no pending task exists. In [100], the

authors proposed “buffer and burst” to throttle the execution. It buffers the incoming

tasks for a period of time, during which the devices will stay idle. With this approach,

the incoming traffic is reshaped into small bursts of arrival; devices wake up to transmit

a burst of packets, and then sleep until the next burst arrives. The intent is to provide
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sufficient time for devices to enter the power saving mode with lower power consumption.

However, these approaches use server/device level sleep and are highly depends on the task

arriving pattern. it only achieves good energy efficiency when the task interarrival time is

long enough to compensate the long (10-100 seconds) sleep state transition overhead. On

the other hand, some works proposed to select the best sleep state for each idle period.

In [85], the sleep state the core will enter is determined through design space exploration

with the simulator based on the previous task arrival pattern. [98] uses a stochastic model

to predict the sleep state a core will enter based on the workload characteristic. However,

these approaches does not consider the network and data center applications, where the

length of the idle period mostly falls within 100 µseconds, and can only enter shallow sleep

state.

In the third category, observing that the resource demand may vary dynamically,

either because of the traffic variation or workload characteristic, several works proposed to

dynamically “turn-off” the hardware resources, such as the number of server and CPU cores,

to reduce static power/energy consumption. In [48], the number of server staying responsive

is dynamically determined based on analytical model and traffic demand. To achieve better

energy efficiency in multicore processors, it is necessary to combine the dynamic resource

provisioning with DVFS and sleep states. achieve fine grained power management. In [80],

the authors developed an analytical model to determine how many cores can be turned

off, and assign different frequency to the active cores with per-core DVFS. CARB [122] is

proposed to use a C-State power management arbiter which dynamically turn off the core

based on a feedback-based controller. However, the active cores still utilize the default
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Linux C-state governor which performs poorly under network and datacenter applications.

Much is still not known about whether deferring execution and idle states are useful in

the multicore processor. Our work takes a unified approach, modeling a general multicore

system with many low-power sleep states having different characteristics. It seeks to jointly

manage the configuration of the number of active cores and the choice of both the length

of sleep period and which sleep state to enter, and more importantly, how these decisions

should be made online with the existence of the QoS requirement.

2.2 Thermal aware power management technique

Much work has been done in thermal-related research area. We classify related

work in this section into two groups based on their approaches in thermal management

design: (1) task migration, and (2) power reduction. Below, we introduce past work in each

group.

2.2.1 Task Migration

In a multi-core single-chip processor, the temperature of a core is not only deter-

mined by the power consumption of the software program running on it but also on its heat

dissipation ability and the temperature of its neighbors. The basic concept of temperature-

aware task migration is to dynamically move “hot” processes to cores with superior heat

dissipation and/or cores surrounded by cooler neighbors while moving “cool” processes to

cores with inferior heat dissipation and/or cores surrounded by hotter neighbors.

[49] proposes heat-and-run SMT thread assignment to increase processor-resource
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utilization by co-scheduling threads that use complementary resources and heat-and-run

CMP thread migration to migrate threads away from overheated cores to alternate cores. [30]

investigates the trade-offs between temporal and spatial hot spot mitigation schemes and

thermal time constants, workload variations and microprocessor power distribution. By

leveraging spatial and temporal heat slacks through task migration, their thermal-aware

scheduling schemes enable lowering of on-chip unit temperatures. In [96], they propose and

study a thread migration method that maximizes performance under a temperature con-

straint, while minimizing the number of migrations and ensuring fairness between threads.

While the above mentioned techniques are reactive approaches, it requires temperature

monitor and may lack responsiveness based on the monitor period. Several works proposed

predictive power migration to reduce spatial and temporal temperature difference by re-

distributing the heat generating locations. [119] propose a thermally-aware task migration

policy called Predictive Dynamic Thermal Management (PDTM). When a task running on

a processor is projected to exceed the temperature threshold, it will be moved to a proces-

sor that is predicted to be the coolest in the future. [17] proposed a light weight thermal

predictor through band-limited property of the temperature frequency spectrum, and mi-

grate the task among different CPU socket to create a thermal balance and reduce peak

temperature. [79] built a novel predictive model based for the periodic tasks, and apply task

migration to achieve thermal balancing under given temperature constraints.

2.2.2 Power Reduction

While task migration focus on running hot processes on cooler core, the power

reduction techniques try to decrease the heat generation and lower the peak temperature.
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[27] is the first paper to investigate different thermal management techniques through DFS

and DVFS. [110] applies control-theoretic techniques to control DVFS to avoid thermal

emergencies while minimizing performance loss. [115] proposed a chip-level power control

algorithm that is based on optimal control theory. Their algorithm can precisely control

the power of a CMP chip through DVFS to the desired set point while maintaining per-core

temperature below a specified threshold. In [116], they develop a thermal model called

Matrix Model to derive core temperature and present a novel slack allocation algorithm

using DVFS to minimize peak temperature. [52] proposes to use both DVFS and task-to-

core allocation schemes to optimally increase the performance of multicore processors under

thermal constraints. [82] proposes to optimize throughput by applying both per-core power

gating and DVFS to power and thermal-constrained multicore processors. While the above

techniques use DVFS to reduce the power and heat generation during the processing, it has

same limitations as we discussed in the previous section. Several works proposed to throttle

the CPU execution to reduce peak temperature. [19] proposed to idle cycle injection to

stop-and-resume the CPU execution, during the stop period, the CPU cores will be power

gated. [109] proposed to use formal feedback control and idle cycle injection to decrease

thermal emergencies. However, these techniques does not consider the long state transition

latency entering/exiting power gating states.

While all these works focus on reduce the heat generation, no work exploit the

possibility of speed up the temperature falling in the period tasks. [79] proposed a stop-

and-go technique which force CPU core to be idle and cool down its temperature. However,

it assumes that the core will consumes no power during idle, which might not be the case
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when the idle period is too short. Also, it does not consider the impact on packet latency.

Our work focus on investigating the complex performance trade-offs among temperature,

power consumption and latency in network applications with the force idle technique.

2.3 Tail latency-constrained power management technique

Several techniques [69, 85, 86, 114] have been proposed to exploit latency slack by

applying dynamic voltage and frequency scaling (VFS). Pegasus [86] takes a cluster-level

feedback-based approach by monitoring tail latency periodically and adjusting frequency

every few seconds to keep tail latency within a given bound. Pegasus is only able to exploit

latency slack during low utilization. Building on this, TimeTrader [114] is able to exploit

the latency slack at the request-level, rather than at the cluster-level. Observing that there

exists not only server but also network latency slack, TimeTrader can save energy even

during high utilization exploiting network slack and and identifying sub-critical requests

to slow down using VFS. Rubik [69] proposed to save power by dynamically adjusting the

frequency at request arrival and departure events. By observing the number of queued

requests, Rubik pick a minimum frequency that will satisfy the tail latency constraint of

every request in the system. All these prior techniques focus on VFS policies, and do not

rely on sleep states. However, with technology scaling, the dynamic range of frequency scal-

ing has decrease, along with static power consumption growing dominant [72].Recognizing

this, SleepScale [85] combines a history-based predictive VFS scheme with optimal C-state

selection (based on runtime simulation). Unlike the aforementioned techniques, SleepScale

cannot close the latency slack as VFS settings are determined by coarse-grain prediction of
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future workloads. As data center traffic tend to have short-term variability, the frequent

mispredictions can violate the tail latency target.

Other works utilize sleep states only to achieve power savings [91, 93]. Power-

Nap [91] proposed a server level fast sleep transition technique and put the server into

a deep sleep state as soon as the server becomes idle, taking advantage of full-system

millisecond-level idleness. Dreamweaver [93] extends PowerNap by putting entire multicore

processors into deep sleep state by aligning the idle periods of cores through job preemp-

tion. While achieving good power saving, the latency overhead introduced by aligning idle

periods and job preemption, results in as much as 3x tail latency increase for 40% power

savings. Unfortunately, as server core count increases, full-system idleness disappears, lim-

iting the effectiveness of Dreamweaver. While proposing sleep state techniques in chapter

4.3 and 3, they are unresponsive to short-term variability due to the fact that statistical

queuing models is meaningful only when the traffic is stable for a long period of time. To

address these issue, we propose a dynamic sleep scheme to determine the sleep period at

the request level. Furthermore, with detail performance analysis on these state-of-the-art

techniques, we are the first to illustrate that state transition overhead is the major source

of energy inefficiency, and proposed a technique to combine VFS, sleep state and request

redirection to minimize energy consumption with the tail latency constraint.

2.4 Quality and latency aware power management technique

In the previous section, several techniques are proposed to reduce the energy con-

sumption by exploiting the latency slack. They does not focus on reducing the tail latency
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and considering the result quality in a system-wide manner. Several works proposed to use

adaptive parallelism [54, 65] and computation sprinting [57, 124] to reduce query latency.

In [65], the query processing will be perform in parallel when it is predicted to have long

processing time. In [54], the degree of parallelism of query processing is dynamically in-

creasing. The longer a request executes, the more parallelism it adds, hence reduce the

latency of the long running requests. In [57], authors proposed to boost the operating fre-

quency when a query identified as long query, which increase the computation power and

reduce the query latency. Although these techniques improve query latency, they require

additional resources. The trade-off with other system level performances, such as power

consumption, is yet unclear.

Other work proposed to trade the query quality for latency reduction. Servers in

the web search system often employ dynamic pruning to early terminate the postings list

traversing of a query and to avoid scoring the postings for the documents that unlikely make

the top-k retrieved set [39,40]. Early termination is an example that reduce latency by trad-

ing the completeness of query response [40]. [55] quantifies the relationship of quality and

latency at ISNs, and trades quality for latency under heavy loads. For the aggregator level

latency reduction, Yun, et.al [120] observed the latency heterogeneity among leaf servers

and proposed an aggregator policy where results are sent back to users without waiting all

servers’ responses. By categorizing queries’ behaviour among servers, the aggregator will

adjust its waiting period to achieve a good latency-quality tradeoff. While being effective

on reducing tail latency, it did not address the system-wide energy efficiency which is the

major performance matrix in modern search system design.
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While the above mentioned works focusing on quality-latency trade-off, no work

has been done on simultaneously considering quality, latency and energy efficiency. In [42]

exploited the quality-latency relationship and proposed a energy efficient scheduler to trade

the quality for energy consumption. However, this work neither addresses the latency con-

straint commonly exists in the datacenter, nor provides system-wide performance analysis.

To address this issue, we propose a quality and latency aware power management technique

which minimizes the system-wide energy consumption while satisfying both quality and

latency constraint.
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Chapter 3

Power and thermal Management

on Network Applications

3.1 Introduction

In this chapter, we address the thermal management issue for network packet

processing. We aim at optimizing power consumption and throughput under given thermal

constraint by appropriately applying per-core smart sleep. The intent is to reshape packet

processing pattern and force longer CPU core idle periods to create opportunities for a

CPU core to enter deeper C-states and cool down the core faster. Also, we limit the length

of busy periods which prevents the core from overheating. We name our technique as a

vacation scheme denoting that the server (core) has taken a vacation for a period, and

the arriving packets must wait in a buffer to be processed later. This enables the core to

enter into a deep sleep mode. By adopting our proposed vacation schemes, we can reduce
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the heat generation, power consumption, and allow the temperature to drop during idle

(vacation) periods. This will avoid the peak temperature exceeding the thermal constraint.

We design two vacation schemes (fixed and dynamic) and provide performance analysis to

show that the dynamic vacation scheme gives better temperature and power consumption

with acceptable latency overhead.

Then, to understand the effectiveness of the vacation scheme, we develop the

thermal, power and latency models for our scheme in the multicore processor by adopting

the vacation queuing theory [83, 113]. Unlike single core processor, the thermal behavior

of multicore processor is more complicated because of the temperature interaction between

cores. Through the use of our models, we can select proper limits for vacation and busy

period with a given traffic load.

Lastly, we apply our vacation scheme with the thermal constraint in the multicore

processor. With our proposed thermal model, we can properly limit the length of the busy

period and avoid thermal emergency. The result shows that, compared with the existing

scheme, our vacation scheme can effectively satisfy the thermal constraint while sustaining

higher traffic load. Also, through proper vacation period selection, the power consumption

can be reduced. Furthermore, by taking the thermal and C-state characteristics of the

multicore architecture into account, we propose heterogeneous load distribution, which ef-

fectively redistributes the load and heat generation in the spatial domain, and creates more

opportunities for power saving under the thermal constraint. To the best of our knowledge,

we are the first to develop a vacation scheme considering all temperature constraint, power

consumption and latency for packet processing on a multicore server.
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This chapter makes the following contributions.

• We propose and implement a vacation scheme on top of the idle states (C-states)

provided by the OS and observe the packet processing characteristics.

• We derive analytical models for power, thermal and latency characteristics for the

vacation scheme based on the vacation queuing theory.

• We explore the effectiveness of our vacation scheme under the thermal constraint.

• We design and implement heterogeneous load distribution scheme, and evaluate our

on-line algorithm experimentally.

3.2 Packet Processing on a Multicore Server

This section describes the high-level network application characteristic, and relates

it to the power and thermal behavior while processing on a multicore processor.

3.2.1 Packet Processing Characteristics

The “run-to-finish” applications always consume active power while running, and

the temperature simply rises to saturation point until it stabilizes. But network packet

processing exhibits an ON/OFF pattern [23,77], where the CPU core temperature rises and

consumes active power during the ON period, (also known as busy period) when the packet

is being processed. During the OFF period when no packet arrives, the CPU still runs and

consumes idle power which is less than the active power. The OFF period between packet

processing provides the opportunities to do power and thermal management. Also, the

length of ON/OFF period is not deterministic, and depends on the random packet arrival

25



 
Fig. 1. Our experiment platform. 
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perature interactions between cores, which is the major 
challenge in the multicore thermal management. By adopt-
ing our proposed multicore vacation scheme, we can reduce 
the heat generation, power consumption, and allow the 
temperature to drop during idle periods. This will avoid the 
peak temperature exceeding the thermal constraint. Then, 
to understand the effectiveness of the vacation scheme, we 
develop the thermal, power and latency models for our 
scheme by adopting the vacation queue theory [6,13]. 
Through the use of our models, we can select proper vaca-
tion and busy period limits with a given traffic load.  

Then, we apply our vacation scheme with the thermal 
constraint. With our proposed thermal model, we can 
properly limit the length of the busy period and avoid ther-
mal emergency. The result shows our vacation scheme can 
effectively satisfy the thermal constraint while sustaining 
higher traffic load compared to the existing scheme. Also, 
through proper vacation period length selection, the power 
consumption can be reduced. Furthermore, by taking the 
thermal and C-state characteristics of the multicore archi-
tecture into account, we propose heterogeneous load distri-
bution, which effectively redistributes the load and heat 
generation pattern in the spatial domain, and create more 
opportunities for power saving under the thermal constraint. 
To the best of our knowledge, we are the first to develop a 
vacation scheme considering all temperature constraint, 
power consumption and latency in the network packet pro-
cessing on a multicore server.  

This paper makes the following contributions. (1) We 

propose and implement a vacation scheme on top of the 

idle states (C-states) provided by the OS and observe the 

packet processing characteristics. (2) We derive analytical 

models for power, thermal and latency characteristics for 

the vacation scheme based on the vacation queuing theory. 

(3) We explore the effectiveness of our vacation scheme 

under the thermal constraint. (4) We design and implement 

heterogeneous load distribution scheme, and evaluate our 

on-line algorithm experimentally.  

II. PACKET PROCESSING ON A MULTICORE SERVER 

This section describes the high-level network applica-
tion characteristic, and relates it to the power and thermal 
behavior while processing on a multicore processor.  

A. Packet Processing Characteristics  

The “run-to-finish” applications always consume active 
power while running, and the temperature simply rises to 
saturation point until it stabilizes. But network packet pro-
cessing exhibits an ON/OFF pattern [11,12], where the 
CPU cores consume active power and their temperature 
rises during the ON period, (also known as busy period) 
when the packets are being processed. During the OFF pe-
riod (also known as idle period) when no packet arrives, 
the CPU cores still run and consume idle power which is 
less than the active power. The OFF periods between pack-
et processing provide the opportunities to do power and 
thermal management. Also, the length of ON/OFF periods 
are not deterministic, and depend on the packet arrival and 
service rates.  

We start by considering how packets arrive and are 
served. Fig. 1 shows the packet processing system we use 
in this paper. Our system consists of a packet generating 
server and a packet processing server. The packet pro-
cessing server consists of many processing engines (PEs). 
Each PE has a local queue and a CPU core. The processing 
server receives packets from the packet generator through 
Ethernet link. Once the packet arrives at the processing 
server, it will first go through NIC and TCP stack, and will 
be passed to the socket. Finally, the application will fetch 
the packets through sock_read system call and process the 
packets. 

In this paper, we will focus on the application layer 
packet processing. In the packet processing application, 
incoming packets are distributed among PEs through load 
distributor. The packets arriving at each PE are stored in its 
local queue, and the CPU core constantly checks whether 
the queue is empty or not. If the queue is not empty, CPU 
core will fetch and process a packet in the queue in a FIFO 
fashion driving the CPU to the active state. Otherwise, 
when the CPU core finds no packet in the queue, it will 
become idle (entering idle state) until the next packet ar-
rives and is stored in the queue. 

B. Power Consumption and Thermal Behavior 

Fig. 2a depicts the packet processing pattern of a PE in 

the multicore packet processing server [24]. The solid lines 

represent the amount of work in PE queue with time. The 

up arrows under the x-axis represent the packet arrivals to 

the PE, which cause the step increase of the work in the 

queue. Although the amount of work could be discrete, 

without loss of generality, we use slant line representing the 

packet being processed by a PE with the slope representing 

the service rate. The busy and idle periods are shown in the 

top of the figure. Clearly, the busy and idle periods during 

packet processing are randomly distributed with the ex-

pected lengths of 
1

μ−λ
 and  

1

λ
 , where, λ is the packet arrival 

rate and μ is the service rate of a PE. Fig. 2b shows power 

consumption and thermal behavior corresponding to the 

packet arrival pattern of Fig. 2a. When PE is active, it con-

sumes high power and drops to a lower level when idle. 

The temperature trace is saw-tooth shaped, due to the 

continuous busy and idle periods. The longer the busy peri-

od, the higher the temperature will rise until a steady state 

is reached. On the contrary, the longer the idle period, the 

lower the temperature will fall. Also, the power consump-

tion during the busy and idle periods decides how high or 

low the steady state temperature will be. Furthermore, due 

Figure 3.1: The experiment platform

and service rates.

We start by considering how packets arrive and are served. Figure 3.1 shows the

packet processing system we use in this chapter; our system consists of a packet generating

server and a packet processing server. The system consists of many processing engines

(PEs); each PE has a local queue and a CPU core. The processing server receives packets

from the packet generator through Ethernet link. Once the packet arrives at the receiving

server, it will first go through NIC and TCP stack, and will be passed to the socket.

Finally, the application will fetch the packets through sock read system call and process the

packets. The incoming packets are distributed among PEs through the load distributor.

The packets arriving at each PE are stored in its local queue, and the CPU core constantly

checks whether the queue is empty or not. If the queue is not empty, CPU core will fetch

and process a packet in the queue in an FIFO fashion driving the CPU to the active state.

On the other hand, while the CPU core finds no packet in the queue, it will become idle

(entering idle state) until the next packet arrives and is stored in the queue.
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(a)

(b)

Figure 3.2: (a) Packets processing pattern. (b) Power consumption and thermal behavior
during packet processing.

3.2.2 Power Consumption and Thermal Behavior

Figure 3.2(a) depicts the packet processing pattern of a PE in the multicore packet

processing server [31]. The solid lines represent the amount of work in PE queue with time.

The solid up arrows under the x-axis represent the packet arrivals to the PE, which cause

the step increase of the work in the queue. Although the amount of work could be discrete,

without loss of generality, we use slant line representing the packet being processed by a

processor with the slope representing the service rate. The busy and idle periods are shown

in the top of the figure. Clearly, the busy and idle periods during packet processing are

randomly distributed with the expected lengths of 1
(µ−λ) and 1

λ , where, λ is the packet

arrival rate and µ is the service rate of a PE. Figure 3.2(b) shows power consumption and

thermal behavior corresponding to the packet arrival pattern of figure 3.2(a). When PE
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is active, it consumes high power, and drops to a lower level when idle. The temperature

trace is like the shape of sawtooth, which is caused by the continuous busy and idle periods.

The longer the busy period, the higher the temperature will rise until a steady state. On

the contrary, the longer the idle period, the lower the temperature will fall. Also, the power

consumption during the busy and idle periods will decide the steady state temperature.

Furthermore, due to the heat flows between CPU cores in a multicore architecture, their

temperature behavior will interact with each other. The complicated thermal behaviors

pose a major challenge for the temperature management.

3.2.3 Problem with Existing Idle State Power Management Scheme

As we mentioned previously, the CPU core will become idle when it finds no work

to do, and still consumes power. Modern CPUs provide succession of per-core idle states

(called sleep states or C-states), where different CPU core components are turned off. States

are named numerically from C0 to CN , where C0 represents the normal operating mode. As

the C-state number increases, the more components in the CPU core are turned off, and the

heat generation and power consumption reduces with the increased state transition time.

Because of the state transition overhead, it only makes sense to enter a C-state if inactive

time is beyond certain threshold, called energy-breakeven-time (EBT), and this threshold

increases as the C-state gets deeper.

Because of the EBT, the length of the idle period should be known beforehand

to select the most energy efficient C-state a core should enter. In the Linux kernel, the

prediction-based sleep-state selection algorithm, called menu idle governor [3], is used for

this purpose. It uses a history-based idle length predictor. If the variation among the
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Figure 3.3: Power consumption under different scenarios.

past idle intervals is small, the average of past idle intervals will be used as the prediction;

otherwise the next scheduled OS timer event will be used as the prediction. However,

due to the unpredictable nature of the request arrival, the menu governor or any history

based idle period predictor is not very useful with the non-deterministic execution pattern

[38], where over-prediction (predicted idle period is shorter than the actual one) will cause

energy inefficiencies and under-prediction will cause unnecessary latency increase and power

wastage due to the large state transition overhead.

Besides the difficulties for the idle period prediction, another issue for idle power

management lies in the frequent and random ON/OFF pattern of network and datacenter

applications, which greatly affect the effectiveness of using C-states. Fig. 3.3 gives the ex-

perimental results of the power consumption of a network application under different traffic

loads. There are three scenarios in Fig. 3.3: “Linux” represents the power consumption

of using Linux prediction-based C-state selection algorithms (menu idle governor), and the

results are measured using on-chip energy sensors; “Oracle” represents the case when all
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idle durations are known beforehand so the core can enter the most energy efficient C-state

with no prediction error, and “Ideal” gives the power consumption with perfect energy pro-

portionality, where all CPU cores go into deepest sleep state during all of its idle time with

zero transition overhead. One should notice that the Ideal scheme serves as a theoretical

lower bound of the power consumption that can be achieved. In Fig. 3.3, we can see that

when the system has highly activity (ρ > 0.7), the difference between Linux and Oracle

cases are small, because the idle period is mostly short, which make shallowest C-state the

most energy efficient. However, due to the inaccurate prediction, the Linux prediction algo-

rithm becomes less effective when the traffic activity decreases, 16% and 25% more power

consumption than the Oracle case at = 0.4 and 0.1, respectively. Furthermore, despite the

perfect idle state selection of the Oracle case, the existence of short idle periods will prevent

the system from going into deep C-state. For this reason, even with low activity, the system

operates far from being energy proportional - i.e., consumes power proportionally to its

utilization, as shown in the Ideal case. Moreover, the high idle power consumption in the

existing idle power management scheme also lead to poor thermal behavior, since the degree

of cool down during the idle period is dependent on the idle period power consumption.

3.3 Vacation Thermal and Power Management Schemes

In the original system, servers are busy processing packets as long as there are

packets in the queue, and become idle when the queue is empty. Although servers spend

most of their time idle, conventional power management techniques are unable to exploit

these brief idle periods. As a result, the CPU cores still consume high power during these
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idle periods and generate heat. To address this issue, we propose an approach to reshape

the packet processing pattern that creates longer idle period and allows the processors to

enter low-power state which consumes less power and reduces heat generation. We call this

approach vacation.

In this section, we first propose a vacation scheme with the fixed active period,

where the core state changes only when the timer expires. Then, we propose a dynamic

vacation scheme, where the state changes dynamically with different events.

3.3.1 Fixed Vacation Scheme

Figure 3.4 shows the flow chart of the vacation approach. We define two states that

CPU can be: working and vacation. In the working state, the core works as in the original

scheme, but only goes into the shallowest sleep state (C1) when idle. A working timer,

twork, is set when the core enters working state, and the core will transit to vacation state

when this timer expires. The purpose of the working timer is to prevent the processor from

Figure 3.4: Flowchart of the fixed vacation scheme.
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being active for too long and exceeding the given temperature threshold. In the sleep state,

the server takes a vacation for time tvac, when the server buffers all the incoming packets

in the queue and enters deep sleep state. After tvac expires, the server wakes up and goes

back to the working state, and continues serving packets in the queue. The approach is

similar to the “buffer and burst approach”, described in [100], except that the details of the

sleep approach here are different. In buffer and burst approach, the incoming packets are

buffered during the buffer period, and these buffered packets are transmitted only in the

burst period. We process those packets if they arrive during the working period twork. Also,

the buffer and burst approach did not include any thermal consideration like temperature

threshold. Finally, we implement the system in real multicore system instead of verifying

through simulation [100].

In the fixed vacation scheme, the incoming traffic from processors perspective, is

reshaped into short bursts of arrival. CPU cores wake up to process bursts of packets, and

then sleep for a long time. The intent is to provide sufficient time for processors to enter

the deep sleep states (C3 and C6) with lower power consumption, and faster temperature

cool down. Figure 3.5a shows the amount of work in the queue while time advances with

the fixed vacation scheme. Compared with figure 3.2a, we can see that the amount of work

increases due to the buffering during the vacation. In the working state, instead of many

short packet processing time periods, it is now a long busy period.

The effectiveness of the vacation scheme relies on the capability of CPU core to

cut down the heat generation and power consumption when it is idle [75]. Although the idle

periods between packet processing provides natural thermal modulation, the idle period is
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(a)

(b)

Figure 3.5: (a) Packets processing pattern. (b) Power consumption and thermal behavior
under fixed vacation scheme.

too short to allow the processor enter deep sleep state in the original system, hence resulting

in poor power and thermal efficiency. Vacation alters the distribution of these idle periods,

creates longer idle periods and better utilizes the low power sleep state. The power and

thermal behaviors are shown in figure 3.5b; where the deeper idle states during vacation

decrease the power consumption, and cause the temperature to cool down faster. However,

since the incoming packets are pushed into vacation state, there may be higher load on the

system during the working period. This leads to increased average power consumption and

heat generation during the period. Longer busy period means that the temperature could

rise to a higher level, but longer sleep (vacation) state helps lower temperature. Therefore,

the efficiency depends on balancing the working and vacation states.
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3.3.2 Dynamic Vacation Scheme

In the fixed vacation scheme, there will be cases that the processor will experience

short idle time during the working periods, as shown in figure 3.5b. To achieve power

saving, we propose a dynamic vacation scheme with the flowchart shown in figure 3.6. The

processor switches into vacation state not only when the timer expires, but also when the

processor finds the queue empty during the working period. In figure 3.7a, we can see

that once the work in queue becomes zero, the processor immediately takes a vacation, and

packets accumulate in the queue until the vacation timer expires. Also, since the working

period ends when queue is empty, the length of working period becomes non-deterministic

and is dependent on the incoming traffic and the length of vacation. However, the working

period is always less than or equal to the pre-determined fixed time period, twork.

Figure 3.7b depicts the power and temperature behavior under dynamic vacation;

Figure 3.6: Flowchart of the dynamic vacation scheme.
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(a)

(b)

Figure 3.7: (a) Packets processing pattern. (b) Power consumption and thermal behavior
under dynamic vacation scheme.

we can see that there is no short idle period during the working period, and the power con-

sumption is purely active state power. The thermal behavior is now simpler, without any

short cool-down period, the temperature rises until the end of working period, and cools

down during the vacation period. In dynamic vacation approach, the length of vacation

period becomes more critical to the performance than the original approach. Longer vaca-

tion time will reduce the temperature and power consumption. On the other hand, long

vacation period will introduce higher packets latency. In the following sections, we show

the effectiveness of both vacation approaches with the experimental results, and present the

performance models to dynamically determine the vacation length based on the incoming

traffic.
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Figure 3.8: Peak temperature under fix vacation approach.

3.3.3 Vacation Schemes Performance analysis

In this section, we present detailed performance analysis for our proposed vacation

schemes with real machine experimental results. The experiment setup are given in section

3.4.2.

Fixed vacation scheme

In the fixed vacation approach, design parameters which will affect the packet

processing performance are the length of working period (twork) and vacation period (tvac).

Let tcycle be the cycle time period, defined as tcycle = twork + tvac. For stability of the

system, we need to satisfy the condition that tvac
tcycle

< 1− ρ , where ρ is the incoming traffic

load, defined as λ
µ , where λ is the packet arrival rate and µ is the service rate.

Figure 3.8-3.10 shows the experimental results of CRC from NetBench [95] with

the vacation approach. In these experiments, we fix the cycle time to 1ms (tcycle = 1ms),

and vary tvac from 0 to 800 µsec, where tvac = 0 represents the default scheme. In fig-

ure 3.8, we can see that the temperature decreases as tvac increases. Although the busy
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Figure 3.9: Power consumption under fix vacation approach.

period is prolonged due to forced vacation, which causes the longer heat up duration, the

temperature cool-down brought from continuous idle period and deeper idle state is more

significant. Also, when ρ increases, load during the working period increases, which causes

the temperature to increase.

The power consumption results are given in figure 3.9. We can see that it achieves

more than 20% of power saving under low traffic load (ρ <0.4), and 50% when ρ=0.1.

However, the effect of power saving is diminished when traffic load is high. The reason is

that under low traffic load, there exists a large amount of short idle periods. These short

idle periods are packed into a long idle period in the vacation state, and allow the CPU core

to have enough time to enter deeper C-state. On the other hand, under high traffic load,

the idle period is not long enough because working period increases. We can also observe

this through tvac. When tvac is smaller than 200 µsec, we can see that the power saving is

insignificant, because the short tvac will stop the CPU core from entering deep C-states (C3

and C6).
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Figure 3.10: Average packet latency under fix vacation approach.

The down side of the vacation approach is that it will increase the overall packet

latency. Figure 3.10 shows that the latency increases quickly as tvac increases. There are

two factors that will cause this latency to increase. First, when tvac is larger, which means

longer vacation periods, the packets arriving during vacation will have to wait for longer

time for processing. Second, since all packets arriving during the vacation period are queued,

the packets arriving during working period will have to wait for the packets already in the

queue to be processed. The longer the vacation period, the more packets are in the queue,

thus longer is the waiting period.

To further show that vacation approach achieves power saving through the use of

C-states, we record the percentage of the idle time that the CPU core resides in different C-

states under low traffic load. In figure 3.11, we can see that the CPU core spends more than

90% of the idle time in C1 state, the least power saving mode, in the default scheme. When

tvac increases to 200µsec, the core starts to enter C3 state. When tvac further increases

beyond 500 µsec, it enters C6 state and achieves higher power saving because there is long
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Figure 3.11: Percentage of idle period that the core resides in different C-states under fix
vacation approach (ρ = 0.1).

enough idle time. The slope of the power consumption in figure 3.9 increases between tvac

= 400 and 500 µsec, since the core spends majority of idle time in C6 states.

Dynamic vacation scheme

In the dynamic vacation scheme, the CPU core will start vacation as soon as

the queue becomes empty. Since there is no more packet to be processed we forcibly end

the working period, so we should be able to observe more power saving. The comparison

between fixed vacation and dynamic vacation scheme are shown in figure 3.12. Figure

3.12a shows the experimental result of power consumption with different vacation time for

dynamic vacation scheme. We can see that there exists significant power consumption drops

when tvac reaches 200µsec, corresponding to the processor entering C3 state in the vacation

period. The power consumption further drops when tvac reaches 400µsec, when the core

starts to enter C6 state. Also, the dynamic vacation approach can achieve higher power

saving because there is no idle time during the working period, which may lead to shallow
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(a) Power consumption (b) Peak temperature

(c) Average latency

Figure 3.12: Performance comparison between dynamic vacation (blue line) and fixed va-
cation approach (red line).

C-states.

To confirm the power consumption is actually coming from the use of deeper C-

state, the percentage of idle time that the processor spent in each C-state is shown in figure

3.13. We can see that the C3 and C6 residencies increase at tvac= 200 and 400µsec, which

confirms our statement for the power consumption. Also, compared with figure 3.11, we can

see that the C1 residency is less than 5% when tvac is greater than 300µsec, which suggests

that the dynamic vacation approach indeed packed all the idle periods into vacation period,

and effectively uses the deep C state for power saving.

The temperature reduction results are shown in figure 3.12b. We can see that the
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Figure 3.13: Percentage of idle period that the core resides in different C-states under
dynamic vacation approach (ρ = 0.1).

dynamic vacation approach achieves better temperature reduction than the fixed scheme,

especially when tvac is large (2◦C more temperature reduction when tvac = 800µsec). It’s

because at high tvac, the working period is significantly shorter, 200µsec in fixed vacation and

90µsec in dynamic vacation, but with less than 25% power consumption increasing, which

is the source of heat generation. When tvac is smaller, there is shorter heat up duration but

higher heat generation, so the temperature reduction of both vacation schemes are similar.

Although dynamic vacation outperforms the fixed vacation in both power saving

and temperature reduction, it suffers from higher latency. Figure 3.12c shows the latency

comparison between two approaches. When ρ is low, the working period is shortened, the

possibility that the packet arrives during vacation period is increased, and those packets

will have to wait for the vacation to end, which causes higher latency.
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3.4 Multicore Vacation Scheme

In the previous section, we showed that the dynamic vacation approach is better

than the fixed vacation in terms of thermal and power consumption for a single CPU core.

In this section, we provide the performance analysis and build the model for the dynamic

vacation scheme under multicore architecture. The model is much more complex than the

single core model because it considers heat flow between the neighboring cores. As shown

in figure 3.1, each CPU core has a buffer and operates independently of other cores. Each

core goes on a vacation (idle state) for a fixed period and then wakes up to serve the

packets in its queue. We derive the delay model by following a multiple M/G/1 vacation

queuing theory. Then, we derive the thermal, power and latency behavior under multicore

architecture by applying multicore thermal model and vacation queuing server model. The

analytical results are verified through actual experiment in a multicore server.

3.4.1 Performance Analysis of the Vacation Scheme in multicore CPU

In this subsection we propose power, latency and thermal models for the vacation

scheme under multicore architecture.

Temperature Model

To understand the multicore thermal behavior, first we need to know how the heat

generated by the core flows. Figure 3.14(a) shows the overview of a two-core CPU package.

It is composed of a heatsink, which helps heat to dissipate into the surrounding air, and a

CPU package, which protects the two-core IC die and sitting on top of the mother board

(MB). When the processor is active, both C0 and C1 core will generate heat. The heat will
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(a)

(b)

Figure 3.14: (a) The CPU package overview and (b) the extended RC model of a two-core
processor.

flow in two directions: vertically, from core to heat sink, and horizontally, from one core to

the other. These heat flows make the thermal behavior of the core not being independent

among cores in the multicore architecture.

We develop a thermal model by extending the well-known single core RC model

[110], and is shown in figure 3.14(b)1. The core can be modeled as a current source connected

with a pair of resistance and capacitance in parallel. Let V i(t) and Ki(t) be the temperature

in the vacation and working period at time t. By using superposition properties of the

circuits, and assuming that the thermal time constant of the horizontal heat flow is the

same as the vertical one, we can have the thermal behavior of a core as:

V i(t) =
[
(1−K)P iC +KPn

]
R(1− e−

t
α ) + V i(0)e−

t
α

,K =
R

Rn + 2R

(3.1)

1The thermal model derivation are based on two cores system in this section. However, the thermal
model we apply throughout this paper is derived with the same technique based on four core system.
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, substituting Pc with Pwork, we will have the working state thermal behavior Ki(t). In

equation (3.1), the superscript i and n represent the modeled core and its neighbor core,

Pn is the average power consumption of the neighbor core and α = RC is the thermal

time constant. Although the temperature will not converge to steady state because of the

continuous state changes, we could derive the thermal behavior in the equilibrium state,

which means V i(tvac) = Ki(0), and V i(0) = Ki(twork). The peak temperature, T ip, can be

derived as:

T ip = R

[
(1−K)P iC +KPn + (1−K)(P iwork − P iC)

1−A
1−AB

)

]
+ PpkgRh

, A = e−
twork+ttrans

α andB = e−
tvac−ttrans

α

(3.2)

, where Ppkg is the total power consumption within the CPU package, twork is the length of

working period, and ttrans is the C-state transition time. The last term is the temperature

of the heat sink and the rest depict the temperature rising of the core.

Power Model

Since the vacation scheme only reshapes the packet processing pattern, it does not

introduce extra idle/busy time. The average power consumption of a core under vacation

scheme is:

Pvac avg =
Pwork × twork + PC × (tvac − ttrans) + Pmax × ttrans

twork + tvac
(3.3)

, where Pwork is the busy period power consumption, twork is the length of busy period, ttran

is the C-state transition time, and Pmax is state transition power consumption. Since the

power consumption are independent among cores, the overall system power consumption
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will simply be the summation of that of each core.

Latency Model

Since the working period will either end when the queue becomes empty or timer

expires, the system is equivalent to a M/G/1 queue with vacation and non-gated service

[83, 113]. We use mean value analysis to analyze the packet latency in vacation approach.

We assume that the working period time limit is large enough that the latency of packet

being deferred to the next working period can be ignored. Under this assumption, we can

derive the average latency as:

E(Lavg) = L+O +
tvac
2

(3.4)

, where L is the latency without applying our technique, O is the additional latency caused

by packets which are processed in the next working period. The last term is the additional

latency of the packets arriving during the vacation.

Since every core processes packets and takes vacation independently, the latency

will be independent among cores. As a result, the overall latency is the weighted sum of

the latency of every core, where the weight will be the ratio of the load for the core to the

overall incoming load.

3.4.2 Experiment Setup

As shown in figure 3.1, we use two multicore machines, one packet generating server

and one packet processing server. The packets are generated and sent over the Ethernet to

the processing server. We are mainly interested in the behavior of the packet processing
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server. The packet processing server is an Intel i7-2770 quad-core processor. The Intel

Hyperthreading, Turbo boost, and Enhanced C1 state (C1E) are disabled through BIOS

setting and the machine specific register (MSR). The CPU fan speed is set to be fixed

at 1000 RPM. The server is equipped with on chip energy sensors for all four cores, and

per-core temperature sensors. Both energy and temperature readings are collected from

accessing MSR at the rate of 1000 reading per second. The temperature readings from the

MSR are rounded to the integer.

Our experiments in this paper are based on real world traffic traces from CAIDA

[2]. The traces are of 60 minutes long duration, captured on JUN 19th, 2014, containing

the timestamp and packets header. The network traces are scaled and replayed by the

packet generating server with different traffic load to our packet processing server. Since

our proposed technique is only depending on the incoming load and the service power

consumption, the performance of our scheme does not rely on the application characteristics.

We choose CRC [95] as the packet processing application, which is executed in a multi-

threaded fashion with packet-level parallelism. The service time of CRC is linear to the

packet size, and is 10 sec in average. The power consumption during packet processing is

6.5W per core. The maximum temperature rise is 60◦C, which is the difference between

maximum temperature and idle temperature. The maximum temperature is the steady-

state temperature when there is no idle time within the entire packet processing duration.

3.4.3 Performance evaluation of the multicore vacation scheme

With the multicore performance model, we now discuss the effectiveness of vacation

scheme in multicore architecture. Figure 3.15 - 3.17 gives the measurement results of three
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performance metrics, which are temperature rise, power consumption and latency. Also,

they are compared with the results obtained through our model. We do not show the power

and latency model results because they are indistinguishable to the measurement results.

In this experiment, we vary tvac from 0 to 1000 µsec (x-axis), where tvac = 0 represents the

default scenario without applying our approach. Also, we select three different incoming

traffics, ρ = 0.1, 0.4, and 0.7, representing low, medium and high traffic. Furthermore, the

incoming traffic is evenly distributed among cores. The detailed discussions are presented

below.

Temperature Rise

The vacation scheme can help reduce temperature in core and package levels. In

core level, the vacation period provides a longer idle period for the core to cool down

compared with the default scheme. Also, when the core enters deeper C-states, the core

will cool down to a lower temperature, as we discussed in the previous section. In package

level, the reduced power brought from entering deep C-states will reduce the total package

power consumption. As the result, the heatsink temperature will decrease. Figure 3.15

shows the measured temperature rise of a core, defined as the difference between the peak

core temperature and the temperature when the system is idle. One should notice that the

on-chip thermal sensors only report temperature reading rounded to the integer. Also, we

choose the vacation period length no more than 1 ms because of the possibility that the

background system service will wake up the core during the vacation is high when longer

vacation period is chosen.

First, it is clear that the temperature rise is reduced significantly with the intro-
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Figure 3.15: Modeled and measured temperature rising of the vacation scheme under dif-
ferent traffic.

duction of the vacation period. In the vacation scheme, the core will enter the corresponding

C-state by comparing the vacation period length to the EBTs. At short tvac, the core will

enter C1 state during vacation. As tvac increased beyond 200 and 400 µsec, the core will

enter C3 and C6 states instead, hence help the core cool down. Our scheme can achieve

maximum 20, 16 and 10◦C peak temperature reduction at low, medium and high traffic.

Also, we can see that there exists an optimum vacation period length so that the peak tem-

perature rise is minimized. When the vacation length is shorter than this point, because

of the state transition overhead, the cool-down during the vacation period is limited. On

the other hand, when the vacation length is longer than this point, the prolonged working

period will result in high temperature rise. This effect is significant especially when load is

high because of the longer working period.

Figure 3.15 also gives the modeled temperature rise based on equation (3.1) and

(3.2), and serves as the model verification of our proposed thermal model. In our experiment
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Figure 3.16: Measured power of the vacation scheme under different traffic.

platform, the value for K in equation (3.1) and (3.2) is set to be 0.18. Also, the working

period length is chosen to satisfy the stability constraint, twork/(twork + tvac) ≥ ρ . The

result shows that the average difference between modeled and measured temperature is

less than 0.5◦C, thus our proposed thermal model can accurately describe the core thermal

behavior.

Power Consumption

The power consumption results are given in figure 3.16. The default power con-

sumption is when tvac = 0. We can see that it achieves 50% power saving under low traffic

load. However, the power saving decreases to 20% and 5% when traffic load is medium and

high. It is because that the power saving is achieved by entering deeper C-state during the

vacation period. When the load is low, the ratio of the vacation to working period is high,

thus significant amount of power can be reduced; On the other hand, this ratio decreases

with increasing traffic load, as a result, the power saving decreases.
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Figure 3.17: Measured latency rising of the vacation scheme under different traffic.

Latency

The down side of introducing forced vacation period is that it will increase the

average packet latency. Figure 3.17 shows that the average packet latency increases almost

linearly as tvac increases, which is predicted by equation (3.4). There are two factors

that will cause this latency to increase. First, when tvac is larger, the packets arriving

during vacation will have to wait for longer time for processing. Second, due to the limited

working period, there could be some packets left in the queue by the end of the working

period. These packets will introduce some additional latency because they have to wait for

an entire vacation period. Given a latency constraint, the vacation period can be determined

at a particular load.

3.5 Multicore Vacation Scheme with Thermal Constraint

In this section, we will discuss the performance of the vacation scheme under

thermal constraint.
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Figure 3.18: Achievable load with vacation scheme with different thermal constraint.

3.5.1 Achievable throughput

Our focus is on keeping the peak temperature below the thermal constraint, Tc,

instead of using working and vacation period length as the input in equation (3.2). By

rearranging the equation, we can use thermal constraint and the vacation period as the input

variables, and get the limit of the working period length, BP limit. This limit represent

the maximum time period for the working period without peak temperature exceeding the

thermal constraint. Moreover, the limit of working period means that the service capability

of a core is limited. In other word, the achievable load that a core can serve without

overflowing the queue is limited. We use the term achievable load and sustainable load

interchangeably in this section. The achievable load is formulated as:

ρachieve =
BP limit

BP limit+ tvac
(3.5)

Figure 3.18 plots the achievable load under different thermal constraints. The
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thermal constraint Tc is defined as idle temperature plus a parameter, β, times the maximum

temperature rise. In this figure, we can clearly see that as the thermal constraint increases,

the sustainable load increases as well. In general, to achieve maximum sustainable load, the

tvac should always be chosen long enough so that a core can enter C6 state. However, when

the β increases beyond 0.7, the tvac which achieved maximum sustainable load becomes

lower, which means that instead of C6, a core should enter C1 state during the vacation to

maximize the service capability.

Figure 3.19 gives a detailed example and can help in understanding the behavior of

the sustainable load under vacation scheme. In this figure, we plot the achievable load with

thermal constraint set to be 70% of the maximum temperature rising, which corresponds

to β = 0.7. The x-axis is the vacation period length, varying from 10 to 1000 µsec. We

separately plot C1, C3 and C6 curves representing the C-state where the core enters during

the vacation period. In this figure, we can see that the sustainable load will peak at two

points, one is at tvac ≈ 100µsec with C1 state, and the other is at tvac ≈ 600µsec with

C6 state. The reason behind the C6-peak is that the heat generated during the vacation

period is low. Thus, even though it requires more transition time to enter C6-state, the peak

temperature will be reduced and higher load can be sustained. On the other hand, although

entering C1 state during the vacation does not reduce much heat generation and peak

temperature, because of the low transition time, it does not spend much time and power

on state transition. As a result, it can sustain higher load under the thermal constraint.

The dotted curve (red) plots the sustainable load with each tvac value, and it corresponds

to the β = 0.7 curve in figure 3.18.
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Figure 3.19: Achievable load with vacation scheme under thermal constraint with β=0.7.

When the incoming traffic is given, the tvac can be chosen as any point between the

intersections of the load line and the C-state curve. For example, in figure 3.19, the dotted

line (black) represents the incoming traffic, ρ = 0.5. There are three regions where the tvac

could be: (1) C1-region between 60 and 200 µsec, (2) C3-region between 400 and 700 µsec

and (3) C6-region between 430 and 940 µsec. Since every point within these regions can

satisfy the incoming load, choosing the exact value for tvac depends on other performance

metrics, such as minimizing power consumption or latency. Achieving low latency while

satisfying thermal constraint is straightforward since the latency is linearly increased with

the vacation period. By choosing the lowest tvac within the above mentioned regions, we

could have the lowest latency and satisfying thermal constraint.

To achieve low power while satisfying thermal constraint, we should choose tvac

in the C6-region. By applying the C6-region range to equation (3.3) and substituting twork

with BP limit, we can find the configuration with lowest power consumption and satisfying

thermal constraint.
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Figure 3.20: Heterogeneous load distribution illustration.

3.5.2 Heterogeneous Load Distribution

Until this point, we assumed that the incoming traffic is equally distributed (ED)

among cores. However, this might not yield to the optimum power or latency considering

multicore thermal behavior and power consumption. By giving each core different amount

of load, the performance under thermal constraint could be improved. In this section, we

propose our heterogeneous load distribution technique (HLD) and give an example about

how HLD can improve the performance.

Figure 3.20 plots the C6-region with β = 0.7 and incoming traffic ρ = 0.45, and

is used to illustrate how HLD works. Equally distribution (ED) selects the tvac with the

lowest power consumption, which is equivalent to choosing a point on the load line (dotted)

in the x-direction. Since every point below the C6-curve and above the load line satisfies

the thermal constraint and traffic load, we can give different traffic load to each core. This

HLD is equivalent to choosing a point in y-direction, as long as the sum of the traffic load
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Figure 3.21: Per-core power consumption with different traffic load under ED.

of each core is equal to the total incoming load.

The effectiveness of the HLD comes from the fact that the lowest power consump-

tion of a core achieved by the vacation scheme does not increase linearly with the increasing

load. Figure 3.21 gives the per-core power consumption with different incoming load under

vacation scheme. We can see that the power-load curve is superlinear, which means that the

power increase/decrease is faster at lower load compared with higher load. Hence, among

a pair of cores, the total power of these two cores could be reduced by migrating load from

one core to another.

We develop a heuristic which chooses the load distribution for minimizing power

consumption by the following steps: (1) pick two neighboring cores that haven’t been se-

lected before (2) compute the maximum sustainable load. (2) migrate the load from one

core to the other so that one core will have the maximum sustainable load, and (3) compute

the new power consumption. If it’s less than previous power consumption by a threshold ∆,

we commit to this load migration and go back to step (2), otherwise we go back to step (1).

55



In our heuristic, we can see that there is a loop between steps (2) and (3). The reason is

that after the load redistribution, the sustainable load for the higher load core will increase

because of the decreased average power of its neighboring core, and further redistribution

may give better power saving. The threshold ∆ is a design choice and we find that 2% of

the original power consumption is a good choice to balance between computation time and

power saving.

3.5.3 Performance evaluation of HLD

In this section, we present the experimental results and provide some insight on the

effectiveness of the HLD in power saving under thermal constraint. First, we want to see how

much load our HLD vacation scheme can sustain with different thermal constraints. Since

there is no existing work considering thermal constrained packet processing on the multicore

system, we compare our scheme with the state-of-the-practice thermal management scheme

implemented in the Linux kernel [11]. In this scheme, the core temperature is monitored,

and the core frequency is decreased when the temperature exceeds the thermal threshold,

and is increased when it falls below the threshold.

Figure 3.22 shows the result of achievable load for ED, HLD and default Linux

thermal management scheme under different thermal constraints (β). We can see that our

proposed schemes outperform the Linux scheme in three aspects: (1) since the Linux scheme

reactively responds to monitored temperature, it can not maintain the core temperature

under the thermal constraint. (2) under a given thermal constraint, our scheme allows higher

load to be processed by the cores, and (3) our scheme can still perform packet processing
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Figure 3.22: Sustainable load of different thermal management scheme.

with lower thermal constraint. Also, because of the load and heat redistribution, HLD can

sustain 8% more load with the same thermal constraint compared with the ED scheme at

high β, and 5% more load in average.

The power consumption of ED and HLD vacation scheme are given in Table 3.1.

In this table, the percentage number in each cell are the power consumption of each scheme

normalized to the Linux scheme power consumption. The region that Linux scheme cannot

satisfy are marked as N/A. We can see that both ED and HLD vacation schemes can achieve

power saving over the Linux scheme. When the load is low, we can see that ED can achieve

β = 0.9 β = 0.8 β = 0.7

load ED HLD ED HLD ED HLD

0.2 84.1% 72.7% 84.3% 73.5% 84.0% 75.1%

0.3 87.1% 76.4% 87.0% 77.5% 87.5% 79.8%

0.4 91.1% 81.1% 90.3% 82.5% 91.0% 84.5%

0.5 92.9% 88.2% 91.8% 87.3%
N/A0.6 94.5% 93.2% 93.1% 92.2%

0.7 95.1% 95.1% N/A

Table 3.1: Normalized power consumption of ED and HLD.

57



good power saving, 14% in average. On top of that, HLD will save more power, 25% in

average, which indicate the effectiveness of power saving under thermal constraint of the

HLD vacation scheme. On the other hand, the power saving achieved by both ED and

HLD decreases as the load increases. It is because as the load gets closer to the maximum

achievable load, for ED, the tvac with lowest power will not fall between the C6-region,

leading to small power saving. For HLD, since the y-distance is shorter, the range for load

migration is smaller, thus less improvement can be achieved.
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Chapter 4

Power Management with Smart

Sleep

4.1 Introduction

In this chapter, we propose our multicore idle period power management scheme,

called “Smart Sleep”. Smart sleep is composed of two parts. First, we propose a per-core

power management scheme by modifying the vacation scheme we proposed in chapter 3,

which dynamically adjusting the per-core sleep time, during which the core can enter deep

idle state without being waken up prematurely. Note that we did not limit the length

of busy period in smart sleep to alleviate the impact on the performance. Our per-core

power management scheme is motivated form buffer and burst [100] that developed forced

idle schemes for a network of routers. However, they focus on device level idle and did not

discuss the performance impact with various sleep states. Second, we introduce the dynamic
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core sizing, which turned of a subset of cores completely. Fig. 4.1 shows the state of the

cores in a CPU. At a particular instant, some cores are off, some are actively processing

requests and some are sleeping. The difference between sleep and off lies in whether a core

can accept request arrivals. Requests arriving at the sleeping core are buffered and their

processing is postponed until the end of the sleep period. On the other hand, requests

arriving at the off core are lost, since the entire processing engine, including the buffer, is

off. Hence, an off core should not receive any request before it is turned on. We derive the

expected idle and busy periods by considering the length of the core sleep, request service

time and the traffic load. By combining these two models, we can find the behavior of

power consumption under our proposed scheme. We derive the response time model using

the M/G/1 queuing model with vacation [113]. Finally, we validate our model through

implementation using real applications and off-the-shelf multicore server. The smart sleep

scheme is closest in terms of concept to [48], which focused on developing various policies

to determine when and which sleep states the server should enter. However, they focus

on the centralized queue scheme where off state is a natural extension of the sleep states.

The multicore packet processing is usually modeled as distributed queue scheme where off

and sleep states differ significantly. Second, they neither adjust per-core sleep time nor

incorporate various C-states in the CPU hence suffers from long transition overhead, thus

is ineffective in fast packet processing that falls in the microseconds level.

Although the smart sleep scheme can achieve power saving, there exists some

limitations on its effectiveness in the multicore processor. First, the CPU cores will spend

full power on state transition (between active and sleep), and this power overhead reduces
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Figure 4.1: Illustration of our proposed multicore smart sleep scheme.

the benefit of the smart sleep. Moreover, depending on the QoS requirement, the length

of sleep period will be limited since it will introduce additional latency. To overcome these

limitations, we propose dynamic core sizing to maximize the power saving by adjusting

the number of active cores on the fly. While the smart sleep scheme saves power through

consolidating request processing in the time domain, core sizing serves as another control

knob, which utilizes the space domain in the multicore processor. Our idea is to put a subset

of cores into off state and process requests with the remaining active cores, where the smart

sleep is applied, to further lower the power consumption. Unlike core parking [92], which

shuts down the core based on the traffic load and throughput demand, our proposed scheme

makes the decision by considering the network traffic pattern, core idle states and latency

requirement simultaneously without compromising the throughput and results in a better

performance-power ratio.

In this chapter, we consider a multicore architecture combining the concepts of

sleep with core sizing [80, 92]. So, minimizing the power consumption becomes a two-
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Figure 4.2: Power consumption under default (green dot), smart sleep only (black line),
core sizing (red line) and multicore smart sleep scheme (3D surface).

dimensional optimization problem with both time (sleep) and space (off) variations. Fig.

4.2 gives the experimental results for the power consumption under different configurations.

We can clearly see that the power consumption will vary depending on both the number of

active cores and per-core sleep time for a particular traffic intensity. The power consumption

from the previous papers [92,100] can be represented as a line with single control knob (red

and black lines). Furthermore, although not shown in this figure, request latencies behave

almost opposite to the power consumption. This gives rise to complex optimization problem

of minimizing power while meeting the QoS requirement.

Considering power and latency tradeoffs, we design an algorithm that can intelli-

gently compute the sleep time and the active periods of cores so that the power consumption
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is minimized while meeting the required QoS(latency) constraint. We develop a runtime,

which monitors the traffic, predicts future traffic demand and then applies different models

to arrive at an optimal configuration. We verify our analysis through real experimentation

under both synthetic and real world traffic trace with four applications, memcached, IPv4

routing, URL and IPSEC, commonly deployed in real-world network and datacenters.

In summary, this chapter makes the following contributions.

• We provide a detailed analysis of processing characteristics of request-based applica-

tions and per core sleep states (C-states) using measurements on real systems.

• We build a per-core smart sleep scheme to achieve power saving via regulating sleep

periods and per core idle states.

• We analytically model the power and average response time characteristics. Through

experimental results, we build an empirical model for the response time distribution.

• We explore further power saving opportunities in multicore architecture by applying

core sizing with per-core smart sleep.

• We propose a runtime framework, which dynamically adjusts the size of active cores

and the length of sleep period based on the predicted traffic pattern.

• We verify our analysis and evaluate our pro-posed schemes by running real network

and datacenter applications on a Linux server, and demonstrate their effectiveness.
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4.2 Power Consumption in Network and Data Center Appli-

cations

This section develops a high-level model for request-based applications, and relates

it to the power behavior during multicore execution. Also, we study the default C-states

behavior in Linux and relate it to request processing.

4.2.1 Basic Request Processing Behavior

We start our analysis by showing how requests arrive and are served. In net-

work applications, Receive-Side Scaling (RSS) resolves network load processing on a limited

single-CPU by enabling a number of available CPUs in a multicore system by introducing

multiple receive queues. Compared to the default load-balance scheduling in Linux kernel

(with irqbalance enabled), RSS balances the workload on connection level rather than per

packet basis [9]. Each receive queue will be assigned to a core in the system, which processes

all the packets in the same connection. With RSS, the NIC driver provides the ability to

schedule receive packets among CPU cores, and ensures that the processing associated with

a given connection stays on an assigned CPU core. The NIC implements a hash function

and the resulting hash value provides the means to select a CPU core by inserting the packet

into the corresponding receive queue. This distributed queuing scheme has several advan-

tages over the centralized scheme. First, the distributed queues prevent the lock contention

existing in the centralized queue scheme, which greatly impacts the performance [9, 112].

Second, because packets in the same connection share not only IP layer information in the

header, but also some potential common sections in the payload, processing packets in the
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same connection can improve I/O latency and throughput by preventing additional data

movement and maintaining a better cache locality. Similarly, latency critical datacenter

applications, such as memcached [7,47], also implement the connection level load balancing

with distributed queue scheme by statically building the connection-core mapping during

the application initialization phase.

Fig. 4.1 depicts a general view of request based application processing in multicore

architecture. In our example distributed queue system, there are many processing engines

(PEs), where each PE is composed of a local queue and a CPU core. Incoming requests

are distributed among PEs through the load distributor. Requests arriving at each PE are

stored in that PE’s local queue, and the CPU core will fetch and process a request in the

queue in an FIFO fashion. On the other hand, if there are no pending requests in the queue,

the core will enter idle state and stay there until the next request arrives, then will become

active and process the request. Note that the system can be modeled as multiple M/G/1

queues, instead of a M/G/k queue, since the incoming requests are scheduled and inserted

into distributed queues.

4.2.2 Problem Formulation

Our optimization objective is to minimize average power consumption of a multi-

core processor with N cores, while satisfying latency constraint. Given a set of R requests,

we denote the latency of request r by Lr, for r = 1, 2, . . . , R. Thus, we formulate the power

minimization problem as follows:

minimize PNprocessor (4.1)
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Table 4.1: Characteristics of CPU core C-states.

Sleep State Transition time Energy-Break-Even Time (EBT) Power
C0 0µsec 0µsec 5-7W
C1 1µsec 1µsec 3.8W
C3 59µsec 156µsec 1.95W
C6 80µsec 300µsec 0W

s.t., Lavg =
1

R

∑R

r=1
Lr ≤ Lc. (4.2)

where Lc is the latency constraint.

Note that in some scenarios, instead of constraining on the average latency, the

QoS constraint will be on tail latency. The tail (95%ile) latency for the set of R requests,

denoted by Ltail, is the 0.95×R-th largest latency among these R requests. In this scenario,

the constraint function in equation 4.2 will be modified into

Ltail ≤ Lc. (4.3)

4.2.3 Power Consumption Model with Idle States

As we mentioned previously, the CPU core will become idle when it finds no work

to do, and still consumes power. Most of the modern CPUs provide succession of per-core

idle states (also called C-states) to save power. In our experimental platform with Intel

Quad-core processor, there are three CPU idle power states, as shown in Table 4.1, which

are achieved by disabling different components in the CPU core. The C-states are numbered

starting at C0, which is the normal CPU operating mode, and the core is fully turned on.

The higher the C-state is numbered, the lower the power a CPU core will consume. In

66



the state C1, part of internal clocks of a CPU core is disabled, thus the dynamic power

consumption is reduced. In C3 state, the power consumption is further reduced by cutting

the clocks of entire CPU core, which reduces the dynamic power to 0. However, to transit

back to the normal operation mode, it will spend 59 µsec, compared to only 1 µsec for

C1-C0 transition. While in state C6, the power supply to the core is gated to reduce

both dynamic and static power consumption to approximately zero. The wakeup time a

core in idle state C6 is the longest at 80 µsec. Table 4.1 shows the power consumption of

each C-state. We can see that the deeper C-states consume much lower power than the

active state (C0). Also, the transition overhead of entering that C state increases, from

1 to 80 µsec, as the C-state gets deeper, since it takes more time to disable/enable the

corresponding components. Moreover, the power consumptions of the C-states, except for

C6, are temperature dependent because of the static power consumption.

Considering busy/idle execution pattern and different C-states, the power con-

sumption of the multicore processor can be formulated as:

Pprocessor =

N∑
n=1

Pna × tna +
∑
i∈C

(
Pi ×

(
tni − tntran,i

)
+ Ptran × tntran,i

)
tna +

∑
i∈C

tni
(4.4)

, where the super-script n is the index to the core, and N is the number of cores in the

processor. The first term in the denominator is the active energy consumption, Pa is the

active power consumption; Pi is the idle power consumption in ith C-state and Ptran is the

maximum power spent during the state transition, which makes the second term the idle

energy consumption. ta, ti and ttran,i are the length of active period, the time spend in ith

C-state and the state transition time, respectively.
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4.2.4 Problem with Existing Idle state Linux Governor

The goal of the idle power management is to minimize the second term in equation

(4.4). Because of the state transition overhead, a CPU core should enter the C-states if the

idle duration is greater than a threshold, called energy break-even time (EBT), to avoid

inefficient usage of C-states, and this threshold increases as the C-state gets deeper, as

shown in Table 4.1. As a result, the idle period should be known beforehand to select the

most energy efficient C-state a core should enter. In the Linux kernel, the prediction-based

sleep-state selection algorithm, called menu idle governor [3], is used for this purpose. It

uses a history-based idle length predictor. If the variation among the past idle intervals is

small, the average of past idle intervals will be used as the prediction; otherwise the next

scheduled OS timer event will be used as the prediction. However, due to the unpredictable

nature of the request arrival, the menu governor or any history based idle period predictor

is not very useful with the non-deterministic execution pattern [38], where over-prediction

(predicted idle period is shorter than the actual one) will cause energy inefficiencies and

under-prediction will cause unnecessary latency increase and power wastage due to the large

state transition overhead.

Besides the difficulties for the idle period prediction, another issue for idle power

management lies in the frequent and random ON/OFF pattern of network and datacenter

applications, which greatly affect the effectiveness of using C-states. Fig. 4.3 gives the ex-

perimental results of the power consumption of a network application under different traffic

loads. There are three scenarios in Fig. 4.3: “Linux” represents the power consumption

of using Linux prediction-based C-state selection algorithms (menu idle governor), and the
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Figure 4.3: Power consumption under different scenarios.

results are measured using on-chip energy sensors; “Oracle” represents the case when all

idle durations are known beforehand so the core can enter the most energy efficient C-state

with no prediction error, and “Ideal” gives the power consumption with perfect energy pro-

portionality, where all CPU cores go into deepest sleep state during all of its idle time with

zero transition overhead. One should notice that the Ideal scheme serves as a theoretical

lower bound of the power consumption that can be achieved. In Fig. 4.3, we can see that

when the system has highly activity (ρ > 0.7), the difference between Linux and Oracle

cases are small, because the idle period is mostly short, which make shallowest C-state the

most energy efficient. However, due to the inaccurate prediction, the Linux prediction algo-

rithm becomes less effective when the traffic activity decreases, 16% and 25% more power

consumption than the Oracle case at = 0.4 and 0.1, respectively.

Furthermore, despite the perfect idle state selection of the Oracle case, the exis-

tence of short idle periods will prevent the system from going into deep C-state. For this

reason, even with low activity, the system operates far from being energy proportional i.e.,
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(a)

(b)

Figure 4.4: The packet/request processing and power consumption pattern under (a) default
and (b) smart sleep schemes.

consumes power proportionally to its utilization, as shown in the Ideal case.

4.3 Smart Sleep

In the original system, CPU cores are busy processing requests in the queue. They

become idle when their queues are empty and spend most of their time idle when the traffic

is not heavy. The state-of-the-practice idle power managing algorithm is unable to exploit

the power saving opportunities during short idle periods due to the relatively high overhead

of the deep idle state transition, as shown in Fig. 4.4(a). In this section, we present a

technique that can efficiently utilize processor deep sleep by smartly selecting the duration

of its sleep. This section describes our power saving scheme, derives per-core analysis, and

studies its impact on the other performance metrics. The results will be applied to multiple

cores in the next section.

70



We propose Smart Sleep, an approach to reshape the request processing pattern

by creating longer sleep periods and allowing the CPU cores to enter deeper idle states that

consumes less power. There are two states for a CPU core in our scheme: working and

sleeping. In working state, the CPU core fetches requests from the queue and processes

them until there is no request left in the queue. When the queue is empty, the CPU core

will switch to sleeping state and buffers all the incoming requests in the queue. After

a predetermined sleep time, the core wakes up and goes back to the working state, and

continues to serve requests in the queue.

Smart sleep solves two major issues with the existing idle power management

scheme: short and unpredictable idle period. As shown in Fig. 4.4(b), in the smart sleep

scheme, the incoming traffic, from the cores perspective is reshaped into bursts of arrival.

CPU core wakes up to process a batch of requests, and then sleeps for a longer time. The

intent is to provide sufficient idle time for cores, so that they can enter the deeper C-state

efficiently, and improve idle period power saving. Also, since the sleep period is determined

before the idle, the exact length of the idle period is known, and the idle state selection

become straightforward. However, accurate determination (prediction) of the sleep period

is critical to the efficiency of smart sleep technique. We will describe the prediction method

in the next section. In the rest of this section, we focus on two major performance metrics:

power consumption and response time, and theoretically analyze them under smart sleep

scheme. Experimental verification of our analytical techniques is given in section 4.5.
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4.3.1 Power Consumption

To understand the effectiveness of the idle power saving with smart sleep, we first

derive the idle power consumption during the sleep period. Let tsleep be the sleep time, Pc

be the power consumption during the core idle period and is dependent on the C-state, ttran

and Ptran be the time and power spent during the state transition. Since the sleep period

is determined before the CPU goes to idle, the best suitable C-state is known beforehand,

and the average power consumption during sleep period, Psleep, can be formulated as:

Psleep =
Pc × tsleep + (Ptran − Pc)× ttran

tsleep
(4.5)

Since our smart sleep just rearranges the processing pattern and does not change the overall

busy or idle time, the overall power consumption can be formulated as:

Pavg = Pwork × ρ+ Psleep × (1− ρ)

= Pwork × ρ+ Pc × (1− ρ)

+ (Ptran − Pc)×
ttran
tsleep

× (1− ρ)

(4.6)

4.3.2 Response time

The smart sleep introduces a sleep period whenever the core becomes idle, and

request processing is deferred to the end of this period. Thus, the response time of the

requests will increase. From the vacation queue theory [113], the latency, Lsleep can be
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decomposed into the sum of two independent random variables,

Lsleep = L+ Ld (4.7)

, where L is the latency of a classical M/G/1 queue without sleep, and Ld is the additional

delay due to the introduced sleep period, and is the residual time of a sleep period.

Average response time: From equation (4.7-4.10), the expected response time, E(Lsleep),

can be formulated as:

E(Lsleep) =
λE(S2)

2(1− ρ)
+ E(S) +

tsleep
2

(4.8)

The first term of equation (4.8) is the Pollaczek-Khinchin formula for the expected queuing

delay in a standard M/G/1 queue, the second term, E(S), is the expected service time, and

the final term is the additional delay caused by the sleep, and is proportional to tsleep.

Response time distribution analysis: Besides obtaining the closed form equation for

the average latency, we also need to model the latency distribution. The QoS of datacenter

applications is usually defined by the tail latency (i%ile latency), where i% of requests

must be finished before a given time threshold. To acquire the tail latency, we need to

further model the distribution of the Lsleep. While obtaining the closed form equation of

the latency distribution for the M/G/1 queue is analytically intractable, we provide some

theoretical analyses which give insight on building the latency behavior model under smart

sleep scheme,

Let S be the random variable of the service time and fL(x) and fLd(x) be the prob-

ability density function (PDF) of random variable L and Ld, respectively. From equation
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(4.7), we will have

fLsleep(x) = fL(x) ∗ fLd(x)

=

∫ ∞
−∞

fL(x)fLd(z − x)dz

(4.9)

Thus if we can acquire the PDF of L and Ld, we can compute the latency distri-

bution of fLsleep and the tail latency.

First, the latency distribution of a classical M/G/1 queue, L, can be modeled as:

L∗(s) = W ∗(s)S∗(S) =
(1− ρ)s

s− λ+ λS∗(s)
S∗(s) (4.10)

,where W is the waiting time, L∗(s), W ∗(s) and S∗(s) is the laplace transform of L, W and

S. Also, by rearranging W ∗(s), the random variable W can be decomposed into:

W =
(1− ρ)

1− ρR
=
∞∑
n=0

ρnRn (4.11)

, where R is the residual service time in the server conditioned on that there is a customer

in the server, and Rn is the n-fold convolution of R. Furthermore,

R∗(s) =
1− S∗(s)
sE(S)

⇒ fR(x) =
1− FS(x)

E(S)
(4.12)

From equation 4.11 and 4.12, we can derive fL(x) with only the service time distribution.

Now, we need to have the distribution of Ld. Since Ld is the residual time of a
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constant sleep period tsleep, f(Ld) will be a uniform distribution

fLd(x) =


1

tsleep
, if 0 ≤ x ≤ tsleep

0, otherwise

(4.13)

Response time distribution model: From equation (4.9) and (4.13), we can see that

fLsleep(x) is the sliding window summation of the distribution fL(x), with the window width

equal to tsleep. Figure 4.5 gives an example of how to form fLsleep(x). First, let φ be

φ = min{k : fL(x) < ε ∀x ≥ k} (4.14)

By setting ε to be small (<0.0001), φ helps us to simplify the analysis without sacrifice the

accuracy.

The convolution in equation (4.9) can be broken down into five phases based on z.

z < 0: In this phase, there is no overlap between fL and fLd , thus fLsleep(z) = 0.

0 < z ≤ φ: As shown in 4.5a, fLd is moving toward fL, resulting partially overlapped.

As fL shifting right (increasing z), the overlapped region increases, thus we can have the

following formulation:

fLsleep(z) =
1

tsleep

∫ z

−∞
fL(x)dx

=
1

tsleep
FL(z)

(4.15)

. The PDF of the fLsleep is equal to FL(x), the cumulative distribution function (CDF) of
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(a) Ramp up phase (b) Full overlap phase

(c) Ramp down phase (d) the distribution fLsleep
(z)

Figure 4.5: Illustration of fLsleep(z) through sliding window summation of fL(x)

L.

φ < z ≤ tsleep: In this range, whole fL is overlapped with the fLd , thus fLsleep(z) = 1
tsleep

.

tsleep < z ≤ φ+ tsleep: In this phase, fLd is moving away from the fL, resulting in partial

overlap. Contrary to the ramp up phase, the overlapped region decreases as fL shifting

right (increasing z). fLsleep(z) can then be formulated as:
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fLsleep(z) =
1

tsleep

∫ z−tsleep

z−tsleep−φ
fL(x)dx

=
1

tsleep
(1− FL(z − tsleep))

=
1

tsleep
FL(z − tsleep)

(4.16)

. The PDF of the fLsleep is equal to FL(x), the complementary cumulative distribution

function (CCDF) of L, as shown in 4.5c.

φ+tsleep < z: In this region, since FL(x) is small (with the definition of φ) , thus Ftsleep ≈ 0.

In summary, we have the model of PDF of Lsleep as

fLsleep(z) =

1

tsleep
×



FL(z), 0 ≤ z ≤ φ

1, φ < z ≤ tsleep

FL(z − tsleep), tsleep < z ≤ φ+ tsleep

0, otherwise

(4.17)

Note that the above analysis assumes that φ > z. This assumption may not be

valid for high traffic load and/or small tsleep. As shown in fig 4.6, the ramp up and ramp

down phases are now limited by 0 ≤ z < tsleep and tsleep ≤ z < φ+ tsleep. In between, there

is an sliding overlap phase, where only partial FL is summed. While computing the sliding

overlap phase may be time consuming, we develop an approximation based on the following
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Figure 4.6: Illustration of sliding overlap when φ ≥ z.

observations:

fLsleep(z) ≤
1

tsleep
FL(z)

fLsleep(z) ≤
1

tsleep
FL(z − tsleep)

(4.18)

, and the approximated distribution, f
′
Lsleep

(z) is

f
′
Lsleep

(z) =
1

tsleep
min(FL(z), FL(z − tsleep)) (4.19)

Figure 4.7 gives the results of our response time distribution model. We also

present the actual experimental results to show the accuracy of our model. From fig 4.7a, we

can see that our model can faithfully represent the distribution at high tsleep. At low tsleep,

our approximated distribution model slightly overestimated the distribution. Similarly, in

fig 4.7b, our approximation model overestimates at high load. Figure 4.7c gives the error

between the tail (95th) latency derived from our model and the experimental results. The

error is defined as (tailmodel − tailexperiment)/tailexperiment. We can see that our model

overestimates the tail latency under smart sleep scheme, especially at high load and low
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(a) (b)

(c)

Figure 4.7: Experimental and model results for response time distribution under smart
sleep. (a) different sleep periods at fixed traffic load ρ = 0.4, (b) different traffic load with
the same sleep period tsleep = 500µsec, and (c) the modeling error for different traffic load
and sleep periods.

tsleep because of the nature of our approximation. One thing to notice is that the minimum

tsleep we choose is larger than 156 µsec (the EBT of C3 state). As a result, the worst case

modeling error will be less than 3%.

4.4 Multicore Smart Sleep Framework

In section 4.3, we presented the detailed performance analyses of our smart sleep

in the CPU core level. However, to apply it to the multicore processor, one more dimen-

sion needs to be considered, ie. the number of cores that need to be active. As the traffic

79



increases, more cores need to be active to maintain a certain level of the response time.

However, turning on the minimum number of cores based on the core utilization and re-

sponse time might not give the best power saving. Although turning off a core will save

the state transition power (staying at C6 state without waking up), it will shorten the sleep

periods for the active cores and increase their power consumption. In this section, we will

analyze this problem and answer two major questions: (1) When does a core need to be

turned on/off, and (2) how is the sleep time of the active cores determined so that the max-

imum power saving will be achieved under a given response time constraint. First, we will

theoretically analyze the performance of multicore smart sleep scheme, and then propose a

runtime algorithm to dynamically determine the number of active cores in the processor and

sleep time for each core based on prediction of the future traffic. Experimental verification

of our analytical techniques is given in section 4.5.

4.4.1 Core Sizing

In this section, we theoretically determine the optimum configuration of the active

cores of the multicore processor and the per-core sleep time. The optimal configuration

is the one that minimizes power consumption while meeting a target QoS (response time)

constraint. The server should be running full out, i.e., activating all cores, under default

scheme to meet the QoS constraint during periods of peak demand. In contrast, at lower

loads there is slack in meeting the QoS which can be exploited to reduce power as much as

possible. We set the QoS constraint as the response time under the peak load (ρc = λc/µ)

without applying any power management techniques, where CPU will not enter any power

saving state during idle. With the number of cores N , the response time constraint, Lc,
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will follow the standard M/G/1 queuing model with load ρc/N , assuming the load is evenly

distributed to each PE. Also, equation 4.6 shows that longer sleep period will give lower

power consumption, our optimization can then be transformed as:

maximize tsleep

s.t., L(ρ/k, k, tsleep) ≤ Lc, and 1 ≤ k ≤ N.
(4.20)

, where P i is the power consumption of core i, k is the number of active cores, and ρ/k is

the load/utilization of each active core. We propose a power optimization heuristic in the

following section.

4.4.2 Power Optimization Heuristic

Constraint on average latency: Since the average latency under smart scheme

has a closed form solution, we develop an heuristic to find the best configuration to minimize

power under average latency constraint. Since the core consumes no power while being

inactive (put into C6 state), and all active cores are distributed with same traffic load and

sleep time, the total power consumption is equal to k times of a core under the sleep time

tsleep with load λ/kµ. By combining equation (4.6) and (4.8), the maximum sleep time with

k active cores is:

tksleep = E(S2)×
[ kλc −Nλ

(N − ρc)(k − ρ)

]
(4.21)

Now, we need to determine the number of active cores to achieve minimum power

consumption. In general, we want to turn off as many cores as possible to save the power

consumption. However, the more cores we turn on, the longer the sleep time each core can
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have, and the lower the power consumption of each core. There will be some cases that

having more active cores, with longer per-core sleep time, will consume less power than

having less active cores with short sleep. These two competing factors must be analyzed

and balanced.

Let the sleep time with n and k active core be tnsleep and tksleep, where k > n.

Because of the transition power overhead, we know that the power consumption of n active

cores will be less than that of k cores if both tnsleep and tksleep will drive the cores into the

same C-state. On the other hand, if tksleep is long enough to drive CPU cores into deeper

C-state than tnsleep, the choice becomes complicated, depending on the load, C-states and

the value of n. We propose a simple heuristic to find the configuration that minimizes the

power consumption as follows:

Let ki = {ki1, ki2, ..., kin} be the set of configuration (number of core) where kin >

kin−1 > ... > ki1 and EBTi+1 > t
kin
sleep > EBTi so they will enter the same C-state i. We

know that the minimum power consumption in the set Ki is the configuration which has

minimum number of active core (kimin). As a result, to find the configuration with minimum

power consumption for all possible configuration, we just need to check one configuration

in each set ki for each C-state i. By replacing tsleep with EBTi, the energy breakeven time

for C-state i, we can compute the minimum power configuration of the set ki, , as:

kimin =

ρ
EBTi(N − ρc)− E(S2)

E(S) N

EBTi(N − ρc)− E(S2)
E(S) ρc

 (4.22)

Once we know kimin, we can compute their corresponding sleep period and power consump-

tion through equation (4.21) and (4.6), and find the configuration which minimize the power
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Figure 4.8: The overview of multicore smart sleep framework.

consumption.

Constraint on tail latency: Our power optimization heuristic can also adapt

to different latency constraints, such as tail latency, with some modifications. Instead of

having closed form equation (equation (4.22)) to compute the configuration under average

latency, we need to use the PDF model (equation (4.17) and (4.19)) we built in section 4.3.2

to find kimin for each Cstate i.

4.4.3 Runtime Framework

In this subsection, we propose a power aware scheduling runtime, which monitors

and predicts the incoming traffic, and dynamically chooses a configuration. It determines

the number of cores that needs to be active and the sleep time of each core. With the

selected configuration, we can achieve maximum power saving while satisfying the QoS

requirement.

Fig. 4.8 shows the system overview of our system framework, which is composed

of a scheduler and many processing engines (PEs). A PE essentially consists of a processing
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core and its input buffer (queue), as shown in Fig. 4.8. The arriving packets will be

distributed to the designated PE as assigned by the scheduler. The core in the PE will fetch

and process the requests from its local queue following the smart sleep scheme. The aims of

the scheduler are: (1) predict the future traffic load, (2) choose the optimum configuration

tuple to minimize the power consumption without violating the QoS constraint, and (3)

distribute workload to the PEs. Since the future arrival rate is unavailable, we use the

history of traffic pattern to predict the future traffic load. We denote this predicted arrival

rate as I , and estimate it with the measured history of past arrivals, denoted as I. We

employ an Exponentially Weighted Moving Average (EWMA) filter:

Ik = αIk−1 + (1− α)Ik (4.23)

EWMA is a very low-overhead filter that places more importance on recent data

and discounts older data in an exponential manner. The value of the parameter α dictates

the degree of filtering, a constant smoothing factor between 0 and 1. A higher α discounts

older observations faster. In our experiment, we find out that setting α to 0.1 and window

size to 30 seconds provides a good balance between filter agility and stability. Although

EWMA is a good traffic predictor most of the time, a more sophisticated predictor might

improve the accuracy, which we plan to explore in our future work.

The predicted traffic will then be used for choosing the optimum configuration.

First, it finds the minimum number of cores needed to be active (dρ/ρce). Then, based on

equation (4.22), it computes and compares the minimum power consumption under each

Cstate, and finds out the optimum number of active cores and per-core sleep time. Once
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the configuration is determined, it will be sent to the sleep managers of each PE. The per-

core manager will apply the smart sleep and regulate the request processing of the core.

Finally, the incoming requests are distributed among the active cores in round-robin fashion

to the active cores, as done by Linux scheduler. Although more sophisticated scheduling

algorithms can be applied considering packet reordering, it is out of the scope of this paper.

4.5 Performance Evaluation

In this section, we first give our experiment setup in subsection 4.5.1, and briefly

give some results for the single core in subsection 4.5.2. Then we present the evaluation of

multicore smart sleep and our runtime framework in subsection 4.5.3 and 4.5.4.

4.5.1 Experiment setup

Our experimental system consists of a traffic generator and a processing server

with an Intel Quad-core processor connected through 10 Gbps Ethernet link. The CPU

cores are kept at a fixed frequency, 3.4GHz (the maximum frequency of the processor), to

eliminate run-to-run performance variance. Our Quad-core processor is equipped with on-

chip energy sensor which records the energy consumption of all four cores, and the readings

are collected from accessing machine specific register (MSR) at the rate of 1 kHz.

We consider both synthetic traces and real traces of network/data center appli-

cations to evaluate our proposed schemes. The synthetic traces are considered in order to

observe the impact of traffic load on power consumption and latency, which cannot be done

using real traces. We generate synthetic traces of 10 million packets/requests, assuming
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the arrival pattern is Poisson, and service time is exponential distribution. The traces are

re-played by the traffic generator, sent over the Ethernet to the server, and the energy

consumption, total execution time and per-request response time of the processing server

are recorded. The range of the sleep time is selected to be from 100 to 900 µsec. We do

not increase the sleep time further because increasing the sleep time beyond 900 µsec only

marginally improves the power saving. The core is turned off by removing cores from active

working set based on kernels built-in CPU “hotplug” support. Thus OS will not schedule

any task to the off cores.

Besides using synthetic trace, we also use some real-world traces to evaluate our

proposed framework. We are interested in evaluating the performance of our system with a

broad range of applications. To this end, we run experiments with the service rates obtained

from executing four network and datacenter applications: IPv4 routing, URL, IPSEC and

memcached. IPv4 routing and IPSEC are commonly deployed network packet processing

applications, URL is an application aware switching algorithm applied in the server farms,

and memcached is a popular key-value store datacenter application. One thing to notice is

that the QoS of memcached is defined by the tail latency to ensure the performance stability,

where the latency will be lower than the constraint most of the time [47]. We choose 95%ile

latency as our tail latency, this different QoS target can be easily adapted in our smart sleep

scheme by changing the response time model and the derivation algebraically. We executed

the benchmark applications on our server and collected the statistics about service time

and power consumption on our server, as given in Table 4.2.

For datacenter applications, we use the trace provided in the Cloudsuite [47];
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Table 4.2: Characteristic of packet processing and datacenter applications.

Name Functionality E(s)
Memcached In-memory key-value store 20µsec
IPv4 Routing Radix based IPv4 routing 50µsec
URL Content-based switching 105µsec
IPSEC Packet encryption using AES-128 152µsec

for network applications, we use the packet traces of real network from CAIDAs equinix

monitors [2] as inputs. CAIDA captures the traffic traces on OC192 links. The traces in

this data set are of 60 minutes long duration. They were captured on June 19th, 2014,

containing the time stamp and header of packets. CAIDA also makes real time traffic load

available online, and we record one day data as the traffic trace. These traces are replayed

and scaled with actual traffic load in our traffic generator to model the real traffic scenario.

4.5.2 Single Core Results

Power consumption: Fig. 4.9 shows experimental results of the power con-

sumption under smart sleep and the oracle Linux power management scheme as a function

of the traffic intensity. In these experiments, we run the application URL, with the average

service time 105 µsec and vary the average inter-arrival times according to the traffic load

we need. The requests inter-arrival time follows the exponential distribution. Similar to

Fig. 4.3, we plot the power consumption under four different schemes: the default Linux

power management scheme, labeled as “Linux”, the oracle C-state selection scheme, “Or-

acle”, the smart sleep scheme and the energy proportional power consumption, labeled as

“Ideal”. For the smart sleep scheme, we give two sets of results with tsleep = 300 and 900

µsec, labeled as Sleep - 300µs and Sleep - 900µs, respectively. For the Oracle scheme, we

used pyTimechart [8] to collect system busy/idle traces. The total energy consumption
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Figure 4.9: Power consumption under different scenarios.

under Oracle scheme is then the weighted sum of the busy periods and each idle periods

with the most energy efficient sleep states (given in Table 4.1).

First, we can see that significant power consumption gap exist between C-states

selection schemes (Linux and Oracle) and the energy proportion scheme (Ideal). The Linux

power management does not provide good energy performance mainly because of the idle

period prediction error and the CPU core will hardly ever go to C-states deeper than C1,

resulting poor energy efficiency. However, even with most energy efficient C-state selections,

as in the Oracle scheme, the power-load curve is still super-linear and far from being energy

proportional. The reason is that the core can only enter deep sleep state and save power

if and only if the idle period is longer than the EBT, and the probability of that increases

non-linearly as the load decreases. In contrast, the power-load curve for the smart sleep

is linear with a fixed tsleep. Second, the smart sleep scheme can achieve significant power

saving even compared with the oracle C-state selection scheme. It is because the forced idle

sleep periods will drive the core into C6 state with 0 idle power. When tsleep = 900 µsec,
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Figure 4.10: The break down of the C-states residency with different sleep period.

we can achieve an average 23% and maximum 41% power saving. Furthermore, with short

sleep period (300 µsec), which barely satisfies the C6 state threshold, we can still achieve

10% power saving over the oracle scheme. The power saving of smart sleep scheme is even

more significant compared with the state-of-the-practice Linux scheme, 21% and 35% power

saving on an average with 300 and 900 µsec sleep period, respectively.

C-state residencies: To show that the core will enter deeper sleep state during

the sleep period, we also record the time spent in each C-state during the experiments. Fig.

4.10 gives the percentage of the idle time that the CPU core spent in each C-state at medium

traffic load ρ=0.4, with tsleep = 0 representing the default Linux scheme, where it puts CPU

cores to C3 and C6 states only for small portion of time, less than 20%, because of the nature

of short idle periods and the inaccurate idle period prediction. On the other hand, the smart

sleep scheme will introduce a predictable idle period pattern, which allows the underlying

idle governor to enter the most energy efficient idle state without any prediction error. For

smart sleep scheme with tsleep = 100 µsec, the core will spend all its idle time in C1 state

because of the short sleep time. The core will wake up and check the queue every 100 µsec,

89



Figure 4.11: Average response time under different scenarios.

which prevents the core from entering C3 and C6 states completely. As tsleep increases to

200 and 400 µsec, the core will enter C3 and C6 during its idle periods, respectively. These

results show that our smart sleep scheme can effectively save idle power of a CPU core by

utilizing deep C-states.

Response time: The power saving in the smart sleep scheme does not come free.

It increases the response time. The idea is that as long as the latency does not exceed the

limit, it is acceptable to delay the response and save power. Fig. 4.11 gives the average

response time under different power management schemes with traffic load increasing from

0.1 to 0.9. In the Linux scheme, most of the time, the core will go to C1 state during idle

period with negligible transition time, hence the response time is minimum. In the Oracle

scheme, the core enters the deep C-states while the traffic is low, the latency is slightly

increased because of the C-state wakeup transition time. However, as the traffic increases,

the frequency of entering deep C-states decreases, and the response time of the Oracle

scheme is close to the Linux scheme. As expected, additional response time is introduced

by the smart sleep, and is around half of the sleep time compared with Linux scheme. The
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Figure 4.12: Different tail latencies under smart sleep scheme.

sleep time can be varied depending on the allowable response time for the packets. Note

that the tail response time (higher percentile response time) will follow the similar trend as

in Fig. 4.11.

Target tail latency: As we mentioned previously, some network and datacenter

applications will define their service quality with high percentile latency (tail latency). Fig.

4.12 gives the experimental results of tail latency under smart sleep. In this figure, we

show the average latency along with four different levels of tail latency: 90th, 95th ,98th

and 99th percentile latency. The solid lines represent the tail latency with smart sleep

scheme under load 0.4. The horizontal dotted lines represent the QoS constraints under

each tail level. The QoS constraints defined as the average/tail latency under default scheme

with load 0.8. The intersection of dotted and solid lines (black dots) for each tail latency

level represents the corresponding sleep period length that we should choose in smart sleep

scheme. We can see that with higher percentile QoS constraint, longer sleep period can be

used in smart sleep scheme. This is because the QoS with high percentile latency is much
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larger than that with average latency. Compared with 316 µsec target average latency, the

target tail latency increases from 640 µsec (90th) to 1200 µsec (99th). Also, the tail latency

overhead introduced by smart sleep scheme increases at similar rate with different levels of

tail latency. As a result, the sleep period increases significantly from 372 to more than 900

µsec as tail percentile increases. Also, combining with the fact that longer sleep period will

lead to lower power consumption (Fig. 4.9), we can conclude that smart sleep scheme can

achieve higher power saving with the higher percentile tail latency constraint.

4.5.3 Multicore Results

When there are multiple cores in CPU, the number of active cores can be varied in

addition to the sleep times in a smart sleep scheme. In this section, we first give the exper-

imental results for different configurations of multicore smart sleep scheme under different

traffic loads. Then we show the effectiveness of our runtime with real world traces. We use

the notation (V, k) to represent the configuration of tsleep = V µsec and k active cores.

Fig. 4.13 and 4.14 give the experimental results of power consumption and response

time in our multicore smart sleep scheme, running URL application with synthetic traffic

traces. In these figures, the x-axis is the length of the sleep time, y-axis (depth) is the

number of active cores, and z-axis (elevation) is the power consumption or response time.

We only give the results with tsleep ≤ 500µsec because the results change marginally with

higher sleep times. In Fig. 4.13, we can see two noticeable drops of the power consumption

(at tsleep = 200 and 400 µsec) as sleep period increases. It is because the CPU core should

enter a specific C-state only when the idle time is longer than the EBT of that C-state.

Also, the minimum number of active cores is increasing as the load is increased, simply
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(a) (b) (c)

Figure 4.13: Power consumption after applying multicore smart sleep scheme with different
configuration under (a) ρ=0.1, (b) ρ=0.4 and (c) ρ=0.7 traffic load.

(a) (b) (c)

Figure 4.14: Response time after applying multicore smart sleep scheme with different
configuration under (a) ρ=0.1, (b) ρ=0.4 nad (c) ρ=0.7 traffic load.

because it needs more processing capability.

An important observation is that different configurations may yield to similar

power consumption. For example, (200, 1) and (500, 4) in ρ = 0.1, and (300, 2) and

(500, 3) in ρ = 0.4 give similar power consumption results, but the response time of these

configurations are very different. As shown in Fig. 4.14, the response time is increasing

as the sleep period is increased. Also, as the number of active cores increases, the load on

each core is decreased. It is clear that there exists a tradeoff between power consumption

and response time in choosing the number of active cores. Small number of active cores

will give better power consumption but worse response time compared with the large one.

Thus, finding the best configuration is crucial in the multicore smart sleep. Our smart sleep
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Figure 4.15: Power saving comparison among different schemes at different traffic load.

scheme always chooses the configuration with larger number of active cores while two or

more configurations give same power consumption, as opposed to choosing smaller number

in core packing [92].

Fig. 4.15 gives the power saving over default Linux scheme under our multicore

smart sleep scheme with peak load ρc = 0.9. We compare the power saving results of our

multicore smart sleep with two different schemes: (1) Smart sleep only, and (2) Core sizing

only. In smart sleep only scheme, we do not turn off the core and only follow the principle

described in section 4.3. In Core sizing only scheme, we only turn off the core without

applying the smart sleep, the number of active cores is selected based on dρ/ρce. We can

see that neither smart sleep only nor core sizing only scheme can efficiently exploit the

opportunities for power saving. In smart sleep only scheme, although the cores will enter

deep sleep during idle periods, it still suffers from state transition overheads which contribute

significantly to the power consumption. On the other hand, core sizing only scheme will

put the core into deepest sleep state by turning it off, but the remaining active cores still

rely on default Linux C-state selection algorithm during their idle periods, resulting in
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Figure 4.16: One day traffic trace recorded from CAIDA [2].

inefficient idle power consumption. Also, it will reduce the change for the active cores

to enter deep sleep state, since the active cores will experience higher load. By combining

both techniques, our multicore smart sleep scheme will intelligently balance among the state

transition overheads, idle power savings and latency, achieving better energy efficiency.

4.5.4 Runtime Results with real world traffic trace

To see the effectiveness of our multicore smart sleep scheme, we conduct experi-

ments with real world traffic. The one day traffic trace recorded from CAIDA [2] is shown

in Fig. 4.16. The traffic trace has a typical peak-valley characteristic, where the latency

constraint is set at the peak load.

With the real world traffic trace, Fig. 4.17 shows the experimental results of

power consumption of four applications, listed in Table 4.2. In these experiments, we scale

the load so that the peak load ρc=0.8. Also, we show the result of (1) our multicore

smart sleep scheme (MSS), (2) the default power management scheme (Linux), and (3)

the theoretical perfect energy proportional scheme (EP) for the comparison. First, we can

see that multicore smart sleep achieves significant power saving (38% in average) over the
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(a) Memcached (b) IPV4 routing

(c) URL (d) IPSEC

Figure 4.17: Power consumption of multicore smart sleep with four different applications
under real traffic trace. (peak traffic load 0.8).

default Linux scheme and close to EP. Second, the effectiveness of our scheme depends on

the characteristic of applications. The power usage of our scheme is very close to the EP

in URL and IPSEC, but not the other two applications. The reason is that the length of

the sleep period in our scheme is dependent on the slack, which is the difference between

the response time constraint and the response time at current load. For the applications

with high service rate (short service time), the response time constraint is tight. The length

of sleep is limited to less than the EBT of the deep sleep state. As a result, CPU core

will not enter deep idle state during the sleep time and the power saving is compromised.

On the other hand, the response time constraint is loose for the applications with long

service time, and our scheme can achieve high power saving. Despite of the limitation, the

multicore smart sleep can still achieve good power saving because of (1) dynamical core

activation/deactivation and (2) elimination of C-state prediction error. In Fig. 4.17, for

memcached and IPv4 routing, we can see that there are step increases/decreases of the
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Table 4.3: Power saving and energy proportionality (EP) of the multicore smart sleep
scheme with different applications.

Memcached IPv4 Routing URL IPSEC Average

ρc
Power
Saving EP Power

Saving EP Power
Saving EP Power

Saving EP Power
Saving EP

0.7 30.8% 0.652 33.7% 0.648 38.5% 0.717 41.2% 0.789 36.1% 0.702

0.8 31.2% 0.718 33.5% 0.723 44.3% 0.884 43.8% 0.917 38.2% 0.811

0.9 31.9% 0.819 40.3% 0.887 44.1% 0.969 42.3% 0.979 39.7% 0.914

power usage, because our scheme dynamically turns ON/OFF CPU cores based on the

traffic load.

To see the effectiveness of multicore smart sleep under different QoS constraint, we

repeat the experiments with different peak load, ρc = 0.7, 0.8 and 0.9. The results of power

saving over the default Linux scheme are given in Table 4.3. In general, the power saving

increases as c increases. This is because lager ρc means higher response time constraint,

which helps choosing longer sleep time, entering deeper idle states and saving more power.

On the other hand, for URL and IPSEC, the power saving peak at ρc = 0.8. Although

our scheme can achieve significant power saving over the Linux scheme, it is not enough to

show the effectiveness of our scheme. To quantify the performance, we also give the energy

proportionality in Table 4.3. Energy proportionality is widely used as a performance metric

for the power usage of a system, and is defined as:

EP =
PMSS − PEP

PMSS
(4.24)

, where larger EP means better power usage, and EP = 1 means perfect energy propor-

tionality. From Table 4.3, for all applications, the energy proportionality increases as ρc is
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increased. When ρc is small (tight QoS constraint), the length of sleep is limited, thus the

power saving is mainly brought by choosing the right size of active cores. Due to this core

level granularity, the EP is limited. On the other hand, high ρc provides more slack for the

response time, in addition to the size of active cores, long sleep with deep C-state can be

applied and higher EP can be achieved. On average, the EP is 0.7, 0.81 and 0.91 for ρc =

0.7, 0.8 and 0.9, respectively.
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Chapter 5

Power Management under Tail

Latency constraint

5.1 Introduction

Servers running latency-critical workloads in a data center are kept lightly loaded

to meet the strict tail latency targets [21, 91]. Although servers are usually kept lightly

loaded, peak load is usually considered while setting the proper target tail latency. Hence

the tail latency of servers running under low load will be far lower than the target. Figure

5.1 shows the CDF of the latency of a server running under light load. We can see that

there exists a “latency slack” between the tail latency of this server (dotted green) and the

target tail latency (dotted red line). This latency slack provides opportunities for achieving

energy proportionality.

In the previous chapters, we showed that the sleep states can efficiently reduce the
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Figure 5.1: Illustration of the latency slack.

energy consumption in network and data center applications, and introduced forced sleep

periods to better utilize the existing CPU sleep states. The length of the sleep periods are

derived based statistically over a long epoch, assuming that the traffic behavior during the

epoch is the same. In the real world datacenter workloads, the traffic exhibits high short-

term variability, where request arrivals are often bursty. These short-term spikes typically

dominate tail latency [23,64,68,69,86,114] and cannot be captured with statistical models.

In this chapter, we focus on developing the power management techniques with the

consideration of this traffic variability. First, we propose a dynamic sleep scheme, a fine-

grain power management scheme that exploits latency slack by dynamically postponing

request processing. By doing so, the idle periods that the CPU core will spend between two

active periods will be prolonged, and the CPU core can efficiently enter deep sleep states

to save power. Unlike previously proposed works that require some hardware changes, such

as per-core DVFS with nanosecond level transition time [69] and fast sleep state transition

techniques [91, 93], our proposed technique uses the commonly supported per-core sleep
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state.

Then, we perform a detailed analysis on the state-of-the-art techniques for both

sleep and DVFS based power management scheme and find out that the existing dynamic

power management techniques are largely ineffective because of the high state transition

overhead, short request service time and strict tail latency constraint. Our analysis also

shows that sleep or DVFS alone can not fully exploit the latency slack for power saving.

We take the lessons learned here to design µDPM, an all encompassing power management

framework that coordinates request delaying, per-core sleep states, voltage frequency scaling

and load distribution. µDPM extends our dynamic sleep scheme by taking into the account

the request processing speed. Also, we develop a novel request redirection algorithm which

aims to minimize both sleep and DVFS state transitions, which are the major sources of

energy inefficiency while applying sleep and DVFS power management.

5.2 Dynamic Sleep

The challenge in designing dynamic sleep schemes is in determining when the CPU

core should be woken up so that the target tail latency of the requests is not violated. The

traffic in datacenters exhibit short-term variability of request latency, which often dominates

tail latency [64, 69]. Our scheme copes with traffic variability through novel performance

modeling, which includes the requests arrival time, the statistics of the request processing

time, and the queue length. This model allows us to dynamically adjust the wake up time

at the request arrival instance when the CPU is sleeping, so that the target tail latency is

satisfied for every request. We call this technique DynSleep
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5.2.1 Overview

Figure 5.2 gives a concrete example of how the wake-up time of a CPU core is

determined and adjusted in our scheme. In datacenters, the target tail latency is specified

as a percentile. In this example, we use 95th percentile latency target LC , which means

that 95% of requests must be served with latency L ≤ LC . Assume that the CPU core

finishes processing the last batch of requests and goes to sleep at t = 0, as shown in figure

5.2a. As time advances, the request R1 arrives at time t = A1 ( 1 ), as shown in figure 5.2b.

The CPU core wakes up at time t = W1 ( 2 ), and the request processing time is S1, so

that the tail latency for R1 is satisfied. Figure 5.2c shows a situation when the request R2

arrives at time t = A2 ( 3 ) while R1 is still waiting to be executed. The wake-up time of

the core is adjusted to W2 so that the latency of R2 is not violated ( 4 ). Similarly, when R3

arrives, the wake-up time is further adjusted to W3. At any arrival, the core must wake up

immediately if the revised waiting time falls short of the transition time of the sleep state.

In figure 5.2, no request arrives between time A3 and W3, thus the CPU core will

wake up at W3 and process the queued request one by one in a FIFO fashion. However, if

any requests arrive after R3, the same steps are repeated until the wake-up time is met. On

the other hand, when the CPU core is awake, the requests that arrive during the processing

are queued. They will be processed according to the FIFO queuing principle. When the

queue becomes empty, the CPU core will go to sleep, and the same procedure, described

above, will be repeated. One thing to notice is that we use 95th latency target in the above

equations just for illustrative purpose, it can be replaced with any latency target without

changing the algorithm itself. Also, our proposed scheme supports per-core control, we only
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(a) (b)

(c) (d)

Figure 5.2: Illustration of the dynamic sleep scheme. (a)-(d) represent the different time
instances as time advances.

give single core as an example. In multicore processor, every core follows the same principle

independently.

5.2.2 Wake-up Time Derivation

Let S1 be a random variable with probability distribution PS1.The latency of the

request of R1, L1, can be represented as:

L1 = W1 + S1 −A1 (5.1)
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With the target tail latency LC , we can have W1 as:

L95th
1 = W1 −A1 + S95th

1 = LC (5.2)

W1 = LC − S95th
1 +A1 (5.3)

, where X95th means that 95% of time that the random variable X is smaller than X95th.

Following the same principle, we can have W2:

L2 = W2 + S1 + S2 −A2 (5.4)

L95th
2 = LC (5.5)

W2 = LC − S2
95th

+A2 (5.6)

, where S2 = S1 + S2 is a random variable, with the probability density function PS2
=

PS1 ∗ PS2 (∗ is convolution). We will discuss how to compute PSi later in this section.

Comparing with equation 5.3, we can see that the latency of the R2 includes S1, the service

time of R1, which is considered as the queuing delay for R2. Furthermore, the wake-up

time W1 is previously determined when R1 arrived, and is the latest time that the core

can wake-up without violating the target latency, we need to compare and select the earlier

time between W2 and W1, and update wake-up time:

W2 = min(W1,W2) (5.7)

104



By updating the new wake-up time, the tail latency of the request R1 might change. The

new wake-up time (W2) will always be less or equal to the previous one (W1). As a result,

the new 95th latency of R1 will become smaller than the target tail latency. Similarly, we

can compute W3 when request R3 arrives.

Next, we compute the probability distributions by assuming the service time for

each request is drawn independently from a single distribution, PS , where S gives the service

time it takes to process one request. This assumption is valid in the datacenter node due

to the lack of the temporal locality in the memory system [21]. As a result, PS2
= PS ∗ PS

and PS3
= PS ∗ PS ∗ PS . In general,

PSi =

i︷ ︸︸ ︷
PS ∗ PS ∗ PS · · · ∗Ps (5.8)

The service time distribution of the requests is not varying; it can easily be acquired

either from the off-line analysis or a short period of learning phase. Given the PS , PSi can

be pre-computed for the future reference.

5.2.3 Implementation

We design and implement our proposed dynamic sleep with Memcached, a com-

monly deployed high performance keyvalue store application in the datacenter, and evaluate

the power saving and latency on a real system. The experiment setup, results and analysis

are given in the next section.

We use Memcached v1.4.15 [7] as our baseline. Figure 5.3 documents the process

flow of memcached when processing data requests from the perspective of a memcached
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Figure 5.3: The process flow of the baseline Memcached.

server. Reviewing figure 5.3 from top to bottom, the clients are responsible for submitting

operation requests to memcached. When memcached is initiated, a static number of worker

threads are created to process these client requests, normally aligned with the number of

physical CPU cores in the server system. Also, the mapping from the clients to the worker

threads is statically built during the memcached initialization.

As shown in figure 5.3, a worker thread is initiated by libevent ; libevent is a

portable network protocol wrapper for the epoll system call in Linux, and will monitor the

pre-established connections (sockets). The worker thread will wait in libevent for an event,

which corresponds to the arrival of requests. When an event happens, a callback function

will be called with a file descriptor (fd) as an argument to handle the event. In this case, the

file descriptor is an abstract indicator of a network connection. Upon receiving an fd, the

worker thread then read the data from the socket and decode the command (read and parse

data). Assuming a request for a cache item, the thread computes a hash value from the key

and completes a hash table lookup to identify where the value data resides associated with

the key (request processing). After the data is located, it is retrieved from system memory

and transmitted back to the requesting client (send response). This processing flow fits the

baseline behavior we described in section 2.2, where threads are vigilantly waiting for the
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Figure 5.4: Dynamic sleep implementation of Memcached.

request, and the CPU core will wake up upon the request arrival.

Since the baseline memcached is implemented with libevent, the main challenge

is to identify where and how we can apply our dynamic sleep scheme. Figure 5.4 shows

the overview of our proposed memcached implementation. We separate the original worker

thread into two threads: a libevent thread and a request processing thread. The libevent

thread consists of the libevent wrapper and the calculator (DynSleep Calculator). The

libevent will monitor the incoming request and insert the request into the queue of the

request processing thread upon the request arrival. The DynSleep Calculator will calculate

the wake-up time and frequency, as described in section 5.4, and register or update a timer

event in the libevent through the timerfd API provided by the Linux. After the timer is

expired, DynSleep Calculator will send a wake-up signal, through pthread kill, to wake up

the request processing thread. One thing to notice is that when there is an event coming,

libevent only gives the corresponding socket file descriptor, indicating that there is some

data ready for the read. In some cases, multiple requests are queued in the socket, and

these data will be read together, similar to the batch arrival. In order to calculate the
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corresponding wake-up time, we need to know the number of the requests in the batch

before actually reading the data. We tackle this by using IOCTL API to “peek” at the

socket for the data size of the batch, and divide it by the average size of a request to get

the number of the requests in the batch for the calculation of the wake-up time.

In the request processing thread, the DynSleep Manager is in charge of maintaining

and monitoring the queue. When it sees no request present in the queue, it will notify the

DynSleep Calculator in the libevent thread and go to sleep, through the sleep function. Also,

upon receiving the wake-up signal, the sleep will be interrupted and the core will wake up,

fetch requests from the queue and process them until the queue is empty. Note that due to

the fixed connection-thread mapping, we can not implement our criticality-aware scheduler

without significant application changes,

5.2.4 Evaluation

Experiment setup

We use two multicore machines, one client server and one request processing server,

connected over Ethernet. The client server will establish multiple TCP connections with

the request processing server, emulating multiple clients sending requests. The inter-request

time for each client follows exponential distribution, and is scaled to see the impact of

different traffic loads on the request processing server.

We are mainly interested in the behavior of the request processing server with

an Intel Xeon E5 2697-V2 12-core processor. In our experiments, Hyperthreading and

Turbo Boost are disabled. The per-core frequency can be adjusted independently through
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clock modulation [4]. However, different from per-core DVFS that requires per-core voltage

regulator, this processor use a off-chip voltage regulator, hence the voltage across all cores

must stay the same. The sleep state characteristics are given in Table 5.1. Also, this Intel

processor is equipped with on-chip energy sensors for CPU cores. Through the MSR, the

power consumption results are collected at the rate of 1 KHz.

In the request processing server, we run 3 instances of Memcached simultaneously,

each with 4 threads. This is a recommended workaround to a known scalability issue with

Memcached [7]. Also, the thread-to-core mapping is fixed to avoid run-to-run variance

caused by the Linux thread scheduler [84]. For our version of Memcached, all libevent

threads are running on one core, and request processing threads are mapped one-to-one to

the CPU cores. We define tail latency as the 95th percentile latency; the latency target

is set at the tail latency of the baseline Memcached running at 80% load. We measure

the request latency through timestamping the request and response at the client server,

which includes the TCP stack processing time from both client and server and the network

latency.

5.2.5 Results

In this paper, we limit our evaluation on practical real-world implementations,

hence did not compare with other work. In Rubik [69], authors assume that there exists a

fast per-core DVFS mechanism that has transition latency in few nanoseconds. However,

most of the existing servers have about 100 micro second DVFS transition overhead due to

the off-chip voltage regulator, which greatly impacts the performance of Rubik, especially

in the applications with micro second level service time; In SleepScale [85], the computa-
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tion overhead for the optimum configuration is too long (>5ms in our experiment) which

leads to severe tail latency constraint violation. PowerNap or DreamWeaver [91, 93] are

based on hypothetical servers which can transition into full-server sleep states in the or-

der of microseconds. Furthermore, we observe that Memcached idle periods are too short

for PowerNap to exploit, hence resulting in worse energy consumption due to the state

transition overhead.

To show the effectiveness of our dynamic sleep scheme, we compare our results with

four power management schemes: Baseline, DVFS, DFS and EP schemes. In the baseline

scheme, frequency of CPU cores is set to be maximum at all time. In DVFS scheme, we

monitor the latency over an epoch, and then adjust the voltage-frequency configuration

at the end of the epoch1, similar to Pegasus [86]. The frequency can be set in the range

between 1.2 and 2.7GHz with 100MHz steps. Since our experimental platform doesn’t

support per-core DVFS, we estimate DVFS savings by running the application with single

thread on one core, and turn off all other cores. The power consumption results are then

scaled by the number of cores in the CPU, assuming all cores will perform identically. The

DFS scheme is similar to DVFS scheme, except that we only change the frequency for each

core, the voltage is kept the same. The EP scheme is the idealized power saving, which

assume the power consumption is perfectly proportional to the load.

Power saving

Figure 5.5 reports the average power saving over the baseline scheme for four

different power management schemes at different CPU loads. DynSleep performs the best

1We set the epoch as 50 ms to accommodate the DVFS transition overhead.
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Figure 5.5: Power saving comparison among different power management schemes.

at low to medium load (10 50%) among all schemes (except for EP), and is comparable

to DVFS scheme under high load. At low to medium load, because of the larger latency

slack, DynSleep can efficiently create longer idle periods for the CPU cores to enter deep

sleep states. However, as the load increases, the latency slack and idle periods decrease, and

DynSleep can only drive CPU cores into shallow sleep states. It is important to note that

the DVFS scheme is not supported in most of commodity servers due to the lack of per-core

voltage control. A more realistic scheme is the DFS. DynSleep significantly outperforms

the DFS scheme at all cases. Moreover, the power saving achieved by DynSleep falls within

10% of the EP on average. Because of the sleep state transition overheads, CPU cores must

spend some time and power on entering/exiting sleep states, preventing DynSleep from

achieving perfect energy-proportionality.

Shifting Latency Distribution

Figure 5.6 shows the latency distribution of the baseline, DFS (also represents

DVFS2 and DynSleep scheme under a load of 0.3. In these experiments, we run each

2The latency distribution of DVFS and DFS are similar, because the request processing time is affected
by the frequency only.
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Figure 5.6: Latency distribution and tail latency under different power management
schemes.

scheme for one minute with the fixed load. The tail latency under each scheme is circled,

and the target tail latency is given in dashed red line. We can see that although there

exists a large latency slack, about 500 sec between baseline and target tail latency, the DFS

scheme, with tail latency 448 sec, cannot fully utilize this slack. DFS scheme slows down

the request processing, hence increasing the service time and queuing delay. However, the

dynamic range of the frequency scaling limits the effectiveness of the DFS on exploiting the

latency slack and power saving. Our DynSleep scheme further exploits these opportunities

by dynamically postponing the request processing, and leads to a better use of this slack

and power saving. One thing to notice is the sharp knee of the curve of the CDF of the

latency in our DynSleep. The slow slope before the knee is caused because some requests

arrive during previous request processing and the burst of incoming traffic. The requests

that come during the processing period will not experience the additional delay caused by

CPU sleeping, it will simply wait until all previously queued requests finish their processing.
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Figure 5.7: The tail latency of different power management scheme and different load.

On the other hand, during the bursts of traffic, the wake-up time is mostly determined by

the request coming latter (ex: R3 in figure 5.2). As a result, the waiting times of queued

requests are shorter, and their latency will fall far below the target. The high slope after

the knee is caused by the requests that are queued and waiting due to DynSleep. As can

be seen, DynSleep is able to shift a significant portion of the request latency distribution

towards the target tail latency without violating it.

Sensitivity to Load Changes

In addition to meeting the target tail latency in the steady state (figure 5.6),

DynSleeps design allows it to respond instantaneously to sudden changes in input load.

Since the wake-up time is updated at every request arrival instance, DynSleep reacts to the

changes in the inter-request arrival time immediately. Figure 5.7 shows how DynSleep and

DFS respond to sudden load change. The input load is shown in the bottom, which grows

in steps over a span of 4 seconds, from 0.2, 0.3, 0.5 to 0.7. The 95th percentile latency
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for two schemes are shown in the top over a 100ms window. First, we can see that the

DFS scheme will lead to a latency spike at the time of load changes, as well as during high

load (0.5 and 0.7). This is caused by the high granularity of epochs. The frequency can

only be changed at the end of an epoch. As a result, DFS is lacking the responsiveness to

the load change, and suffering frequent latency violations. Also, at low load, 0.2 and 0.3,

the limit of the frequency scaling yields unnecessarily low tail latencies and wasting power.

By contrast, DynSleep is able to achieve stable tail latencies under all loads. At low load,

DynSleep chooses to wake up the core later, and achieves tail latency close to the latency

bound, saving additional power. Also, it adapts quickly to the sudden load changes, thanks

to the dynamic wake-up time adjustments.

5.3 Implications of microsecond request service time on dy-

namic power management

In this section, we will explore the implications of microsecond request service time

on dynamic power management policies. A guiding principle in microservices architecture

is to decompose applications into smaller, interconnected services. For example, a typical

e-commerce website may consist of various microservices, such as a web server front end;

various business logic services for product ordering, accounts, and inventory; databases and

data stores, such as Redis, Memcached, and MongoDB; and other specialized functionalities,

such as search and recommendation systems.

We explore various state-of-the-art dynamic power management schemes, such as a

VFS-only technique (Rubik [69]), a coordinated VFS and Sleep technique (SleepScale [85]),
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and a Deep Sleep-only technique (DynSleep [33]). All of these prior techniques exploit ex-

isting latency slack and are quality-of-service aware to meet tail latency constraints. Power

savings can be achieved by slowing down request processing through VFS [69, 85, 86, 114]

or delaying request processing through Sleep [33]. Due to it’s better responsiveness in

handling short-term variation, we will evaluate Rubik as representative of other VFS tech-

niques, such as Pegasus [86] and TimeTrader [114]. While other Deep Sleep-only techniques

exist, such as PowerNap [91] and DreamWeaver [93], we observe limited power savings

due to the requirement for full-system idleness where the entire processor socket is idle.

CARB [121] also leverages sleep states in latency critical applications by selecting the op-

timal number of cores to keep on, placing inactive cores into deep sleep. However, active

core can still consume significant idle power due to shallow sleep state selection. Therefore,

we evaluate DynSleep [32] as the target Deep Sleep-only mechanism. Unlike PowerNap

and DreamWeaver, DynSleep is able to achieve power savings through sleep by leveraging

fine-grain per-core sleep states, rather than whole socket sleep states.

To identify the effect of microsecond request service time on dynamic power man-

agement, we evaluate four workloads representing common latency-sensitive microservices.

More workload details will be discussed in section 5.4.5. We run these workloads on a server

with Intel Xeon E5 2697-V2 12-core processor. We will now highlight various observations

and implications to dynamic power management.

Observation 1: The majority of request service times are less than

∼250µs, even with millisecond tail latencies3

3Carefully note we make a distinction between service time and latency. Latency includes queueing time
and service time.
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Figure 5.8: Service time dist. Service times are commonly <250µs.

We define the tail latency similar to [69] as the 95th percentile running at medium load. The

target tail latency of these workloads are 150µs for Memcached, 800µs for SPECjbb, 1100µs

for Masstree, and 2100µs for Xapian. Despite the length of the target tail latency, the actual

typical request service time is significantly shorter and often an order-of-magnitude shorter.

Figure 5.8 shows the observed request service time distribution. In our experi-

ments, we observe that 95% of request service time complete within 33µs for Memcached,

78µs for SPECjbb, 250µs for Masstree, and 1200µs for Xapian. Despite Xapian’s long ser-

vice time tail, a significant 45% of Xapian’s request still completes under 250µs. These

short service time requests dominates, and can lead to high short-term variability in load,

making DPM especially challenging [69].
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Observation 2: Dynamic power management breaks down at microsec-

ond request service times

Figure 5.9 shows the average power consumption of various state-of-the-art dynamic power

management techniques across different request service times. For this experiment, we sim-

ulated an exponential service distribution with varying average service time, shown on the

x-axis. The synthetic workload was driven at a medium load. We ran this experiment

across a range of server loads, and observed similar trends. In the baseline scheme, the pro-

cessor operates at maximum frequency, and uses the Linux menu governor [103] to choose

the C-state (sleep state) during idle periods. We similarly use the Linux menu governor to

manage sleep states for Rubik (VFS-only), with frequency states updated at every incoming
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Figure 5.9: Power consumption. In this short service time region, state-of-the-art power
management schemes has diminishing effectiveness. Counter-intuitively, deep sleep states
provide the most benefits in this region.
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request. SleepScale (VFS+Sleep) selects the optimal C-state and optimal frequency based

on historical profiling. DynSleep (Deep Sleep) directly enters C6, the deepest sleep state,

and runs at maximum frequency.

In general, as the request service time decreases, power increases due to less op-

portunities for low power states. In the 250-1000µs range, we observe that dynamic power

management schemes that utilize VFS provides the lowest power due to having ample

opportunity to slow down request processing to save power. However, once the average

service request times drops below 250µs, both VFS-based and Sleep-based techniques begin

to breakdown. This is because VFS techniques cannot handle the short-term variability

of short request service times and cannot find enough opportunities to slow down request

processing. Meanwhile, Sleep techniques cannot enter a deep enough sleep state due to

short idle cycles. Surprisingly, techniques utilizing Sleep begin to outperform techniques

utilizing VFS! This can be explained by the trend in idle period lengths.

Observation 3: Short service times fragment idle periods

It is well known that utilization have a significant impact on sleep opportunities [91, 93].

We additionally find that request service time also have a significant impact on sleep op-

portunities. Specifically, short request service time can fragment idle periods into short idle

periods that sleep states cannot take advantage of.

Figure 5.10 shows the idle period length (in µs) under 200µs service time (dotted

line) and 500µs service time (solid line). Clearly, as the service time decreases, the idle

period lengths similarly decreases. The ever-decreasing idle period length can eventually

lead to the ineffectiveness of low power states. For example, the baseline curve (based on
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Figure 5.10: Idle period length. Short request service time causes idle periods to become
fragmented.

Linux menu governor) in Figure 5.9 can no longer save any power at around 80µs service

time due to the inability to enter sleep state.

In figure 5.10, we also observe that the dynamic power management scheme used

can also have a great effect on the idle period length. Specifically, Sleep-based techniques

are able to significantly extend idle period lengths, even under very short service times. This

is due to the ability for sleep states to consolidate idleness by delaying request processing.

By coalescing idle periods into longer idle periods, sleep states are better utilized.

Observation 4: State-of-the-art dynamic power management suffers

from significant transition and/or idle power

Existing state-of-the-art power management technique has focused primarily on exploiting

latency slack to save power, with little consideration of the energy overheads due to state

transitions and idleness. In our experiments, we found that the energy overheads of state

transition and idleness account for a significant fraction of energy consumption.
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Figure 5.11: Energy consumption breakdown. Significant energy is wasted due to idle and
transition overheads.

Figure 5.11 shows the energy consumption breakdown of state-of-the-art power

management techniques. For this experiment, we ran a synthetic workload with average

service time 80 µs. In this figure, total energy consumption is broken down into 4 parts:

(1) energy to process requests (busy), (2) energy consumed when a core is idle—can also

be in a shallow C-state—and waiting for requests(idle), (3) the energy spent on C-state

transitions (C-state tran.) and (4) the energy spent on VFS transitions (VFS tran.). The

energy consumption are normalized to the total energy consumption of baseline.

Baseline, Rubik and SleepScale all have significant idle energy due to sub-optimal

sleep state selection, which reflects our previous observations. Idle energy accounts for 5%

of total energy consumption in Rubik and 15% in SleepScale. Due to DynSleep always

entering C6 state when encountering idle periods, the idle energy consumption is virtually

non-existent. However, DynSleep suffers from significant C-state transition overhead, ac-

counting for 18% of total energy consumption. SleepScale limits power state configuration
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to every epoch, which limits transition overheads to only 5% of total energy consumption.

Due to Rubik’s aggressive VFS reconfiguration at every request arrival, VFS transition over-

head accounts for 10% of total energy consumption. Prior work [69] and our experiments

observe VFS transition latency between 100∼130 µs. Despite the existence of fast integrated

on-chip voltage regulator, the internal microcontroller of the Power Control Unit [28] spends

significant time managing these voltage regulators, resulting in long transition latency. Be-

cause of this long transition latency, care must be taken while designing power management

scheme with VFS.

Fallacy: Tail latency is more important than average latency when de-

signing dynamic power management.

While tail latency is a direct measure of quality-of-service and the central focus of many

dynamic power management policies, we demonstrated here that average service time is

also very important in enabling energy efficiency. As shown before, short service times can

cause shorter idle period lengths, which hampers sleep states, and can also lead to higher

short-term variation, which hampers frequency scaling. The order-of-magnitude difference

between the service time and the target tail latency provides significant opportunity for

dynamic power management, highlighting the need for DPM to be aware of service times.

As we will later see, we can leverage this property for energy efficiency by increasing the

average latency while keeping the tail latency the same.

Fallacy: Sleep states are too slow to be used in latency-critical workloads

It has been widely assumed that Sleep states are not applicable under strict tail latency

constraints [86], as previously shown in the baseline case. Surprisingly, we found that deep
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sleep modes can be beneficial as long as it is tail latency aware. Even more surprisingly is

that tail latency-aware deep sleep states actually work better than VFS-based techniques for

service times under 250µs. DynSleep is able to directly enter C6 state, which consumes ∼0W

when the CPU core is idle and delays request processing as long as tail latency constraints

are met. This request delaying behavior leads to superior idle period lengths, as shown

in Figure 5.10. We find the idle periods for DynSleep with 200µs service time is at least

double that of Rubik at 500µs service time, enabling ample opportunities for sleep states

in latency-critical scenarios.

Note however, that longer idle period length does not always translate to better

power savings. At service times above 250µs, Rubik outperforms DynSleep due to the

benefits of VFS in slowing down requests. Essentially, with short request service time, VFS

cannot extend request processing time, but Deep Sleep can delay request processing time,

in order to exploit latency slack for power savings. Therefore, the key to dynamic power

management with millisecond service time is to delay request processing through deep sleep

modes.

Table 5.1 shows the empirically measured idle state power and transition overhead

from our evaluation server, along with the target residency time. CPU cores consume

significantly lower power in deeper C-states, along with increasing transition overheads

since it takes more time to disable/enable the corresponding on-chip components. During

state transitions, the core consumes full power. Thus, the CPU core should only enter a

particular C-state only if the idle duration is greater than a threshold, called the target

residency time [5], in order to result in net energy savings. Therefore, C1 is optimal with
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Table 5.1: Measured CPU core C-states on Intel Xeon E5-2697 v2 processor.

State State tran. time Residency time Power per core

C0 N/A N/A ∼4W
C1 1µs 1µs 1.43W
C3 59µs 156µs 0.43W
C6 89µs 300µs ∼0W

idle period length of 1-156 µs, C3 is optimal with idle period length of 156-300 µs, and C6

is optimal when idle period length is beyond 300 µs.The Linux idle governor estimates the

idle period length and selects the best state for that idle period. If idle periods are short,

as is common with short request service times, then the governor will consistently select

shallow sleep states. SleepScale’s sleep policy selects the best sleep state given the previous

epoch’s idle period properties, and can similarly select shallow sleep states consistently

under short request service times. As shown in Figure 5.10, deep sleep techniques creates

idle period lengths that are amenable to C6 states. Therefore, to avoid missed power

savings opportunity, we should directly enter C6 state upon encountering an idle period,

delay requests, and coordinate with VFS to meet tail latency constraints.

Summary: Microsecond request service time pose many unique and difficult

challenges for existing dynamic power management schemes. Many microsecond-era work-

loads observe extremely short request service times, with 95% of requests under 250µs, with

tail latencies typically in the millisecond range. Existing dynamic power management tech-

niques are largely ineffective in this range. Compounding this, existing techniques also suffer

from significant energy overheads (up to 20%) due to power state transition overheads and

idleness. Interestingly enough, we observe that deep sleep states can hold the key to saving

power in this microsecond service time (<250µs) range. Clearly, no prior work provides an
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all-encompassing solution to meet strict SLA requirements, minimize idle energy and state

transition overhead energy in the microservices era. We take the lessons learned here to

design µDPM. As can be seen in figure 5.8-5.11, µDPM is able to effectively coalesce idle

periods and avoid transition overheads, leading to significantly more power savings than

state-of-the-art DPM under extremely short service times.

5.4 µDPM

In this section, we propose µDPM, a dynamic power management scheme for

the microservices era. µDPM solves all of the aforementioned limitations by coordinating

deep sleep, VFS, and request delaying to fully exploit latency slack. This is achieved by

postponing request processing, by delaying and slowing down, in order to finish just-in-

time to meet the target tail latency. We will first give an overview of our proposed power

management framework followed by a detailed description and an example.

5.4.1 Overview

The main idea behind µDPM is to aggressively deep sleep, and coordinate sleep

length and VFS to delay and slow down request processing in a tail latency-aware manner.

The moment a core is idle, µDPM immediately goes into the deepest sleep state

(C6) in order to save idle power. By prolonging the idle period between two active periods,

we forcibly coalesce short idle periods created by short request service times, so that the

core can efficiently enter deep sleep states to save power.

Upon wakeup, µDPM will operate at the lowest frequency that will satisfy the
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queued requests’ target tail latency. Instead of waking up the core at the latest moment

and processing at full speed to meet tail latency targets, we wake up the core earlier and

process the request at a slower rate using VFS to achieve a better trade-off between latency

and power savings. Then as new requests arrive in the system, we will update the frequency

as needed in order to satisfy the target tail latency of all requests in the system. We will

refer to requests that trigger a frequency or wake-up time change as a critical request.

Critical requests are requests which will violate the tail latency under current wake-up time

and frequency configurations.

In order for µDPM to work, we need to answer: When to wake up after sleeping?

and What frequency to run at? The key to answering these questions lie in being able to

estimate the incoming request’s service time. This is especially challenging in data centers

due to short request service time, which cause significant short-term variability that often

dominates tail latency [64, 69]. To account for this, we developed a novel performance

model that takes into account traffic variation. µDPM will recalculate wake-up time and

frequency at every request arrival when the core is in sleep mode. In addition, µDPM will

also carefully takes state transition overheads into account while determining the optimal

wake-up time and runtime frequency. The exact design of our performance model is given

in section 5.4.2.
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Figure 5.12: Illustrative example of µDPM. (a)-(d) represent the different scenarios as
time advances: (a) the core become idle, and then a request arrives, (b) a non-critical
request arrives, (c) a critical request arrives triggering configuration change, (d) during
active request processing, a critical request arrives triggering frequency reconfiguration.

µDPM Walkthrough:

We will now present an illustrative working example of how µDPM works. Figure

5.12 presents how the wake-up time and frequency of a processor core is determined and

adjusted by µDPM. For conciseness, we will refer to the wake up time and frequency pair

as a configuration. Assume that the processor core finishes processing the last batch of

requests and goes to sleep at t = 0, as shown in figure 5.12a. The core will then spend some

time Tsleep transiting into the sleep state while consuming full power. Upon sleeping, the

wake up time is cleared, meaning that it won’t wake up until further configuration updates
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(i.e. when a request arrives).

As time advances, the first request R1 arrives at time A1 ( 1 ), as shown in 5.12a.

Since the wake-up time is cleared and the processor is not scheduled to wake up, request

R1 will definitely violate the latency constraint and will be identified as critical ( 2 ). The

configuration computation is then triggered to determine the new wake-up time (W1) and

frequency (f1) for request processing ( 3 ), and the request is inserted into the queue. Note

that the request will not immediately wake up in order to maximize power savings in deep

sleep mode. Upon wake-up, the core will spend time Twake transiting from sleep state to

active state at full power. After that time, Tvfs will be spent on waiting for the voltage and

frequency scaling to become stable. As a result, the processor core will be ready to process

at time W1 +Twake+Tvfs. The tail service time for the request is S (f), which is a function

of the operating frequency. The time W1 is set such that request R1 will complete as close

to the target tail latency as possible (W1 +Twake+Tvfs+S (f1)−A1 → target tail latency).

Figure 5.12b shows how µDPM handles multiple pending requests. Here request

R2 arrives at time A2 ( 4 ) while R1 is still waiting to be executed. Assume R2 is not

identified as critical, therefore the configuration is not updated and the request is simply

inserted into the queue directly. Request R2 is not considered critical as long as the elapsed

time between the arrivals of R1 and R2 is greater than the tail service time. Intuitively, when

the processor wakes up and process R1 just-in-time, R2 will be processed right afterwards

before R2’s target SLA is reached. If R2 arrives closer to R1, then when R2 is processed, it

will end up violating the target SLA.

Figure 5.12c shows the arrival of the third request R3 at t = A3 ( 5 ). Since the
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arrival time between R2 and R3 is shorter than the tail service time, R3 will be critical

and the configuration needs to be re-computed( 6 ). New configuration (W3, f3) is then

determined and updated such that R3, the critical request, will complete close to the target

tail latency( 7 ). The process will continue until the timer expires at t = Wn. Then the

core wakes up and begins processing requests at t = Wn + Twake + Tvfs with frequency fn,

as shown in figure 5.12d. For brevity, we don’t show request arrivals between A3 and Wn.

As we mentioned previously, the requests that arrive during processing might

violate the latency constraints when the CPU core is awake and busy. As shown in figure

5.12d, the request Rn+1 arrives at t = An+1( 8 ) when the core is processing requests. Rn+1

will be processed after all the previous requests are processed. In this example, Rn+1 is

critical( 9 ) and frequency update can be computed to avoid latency constraint violation

(10). The frequency transition overhead is considered while computing the update. Note

that we do not reduce the frequency during the busy period. We allow only frequency

increase to limit transition overhead. This further increases the idle period and avoids any

possible extension to the busy period. Every request arrival during busy periods will be

checked to adjust the frequency, and the core will become idle again after the queue is

emptied, as shown in figure 5.12a. While our proposed scheme supports per-core control,

we only illustrate single core as an example in figure 5.12. In multicore processor, every

core follows the same operation independently.

5.4.2 Performance Model

We will now present our statistical performance model to show how request service

times and latencies are estimated, when to trigger new wake up and frequency configura-
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tions, and how configuration updates are computed. Figure 5.14 illustrates the various

components of our performance model.

Estimating Request Service Time: Because of the non-deterministic request

demands, the service time of a request is often considered as a random variable. Previous

work assumes that the service time for each request is drawn independently from a single

distribution [21]. While it has been shown previously that different request types can also

have different distributions [57], we choose to utilize a single distribution for simplicity,

trading off a small amount of power savings opportunity.

Considering the effect of frequency scaling, the service time of a request is further

broken down into two parts. (1) The time (clock cycles) spent in the core, X, when executing

the instruction and stalling on private caches. We use clock cycles instead of the wall clock

time since it will not be affected by different VFS states. (2) The time (wall clock) spent on

share resources, M , such as stalls on LLC and main memory access. Both X and M can be

seen as random variables. The service time under different frequency, Sf , can be modeled

as:

Sf =
X

f
+M (5.9)

, where X and M for each request are independent random variables. Prior work assumes

that these random variable are drawn independently from computation and memory-bound

time distributions [69]. However, this model does not capture the performance impact of

shared resources existing in multicore processor [87,123], which affects M .

In Figure 5.13 we demonstrate the need to capture performance impact of shared

resources. The figure shows experimental results of the service time distribution under
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Figure 5.13: Service time variations under different system load. The shaded areas are
the PDF under each scenario with the width representing the probability at certain service
time.

different system load with fixed operating frequency for multi-threaded Xapian (search

engine), and Memcached (key-value store) applications. The details of the applications are

given in section 5.4.5. In these experiments, we run two processes, a record process and

stress process, for each application. The record process run the single-threaded application

to log the service time with less than 1% overhead, and is pinned on a fixed core. On the

other hand, the stress processes run multiple threads, and the load is varied to achieve

different total system load. Note that the record and stress processes are running the same

application. The purpose of this experiment setup is to avoid the service time variation

caused by shared data locks [84,102]. In figure 5.13, we can clearly see that the service time

distribution is highly depending on the total system load, as well as the application itself.

As load increases, the stalls on LLC and main memory access will also increases.

Considering this load dependent service time variation, we revise the service time

estimation as:

Sf =
X

f
+M(ρ) (5.10)
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, where ρ is the load.

The distribution of X and M(ρ) can be acquired through off-line profiling and

can be periodically updated with on-line profiling using performance counters and CPI

stacks [45,69,97].

Estimating Request Latency during Idle Period: Once we estimate the

request service time, we then need to estimate the request’s latency. Figure 5.14 gives the

breakdown of the latency under µDPM. The latency (L) for a request arriving at time A

during an idle period can be represented as:

L = W −A+ Twake + Tvfs + Cf + Sf (5.11)

The wake-up time W and frequency f are the previously determined wake up/VFS config-

urations before this request arrival, Twake is the wake-up transition overhead, Tvfs is the

VFS transition overhead and Cf is the time to process the previously arrived requests. We

assume each request is independent, and therefore, Cf can be seen as a random variable

drawn from a distribution formed from the n-fold convolution of requests’ service time dis-

tribution, where n is the number of previously arrived requests. For example, in figure 5.14,

the latency model of the 3rd request calculates Cf as a convolution of two Sf . If another
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request arrives, that 4th request will calculate Cf with a convolution of three Sf and so

on. By considering the request arrival time (A) and the time to process previously arrived

requests (Cf ), our latency model can effectively capture the traffic dynamics and accurately

estimate the request latency.

Determining Critical Requests After estimating the latency of arriving re-

quests, we need to check whether or not the arriving request is critical to determine whether

a configuration update is needed. By observing figure 5.14 and equation (5.11), a request

is critical if

A−Aprev ≤ Stailf (5.12)

, where Aprev is the arrival time of the previous request. This is because the arrival time

between the current and previous request is too short for processing one request. Intuitively,

for a given wake up/VFS configuration, when the processor wakes up, it can process a

request every Sf seconds and meet the target tail latency just in time. If requests arrive

too close together, since the previous request is scheduled to finish just in time to meet the

target tail latency, the current request will experience longer latency than the previous one,

exceeding the tail latency target.

Determining New Wake-Up Time and Frequency Configuration. In order

to determine frequency configuration upon wake-up, we use the following energy model. The

energy consumption for a given configuration (wake-up time W and frequency f) is:

E (W, f) = (W − Tsleep)Pidle + (Tsleep + Twake)Pmax

+ TvfsPvfs +
(
Cavgf + Savgf

)
Pf

(5.13)
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The first term in equation (5.13) is the idle period energy with the idle power Pidle and sleep

transition time Tsleep. The second term is the transition energy overhead of going into and

out of sleep mode. The third term is the voltage and frequency transition energy, and the

last term is the busy period energy consumption with average queuing delay and average

service time multiply the active power Pf . Note that we assume the idle period started at

t = 0. The configuration update is then to compute a new configuration (W, f), which min-

imizes the energy consumption while maintaining the tail latency constraint. Although the

configuration can be mathematically derived with some simple power model, e.g. Pf ∝ f3

or f2.4, the real relationship between frequency and active power consumption is compli-

cated in modern processors, depending on the voltage steps. To accurately come up with

the configuration, we explore all possible frequency steps, and find the best configuration

with equations (5.11) and (5.13). Because of the small number of possible frequency steps

in a real system (usually between 10∼20 distinct frequencies), the computation overhead of

our approach is much less than 1 µs and is negligible.

Estimating Latency during Active Periods. To estimate the latency for

requests arriving during busy periods, we use a similar method described above with no

waiting time for the wake-up timer and no idle-active transitions. Although the request can

arrive in the middle of a request processing, we conservatively assume that the time left for

that request processing is the full request service time. We observed in our experiment that

we lose less than 1% of power saving due to this assumption. The computation overhead is

greatly reduced as we avoid dealing with conditional probabilities.
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5.4.3 Minimizing State Transition Overheads

As shown in figure 5.11, transition overheads can account for significant portions

of power consumption. In µDPM, we incur low power state transition overhead whenever

a critical request triggers configuration updates. While effective at meeting the tail la-

tency target, these configuration updates result in wasted power. It is because the core will

sleep less and do no useful work during the state transition. In this section, we propose a

criticality-aware configuration scheme to redirect requests and avoid unnecessary configura-

tion updates. In addition, this also helps absorb bursty request spikes. Algorithm 1 shows

the pseudo-code for this scheme.

When a request arrives at a core, there are 4 possible states that the request could

face based on its criticality and core’s status: (1) the request is critical and the core is

sleeping (critical-sleeping); (2) the request is critical and the core is active (critical-active);

(3) the request is not critical and the core is sleeping (noncritical-sleeping) and (4) the

request is not critical and the core is active (noncritical-active).

When a request is either noncritical-sleeping or noncritical-active, no configuration

update is needed, thus no additional state transition will occur. A noncritical-sleeping core

is a core that is sleeping and already scheduled to wakeup so that the request will meet

tail latency target. When a request is critical-sleeping, the wake-up time and/or frequency

need to be updated. No additional C-state or VFS transition is introduced because the core

is sleeping and only the frequency after wakeup and/or the scheduled time of wakeup are

changed.
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Algorithm 1 Criticality-aware scheduling

1: non critical cores = φ,non critical sleep cores = φ
2: for each core do
3: compute corei’s criticality
4: if criticality ≤ 1 then
5: non critical cores← non critical cores ∪ corei
6: if corei is sleeping then
7: non critical sleep cores← non critical sleep cores ∪ corei
8: end if
9: end if

10: end for
11: if non critical cores 6= φ then
12: if non critical sleep cores 6= φ then return min (extra energy) in

non critical sleep cores
13: else return min (extra energy) in non critical cores
14: end if
15: else return min (extra energy) in all cores
16: end if

The only case where a new transition is introduced is when the core is sleeping

with no scheduled wakeup (the core is sleeping and have no arrived requests), and when

a request is critical-active where an additional VFS transition is needed. The goal of the

criticality-aware scheduler is to redirect the request to the core which makes it non-critical.

By doing so, we decrease the chances of triggering configuration updates and VFS state

changes.

Based on equation (5.12), we define the criticality score of a request for a core as:

criticality =
Stailf

A−Aprev
(5.14)

, hence non-critical request will have criticality score less than 1. Our algorithm first

computes the criticality score of that request for each core, and if there exist only one core

which makes the request non-critical, that core is selected for processing. However, it is
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more than likely that multiple cores can make the incoming request non-critical. In this

case, the non-critical sleeping cores are chosen for the request to avoid the possibilities for

future VFS transition. If still multiple cores are candidates, we select the core which will

process a request with the lowest extra energy. The extra energy for corei can be computed

by:

E
(
W i
new, f

i
new

)
− E

(
W i
cur, f

i
cur

)
− Savgfcur

× P ifcur (5.15)

, where E(W, f) is defined in equation (5.13), and (Wnew, fnew) are the updated configura-

tion as described in the previous section. For non-critical requests, no configuration update

is involved (fnew = fcur , Wnew = Wcur), and this equation simply computes the energy to

process a request under the core’s current frequency configuration.

On the other hand, there are some cases that no core can make the request non-

critical. In this situation, we follow the same least extra energy principle to redirect the

request. Notice that we do not choose the core based on their operating frequency, since

configuration update may involve both wake-up and frequency transition. By considering

energy differences, we capture both transition overhead and the processing energy simulta-

neously, resulting in better performance and energy.

Another benefit brought from our criticality-aware scheduler is to mitigate bursty

requests. When a burst of requests arrives, especially during prolonged sleep periods, most

of the requests will be identified as critical. Our scheduler will attempt to schedule them

to cores that make them “non-critical”, resolving burstiness. From algorithm 1, we can

see that the overhead of the criticality-aware scheduler is linear to the number of cores

in the processor. In our experiment, this overhead is less than 2 µs for our 12-core Xeon
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processor. This overhead is considered as part of the request service time when deriving

the configurations.

5.4.4 µDPM Implementation

Figure 5.15 shows both a software and hardware implementation option for µDPM.

As shown previously in the section, the main components of µDPM is to profile the request

service time, estimate the latency of incoming requests, and to calculate the new configu-

ration for the processor. In a software implementation, µDPM can be implemented as a

library (libudpm) and built on top of existing request handling libraries. An example of this

Request libudpm

Profile 
Service Time

Estimate Latency

Application

<wake up, frequency>
Calculate Configuration

(a) Software Implementation

Request NIC uController Processor

Profile 
Service Time

Estimate Latency

<wake up, frequency>
Calculate Configuration Interrupt

(b) Hardware Implementation

Figure 5.15: Implementation options of µDPM.
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is libevent, an asynchronous event library, which memcached uses to receive requests. In

a software µDPM, the library can profile the service time of each individual requests, and

also estimate the latency of each incoming requests. If a request is identified as critical, we

can have libudpm trigger a new configuration by modifying the processor frequency through

existing cpufreq interfaces. To keep a core in a deep sleep state, libudpm will queue requests

until the configurations wake up time. We prototyped the software libudpm implementation

by modifying the libevent library used in memcached. In our 12-core evaluation server, we

designated a single core for libudpm’s thread in order to allow all other cores to be able

to enter deep sleep. Using our prototype, we measured that the latency estimation model

and configuration calculation incurs only a negligable 2µs overhead per request. Due to the

lightweight overhead, we can further offload this to a dedicated hardware.

µDPM can also be implemented in hardware as a light-weight dedicated micro-

controller which queues up requests and calculates configuration, with the assistance of

software-side service time profiling. Only a single hardware controller is required per server.

This configuration is similar to the Dream Processor in [93] and other low power embed-

ded offloading cores [13, 15, 117]. When the hardware µDPM determines a configuration is

required, an interrupt is triggered to the processor to modify the frequency [14].

5.4.5 µDPM Evaluation

In this section, we present our evaluation of µDPM. We evaluate µDPM using

an in-house simulator with various latency-critical data center workloads representative of

common microservices. Our simulator is a framework for stochastic discrete-time simulation

of a generalized system driven by empirical profiles of a target workload (similar to BigHouse
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[94]). Empirical inter-arrival and service distributions are collected from measurements of

real systems at fine time-granularity. Using these distributions, synthetic arrival/service

traces are generated and fed to a discrete-event simulation that models the server’s active

and idle low-power modes. Latency measures (e.g., tail response latency) are obtained by

logging the start and finish time of each request. Similarly, energy measures are obtained

through the weighted sum of the duration of idle, busy and transition periods with their

corresponding power consumption. Similar to previous papers [33,46,68,69,86], we focus on

CPU power as CPUs are the single largest contributor to server power. It was also observed

that the CPUs’ and server’s power curve are of the same shape, therefore, CPU power is a

strong proxy for server power [46,68].

The power consumption at each processor C-state and frequency step is collected

from measurements of real systems and is shown in Table 5.1. Also, the uncore power (LLC

and some peripheral circuit) is measured as 10W. We model a 12-core server, similar to our

experimental server. Unless otherwise stated, we use 89 µs and 10 µs as sleep and VFS

transition time, respectively. The sensitivity study of the state transition time is also given

in section 5.4.5.

We validated our simulation infrastructure against our prototype as shown in Fig-

ure 5.16. The latency figure, which plots the tail latency of the baseline machine configura-

tion, and the power figure clearly demonstrates that our simulation model agrees well with

the actual behavior of the prototype system.
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Figure 5.16: Prototype vs simulation validation.

Workloads

Typical web application may consist of front end web server (e.g. Apache, NG-

INX), business logic (e.g. accounts, catalog, inventory, ordering), databases or data stores

(e.g. Memcached, MongoDB, Redis), or specialized functionalities, such as search engines

and recommendation systems. In our evaluation, we select four different latency-critical

workloads that are representative of typical backend microservices. Table 5.2 gives the

workload characteristics of four applications we use in our evaluation. Throughout this

paper, we define the tail latency at the 95th percentile and the target tail latency (SLA)

as the tail latency of the applications running at medium load without applying any power

management (similar to [69]). The service time was discussed in depth in section 5.3. We

Table 5.2: Workload characteristics.

Name Avg. Service Time Tail Service Time Target Tail Latency

Memcached [7, 47] 30µs 33µs 150µs
SPECjbb [69,70] 65µs 78µs 800µs

Masstree [69,70,90] 246µs 250µs 1100µs
Xapian [69,70] 431µs 1200µs 2100µs
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later show the result of varying target tail latency and the effect on power savigns in section

5.4.5.

Memcached and Masstree: We evaluate a common in-memory key-value store

used in many production data centers, such as Google, Facebook and Twitter. Due to the

simple computational requirements, key-value stores involve significantly less processing

time per request (tens of microseconds). Because of this, key-value store has even tighter

tail latency constraints, typically on the order of hundreds of microseconds. Key-value

store adds to our analysis an example of an ultra-low latency workload. We captured traces

(request arrivals and service time) from a real server running Memcached. In addition, we

use a different service time distribution from Masstree [90] provided in [69,70].

SPECjbb: Business logic makes up a large component of many large-scale web

applications, such as e-commerce and businesses. These business logic can include var-

ious functionality such as sales, inventory, and customer management. We evaluate with

SPECjbb [10], a Java real-time middleware benchmark that simulates supermarket company

with various microservices covering the services of supermarkets and suppliers (inventory,

sales, orders, etc.), and headquarters (receipts, customer, etc.).

Search: We evaluate the query serving portion of a production web search service.

Search requires thousands of leaf nodes all running in parallel in order to meet the stringent

tail latency constraints. In search, most of the processing is in the leaf nodes that mine

through their respective portion of data. Consequently, leaf nodes account for the vast

majority of nodes in a search cluster and are responsible for an overwhelming fraction of

power consumed [21,22,36]. We use the service distributions of Xapian, provided in [69,70]
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as a representative search algorithm.

Results

We compare our results with three state-of-the-art power management schemes:

Rubik [69] (VFS-only scheme), DynSleep [33] (sleep-only schemes), and SleepScale [85]

(sleep+VFS scheme). The results of Rubik are representative of other VFS-only schemes,

such as Pegasus and TimeTrader [86,114]. The original Rubik design assumes that frequency

boosting is available. We model an optimistic Rubik design that sets the maximum fre-

quency as the nominal frequency. SleepScale combines both Sleep state and VFS selection.

SleepScale requires long computation time for its simulation-based prediction scheme, and

therefore calculates Sleep and VFS selection after every 1 second epoch [85]. For DynSleep

we set the frequency at maximum, and always enters C6 deep sleep state upon encoun-

tering an idle period. DynSleep is representative of other Deep Sleep techniques, such as

PowerNap [91] and DreamWeaver [93], but outperforms both due to its ability to harness

per-core level idleness instead of socket-level (full-system) idleness. In addition, we also

show the results for the “Optimum” scheme which combines DynSleep and Rubik with no

state transition overhead. The core will enter the deepest sleep state when idle and wake

up instantly as soon as the request arrives, similar to DynSleep. During request process-

ing, VFS configuration is adjusted at each request arrival instance, similar to Rubik. The

idealized optimum scheme serves as an upper bound of energy saving that can be achieved

under all workloads.

We consider processor level energy consumption, which includes both core and

uncore power. For energy saving results, all schemes are compared with the default baseline
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scheme, where all CPU cores are operated under maximum frequency, and uses the Linux

menu governor [103] to choose the C-state during the idle periods. We also use the Linux

menu governor for C-state selection in Rubik, which only determine VFS configuration.

Energy Savings: In figure 5.11, we gave the energy consumption breakdowns

and show that µDPM can effectively reduce busy and idle power, and the state transition

power. µDPM only incurs a 3% energy overhead for transition. Here, we give the sensitivity

studies of the energy saving on different traffic loads and applications. Figure 5.17 reports

the energy saving results for four different applications across different CPU loads. The

CPU loads are adjusted by scaling the inter-arrival time of requests.

Across all workloads, µDPM provides significantly more energy savings. Typically,

µDPM is within 2-3% of the Optimum scheme, except for Memcached, which exhibits the

shortest service times. Here, transition time overheads begin to dominate and µDPM starts

to fall behind Optimum. Nevertheless, µDPM still provides ∼2x energy savings compared

to all other schemes.

Another noteworthy trend is that at high utilization, most schemes are not able

to provide any power savings at all because the utilization exceeds the utilization that the

target tail latency was set. However, in some cases, like in SPECjbb, Masstree and Xapian,

µDPM is still able to squeeze out modest energy savings where all other DPM fails. These

results demonstrate that request delaying and sleep states are the key to saving power at

high utilization with sub-millisecond latency constraints.

For extremely low latency workloads (Memcached and SPECjbb), the major energy

inefficiency is the idle period energy consumption as demonstrated earlier in this paper.
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Figure 5.17: Energy saving comparisons among different power management schemes.

Therefore, sleep-based techniques provide better energy savings than VFS-based techniques.

SleepScale achieves good energy saving by selecting the best C-state and VFS pair through

design space exploration. However, because of the short natural idle periods, cores can

only enter shallow sleep states during the short idle periods. Therefore, significant energy

saving can be achieved by delaying request processing to create longer idle periods, as in

the case of DynSleep. With µDPM, we can achieve up to 26% energy saving for Memcached

and 32% for SPECjbb, compared with the next best technique, DynSleep, at 12% and 18%,

respectively.

For applications with relatively higher request processing time (Masstree and
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Xapian), the achieved energy savings are relatively lower as the baseline scheme is also

able to take advantage of longer natural idle periods and enter deep sleep states. All exist-

ing schemes perform similar in terms of energy saving. DynSleep provides only moderate

energy saving. Longer processing time means longer nature idleness, and further prolong-

ing these idle periods will only give marginal return in energy saving. SleepScale typically

outperforms all other schemes, except for µDPM, because it chooses the C-state and VFS

configuration with lowest power by exploring the entire C-state and VFS’s design space.

Longer idle periods here allows SleepScale to naturally enter deeper sleep states. With

µDPM, we achieve up to 17% energy saving for Masstree and 8% for Xapian, compared

with the next best technique, at 8% and 5%, respectively.

Contrary to existing assumptions that sleep states cannot be used in latency-

critical workloads [69,86,114], these results demonstrate the need to coordinate delay request

processing, sleep and VFS power management with microsecond latency constraints.

Reducing State Transition Overhead: Figure 5.18 shows the normalized state

transition count with our criticality-awareness algorithm. The results are normalized to the

sum of C-state and VFS transition counts in µDPM without criticality-awareness schedul-

ing. We can see that criticality-awareness effectively reduces the C-state and VFS transition

overhead to less than 20% of the baseline µDPM. For all applications, at low load, the ma-

jority overhead reduction is for VFS, and at high load, for C-state. At low load, it is easier

to find the sleeping core which makes requests non-critical. As a result, more VFS transition

is avoided. On the other hand, it is harder to find cores that can make requests non-critical

at high load, hence criticality-awareness will try to avoid C-state transition since it has
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Figure 5.18: State transition reduction with criticality-awareness.

higher power overheads.

Responsiveness to Load Changes: In addition to meeting the target tail la-

tency in the steady state, µDPM’s design allows it to respond instantaneously to sudden

changes in input load. Since the wake-up time and frequency are updated at every request

arrival, µDPM reacts to the changes in the inter-request arrival time immediately (Rubik

and DynSleep has similar behavior). Figure 5.19 shows how µDPM responds to sudden

load change with Masstree. As a comparison, we also show the tail latency with another

Sleep+VFS scheme, SleepScale, using a 60s epoch as in [85]. The input load trace is shown

on the right, which we gather from our institution’s data center. The target tail latency is

defined as the tail latency under maximum load (80%) from the trace. The 95th percentile

latency for SleepScale and µDPM, calculated every 1 second, is shown in the left. First, we

can see that SleepScale can not close the latency gap under low load. As discussed previ-

ously, SleepScale close the latency slack by VFS, which provides limited room for slowing
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Figure 5.19: Tail latency under varying traffic load.

down request processing. Also, SleepScale can not always satisfy the target tail latency;

due to its history-based prediction, it can not react to sudden load changes, resulting in

multiple target tail latency violations. On the contrary, we can see that µDPM is able to

achieve stable tail latencies under all loads. At low load, µDPM chooses to delay requests

and wake up the core later, process requests at a lower rate, and achieve tail latency close

to the latency bound while saving additional power. Also, it adapts quickly to sudden load

changes and burst, thanks to the dynamic wake-up time and frequency adjustments.

Sensitivity to Tail Latency Constraint: In data centers, the target tail latency

is usually defined at the peak load. Previously, we assumed that the SLA is set at 50%

load. However, there might be some cases that the peak load is different.

Figure 5.20 shows the energy savings with different tail latency constraints. The

x-axis is the latency constraint for each application, and the y-axis is the energy savings

achieved for that target tail latency constraint. As expected, energy savings generally de-
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Figure 5.20: Sensitivity to target tail latency.

creases as the SLA gets tighter in all four applications and all schemes. The rate of this

decrease is highly related to the application characteristics. For Memcached, the energy

saving quickly drops to 0 as latency constraint decreases under all schemes, except µDPM

with criticality-awareness because the latency slacks become smaller than the resident time

of deep sleep state and the VFS transition latency. We achieve better energy saving as la-

tency constraint decreases due to the coordination request delaying and request rescheduling

among cores. For other workloads, the energy savings are more resistant to the latency con-

straint because of the relatively larger latency slack. µDPM consistently outperforms all
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Figure 5.21: Sensitivity to transition time.

other schemes in four applications and all latency constraint levels. µDPM consistently

outperforms all other schemes by saving power over 3x in Masstree, and 2x in SPECjbb and

Xapian.

Sensitivity to State Transition Overhead: To understand the utility of

µDPM, we characterize its effectiveness by varying sleep or VFS transition times. Fig-

ure 5.21 illustrates how energy saving decreases with increasing transition time. We present

results for Memcached at 10% load. Since µDPM determines the configuration consider-

ing both sleep and VFS transition overheads, it will dynamically balance the use of each

scheme. As the sleep transition increases, the energy saving from sleep decreases, and most

of the energy saving are from VFS. On the other hand, as the VFS transition time increases,

µDPM will tend to use more sleep to achieve energy saving. Also, we present the results for

Rubik, in the right hand side of Figure 5.21. Clearly, µDPM is more resistant to the VFS

transition overhead. On top of that, with criticality-awareness, the energy saving is more

resistive to the increase of transition overhead because of the state change reductions.
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Chapter 6

Power Management under Quality

and Latency constraint

6.1 Introduction

Web search is an important class of data-intensive online services in data cen-

ters, serving billions of users each day. Needless to say, search engines need to meet strict

performance constraints, which directly affect users’ satisfaction as well as search engine

revenues [108]. Nonetheless, this is a very challenging task: search engines need to process

tens of thousands of queries every second over billions of documents, but users expect the

response time to be under a few hundred milliseconds. Thus, although high-quality con-

tent closely relevant to users’ queries are crucial in search results, search engines may often

have to compromise the search quality in order to meet the stringent latency requirement.

Additionally, power consumption of a search system is also a critical performance metric.
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With hundreds of thousands of machines, significant power consumption is already leading

to a soaring operating cost for the search service provider. As a result, reducing power con-

sumption while meeting the quality and latency constraint is a major challenge in designing

a distributed search system.

Query processing in search engines often involves multiple retrieval stages and a

distributed architecture. Specifically, upon receiving a query, the aggregator dispatches it

to the ISNs and each ISN starts retrieving top-K ranked results for the given query on

its own web index database. After that, the top-K results from each ISN are collected

by the aggregator and the results are re-ranked to find the final top-K results. Since the

aggregator needs to wait for all responses from the ISNs, the response time depends on

the slowest ISN. Due to significant response time variation among the ISNs, a long latency

at any ISN manifests as a slow query response at the aggregator level [18, 37, 71]. At

each ISN, returning top-K results requires exhaustively computing the relevance score for

each indexed document, which is time consuming and often unnecessary since most of the

evaluated documents will not make to the ISN-level top-K results. Moreover, most of the

results at ISNs are not used because only the top-K results from the aggregator will be

sent back to the user. Clearly, these unnecessary computations, albeit useful for producing

high-quality search results, lead to long query response time and power wastage.

Several techniques have been proposed to reduce request processing time at the

ISN level. For example, dynamic pruning (or early termination) reduces the number of

documents to be evaluated by skipping the documents that can not make to the top-K

results [39,40]. Although the pruning methods reduce some unnecessary computations and

151



improve the average query processing time at the ISN, the query processing time variation

among ISNs is still high [65]. As a result, the improvement of the query response time at the

aggregator level is limited. Another method is proposed to employ an aggregator timeout,

which determines how long the aggregator waits for its ISNs before sending the results back

to users [120]. The key idea is to trade off the result quality and the response time: the

shorter the aggregator waits, the less ISN response it collects, which improves responsiveness

but potentially degrades the quality due to possible missing of results from certain ISNs.

Nonetheless, although the aggregator policies improve the response time subject to a quality

constraint, they did not address the power consumption issue, as the ISNs will still perform

the query processing for all queries and result in unnecessary power wastage. Further, [120]

defines the quality as the number of responses received from the ISNs, but this does not

capture the characteristic of a distributed search engine that different ISN responses may

contribute to the final result differently due to ISN heterogeneity.

Some prior studies have proposed to save the data center server power by slowing

down or postponing the query processing through voltage and frequency scaling (VFS) and

CPU sleep states while meeting the tail latency constraint [33,69,85,86,93]. However, these

studies do not take into account specific workload characteristics in search systems. For

example, our experiments show that there exists a correlation among ISN query processing

times in the search system, whose impact on quality has not been well studied to improve

energy efficiency. Finally, the previous work [33,69,85,86,93] considers a single server, not

a multilevel search system with aggregators and ISNs in a realistic search system. As a

result, they do not provide good system-wide energy efficiency improvement while meeting
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the aggregator-level tail latency and response quality constraints.

In this chapter, our goal is to develop a cooperative aggregator-ISN policy that

cuts out the slow ISN responses for fast response time and reduces energy consumption.

First, at the aggregator, a “time budget” is assigned to the ISNs for request processing based

on the expected quality level. Our quality definition is based on a realistic approach which

compares returned documents in the response to the documents in the “golden” benchmark

results of the query when it is processed completely. Based on the budget, each ISN serves

the request only if the predicted processing time is within the time budget, and disregards

the request for energy saving otherwise. Furthermore, the aggregator may choose to re-send

the query for full execution in case the response quality is not satisfactory. By doing so,

we essentially reduce the ISN processing workload and aggregator level latency, while still

meeting the quality constraint. Since the time budget is known to the ISNs, we propose to

proactively put selected ISNs to sleep state to save power when the time budget cannot be

met. Our experimental results show that TailCut can achieve up to 25% and 14% reduction

on latency and power consumption, respectively, while satisfying the desired 99% quality

constraint.

To summarize, we make the following contributions:

• We experimentally verify the query processing time and variation among the ISNs,

which greatly impacts not only the aggregator-level query response time but also the

energy consumption of ISNs.

• We define a realistic ISN level response quality, and illustrate through extensive exper-

imental results that ISN queries that need longer processing time do not necessarily
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give better ISN response quality.

• We propose TailCut, a cooperative aggregator-ISN policy, which intelligently discards

/processes the query processing at the ISN level. We also design an on-line algorithm

which monitors and dynamically adjusts the TailCut design parameters to minimize

power consumption while maintaining the response quality and tail latency under

pre-defined constraints.

• We evaluate the effectiveness of TailCut using an in-house simulator for large scale

distributed search system. We gather query traces by deploying Lucene search appli-

cation with Wikipedia datasets on machines, and feed into our simulator.

6.2 Search Engines Overview

Typically, search engines employ multiple retrieval stages and a distributed archi-

tecture with hundreds of thousands of machines. Figure 6.1 illustrates a common archi-

tecture of an index serving system consisting of index serving nodes (ISNs) and a single

or multiple levels of aggregators. An entire document index, containing information on

billions of documents, is document-sharded [21] and distributed among a large number of

ISNs. To balance the number of indexes among ISNs, each document is first hashed based

on the content of the document. Each ISN is assigned with a range of hash values and the

document indexes are then distributed based on its hashed value.

When a user sends a query and the results for its query are not cached in the

frontend, the aggregator will propagate the query to all ISNs hosting the web document

indexes. Each ISN searches its fragment of the index to retrieve the local top-K matching
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Figure 6.1: Search engine architecture.

documents and sends them to the aggregator. Then, the aggregator merges them, and

computes the overall top-K results among all the returned ISN results.

The ISNs are the most important part of the index serving system and account

for the majority of the total end-to-end latency and most of the power consumption in the

search system is caused by the ISNs [65]. Upon receiving a query, each ISN will search its

index shard to return the matching documents of a query. The documents inside the index

shard are sorted based on static scores (such as PageRank [25]) reflecting the popularity

and importance of the document. When an ISN determines that a document matches

the user query, it computes the relevance score using a ranking function that combines

many factors including the document static score, term features (such as term frequency

in the document [104]) and other features (such as proximity to user location or history).

The query processing follows “document-at-a-time (DAAT)” [26]. That is, the score of a

document is fully computed before moving to the next document in the postings list. For a

multi-term query, the intersection/union of the postings list of each term will be traversed

to find the top scores documents.
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6.3 Problem Formulation

A distributed search system is typically evaluated in terms of three performance

metrics: query response latency, answer/search quality, and power consumption. Next, we

formalize the design of TailCut.

Latency. User queries are often non-deterministic in term of the query context

and arrival time, hence the time to answer the query cannot be known beforehand. We

define user query latency as the time measured between the aggregator receiving a user

query and sending the reply back to the user. Search system often requires not only low

latency, but also low latency variance. Thus, operators typically resort to maintain a high-

percentile latency of user queries, also called tail latency, under a satisfactory level to ensure

that most users receive timely responses. In this chapter, we use the widely-adopted 95%ile

latency as a concrete example, although higher-percentile latency can also be considered.

Quality. To quantify answer/search quality, we generalize [55] and define the

quality as:

Q =

∑
n∈Ruser Sn∑
k∈Rgolden Sk

× 100% (6.1)

which is the ratio of the total score of the matched documents sent to the user, Ruser, to that

the system would otherwise get without any latency constraint, Rgolden. The prior work [120]

defines the quality as the ratio of number of responses received from ISNs by a time over

the number of responses without any time limit. However, this is less accurate in top-K

processing system, since it ignores the ISN heterogeneity in search quality contribution.

For example, if the responses from certain ISNs do not contain any documents that will be

included in the final answer sent back to the user, missing responses from those ISN will
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not affect the final answer quality.

Power consumption. A CPU core runs at a full power when processing a query,

and becomes idle and enters a deep sleep state with little power consumption otherwise.

Let the number of ISNs in the system be N , and the number of queries arrived during Ttot

be U . Then, the average system power consumption can be modeled as:

PN,Usys = N × Pperi +
N∑
n=1

∑U
q=1 Pproc × Tq,n

Ttot
(6.2)

where Tq,n is the time spent on processing query q on ISN n and Pperi is the non-CPU

power consumption of an ISN. Since the server power consumption is dominated by the

CPUs [68], we will focus on the CPU power consumption.

Optimization objective Our objective is to minimize energy consumption of a

distributed search system with N ISNs, while satisfying tail latency and quality constraint

constraints. Given a set of U queries, we denote the latency and quality of query q by

Lq and Qq, respectively, for q = 1, 2, . . . , U . The tail (95%ile) latency for the set of U

queries, denoted by Ltail, is the 0.95× U -th largest latency among these U queries. Thus,

we formulate the power minimization problem as follows:

minimizeU PNsys (6.3)

s.t., Ltail ≤ L, and
1

U

∑U

q=1
Qq ≥ Q. (6.4)

where L and Q is the tail latency and average quality constraints, respectively.
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6.4 Search Engine Characteristics

Search system employing a distributed architecture exhibits several characteristics

that are instrumental for TailCut. In this section, we conduct extensive experiments to

reveal them, based on an experimental setup given in section 6.7.1. Our main findings are:

• There exists a high variance, both within and across ISNs in the query processing time.

• The query processing time is correlated among ISNs.

• Slow processing queries contribute significantly to the total energy consumption.

• The ISN query with long processing time does not produce a high contribution to the

final result.

6.4.1 Processing time

Based on the partition-aggregate model and high processing time variance among

ISNs, the aggregator-level response time is determined by the slowest responding ISN. Al-

though the aggregator propagates the same query to all ISNs, ISNs will need to traverse

different postings lists hence spend different time to process these queries. Figure 6.2(a)

shows experimental results of the query processing time distribution of ISNs. For the sim-

plicity of presentation, we only show the CDF of the query processing time from 3 ISNs.

First, we can see that the processing times vary significantly from query to query. The

maximum processing time can be 5X of the average processing time. Further, contrary to

the previous assumption that the CDF is the same across all ISNs [69,86,120], we see that

processing time is not uniform across ISNs. For example, ISN10 spends 10% more time on

query processing than ISN1 on average. For the high percentile processing time (95%ile
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(a) (b)

Figure 6.2: ISNs processing times diversity. (a) Query processing time distribution within
ISNs. (b) The fastest-slowest ratio of the query processing time across ISNs.

in figure 6.2(a)), the difference is even more significant (∼20%). This difference is due to

heterogeneous index distributions among ISNs. For each term, its postings list may not

have equal lengths among ISNs, resulting in different query processing time distributions

at different ISNs [71].

To further show the discrepancies of query processing time among ISNs, we conduct

query level analysis. Figure 6.2(b) shows the distribution of the fastest-slowest ratio (FSR)

of the queries. FSR is defined as the ratio between the query processing time of the fastest

and slowest ISN for the same query propagated from the aggregator. The lower the FSR,

the higher the discrepancies among ISNs. In figure 6.2(b), we can see that about 50% of the

queries have a FSR less than 60%. Also, more than 90% of the queries a have FSR between

40 and 80%. Clearly, there exists a significant query processing time variation among ISNs.

These results lead to our first observation:

Observation 1 There exists a high variance, both within each ISN and across ISNs in the

query processing time.
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To further analyze this variation, we also present the processing time distribution

among ISNs in figure 6.3. Different from figure 6.2(a) that gives the processing time distri-

bution for each ISN, figure 6.3 focuses on the ”differences” between ISNs. First, we find the

query processing time α of the first ISN, and log the exceeding ratio of all ISNs and queries.

The exceeding ratio is defined as how many ISNs have query processing time larger than

certain time (β), normalized to the total number of ISNs. For example, a point (50,0.6) on

the left most curve means that if the first ISN has query processing time between 50 and

60 ms, 60% of ISNs will have the query processing time larger than 50 ms on average. In

this figure, we can see that there exists a correlation among query processing time of ISNs.

With different α, the query processing time distribution among ISNs is also different. For

example, with 50 ≤ α < 60ms, no ISN in the system will spend more than 100 ms for the

same query propagated from the aggregator. On the other hand, if 100 ≤ α < 110ms, about

60% of ISNs will spent more than 100 ms. The results indicate that a long/short request

Figure 6.3: Correlation among ISNs’ query processing time.
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on one ISN is also likely to be long/short on other ISNs. Such correlation is due to the ISN

index balancing when adding new indexes to ISNs. Hashing the document can effectively

balance the number of indexes among ISNs. But imbalance among per-term postings list

still exists since the per-term postings list is a subset of the ISN indexes. As a result, the

postings lists among ISNs for the same query terms are imbalanced yet correlated. Note

that we choose the first ISN as the base of our analysis only for convenience. Choosing

other ISNs will yield similar results.

Observation 2 There exists a correlation among ISNs’ query processing time.

6.4.2 Energy consumption

Since search engine is based on a top-K query processing model, most of the top-

K documents returned by ISNs are not used for the final results (aggregator-level top-K

results). For example, an a search system with 1000 ISNs, in total 1000K documents are

returned by ISNs, but only K documents are needed and sent back user response. Hence,

more than 99% of ISN computation results are discarded, which leads to a high energy

Figure 6.4: Query processing time and energy distribution.
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wastage. In addition, we also analyze the energy consumption behavior at the ISN level.

Figure 6.4 shows the query-wide statistics (CDF) of the processing time and energy. The

CDF of processing energy should be interpreted as: the portion of energy that is spent on

queries with processing time less or equal to a certain processing time. From this figure,

we can see that ∼50% of queries have processing time less than 50ms, and these queries

only consume ∼20% of total energy; the slowest 20% of queries consume 40% of energy; the

slowest 5% of queries comsumes ∼20% of energy. The long processing time queries clearly

dominates the energy consumption.

Observation 3 A small portion of slow processing queries contribute significantly to the

total energy consumption.

6.4.3 Query response quality

Besides query processing time and energy, the search result quality (i.e., how

relevant the returned results are to the user’s query) is another important metric for a

search engine. Previous works have shown that the quality of search engines exhibit an

“adaptive” nature at both ISN and aggregator level [55, 120]. At the ISN level, processing

a request for more time improves the ISN-level response quality. This adaptive execution

may return lower-quality responses (or partial results) for responsiveness [56, 62, 105]. On

the other hand, at the aggregator level, an aggregation policy determines how long the

aggregaot waits for the ISNs before sending the aggregated top-K results back to users.

The longer the aggregator waits, the more results it collects, thus improving quality but

degrading responsiveness [120]. While prior studies have exploited the tradeoff between
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query response time and quality to reduce tail latency, they only focus on a single level, either

ISN or aggregator. The tradeoff between ISN-level processing time and the aggregator-level

quality remains under-explored. Further, the prior work [120] defines the quality as the

ratio of number of responses received from ISNs over total request sent to ISNs. However,

this does not capture the fact that different ISN responses contribute to the final result

differently (and that most ISN results are discarded by the aggregator).

In this chapter, we define the quality contribution of an ISN, CISN , as:

CISN =

∑
n∈{RISN∩RAGG} S(n)∑

k∈RAGG S(k)
(6.5)

where RISN and RAGG are the top-K results at the ISN and aggregator, respectively, S(n)

is the score of the document n in top-K results. This quality definition is variant of the

weighted quality [55], and reflects the different contributions of different ISNs to the overall

search quality. In particular, CISN = 1 means that the result from a particular ISN is

exactly the result sent back to user by the aggregator, and CISN = 0 means that the result

from this ISN is completely discarded by the aggregator and has no contribution to the final

top-k results.

Figure 6.5 shows the experimental results on the ISN contribution. In these ex-

periments, we use 16 ISNs with K = 20, i.e., each ISN returns its top-20 results and the

aggregator compiles the final top-20 results from the ISNs and sends them back to the user.

Figure 6.5(a) shows the query-wide ISN contribution distribution. We can see that more

than 30% of the time the ISN contribution is 0, and about 80% of the time it is less than 0.1.
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(a) (b)

Figure 6.5: The ISN quality contribution. (a) query-wide distribution, and (b) relationship
between ISN contribution and processing time.

This means that most of the time an ISN only contributes little or none to the final results

sent back to users. In figure 6.5(b), we plot the per-query ISN contribution/processing time

relationship, where x-axis is the query processing time and y-axis is the ISN contribution.

The reading of each query are in black circles. The solid red line represents the average.

We can clearly see that the query processing time has little correlation with the average

ISN contribution. Specifically, a higher processing time does not mean that the ISN will

contribute more to the final results. This also contrasts with the conventional wisdom that

a higher processing time at the ISN improves the quality [56], and motivates our study. In

addition, with a lower query processing time, the ISN quality variation is larger. This can

be due to the unbalanced data partitioning among ISNs.

Observation 4 The ISN contribution is low most of the time, and a longer ISN processing

time does not necessarily produce a higher contribution.
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The above four important experimental observations motivate us to develop Tail-

Cut, a quality-aware scheme that can improve both responsiveness and energy consumption

in a distributed search system.

6.5 TailCut Design

In section 6.4, we found that the long processing time of some ISN queries is the

major factor limiting the search system performance. These ISN queries not only degrade

the latency of user queries, but also lead to high ISN energy consumption. Furthermore,

these ISN queries do not contribute significantly to the response quality. In this section, we

will present TailCut, an aggregator-ISN cooperative policy that judiciously executes queries

considering the processing time, energy and quality.

6.5.1 TailCut Overview

TailCut is a policy that determines the “time budget” for each ISN to process the

request. Each ISN will predict the time needed to process an incoming query and compare

it with the allocated time budget. The ISN will only execute the query when the predicted

processing time is shorter than the time budget. By doing so, we essentially reduce the

ISN processing workloads at the potential cost of slight quality degradation. However, by

dropping a query, the ISN will go to sleep and save power, and the tail latency can be

effectively reduced.

Figure 6.6 shows the overall system architecture of TailCut with one aggregator

and multiple ISNs. When the front-end server receives a search query from the user, it
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Figure 6.6: TailCut system overview.

forwards the query to the aggregator. The aggregator will then broadcast the query to

every ISN along with the “ISN time budget (Tb)”. This ISN time budget limits how long an

ISN can spend on processing this query. At each ISN, the query will first be inserted into its

FIFO queue, and an idle thread will fetch the query from the queue and process it when the

CPU becomes available. Before traversing the postings lists, a thread will predict how long

it will take to process the query, Tp, based on the summation of the length of each term’s

postings list. The regular query processing flow will be applied if the predicted processing

time is shorter than the query time budget, Tp < Tb. Otherwise, the query processing is

skipped and a response with “exceed budget” flag will be sent back to the aggregator.

The aggregator consists of four parts: policy manager, quality inspector, final top-

K computation and configuration update. After broadcasting a search query, the aggregator

will wait for the replies from the ISNs. The collected results will first go through the quality

inspector. The quality inspector will wait for a period of time, Tw, and check how many

ISNs respond with “exceed budget”. The quality inspector can then know the number of
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ISNs which drop their query processing. If this number is small, the inspector will wait for

responses from the remaining ISNs which process their ISN queries, and send the collected

responses to the final top-K computation. In this case, ISN results with long processing

time are dropped, thus reducing the search query latency and ISNs energy consumption.

On the other hand, if the number of dropping ISNs is large, it will lead to significant

quality degradation, since only few ISNs will respond with their results. To prevent high

quality degradation, the quality inspector will issue a full query execution, called “Requery”,

which re-sends the query to ISNs without any time budget. After all requery responses are

received, if any, all ISN responses (from both the initial query and requery) will be sent to

the final top-K computation to compile the final response to the user search query.

Clearly, the performance of TailCut is affected by the time budget, requery, and

query characteristics. In general, frequent requeries adversely affects the response time,

since the response time includes both the quality inspector waiting time (Tw) and the

longest requery processing time among ISNs. To prevent frequent requeries, either ISN

time budget needs to be set larger or the quality threshold that determines whether to

send requeries needs to be set lower. On the other hand, having a large ISN time budget

and/or a low quality threshold for requeries will increase latency and/or energy, since more

queries will go through full execution. The configuration update will dynamically adjust

both decisions based on an on-line algorithm. It periodically monitors the query execution

behavior, and finds an optimum ISN time budget and requery threshold configuration to

minimize power consumption within the given response time and quality constraints.
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6.5.2 TailCut Design Principle

There are three main challenges in designing TailCut: (1) At ISNs, upon receiving

a query, how to predict its processing time, (2) how to determine if Re-Query is needed,

and (3) how to determine/adjust the ISN time budget dynamically. In this section, we will

present a detailed discussion on the design principle of our TailCut scheme.

Query processing time prediction: The score of every document in the post-

ings lists is computed to find the top-K results at each ISN. Thus the query processing

time is highly dependent on the length of postings lists. Figure 6.7 shows the relationship

between query processing time and the total length of the postings lists. In general, the

query processing time increases with the total length of postings lists. To be more precise,

at a smaller length, the processing time increases faster with the increase of the length.

As shown in figure 6.7, We find that a piecewise linear regression model can achieve

a good approximation of this relationship, especially for queries with a long processing time

that we focus on. Note that some existing studies have proposed to include more informa-

Figure 6.7: Relationship between query processing time and the total length of postings
lists.
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tion, such as number of query terms and query complexity, to predict the processing time

with a better accuracy [65, 73]. Although these prediction algorithms can potentially im-

prove the accuracy, they also introduce additional processing time overhead and complexity.

We leave these advanced prediction algorithms as extensions for our future work.

Adjusting ISN time budget: The ISN time budget, Tb, serves as the most

important parameter to improve the user query responsiveness and power consumption, yet

at the cost of reducing the quality. In general, we want to choose the smallest Tb that can

meet the latency and quality constraints and reduce power consumption.

When to send requeries: In the aggregator, the quality inspector will determine

whether requeries are needed. It will compare the number of “exceed budget” responses,

Re, to a threshold Rth. It sends requeries only when Re > Rth, which means that too many

ISNs drop their queries due to insufficient time budgets. The value of Rth dictates the degree

of the trade-off. A higher Rth translates to less frequent requeries, which also leads to a

lower aggregator response time, ISN power consumption and search result quality. Thus,

we need to judiciously choose the requery threshold Rth to reduce the energy consumption

while meeting the latency and quality constraints.

6.5.3 TailCut Performance Analysis

In this section, we provide detailed performance analysis on our TailCut scheme.

The experimental setup is provided later in section 6.7.1, and we only give 5 different values

of Rth for the simplicity. There are two design parameters determining the performance of

the TailCut: ISN time budget (Tb) and requery threshold (Rth). Figure 6.8 shows the results

of the response quality, response tail latency and average total ISNs power consumption
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under different Tb and Rth. In this figure, Tb = 250ms and Rth = 16 represent the “no ISN

time budget” scheme and “no requery (no reQ)” scheme, respectively. Note that the quality

and latency performances under no reQ scheme are similar to those under the aggregator

timeout scheme.

Reducing tail latency: Clearly, the responsiveness of user queries will be im-

proved by setting a limit on the ISN query processing time. As shown in figure 6.8(a),

in the no requery scheme, the tail latency of the user queries is less than Tb. Because all

ISN queries predicted to be longer than Tb are dropped, Tb represents the worst case query

latency. As a result, the tail latency will be smaller than Tb. On the other hand, with

requeries (Rth < 16), the tail latency will increase when Tb is below a threshold, instead

of keeping on decreasing. For example, with Rth = 15 (requery only when all ISNs predict

their queries will spend longer than Tb to process), the tail latency decreases similar to

the no-requery scheme as Tb decreases. However, as Tb decreases below a turning point

(100ms), the tail latency increases rapidly to 160ms. This is because when Tb is set too

low, long queries that are predicted to be dropped will be sent to the ISN again for requery.

When the requery frequency is higher than 5%, the tail latency will be determined by the

requery latency, which is greater than Tb. Other values of Rth have similar impacts, but

with different turning points. In summary, in terms of tail latency, there exists an optimum

Tb such that the tail latency is minimized, and larger values of Rth give a lower tail latency.

Decreased quality: Figure 6.8(b) shows the impact of different design parame-

ters on the search quality. With the no requery scheme, we can see that the quality drops

rapidly as Tb decreases due to the increasing number of the dropped ISN queries. On the
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(a) Tail (95th) latency (162ms) (b) Quality (100%)

(c) Power (1)

Figure 6.8: TailCut performances with different Tb and Rth. The baseline system perfor-
mances are given in parenthesis.

other hand, requeries significantly improve the quality. With requesy sent, a query will

have 100% quality. With the monitoring at the aggregator level, requeries can ensure that

only a certain portion of ISN queries are dropped. Even with Rth = 15, which only sends

requery when all ISNs predict to drop, the quality improves 65% on average over the no

requery scheme. The lower the Rth, the higher the quality will be, yet with a marginal

improvement.

Saving power: The main advantage of TailCut is the ability to save power.

Through query time prediction, the long ISN queries will be dropped, reducing their work-

loads and power consumption. Figure 6.8(c) shows the average total ISN power consumption
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with different Tb and Rth. The power consumption is normalized to that of the baseline

scheme where all ISN queries are processed. Without requeries, all ISN queries longer than

Tb are dropped, which translates into a significant power saving. With requeries, fewer ISN

queries are dropped, resulting in a increase in power consumption. We see a typical ‘U’

curve, where the power consumption first drops as Tb decreases and then increases when

Tb reach an “optimum” point. As Tb decreases, although more queries are dropped, the

possibility of requery also increases. Thus, power saving will increase before the requeries

outweigh the dropped ISN queries in terms of energy consumption. Moreover, we can notice

that power consumption is even higher than the baseline scheme in some cases, especially

with small Rth. This is because of the ISN query initialization and prediction overhead.

When an ISN receives query requests from aggregator, it does some preprocessing to the

request, such as html parsing, handler initialization, etc. An ISN’s decision of dropping the

query is made after these initialization operations. As a result, the power consumption of

initialization is doubled when requeries are sent. With a small Rth, this query initialization

power leads to the increase in power consumption compared to the baseline scheme.

6.6 Configuration of TailCut

From figure 6.8, we can see that the tail latency, quality and power consumption

vary differently with Tb and Rth. To have a better understanding of the overall performance

of TailCut, we compile the results given in figure 6.8 into a quality constrained power-latency

performance chart shown in figure 6.9. In this figure, each point represents a pair of power

and latency results with a configuration (Tb,Rth) that achieves a quality greater than 99%.
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The coordinate of a point (x,y) corresponds to the power consumption and tail latency

results, respectively. Each line then represents the results with a fixed Rth and decreasing

Tb, starting from 200ms (right most point). This figure shows that TailCut can achieve 25%

latency reduction and 14% power saving with configuration (122,11). Moreover, further

power saving can be achieved at the cost of decreased latency reduction.

Figure 6.9 gives some insights on the performance dynamics of TailCut. First,

TailCut with requery consistently outperforms the no requery scheme (solid black curve)

in terms of both power and latency reduction, which demonstrates the effectiveness of our

TailCut design. Second, for a fixed Rth, latency and power reduction are “in phase”. As

Tb decreases, the quality constraint will be violated before the global minimum of latency

and power consumption. Combined with the observation that quality is a non-decreasing

Figure 6.9: Power-latency performance under quality constraint (99%). For each line, Tb is
decreasing from 200ms, with Tb = 200ms at the right most point of each line
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function, the minimum Tb that satisfies the quality constraint will also lead to the minimum

latency and power consumption for a given Rth. However, the power-latency interaction

becomes more complicated with different Rth.

As Rth increases, the “minimum point” shifts toward the left-bottom corner, mean-

ing that power and tail latency decrease simultaneously. As Rth increases beyond 11, the

minimum point moves in left-up direction. In this region, there is a trade-off between power

and latency. Further increasing Rth beyond 14 will increase both latency and power con-

sumption. There is no straight forward relationship between the configuration (Tb,Rth) and

the performance trade-offs.

While the close-form equation for describing the performance for a given config-

uration is unattainable, we develop a low-complexity 2-dimensional search algorithm to

efficiently find Tb and Rth without exhaustively exploring the entire design space. The

algorithm can be divided into two iterative steps: (1) find the Tb under a fixed Rth (corre-

sponds to finding the end point of a line in figure 6.9), and (2) select the configuration that

minimizes power. The details of our algorithm is given in Algorithm 2.

Step 1: Since our goal is to minimize power consumption, by observing figure

6.8(c), we can see that the power consumption for each Rth has only one global minimum.

By using binary search respect to Tb (inner while loop), we can efficiently find the minimum

power consumption for a given Rth.

Step 2: As shown in figure 6.9, the minimum point for each Rth forms a U curve.

Thus, we also use binary search to find the optimum configuration (outer loop).

Acquiring the performance: In our algorithm, we need to evaluate the perfor-
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mance with the different configuration. Without close-form equations, we use a simulator

to acquire the performance. The simulator will take the arrival time, processing time and

the responses for the ISN queries traces as inputs. These traces are replayed with the

configuration to generate the performance metrics.
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Algorithm 2 Configuration determination

1: Input: query trace, Qth, Lth Output: Tb, Rth

2: A.left = min(Tb), A.right = max(Tb), A.Ppre =∞

3: while A.left < A.right do

4: A.mid = b(A.left+A.right)/2c

5: B.left = min(Rth), B.right = max(Rth)

6: B.Ppre =∞, B.Lpre = Lth

7: while B.left < B.right do

8: B.mid = b(B.left+B.right)/2c

9: (Qcur, Lcur, Pcur)=simulate(B.mid,A,mid)

10: if Pcur < B.Ppre &Qcur ≥ Qth &Lcur ≤ B.Lpre then

11: B.Ppre = Pcur, B.Lpre = Lcur

12: B.right = B.mid

13: else

14: B.left = B.mid+ 1

15: end if

16: end while

17: if A.Ppre < B.Ppre then

18: A.Ppre = B.Ppre

19: A.right = A.mid

20: else

21: A.left = A.mid+ 1

22: end if

23: end while

24: Tb = B.right,Rth = A.right

25: return (Tb, Rth)
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Runtime adaptation: With ever-changing user queries and the continuously

updated ISN indexes, the performance will vary over time. We periodically compute the

optimum configuration to adapt to these variations. At the beginning of each epoch, we

first start a “logging period”. During this period, we do not apply TailCut, and gather

all query traces (query arrival and processing time, and ISN responses). These traces are

then fed into the simulator when computing the performance under a given configuration.

After determining the updated configuration, it is applied until the end of the epoch. Based

on our experimental results, we set the length of logging period and epoch to be 3 and 30

minutes, respectively. These values provide a good balance between responsiveness and

power saving while query behavior changes.

6.7 Evaluation

6.7.1 Experiment Setup

Application and workload: We use the industrial strength open-source Lucene

/Solr search engine similar to the commercial web search engines [37,105,120]. Lucene/Solr

provides a convenient setup for the distributed search environment. We build indexes

of a 230GB Wikipedia’s English XML export [12], which contains all the wikipedia ar-

ticles/pages. The document indexes are distributed across different index nodes through

Lucene/Solr “SPLIT SHARD” utility. The search queries are generated from the other

machine connected through 10G Ethernet. The query terms are randomly generated from

luceneutil term base [6].

Simulator: Since the distributed search engine involves multiple physical servers
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Table 6.1: Baseline system configuration.

Name Configuration
number of ISN 16

number of match doc (top k) 20
Tail latency constraint 150ms

Quality constraint 99%
Query per second (QPS) 10

which we cannot access, we evaluate TailCut with an in-house discrete event-based simula-

tor. Our simulator takes the query arrival time, execution time and ISN query result traces

as input. We acquire the traces through real machine experiments. For the user query

arrival trace, we randomly generate 100K user queries with poisson arrivals. To acquire

the query processing time traces, we sequentially run each ISN on a real server with the

partitioned document index and the same queries arrival trace. Our server has a 12-core

2.7GHz Xeon E5-2697-v2 processors with 256 GB main memory and 1TB HDD. We disable

the DVFS to eliminate run-to-run variations. Before running the experiments, we warm up

the server long enough to ensure all indexed data are cached in the main memory. Dur-

ing each run, the length of postings lists, query processing time and the top-K matched

documents for each query are logged. Note that the query processing time is measured

from the beginning and the end of each query processing, excluding the queuing delay. The

gathered traces are then fed into the simulator with TailCut implementation, as shown in

figure 6.6, with one aggregator and multiple ISNs. Each ISN are modeled to have 12 CPU

cores following our server configuration. In our simulation, a CPU core will spend full power

(3.4W) during its query processing, and no power during idle. We then replay the traces

with different distributed search system configuration to obtain the latency, quality and

power consumption performances.
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6.7.2 Results

In this section, we present sensitivity studies on different system configuration to

show the effectiveness of our proposed TailCut design. The baseline system configuration is

given in table 6.1. The default distributed search system (without any time budget at the

aggregator and ISNs) with the baseline configuration will have 162ms tail (95%ile) latency,

100% result quality and no power saving. We vary one configuration at a time to show the

impact on the distributed search systems.

Processing time prediction model: The keystone of TailCut is the ability to

predict the query processing time at each ISN. In figure 6.7, we show the relationship be-

tween the total length of postings lists and the query processing time, and use piecewise

linear regression (PWL) to build our prediction model. To understand how the prediction

model affects TailCut, we conduct experiments with different prediction models, and give

the results in figure 6.10. We compare the results of using (1) linear regression, (2) piecewise

linear regression with different number of pieces, and (3) oracle scheme where the query

processing time is known beforehand. We can see a significant performance improvement

of using PWL model over simple linear model. Obviously, the non-linear relation between

postings lists length and query processing time can be better capture by PWL. Also, we can

see that increasing the degree of PWL gives a marginal performance improvement. From

degree 2 to 8, the power saving only improves by 1% but significantly increases the com-

plexity in piecewise linear regression modeling. Comparing with the oracle scheme, simple

PWL model can achieve power saving within a 2% range without complicated prediction

algorithms.
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Figure 6.10: TailCut performance under different query processing time prediction model.

Quality and tail latency constraints: The distributed search systems are

widely applied to different services, such as web search, product recommendation, adver-

tising, etc., and its performance requirements vary among different service providers. For

example, the product recommendation service might require higher result quality for better

revenue, but can tolerate longer response time. A web search system might need to balance

the answer quality and response time, since both will affect the user experiences hence the

revenue. To evaluate how TailCut reacts to different requirements, we perform sensitivity

studies on both quality and tail latency constraints and results are shown in figure 6.11.

First, we can see that TailCut is more sensitive to the latency constraint than to

the quality constraint. With a fix latency constraint, the achievable power saving decreases

almost linearly as quality constraint decreases. On the other hand, as latency constraint

decreases with the same quality constraint, the power saving decreases exponentially. This is

expected since small Tb and Rth will affect more in latency than quality as shown figure 6.8.

With 70ms latency constraint, TailCut is only effective when the quality constraint is lower

than 95%. On the other hand, TailCut can save power under 150ms latency constraint and
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Figure 6.11: TailCut power saving under different quality and latency constraints.

99% quality constraint. In order to achieve high quality results, more ISN queries should be

processed. In contrast, reducing latency requires more ISN query dropping. This trade-off

between latency and quality determines the power saving performance of TailCut.

System load: While query processing time is an important factor, query queuing

behavior also plays an important role in user query responsiveness, especially in high system

loads. Figure 6.12 shows the TailCut power saving performance under different system loads.

Figure 6.12: TailCut power saving under different load (QPS).
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We vary the query-per-second (QPS) from 10 to 210. The power saving slightly decreases

as the load increases, from 14% to 13% as QPS increases from 10 to 170. However, the

power saving quickly drops after further increasing QPS, only 8.8% at QPS=210. Because

of the queuing delay, the configuration update algorithm will choose a lower Tb, which

aggressively drops ISN queries for satisfying the latency constraint. However, to meet the

quality constraint, requries will be sent frequently, resulting in a low power saving. Note

that although not shown in this figure, TailCut can also improve the throughput of the

system. In the default system (without any time budget), the average utilization of the

system is about 80%. With TailCut, the utilization is reduced to 72% because of the ISN

queries dropping.

Different number of matched documents: Different matched documents will

also affect the performance of TailCut. As shown in figure 6.13, the power saving decreases

as the number of requested documents (top-K) increases. This is due to the change of

response quality of ISNs. As K increases, it is less likely that an ISN will have no or little

Figure 6.13: TailCut power saving under different matched documents (Top-K).
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contribution to the final response, hence dropping a ISN query will have greater impact on

the quality. As a result, fewer ISN queries can be dropped with little quality degradation.

Scalability: To see the scalability of our TailCut design, we conduct experiments

with different numbers of ISNs and show the results in figure 6.14. In these experiments, for

the ISN number larger than 16, we use synthetic ISN query processing time generated based

on the correlation shown in figure 6.3. We can see that power saving achieved by TailCut

“increases” as the number of ISN increases. With a larger ISN count, it is more likely that

an ISN will have no contribution. From the law of total probability, more percentage of ISN

queries generated from a user query can be dropped under the same quality constraint, hence

higher power saving is achieved. Although increasing, this power saving will asymptotically

approach a upper bound (∼26.5%) with further increasing number of ISN, and this value

will be affected by the selection of quality and latency constraints.

Figure 6.14: TailCut power saving under different number of ISNs.
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Chapter 7

Conclusions

The explosive growth of network and data center applications require orders-of-

magnitude increase in network bandwidth and throughput. The delay-sensitive interactive

services, such as web search, online recommendations, gaming, and multimedia streaming

applications, have become an integral part of our lives and constitute an increasingly high

portion of network and data center workloads. To attract users and generate revenue, these

services require high-quality and timely responses, placing a high priority on minimizing

latency. As the service providers aggressively scale the infrastructure capability by employ-

ing high-performance computers, high power consumption poses a significant challenge to

scalable system design. Higher power consumption not only increases the cost of operation,

it also increases core temperature, which exponentially increases the cost of cooling and

packaging, as well incurs indirect and life-cycle costs due to reduced system performance,

circuit reliability and chip lifetime. As a result, thermal awareness is required in the system

design. In this thesis, we focused on developing power and thermal management techniques
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for network and data center applications while considering various performance constraints.

Our goal is to reduce the power/energy consumption while satisfying not only throughput,

but also the thermal, latency, and quality constraints.

In chapter 3, we have presented a Vacation scheme, a thermal management tech-

nique for network packet processing on multicore architecture. By introducing forced work-

ing and vacation periods, we minimize the peak core temperature and power consumption

with the use of the C-states provided by OS without serious latency penalty. To understand

and predict the performance under Vacation scheme, we proposed novel performance mod-

els for the temperature rise, power consumption and average latency with equivalent RC

thermal modeling and vacation queuing theory. On top of our per-core vacation scheme, we

proposed a heterogeneous load distribution, which brings higher achievable load and power

saving while maintaining peak core temperature under the given thermal constraint. We

have demonstrated the effectiveness of our approach with the real multicore server running

CRC, a packet processing application, and traffic trace. The experimental results show that

our vacation scheme can sustain 10% more load on an average without thermal constraint vi-

olation compared with the state-of-the-practice thermal management schemes. Also, under

the thermal constraint, our vacation scheme can achieve up to 25% power saving.

Then, in chapter 4, we have presented a power management technique for multi-

core, called smart sleep scheme, for network and datacenter applications. First, we identify

the causes for major power wastage during the idle period. We minimize the power con-

sumption by reducing idle period power consumption through per-core sleep, which effec-

tively reshapes the processing pattern and utilizes the existing C-states for power saving.
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Considering the tail latency constraint for the data center applications, we derived a novel

performance model for the probability distribution function of the latency under our smart

sleep scheme, and validated with experimental results. Furthermore, we consider core siz-

ing along with the per-core sleep, which brings higher power saving while satisfying traffic

load demands and QoS requirement. We demonstrated the effectiveness of our approach

with the real multicore server running three network packet processing applications and a

latency sensitive data center application with both synthetic and real-world traffic traces.

The experimental results show that our proposed technique can achieve up to 44% power

saving and 60% energy proportionality increase compared with the state-of-the-practice

power management technique under real world traffic traces.

Next, we explored the implications of short-term traffic variation existing in the

data center. In chapter 5, we first presented DynSleep, a fine-grain power management

technique that reduces core power consumption by intelligently determining the CPU sleep

period at per-request basis and utilizing CPU deep sleep states. DynSleep uses a novel

performance model to account for the uncertainties, such as random request arrivals and

service time, in the latency-critical applications. We implemented DynSleep with Mem-

cached, and demonstrated the effectiveness of our approach with the real multicore server.

The experimental results show that our DynSleep can achieve up to 65% power saving.

Then, we performed a detailed analysis on the state-of-the-art techniques for both sleep

and DVFS based power management scheme and found out that the existing dynamic

power management techniques are largely ineffective because of the high state transition

overhead, short request service time and strict tail latency constraint. Our analysis also
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shows that sleep or DVFS alone can not fully exploit the latency slack for power saving.

Based on the observations, we designed µDPM, an all encompassing power management

framework that coordinates service delay, per-core sleep states, voltage frequency scaling

and load distribution. µDPM extends our dynamic sleep scheme by taking into account

the request processing speed. Also, we developed a novel request redirection algorithm,

which aims to minimize both sleep and DVFS state transitions, which are the major source

of energy inefficiency while applying sleep and DVFS power management. The simulation

results show that µDPM reduces processor energy consumption by up to 32%, and consis-

tently outperforms state-of-the-art techniques by 2x while satisfying strict SLA constraint.

Contrary to existing assumptions that sleep states cannot be used in latency-critical work-

loads, µDPM demonstrates significant energy savings even with microsecond service time

and latency constraint.

Lastly, we look into the system wide datacenter performances for online data-

intensive (OLDI)applications. The service provider often sets strict constraint on the tail

latency and response quality for these applications. In chapter 6, we explored the complex

trade-off among latency, quality and energy consumption in the distributed search system,

and gained some insights through detailed analysis of the workload characteristics. We

proposed TailCut, an aggregation-ISN cooperative policy, to reduce power consumption

subject to tail latency and response quality constraints. In TailCut, the ISNs judiciously

discards query executions based on our predictor, and the aggregator issues the requery

to ISNs if the quality constraint is not met. With the detailed performance analysis of

TailCut, we developed an online algorithm to quickly configure TailCut — time budget and
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requery threshold. We conducted experiments using execution traces logged from deploying

Lucene/Solr on a real server with the full Wikipedia dataset. Our experimental results

show that TailCut can achieve up to 39% power saving, while satisfying the tail latency and

quality constraints.

Some potential future research directions are listed below. First, this thesis focused

on the power and thermal management of the server for network and data center applications

without touching other parts of the data center. Specifically, network power saving should

also be considered. It will be challenging to incorporate various techniques considering

the performance interaction between network and server. Second, it would be interesting

combine the techniques presented in chapter 5 and 6, as dropping query processing should

provide more latency slack for the server and create more opportunities for DVFS and CPU

sleep to save power. Third, this thesis only focused on single application, query processing

in the data center might consist of different stages. Multiple applications, such as data

analysis, data caching and search, work together to serve a user request. Each application

has different workload characteristic and behavior, and might have dependency with other

applications. It would be interesting to explore the interaction among different applications

with the different SLA constraints.
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